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Abstract. The article deals with the output regulation of a nonlinear Korteweg-de-Vries (KdV) equation subject to a
distributed disturbance. The control input and the regulated output are located at the boundary. To achieve this objective, we
follow a Lyapunov approach. To this end inspired by a strictification methodology recently introduced in the finite-dimensional
context, we construct an ISS-Lyapunov functional for the KdV equation thanks to the use of an observer which is designed
following the backstepping approach. Then, thanks to this Lyapunov functional, we apply the forwarding approach in order to
solve the desired output regulation problem.
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1. Introduction. This paper deals with the output regulation of a Korteweg-de Vries (KdV) equation.
The KdV equation is a mathematical model of waves on shallow water surfaces (see e.g., [8] for a survey).
Such an equation has been studied in [52, 10, 13] in the controllability context, in [9, 14, 37, 55, 39] in
terms of stabilization, and in [54, 12] where some asymptotic analysis of the equilibrium point coinciding with
the origin are given. We may also mention [40, 41] where input-to state stability (ISS, in short) properties
are obtained via feedback stabilization in presence of a saturated damping (we refer to [51, 26, 27] or the
recent survey [43] for the characterization of ISS Lyapunov functional in the infinite-dimensional context).
Roughly speaking, the output regulation problem consists in designing a feedback-law such that the output
converges asymptotically towards a desired reference and such that disturbances are rejected, possibly in spite
of some “small” model uncertainties. Following the celebrated internal-model principle, a solution to such a
problem exists when references and disturbance (denoted generically as exosignals) are generated by a known
autonomous dynamical system (denoted as exosystem), and a copy of such a system is embedded in the
controller dynamics, see, e.g. [22, 45]. A well known example is the use of integral action for tracking and
rejecting constant references and disturbances.

Output regulation is an old topic in the finite-dimensional context, but many results remain to be found in
the context of nonlinear systems (see e.g., [2, 24] for recent results in this field), and many further research lines
have to be followed when dealing with time-varying references. See, for instance, [1] where a finite-dimensional
system is regulated by adding a transport equation for the case of periodic exosignals. For infinite-dimensional
systems, even if one can mention some old results such as [18], the topic is still very active. A generalization of
internal-model principle has been proposed in [45], but the use of integral action to achieve output regulation
in the presence of constant references/perturbations for infinite dimensional systems has been initiated early in
[48]. Since then, several methods to design an integral action have been developed for linear dynamics following,
for instance, a spectral approach in [49, 58, 45], by using operator and semi-group methods in [31, 59], based
on frequency domain methods with Laplace transform in [4, 15] or by relying on Lyapunov techniques in [29],
[21, 57]. We may also mention [19, 20] which propose to regulate an output towards time-varying references
that are generated by a known linear dynamical system or [30] which extends the sliding mode methodology
for hyperbolic systems to reject time-varying disturbances. In the context of nonlinear PDEs, we recall also
the works [44, 25, 60]

Among all these techniques, in this article, we are particularly interested in Lyapunov techniques. Indeed,
such a methodology has been proved to be efficient to deal with nonlinear systems. Among these techniques,
we aim at using the forwarding methodology that has been first introduced for finite-dimensional systems in
cascade form [42, 2] and then extended to some hyperbolic systems [56] in the regulation context, and to
abstract systems [35] in the stabilization context. In [56], it is shown that a strict Lyapunov functional1 is
needed for open-loop stable systems that we aim at regulating. In other words, before adding an integral
action, we should be able to show that a strict Lyapunov functional for the open-loop dynamics does exist (or
can be obtained after employing a preliminary stabilizing state-feeedback, see, e.g. [2] in the finite dimensional
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context). Such Lyapunov functionals are known for hyperbolic systems [3], but it is not the case for the KdV
equation. In addition to the existence of this Lyapunov functional, some ISS properties are needed to apply
the forwarding method.

In the perspective of addressing the output regulation problem for the KdV equation, we first establish
some new results that may have their own interest. In particular, we study the following (nonlinear) KdV
equation





wt + wx + wxxx + wwx = d1(t, x) ,
w(t, 0) = w(t, L) = 0 ,
wx(t, L) = d2(t) ,
w(0, x) = w0(x) ,

(1.1)

where (t, x) ∈ R+ × [0, L], L > 0, d1 and d2 denote external inputs that might be seen, for instance, as
disturbances, and its associated linearized dynamics around the origin described by





wt + wx + wxxx = d1(t, x) ,
w(t, 0) = w(t, L) = 0 ,
wx(t, L) = d2(t) ,
w(0, x) = w0(x) .

(1.2)

where (t, x) ∈ R+ × [0, L]. We show that the KdV equations (1.1) and (1.2) satisfy an ISS property with
respect to the disturbances d1, d2 by explicitly constructing a strict Lyapunov functional. Note that there is
no systematic method to build strict Lyapunov functionals either for nonlinear ordinary differential equations or
(linear or nonlinear) partial differential equations. However, in many situations, a weak Lyapunov functional,
i.e., a Lyapunov functional whose time derivative is nonpositive, exists. Often, it also coincides with the
energy of the system. It is however difficult to deduce any quantitative robustness properties from a weak
Lyapunov functional, and in particular, ISS properties cannot be generically obtained from such functions.
For this reason, in the finite-dimensional context, a lot of attention has been put in the strictification of weak
Lyapunov functions, namely the conception of systematic procedures to modify a weak Lyapunov function in
order to make it strict. See, for instance, [33, 50]. To the best of our knowledge, in the infinite-dimensional
context, such an approach has been applied only to certain classes of hyperbolic systems [51].

The first contribution of this paper, that might be seen thus of independent interest with respect to the
context of output regulation, is the construction of an ISS-Lyapunov functional for our KdV equation via a
strictification procedure. The methodology we propose is inspired on [50] and is based on the design of an
observer, which is also a new result in the KdV equation context and therefore consists in the second main
contribution of this article. Let us illustrate it. Consider system (1.1) with no inputs, namely d1 = d2 = 0. A
formal computation shows that the time derivative of the energy E defined as

E(w) :=

∫ L

0

w(t, x)2dx (1.3)

yields along solutions

Ė(w) :=
d

dt

∫ L

0

w(t, x)2dx = −|wx(t, 0)|2. (1.4)

These computations are sufficient to establish that the origin is Lyapunov stable but not to conclude stronger
properties (such as asymptotic stability or an ISS property if we re-introduce the effect of the disturbances in
the computation of the derivative of the energy along the trajectories of (1.1)). In other words, the energy E
is a weak-Lyapunov functional. Since wx(t, 0) is an exactly observable output as soon as L /∈ N with

N :=

{
2π

√
k2+kl+l2

3 : k, l ∈ N

}
,

then, following [50], our strategy consists in designing an observer with the output wx(t, 0). Such an observer is
obtained by using the backstepping approach (see, e.g., [32]) and the Fredholm operator (see, e.g., [14] or [23]).
The proposed observer differs from the works in [36, 37, 55] in the same context of KdV equations because
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a different measured output is considered. Finally, by combining the Lyapunov functional derived from the
observer analysis and the energy E, we obtain a strict Lyapunov functional, that will be used to establish the
desired ISS properties for systems (1.1) and (1.2) with respect to the inputs d1 and d2.

Finally, the third contribution of this article consists in addressing the output regulation problem for
constant perturbations and references. We suppose that a control is acting at the boundary wx(t, L) of the
KdV equations (1.1) and (1.2) and that we want to regulate the output wx(t, 0) to a desired reference r. As
a consequence, we extend the plant with an integral action processing the error wx(t, 0)− r and we show how
to design an output-feedback law. The gain of the controller is obtained via the forwarding technique which
is employed to construct a strict Lyapunov functional built upon the ISS Lyapunov functional obtained in the
first part of this article. Global stability properties are established for the linear model (1.2) while only local
ones are proved for the nonlinear one (1.1). Note that, in both cases, we prove pointwise convergence of the
tracking error i.e limt→∞ |wx(t, 0)− r| = 0. Also, note that the results of [56, Theorems 1, 2] cannot be used
of the shelf for the linear model (1.2) because in our article we consider a control input acting at the boundary
(to be more precise, with an unbounded operator). Nevertheless, since we know an ISS-Lypaunov function
we can apply the proposed methodology, similarly to what has been done for the hyperbolic equations in [56,
Theorem 3]. In the context of output regulation of nonlinear PDEs as in (1.1), there exist very few results. Let
us mention for instance [60] which studies quasilinear hyperbolic systems. We recall also [44, 25] in which the
local problem is solved for regular linear operators perturbed by nonlinearities satisfying a Lipschitz condition.
Note, however, that these results do not directly apply to the KdV nonlinear model because the nonlinearity
wwx is not Lipschitz in the right space. In this article, we are able to solve the local regulation problem for
(1.1) thanks to the strict Lyapunov functional that we established.

This paper is organized as follows. In Section 2, we formulate the problem and state the results about the
construction of the ISS Lyapunov functional. In Section 3, an observer is designed using a Fredholm operator.
Section 4 contains the proofs of the ISS results of the KdV equations under consideration. Section 5 states
and proves some regulation results for the KdV equation. Finally, Section 6 collects concluding remarks and
discuss some remaining open problems.

Notation: Set R+ = [0,∞). The term wt stands for the partial derivative of the function w with respect
to t. The term wx (resp. wxx, wxxx) stands for the first (resp. second and third) order partial derivative of
the function w with respect to x. When a function V (resp. M) depends only the time variable t (resp. the
space variable x), we use the notation V̇ (t) = d

dt
V (t) (resp. M ′(x) := d

dx
M(x)). The functional space L2(0, L)

denotes the set of (Lebesgue) measurable functions f such that
∫ L

0
|f(x)|2dx < +∞. The associated norm is

‖f‖2L2 :=
∫ L

0 |f(x)|2dx. We define the functional space C2([0, T ]) as the class of continuous functions on [0, T ],

which have continuous derivatives of order two on [0, T ], the functional spaces Hk(0, L). For any p ∈ [1,∞],
we use the standard notation W 1,p(0, L) for the Sobolev space defined as W 1,p(0, L) := {u ∈ Lp(0, L) : u̇ ∈
Lp(0, L)}.

2. Construction of an ISS Lyapunov functional. The objective of this section is to study the ISS
properties of the KdV models (1.1) and (1.2) and to establish the existence of a strict ISS-Lypaunov functional.
The proof of the main result is postponed to Section 4. Furthermore, as mentioned in the introduction, the
proposed ISS-Lyapunov functional will be used in the sequel in order to design an output feedback integral
action controller, see Sections 5.1 and 5.2. Note that we will not provide further discussions on the well-
posedness of (1.2) and (1.1), since it is not the main topic of this paper. Interested readers may refer to
[52, 16, 5] for more information on this issue. We just emphasize on the fact that, when looking at regular
solutions, we will consider initial conditions in the space

H3
L(0, L) := {w ∈ H3(0, L) : w(0) = w(L) = 0, w′(L) = d2(0)}, (2.1)

with d2 being the perturbation entering at the boundary condition in (1.1) or (1.2). In this case, for any T > 0,
solutions w to (1.1) or (1.2) belong to the functional space C(0, T ;H3(0, L)) ∩ C1(0, T ;L2(0, L)) and satisfy,
for all t ∈ [0, T ], the additional compatibility conditions w(t, 0) = w(t, L) = 0, wx(t, L) = d2(t).

Next, we state the following definition of input-to-state stability for systems (1.1) and (1.2).

