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ISS LYAPUNOV STRICTIFICATION VIA OBSERVER DESIGN AND INTEGRAL
ACTION CONTROL FOR A KORTEWEG-DE VRIES EQUATION

ISMAILA BALOGOUN∗, SWANN MARX? , AND DANIELE ASTOLFI †

Abstract. The article deals with the output regulation of a Korteweg-de-Vries (KdV) system subject to a distributed
disturbance. The control input and the output are located at the boundary. To achieve this objective, we follow a Lyapunov
approach. For that, inspired by the stricti�cation methodology proposed in [42] in the �nite-dimensional context, we construct an
ISS-Lyapunov functional for the KdV equation thanks to the use of an observer designed via the backstepping approach. Then,
thanks to this Lyapunov functional, we apply the forwarding method in order to solve the desired output regulation problem.

Key words. Input-to-state stability, integral controller, Korteweg-de Vries equation, backstepping, regulation, forwarding.

1. Introduction. This paper deals with the output regulation of a Korteweg-de Vries (KdV) equation.
The KdV equation is a mathematical model of waves on shallow water surfaces (see e.g., [7] for a survey). This
equation has been studied in [44, 9, 12] in the controllability context, in [8, 13, 31, 46] in terms of stabilization,
and in [45, 11] where some asymptotic analysis of the equilibrium point 0 is given. We may also mention [33, 34]
where input-to state stability (ISS, in short) properties are obtained via feedback stabilization in presence of
a saturated damping (we refer to [43, 21, 22] or the recent survey [36] for ISS Lyapunov functional in the
in�nite-dimensional context).

Roughly speaking, the aim of the output regulation consists in designing a feedback-law such that the
output converges asymptotically towards a desired reference and such that disturbances are rejected, possibly
in spite of some �small� model uncertainties. Following the celebrated internal-model principle, a solution to
such a problem exists when references and disturbance (denoted generically as exosignals) are generated by
a known autonomous dynamical system (denoted as exosystem), and a copy of such a system is embedded
in the controller dynamics. A well known example is the use of integral action for tracking and rejecting
constant references and disturbances. Output regulation is an old topic in the �nite-dimensional context, but
many results remain to be found in the context of nonlinear systems (see e.g., [2] for a recent article in this
�eld), and many further research lines have to be followed when dealing with time-varying references. See,
for instance, [1] where a �nite-dimensional system is regulated by adding a transport equation for the case of
periodic exosignals.

For in�nite-dimensional systems, even if one can mention some old results such as [16], the topic is still very
active. A generalization of internal-model principle has been proposed in [37], but the use of integral action to
achieve output regulation in the presence of constant references/perturbations for in�nite dimensional systems
has been initiated early in [40]. Since then, several methods to design integral action have been developed
following for instance a spectral approach in [41, 49, 37], by using operator and semi-group methods in [25, 50],
based on frequency domain methods with Laplace transform in [4, 14] or by relying on Lyapunov techniques
in [23, 19, 48]. We may also mention [17, 18] which proposes to regulate an output towards time-varying
references that are generated by a known linear dynamic or [24] which extends the sliding mode methodology
for hyperbolic systems to reject time-varying disturbances.

Among all these techniques, we are particularly interested by Lyapunov techniques in this article. Indeed,
such a methodology has been proved to be e�cient for nonlinear systems. Among these techniques, we aim
at using the forwarding method that has been �rst designed for �nite-dimensional systems in cascade form
[35, 2] and then extended for some hyperbolic systems [47] in the regulation context, and for abstract systems
[29] in the stabilization context. In [47], it is shown that a strict Lyapunov functional1 is needed for open-loop
stable systems that we aim at regulating. In other words, before adding an integral action, we should be able
to show that a strict Lyapunov functional for the open-loop dynamics does exist. Such Lyapunov functionals
are known for hyperbolic systems [3], but it is not the case for the KdV equation. In addition to the existence
of this Lyapunov functional, some ISS properties are needed to apply the forwarding method.

∗Ismaila Balogoun and Swann Marx are with LS2N, Ecole Centrale de Nantes and CNRS UMR 6004, Nantes, France. E-mail:
{ismaila.balogoun,swann.marx}@ls2n.fr.
†Daniele Astol� is with Université Lyon 1 CNRS UMR 5007 LAGEPP, France . daniele.astolfi@univ-lyon1.fr.
1Strict Lyapunov functionals are Lyapunov functionals whose time-derivative is bounded by a negative function depending on

the full-state.
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In the perspective of addressing an output regulation problem for KdV, we therefore establish new results
that may have their own interest. In particular, we �rst study the following KdV equation

wt + wx + wxxx + wwx = d1(t, x) ,
w(t, 0) = w(t, L) = 0 ,
wx(t, L) = d2(t) ,
w(0, x) = w0(x) ,

(1.1)

where (t, x) ∈ R+ × [0, L], L > 0, d1 and d2 denote external inputs that might be seen, for instance, as
disturbances, and its associated linearized system around the origin described by

wt + wx + wxxx = d1(t, x) ,
w(t, 0) = w(t, L) = 0 ,
wx(t, L) = d2(t) ,
w(0, x) = w0(x) .

(1.2)

where (t, x) ∈ R+ × [0, L].
We will �rst show that the KdV equations (1.1) and (1.2) satisfy an ISS property with respect to the

disturbances d1, d2 by explicitly constructing a strict Lyapunov functional. Note that there is no systematic
method to build strict Lyapunov functionals either for nonlinear ordinary di�erential equations or (linear or
nonlinear) partial di�erential equations. However, in many situations, a weak Lyapunov functional, i.e., a
Lyapunov functional whose time derivative is nonpositive, exists. Often, it also coincides with the energy of
the system. It is however di�cult to deduce any quantitative robustness properties from a weak Lyapunov
functional, and in particular, ISS properties are hard to obtain from such functions. For this reason, in
the �nite-dimensional context, a lot of attention has been put in the stricti�cation of such weak Lyapunov
functionals, namely the existence of systematic procedures to modify such a weak Lyapunov functional in order
to make it strict. See, for instance, [27, 42]. To the best of our knowledge, in the in�nite-dimensional context,
such an approach has been applied only to certain classes of hyperbolic systems [43].

The �rst contribution of this paper, that might be seen thus of independent interest with respect to the
context of output regulation, is the construction of an ISS-Lyapunov functional for our KdV system via a
stricti�cation procedure. The methodology we propose is inspired on [42] and is based on the design of an
observer, which is also a new result in the KdV context and therefore consists in the second main contribution
of this article. Let us illustrate it. Consider system (1.1) with no inputs, namely d1 = d2 = 0. A formal
computation shows that the time derivative of the energy E de�ned as

E(w) :=

∫ L

0

w(t, x)2dx (1.3)

yields along solutions

Ė(w) :=
d

dt

∫ L

0

w(t, x)2dx = −|wx(t, 0)|2. (1.4)

Although Lyapunov stability can be concluded, nothing can be said about the attractivity and ISS-properties of
the plant. In other words, the energy E is a weak-Lyapunov functional. Since wx(t, 0) is an exactly observable
output as soon as L /∈ N with

N :=

{
2π

√
k2+kl+l2

3 : k, l ∈ N
}
,

then, following [42], our strategy consists in designing an observer with the output wx(t, 0). Such an observer
is designed following the backstepping approach (see, e.g., [26]) and Fredholm operator (see, e.g., [13] or [20]).
The proposed observer di�ers from the works in [30, 31, 46] in the same context of KdV equations because
a di�erent measured output is considered. Finally, by combining the Lyapunov functional derived from the
observer analysis and the energy E, we obtain a strict Lyapunov functional, that will be used to establish the
desired ISS properties for systems (1.1) and (1.2) with respect to the inputs d1 and d2.
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The third contribution of this article consists in addressing an output regulation problem. We suppose
that a control is acting at the boundary wx(t, L) of the KdV equations (1.1) and (1.2) and that we want to
regulate the output wx(t, 0) to a desired reference r. As a consequence, we extend the plant with an integral
action processing the error wx(t, 0) − r and we show how to design an output-feedback law. The gain of
the controller is obtained via the forwarding technique which is employed to construct a Lyapunov functional
built upon the ISS Lyapunov functional obtained in the �rst part of this article. Note that the results of [47,
Theorems 1 & 2] cannot be used of the shelf because in our article we consider a control input acting at the
boundary (to be more precise, with an unbounded operator). Nevertheless, since we now an ISS-Lypaunov
function we can apply the proposed methodology, similarly to what has been done for the hyperbolic equations
in [47, Theorem 3].

This paper is organized as follows. In Section 2, we formulate the problem and state the results about
the construction of ISS Lyapunov functional. In Section 3, an observer is designed using a Fredholm operator.
Section 4 contains the proofs of the ISS results of the KdV systems under consideration. Section 5 states
and proves some regulation results for the KdV equation. Finally, Section 6 collects concluding remarks and
discuss some remaining open problems.

