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Abstract. This paper describes a new temporal graph modelling so-
lution to organize and memorize changes in a business application. To
do so, we enrich the basic graph by adding the concepts of states and
instances. Our model has first the advantage of representing a complete
temporal evolution of the graph, at the level of: (i) the graph structure,
(ii) the attribute set of entities/relationships and (iii) the attributes’
value of entities/relationships. Then, it has the advantage of memorizing
in an optimal manner evolution traces of the graph and retrieving easily
temporal information about a graph component. To validate the feasi-
bility of our proposal, we implement our proposal in Neo4j, a data store
based on property graph model. We then compare its performance in
terms of storage and querying time to the classical modelling approach
of temporal graph. Our results show that our model outperforms the
classical approach by reducing disk usage by 12 times and saving up to
99% queries’ runtime.

Keywords: Temporal graph - Graph snapshots - Temporal evolution -
Graph data stores.

1 Introduction

In the real world, entities (i.e. objects, concepts, things with an independent
existence) and the relationships between them change over time so information
about them also changes. They can evolve over time in terms of (i) their topology
(how entities are linked, when entities/relationships are present or absent), (ii)
their inherent features (the attributes set that describes an entity or a relation-
ship) and (iii) their status (the values of the set of descriptive attributes at a
particular time). Finding and analyzing these evolutions enable to get a deeper
understanding of an application notably to exploit temporal correlations and
causality [93], to make simulations [8] or to make predictions [16]. It is therefore
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necessary to be able to manage the temporal evolution of data to exploit them.
The management of evolving data implies the following challenges: (i) the for-
malization of a conceptual model to capture the three aspects of evolution of an
application that we mentioned before, (ii) the implementation of the conceptual
model into a data store and (iii) the efficient querying of the temporal aspects
of an application.

Regarding the first challenge, a growing part of the literature proposes con-
ceptual models, called temporal graphs, based on graphs because of their flexible
nature. It incorporates time dimension in graphs and captures the temporal evo-
lution of graph data. The basic representation of temporal graphs is the sequence
of graph snapshotsﬂ However, existing snapshots-based solutions focus on spe-
cific evolution aspects according to an application’s needs. Particularly, they do
not capture the addition or deletion of entities and relationships’ attributes over
time. Regarding the second challenge, to our knowledge, no works formalize
translation rules of a conceptual model of temporal graphs into a data store
[2702124]. Regarding the third challenge, to exploit temporal graphs efficiently,
some works propose optimization methods to reduce data redundancy generated
by snapshots but they are not effective enough [I4/26/28]. Other works focus on
the performance of graph data stores supporting temporal graphs [BITOJ25]T9].

In response to the previous issues, our contribution is three-fold: (i) a generic
conceptual model to capture a complete temporal evolution of graph data, (ii)
that is directly convertible into a graph data store through formalized translation
rules (iii) and that supports efficiently the querying of multiple evolution aspects
of a graph. In this paper, first, we discuss the challenges posed by existing works
on the management of graph data evolving over time (Section . Second, we
propose novel concepts of the temporal graph to overcome the limits of existing
concepts (Section . Finally, we implement our model in a graph data store,
namely Neodj, and compare its performance to the classical snapshot-based im-
plementation and an optimized snapshot-based implementation (Section .

2 Related Works

In this section, we analyze existing approaches to manage the evolution of graph
data at three levels: conceptual, logical, and physical levels. Then, we present
our contributions in relation to existing works.

At the conceptual level, the classical approach to model graph data evolving
over time is the sequence of snapshots [14]. It generally consists in sampling
graph data periodically to obtain snapshots at a fixed time interval (e.g. per
hour, day, month or year) [I8]. The advantages of this modelling approach are
that it is simple and that it represents accurately the state of the graph at a spe-
cific time instance [I8]. Nevertheless, existing works based on this approach are
limited in taking into account evolution. The evolution of the graph topologyﬂ

3 denoted G1,Ga,...,Gr where G; is an image of the entire graph at the time instance
i and [1; 7] is the timeline of the application
4 Graph topology is the way in which nodes and edges are arranged within a graph.
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i.e. the addition and deletion of edges only [2712] or both nodes and edges [24]
over time, is the most studied evolution type. To meet more complex needs, some
models include attributes of nodes [6[7] or both edges and nodes’ attributes [11]
to capture the temporal evolution in their values. In the previous cited works,
they generally consider the attribute set of nodes or edges as fixed while it can
evolve over time in real-world applications. Indeed, some applications require to
model evolution that happened at all levels in a graph [4]. To the best of our
knowledge, there is no modelling solutions of temporal graphs including all evo-
lution types in order to be used in any desired application. Last but not least,
some works propose a modelling approach of evolving graphs completely in break
with snapshots [I5I7]. They attach a valid time interval to each graph compo-
nent (i.e. node or edge) to track the graph evolution. However, as snapshots,
they focus on specific evolution types.

