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Abstract: This paper deals with an hybrid architecture involving LPV dynamical systems for
encryption purpose, having in mind the context of cybersecurity. Such an hybrid architecture
is motivated by the fact that it is a natural model, recast in a control-theoretic framework, of
a so-called statistical self-synchronizing stream cipher. It is shown that flatness is central to
guarantee the necessary synchronization between the cipher and the decipher. In this context,
beyond synchronization, security must be a constraint to be taken into account as well. We
especially focus on diffusion as a security criterion. The hybrid architecture is motivated to
take advantage of both properties simultaneously. An illustrative example presents a numerical
application and must be considered as a proof-of-concept before further investigation.
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1. INTRODUCTION

The considerable development of new technologies of com-
munication leads nowadays to an increasing need for se-
curity of the exchanges of information. Data exchanges
often take place over public networks. In this context,
Cyber-physical systems (CPS) deserve a special attention
since they are ubiquitous and play a central role. Indeed,
they connect the physical and the digital worlds in more
and more situations of everyday life. In particular, all the
operators of vital importance (OIVs) rely on Cyberphysi-
cal systems: telecommunication, transportation, banking,
manufacturing, power generation and distribution, Super-
visory Control And Data Acquisition (SCADA) systems,
medical systems, to mention a few. Besides, the concept
of networked control systems (NCSs) Ge et al. (2017) con-
sisting in controlling process over communication networks
has replaced traditional point-to-point control systems.
Strengthen the protection of the control systems against
cyber (electronic) threat and assessing their vulnerabilities
are of paramount importance and is clearly a timely chal-
lenge. Well-known examples like the cyber-attack against
the Bushehr nuclear power plant in Iran with Stuxnet
illustrate those considerations. To this end, many tools
and frameworks borrowed from distinct areas as computer
science, cryptography, automatic control are regularly pro-
posed.
As far as automatic control is concerned, the literature
grows up rapidly. The paper Abdelwahab et al. (2021) (and
references therein) explores the use of a control-theoretic
approach enabling a compromised networked controller to
leak information to an eavesdropper who has access to
the measurement channel. The underlying notion is covert
channel originated in 1973 by Butler Lampson. A covert
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channel is a type of attack that creates a capability to
transfer information objects between processes that are
not supposed to be allowed to communicate by the com-
puter security policy. To secure CPS, a possible strategy
is to exploit an accurate mathematical model of the dy-
namics of the physical system under control, and analyze
any discrepancy between the actual sensor measurements
and the ones predicted by the model, to decide about the
existence of an adversarial attack. Such an approach calls
for the notion of state reconstruction, flatness and observ-
ability as detailed in Shoukry et al. (2015). More generally,
the paper Sánchez et al. (2019) presents a bibliographical
review of definitions, classifications and applications con-
cerning cyber-attacks in networked control systems and
Cyber-physical systems. This review tackles the topic from
a control-oriented perspective, which is complementary to
information or communication ones. It is shown that many
concepts derived from diagnosis are really appropriate.
Another fully-fledged approach to secure CPS is cryptog-
raphy Menezes et al. (1996). The aim is to directly protect
data conveyed through public channels. Since 2015, sev-
eral attempts to incorporate cryptography into networked
control systems have appeared to enhance cybersecurity.
There are two areas in cryptography: public key cryptog-
raphy and secret key cryptography. In our work, we are
interested in secret key cryptography which uses a same
key to encrypt and decrypt. In secret key cryptography,
the stream ciphers are used in secure data transmission
at a very high rate and for electronic devices with lim-
ited hardware resources. There are two main classes of
stream ciphers: Synchronous Stream Cipher (SSC) and
Self-Synchronous Stream Cipher (SSSC). The SSSCs are
the subject of our study.