Notation: Set R+ = [0,∞). The term wt stands for the partial derivative of the function w with respect
to t. The term wx (resp. wxx, wxxx) stands for the �rst (resp. second and third) order partial derivative
of the function w with respect to x. Given L > 0, we set Ω := R+ × [0, L]. The functional space L2(0, L)

denotes the set of (Lebesgue) measurable functions f such that
∫ L

0
|f(x)|2dx < +∞. The associated norm is

‖f‖2L2 :=
∫ L

0
|f(x)|2dx. We de�ne the functional space C2([0, T ]) as the class of continuous functions on [0, T ],

which have continuous derivatives of order two on [0, T ] and the functional space Hk(0, L) denotes the Sobolev
spaces equipped with the Sobolev-norm. Finally, we set C2

0 ([0, T ]) := {d ∈ C2([0, T ]) : d(0) = 0}, H3
L(0, L) :={

w ∈ H3(0, L) : w(0) = w(L) = w′(L) = 0
}
and H3

0 (0, L) :=
{
w ∈ H3(0, L) : w(0) = w(L) = w′(0) = 0

}
.

A function α : R+ → R+ is of a class K, α ∈ K if it is continuous, strictly increasing and satis�es α(0) = 0.
A function α : R+ → R+ is of class K∞, if it is of class K and unbounded. A function β : R+ × R+ → R+ is
of class KL, β ∈ KL, if for each �xed t ≥ 0, β(·, t) is of class K, and, for each �xed r ≥ 0, β(r, ·) is decreasing
and satis�es limt→∞β(r, t) = 0. A Lyapunov functional V : L2(0, L) → R+ is said to be a strict Lyapunov
functional, when its time derivative along the trajectories of the system is negative de�nite, and weak, when
its time derivative along the trajectories is negative semi-de�nite [27, �2.1]. For compactness, we denote its
time derivative as V̇ := d

dtV (w(t, ·)).

2. Construction of a ISS Lyapunov functional. As mentioned in the introduction, ISS properties
are crucial in order to apply the forwarding method in the regulation context (see e.g., [47]). We will then
focus on (1.1), which is a KdV equation subject to disturbances. In addition to the ISS properties, we also
need a strict Lyapunov functional, and the latter will be built through a stricti�cation technique inspired by
[42]. Note however that the ISS properties that we establish are of independant interest: one may indeed use
these results in a di�erent context than the regulation.

We now state the de�nitions of the functional spaces where we will prove our results. We recall therefore
some de�nitions and results about the solutions of the KdV equation. First, we have the following well-
posedness property established in [9, Theorem 9] concerning the KdV equations (1.1) and (1.2).

Proposition 2.1. For any T, L > 0, for any w0 ∈ L2(0, L), for any d1 ∈ L1([0, T ];L2(0, L)) and
d2 ∈ L2(0, T ), systems (1.1) and (1.2) admit a unique solution

w ∈ C0([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) .

We state also the next well-posedness result of the linearized system (1.2) provided in [15, Proposition 7]
and [44, Propositions 3.2 and 3.7], which deals with more regular initial data. Indeed, this regularity will be
essential when computing time derivative of Lyapunov functionals.

Proposition 2.2. For any T, L > 0, for any initial condition w0 ∈ H3
L(0, L) and for any d1 ∈

C1([0, T ];L2(0, L)), d2 ∈ C2
0 ([0, T ]), system (1.2) admits a unique solution satisfying

w ∈ C([0, T ];H3
L(0, L)) ∩ C1([0, T ];L2(0, L)) .
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Next, we give some de�nitions of ISS properties for systems (1.1) and (1.2).

Definition 2.3. System (1.1) (resp. (1.2)) is said to be input-to-state stable (ISS) with respect to d1 and
d2 if there exist functions β ∈ KL and ρ1, ρ2 ∈ K∞ such that, for any initial condition w0 ∈ L2(0, L), any
solution to (1.1) (respectively to (1.2)) satis�es, for all t ≥ 0

‖w(t, ·)‖L2 ≤ β(‖w0‖L2 , t) + ρ1

(
sup
s∈[0,t)

‖d1(s, ·)‖L2

)
+ ρ2

(
sup
s∈[0,t)

|d2(s)|
)
. (2.1)

If (2.1) holds only for all ‖w0‖L2 ≤ δ, ‖d1(t)‖L2 ≤ δ, |d2(t)| ≤ δ for all t ≥ 0 and for some δ > 0, then the
system (1.1) (resp. (1.2)) is said to be locally input-to-state stable (LISS) with respect to d1 and d2.

In some cases, it is easier to prove such a property by using a Lyapunov functional. Recalling that, accord-
ing to [36, Theorem 3], the existence of an ISS Lyapunov functional is su�cient to establish the ISS properties
of De�nition 2.3, we provide now a de�nition of ISS Lyapunov functional.

Definition 2.4. A function V : L2(0, L) → R is said to be an ISS Lyapunov functional for the system
(1.1) (resp. (1.2)), if there exist α, ᾱ, α, σ1, σ2 ∈ K∞ such that:

(i) For all w ∈ L2(0, L),

α(‖w‖L2) ≤ V (w) ≤ ᾱ(‖w‖L2) . (2.2)

(ii) The time derivative of V along the trajectories of (1.1) (resp. (1.2)) satis�es

V̇ ≤ −α(‖w(t, ·)‖L2) + σ1(‖d1(t, ·)‖L2) + σ2(|d2(t)|) . (2.3)

If (ii) holds only for all ‖w(t, ·)‖L2 ≤ δ, ‖d1(t)‖L2 ≤ δ, |d2(t)| ≤ δ for all t ≥ 0 for some δ > 0, then V is said
to be a locally ISS Lyapunov functional for the system (1.1) (resp. (1.2)).

As explained in the introduction, for any L /∈ N , the energy function in L2-norm de�ned in (1.3) is a
weak Lyapunov functional for the system (1.1) (resp. (1.2)) in view of (1.4). Indeed, on the left right side of
the inequality, we have a function which depends only on a part the state w(t, x), i.e. wx(t, 0). From (1.4),
one can deduce that the origin of the system of (1.1) with d1 = d2 = 0 is Lyapunov stable. In order to
show also the exponential stability properties of the origin, one can follow [44, Proposition 3.3], by using the
fact that wx(t, 0) is exactly observable as soon as L /∈ N : indeed, using the related observability inequality,
and integrating (1.4) between 0 and T , this property can be shown as illustrated in [7, �4.1.]. But nothing
can be easily said in the non-nominal case, i.e. in the presence of disturbances. As a consequence, in order
to show the ISS properties of the system (1.1) (resp. (1.2)), we follow a di�erent approach here: we aim at
constructing a strict ISS Lyapunov functional, which has not been found yet to the best of our knowledge.
Using the observability of the output wx(t, 0), we can follow the methodology described in [42] and that can
be decomposed as follows: we �rst design an observer for the output wx(t, 0); we second consider the sum of
the Lyapunov functional coming from the latter observer design and the natural energy, and we prove that
this sum boils down to be a strict Lyapunov functional. Finally, thanks to this strict Lyapunov functional, we
deduce ISS properties for systems (1.2) and (1.1). These properties are written more precisely in the following
theorem, that is our �rst main result.

Theorem 2.5. Suppose that L /∈ N . Then, there exists a function W : L2(0, L) → R such that, the
function V (w) := W (w) + E(w) with E being the energy in L2-norm de�ned in (1.3), is

(a) an ISS Lyapunov functional for the system (1.2);
(b) a locally ISS Lyapunov functional for the system (1.1).

Moreover, the functions α, ᾱ, α, σ1 and σ2 are quadratic in their arguments.

The proof of Theorem 2.5 is postponed to Section 4. In particular, in the next section, we will �rst show
how to design an ISS observer for the linearized system (1.2) by means of the output wx(t, 0). The proposed
design is based on the backstepping method, see, e.g., [26] and on some Fredholm transformation, see, e.g.,
[20, 13]. Then, in Section 4, we will use the ISS-Lyapunov functional associated to such an observer to build
the function W claimed in the statement of Theorem 2.5.
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3. Observer design for Linear KDV. In this section, we design an observer for system (1.2) with
y(t) = wx(t, 0) de�ned as the output function.