At the logical level, property-graph and RDF data models are commonly used
in the graph domain. Traditionally, the transformation between the conceptual
level and the logical level is done in an automatic way such as in the relational
databases domain. However, to our knowledge, this automation is not studied in
the domain of graphs. The works that propose a conceptual model completely
ignore the formalization of translation rules from the conceptual model to the
logical model [27J2/24]. No standard is defined at the present time to guarantee
a compliant implementation of a conceptual model of temporal graphs at the
logical level.

At the physical level, existing works try to maximize the implementation
and query efficiency of temporal graphs. We distinguish two research axis in
existing works: data redundancy reduction and performance improvement. Re-
garding data redundancy reduction, snapshots inevitably introduce data redun-
dancy since consecutive snapshots share in common nodes and edges that do
not change over time [I4]. There exist optimization techniques to partially re-
duce data redundancy. For instance, [26] proposes a strategy to determine which
snapshots should be materialized based on the distribution of historical queries.
[11] introduces an in-memory data structure and a hierarchical index structure
to retrieve efficiently snapshots of an evolving graph. [22] proposes a framework
to construct a small number of representative graphs based on similarity. These
techniques are unfortunately not effective enough.

Regarding the performance improvement, some works focus on the perfor-
mance of graph data stores supporting evolving graphs via experimental assess-
ments. Some experiments are based on property-graph based NoSQL databases.
For instance, [5] uses Neo4j to store time-varying networks and to retrieve spe-
cific snapshots. The authors in [I0] have developed a graph database manage-
ment system based on Neo4j to support graphs changing in the value of nodes
and edges’ properties but with a static structure. Other experiments rely on
RDF triple stores, such as Virtuosdﬂ or TDB—JenaH7 to store the evolution of
Linked Open Data (LOD) in the Semantic Web area [25/19]. It is already known

5 https://virtuoso.openlinksw.com/
S https://jena.apache.org/documentation/tdb/
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that property-graph based NoSQL databases are more efficient than RDF triple
stores when querying RDF data [20]. It is necessary to see if property-graph
based databases are as efficient in the context of temporal graphs.

Contributions. We propose a complete solution to manage the evolution of
graph data. From a conceptual point of view, we propose a graph-based modelling
that does better than snapshots by capturing temporal evolution at all levels -
the graph topology, the attributes’ set and the value of attributes - in order to
be implemented in any desired application (Section . From a logical point of
view, we propose translation rules between our conceptual model and a graph
data store to automate the implementation of our model (Section [4). We have
decided to focus on a property-graph data store as it provides a more efficient
environment for analytical queries than RDF triple stores. From a physical point
of view, to highlight the advantage of using our model instead of snapshots, we
present a comparative study of the implementation of both models using Neo4;j
as a property-graph data store. On the one hand, we compare the creation time
and space requirements to evaluate the proportion of data redundancy in both
models. On the other hand, we compare the querying performance of these im-
plementations based on benchmark queries highlighting the temporal evolution
concepts proposed by our model and using the native query language of Neo4j

(Section [)).

3 Proposition

In this section, we present our modelling solution of a temporal graph. We keep
the concepts of entities and relationships as in basic graphs. We incorporate the
notion of time to represent the evolution of entities and their relationships. We
model time as linear and discretized according to a time unit. A time unit is a
partition of the timeline into a set of disjoint contiguous time intervals.

Definition 1. A time interval defines a set of instants between two instant
limits. We denote it T = [tpegin,tend]. An instant defines a point on a time-
line, that is T = [tpegin, tend| Where tpegin = tend.