The reader may refer for example to Darup et al. (2020)
that addresses this topic. In this paper, still having in



mind data protection in the context of CPS, we address
in a theoretic-control point of view the design of a special
class of ciphers called statistical self-synchronizing stream
ciphers. This class of cipher deserve further investigation
because it has not been addressed in a large extent, see
Geraldy et al. (2001); Jung and Ruland (1999); Heys
(2001) for exceptions. Essentially, it involves an archi-
tecture that combines the properties of both modes of
operation. A special switching rule orchestrates the active
modes. It must take into account on one hand, the inherent
necessity of synchronization between the cipher and the
decipher for proper decryption and on the other hand, the
performances in terms of security and data rate. This being
the case, control theory appears as a natural framework to
tackle such a class of ciphers. We propose in this paper a
new statistical self-synchronizing stream cipher involving
automata in the form of LPV systems. The choice of the
class of LPV systems will be motivated. The proposed
framework and proof-of-concept results involve control-
theoretic concepts such as flatness and structural analysis.

This paper is organized as follows. Section 2 intro-
duces generalities on stream ciphers and especially the
self-synchronized ones. Section 3 explains how a self-
synchronizing stream cipher can be constructed from an
LPV system and the choice of such a class is motivated.
The construction is based on the interpretation of flatness
in terms of the structure of a graph associated to the LPV
system. Thus, the connection between flatness and SSSC is
made. Section 4 is devoted to the design of an hybrid archi-
tecture used as a statistical Self-Synchronization Stream
Cipher. The hybrid feature is motivated by a trade-off to
be fulfilled between the consideration of synchronization
and security. A numerical example is given. Finally, Sec-
tion 5 concludes this paper.

2. GENERALITIES ON STREAM CIPHERS

2.1 Stream Ciphers Overview

For a stream cipher, it must be given an alphabet A, that
is, a finite set of basic elements named symbols. The set
A stands in this paragraph as a general notation without
any specific alphabet. Typically, A could be composed of
1 or several bits elements. Hereafter, the index t ∈ N will
stand for the discrete-time. On the transmitter part, the
plaintext (also called information or message) m ∈ M
(M is the message space) is a string of plaintext symbols
mt ∈ A. Each plaintext symbol is encrypted, by means of
an encryption (or ciphering) function e, according to:

ct+r = e(zt+r,mt), (1)

where zt ∈ A is a so-called keystream (or running key)
symbol delivered by a keystream generator. The function
e is invertible for any prescribed zt. The resulting symbol
ct ∈ A is the ciphertext symbol. The integer r ≥ 0
stands for a potential delay between the plaintext mt and
the corresponding ciphertext ct+r. This is explained by
computational or implementation reasons. Consequently,
for stream ciphers, the way how to encrypt each plaintext
symbol changes on each iteration and stands as an asset
for this class of ciphers. The resulting ciphertext c ∈ C (C
is called the ciphertext space), that is the string of symbols

ct, is conveyed to the receiver through a public channel.
At the receiver side, the ciphertext ct is deciphered ac-
cording to a decryption function d which depends on a
running key ẑt ∈ A delivered, similarly to the cipher
part, by a keystream generator. The decryption function
d obeys the following rule. For any two keystream sym-
bols ẑt+r, zt+r ∈ A, it holds that

m̂t+r := d(ct+r, ẑt+r) = mt whenever ẑt+r = zt+r. (2)
Equation (2) means that the running keys zt and ẑt must
be synchronized for a proper decryption. The generators
delivering the keystreams are parameterized by a secret
key denoted by K ∈ K (K is the secret key space).
The distinct classes of stream ciphers (synchronous or
self-synchronizing) differ each other by the way on how
the keystreams are generated and synchronized. Next,
we detail the special class of stream ciphers called Self-
Synchronizing Stream Ciphers and denoted for brevity
SSSC.