Following [26, Chapter 5], we consider the linearized system around the origin
wt + wx + wxxx = d1 , (t, x) ∈ Ω ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = d2 , t ∈ R+ ,
w(0, x) = w0(x) , x ∈ [0, L] ,
y(t) = wx(t, 0) , t ∈ R+ ,

(3.1)

and we design an observer with a distributed correction term of the form
ŵt + ŵx + ŵxxx + p(x)[y(t)− ŵx(t, 0)] = 0 , (t, x) ∈ Ω ,
ŵ(t, 0) = ŵ(t, L) = 0 , t ∈ R+ ,
ŵx(t, L) = 0 , t ∈ R+ ,
ŵ(0, x) = ŵ0(x) , x ∈ [0, L] ,

(3.2)

where p is the output injection gain to be selected in order to guarantee the convergence of the observer. The
well-posedness (3.2) can be proved by following the same approach as in [30].

We de�ne the estimation error coordinates as follows

ŵ 7→ w̃ := w − ŵ

mapping system (3.2) into
w̃t + w̃x + w̃xxx − p(x)w̃x(t, 0) = d1 , (t, x) ∈ Ω ,
w̃(t, 0) = w̃(t, L) = 0 , t ∈ R+ ,
w̃x(t, L) = d2 , t ∈ R+ ,
w̃(0, x) = w̃0(x) , x ∈ [0, L] .

(3.3)

In nominal conditions (d1 = 0, d2 = 0), the origin of the estimation error w̃ with error-dynamics (3.3) has to
be stable so that to guarantee the convergence of the estimate ŵ to state w. In the presence of disturbances,
we would like such an error-dynamics w̃ to possess some bounded-input bounded-output properties so that
for small perturbations the estimated state ŵ doesn't deviate too much from the real value of the state w. In
other words, we are interested in guaranteeing the estimation error dynamics to be ISS with respect to the
perturbations d1, d2. This is shown in the next result showing that it is always possible to select the gain p so
that to satisfy the desired ISS-properties of the observer (3.2).

Theorem 3.1. Suppose that L /∈ N . For any λ > 0, there exists a function p ∈ L2(0, L), a Lyapunov
functional U : L2(0, L)→ R and some positive constants c, c̄ satisfying the following properties.

(i) For all w̃ ∈ L2(0, L)

c‖w̃‖2L2 ≤ U(w̃) ≤ c̄‖w̃‖2L2 . (3.4)

(ii) The time derivative of U along the trajectories of (3.3) satis�es

U̇ ≤ −λU + 1
λ‖d1‖2L2 + |d2|2 (3.5)

for all d1 ∈ L1([0, T ];L2(0, L)), d2 ∈ L2(0, T ) and w̃ ∈ C0([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)).

Proof: Inspired by [13], consider the change of coordinates

w̃ 7→ γ := Π−1w̃ (3.6)

where the function Π is de�ned thanks to the following Fredholm integral transformation

w̃(x) := Π(γ)(x) = γ(x)−
∫ L

0

P (x, z)γ(z)dz , (3.7)
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for all x ∈ [0, L]. The state γ is the solution to the following system: γt + γx + γxxx + λγ = 0 , (t, x) ∈ Ω,
γ(t, 0) = γ(t, L) = γx(t, L) = 0 , t ∈ R+ ,
γ(0, x) = γ0(x) , x ∈ [0, L],

(3.8)

where λ is a positive constant. Using integration by parts and the boundary conditions of (3.8), we get

d

dt

∫ L

0

|γ(t, x)|2dx ≤ −2λ

∫ L

0

|γ(t, x)|2dx

from which it is straightforward to deduce the exponential stability of the L2-norm of γ. As a consequence,
the main idea of the proof consists in selecting the function p so that to show that the candidate ISS Lyapunov
functional

U(w̃) := ‖γ‖2L2 = ‖Π−1(w̃)‖2L2 (3.9)

satisfy the conditions (3.4), and (3.5).
To this end, we �rst need to �nd the kernel P such that w̃(t, x) = Π(γ)(t, x) satis�es (3.3) when d1 = 0

and d2 = 0. We have also to ensure that the corresponding transformation is invertible and continuous. By
di�erentiating formally with respect to the time (3.7) one obtains

w̃t(t, x) = γt(t, x)−
∫ L

0

P (x, z)γt(t, z)dz ,

which yields, using (3.8) to

w̃t(t, x) = γt(t, x) +

∫ L

0

P (x, z)
(
λγ(t, z) + γz(t, z) + γzzz(t, z)

)
dz ,

and �nally, after some integrations by parts, to

w̃t(t, x) = γt(t, x)− P (x, 0)γ(t, 0) + P (x, L)γ(t, x) + P (x, L)γxx(t, L)− P (x, 0)γxx(t, 0) + Pz(x, 0)γx(t, 0)

−
∫ L

0

(
− λP (x, z) + Pz(x, z) + Pzzz(x, z)

)
γ(t, z)dz − Pz(x, L)γx(t, L) + Pzz(x, L)γ(t, L)

− Pzz(x, 0)γ(t, 0) .

Then, using the Leibniz rule, we obtain

w̃x(t, x) = γx(t, x)−
∫ L

0

Px(x, z)γ(t, z)dz , (3.10)

and

w̃xxx(t, x) = γxxx(t, x)−
∫ L

0

Pxxx(x, z)γ(t, z)dz .

Identifying (3.3) and (3.8), we have

w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x)− p(x)w̃x(t, 0) = γt(t, x) + γx(t, x) + γxxx(t, x) + λγ(t, x)

−
∫ L

0

(
− λP + Pz + Pzzz + Pxxx + Px

)
γ(t, z)dz

− λγ(t, x) + P (x, L)γxx(t, L) + Pz(x, 0)γx(t, 0)

− P (x, 0)γxx(t, 0)− p(x)

[
γx(t, 0)−

∫ L

0

Px(0, z)γ(t, z)dz

]
,
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where some arguments are omitted for compactness when clear from the context. Then, using the identity

−λγ(t, x) =

∫ L

0

λδ(x− z)γ(t, z)dz ,

where δ(x− z) denotes the Dirac measure on the diagonal of the square [0, L]× [0, L], previous equation gives

w̃t(t, x) + w̃x(t, x) + w̃xxx(t, x)− p(x)w̃x(t, 0) = γt(t, x) + γx(t, x) + γxxx(t, x) + λγ(t, x)

−
∫ L

0

(
− λP + Pz + Pzzz + Px + Pxxx − λδ(x− z)

)
γ(t, z)dz

− P (x, 0)γxx(t, 0) + P (x, L)γxx(t, L) +

∫ L

0

Px(0, z)γ(t, z)dz

− γx(t, 0)
[
p(x)− Pz(x, 0)

]
. (3.11)

From equation (3.11), we obtain the following conditions.

(a) The following identity is satis�ed for all (x, z) ∈ [0, L]× [0, L]:

−λP + Pz + Pzzz + Px + Pxxx = λδ(x− z) .

(b) Three boundary conditions are satis�ed for (x, z) ∈ [0, L]× [0, L]:

P (x, 0) = P (x, L) = Px(0, z) = 0 .

(c) An appropriate choice of p is given by

p(x) := Pz(x, 0) .

Moreover, note also that the following.

(d) By setting x = 0 and x = L in (3.7), we obtain:

P (0, z) = P (L, z) = 0, ∀z ∈ [0, L] ,

(e) By setting x = L in (3.10), we obtain:

Px(L, z) = 0 .

Therefore, combining conditions (a)-(e), we impose that the function P satis�es the following PDE:
−λP + Pz + Pzzz + Px + Pxxx = λδ(x− z) ,
P (x, 0) = P (x, L) = 0 ,
P (L, z) = P (0, z) = 0 ,
Px(L, z) = Px(0, z) = 0 ,

(3.12)

where (x, z) ∈ [0, L]× [0, L] and δ(x−z) denotes the Dirac measure on the diagonal of the square [0, L]× [0, L].
Let us make the following change of variable:(

z
x

)
7→
(
x̄
z̄

)
:=

(
L− z
L− x

)
,

and de�ne G(x̄, z̄) := −P (x, z). From (3.12) it is obtained
λG+Gz̄ +Gz̄z̄z̄ +Gx̄ +Gx̄x̄x̄ = λδ(x̄− z̄) ,
G(x̄, 0) = G(x̄, L) = 0 ,
G(L, z̄) = G(0, x̄) = 0 ,
Gz̄(x̄, 0) = Gz̄(x̄, L) = 0 ,

(3.13)
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with (x̄, z̄) belonging to [0, L]× [0, L]. Note that in [13, Lemma 2.1], it has been proved that, for any L /∈ N ,
the system (3.13) admits a unique solution G ∈ H1

0 ((0, L)× (0, L)). Therefore, we can conclude that the kernel
P exists. Then according to [13, Lemma 3.1], the transformation Π is invertible and continuous on L2(0, L)
and its inverse is also continuous. Moreover there exist two positive constants C0 and C1 such that, for all
t ≥ 0, we have

‖w(t, ·)‖2L2 ≤ C0‖Π−1w(t, ·)‖2L2 ,

‖Π−1w(t, ·)‖2L2 ≤ C1‖w(t, ·)‖2L2 .
(3.14)

As a consequence, we deduce that the function U de�ned in (3.9) is well de�ned in L2(0, L) and inequality
(3.4) is satis�ed with c = C−1

0 and c̄ = C1. Note that the function w ∈ L2(0, L) 7→ U(w) ∈ R+ is equivalent
to the standard norm on the space L2(0, L) according to (3.14).