Definition 2.1. System (1.1) (resp. (1.2)) is said to be (exponentially) input-to-state stable (ISS), if
there exist positive constants c0, c1, c2, µ, such that any solution w ∈ C0(R+;L

2(0, L)) ∩ L2(R+;H
1(0, L)) to
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(1.1) (respectively to (1.2)) satisfies for all t ≥ 0

‖w(t, ·)‖L2 ≤ c0e
−µt‖w0‖L2 + c1

∫ t

0

e−µ(t−s)‖d1(s, ·)‖L2ds+ c2

∫ t

0

e−µ(t−s)|d2(s)|ds, (2.2)

for any initial condition w0 ∈ L2(0, L), d1 ∈ L2([0, t];L2(0, L)) and d2 ∈ L2(0, t). Furthermore, if there exists
δ > 0 such that (2.2) holds only with w0, d1, d2 satisfying

‖w0‖L2 + lim
t→∞

∫ t

0

e−µ(t−s)
(
‖d1(s, ·)‖L2 + |d2(s)|

)
ds ≤ 3δ

then the system (1.1) (resp. (1.2)) is said to be locally (exponentially) input-to-state stable (LISS).

In the literature, the definition (2.2) is related to the notion of the “Fading Memory Input-to-State Sta-
bility”, see e.g [28, Chapter 7], due to the presence of weighting exponential functions used in the norms
characterizing the gain of the signals d1 and d2. Thus, with some abuse of language, we call it Input-to-State
Stability in this paper. Also, it is important to underline that such a definition allows to consider a large class
of disturbances d1, d2, which includes, among others, constant and periodic signals.

In general, proving the ISS property defined above needs the knowledge of the trajectories of the system,
which is not an easy task. Therefore, in practice, ISS Lyapunov functionals are used to prove the desired ISS
properties. To this end, we recall the result in [43, Theorem 3], showing that the existence of an ISS Lyapunov
functional is sufficient to establish the ISS properties of Definition 2.1.

Before stating the definition of such Lyapunov functionals, we recall now which type of derivatives we are
going to use in this article. Indeed, for any Lyapunov functional V for solutions to (1.2) or (1.1), one has the
following equality:

V̇ (w) =
d

dt
V (w) = DV (w)wt, (2.3)

where DV (w) denotes the Fréchet derivative (see for instance [17, Definition A.5.33] for the definition ). The
proof of this equality follows the same path than the one given in [17, Lemma 11.2.5]. For instance, this means
that the time derivative along solutions to (1.2) of E(w) = ‖w‖2

L2 can be computed as

Ė(w) = 2

∫ L

0

(−wx − wxxx + d1)w dx, (2.4)

and, for time derivative along solutions to (1.1):

Ė(w) = 2

∫ L

0

(−wx − wxxx − wwx + d1)w dx. (2.5)

showing that the time does not play any role when using the Fréchet derivative. This is why the time will
disappear when differentiating Lyapunov functionals in the rest of the paper.

We are now in position to state the following definition of ISS Lyapunov functional.

Definition 2.2. A function V : L2(0, L) → R is said to be an exponentially ISS Lyapunov functional for
the system (1.1) (resp. (1.2)), if there exist positive constants α, ᾱ, α, σ1, σ2 such that:

(i) For all w ∈ L2(0, L),

α‖w‖2L2 ≤ V (w) ≤ ᾱ‖w‖2L2 . (2.6)

(ii) The time derivative of V along the trajectories of (1.1) (resp. (1.2)) satisfies

V̇ (w) ≤ −α‖w‖2L2 + σ1‖d1‖2L2 + σ2|d2|2 . (2.7)

for any w ∈ L2(0, L), d1 ∈ L2(0, L) and d2 ∈ R. If there exists δ > 0 such that (ii) holds only if ‖w‖L2 +
‖d1‖L2 + |d2| ≤ 3δ then V is said to be a locally exponentially ISS Lyapunov functional for the system (1.1).
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As explained in the introduction, for any L /∈ N , the energy function in L2-norm defined in (1.3) is a weak
Lyapunov functional for the system (1.1) (resp. (1.2)) in view of (1.4). Indeed, on the the right hand side of
the inequality, we have a function which depends only on a part the state w(t, x), i.e., wx(t, 0). From (1.4),
one can deduce that the origin of the system of (1.1) with d1 = d2 = 0 is Lyapunov stable. In order to show
also the exponential stability properties of the origin, one can follow [52, Proposition 3.3], by using the fact
that wx(t, 0) is exactly observable as soon as L /∈ N : indeed, using the related observability inequality, and
integrating (1.4) between 0 and T , exponential stability can be established as illustrated in [8, §4.1.]. However,
nothing can be easily said in the presence of disturbances. As a consequence, in order to show the desired
ISS properties of the system (1.1) (resp. (1.2)), we follow a different approach here: we aim at constructing a
strict ISS Lyapunov functional, which is a new result, to the best of our knowledge. Using the observability of
the output wx(t, 0), we can follow the methodology described in [50] and that can be decomposed as follows.
First, we design an observer for the output wx(t, 0). Then, we consider the sum of the Lyapunov functional
coming from the latter observer design and the natural energy, and we prove that this sum boils down to be
a strict Lyapunov functional. Finally, thanks to this strict Lyapunov functional, we deduce ISS properties for
systems (1.1) and (1.2). These properties are written more precisely in the following theorem, which is our
first main result.

Theorem 2.3. Suppose that L /∈ N . Then, there exists a functional W : L2(0, L) → R+ such that, the
function V (w) :=W (w) + E(w) with E being the energy in L2-norm defined in (1.3), is

(a) an exponentially ISS Lyapunov functional for the system (1.2);
(b) a locally exponentially ISS Lyapunov functional for the system (1.1).

Moreover, the functional W is given by W (w) := ‖Π(w)‖2L2 with Π being a continuous linear operator from
L2(0, L) to L2(0, L) with a continuous inverse.

The proof of Theorem 2.3 is postponed to Section 4. In particular, in the next section, we will first show
how to design an ISS observer for the linearized system (1.2) by means of the output wx(t, 0). The proposed
design is based on the backstepping method, see, e.g., [32] and on the Fredholm transformation, see, e.g.,
[23, 14]. Then, in Section 4, we will use the ISS-Lyapunov functional associated to such an observer to build
the functional W claimed in the statement of Theorem 2.3.

The following result will be also useful when dealing with the regulation problem. It is an ISS result for a
perturbed version of (1.1) with non-constant (small) coefficients. Its proof is omitted for compactness since it
follows the same path used in the proof of Theorem 2.3, item (b).

Corollary 2.4. Suppose L /∈ N . There exists positive real numbers ā, b̄ such that, for any a ∈ C([0, L]),
b ∈ C1([0, L]) satisfying ‖a‖∞ ≤ ā and ‖b‖W 1,∞ ≤ b̄, the Lyapunov function V established in Theorem 2.3 is
a locally exponentially ISS Lyapunov functional for the following system





wt + wx + wxxx + wwx = a(x)w + b(x)wx , (t, x) ∈ R+ × [0, L] ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = d2(t) , t ∈ R+ ,
w(0, x) = w0(x), x ∈ [0, L] .

(2.8)

Moreover, it is an exponential ISS Lyapunov functional for the linearized dynamics of (2.8), i.e. in absence
of the term wwx.

3. Observer design for a Linear KdV equation. In this section, we design an observer for the linear
KdV equation (1.2) with y(t) = wx(t, 0) defined as the output function. In particular, we consider the following
system





wt + wx + wxxx = d1 , (t, x) ∈ R+ × [0, L] ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = d2(t) , t ∈ R+ ,
w(0, x) = w0(x) , x ∈ [0, L] ,
y(t) = wx(t, 0) , t ∈ R+ ,

(3.1)
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and we design an observer with a distributed correction term of the form





ŵt + ŵx + ŵxxx + p(x)[y(t)− ŵx(t, 0)] = 0 , (t, x) ∈ R+ × [0, L] ,
ŵ(t, 0) = ŵ(t, L) = 0 , t ∈ R+ ,
ŵx(t, L) = 0 , t ∈ R+ ,
ŵ(0, x) = ŵ0(x) , x ∈ [0, L] ,

(3.2)

where p is an output injection gain to be designed. Note that the well-posedness of system (3.2) can be proved
by following the same approach as in [36]. We define now the estimation error coordinates as follows

ŵ 7→ w̃ := w − ŵ

mapping system (3.2) into





w̃t + w̃x + w̃xxx − p(x)w̃x(t, 0) = d1 , (t, x) ∈ R+ × [0, L] ,
w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,
w̃x(t, L) = d2(t) , t ∈ R+ ,
w̃(0, x) = w̃0(x) , x ∈ [0, L] .

(3.3)

The objective of this section is to show that the gain p can be selected so that to guarantee the system (3.3) to
be ISS with respect to the disturbances d1, d2. This, in turns, guarantees the convergence of the solutions of
the observer (3.2) towards the trajectories of the observed plant (3.1) in the unperturbed case (d1 = 0, d2 = 0),
and desirable bounded-input bounded-output properties otherwise. This is established in the next theorem
claiming the existence of an ISS-Lyapunov functionals for the system (3.3) under an appropriate choice of the
function p.

Theorem 3.1. Suppose that L /∈ N . For any λ > 0, there exist a non-zero function p ∈ L2(0, L), a
Lyapunov functional U : L2(0, L) → R and positive constants c, c̄, ̺1, ̺2 satisfying the following properties.

(i) For all w̃ ∈ L2(0, L)

c‖w̃‖2L2 ≤ U(w̃) ≤ c̄‖w̃‖2L2 . (3.4)

(ii) The time derivative of U along the trajectories of (3.3) satisfies, for all w ∈ L2(0, L), d1 ∈ L2(0, L)
and d2 ∈ R,

U̇(w̃) ≤ −λU(w̃) + ̺1‖d1‖2L2 + ̺2|d2|2. (3.5)

Moreover, the functional U is given by U(w) := ‖Π−1
(w)‖2L2 , with Π being a continuous linear operator from

L2(0, L) to L2(0, L) with continuous inverse.

Proof: The proof of Theorem 3.1 is divided into two parts. The first step consists in proving the existence of
p ∈ L2(0, L) such that the origin of (3.3), in the unperturbed case d1 = 0, d2 = 0, is exponentially stable. The
second step is to show the existence of a Lyapunov functional U satisfying the inequalities (3.4) and (3.5).