In order to respond to the current needs for capturing multiple evolution
types of an application (change in the topology of entities/relationships, in
the attributes set of entities/relationships or in the attribute values of enti-
ties/relationships), we cannot rely on the current works in the literature. To
overcome this limitation, we propose a new model capable of capturing three
types of temporal evolution of entities and relationships in an unique represen-
tation. In our model, an entity or relationship that evolves over time is modelled
through three levels of abstraction: (i) the topology level to capture its presence
and absence over time (ii) the state level to capture the evolution in its at-
tributes set and (iii) the instance level to capture the evolution in the value of
its attributes.
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Instead of attaching time to an entire graph as in snapshots, we attach a
valid time interval to each abstraction level of entities/relationships. This valid
time interval expresses the validity and existence of the information associated
to each abstraction level of entities/relationships inside a certain time interval.
This time management method allows to keep the strict and necessary data and
then avoid data redundancy.

Definition 2. A temporal entity, called e; € E, is defined by (T, id%,S)
where T is the valid time interval of e;, id® is the identifier of e; and S =
{87's - 80} is the non-empty set of states of e;. Each state si' € S is defined
by (T3, A% I%) where:

— T% s the valid time interval of sj

— Asi ={af%;..;a} is the non-empty set of attributes of s;i during T% . It is
called the schema of e; during T%7.
— I% = {i}’;..;4,’ } is the non-empty set of instances of 85" during T% . Each

instance i,’ € I% is defined by (T* V) where:
o T is the valid time interval of 2;’
o Vit = {v(ai);..;v(ayy)} is a non-empty set of attributes’ values. Each
v(ag') € V' is the value of each attribute ag' € A% during T".

The highest abstraction level of a temporal entity e; is the topology level. At
this level, a temporal entity evolves only according to its presence or absence in
the application reflected by the change of its valid time T over time.

The middle abstraction level of a temporal entity e; is the state level under
which its schema, denoted A%, can evolve. At this level, two states of the same
entity have different schemas. When a new attribute is added or removed from
an entity, a new state is created instead of overwriting the old state version.

The lowest abstraction level of a temporal entity e; is the instance level.
It captures the evolution in the value V' of its attributes A%. At this level,
between two instances of the same entity, the schema is the same but the values
of its attributes are different. When the values of an entity’s attributes change,
a new instance is created instead of overwriting the old instance version.

The changes at the topology and state levels impact the instance level. At
the topology level, when an entity is present/absent at a particular time, this
translates by the presence/absence of its states and the instances that composed
them at this particular time. At the state level, when there is a change in the
schema of an entity, a new state is created. Moreover, at least one instance of
this state is created. At each change on an abstraction level, this ends the valid
time of the last instance at the time of the change and starts the valid time of
the new created instance at the time of the change. So the valid times of the
abstraction levels higher than the instance level are deduced by calculation as
described in following definition.

Definition 3. The valid time interval of each instance of a temporal entity izj €
I s defined by T™ = [tpegin, tend) where tpegin # 0 and tepa # 0. There is only
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one case where an instance has not yet got a pre-defined ending time: if some
instances under the current state sii are current in the application.
The valid time interval of each state of a temporal entity sj’ € S% is obtained
by calculation:
T = UF=PT™ where iy, € 1% (1)
The wvalid time interval of each temporal entity e; € E is obtained by calcu-

lation : _
T = U;-znTSj where s; € S (2)

The temporal evolution of relationships includes the evolution in the graph
topology, in their attribute set and in the value of their attributes. We use the
same evolution mechanisms as in temporal entities for relationships. In fact,
a temporal relationship is also modelled through the concepts of states and
instances.

Definition 4. A temporal relationship, called r;, is defined by (T, S™) where
T s the valid time interval of r; and S™ = {s|',...,sli} is the non-empty set
of states of ;. A state s, € S™ is defined by (T, A% I°") where:

— T is the valid time interval of s;".
— A% ={al';...;ali} is the non-empty set of attributes of s, during T®. It is
called the schema of r; during T*°.
= I = {i{*;...;i3" } is the non-empty set of instances of s,* during T*". Each
instance i5* € I°* is defined by (T"*, V') where:
e 1" is the valid time interval of i%b.

o Ve = {w(al");..;v(ali)} is a non-empty set of attributes’ values. Each
v(aly) € Vie is the value of each attribute alf € A% during T'.
Definition 5. A temporal relationship is defined based on the same concepts as
a temporal entity. The valid time of each state s," € S™, denoted T*", is obtained
by calculation as in Definition [3. The valid time of each temporal relationship
r; € R, denoted T", is obtained by calculation as in Definition[3 The particu-
larity of a temporal relationship is that it does not have an independent existence

contrary to temporal entities. This implies in our modelling that:

— An instance i3 € I°* is a relationship between a couple of instances (in, i)
belonging respectively to entities e; and e;.