Then, we need to show inequality (3.5). To this end, since H3
L(0, L), C2

0 ([0, T ]) and C1([0, T ], L2(0, L)) are
dense in L2(0, L), L2(0, T ) and L1([0, T ];L2(0, L)), respectively, we show inequality (3.5) for w̃0 ∈ H3

L(0, L),
d2 ∈ C2

0 ([0, T ]) and d1 ∈ C1([0, T ], L2(0, L)). The result follows for all w0 ∈ L2(0, L), d1 ∈ L1([0, T ];L2(0, L))
and d2 ∈ L2(0, T ), by a standard density argument (see e.g., [28, Lemma 1] for more details).

Now, we apply the change of coordinates (3.6) to system (3.3). It gives
γt + γx + γxxx + λγ = d1, (t, x) ∈ Ω,
γ(t, 0) = γ(t, L) = 0 , t ∈ R+,
γx(t, L) = d2(t), t ∈ R+,
γ(0, x) = γ0(x) , x ∈ [0, L] .

(3.15)

The time derivative of U along the trajectory of (3.3), that is on the trajectory of (3.15), yields

U̇ = −2

∫ L

0

γ(t, x)
(
γxxx + γx + λγ − d1

)
dx

= −2λ

∫ L

0

|γ(t, x)|2dx+ 2

∫ L

0

γx(t, x)γxx(t, x)dx+ 2

∫ L

0

d1(t, x)γ(t, x)dx

≤ −2λ‖γ(t, ·)‖2L2 + 2

∣∣∣∣∣
∫ L

0

d1(t, x)γ(t, x)dx

∣∣∣∣∣+ d2(t)2 − γx(t, 0)2 , (3.16)

where, in the second equation, we have used an integration by parts to compute

2

∫ L

0

γx(t, x)γxx(t, x)dx =
[
γ2
x(t, x)

]L
0

= d2(t)2 − γx(t, 0)2 .

Since the term −γx(t, 0)2 is always negative, using �rst Cauchy-Schwarz's inequality and then Young's in-
equality2, from (3.16) we �nally obtain

U̇ ≤− 2λ‖γ(t, ·)‖2L2 + 2‖γ(t, ·)‖L2‖d1(t, ·)‖L2 + |d2(t)|2

≤− λ‖γ(t, ·)‖2L2 + 1
λ‖d1(t, ·)‖2L2 + |d2(t)|2 ,

showing inequality (3.5), which completes the proof. 2

From the existence of the ISS Lyapunov functional established in Theorem 3.1, one can immediately de-
duce the following property for the observer (3.2).

Corollary 3.2. For any µ > 0, there exists a function p ∈ L2(0, L) so that the observer (3.2) is an ISS
exponential convergent observer for system (3.1) with rate µ. Namely the following inequality holds

‖w(t, ·)− ŵ(t, ·)‖L2 ≤ Ce−µt‖w0 − ŵ0‖L2 + ρ1 sup
s∈[0,t)

‖d1(s, ·)‖L2 + ρ2 sup
s∈[0,t)

|d2(s)|

2In particular, 2ab ≤ νa2 + 1
ν
b2, for any ν > 0.
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for any initial conditions w0, ŵ0 ∈ L2(0, L) and all t ≥ 0, and for some C, ρ1, ρ2 > 0.

Proof: The proof can be directly inherited from Theorem 3.1 by selecting p so that inequality (3.5) holds
with λ = 2µ. Then, using equations (3.4), and the triangular inequality

√
a2 + b2 ≤ a+ b, it directly yields the

inequality of the corollary by selecting C =
√
c̄/c, ρ1 = 1/

√
2cµ, ρ2 = 1/

√
c, with c̄, c given by Theorem 3.1.

2

4. Proof of Theorem 2.5. Since H3
L(0, L), C2

0 ([0, T ]) and C1([0, T ], L2(0, L)) are dense in L2(0, L),
L2(0, T ) and L1([0, T ];L2(0, L)), respectively, we prove the statement of the Theorem 2 for w0 ∈ H3

L(0, L),
d2 ∈ C2

0 ([0, T ]) and d1 ∈ C1([0, T ], L2(0, L)). The result follows for all w0 ∈ L2(0, L), d1 ∈ L1([0, T ];L2(0, L))
and d2 ∈ L2(0, T ), by a standard density argument (see e.g., [28, Lemma 1] for more details).

Proof of item (a) of Theorem 2.5. Fix λ = 1 and consider the function p and U given by Theorem 3.1.
The statement of the theorem holds by selecting

W (w) :=
1

2p̄
U(w), p̄ := ‖p‖2L2 (4.1)

and with inequalities (2.2), (2.3) satis�ed with the functions α, ᾱ, α, σ1, σ2 given as

α(s) := (1 + c)s2, ᾱ(s) := (1 + c̄)s2, (4.2)

α(s) :=
c

2p̄
s2, σ1(s) =

1

p̄
s2, σ2(s) :=

1

2p̄
s2. (4.3)

To show this, consider system (1.2) and add and subtract the term p(x)wx(t, 0) in the �rst equation, where
p is the gain of observer (3.2) established in Theorem 3.1. We obtain

wt + wx + wxxx − p(x)wx(t, 0) = −p(x)wx(t, 0) + d1(t, x) , (t, x) ∈ Ω ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = d2(t) , t ∈ R+ ,
w(0, x) = w0(x) , x ∈ [0, L] .

(4.4)

Using the Fredholm integral transformation de�ned in (3.7), on the state w, and following similar computations
as in the proof of Theorem 3.1, we obtain the following system

γt + γx + γxxx + λγ = −p(x)wx(t, 0) + d1(t, x) , (t, x) ∈ Ω ,
γ(t, 0) = γ(t, L) = 0 , t ∈ R+ ,
γx(t, L) = d2(t) , t ∈ R+ ,
γ(0, x) = γ0(x) , x ∈ [0, L] .

(4.5)

Consider the Lyapunov functional U(w) := ‖γ‖2L2 as in (3.9). Applying inequality (3.5) along solutions to
(4.5), with λ = 1, gives

U̇ ≤− U + ‖d1 − p(·)wx(t, 0)‖2L2 + |d2|2

≤− U + 2‖d1‖2L2 + 2‖p(·)wx(t, 0)‖2L2 + |d2|2 . (4.6)

Hence, select V = E + W , with E de�ned as in (1.3) and W de�ned as in (4.1). From the bound (3.4) it
straightforward to obtain inequality (2.2) with the bounds in (4.2). Then, computing the time derivative of V
using (1.4), (3.4) and (4.6) yields

V̇ ≤ −|wx(t, 0)|2 − c
2p̄‖w‖

2
L2 + 1

p̄‖p(·)wx(t, 0)‖2L2 + 1
p̄‖d1‖2L2 + 1

2p̄ |d2|2 . (4.7)

Note that

− |wx(t, 0)|2 + 1
p̄‖p(·)wx(t, 0)‖2L2 = 0 . (4.8)

As a consequence, inequality (2.3) is directly obtained from (4.7) with the de�nitions (4.3). This concludes
the proof of item (a) of Theorem 2.5.
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Proof of the item (b) of Theorem 2. Now, let us consider w the solution to the nonlinear equation
(1.1). Then, γ = Π−1(w) satis�es

γt + γx + γxxx + λγ = −p(x)wx(t, 0) + d1(t, x)

−
(
γ(t, x)−

∫ L
0
P (x, z)γ(t, z)dz

)(
γx(t, x)−

∫ L
0
Px(x, z)γ(t, z)dz

)
, (t, x) ∈ Ω

γ(t, 0) = γ(t, L) = 0 , t ∈ R+

γx(t, L) = d2(t) , t ∈ R+

γ(0, x) = γ0(x) , x ∈ [0, L] .
(4.9)

Now, we consider the Lyapunov functional U(w) := ‖γ‖2L2 as in (3.9). According to (3.16), the time derivative
of this function along the trajectory of (4.9) satis�es

U̇ ≤ −2λ‖γ(t, ·)‖2L2 + d2(t)2 − γx(t, 0)2 + 2

∣∣∣∣∣
∫ L

0

(
d1(t, x)− p(x)wx(t, 0)− F (t, x)

)
γ(t, x)dx

∣∣∣∣∣ (4.10)

where F is given by

F (t, x) :=

(∫ L

0

Px(x, z)γ(t, z)dz

)(∫ L

0

P (x, z)γ(t, z)dz

)
− γx(t, x)

∫ L

0

P (x, z)γ(t, z)dz

−γ(t, x)

∫ L

0

Px(x, z)γ(t, z)dz .