Let us start the proof of the first step. Inspired by [14, equation (1.8)], consider the change of coordinates

w̃ 7→ γ := Π
−1
w̃ (3.6)

where the function Π is defined thanks to the following Fredholm integral transformation

w̃(x) = Π(γ)(x) := γ(x)−
∫ L

0

P (x, z)γ(z)dz , (3.7)

for all x ∈ [0, L], where w̃ satisfies (3.3) with d1 = 0 and d2 = 0, P is a function to be defined and γ is the
solution to the following system





γt + γx + γxxx + λγ = 0 , (t, x) ∈ R+ × [0, L],
γ(t, 0) = γ(t, L) = γx(t, L) = 0 , t ∈ R+ ,
γ(0, x) = γ0(x) , x ∈ [0, L],

(3.8)
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with λ > 0. Note that using an integration by parts and the boundary conditions of (3.8), one immediately
obtains

d

dt

∫ L

0

|γ(t, x)|2dx ≤ −2λ

∫ L

0

|γ(t, x)|2dx

from which it is straightforward to deduce the exponential stability in the L2-norm of γ. As a consequence,
the main idea of the proof consists in selecting the function p such that (3.7) holds. To do so, we need to find
the kernel P such that w̃(t, x) = Π(γ)(t, x) satisfies (3.3) when d1 = 0 and d2 = 0. Furthermore, we have also
to ensure that the corresponding transformation is invertible and continuous. To this end, we first formally
differentiate with respect to the time and with respect to the space the change of coordinates (3.7). We obtain
the following identities

w̃t(t, x) = γt(t, x) +

∫ L

0

P (x, z)
(
λγ(t, z) + γz(t, z) + γzzz(t, z)

)
dz , (3.9)

w̃x(t, x) = γx(t, x) −
∫ L

0

Px(x, z)γ(t, z)dz , (3.10)

w̃xxx(t, x) = γxxx(t, x)−
∫ L

0

Pxxx(x, z)γ(t, z)dz , (3.11)

in which (3.9) has been obtained by using the γ-dynamics in (3.8). After some integrations by parts, (3.9)
gives

w̃t(t, x) = γt(t, x)− P (x, 0)γ(t, 0) + P (x, L)γ(t, x) + P (x, L)γxx(t, L)− P (x, 0)γxx(t, 0) + Pz(x, 0)γx(t, 0)

−
∫ L

0

(
− λP (x, z) + Pz(x, z) + Pzzz(x, z)

)
γ(t, z)dz − Pz(x, L)γx(t, L) + Pzz(x, L)γ(t, L)

− Pzz(x, 0)γ(t, 0) . (3.12)

Then, by adding on both sides the terms w̃x, w̃xxx and −p(x)w̃x(t, 0) and using (3.3), (3.8) and the previous
identities (3.10), (3.11), we further obtain

w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x)− p(x)w̃x(t, 0) =

= γt(t, x) + γx(t, x) + γxxx(t, x) + λγ(t, x) −
∫ L

0

(
− λP + Pz + Pzzz + Pxxx + Px

)
γ(t, z)dz

− λγ(t, x) + P (x, L)γxx(t, L) + Pz(x, 0)γx(t, 0)− P (x, 0)γxx(t, 0)− p(x)

[
γx(t, 0)−

∫ L

0

Px(0, z)γ(t, z)dz

]

where some arguments are omitted for compactness when clear from the context. Then, using the identity

−λγ(t, x) =
∫ L

0

λδ(x− z)γ(t, z)dz ,

where δ(x − z) denotes the Dirac measure on the diagonal of the square [0, L]× [0, L], the previous equation
gives

w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x)− p(x)w̃x(t, 0)

= γt(t, x) + γx(t, x) + γxxx(t, x) + λγ(t, x)−
∫ L

0

(
− λP + Pz + Pzzz + Px + Pxxx − λδ(x − z)

)
γ(t, z)dz

− P (x, 0)γxx(t, 0) + P (x, L)γxx(t, L) + p(x)

∫ L

0

Px(0, z)γ(t, z)dz − γx(t, 0)
[
p(x)− Pz(x, 0)

]
.

(3.13)
From equation (3.13), we finally obtain the following conditions for the functions P and p.

(a) The identity −λP + Pz + Pzzz + Px + Pxxx = λδ(x− z) is satisfied for all (x, z) ∈ [0, L]× [0, L].
(b) The boundary conditions P (x, 0) = P (x, L) = Px(0, z) = 0 are satisfied for all (x, z) ∈ [0, L]× [0, L].
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(c) An appropriate choice of p is given by p(x) := Pz(x, 0), for all x ∈ [0, L].
Moreover, note also that the following.

(d) By setting x = 0 and x = L in (3.7), we need: P (0, z) = P (L, z) = 0 for all z ∈ [0, L].
(e) By setting x = L in (3.10), we need: Px(L, z) = 0 for all z ∈ [0, L].

Therefore, collecting the conditions (a)-(e), we impose the function P to satisfy the following PDE





−λP + Pz + Pzzz + Px + Pxxx = λδ(x − z) ,
P (x, 0) = P (x, L) = 0 ,
P (L, z) = P (0, z) = 0 ,
Px(L, z) = Px(0, z) = 0 ,

(3.14)

where (x, z) ∈ [0, L]× [0, L] and δ(x−z) denotes the Dirac measure on the diagonal of the square [0, L]× [0, L].
Now, in order to show the existence of a solution to (3.14), let us make the following change of variable:

(
z
x

)
7→
(
x̄
z̄

)
:=

(
L− z
L− x

)
,

and define G(x̄, z̄) := −P (x, z). From (3.14) it is obtained





λG+Gz̄ +Gz̄z̄z̄ +Gx̄ +Gx̄x̄x̄ = λδ(x̄ − z̄) ,
G(x̄, 0) = G(x̄, L) = 0 ,
G(L, z̄) = G(0, x̄) = 0 ,
Gz̄(x̄, 0) = Gz̄(x̄, L) = 0 ,

(3.15)

with (x̄, z̄) belonging to [0, L]×[0, L]. Note that in [14, Lemma 2.1], it has been proved that, for any L /∈ N , the
system (3.15) admits a unique solution G ∈ H1

0 ((0, L)× (0, L)). Therefore, we can conclude that the kernel P
exists. Then according to [14, Lemma 3.1], the transformation Π is invertible and continuous on L2(0, L) and
its inverse is also continuous. As a consequence, we have shown that, for an appropriate choice of the function
p ∈ L2(0, L), the system (3.3) is transformed into the system (3.8) via a linear change of coordinates which is
invertible with a continous inverse. Since the origin of system (3.8) is exponentially stable, we conclude that
so is the origin of (3.3) in the non-perturbed case (i.e., d1 = 0, d2 = 0). Note also that p is non-zero. Indeed,
if p = 0 then, in view of the condition (c), we would have Pz(x, 0) = 0. Therefore, the system (3.14) would
have seven boundary conditions. But then, because of the degree of the first equation of (3.14), the system
(3.14) would have no solution. This concludes the first part of the proof.

We want now to prove the existence of a Lyapunov functional which satisfies the inequalities (3.4) and
(3.5) in presence of d1, d2. To this end, we choose the following candidate Lyapunov function U : L2(0, L) → R

U(w) := ‖Π−1
(w)‖2L2 (3.16)

Since Π
−1

exists, then U is well defined in L2(0, L). Moreover, according to the continuity of Π
−1

and Π in
L2(0, L), there exist two positive constants c and c̄ satisfying inequality (3.4) for all w ∈ L2(0, L). Note that
the function w ∈ L2(0, L) 7→ U(w) ∈ R+ is equivalent to the standard norm on the space L2(0, L) according
to (3.4). It only remains to prove that U satisfies the inequality (3.5). To this end, we show inequality (3.5)
for w̃0 ∈ H3

L(0, L), d2 ∈ C2([0, T ]) and d1 ∈ C1([0, T ], L2(0, L)). The result follows for all w̃0 ∈ L2(0, L),
d1 ∈ L1([0, T ];L2(0, L)) and d2 ∈ L2(0, T ), by a standard density argument similar to the one used in [34,
Lemma 1]. Now, consider again the transformation defined in (3.6), (3.7). Similar computations can be used
to show that its inverse transformation is defined by

γ(x) := Π
−1

(w̃)(x) = w̃ +

∫ L

0

Q(x, z)w̃(z)dz , (3.17)

where Q ∈ H1
0 ((0, L)× (0, L)) is now the solution of the following system





λQ +Qz +Qzzz +Qx +Qxxx = λδ(x − z) ,
Q(x, 0) = Q(x, L) = 0 ,
Q(L, z) = Q(0, z) = 0 ,
Qx(L, z) = 0 ,

(3.18)
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and satisfies p(x) +
∫ L

0
p(z)Q(x, z)dz = Qz(x, 0) for all x ∈ [0, L]. Now, consider the solution w̃ of system

(3.3) with d1, d2 possibly different from zero. Then, applying the change of coordinates γ = Π
−1

(w̃) defined
in (3.17), (3.18), we obtain





γt + γx + γxxx + λγ = Π
−1

(d1) +Qz(x, L)d2, (t, x) ∈ R+ × [0, L],
γ(t, 0) = γ(t, L) = 0 , t ∈ R+,
γx(t, L) = d2(t), t ∈ R+,
γ(0, x) = γ0(x) , x ∈ [0, L] .

(3.19)

The derivative of U along the trajectory of (3.3), or equivalently on the trajectory of (3.19), yields

U̇(w) = − 2

∫ L

0

γ
(
γxxx + γx + λγ −Π

−1
(d1)−Qz(x, L)d2

)
dx

= − 2λ

∫ L

0

|γ|2dx+ 2

∫ L

0

γxγxxdx+ 2

∫ L

0

Π
−1

(d1)γdx+ 2d2

∫ L

0

Qz(x, L)γdx

≤ − 2λ‖γ‖2L2 + 2

∣∣∣∣∣

∫ L

0

Π
−1

(d1)γdx

∣∣∣∣∣ + d22 − γx(0)
2 + 2

∣∣∣∣∣d2
∫ L

0

Qz(x, L)γdx

∣∣∣∣∣ , (3.20)

where, in the second equation, we have used an integration by parts to compute

2

∫ L

0

γxγxxdx =
[
γ2x(x)

]L
0
= d22 − γx(0)

2 .

Using first Cauchy-Schwarz’s inequality and then Young’s inequality 2ab ≤ νa2 + 1
ν
b2, for any ν > 0, from

(3.20) we finally obtain

U̇(w) ≤− 2λ‖γ‖2L2 + 2‖γ‖L2‖Π−1
(d1)‖L2 + 2|d2|‖γ‖L2‖Qz(·, L)‖L2 + |d2|2

≤− λ‖γ‖2L2 + 2
λ
‖Π−1

(d1)‖2L2 +

(
1 +

2

λ
‖Qz(·, L)‖2L2

)
|d2|2 .

Using the inequality (3.4) on the term depending on d1, we finally obtain

U̇(w) ≤ −λ‖γ‖2L2 +
2c̄

λ
‖d1‖2L2 +

(
1 +

2

λ
‖Qz(·, L)‖2L2

)
|d2|2 (3.21)

showing the inequality (3.5) with ̺1 = 2c̄
λ
, ̺2 = 1 + 2

λ
‖Qz(·, L)‖2L2 . This completes the proof. ✷

From the existence of the ISS Lyapunov functional established in Theorem 3.1, one can immediately deduce
the following property for the observer (3.2).

Corollary 3.2. For any λ > 0, there exists a function p ∈ L2(0, L) such that the observer (3.2) is
an ISS exponential convergent observer for system (3.1) with convergence rate λ, namely, there exist some
c0, c1, c2 > 0 such that the following inequality holds

‖ŵ(t, ·)− w(t, ·)‖L2 ≤ c0e
−λt‖ŵ0 − w0‖L2 + c1

∫ t

0

e−λ(t−s)‖d1(s, ·)‖L2ds+ c2

∫ t

0

e−λ(t−s)|d2(s)|ds, (3.22)

for any initial conditions w0, ŵ0 ∈ L2(0, L), any d1 ∈ L2([0, t];L2(0, L)), any d2 ∈ L2(0, t) and for all t ≥ 0.