— The valid time of each instance i3* € I®* is defined by T = [tpegin, tend)
where tpegin 7 0 and teng # 0. There is only one case where it has not yet
got a pre-defined ending time: if some instances under the current state si;
are current in the application and both connected entities’ instances iy, and
iy do not have yet a pre-defined ending time.

— Tted(T N T”)ﬁ where T is the valid time of an instance iy, of e; and T
is the valid time of an instance i of ej. (T NT") # () because (T o T“)ﬁ.

" d is an ALLEN temporal operator to express that a time interval X occurs "during"
a time interval Y, i.e. XdY [1].

8 6 is an ALLEN temporal operator to express that a time interval X "overlaps" a
time interval Y, i.e. X oY [I].
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Fig. 1: Management of the temporal evolution of the application in Example
with our modelling solution.

Ezample 1. We propose in this example an application to show the implemen-
tation of our modelling concepts. We consider two entities: a store and an item.
At the creation of the application at the month 01/2020, the store and the item
are characterized by the following set of attributes: an identifier (denoted id)
and a type (denoted type). In addition, the store is described by the number of
its employees (denoted nb_employees) and a name (denoted name). The item
is also described by a price (denoted current price) and the category to which
it belongs (denoted category). These two entities are linked by the sale of the
item by the store. This sale is characterized by a type (denoted type) and the
quantity sold of the item by the store (denoted quantity sold). The store is
identified by "S1" and named "Lidl". Its type is "Store". It has 40 employees.
The item is identified by "I1". Its type is "Item". It has a price of 27.028. Its
category is "Books". The type of the sale between of I1 by S1 is "Sale". The
quantity sold of the latter is 50.

Since the application creation, both entities have not evolved until 02/2020.
However, the quantity sold of I1 by S1 has decreased by 40 at the month 02/2020.
At the month 03,/2020, several evolutions took place. The store S1 has recruited
5 employees. The item I1 is described by a new attribute called class. The item
I1 has been affected to the class "parenting". The quantity sold of I1 by S1
has increased by 10. Since the month 03/2020, both entities have not evolved
anymore. At the month 04,/2020, the sale of I1 by S1 is described by the new
attribute net _profit. It is the net profit made by S1 on I1. Its value is 1510.28.
Finally, there is no sale of I1 by S1 since the month 05/2020.
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01/2020 02/2020 03/2020 04/2020 05/2020

Fig.2: Management of the temporal evolution of the application in Example
with the snapshots-based solution.

To answer the need of capturing these evolutions, we show in Figure [I] the
implementation of our modelling concepts to manage the temporal evolution of
the application. The sale of I1 by S1 corresponds to a relationship between the
two entities. An instance is illustrated graphically by a node for entities and by
an edge for relationships in Figure [1} Similarly, a state is illustrated graphically
by a set of nodes for entities and a set of edges for relationships in Figure

Both entities have not changed from 01/2020 to 02/2020 neither in terms of
their presence/absence nor their schema nor their attributes’ value. At the level
of our model, this is translated by one state of S1 with the schema {id, type,
nb_employees, name}. One instance of this state is created to initialize the value
of S1’s attributes. The latter is illustrated by the node A in Figure [I| Moreover,
one state of I1 is created with the schema {id, type, current price, category}.
One instance of this state is created to initialize the value of I1’s attributes. It
is illustrated by the node C' in Figure [I] Instances A and C have a valid time
starting from 01,/2020 and ending at 02/2020 during which they did not change.

The first sale of I1 by S1 generates at the level of our model one state of
the relationship between both entities with the schema {type, quantity sold}.
One instance of this state, illustrated by the edge F in Figure [l is created to
initialize the value of the sale’s attributes. At the month 02/2020, the value of
the attribute quantity sold of the sale of I1 by S1 has decreased under the
same schema of the instance E. This generates in our model a new instance,
labelled F in Figure[l] with the updated value of quantity sold under the same
state in which the instance E belongs. The valid time of F' begins at the time of
the change it captures i.e. 02,/2020.
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At the month 03/2020, S1 experienced an increase in the value of the at-
tribute nb_employees under the same schema of its instance A. This creates at
the level of our model a new instance of S1, labelled B in Figure [I, with the
updated value of nb__employees under the state in which the instance A belongs.
As S1 does not change anymore since 03/2020, the valid time of instance B is
starting from 03/2020 but its ending date is not specified. It is worthy to notice
that S1 has never experienced a change in its schema. It has only one state with
the schema {id, type,nb_employees, name} and which gathers the instances A
and B.