(4.11)

Since the term −γx(t, 0)2 is always negative, using �rst Cauchy-Schwarz's inequality and then Young's in-
equality, from (4.10) we �nally obtain

U̇ ≤ −λ‖γ(t, ·)‖2L2 + 2
λ‖d1(t, ·)‖2L2 + d2(t)2 + 2

λ‖p(·)wx(t, 0)‖2L2 + 2

∣∣∣∣∣
∫ L

0

F (t, x)γ(t, x)dx

∣∣∣∣∣ . (4.12)

By using the same argument as in [13, Proof of Theorem 1.2], we can prove the existence of a positive
constant M , that depends on the function P , such that

2

∣∣∣∣∣
∫ L

0

F (t, x)γ(t, x)dx

∣∣∣∣∣ ≤M‖γ‖3L2 . (4.13)

Then, we have, using the bound given in (3.14)

U̇ ≤ −λ‖γ(t, ·)‖2L2 + 2
λ‖d1(t, ·)‖2L2 + d2(t)2 + 2

λ‖p(·)wx(t, 0)‖2L2 +M‖γ‖3L2

≤ −λc‖w(t, ·)‖2L2 + 2
λ‖d1(t, ·)‖2L2 + d2(t)2 + 2

λ‖p(·)wx(t, 0)‖2L2 +Mc̄
3
2 ‖w(t, ·)‖3L2 . (4.14)

Given any positive value T , according to [15, Proposition 14] we know that there exist δ > 0 and C > 0 such
that, if

‖d1‖L1([0,T ];L2(0,L)) + ‖d2‖L2([0,T ]) + ‖w0‖L2(0,L) ≤ δ , (4.15)

then

‖w‖B ≤ Cδ, ∀t ∈ [0, T ] . (4.16)

The functional space B being equipped with the following norm

‖w‖B := sup
t∈[0,T ]

‖w(t, ·)‖L2 +

(∫ T

0

‖w(t, ·)‖H1(0,L)

) 1
2

, (4.17)
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one can deduce that, for all t ∈ [0, T ]

‖w(t, ·)‖L2 ≤ Cδ (4.18)

and thus, for all t ∈ [0, T ], we obtain

‖w(t, ·)‖3L2 ≤ Cδ‖w(t, ·)‖2 . (4.19)

Plugging this latter inequality in (4.14) leads to the following estimate

U̇ ≤ −
(
λc− CδMc̄

3
2

)
‖w(t, ·)‖2L2 + 2

λ‖d1(t, ·)‖2L2 + 2
λ‖p(·)wx(t, 0)‖2L2 + ‖w(t, ·)‖3L2 + d2(t)2 . (4.20)

Without loss of generality we �x λ = 1 and we choose the constant δ su�ciently small such that

K = c− CδMc̄
3
2 > 0 .

Hence, select V = E+W , with E de�ned as in (1.3) and W de�ned as in (4.1). Following the same arguments
employed in the proof of the item (a), from the bound (3.4) we obtain inequality (2.2) with the bounds in
(4.2). Then, computing the time derivative of V using (1.4), (3.4) and (4.14) yields

V̇ ≤ −|wx(t, 0)|2 − K
2p̄‖w‖

2
L2 + 1

p̄‖p(·)wx(t, 0)‖2L2 + 1
p̄‖d1‖2L2 + 1

2p̄ |d2|2 . (4.21)

Then, according to (4.8), inequality (2.3) is directly obtained from (4.21) with the de�nitions (4.3) where
α(s) := K

2p̄s
2. This concludes the proof of Item (b) of Theorem 2.

5. Adding an integral action. In this section we consider the regulation problem of a KdV equation
in which the disturbance d2 is considered as a control input acting at the boundary condition, and the output
y(t) = wx(t, 0) has to be regulated at a certain desired constant reference r in presence of unknown distributed
constant disturbances d1. We aim at showing that such a problem can be solved by means of an integral action
and an output feedback control law. The proposed design is based on the forwarding method (see e.g., [47] or
[29]). Note that in Section 5.1, we focus on the linearized version of the system. Then, in Section 5.2 we will
show that our control design allows to regulate the trajectories towards the equilibrium points of the nonlinear
system as in [8] or [16] for instance.

5.1. Regulation of linear KdW by means of the forwarding method. Consider the following
system 

wt + wx + wxxx = d(x) , (t, x) ∈ Ω ,
w(t, 0) = w(t, L) = 0 , t ∈ R+

wx(t, L) = u(t) , t ∈ R+

w(0, x) = w0(x) , x ∈ [0, L]
y(t) = wx(t, 0) , t ∈ R+

(5.1)

where d ∈ L2(0, L) is a constant perturbation, u ∈ R is the control input and y ∈ R is the output to be
regulated to a certain desired reference r. To this end, we follow the standard set-up of output regulation
[2] and we extend system (5.1) with an integral action processing the desired error to be regulated. In other
words, we consider a dynamical feedback law of the form

η̇ = wx(t, 0)− r , u(t) = kη(t) , t ∈ R+ (5.2)

where η ∈ R is the state of the controller, r ∈ R is the desired reference and k 6= 0 is a positive constant to
be selected small enough, as shown later. The closed-loop system (5.1), (5.2) can be seen as an augmented
system, i.e. a PDE system (whose state is w) coupled with an ODE (whose state is η), which reads

wt + wx + wxxx = d(x) , (t, x) ∈ Ω ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = kη(t) , t ∈ R+ ,
η̇(t) = wx(t, 0)− r , t ∈ R+ ,
w(0, x) = w0(x), η(0) = η0 , x ∈ [0, L] .

(5.3)
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System (5.3) can be rewritten in the abstract form as follows{
d

dt
ζ = Aζ +D ,

ζ(0) = ζ0 ,
(5.4)

where D =
[
−r d

]>
, ζ =

[
η w

]>
and where the operator A is de�ned by

A(η, w) =
[
w′(0) −w′′′ − w′

]>
. (5.5)

The domain of A is D(A) := {(η, w) ∈ R × H3(0, L) | w(0) = w(L) = 0, w′(L) = kη}. Moreover, consider
X := R×L2(0, L), that is the state space of (5.3). It is a Hilbert space as the Cartesian product of two Hilbert
spaces.

In this section, we aim at proving the well-posedness and the asymptotic stability of an equilibrium of
(5.3). To do so, we will consider a change of coordinates, de�ned thanks to such a nonzero equilibrium state
of (5.3). Its existence and uniqueness is ensured by the following lemma.

Lemma 5.1. For any k 6= 0 and (d, r) ∈ L2(0, L)×R there exist a unique equilibrium state (η∞, w∞) ∈ X
to system (5.3).

Proof: Let (d, r) ∈ L2(0, L)× R. We consider the following boundary value problem w′∞(x) + w′′′∞(x) = d(x) , x ∈ [0, L] ,
w∞(0) = w∞(L) = 0 ,
w′∞(0) = r ,

which represents the nonzero equilibrium state of (5.3). Consider the function φ(x) = rx(L−x)
L . Note that it is

smooth. It satis�es the boundary conditions,

φ(0) = φ(L) = 0, φ′(0) = r.

Let set ψ = w∞ − φ. Then ψ satis�es the following system ψ′(x) + ψ′′′(x) = j(x) , x ∈ [0, L] ,
ψ(0) = ψ(L) = 0 ,
ψ′(0) = 0 ,

where j(x) = d(x)− φ′(x). Let S denote the operator associated with the linear KdV equation

Sψ = −ψ′ − ψ′′′

with the domain D(S) ⊂ L2(0, L) de�ned as D(S) := H3
L(0, L). The adjoint operator S∗ is de�ned by

S∗ψ = ψ′′′ + ψ′ with domain D(S∗) := H3
0 (0, L). Following [32, Lemma 4], we can prove that the canonical

embedding from D(S∗), equipped with the graph norm, into L2(0, L), is compact. Then, according to [10,
Proposition 4.24], S∗ is an operator with compact resolvent. This implies that its spectrum consists only of
eigenvalues. Moreover, 0 is not an eigenvalue of S∗. Hence, there exists a unique solution ψ∞ to the equation
S∗ψ = j. The equilibrium (η∞, w∞) can then be computed as

w∞(x) = ψ∞ + φ(x) , x ∈ [0, L] ,

η∞ =
w′∞(L)

k
,

with the function φ de�ned at the beginning of the proof. This concludes the proof of Lemma 5.1. 2

Next, we show the following well-posedness result for the closed-loop system (5.3).