Proof: The proof can be directly inherited from Theorem 3.1 by applying Grönwall’s lemma to inequality
(3.5). ✷

As a conclusion of this section, we remark that the in view of the exponential stability properties of the
observer (3.2), one can also design a local observer for the nonlinear KdV model (1.1). In particular, selecting
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the gain p as in Corollary 3.2 it is possible to show that the following system




ŵt + ŵx + ŵxxx + ŵŵx + p(x)[y(t)− ŵx(t, 0)] = 0 , (t, x) ∈ R+ × [0, L] ,
ŵ(t, 0) = ŵ(t, L) = 0 , t ∈ R+ ,
ŵx(t, L) = 0 , t ∈ R+ ,
ŵ(0, x) = ŵ0(x) , x ∈ [0, L] ,

is a locally exponentially ISS observer for system (1.1), namely inequality (3.22) holds for all w0, ŵ0, d1, d2
satisfying

‖ŵ0‖L2 + ‖w0‖L2 + lim
t→∞

∫ t

0

e−µ(t−s)
(
‖d1(s, ·)‖L2 + |d2(s)|

)
ds ≤ δ

for some δ small enough. The proof is omitted for space reasons and can be derived by combining the arguments
of the proof of Theorem 3.1 with the robustness result established in Corollary 2.4.

4. Proof of Theorem 2.3. Let T > 0. We prove the statement of the Theorem 2.3 for w0 ∈ H3
L(0, L),

d2 ∈ C2
0 ([0, T ]) and d1 ∈ C1([0, T ], L2(0, L)), where we recall that H3

L(0, L) is defined in (2.1). Since H3
L(0, L),

C2([0, T ]) and C1([0, T ], L2(0, L)) are dense in L2(0, L), L2(0, T ) and L1([0, T ];L2(0, L)), respectively, the
result follows for all w0 ∈ L2(0, L), d1 ∈ L1([0, T ];L2(0, L)) and d2 ∈ L2(0, T ), by a standard density argument
similar to the one provided in [34, Lemma 1].

Proof of item (a) of Theorem 2.3. The derivative of the Energy (1.3) gives along solutions of the
linear KdV model (1.2) a negative term in wx(t, 0). Moreover, Theorem 3.1 shows that using such a term in
the w-dynamics, we are able to obtain an ISS-Lyapunov functional U . As a consequence, the main idea of this
proof consists in adding and subtracting the term wx(t, 0), multiplied by a coefficient p(x), in the w dynamics:
one term is used to obtain the negativity in the L2 norm of the full space as in (3.5), while the other is treated
as a distributed disturbance d1 and compensated by the negativity of the Energy.

With the previous points in mind, fix λ = 1 and consider the functions p and U given by Theorem 3.1.
Set p̄ := ‖p‖2

L2. Note that p̄ 6= 0 because p is a non-zero function. We define the operator Π and the function
W as follows

W (w) :=
1

2p̺̄1
U(w) = ‖Π(w)‖2L2 , Π(w) :=

1√
2p̺̄1

Π
−1

(w) , (4.1)

for all w ∈ L2(0, L), where the operator Π and the parameter ̺1 are given by Theorem 3.1. We show that the
statement of the theorem holds and in particular that the inequalities (2.6), (2.7) are satisfied. First, in view
of (3.4), we obtain

c

2p̺̄1
‖w‖L2 ≤W (w) ≤ c̄

2p̺̄1
‖w‖L2

As a consequence, by recalling that E(w) = ‖w‖2L2 , the inequality (2.6) is satisfied for the function V = E+W
with α := 1 + c

2p̺̄1
and ᾱ := 1 + c̄

2p̺̄1
.

Then, in order to show the inequality (2.7) we compute the derivative of the functional V along the
trajectories of the system (1.2). We first analyze the time derivative of the energy E. Using (1.4) and adding
the effect of the perturbations d1, d2, we obtain

Ė(w) = −|wx(0)|2 + 2

∫ L

0

w(x)d1(x)dx + |d2|2

≤ −|wx(0)|2 +
c

4p̺̄1
‖w‖2L2 +

4p̺̄1
c

‖d1‖2L2 + |d2|2 (4.2)

where the second inequality has been obtaining by using the Cauchy-Schwarz and Young inequalities, and with
the parameters c, ̺1 given by Theorem 3.1. Next, we compute the derivative of W along the trajectories of
system (1.2). To this end, we first add and subtract the term p(x)wx(t, 0) to the dynamics, obtaining





wt + wx + wxxx − p(x)wx(t, 0) = −p(x)wx(t, 0) + d1(t, x) , (t, x) ∈ R+ × [0, L] ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = d2(t) , t ∈ R+ ,
w(0, x) = w0(x) , x ∈ [0, L] .

(4.3)

10



Applying the ISS-Lyapunov inequality (3.5) along solutions to (4.3), the derivative of U yields

U̇(w) ≤− U(w) + ̺1‖d1 − pwx(0)‖2L2 + ̺2|d2|2

≤− c‖w‖2L2 + 2̺1‖d1‖2L2 + 2̺1‖pwx(0)‖2L2 + ̺2|d2|2 , (4.4)

where in the second inequality we used again the inequality (3.4). Finally, we can compute the derivative of
the function V = E +W , with W defined in (4.1), by combining (4.4) and (4.2) and using the identity

− |wx(0)|2 + 1
p̄
‖pwx(0)‖2L2 = 0 . (4.5)

Simple computations (omitted for space reason) give the inequality (2.7) with the choice α := c

4p̺̄1
, σ1 =

4p̺̄1

c
+ 1

p̄
, σ2 := 1 + ̺2

2p̺̄1
. This concludes the proof of item (a) of Theorem 2.3.

Proof of the item (b) of Theorem 2.5. Consider again the function V = E +W with defined in
(4.1). The derivative of the energy (1.3) along the trajectories of the nonlinear system (1.1) is computed as
in (4.2) because the contribution of the nonlinear wwx is zero. Next, we compute the time derivative of W .
However, due to the presence of the nonlinear term wwx we cannot apply off-the-shelf the inequality (3.5) by
including such a term in the disturbance d1: it would not be bounded with the right norm. As a consequence,
unfortunately, we need to revisit and adapt some steps of the proof of Theorem 3.1 and in particular we need
to compute the change of coordinates defined in (3.6), (3.17). Recalling that we selected λ = 1, the γ-dynamics
reads





γt + γx + γxxx + γ = −Π̄−1(p)wx(t, 0) + Π−1(d1)−Π−1(wwx) +Qz(x, L)d2, (t, x) ∈ Ω
γ(t, 0) = γ(t, L) = 0 , t ∈ R+

γx(t, L) = d2(t) , t ∈ R+

γ(0, x) = γ0(x) , x ∈ [0, L] .

(4.6)

where Q is defined in (3.17). With respect to system (3.19) we have two extra terms to analyse, that are the
terms Π−1(p)wx(0) and Π−1(wwx). As a consequence, we consider again the Lyapunov functional U(w) :=
‖γ‖2

L2 as in (3.16), and we follow similar computations to those developed from (3.20) to (3.21). Also, as in the
proof of item (a), we consider as a a full disturbance the term d1 − pwx(0), see inequality (4.4). In particular,
the derivative of U along the trajectories of system (4.6) satisfies, for all w ∈ L2(0, L)

U̇(w) ≤ −‖γ‖2L2 + ̺1‖d1 − pwx(0)‖2L2 + ̺2|d2|2 + 2

∣∣∣∣∣

∫ L

0

f(wwx)γdx

∣∣∣∣∣

where the function f is defined as f(wwx)(x) := Π̄−1(wwx)(x) = w(x)wx(x) +
∫ L

0
Q(x, z)w(z)wx(z)dz. By

using the same argument as in [14, Proof of Theorem 1.2, page 1111-1113], we can show the existence of
positive constant f̄ that depends only on the function Q, such that

2

∣∣∣∣∣

∫ L

0

f(wwx)(x)γ(x)dx

∣∣∣∣∣ ≤ f̄‖γ‖3L2 ∀w ∈ L2(0, L).

As a consequence, combining the previous inequalities and following the same computations in (4.4), we obtain,
for all w ∈ L2(0, L)

U̇(w) ≤ −
(
1− f̄‖γ‖L2

)
‖γ‖2L2 + 2̺1‖d1‖2L2 + 2̺1‖pwx(0)‖2L2 + ̺2|d2|2 .

Therefore, using the inequality (3.4), we obtain

U̇(w) ≤ − c

2‖w‖2L2 + 2̺1‖d1‖2L2 + 2̺1‖pwx(0)‖2L2 + ̺2|d2|2

for all w satisfying ‖w‖L2 ≤ δ̄, with δ̄ = (2
√
cf̄)−1. Using the definition of the function W in (4.1) and following

the same steps of item (a), we obtain the inequality inequality (2.7) with the choice α := c

8p̺̄1
, σ1 = 4p̺̄1

c
+ 1

p̄
,

σ2 := 1 + ̺2

2p̺̄1
, and δ = 1

3 δ̄.
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5. Adding an integral action. In this section we consider the regulation problem of a KdV equation
in which the disturbance d2 is considered as a control input acting at the boundary condition, and the output
y(t) = wx(t, 0) has to be regulated at a certain desired constant reference r in presence of unknown distributed
constant disturbances d1. We aim at showing that such a problem can be solved by means of an integral
action and an output feedback control law. The proposed design is based on the forwarding method (see e.g.,
[56] or [35]). Note that in Section 5.1, we focus on the linearized version of the KdV model (1.2). Then, in
Section 5.2, we will show a local result for the nonlinear system (1.1).

5.1. Regulation of linear KdV equation by means of the forwarding method. Consider the
following system





wt + wx + wxxx = d(x) , (t, x) ∈ R+ × [0, L] ,
w(t, 0) = w(t, L) = 0 , t ∈ R+

wx(t, L) = u(t) , t ∈ R+

w(0, x) = w0(x) , x ∈ [0, L]
y(t) = wx(t, 0) , t ∈ R+

(5.1)

where d ∈ L2(0, L) is a constant perturbation, u ∈ R is the control input, and y ∈ R is the output to be
regulated at a certain desired constant reference r. We define the regulated output error e = y − r and we
defined our regulation objective as

lim
t→∞

e(t) = lim
t→∞

y(t)− r = 0 . (5.2)

To this end, we follow the standard set-up of output regulation [2, 56] and we extend system (5.1) with an
integral action processing the desired error to be regulated. In other words, we consider a dynamical feedback
law of the form

η̇ = y − r , u = kη , (5.3)

where η ∈ R is the state of the controller and k is a positive constant to be selected small enough, as shown
later. The closed-loop system (5.1), (5.3) can be seen as an augmented system, i.e. a PDE system (whose
state is w) coupled with an ODE (whose state is η), which reads





wt + wx + wxxx = d(x) , (t, x) ∈ R+ × [0, L] ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = kη(t) , t ∈ R+ ,
η̇(t) = wx(t, 0)− r , t ∈ R+ ,
w(0, x) = w0(x), η(0) = η0 , x ∈ [0, L] .

(5.4)

We define the space X := R× L2(0, L), that is the state space of (5.4). It is a Hilbert space as the Cartesian
product of two Hilbert spaces. In the rest of the section, we will show the following properties for the closed-
loop system (5.4): it is well posed, it admits a unique equilibrium which is exponentially stable, and the
regulation objective (5.2) is achieved when considering sufficiently regular solutions.

To this end, we introduce now the following two linear operators S and A that will be used in the rest of
the section. In particular, we denote with S the operator associated with the linear KdV equation (1.2). The
operator S and its domain D(S) ⊂ L2(0, L) are defined as

Sw = −w′ − w′′′, D(S) := {w ∈ H3(0, L) : w(0) = w(L) = w′(L) = 0}. (5.5)

Then, we define the operator A in order to describe the closed-loop system (5.4) in the following abstract form

d

dt
ζ = Aζ + Γ , ζ(0) = ζ̃0 , ζ :=

(
η
w

)
, A(η, w) :=

[
w′(0)

−w′ − w′′′

]
, Γ :=

[
−r
d

]
, (5.6)

with the domain of A defined as D(A) := {(η, w) ∈ R×H3(0, L) | w(0) = w(L) = 0, w′(L) = kη} ⊂ X . We
start by proving the existence and uniqueness of an equilibrium for system (5.4) in the following lemma.
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Lemma 5.1. For any k 6= 0 and (d, r) ∈ L2(0, L)×R there exist a unique equilibrium state (η∞, w∞) ∈ X
to system (5.4).