2.2 Keystream Generators for Self-Synchronizing Stream
Ciphers

A well-admitted approach to generate the keystreams has
been first suggested in Maurer (1991). It is based on the use
of so-called finite state automata with finite input memory
as described below. This is typically the case in the cipher
Moustique Kasper et al. (2004). At the ciphering side, the
automaton delivering the keystream takes the form:{

xt+1 = fK(xt,mt),
zt+r = hK(xt)

(3)

where xt ∈ A is the internal state, f is the next-state
transition function parameterized byK ∈ K. As previously
stressed, the delay r is introduced to cope with special sit-
uations, in particular when the computation of the output
(also called filtering) delivered by the function h involves r
successive operations processed at time instants t, . . . , t+r.
Those operations will be here matrix multiplications as
detailed later in Equation (13). Substituting mt by its
expression (2) and taking into account, from (3), that zt+r
is a function of xt, give{

xt+1 = gK(xt, ct+r),
zt+r = hK(xt)

(4)

If such an automaton has finite input memory, it means
that, by iterating (4) a finite number of times, there exists
a function `K and a finite integer M such that

xt = `K(ct+r−1, . . . , ct+r−M ), (5)

and thus,

zt+r = hK(`K(ct+r−1, . . . , ct+r−M )). (6)

Actually, the fact that the keystream symbol can be
written in the general form

zt+r = αK(ct−`, . . . , ct−`′), (7)

with αK a function involving a finite number of shifted
ciphertexts from time t− ` to t− `′ (`, `′ ∈ Z), is a
common feature of the SSSC. Equation (7) is called the
canonical equation.
At the deciphering side, the automaton takes the form{

x̂t+1 = gK(x̂t, ct+r),
ẑt+r = hK(x̂t)

(8)

where x̂t is the internal state. Similarly to the cipher part,
the automaton having a finite input memory, it means



that, by iterating Equation (8) the same finite number
of times as (4), one also obtains

x̂t = `K(ct+r−1, . . . , ct+r−M ),

and thus,

ẑt+r = hK(`K(ct+r−1, . . . , ct+r−M )).

Hence, it is clear that after a transient time of maximal
length equal to M , it holds that, for t ≥M ,

x̂t = xt and ẑt+r = zt+r. (9)

In other words, the generators synchronize automatically
after at most M iterations. Hence, the decryption is auto-
matically and properly achieved after at most M iterations
too. No specific synchronizing protocol between the cipher
and the decipher is needed. This explains the terminol-
ogy Self-Synchronizing Stream Ciphers. The integer M is
called the delay of synchronization. The following remark
is central for our purpose.

Remark 1. From (5), it is worth pointing out that the state
vector xt of the automaton (3) is expressed as a function of
a finite number of its shifted outputs. Furthermore, from
the equalities (2) and (9), the same property holds for the
input mt. And yet, from a control-theoretic point of view,
this is nothing but the property of difference flatness of
(3). Let us recall that difference flatness, (see Sira-Ramirez
and Agrawal (2004), Chapter 5, for an introduction in the
case of LTI systems), is the discrete-time counterpart of
the so-called differential flatness dedicated to continuous-
time systems first introduced in Fliess et al. (1995). The
link between SSSC and flatness is central for our purpose
as seen in next section.

3. FLAT LPV AUTOMATA AND SSSC

3.1 State space equations of flat LPV automata

As a clue to simply obtaining nonlinear systems, we
propose to investigate the class of Linear Parameter-
Varying (LPV) systems as a special class of automata.
Those automata will be called LPV automata. As usual
in the context of cryptography, they must be defined over
a finite field F. They are described by the following state
space representation:

xt+1 = Aρ(t)xt +Bmt (10)

xt ∈ Fn is the state vector, mt ∈ F is the input. The
matrices A ∈ Fn×n and B ∈ Fn×1 are respectively the
dynamical matrix and the input matrix. The matrix B is
the input matrix and defines the component xit on which
the plaintext symbol mt is added. The set of all varying
parameters of A are collected on a vector denoted by

ρ(t) =
[
ρ1(t), ρ2(t), ..., ρL(t)

]
∈ FL

where L is the total number of non-zero (possibly varying)
entries. Such automata can exhibit nonlinear dynamics.
Indeed, the nonlinearity is obtained by defining the varying
parameters ρi(t) as nonlinear functions ϕi : Fs+1 → F
of the output ct (or a finite number of shifts) ρi(t) =
ϕi(ct, ct−1, · · · , ct−s) with s a natural number. In the
context of cryptography, those functions are implemented
in the form of S-boxes
ϕi : Fs+1 → F