Theorem 5.2. There exist k? > 0 such that for any k ∈ (0, k?), for any (d, r) ∈ L2(0, L)×R and for any
initial condition (η0, w0) ∈ X

(
resp. D(A)

)
, there exists a unique weak solution (η, w) ∈ C0(R+;X)

(
resp.

strong solution in C1(R+;X) ∩ C0(R+;D(A))
)
to system (5.3).
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Proof: Given (d, r) ∈ L2(0, L) × R and k, let (η∞, w∞) the corresponding equilibrium to (5.3) computer
according to Lemma 5.1. Consider the following change of coordinates

(w, η) 7→ (w, η̄) := (w − w∞, η − η∞).

The (w, η̄)-dynamics are given by
wt + wx + wxxx = 0 , (t, x) ∈ Ω ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = kη̄(t) , t ∈ R+ ,
˙̄η(t) = wx(t, 0) , t ∈ R+ ,
w(0, x) = w0(x), η̄(0) = η̄0 , x ∈ [0, L] ,

(5.6)

where w0(x) = w0(x)− w∞(x) and η̄0 = η0 − η∞.
Note that the systems (5.3) and (5.6) are equivalent. Then, if one proves that the operator A de�ned in

(5.5) is a m-dissipative operator on (X, ‖ · ‖X), one can apply the result provided by [5, Theorem 3.1], and
conclude that the statement of Theorem 2.1 holds. For that, we look for an equivalent norm and a related
scalar product coming from a Lyapunov functional. We will prove then the dissipativity with respect with this
scalar product. This Lyapunov functional is built following the forwarding approach (see e.g [47]). To this
end, we de�ne the operatorM : L2(0, 1)→ R as follows

MSw = Cw , ∀w ∈ D(S) , (5.7)

where C : f ∈ H1
0 (0, L) 7→ f ′(0) ∈ R. Note that this operator equation is a Sylvester equation. Since the

strongly continuous semigroup generated by the operator S is exponentially stable, (5.7) admits a unique

solution, see [39, Lemma 22]. As in [47], we lookM in the formMw =
∫ L

0
M(x)w(x)dx. In order to obtain

an explicit solution, we can write equation (5.7) in the explicit form

w′(0) = −
∫ L

0

M(x)[w′(x) + w′′′(x)]dx ∀w ∈ D(S).

Using integration by parts we obtain

w′(0) =

∫ L

0

w(x)[M ′(x) +M ′′′(x)]dx+M(0)w′′(0)−M(L)w′′(L)−M ′(0)w′(0) ,

for all w ∈ D(S). From the latter equation, we obtain the following boundary value problem M ′′′ +M ′ = 0 ,
M(0) = M(L) = 0 ,
M ′(0) = −1 .

(5.8)

It can be veri�ed that the function

M : x ∈ R 7→
−2 sin(x2 ) sin(L−x2 )

sin(L2 )

is a solution to (5.8). Computations are omitted for space reasons. Moreover, it is the unique solution to (5.8)
and the operatorM de�ned above is the unique solution to the Sylvester equation (5.7). Then, the operator
M : L2(0, L)→ R can be expressed as

Mϕ =

∫ L

0

M(x)ϕ(x)dx .

Using the Lyapunov functional V built in Theorem 2.5, we consider the candidate Lyapunov functional V :
X → R de�ned as

V(η, w) = V (w) + q(η −Mw)2 , (5.9)
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where q > 0 is a positive parameter to be de�ned. Notice that the Lyapunov functional (5.9) is equivalent
to the standard norm on the space X for any q > 0. More precisely, there exists a positive constant ξ (that
depends on q) such that the following inequality holds

1

ξ
‖(η, w)‖2X ≤ V(η, w) ≤ ξ‖(η, w)‖2X , ∀(η, w) ∈ X . (5.10)

To show (5.10), note that, according to [47, Proof of Proposition 4], we have, for all ρ ∈]0, 1[ and for all
(η, w) ∈ X

(η −Mw)2 ≥ ρ
(

1

2
η2 − ‖M‖2L2‖w‖2L2

)
.

On the other hand, using the Young's inequality, we have, for all

(η −Mw)2 ≤ 2(η2 +M‖2L2‖w‖2L2) .

Furthermore, according to Theorem 2.5, we know that V satis�es the inequality (2.2). Then we have

ρq

(
1

2
η2 − ‖M‖2L2‖w‖2L2

)
+ α(‖w‖L2) ≤ V(w) ≤ 2q

(
η2 +M‖2L2‖w‖2L2

)
+ ᾱ(‖w‖L2) . (5.11)

Therefore, by selecting ρ su�ciently small, inequality (5.10) holds. From Lyapunov functional V de�ned in
(5.9), one �nally deduces a scalar product, that we de�ne as follows〈[

η1 w1

]>
,
[
η2 w2

]>〉
V

:= q
(
η1 −Mw1

)(
η2 −Mw2

)
+ 〈w1, w2〉L2 +

1

2p̄
〈Π−1w1,Π

−1w2〉L2 , (5.12)

that is equivalent to the usual scalar product in X.
Now, we are in position to prove that A is m−dissipative according to [38]. For this, we �rst prove that

A is dissipative. Second, we show that A is maximal.

Step 1: A is dissipative. To prove this result, we use the scalar product given in (5.12). Let ζ = (η, w) ∈
D(A). One therefore has, for all ζ ∈ D(A)

〈Aζ, ζ〉V =q
(
w′(0) +M(w′′′ + w′)

)(
η −Mw

)
− 〈w′ + w′′′, w〉L2 − 1

2p̄
〈Π−1(w′′′ + w′),Π−1w〉L2

=q
(
w′(0) +

∫ L

0

M(x)[w′(x) + w′′′(x)]dx
)(
η −Mw

)
− 〈w′ + w′′′, w〉L2

− 1

2p̄
〈Π−1(w′′′ + w′),Π−1w〉L2 . (5.13)

Now, after some integrations by parts, we have, for all ζ ∈ D(A)∫ L

0

M(x)[w′(x) + w′′′(x)]dx = −kη − w′(0) . (5.14)

On the other hand, according to Section 4 and in particular inequality (4.7), we have, for all ζ ∈ D(A)

− 〈w′ + w′′′, w〉L2 − 1

2p̄
〈Π−1(w′′′ + w′),Π−1w〉L2 ≤ 1

2

(
− c

2p̄
‖w‖2L2 +

k2

2p̄
η2

)
. (5.15)

Combining inequality (5.14) and (5.15) in (5.13) leads to the following inequality, for all ζ ∈ D(A)

〈Aζ, ζ〉V ≤ −kqz
(
η −Mw

)
+

1

2

(
− c

2p̄
‖w‖2L2 +

k2

2p̄
η2

)
. (5.16)
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Using �rst Young's inequality and then Cauchy-Schwarz's inequality, we �nally obtain that, for all ζ ∈ D(A)

〈Aζ, ζ〉V ≤
1

2

(
− c

4p̄
‖w‖2L2 +

k2

4p̄
η2

)
− kqη2 + kq

(
η2

2
+
‖M‖2L2

2
‖w‖2L2

)
≤ 1

2

(
− c

2p̄
+ kq‖M‖2L2

)
‖w̄‖2L2 +

1

2

(
k2

2p̄
− kq

)
η̄2. (5.17)

Note that if

kq‖M‖2L2 <
c

2p̄
and k < 2qp̄ ,

then the operator A is dissipative. This is obtained for all 0 < k < k? where k? and q are selected as

k? =

√
c

‖M‖L2

and
k

2p̄
< q <

c

2kp̄‖M‖2L2

. (5.18)

This concludes the proof of dissipativity of A.

Step 2: A is a maximal operator. According to Lümer−Phillips theorem [38, Theorem 4.3], proving that
A is maximal reduces to show that for all λ0 ≥ k? and for all ζ ∈ X, there exists ζ̃ ∈ D(A) such that

(λ0IX −A)ζ̃ = ζ.

Let (η, w) ∈ X. We look for a (η̃, w̃) ∈ D(A) satisfying
w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,
w̃(0) = w̃(L) = 0 ,
w̃′(L) = kη̃ ,
λ0η̃ − w̃′(0) = η ,

(5.19)

namely 
w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,
w̃(0) = w̃(L) = 0 ,
w̃′(L) = k

λ0
(η + w̃′(0)) ,

λ0η̃ − w̃′(0) = η .

Now, we consider the following boundary value problem
w̃′′′ + w̃′ + λ0w̃ = w , x ∈ [0, L] ,
w̃(0) = w̃(L) = 0 ,
w̃′(L) = k

λ0
(η + w̃′(0)) ,

and the smooth function φ̃(x) = kηx2(x−L)
λ0L2 satisfying the boundary conditions

φ̃(0) = φ̃(L) = φ̃′(0) = 0 , φ̃′(L) =
k

λ0
η .