Proof: Consider the following boundary value problem





w′
∞(x) + w′′′

∞(x) = d(x) , x ∈ [0, L] ,
w∞(0) = w∞(L) = 0 ,
w′

∞(0) = r ,

which represents the nonzero equilibrium state of (5.4), together with η∞ =
w′

∞
(L)
k

. Consider the smooth

function φ(x) = rx(L−x)
L

. It satisfies the boundary conditions φ(0) = φ(L) = 0 and φ′(0) = r. We set
ψ = w∞ − φ. Then ψ satisfies the following system





ψ′(x) + ψ′′′(x) = j(x) , x ∈ [0, L] ,
ψ(0) = ψ(L) = 0 ,
ψ′(0) = 0 ,

where j(x) = d(x) − φ′(x). This system can be written in the operator form as S∗ψ = j, where S∗, is
the adjoint operator of S defined in (5.5). In particular, S∗, is defined as S∗ψ = ψ′′′ + ψ′ with domain
D(S∗) := {w ∈ H3(0, L) : w(0) = w(L) = w′(0) = 0}. Following [38, Lemma 4], we can prove that the
canonical embedding from D(S∗), equipped with the graph norm, into L2(0, L), is compact. Then, according
to [11, Proposition 4.24], S∗ is an operator with compact resolvent. This implies that its spectrum consists
only of eigenvalues. Moreover, 0 is not an eigenvalue of S∗. Hence, there exists a unique solution ψ∞ to the
equation S∗ψ = j. The equilibrium (η∞, w∞) can then be computed as w∞(x) = ψ∞ + φ(x) for all x ∈ [0, L]

and η∞ =
w′

∞
(L)
k

, with φ being the function defined at the beginning of the proof. ✷

Next, we show the following well-posedness result for the closed-loop system (5.4). In the proof, we will
also introduce a strict Lyapunov functional for the closed-loop system (5.4). Such a Lyapunov functional is
obtained via the forwarding methodology similarly to [56, 35] and it is based on the ISS-Lyapunov established
in Theorem 2.3.

Lemma 5.2. Let L /∈ N . There exist k⋆0 > 0 such that for any k ∈ (0, k⋆0), for any (d, r) ∈ L2(0, L)×R and
for any initial condition (η0, w0) ∈ X (resp. D(A)), there exists a unique weak solution (η, w) ∈ C0(R+;X)
(resp. strong solution in C1(R+;X) ∩ C0(R+;D(A))) to system (5.4).

Proof: Given (d, r) ∈ L2(0, L)× R let (η∞, w∞) the corresponding equilibrium to (5.4) computed according
to Lemma 5.1. Consider the following change of coordinates

(w, η) 7→ (w̃, η̃) := (w − w∞, η − η∞). (5.7)

The (w̃, η̃)-dynamics is given by





w̃t + w̃x + w̃xxx = 0 , (t, x) ∈ R+ × [0, L] ,
w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,
w̃x(t, L) = kη̃(t) , t ∈ R+ ,
˙̃η(t) = w̃x(t, 0) , t ∈ R+ ,
w̃(0, x) = w̃0(x), η̃(0) = η̃0 , x ∈ [0, L] ,

(5.8)

where w̃0(x) = w0(x) − w∞(x) and η̃0 = η0 − η∞. System (5.8) can be rewritten, in the operator form, as

d

dt
ζ̃ = Aζ̃ , ζ̃ = ζ0, ζ̃ :=

(
η̃
w̃

)

with A and its domain D(A) defined as in (5.6). As a consequence, systems (5.4) and (5.8) are equivalent.
Then, if one proves that the operator A defined in (5.6) is a m-dissipative operator on (X, ‖ · ‖X), one can
apply the result provided by [6, Theorem 3.1], and conclude that the statement of Lemma 5.2 holds. For that,
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we look for an equivalent norm and a related scalar product coming from a Lyapunov functional. We will
prove then the dissipativity with respect to such a scalar product. This Lyapunov functional is built following
the forwarding approach (see e.g [56]). To simplify the notation, in the rest of this proof, we will write (η, w)
instead of (η̃, w̃).

Now, by recalling the definition of the operator S in given in (5.5), we define the operator M : L2(0, 1) → R

as solution to the following Sylvester equation

MSw = Cw , ∀w ∈ D(S) , (5.9)

where C : f ∈ H1
0 (0, L) 7→ f ′(0) ∈ R. Since the strongly continuous semigroup generated by the operator S

is exponentially stable, the Sylvester equation (5.9) admits a unique solution, see [47, Lemma 22]. Moreover,
since M is a linear form, according to Riesz representation theorem [7, Theorem 4.11], the operator M is

uniquely defined as Mw =
∫ L

0 M(x)w(x)dx. In order to obtain an explicit solution, we write equation (5.9)
in the explicit form

w′(0) = −
∫ L

0

M(x)[w′(x) + w′′′(x)]dx ∀w ∈ D(S).

Using integration by parts we obtain

w′(0) =

∫ L

0

w(x)[M ′(x) +M ′′′(x)]dx +M(0)w′′(0)−M(L)w′′(L)−M ′(0)w′(0) ,

for all w ∈ D(S). From the latter equation, we obtain the following boundary value problem





M ′′′ +M ′ = 0 ,
M(0) =M(L) = 0 ,
M ′(0) = −1 .

(5.10)

It can be verified that the function

M : x ∈ R 7→ −2 sin(x2 ) sin(
L−x
2 )

sin(L2 )
(5.11)

is a solution to (5.10). Computations are omitted for space reasons. Moreover, it is the unique solution to
(5.10) and the operator M defined above is the unique solution to the Sylvester equation (5.9). Then, the

operator M : L2(0, L) → R can be expressed as Mϕ =
∫ L

0
M(x)ϕ(x)dx.

With the operator M so defined, consider the candidate Lyapunov functional V : X → R defined as

V(η, w) = V (w) + (η −Mw)2 , (5.12)

where V is the Lyapunov functional given by Theorem 2.3. By construction, the Lyapunov functional V is
equivalent to the standard norm on the space X , and in particular, there exist positive constants ν, ν̄ such
that the following holds

ν‖(η, w)‖2X ≤ V(η, w) ≤ ν̄‖(η, w)‖2X , ∀(η, w) ∈ X . (5.13)

To show this fact, note that, following similar arguments used in the proof of Proposition 4 of [56], for any
ρ ∈]0, 1[ we have

ρ

(
1

2
η2 − ‖M‖2L2‖w‖2L2

)
≤ (η −Mw)2 ≤ 2(η2 + ‖M‖2L2‖w‖2L2)

for all (η, w) ∈ X . Furthermore, according to Theorem 2.3, we know that V satisfies the inequality (2.6).
Then we have

ρ

(
1

2
η2 − ‖M‖2L2‖w‖2L2

)
+ α‖w‖2L2 ≤ V(w) ≤ 2

(
η2 + ‖M‖2L2‖w‖2L2

)
+ ᾱ‖w‖2L2 .
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Therefore, by selecting ρ sufficiently small, inequality (5.13) holds for some ν̄ > ν > 0. By recalling that the
function V established in Theorem 2.3 is of the form V = E +W , where E and W are quadratic forms of the
L2 norm of w, from the Lyapunov functional V defined in (5.12), we can also deduce a scalar product, that we
define as follows

〈[
η1 w1

]⊤
,
[
η2 w2

]⊤〉
V
:=
(
η1 −Mw1

)(
η2 −Mw2

)
+ 〈w1, w2〉L2 + 〈Πw1,Πw2〉L2 , (5.14)

with Π being the linear operator given by Theorem 2.3. It is equivalent to the usual scalar product in X .

Now, we are in position to prove that A is m−dissipative according to [46]. For this, we need to show
that A is dissipative and maximal. We begin with showing the dissipative properties. To this end, we use the
scalar product given in (5.14). By using the definition of A given in (5.6), we obtain, for all ζ ∈ D(A),

〈Aζ, ζ〉V =
(
w′(0) +M(w′′′ + w′)

)(
η −Mw

)
− 〈w′ + w′′′, w〉L2 − 〈Π(w′′′ + w′),Πw〉L2

=
(
w′(0) +

∫ L

0

M(x)[w′(x) + w′′′(x)]dx
)(
η −Mw

)
− 〈w′ + w′′′, w〉L2 − 〈Π(w′′′ + w′),Πw〉L2 .

(5.15)

For the first term, it can be shown, after some integrations by parts, that

∫ L

0

M(x)[w′(x) + w′′′(x)]dx = −kη − w′(0) (5.16)

for all ζ ∈ D(A). Then, for the second term, we recall the ISS properties of the function V stated in
Theorem 2.3. In particular, applying the inequality (2.7) to the system (5.4), in which d is the distributed
disturbance (thus having the role of d1) and kη is seen as a disturbance acting at the boundary condition (thus
having the role of d2), we obtain

− 2〈w′ + w′′′, w〉L2 − 2〈Π(w′′′ + w′),Πw〉L2 ≤ −α‖w‖2L2 + σ2k
2η2 . (5.17)

for all ζ ∈ D(A). Hence, combining inequalities (5.15) with (5.16) and (5.17), we obtain

〈Aζ, ζ〉V ≤ − kη
(
η −Mw

)
− α

2
‖w‖2L2 +

σ2
2
k2η2

≤ −k
(
1−

(
σ2
2

+
‖M‖L2

4α

)
k

)
η2 − α

4
‖w‖2L2

for all ζ ∈ D(A), where the second inequality has been obtained by using Young’s inequality. As a consequence,
we can select

k⋆0 =

(
σ2
2

+
‖M‖L2

4α

)−1

.

This implies that for any k ∈ (0, k⋆0) there exists ε > 0 such that we have

〈Aζ, ζ〉V ≤ −ε(|η|2 + ‖w‖2L2) (5.18)

for all ζ ∈ D(A), which shows that the operator A is dissipative.

Now, we want to show that A is a maximal operator. According to Lümer−Phillips theorem [46, Theorem
4.3], proving that A is maximal reduces to show that there exists a positive λ0 such that for all ζ ∈ X , there
exists ζ̃ ∈ D(A) such that (λ0IX −A)ζ̃ = ζ. Let (η, w) ∈ X . We look for a (η̃, w̃) ∈ D(A) satisfying





w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,
w̃(0) = w̃(L) = 0 ,
w̃′(L) = kη̃ ,
λ0η̃ − w̃′(0) = η ,

(5.19)
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namely





w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,
w̃(0) = w̃(L) = 0 ,
w̃′(L) = k

λ0
(η + w̃′(0)) ,

λ0η̃ − w̃′(0) = η .

Now, we consider the following boundary value problem





w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,
w̃(0) = w̃(L) = 0 ,
w̃′(L) = k

λ0
(η + w̃′(0)) ,

and the smooth function φ̃(x) = kηx2(x−L)
λ0L2 satisfying the boundary conditions

φ̃(0) = φ̃(L) = φ̃′(0) = 0 , φ̃′(L) =
k

λ0
η .