(ct, ct−1, · · · , ct−s) 7→ S(ct, ct−1, · · · , ct−s, SKi)
(11)

where SKi is the subkey number i derived from the secret
key K. S-boxes are usual in symmetric cryptography but
they have been used in the context of LPV automata very
recently and for the first time in Francq et al. (2020).
The outcome of introducing LPV automata is that we can
design a large class of nonlinear automata with a high
flexibility that rests on the choice of S-boxes and on the
way how they are introduced in the matrix A. Besides,
LPV automata benefit from their linear structure and
thus, are appropriate for a structural analysis-based design
as we shall see in the sequel.

3.2 Constructing an SSSC from an LPV automaton

For brevity, we introduce the following notation. For t2 ≥
t1, denote by

∏t1
l=t2

Aρ(l) the product of matrices Aρ(l)

from t2 to t1. For t2 < t1, define
∏t1
l=t2

Aρ(l) = 1n (the

identity matrix of dimension n). Finally, let T be the scalar

defined by T = C
∏t+1
l=t+r−1Aρ(l)B.

Consider the LPV finite state automaton (10) with an
output ct defined as

ct = Cxt (12)

with C ∈ F1×n the output matrix. Then, define the
keystream with delay r as

zt+r = C

t∏
l=t+r−1

Aρ(l)xt (13)

and the ciphering function as

ct+r = zt+r + Tmt, (14)

On the other hand, consider the finite state automaton
with internal state x̂t with dynamics given by

x̂t+1 = Pρ(t:t+r)x̂t +BT −1ct+r (15)

with

Pρ(t:t+r) = Aρ(t) −BT −1C

t∏
l=t+r−1

Aρ(l) (16)

along with the keystream ẑt defined as

ẑt+r = C

t∏
l=t+r−1

Aρ(l)x̂t (17)

and the deciphering function obeying

m̂t+r = T −1(ct+r − ẑt+r). (18)

Actually, Equations (15)-(18) define the left inverse system
of (10) and the least natural integer r such that T is non
zero is the relative degree of the system (10). By simple
manipulations, it can be shown that the synchronization
error εt = xt − x̂t verifies

εt+1 = Pρ(t:t+r)εt (19)

Two classes of SSSC can be defined according to the delay
of synchronization:

• Deterministic: the delay of synchronization is bounded
by the constant M a priori fixed.
• Statistical: the bound of the delay of synchronization

is not constant but is a random variable with respect
to the sequence of ciphertexts or the initial state
vector.

If εt reaches zero after a finite transient time of length
bounded by an a priori fixed natural integer M , thus,



the respective state vectors of (10) and (15) are self-
synchronized. Then, by definition, the set of Equations
(10)-(18) defines a deterministic SSSC. The integer M
is the synchronization delay. From Remark 1, it can be
claimed that any flat LPV automaton gives rise to a
deterministic SSSC. The point is that the LPV automaton
defined by (10) must be flat for any secret key K and
any realization of ρ(t). In other words, flatness must be a
generic property of (10). For design perspectives, to meet
such a requirement, it is interesting to realize that an LPV
system can be considered as an admissible realization of
a corresponding structured LTI system. Hence, if flatness
is ensured for a structured LTI system, flatness will be
preserved for the derived LPV system admitting the same
structure. This is the clue that will be used as seen in next
section.