We set ψ̃ = w̃ − φ̃. Then ψ̃ satis�es the following boundary value problem
ψ̃′ + ψ̃′′′ + λ0ψ̃ = j̃(x) , x ∈ [0, L] ,

ψ̃(0) = ψ̃(L) = 0 ,

ψ̃′(L) = k
λ0
ψ̃′(0) ,

(5.20)

where j̃(x) = w(x)− φ̃′(x)− φ̃′′′(x)− λ0φ̃. Now, let Â be the operator de�ned by

Âψ = −ψ′ − ψ′′′
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with the domain D(Â) ⊂ L2(0, L) de�ned by

D(Â) :=
{
ψ ∈ H3(0, L) : ψ(0) = ψ(L) = 0, ψ′(L) =

k

λ0
ψ′(0)

}
.

We de�ne also the adjoint operator Â∗ as

Â∗ψ = ψ′′′ + ψ′

with domain

D(Â∗) :=
{
ψ ∈ H3(0, L) : ψ(0) = ψ(L) = 0, ψ′(0) =

k

λ0
ψ′(L)

}
.

Note that Â and Â∗ are dissipative. Indeed, since λ0 > k, we have∫ L

0

ψÂψdx =

(
k

λ0
− 1

)
ψ′(0)2 < 0 , ψ ∈ D(Â) ,∫ L

0

ψÂ∗ψdx =

(
k

λ0
− 1

)
ψ′(L)2 < 0 , ψ ∈ D(Â∗) .

Moreover, Â is closed and D(Â) is dense in L2(0, L). Then, according to [38, Theorem 4.3 and Corollary 4.4]

Â is m-dissipative operator.
Finally, since Â is a m-dissipative operator then the system (5.20) admits a solution ψ̃ in D(Â). As a

consequence, there exist (η̃, w̃) ∈ D(A) solution of (5.19). This proves that A is maximal and concludes the
proof of Theorem 2.1. 2

The next result deals with the exponential stability of equilibrium state (η∞, w∞) and with the related
output regulation.

Theorem 5.3 (Stabilization and regulation). Consider system (5.3). Let k ∈ (0, k?) with k? given by
Theorem 5.2. Then, for any (d, r) ∈ L2(0, L) × R and for any initial condition (η0, w0) ∈ X

(
resp. D(A)

)
,

the following holds, the solutions to system (5.3) satis�es the following.
1. There exist positive constants ν and C such that, for all (η0, w0) ∈ X, and for all t ≥ 0

‖(η, w)− (η∞, w∞)‖X ≤ Ce−νt‖(η0, w0)− (η∞, w∞)‖X . (5.21)

2. Moreover, the output y is regulated towards the reference r. In other words, for all (η0, w0) ∈ D(A)

lim
t→+∞

|wx(t, 0)− r| = 0. (5.22)

for any strong solution to (5.3).

Proof: We prove each item of the statement separately.
Step 1: Exponential stability of equilibrium state (η∞, w∞). We prove Item 1 of the theorem for

initial conditions (η0, w0) ∈ D(A). The result follows for all initial conditions in X by a standard density
argument (see e.g. [28, Lemma 1]). Moreover, this is enough to prove that the origin is an exponentially
stable equilibrium point for system (5.6). To this end, consider the Lyapunov functional V de�ned in (5.9).
According to the proof of dissipativity of A, the time derivative of V along the strong solution to (5.6) yields

V̇ ≤
(
− c

2p̄
+ kq‖M‖2L2

)
‖w‖2L2 +

(
k2

2p̄
− kq

)
η̄2 (5.23)

with k and q satisfying (5.18). As a consequence, from (5.11) and Grönwall's lemma, there exist positive
constants ν and C such that, for all (η0, w0) ∈ D(A),

‖(η̄, w̄)‖X ≤ Ce−νt‖(η̄0, w̄0)‖X (5.24)
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i.e for all (η0, w0) ∈ D(A),

‖(η, w)− (η∞, w∞)‖X ≤ Ce−νt‖(η0, w0)− (η∞, w∞)‖X . (5.25)

Then, by using the density of D(A) in X, we conclude that the �rst statement of Theorem 5.3 holds.

Step 2: Output regulation. At this point, it only remains to prove the second statement of Theorem 5.3 to
complete this proof. For this, note that if (η0, w0) ∈ D(A), then (η̄0, w0) ∈ D(A). Then (η̄, w) ∈ C1(R+;X)∩
C0(R+;D(A))

)
. Now, let us introduce the new variables v̄, b̄ de�ned as follows

v̄ := wt and b̄ := ˙̄η .

The dynamics of (v̄, b̄) is given as
v̄t + v̄x + v̄xxx = 0 , (t, x) ∈ Ω ,
v̄(t, 0) = v̄(t, L) = 0 , t ∈ R+

v̄x(t, L) = kb̄(t) , t ∈ R+

˙̄b(t) = v̄x(t, 0) , t ∈ R+

v̄(0, x) = −w̄′0(x)− w̄′′′0 (x), b̄(0) = w̄′0(0) , x ∈ [0, L] .

(5.26)

Since (v̄(0, ·), b̄(0)) ∈ X, then, according to the Theorem 2.1 and the �rst statement of Theorem 5.3, we have
(v̄, b̄) ∈ C0(R+;X) and

‖(b̄, v̄)‖X ≤ Ce−νt‖(b̄(0), v̄(0, ·))‖X , ∀(η0, w0) ∈ D(A) .

In particular, we obtain

‖w̄t‖L2 ≤ Ce−νt‖w̄t(0, ·)‖L2 , ∀(η0, w0) ∈ D(A) . (5.27)

Now, by multiplying the �rst equation of (5.6) by w̄ and integrating by parts, we get after some computations

k2η̄(t)2 − w̄x(t, 0)2 =

∫ L

0

w̄(t, x)w̄t(t, x)dx .

Using Cauchy-Schwarz's inequality, from (5.24) and (5.27) we �nally obtain

|w̄x(t, 0)|2 ≤ ‖w̄(t, ·)‖L2‖w̄t(t, ·)‖L2 + k2|η̄(t)|2 −→
t→∞

0 , ∀(η0, w0) ∈ D(A) .

From the previous inequality we can deduce

lim
t→∞
|w̄x(t, 0)|2 = 0 ∀(η0, w0) ∈ D(A) .

and therefore,

lim
t→+∞

|wx(t, 0)− r| = 0 , ∀(η0, w0) ∈ D(A) .

This concludes the proof of Theorem 5.3. 2

5.2. Equilibrium points of the nonlinear system. In this section, we consider the regulation problem
for a nonlinear KdV (1.1). In particular, we consider the system

wt + wx + wxxx + wwx = d∗(x) , (t, x) ∈ Ω ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = u(t) , t ∈ R+ ,
w(0, x) = w0(x) , x ∈ [0, L] ,
y(t) = wx(t, 0) , t ∈ R+ ,

(5.28)
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where d∗ ∈ L2(0, L) is a constant perturbation, u ∈ R is the control input and y(t) ∈ R is the output to be
regulated. Following the results of the previous section, we consider the integral control as follows

η̇ = wx(t, 0)− r∗ , u(t) = kη(t) , t ∈ R+ , (5.29)

where r ∈ R is a constant reference and k > 0 is the control gain. Then, the closed-loop system reads
wt + wx + wxxx + wwx = d∗(x) , (t, x) ∈ Ω ,
w(t, 0) = w(t, L) = 0 , t ∈ R+ ,
wx(t, L) = kη(t) , t ∈ R+ ,
η̇(t) = wx(t, 0)− r∗ , t ∈ R+ ,
w(0, x) = w0(x), η(0) = η0 , x ∈ [0, L] .

(5.30)

In this article, we do not prove any well-posedness of (5.30), but we limit ourselves to establish the existence of
a nonzero equilibrium state (η∗, w∗) to (5.30). However, we believe that existence and uniqueness for this sys-
tem hold using some �xed-point strategy. Indeed, our goal is to change d in system (5.3) such that the solution
to the linear system (5.3) converges exponentially to the equilibrium state (η∗, w∗) in the state space X. To do
this, we �rst prove the existence of a unique equilibrium state of system (5.30), as stated in the following lemma.

Lemma 5.4. There exist ε > 0, and R > 0 such that, for (d∗, r∗) ∈ L2(0, L) × R satisfying ‖d∗‖L2 ≤ ε
and |r∗| ≤ R, there exists a unique unique equilibrium state (η∗, w∗) ∈ X to system (5.30).