We set ψ̃ = w̃ − φ̃. Then ψ̃ satisfies the following boundary value problem





ψ̃′ + ψ̃′′′ + λ0ψ̃ = j̃(x) , x ∈ [0, L] ,

ψ̃(0) = ψ̃(L) = 0 ,

ψ̃′(L) = k
λ0
ψ̃′(0) ,

(5.20)

where j̃(x) = w(x)− φ̃′(x)− φ̃′′′(x)− λ0φ̃. Now, we define the operator Ŝ and its domain D(Ŝ) ⊂ L2(0, L) as

Ŝψ = −ψ′ − ψ′′′, D(Ŝ) :=
{
ψ ∈ H3(0, L) : ψ(0) = ψ(L) = 0, ψ′(L) =

k

λ0
ψ′(0)

}
.

We define also its adjoint operator Ŝ∗ and its domain D(Ŝ∗) as

Ŝ∗ψ = ψ′′′ + ψ′, D(Ŝ∗) :=
{
ψ ∈ H3(0, L) : ψ(0) = ψ(L) = 0, ψ′(0) =

k

λ0
ψ′(L)

}
.

Note that Ŝ and Ŝ∗ are dissipative. Indeed, by selecting λ0 > k, we have

∫ L

0

ψŜψdx =

(
k

λ0
− 1

)
ψ′(0)2 < 0 , ψ ∈ D(ĉS) ,

∫ L

0

ψŜ∗ψdx =

(
k

λ0
− 1

)
ψ′(L)2 < 0 , ψ ∈ D(Ŝ∗) .

Moreover, Ŝ is closed and D(Ŝ) is dense in L2(0, L). Then, according to [46, Theorem 4.3 and Corollary 4.4] Ŝ
is m-dissipative operator. Finally, since Ŝ is a m-dissipative operator then the system (5.20) admits a solution

ψ̃ in D(Ŝ). As a consequence, there exist (η̃, w̃) ∈ D(A) solution of (5.19). This proves that A is maximal
and concludes the proof of Lemma 5.2. ✷

Finally, the next result deals with the exponential stability of equilibrium state (η∞, w∞) and with the
related output regulation objective (5.2).

Theorem 5.3 (Stabilization and regulation). Let L /∈ N and consider system (5.4). For any k ∈ (0, k⋆0),
with k⋆0 given by Lemma 5.2, there exist b0, ν0 > 0, and for any (d, r) ∈ L2(0, L)×R there exists (η∞, w∞) ∈ X,
computed according to Lemma 5.1, such that any solution to system (5.4) with initial condition (η0, w0) ∈ X
satisfies

‖(η(t), w(t, ·)) − (η∞, w∞)‖X ≤ b0e
−ν0t‖(η0, w0)− (η∞, w∞)‖X . (5.21)
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for all t ≥ 0. Moreover, for any strong solution to (5.4), and in particular, for any (η0, w0) ∈ D(A), the output
y is asymptotically regulated at the reference r, namely (5.2) is satisfied.

Proof: The first part of the proof is proved for any initial condition (η0, w0) ∈ D(A). The result follows for
all initial conditions in X by a standard density argument (see e.g. [34, Lemma 1]). Consider the equilibrium
(η∞, w∞), recall the change of coordinates defined in (5.7) and consider the error system (5.8). We show now
that the its origin is exponentially stable. To this end, consider the Lyapunov functional V defined in (5.12).
According to the proof of dissipativity of A of Lemma (5.2), for any k ∈ (0, k⋆) the time derivative of V along
the strong solution to (5.8) satisfies (5.18). As a consequence, from (5.13) and Grönwall’s lemma, there exist
positive constants b0, ν0 such that, for all (η0, w0) ∈ D(A) and for all t ≥ 0

‖(η̃(t), w̃(t, ·))‖X ≤ b0e
−ν0t‖(η̃0, w̃0)‖X . (5.22)

By using the density of D(A) in X , and the change of coordinates (5.7), we conclude that (5.21) holds.

Now, we need to show that the regulation objective (5.2) is achieved for strong solutions. For this, note
that if (η0, w0) ∈ D(A), then (η̃0, w̃0) ∈ D(A). Then (η̃, w̃) ∈ C1(R+;X) ∩ C0(R+;D(A))

)
. Now, let us

introduce the new variables v, ξ defined as follows

(w̃, η̃) 7→ (v, ξ) := (w̃t, ˙̃η) . (5.23)

The dynamics of (v, ξ) is given as





vt + vx + vxxx = 0 , (t, x) ∈ R+ × [0, L] ,
v(t, 0) = v(t, L) = 0 , t ∈ R+

vx(t, L) = kξ(t) , t ∈ R+

ξ̇(t) = vx(t, 0) , t ∈ R+

v(0, x) = v0(x), ξ(0) = ξ0 , x ∈ [0, L] .

(5.24)

with

v0(x) = −w̃′
0(x) − w̃′′′

0 (x), x ∈ [0, L], ξ0 = w̃′
0(0). (5.25)

Since (v(0, ·), ξ(0)) ∈ X , then, according to the Lemma 5.2 and the first statement of Theorem 5.3, we have
(v, ξ) ∈ C0(R+;X) and

‖(ξ(t), v(t, ·))‖X ≤ b0e
−ν0t‖(ξ(0), v(0, ·))‖X , ∀(v0, ξ0) ∈ X .

By definition of v and ξ and using (5.25), one can see that, once one considers (v0, ξ0) ∈ X , then this implies
that (η0, w0) ∈ D(A). Then, using the definition of the change of coordinates (5.23) and (5.25) we obtain

‖w̃t(t, ·)‖L2 ≤ ‖( ˙̃η(t), w̃t(t, ·))‖X ≤ b0e
−ν0t‖(−w̃′

0(x)− w̃′′′
0 (x), w̃′

0(0))‖X , ∀w0 ∈ D(A) . (5.26)

Now, by multiplying the first equation of (5.8) by w̃ and integrating by parts, we get after some computations

k2η̃(t)2 − w̃x(t, 0)
2 =

∫ L

0

w̃(t, x)w̃t(t, x)dx .

Using Cauchy-Schwarz’s inequality, from (5.22) and (5.26) we finally obtain

|w̃x(t, 0)|2 ≤ ‖w̃(t, ·)‖L2‖w̃t(t, ·)‖L2 + k2|η̃(t)|2 −→
t→∞

0 , ∀(η0, w0) ∈ D(A) .

From the previous inequality we obtain limt→∞ |w̃x(t, 0)| = limt→∞ |wx(t, 0)− r| = 0 for all (η0, w0) ∈ D(A),
and therefore (5.2), concluding the proof. ✷
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5.2. Regulation of nonlinear KdV equation by means of the forwarding method. In this section,
we consider the regulation problem for a nonlinear KdV equation (1.1). In particular, we consider the system





wt + wx + wxxx + wwx = d(x) , (t, x) ∈ R+ × [0, L] ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = u(t) , t ∈ R+ ,
w(0, x) = w0(x) , x ∈ [0, L] ,
y(t) = wx(t, 0) , t ∈ R+ ,

(5.27)

where d ∈ L2(0, L) is a constant perturbation, u ∈ R is the control input and y(t) ∈ R is the output to be
regulated to a constant reference r as in (5.2). Following the design proposed in Section 5.1 for the linear
model (1.2), we consider the same output-feedback integral control (5.3) and we compactly write the closed-loop
system (5.27), (5.3) as





wt + wx + wxxx + wwx = d(x) , (t, x) ∈ R+ × [0, L] ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = kη(t) , t ∈ R+ ,
η̇(t) = wx(t, 0)− r , t ∈ R+ ,
w(0, x) = w0(x), η(0) = η0 , x ∈ [0, L] .

(5.28)

In the following, we will show that for sufficiently small perturbations d and references r the closed-loop system
(5.28) is well posed and it admits a unique equilibrium which is locally exponentially stable. Furthermore,
for solutions which are sufficiently regular, the regulation objective (5.2) is satisfied. We start by showing the
existence and uniqueness of an equilibrium.

Lemma 5.4. There exist d̄ > 0 and r̄ > 0 such that, for any (d, r) ∈ L2(0, L) × R satisfying ‖d‖L2 ≤ d̄
and |r| ≤ r̄, there exists a unique equilibrium state (η∞, w∞) ∈ X to system (5.28). Furthermore there exists
w > 0 such that for any w0 ∈ (0, w], there exists d0 > 0 and r0 > 0 so that, for any (d, r) ∈ L2(0, L) × R

satisfying ‖d‖L2 ≤ d0 and |r| ≤ r0 then ‖w∞‖H3 ≤ w0.

Proof: Consider the following boundary value problem




w′
∞(x) + w′′′

∞(x) + w∞(x)w′
∞(x) = d(x) , x ∈ [0, L] ,

w∞(0) = w∞(L) = 0 ,
w′

∞(0) = r ,
(5.29)

which represents the nonzero equilibrium state of (5.4), with η∞ =
w′

∞
(L)
k

. We prove that there exists a
solution to system (5.29) by following a fixed-point strategy. We set

H3
r (0, L) :=

{
w ∈ H3(0, L) : w(0) = w(L) = 0, w′(0) = r

}
,

and we introduce the operator T0 : H3
r (0, L) → H3

r (0, L) defined by T0(w) = ϕ where ϕ is the solution to




ϕ′(x) + ϕ′′′(x) = d(x) − w∞(x)w′
∞(x) , x ∈ [0, L] ,

ϕ(0) = ϕ(L) = 0 ,
ϕ′(0) = r ,

(5.30)

Note that the function ‖ · ‖H3
r

: w ∈ H3(0, L) 7→ ‖w′ + w′′′‖L2 ∈ R+ is a semi-norm on the space H3(0, L).
Furthermore, H3

r (0, L) ⊂ H1
0 (0, L). Then, according to the Poincaré’s inequality, the semi-norm ‖ · ‖H3

r
is a

norm on the space H3
r (0, L) which is equivalent to the standard norm induced by H3(0, L). In other words,

there exists a positive constant κ such that

‖w‖H3
r
≤ ‖w‖H3(0,L) ≤ κ‖w‖H3

r
, ∀w ∈ H3

r (0, L) . (5.31)

Now, we have,

‖T0(w)‖H3
r
=‖d− ww′‖L2

≤‖d‖L2 + ‖ww′‖L2

≤‖d‖L2 + ‖w‖L∞‖w′‖L2 ,
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for all w ∈ H3
r (0, L). Denoting with the constant ℓ the norm of the embedding H3(0, L) in L∞(0, L), according

to the Rellich-Kondrachov Theorem (see [7, Theorem 9.16]), we have

‖T0(w)‖H3
r
≤‖d‖L2 + ℓ‖w‖H3(0,L)‖w′‖L2

≤‖d‖L2 + κℓ‖w‖2H3
r

≤d̄+ κℓ‖w‖2H3
r
,

for all w ∈ H3
r (0, L) and all d satisfying |d|L2 ≤ d̄. Moreover, we have for all w1, w2 ∈ H3

r (0, L)

‖T0(w1)− T0(w2)‖H3
r
= ‖w1w

′
1 − w2w

′
2‖L2

≤ ‖(w1 − w2)w
′
1‖L2 + ‖w2(w

′
1 − w′

2)‖L2

≤ κℓ‖w1 − w2‖H3
r
‖w1‖H3

r
+ κℓ‖w1 − w2‖H3

r
‖w2‖H3

r

≤ κℓ
(
‖w2‖H3

r
+ ‖w2‖H3

r

)
‖w1 − w2‖H3

r
.