Moreover, at the month 03/2020, the attribute class has been added to
the schema of Il. From our modelling point of view, this generates a new
state with the new schema {id, type, current price, category, class}. A new in-
stance of this state is created to specify the value of I1’s attributes. It is il-
lustrated by the node D in Figure [Il As I1 does not change anymore since
03/2020, the valid time of instance D is starting from 03/2020 but its end-
ing date is not specified. To sum up, I1 has two states: one with the schema
{id, type, current _price, category} and composed of the instance C' and another
one with the schema {id, type, current price, category, class} and composed of
the instance D.

Last but not least, also at the month 03/2020, the value of the attribute
quantity sold describing the sale of I1 by S1 has increased under the same
schema of instances E and F'. This is translated in our model by the creation
of a new instance G in Figure [l| with the updated value of quantity sold. This
instance belongs to the state composed of instances F and F. The valid time
of G starts at the time of the change it captures i.e. 03/2020. At 04,2020,
the attribute net profit has been added to the schema of the relationship.
From our modelling point of view, this generates a new state of the relation-
ship with the new schema {type, quantity sold,net profit}. A new instance
of this state is created to specify the value of the relationship’s attributes.
It is illustrated by the edge H in Figure [Il To sum up, the relationship be-
tween I'1 and S1 has two states: one with the schema {type, quantity sold} and
composed of three instances (E, F' and G) and another one with the schema
{type, quantity _sold,net _profit} and composed of one instance (H). Finally,
there is no sale of I1 by S1 since the month 05/2020. This corresponds in our
model to the absence of relationship between I1 and S1 at the month 05/2020.
Consequently, no instance or state of this relationship with a valid time including
the month 05/2020 is created.

In a nutshell, our model translates the different evolutions of the application
into 1 graph with 4 nodes and 4 edges. We present in Figure 2] the representation
of the same application if we would have adopt the snapshot-based approach to
manage the temporal evolution. We would have 5 graph snapshots with 10 nodes
and 4 edges.

As aresult of the previous definitions, our temporal graph is defined as follows:

Definition 6. A Temporal Graph, called G, is defined by (L, E, R) where:
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— L is the timeline of the temporal graph,
— E={e1,...,eq} is a non-empty set of temporal entities,
— R={r1,....,mn} is a non-empty set of temporal relationships.

Definition 7. The timeline L of a temporal graph G only depends on the valid
times of temporal entities as they have an independent existence. L is obtained

by calculation: '
L =U_{T* wheree; € E (3)

4 Experimental evaluation

In this section, we present an experimental comparison of three approaches for
modelling an evolving graph: the classical sequence of snapshots, an optimized
sequence of snapshots and our temporal graph. As we have discussed in Section 2]
the classical snapshots consists in sampling of graph data at a regular time period
(here we chose a month). Our optimized snapshots approach consists in creating
snapshots only if they differ. In other terms, we create a snapshot only if it
includes a change compared to a previous snapshot.

This experiment has two goals: (i) to study the feasibility of our model,
i.e. illustrate if our modelling is easily implementable (stored and queried) in a
graph-oriented data store and (ii) to study the efficiency of our model by com-
paring its storage and query performance to the classical sequence of snapshots
and the optimized sequence of snapshots.

In Section[4.] we present the technical environment of our experiment. Then,
in Section[4.2] we present the datasets we used for the three implementations. We
stored these datasets in Neo4j based on defined translation rules of our model
presented in Section [£:3] Finally, we query the three approaches according to
different querying criteria and compare their runtime in Section We present
the details of our experiment at the following web page https://gitlab.com/
2573869/temporal_graph_modelling.

4.1 Technical environment

The hardware configuration is as follows: PowerEdge R630, 16 CPUs x Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40Ghz, 63.91 GB. One virtual machine is installed
on this hardware. This virtual machine has 6GB in terms of RAM and 100GB
in terms of disk size. We installed on this virtual machine Neo4j (community
version 4.1.3) as a data store for our datasets.