Proof: Let (d∗, r∗) ∈ L2(0, L)×R such that ‖d∗‖L2 ≤ ε and |r∗| ≤ R with ε and R to be chosen later. Then,
we want to prove the existence of a unique solution (η∗, w∗) ∈ D(A) to the following boundary value problem

w′∗(x) + w′′′∗ (x) + w∗(x)w′∗(x) = d∗(x) , x ∈ [0, L] ,
w∗(0) = w∗(L) = 0 ,
w′∗(L) = kη∗ ,
w′∗(0) = r∗ ,

where (η∗, w∗) corresponds to the equilibrium of system (5.30), if it exists. Note that, it is enough to prove
the existence of a unique solution w∗ ∈ H3(0, L) to the following boundary value problem w′∗(x) + w′′′∗ (x) + w∗(x)w′∗(x) = d∗(x) , x ∈ [0, L] ,

w∗(0) = w∗(L) = 0 , ,
w′∗(0) = r∗ ,

(5.31)

and then choose afterwards η∗ =
w′∗(L)
k . Hence, we prove that there exists a solution to system (5.31) by

following a �xed-point strategy. We set

H3
r (0, L) :=

{
w ∈ H3(0, L) : w(0) = w(L) = w′(0) = r∗

}
.

We consider the operator Γ : H3
r (0, L)→ H3

r (0, L) de�ned by Γ(w) = ϕ̄ where ϕ̄ is the solution to ϕ̄′(x) + ϕ̄′′′(x) = d1(x)− w∗(x)w′∗(x) , x ∈ [0, L] ,
ϕ̄(0) = ϕ̄(L) = 0 ,
ϕ̄′(0) = r∗ ,

(5.32)

Note that the function ‖ · ‖H3
r
: w ∈ H3(0, L) 7→ ‖w′ + w′′′‖L2 ∈ R+ is a semi-norm on the space H3(0, L).

Furthermore, H3
r (0, L) ⊂ H1

0 (0, L). Then, according to the Poincaré's inequality, the semi-norm ‖ · ‖H3
r
is a

norm on the space H3
r (0, L) which is equivalent to the standard norm induced by H3(0, L). In other words,

there exists a positive constant C such that

‖w∗‖H3
r
≤ ‖w∗‖H3(0,L) ≤ C‖w∗‖H3

r
, ∀w∗ ∈ H3

r (0, L) . (5.33)

Now, we have, for all

‖Γ(w∗)‖H3
r

=‖d∗ − w∗w′∗‖L2

≤‖d∗‖L2 + ‖w∗w′∗‖L2

≤‖d∗‖L2 + ‖w∗‖L∞‖w′∗‖L2 ,
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for all w∗ ∈ H3
r (0, L). Denoting with the constant K the norm of the embedding H3(0, L) in L∞(0, L),

according to the Rellich-Kondrachov Theorem see [6, Theorem 9.16], we have

‖Γ(w∗)‖H3
r
≤‖d∗‖L2 +K‖w∗‖H3(0,L)‖w′∗‖L2

≤‖d∗‖L2 +KC‖w∗‖2H3
r

≤ε+KC‖w∗‖2H3
r
,

w∗ ∈ H3
r (0, L). Moreover, we have for all w1, w2 ∈ H3

r (0, L)

‖Γ(w1)− Γ(w2)‖H3
r

= ‖w1w
′
1 − w2w

′
2‖L2

≤ ‖(w1 − w2)w′1‖L2 + ‖w2(w′1 − w′2)‖L2

≤ KC‖w1 − w2‖H3
r
‖w1‖H3

r
+KC‖w1 − w2‖H3

r
‖w2‖H3

r

≤ KC
(
‖w2‖H3

r
+ ‖w2‖H3

r

)
‖w1 − w2‖H3

r
.

We consider now the operator Γ de�ned as in (5.32), restricted on the closed ball

BR̄ :=
{
w ∈ H3

r (0, L) : ‖w‖H3
r
≤ R̄

}
with R̄ to be chosen later. Then, we have

‖Γ(w)‖H3
r
≤ ε+KCR̄2 ,

‖Γ(w1)− Γ(w2)‖H3
r
≤ 2KCR̄‖w1 − w2‖H3

r
,

for all w ∈ BR̄. We choose R̄ such that the following conditions hold

ε <
1

4KC
and

1−
√

1− 4εKC

2KC
≤ R̄ <

1

2KC
.

Then, we can apply the Banach �xed point theorem [6, Theorem 5.7] and prove that the operator Γ admits a
unique �xed point, concluding the proof of existence of the unique solution w∗ ∈ BR̄ to (5.31).

Now, given R̄, we deduce the value of r. Indeed, since w∗ ∈ H3(0, L) then we have w′∗ ∈ H2(0, L). Then,
according to the embedding of H2(0, L) in C1([0, L]), we have w′∗ ∈ C1([0, L]). Therefore, according to [51,
Lemma 1] we have

(w′∗(0))2 ≤ 2

L
‖w′∗‖2L2 + L‖w′′∗‖2L2 ,

which implies

(w′∗(0))2 ≤
(

2

L
+ L

)
‖w∗‖2H3(0,L) . (5.34)

Since w∗ ∈ BR̄, then according to (5.33) and (5.34), we obtain

r2
∗ ≤ C

(
2

L
+ L

)
R̄2 .

Finally, we can choose R = R̄
√
C
(

2
L + L

)
. This concludes the proof of Lemma 5.4. 2

Then, the main result of this section is stated as follows. In particular, we show that the equilibrium
(η∗, w∗) of the nonlinear KdV equation (5.30) is an equilibrium for its linearized equation, given by (5.3), and
for some perturbation d ∈ L2(0, L), with possibly d 6= d∗.

Theorem 5.5. Let (d∗, r∗) ∈ L2(0, L) × R be selected according to Lemma 5.4 and let (η∗, w∗) be the
corresponding equilibrium of system (5.30). Then, there exists d ∈ L2(0, L) such that, for any k ∈ (0, k?) with
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k? given by Theorem 5.2, and for all initial condition (η0, w0) ∈ X, the solution to system (5.3), with such a
d and r = r∗, converges exponentially to the equilibrium state (η∗, w∗) in the state space X. In other words,
there exist positive constants ν and C such that for all (η0, w0) ∈ X and for all t ≥ 0

‖(η, w)− (η∗, w∗)‖X ≤ Ce−νt‖(η0, w0)− (η∗, w∗)‖X .

Proof: Let (d∗, r∗) ∈ L2(0, L)× R such that ‖d∗‖L2 ≤ ε and (η0, w0) ∈ X as in the statement of Lemma 5.4.
Let us introduce the new variables

(w, η) 7→ (ω, v) := (w − w∗, η − η∗)

where (η, w) is the solution to (5.3). The dynamics of ω, v is given by
ωt + ωx + ωxxx = d− d∗ − w∗w′∗ , (t, x) ∈ Ω ,
ω(t, 0) = ω(t, L) = 0 , t ∈ R+ ,
ωx(t, L) = kv(t) , t ∈ R+ ,
v̇(t) = ωx(t, 0) , t ∈ R+ ,
ω(0, x) = ω0(x), v(0) = v0 , x ∈ [0, L] ,

(5.35)

where ω0(x) = w0(x)− w∗(x) and v0 = η0 − η∗. Then, select d as

d = d∗ + w∗w
′
∗ . (5.36)

System (5.35) with the perturbation d selected as in (5.36) reads
ωt + ωx + ωxxx = 0 , (t, x) ∈ Ω ,
ω(t, 0) = ω(t, L) = 0 , t ∈ R+ ,
ωx(t, L) = kv(t) , t ∈ R+ ,
v̇(t) = ωx(t, 0) , t ∈ R+ ,
ω(0, x) = ω0(x), v(0) = v0 , x ∈ [0, L] .

(5.37)

Then, according to Theorem 2.1 and the �rst statement of Theorem 5.3, we have (v, ω) ∈ C0(R+;X) and

‖(v, ω)‖X ≤ Ce−νt‖(v0, ω0)‖X , ∀(v0, ω0) ∈ X .

Therefore, by linearity, we have (η, w) ∈ C0(R+;X) and

‖(η, w)− (η∗, w∗)‖X ≤ Ce−νt‖(η0, w0)− (η∗, w∗)‖X , ∀(v0, ω0) ∈ X ,

concluding the proof of Theorem 5.5. 2

6. Conclusion. In this article, we have solved the output regulation problem by means of an integral
action for a Korteweg-de-Vries (KdV) equation controlled at the boundary and subject to some distributed
disturbance. For this, we have followed a Lyapunov approach. We have �srt designed an ISS Lyapunov
functional which is obtained by strictifying the energy associated to the system. In particular, the energy is
modi�ed by adding a second term which is obtained from the design of an observer built with the backstepping
technique. Then, thanks to this ISS Lyapunov functional, we have applied the forwarding method to achieve
our goal.

Future extensions include the application of our methodology on the nonlinear KdV equation (5.30). We
are also interested in establishing ISS properties for a nonlinear KdV when L ∈ N . Finally, we believe that the
proposed stricti�cation approach can be extended also to other classes of PDEs for which a strict Lypaunov
function is not yet known.
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