We consider now the operator T0 defined as in (5.30), restricted on the closed ball

Bw :=
{
w ∈ H3

r (0, L) : ‖w‖H3
r
≤ w

}

with w to be chosen later. Then, collecting all the previous inequality we have

‖T0(w)‖H3
r
≤ d̄+ κℓw2 ,

‖T0(w1)− T0(w2)‖H3
r
≤ 2κℓw‖w1 − w2‖H3

r
,

for all w,w1, w2 ∈ Bw. Finally, we select d̄ and w such that the following conditions hold

d̄ <
1

4κℓ
and

1−
√
1− 4d̄κℓ

2κℓ
≤ w <

1

2κℓ
. (5.32)

With such a choice, we obtain ‖T0(w)‖H3
r
≤ w for all w ∈ Bw and ‖T0(w1)− T0(w2)‖H3

r
< ‖w1 − w2‖H3

r
, for

all w1, w2 ∈ Bw. This shows that the operator T0 is an operator of contraction. Applying the Banach fixed
point theorem [7, Theorem 5.7] we deduce that the operator T0 admits a unique fixed point, and therefore
that there exists a unique solution w∞ ∈ Bw to (5.29). Now, given w, we deduce the value of r̄. Indeed, since
w∞ ∈ H3(0, L) then we have w′

∞ ∈ H2(0, L). Then, according to the embedding of H2(0, L) in C1([0, L]), we
have w′

∞ ∈ C1([0, L]). Therefore, according to [61, Lemma 1] we have

(w′
∞(0))2 ≤ 2

L
‖w′

∞‖2L2 + L‖w′′
∞‖2L2 ≤

(
2

L
+ L

)
‖w∞‖2H3(0,L) . (5.33)

Since w∞ ∈ Bw, then according to (5.31) and (5.33), and to the definition of H3
r (0, L), we obtain

r2 = (w′
∞(0))2 ≤ κ

(
2

L
+ L

)
w2 . (5.34)

Finally, we can choose r̄ = w
√
κ
(
2
L
+ L

)
. Therefore, according to (5.32) and (5.34), we deduce that for any

w0 ∈ (0, w], there exists d0 > 0 and r̄0 > 0 so that, for any (d, r) ∈ L2(0, L) × R satisfying ‖d‖L2 ≤ d̄0 and
|r| ≤ r̄0 then ‖w∞‖H3 ≤ w0. This concludes the proof of Lemma 5.4. ✷

Now, given (d, r) ∈ L2(0, L)×R satisfying the assumptions of Lemma 5.4, let (η∞, w∞) be the correspond-
ing equilibrium to system (5.28) and consider the following change of coordinates

(w, η) 7→ (w̃, η̃) := (w − w∞, η − η∞).
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The (w̃, η̃)-dynamics is given by





w̃t + w̃x + w̃xxx + w̃w̃x = −w′
∞w̃ − w∞w̃x , (t, x) ∈ R+ × [0, L] ,

w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,
w̃x(t, L) = kη̃(t) , t ∈ R+ ,
˙̃η(t) = w̃x(t, 0) , t ∈ R+ ,
w̃(0, x) = w̃0(x), η̃(0) = η̃0 , x ∈ [0, L] ,

(5.35)

where w̃0(x) = w0(x) − w∞(x) ∈ H3(0, L) and η̃0 = η0 − η∞ ∈ R. In the new coordinates, the regulation
objective (5.2) for system (5.35) reads

lim
t→∞

e(t) = lim
t→∞

w̃x(t, 0) = 0 (5.36)

Note that showing the well-posedness of system (5.35) is equivalent to prove the well-posedness of system
(5.28) in the original coordinates (w, η). As a consequence, in the rest of the section, we will focus on the
system (5.35) in the new coordinates (w̃, η̃).

Lemma 5.5. For any w∞, there exists k⋆1 > 0 such that, for any k ∈ (0, k⋆1 ], for any w∞ ∈ H3(0, L)
satisfying ‖w∞‖H3 ≤ w∞, and any initial condition (η̃0, w̃0) ∈ D(A), there exists τ > 0 such that the Cauchy
problem (5.35) is well-posed in the space C1(0, τ)×

(
C([0, τ ];H3(0, L)) ∩ L2([0, τ ];H4(0, L))

)
.

Proof: First, by writing the explicit solution of η̃ along solutions, that is η̃(t) = η̃0 +
∫ t

0 w̃x(s, 0)ds, we rewrite
system (5.35) as follows





w̃t + w̃x + w̃xxx + w̃w̃x + (w̃w∞)x = 0 , (t, x) ∈ R+ × [0, L] ,
w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,

w̃x(t, L) = k
(
η̃0 +

∫ t

0
w̃x(s, 0)ds

)
, t ∈ R+ ,

w̃(0, x) = w̃0(x), x ∈ [0, L] .

(5.37)

Now, given (s, τ) ∈ N×R, we introduce the space Ss(τ) := C([0, τ ];Hs(0, L))∩L2([0, τ ];Hs+1(0, L)) equipped
with the norm defined as

‖w‖2Ss(τ) := ‖w‖2C([0,τ ];Hs(0,L)) + ‖w‖2L2([0,τ ];Hs+1(0,L)) + ‖wx‖2C([0,τ ];L2(0,L)) .

We consider the operator T1 : S3(τ) → S3(τ) defined by T1(w̃) = ϕ where ϕ is the solution of





ϕt + ϕx + ϕxxx + (w∞ϕ)x = −w̃w̃x , (t, x) ∈ [0, τ ]× [0, L] ,
ϕ(t, 0) = ϕ(t, L) = 0 , t ∈ [0, τ ] ,

ϕx(t, L) = k
(
η̃0 +

∫ t

0 w̃x(s, 0)ds
)
, t ∈ [0, τ ] ,

ϕ(0, x) = w̃0(x), x ∈ [0, L]

(5.38)

with τ > 0 and k > 0 to be chosen later. With the operator T1 so defined, we deduce that if w̃ is a fixed
point of T1 then w̃ ∈ S3(τ) is a solution of (5.37). To this end we will apply the Banach fixed-point Theorem.
According to [5, Proposition 5.1], for any w∞ there exists C > 0 that such that

‖T1(w̃)‖2S3(τ) ≤ C

(
‖w̃0‖2H3(0,L) + k2

(
τ |η̄0|2 +

∫ τ

0

∣∣∣∣
∫ t

0

w̃x(s, 0)ds

∣∣∣∣
2

dt+ ‖wx(·, 0)‖2L2(0,τ)

)

+ ‖w̃w̃x‖2H1(0,τ ;H1(0,L))

)

for all w̃ ∈ S3(τ) and any ‖w∞‖H3 ≤ w∞. On the other hand, we have

∫ τ

0

∣∣∣∣
∫ t

0

w̃x(s, 0)ds

∣∣∣∣
2

dt ≤
∫ τ

0

∫ t

0

|w̃x(s, 0)|2ds ≤ τ‖w̃x(·, 0)‖2L2(0,τ).
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Since, w̃ ∈ S3(τ), then for all t ∈ [0, τ ], w̃(t, ·) ∈ H3(0, L), which imply w̃x(t, ·) ∈ H2(0, L) for all t ∈ [0, τ ].
Then, according to the embedding of H2(0, L) in C1([0, L]), we have w̃x(t, ·) ∈ C1([0, L]) for all t ∈ [0, τ ].
Therefore, according to [61, Lemma 1], we obtain

(w̃x(t, 0))
2 ≤

(
2

L
+ L

)
‖w̃(t, ·)‖2H3(0,L) .

for all t ∈ [0, τ ], which implies

‖w̃x(·, 0)‖2L2(0,τ) ≤
(
2

L
+ L

)
‖w̃‖2L2(0,τ ;H3(0,L)) ≤

(
2

L
+ L

)
‖w̃‖2S3(τ). (5.39)

Then, we have

∫ τ

0

∣∣∣∣
∫ t

0

w̃x(s, 0)ds

∣∣∣∣
2

dt ≤ τ

(
2

L
+ L

)
‖w̃‖2L2(0,τ ;H3(0,L)) ≤ τ

(
2

L
+ L

)
‖w̃‖2S3(τ). (5.40)

Also, since w̃ ∈ S3(τ), then according to [5, Lemma 3.1], we deduce the existence of C > 0 such that

‖w̃w̃x‖2H1(0,τ ;H1(0,L)) = ‖w̃w̃x‖2L2(0,τ ;H1(0,L)) + ‖(w̃w̃x)t‖2L2(0,τ ;H1(0,L)) ≤ C(τ
1
2 + τ

1
3 )2‖w̃‖4S3(τ). (5.41)

As a consequence, from (5.39), (5.40) and (5.41), there exists a positive constant C > 0 such that

‖T1(w̃)‖2S3(τ) ≤ C

(
‖w̃0‖H3(0,L) + k2τ |η̄0|2 +

(
(τ

1
2 + τ

1
3 )2‖w̃‖2S3(τ) +

(
2

L
+ L

)
(k2τ + k2)

)
‖w̃‖2S3(τ)

)
.

(5.42)
Moreover, from (5.39), (5.40) and (5.41), we obtain

‖T1(w̃1)− T1(w̃2)‖2S3(τ) ≤

≤ C

(
k2
∫ τ

0

∣∣∣
∫ t

0
(w̃1

x(s, 0)− w2
x(s, 0))ds

∣∣∣
2

dt+ ‖w1
x(·, 0)− w2

x(·, 0)‖2L2(0,τ)

+‖w̃2(w̃2
x − w̃1

x) + w̃1
x(w̃

2 − w̃1)‖2H1(0,τ ;H1(0,L))

)

≤ C
((

2
L
+ L

)
(k2τ + k2) + (τ

1
2 + τ

1
3 )2‖w̃1‖2

S3(τ) + (τ
1
2 + τ

1
3 )2‖w̃2‖2

S3(τ)

)
‖w̃1 − w̃2‖2

S3(τ)

for all w̃1, w̃2 ∈ S3(τ). We consider T1 restricted to the closed ball Bρ = {w̃ ∈ S3(τ) : ‖w̃‖S3(τ) ≤ ρ} ⊂ S3(τ)
with ρ to be chosen later. Then

‖T1(w̃)‖2S3(τ) ≤ C
(
‖w̃0‖2H3(0,L) + k2τ |η̃0|2 + ρ2

(
2
L
+ L

)
k2 +

(
(τ

1
2 + τ

1
3 )2ρ2 +

(
2
L
+ L

)
k2τ
)
ρ2
)

and

‖T1(w̃1)− T1(w̃2)‖2S3(τ) ≤ C
(
k2
(
2
L
+ L

)
+
(
2
L
+ L

)
k2τ + 2(τ

1
2 + τ

1
3 )2ρ2

)
‖w̃1 − w̃2‖2S3(τ).