4.2 Datasets

To run our experimental comparison, we needed a dataset that reflect realistic
applications with temporal evolutions. We therefore used a dataset from a refer-
ence benchmark namely TPC—Dqﬂ Temporal evolutions exist in this benchmark

9 http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.
pdf
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Implementations # Nodes |# Edges |# Snapshots
Temporal graph 112.897 1.693.623 |N/A
Classical snapshots 7.405.461 14.207.657 |60
Optimized snapshots  |5.347.477 14.044.481 |53
Table 1: Characteristics of datasets.

and allow us to find all the three types of evolution mentioned in Section [3] We
transformed the dataset provided by TPC-DS into three datasets having the tem-
poral graph, the classical snapshots and the optimized snapshots representations.
All transformation details of the TPC-DS dataset into the three representations
are available on the website https://gitlab.com/2573869/temporal_graph_
modelling. In Table [I} we found as a result of the transformation steps, the
number of nodes, edges and snapshots of the dataset used for each implementa-
tion.

4.3 Translation of temporal graph into Neo4j

To evaluate the feasibility of our modelling solution, we searched for translation
rules to map our conceptual model of temporal graph into the graph data model
supported by Neodj, the property graph model [23]. In Table [2| we define the
translation rules between our model and the property graph. The concepts of our
temporal graph are directly translatable into the property graph of Neo4j. An
instance of an entity or relationship in our model can be represented respectively
by a node and an edge in Neo4j. The value of the attributes set and valid times of
instances correspond to the key-value properties in Neo4j. An entity, relationship
or state is composed of instances. Then, they are represented by a set of nodes
or edges in Neodj. Schemas and valid times of a state, an entity or relationship
can be retrieved by query in Neo4j.

For each implementation, we stored the relative dataset in a database in-
stance of Neo4j. Table |3| shows the size (in GB) and the creation time (in sec-
onds) of each database instance in Neo4j. The two snapshots approaches use a
different time management method than our model which leads to larger sizes of
their database instances. Our model reduces respectively 12 times and 9 times
the size of database instance storing classical snapshots and optimized snapshots.
To load the datasets into Neo4j, we designed a program based on the CSV im-
porting system of Neo4j. Again, the datasets based on snapshots approaches
require more time to be imported since they contain more nodes and edges than
our model (Table [I)).

4.4 Query performance

To evaluate the efficiency of our model, we compare its querying performance
with the classical snapshots and the optimized snapshots based implementations.
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Our model’s concepts Neo4j’s concepts
an instance of an entity state ,’ a node
an instance of a relationship state i." an edge
valid time of an entity instance T"* two properties™
valid time of a relationship instance T"°¢ two properties™
a state of an entity s7’ a set of nodes (with different valid times)
a state of a relationship s;° a set of edges (with different valid times)
valid time of an entity state 7"/ by query
valid time of a relationship state T°°® by query
a schema of an entity state A®J by query
a schema of a relationship state A®® by query
an entity e; a set of nodes (with different valid times)
a relationship 7; a set of edges (with different valid times)
an attribute of an entity ag’ a property
an attribute of a relationship a;’ a property
a temporal entity’s identifier :d* a property
valid time of an entity 7 by query
valid time of a relationship 7" by query

Table 2: Translation rules of our model into Neodj. *start walid time and
end_valid _time.

Implementations Size (in GB) Creation time (in
sec)

Temporal graph 0,3 15,795

Classical Snapshots 3,7 56,529

Optimized snapshots 2,8 45,827

Table 3: Size and creation time of graph database instances.

To do so, we created benchmark queries that cover a large range of scenarios
to get insights about the temporal aspects of a graph (Table . We classified
them into the following criteria: the entity scope, the time scope, the tempo-
ral evolution type and the operations type [I2/13]. Then, we translated these
benchmark queries in the native query language of Neodj: Cypher. Finally, we
recorded for each benchmark query its execution time which is the elapsed time
in seconds for processing the query (Figure . We run each query ten times
and take the mean time of all runs as final execution time. To avoid any bias in
the disk management and querying performance, we do not use any customized
optimization techniques but rely on default tuning of Neo4;.

Observations. In Figure [3| we observe that queries Q1-Q6 are instantaneous
(close to 0) for all three implementations. Q17-Q21 and Q27 record execution
spikes for the two snapshots implementations. Moreover, we notice that the run-
times of Q28 explode for the snapshots and the temporal graph implementations.
The rest of benchmark queries (Q7-Q16 and Q22-Q26) does not exceed 6 sec-
onds for the three approaches. Overall, the execution query times of the temporal
graph are more stable than both snapshot-based approaches.



Towards an efficient approach to manage graph data evolution 13

=
Pl 2
2| 2 g | ®
515 ¢ 8

=]

& 3 3] 2
G ] o

Q1 The descriptive attributes of a store at the month X SE S SP

Q2 The descriptive attributes of a store at the months X and Y SE S MP

Q3 The changes that occurred on the descriptive attributes of a store between the months X and Y SE S MP C

Q4 The descriptive attributes of a store from the month X to the month Y SE S SI

Q5 The descriptive attributes of a store every year of a period SE S MI

Q6 The changes that occurred on descriptive attributes of a store from the month X to the month Y SE S ST C

Q7 | The price of an item at the month X SE |1 SP

Q8 The price of an item at the months X and Y SE T MP

Q9 Measure the change in the price of an item between the months X and Y SE T MP C

Q10  |The price(s) of an item from the month X to the month Y SE T SI

Q11 |Measure the average price of an item every year of a period SE |1 MI A

Q12 | The customers that shopped in a store at the month X SU T SP

Q13 |The customers that shopped in a store at the months X and Y SU T MP

Q14 |Count the number of customers that shopped in a store at the month X SU_|T SP|A

Q15 |Count the number of customers that shopped in a store at the months X and Y SU_|T MP A

Q16  |The customers that shopped in a store from the month X to the month Y SU T SI

Q17 |The customers that shopped in a store every year of a period SU T MI

Q18 |Count the number of customers in a store every year of a period SU T MI A

Q19 |The household attributes of a customer at the month X SU S SP

Q20 |The household attributes of a customer at the months X and Y SU S MP

Q21 The changes that occurred on the household characteristics of a customer between the months X and Y SU S MP C

Q22 |The household attributes of a customer from the month X to the month Y SU S SI

Q23 |The changes that occurred on the household characteristics of a customer from the month X to the month Y’ SU S ST C

Q24 | The sold quantity of an item by a store at the month X SU |1 SP

Q25 | The sold quantity of an item by a store at the months X and Y SU |1 MP

Q26 | The sold quantity of an item by a store from the month X to the month Y. SU |1 ST

Q27 |Measure the average sold quantity of an item by a store every year of a period SU T MI A

Q28 |The historical state of the store sales at the month X SP

Table 4: Benchmark queries. SE = Single Entity, SU = Subgmph EN = Entire
Graph, S = Schema, I = Instance, T = Topology, SP = Single Point, MP =
Multiple Points, SI = Single Interval, MI = Multiple Intervals, C = Comparison,
A = Aggregation.

Discussion. The gap between the temporal graph and the two snapshots based
implementations is partly due to difference in the volume of data involved in
queries. As we can see in Table[l] the classical snapshots based implementation
results in 66 times more nodes and 2 times more edges than the temporal graph.
The optimized snapshots based implementation enables to reduce significantly
the number of nodes but still it counts 47 times more nodes than the temporal
graph. Inevitably, both snapshots approaches use more disk space and require
more time to process during querying.

Queries’ runtime are also impacted by their types. First, we analyze the
querying performance of the temporal graph according to the entity scope, that
is requesting information about the history of the graph at the level of a single
entity (Q1-Q11) or a set of entities (subgraph) (Q12-Q27) or the entire graph
(Q28). Most queries on a single entity are instantaneous as they involve the
least data for the three approaches. The temporal graph approach outperforms
the classical and the optimized snapshots approaches on querying a subgraph
by respectively reducing their runtimes by 58%-99% and 74%-99%. The same
trend is observed on querying the entire graph. The temporal graph saves 35%
of the classical snapshots’ runtime. Neo4j was not able to process Q28 for the
optimized snapshots approach due to main memory limitations.
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Fig. 3: Execution times of 28 benchmark queries.

Second, we analyze the impact of evolution type over queries’ runtime: the
evolution of schemas (Q1-Q6 and Q19-Q23), instances (Q7-Q11 and Q24-Q27) or
topology (Q12 to Q18). The retrieval tasks relative to this scope enable to evalu-
ate the cost of retrieving a specific information about graph changes. Excluding
instantaneous queries, the gap between the two snapshots and the temporal
graph implementations is the largest when querying schema. Indeed, queries
on schema involve one specific operatoﬂ Particularly, the temporal graph de-
creases the runtimes of Q19-Q23 in both classical and optimized snapshots by
98%-99%.