Finally, we select the constant ρ, k1 and τ so that to obtain a contractive operator. For instance, we can select
ρ =

√
3C‖w̃0‖H3(0,L) and

k⋆1 =

√
1

6C

(
L

2 + L2

)

and τ > 0 such that the following inequalities are satisfied

τ(k⋆1)
2|η̃0|2 < ‖w̃0‖2H3(0,L) ,(

(τ
1
2 + τ

1
3 )2ρ2 +

(
2
L
+ L

)
(k⋆1)

2τ
)
ρ2 < 1

2‖w̃0‖2H3(0,L) ,
(
2
L
+ L

)
(k⋆1)

2τ + 2(τ
1
2 + τ

1
3 )2ρ2 < 1

2 .
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It follows that, for any k ∈ (0, k⋆1 ], ‖T1(w̃)‖S3(τ) ≤ ρ for any w̃ ∈ Bρ and ‖T1(w̃1) − T1(w̃2)‖S3(τ) < ‖w̃1 −
w̃2‖S3(τ) for any w̃1, w̃2 ∈ Bρ. Then, T1 is a contraction operator from Bρ to Bρ. According to the Banach
fixed-point theorem, T1 admits a unique fixed point. Its unique fixed point is the desired solution of (5.37) for
0 ≤ t ≤ τ . This shows that w̃ in (5.38) has a unique solution in S3(τ). Since w̃x(t, 0) is continuous on [0, τ ]
then η̃ is in C1(τ) by definition of solution of an ODE. This concludes the proof of Lemma (5.5). ✷

Note that we have established the existence of unique classical solution of (5.35) locally in time. However,
the Lyapunov functional introduced in the Section 5.1 needed to establish Lemma 5.2 and Theorem 5.3 can
be used to deduce the existence of unique solution global in time. Indeed, since the time derivative of the
Lyapunov functional will be proved to be non-increasing, this shows that the solution cannot explode for large
time, proving thus that the solution exists for any positive time, as soon as the initial conditions are small
enough. The next result deals with the local exponential stability of the origin of system (5.35).

Theorem 5.6 (Local Exponential Stability). There exist positive real number k∗2 , w∞, such that, for any
k ∈ (0, k∗2) there exist positive real numbers ∆, ν1, b1, such that for any solution to system (5.35) with w∞

satisfying ‖w∞‖H3 ≤ w∞ and initial conditions (η̃0, w̃0) ∈ D(A) satisfying |η̃0|+ ‖w̃0‖L2 ≤ 2∆, the following
inequality holds ‖(η̃(t), w̃(t))‖X ≤ b1e

−ν1t‖(η̃0, w̃0)‖X for all t ≥ 0. Moreover the regulation objective defined
in (5.36) is satisfied.

Proof: The main idea of this proof is to extend the analysis developed for the linear KdV model in Section 5.1.
In particular, following the main steps of the proof of Lemma 5.2, we aim at building a Lyapunov functional
for the overall closed-loop system (5.28) by relying on Corollary 2.4. Indeed, setting a = −w′

∞, b = −w∞ and
d2 = kη, system (5.35) is in the form (2.8). As a consequence, there exist δ > 0 and a Lyapunov functional V
such that, for any ‖w′

∞‖∞ ≤ ā and ‖w∞‖W 1,∞ ≤ b̄, the derivative of V along the trajectories of system (5.35)
satisfies

V̇ (w̃) ≤ −α‖w̃‖2L2 + σ1k
2η̃2 ∀ (η̃, w̃) ∈ Dδ(A) , (5.43)

with Dδ(A) := {(η̃, w̃) ∈ D(A) : ‖(η̃, w̃)‖X ≤ δ}. Now, we consider the Lyapunov functional V defined in
(5.12). We want to show the local exponential stability of the origin of the system (5.35) with the functional
V . First, note that V is uniformly bounded by the norm in the space X of (η̃, w̃), similar to inequality (5.13).
Then, using (5.43), its derivative along solutions to (5.28) is given by, for any (η̃, w̃) ∈ Dδ(A).

V̇(η̃, w̃) ≤ −α‖w̃‖2L2 + σ1k
2η̃2 + 2F (η̃, w̃) (5.44)

with F (η̃, w̃) :=
(
η̃ −Mw̃

)(
˙̃η −Mw̃t

)
. After some integrations by parts, and recalling the property of M in

(5.16), we obtain

˙̃η −Mw̃t = −kη̃(t) +
∫ L

0

M(x)w̃(x)w′
∞(x)dx − 1

2

∫ L

0

M ′(x)w̃(x)2dx−
∫ L

0

(
M(x)w∞(x)

)′
w̃(x)dx,

from which we obtain

F (η̃, w) = −kη̃2 + η̃kMw̃ + η̃Φ(w̃)−Mw̃Φ(w̃)

with

Φ(w̃) =

∫ L

0

M(x)w̃(x)w′
∞(x)dx − 1

2

∫ L

0

M ′(x)w̃(x)2dx−
∫ L

0

(
M(x)w∞(x)

)′
w̃(x)dx

According to (5.11), M ∈ C∞([0, L]). Therefore M ′ is bounded on [0, L]. Then, using first Cauchy-Schwarz’s
inequality and then Young’s inequality, we bound the terms in F as follows:

|kη̃Mw̃| ≤ 2k2‖M‖2L2

α
η̃2 +

α

8
‖w̃‖2L2 ,

|η̃Φ(w̃)| ≤ k

2
η̃2 +

1

2k

(
4‖Mw′

∞‖2L2 + 4‖(Mw∞)′‖2L2 + ‖M ′‖2∞‖w̃‖2L2

)
‖w̃‖2L2 ,

|Mw̃Φ(w̃)| ≤ α

8
‖w̃‖2L2 +

2‖M‖2L2

α

(
4‖Mw′

∞‖2L2 + 4‖(Mw∞)′‖2L2 + ‖M ′‖2∞‖w̃‖2L2

)
‖w̃‖2L2 .
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As a consequence, combining the previous bounds we further obtain

F (η̃, w̃) ≤
(
α

4
+

(
2‖M‖2L2

α
+

1

2k

)(
4‖Mw′

∞‖2L2 + 4‖(Mw∞)′‖2L2 + ‖M ′‖2∞‖w̃‖2L2

))
‖w̃‖2L2

− k

2

(
1− 4k

‖M‖2
L2

α

)
η̃2

≤
(
α

4
+

(
2‖M‖2L2

α
+

1

2k

)(
8‖M‖2W 1,∞‖w∞‖2H3 + ‖M ′‖2∞‖w̃‖2L2

))
‖w̃‖2L2

− k

2

(
1− 4k

‖M‖2
L2

a1

)
η̃2

where, in the second inequality, we have used ‖Mw′
∞‖2

L2 + ‖(Mw∞)′‖2
L2 ≤ 2‖M‖2

W 1,∞‖w∞‖2
H3 . Using the

previous inequality together with (5.44) yields

V̇(η̃, w̃) ≤
(
−α
2
+

(
4‖M‖2

L2

α
+

1

k

)(
8‖M‖2W 1,∞‖w∞‖2H3 + ‖M ′‖2∞‖w̃‖2L2

))
‖w̃‖2L2 (5.45)

+

(
σ1k

2 − k

(
1− 4k

‖M‖2L2

α

))
η̃2.

for all (η̃, w̃) ∈ Dδ(A). As a consequence, we can finally fix all the parameters. In particular, we select

k⋆2 = min

{
k⋆0 , k

⋆
1 ,

(
α

ασ1 + 4‖M‖2
L2

)}

with k⋆0 given by Lemma 5.2, and k⋆1 given by Lemma 5.5. Moreover, given any k ∈ (0, k⋆2), select

w∞ = min




ā, b̄,

√√√√
α

64‖M‖2
W 1,∞

(
4‖M‖2

L2

α
+ 1

k

)




,

with ā, b̄ given by Corollary 2.4. Moreover, let us define δ ∈ (0, δ) satisfying

δ̄2 ≤ α

8‖M ′‖2∞

(
4‖M‖2

L2

α
+

1

k

)−1

.

Using all these bounds we can finally conclude the existence of a positive constant ε such that

V̇ ≤ −ε(‖w̃‖2L2 + η̃2) ∀(η̃, w̃) ∈ Dδ̄(A) (5.46)

Finally, standard Lyapunov arguments briefly recalled here allows to conclude the result of the proof. In
particular, consider a c > 0 small enough such that Ωc := {(η̃, w̃) ∈ D(A) : V(η̃, w̃) ≤ c} ⊂ Dδ̄(A). Now
consider any solution to (5.28) starting inside Ωc. By Lemma 5.4 there exists τ > 0 such that such a solution
exists on [0, τ ]. Let T ≥ τ be its maximal interval of time of existence. In view of (5.46), the derivative of V
is always negative, showing that such the solution cannot escape the level set Ωc. Hence, its maximal interval
of existence is [0,∞). Moreover, we can conclude the existence of a positive constant ∆ ∈ (0, δ̄) such that
the set D∆(A) is included in the domain of attraction of the origin of system (5.35). Combining the Fréchet
derivative (2.3) and the Grönwall’s lemma with (5.46) one can show the first part of the statement, that is
‖(η̃(t), w̃(t))‖X ≤ b1e

−ν1t‖(η̃0, w̃0)‖X , for all t ≥ 0 and for all (η̃0, w̃0) ∈ D∆(A).

Finally, to prove the second part of the statement, we can use the same argument as in the proof of [53,
Proposition 3.9] to deduce that there exists a continuous nonnegative function χ : R+ → R+ and positive
constants C, µ such that, for all (η̃0, w̃0) ∈ D∆(A)

‖w̃t(t, ·)‖L2 ≤ Ce−µtχ(‖w̃0‖L2)‖w̃t(0, ·)‖L2 , ∀t ≥ 0 . (5.47)
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By multiplying the first equation of (5.35) by w̃ and integrating by parts, we get after some computations

−k2η̃(t)2 + w̃x(t, 0)
2 = −2

∫ L

0

w̃(t, x)w̃t(t, x)dx +

∫ L

0

|w̃(t, x)|2w′
∞(x)dx

≤ 2‖w̃(t, ·)‖L2‖w̃t(t, ·)‖L2 + ℓ‖w̃(t, ·)‖2L2‖w̃∞‖H3(0,L).

where ℓ is the constant of the embedding of H3(0, L) in L∞(0, L). Then, we can deduce limt→∞ |w̃x(t, 0)| =
limt→∞ |wx(t, 0)− r| = 0 for all (η̃0, w̃0) ∈ D∆(A), concluding the proof. ✷

Finally, by combining the statement of Lemma 5.4 and Theorem 5.6 we have the following output regulation
result for the system (5.28) in the original coordinates w, η. The proof is omitted for space reasons.

Corollary 5.7 (Output Regulation). There exist positive real number k∗2 , d̄, r̄, such that, for any distur-
bance d and reference r satisfying ‖d‖L2 ≤ d̄ and |r| ≤ r̄ and for any k ∈ (0, k∗2) the output y is asymptotically
regulated at the reference r, namely (5.2) is satisfied, for any solution to system (5.28), with initial conditions
(η0, w0) ∈ D(A) sufficiently small in the norm R× L2(0, L).

6. Conclusion. In this article, we have solved the output regulation problem by means of an integral
action for a Korteweg-de-Vries (KdV) equation controlled at the boundary and subject to some distributed
constant disturbances so that to regulate a boundary output to a given constant reference. For this, we have
followed a Lyapunov approach. We have first designed an ISS Lyapunov functional which is obtained by
strictifying the energy associated to the system. In particular, the energy is modified by adding a second term
which is obtained from the design of an observer built with the backstepping technique. Then, thanks to this
ISS Lyapunov functional, we have applied the forwarding method to achieve our goal in the context of output
regulation. In particular, we extended the system with an integral action and we designed an output feedback
controller acting at the boundary. We show that if the selected gain is sufficiently small then the solutions of
the closed-loop system converge to an equilibrium. Furthermore, for strong solutions, point-wise convergence
of the regulated output is achieved. Similar results hold locally for the nonlinear model of the KdV, namely
in presence of small references and perturbations and with a local domain of attraction.

For future work, we wish to study the case in which L ∈ N . We believe furthermore that the proposed
strictification approach can be extended also to other classes of PDEs for which a strict Lyapunov functional
is not yet known.
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