Third, we focus on the impact of time scope over queries’ runtime to evaluate
the cost of time travelling in the graph: querying a single time point (Q1, Q7,
Q12, Q14, Q19, Q24 and Q28), a single interval (Q4, Q6, Q10, Q16, Q22, Q23
and Q26), multiple time points (Q2, Q3, Q8, Q9, Q13, Q15, Q20, Q21 and Q25)
or multiple time intervals (Q5, Q11, Q17, Q18 and Q27). On the one hand, we
observe that for queries with a complex time view (i.e. concerning multiple time
points or multiple time intervals) the execution time explodes for both snapshots
approaches while our model is still effective. Particularly, queries Q17-Q18 and
Q27, involving multiple time intervals, reach respectively 10s and 31s for the
two snapshots approaches. Our temporal graph allows to reduce those runtimes
by 79%-95%. Moreover, queries Q20-Q21, involving multiple time points, exceed
10s for the two snapshots approaches. Our temporal graph enables to save 99%
of both snapshots approaches on those queries. On the other hand, surprisingly,
we notice that some queries’ runtimes with the optimized snapshots such as Q7,
Q8, Q9 or Q21 are higher than the classical snapshots even if they involve less

10 The operator keys allows to extract the schema of a node or an edge. https://
neo4j.com/docs/cypher-manual/current/functions/list/
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data. Indeed, the translation of these queries into Cypher differs between the
three implementations. As the time management method differs in the three
models, the predicate on valid times differs even if they answer to the same
business insights. Particularly, the translation of queries on a single time and
multiple time points in Cypher for the optimized snapshots is more complex.
These queries imply a sub-query to search for the snapshot that is the closest to
the requested time instance.

Last but not least, we focus on the impact of operation types over queries’
runtime: (i) comparison queries aiming at evaluating how does a graph compo-
nent change over time with respect to a temporal evolution type (Q3, Q6, Q9,
Q21 and Q23), (ii) aggregation queries aiming at evaluating an aggregate func-
tion (Q11, Q14, Q15, Q18 and Q27). Excluding instantaneous queries, both snap-
shots approaches perform the worst runtimes on aggregation and comparison
queries. The temporal graph based implementation allows to save 61%-99% of
classical snapshots’ runtimes and 80%-99% of optimized snapshots’ runtimes.

Implications. The choice of a data model to manage evolving graph data im-
pacts significantly the storage and querying efficiency. Our model has a double
advantage. First, it allows to get rid of data redundancy. So it saves a significant
amount of space on the disk compared to snapshots. Second, it supports effi-
ciently a wide range of queries while keeping the query runtime low and stable.
In particular, querying an entire graph snapshot (Q28), which is the basic task
in the literature, is costly in snapshots approaches. The implementation with
our model allows to save 35% of runtime compared to the classical snapshots
implementation.

5 Conclusion and future works

This paper has presented a complete solution to manage graph data evolution.
The power of our solution lies on the proposition of a conceptual modelling and
experimental assessments to illustrate its feasibility and efficiency.

Our conceptual modelling proposes concepts allowing representing the evolu-
tion of a graph at different levels: the graph topology, the attributes’ set and the
attributes’ value of entities and relationships. Thus, it is generic enough to be
compatible with any desired applications. Moreover, it does not introduce data
redundancy thanks to a different time method from snapshot-based approaches.
Time is attached to each individual graph component while it is attached to the
entire graph in snapshots.

To validate the feasibility of our model, we implemented it in Neo4j based on
a dataset containing temporal evolution. We showed that our model is directly
convertible to the data model of Neo4j based on a set of translation rules we
formalized. Then, we implemented several queries. We were able to query the
evolution types proposed by our model using the native querying language of
Neodj.

To highlight the efficiency of our model, we made a comparative study of
its implementation with the traditional sequence of snapshots and an optimized
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version of snapshots based on the same dataset. We observed that our model
performs better than the sequence of snapshots by reducing 12 times disk usage
and by saving up to 99% on queries’ execution time. In comparison to the op-
timized sequence of snapshots, our model reduces 9 times disk usage and saves
until 99% on queries’ runtime. In a nusthell, our model is an efficient solution
for storing and querying a dataset with temporal evolution.

In our future works, we will extend our experiments to other types of data
stores such as relational data stores since they can outperform both NoSQL
graph stores and RDF triples stores [21]. This will require to extend the transla-
tion rules between the conceptual and logical level to be applicable to relational
data stores. Then, we will compare the performance of these data stores in terms
of storage and querying with different query languages than Cypher.
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