3.3 Structured systems and digraphs

A structured linear system is a linear system only defined
by the sparsity pattern of the state space realization
matrices. In other words, for a structured linear system, we
distinguish between the entries that are fixed to zero and
the other ones that can take any value in F, including the
ones which are time-varying. Hence, a structured linear
discrete-time system, denoted by ΣΛ, is a system that
admits the form:

ΣΛ : xt+1 = IAxt + IBmt (20)

The entries of the matrices of (20) are ’0’ or ’1’. In
particular, the entries A(i, j) of IA (resp. B(i) of IB)
that are ’0’ mean that there are no relation (dynamical
interaction) between the state xit+1 at time t + 1 and the

state xjt at time t (resp. the state xit+1 at time t + 1 and
the input mt at time t). The entries that are ’1’ mean that
there is a relation. As a simple example, let us consider an
LPV system with the setting

Aρ(t) =

(
a 0

ρ1(t) ρ2(t)

)
and B =

(
1
0

)
where a is a constant element in F, ρ1(t) and ρ2(t) are
varying parameters in F. The dynamical matrix and the
input matrix IA and IB of the corresponding structured
linear system read:

IA =

(
1 0
1 1

)
, IB =

(
1
0

)
As a consequence, if the structural linear system (20)
derived from (10) is flat, the flatness will hold for any
ρ(t) or equivalently any nonlinearity ϕi (any S-box will be
admissible). Hence, the challenge is to define a method-
ology to construct flat linear structural systems. To this
end, the graph-based approach provided in Millérioux and
Boukhobza (2015) can be used.

In our context, the triplet (n, r, na), the number of non-
linear functions ϕi and their location in the matrix IA de-
termine a family of flat LPV-based SSSC. Next subsection
will aim at summarizing the steps needed for the design of
such a family.

A digraph G(ΣΛ) describing a structured linear system
associated state equations, is the combination of a vertex
set V and an edge set E . The vertices represent the states

and the input components of ΣΛ while the edges describe
the dynamic relations between these variables. One has
V = X ∪ {m} where X is the set of state vertices defined
as X =

{
x1, . . . , xn

}
and m is the input vertex. The

edge set is E = EA ∪ EB , with EA =
{

(xi,xj) |A(i, j) 6= 0
}

and EB =
{

(m,xi) |B(i) 6= 0
}

. For convenience, we will

denote by vj, (j = 0, . . . , n) a vertex of the digraph G(ΣΛ)
regardless whether it is the input or a state vertex.

• A directed path P is a sequence of successive edges
directed in the same direction which connect a se-
quence of vertices. It is said that the path P covers a
vertex if this vertex is the begin or the end vertex of
one of the edges of P;

• In a directed path from a vertex vi to a vertex vj, it
is said that vj is a successor of vi and conversely, vi

is a predecessor of vj;
• A simple path is a path which contains no repeated

vertices;
• The length of a directed path P is equal to the number

of edges involved in P. We let `(vi,vj) denote the
minimal length of a path connecting vi to vj;

• Vess(vi,vj) is the set of vertices, called essential
vertices from vi to vj, which are common to all the
paths connecting vi to vj.

We recall from Millérioux and Boukhobza (2015) the
necessary and sufficient conditions which must be satisfied
for any vertex vi (i ∈ {1, . . . , n}) of the digraph G(ΣΛ) to
be associated to a flat output cFt = xit (i ∈ {1, . . . , n}).
In such a case, the output state space matrix Cρ(t) = C
is constant and has zero entries except the entry located
at the column number i which is equal to one. The direct
transfer matrix Dρ(t) = D is the zero matrix.

Theorem 1. The output cFt = xit (i ∈ {1, . . . , n}) of the
structured linear system (20), associated to the vertex
vF ∈ X in the associated digraph G(ΣΛ), is generically
a flat output iff, the three following conditions hold:
C0. vF is a successor of m;
C1. Any simple paths from m to vF have the same length
equal to `(m,vF);
C2. Any cycles cover at least an element of Vess(m,vF).

Hence, Conditions C0-C2 are instrumental for the con-
struction of structural flat dynamical systems. An example
of systematic construction of digraphs fulfilling C0-C2 can
be found in the paper Francq et al. (2020).

3.4 Summary for the construction of SSSC from a flat
LPV-based automaton

The following Steps Si summarize the way how to con-
struct an SSSC from a flat LPV automaton. Choose a
triplet (n, na, r) with n the dimension of the state, r the
relatve degree and na the number of non-zero entries of
matrix A.

Step S1: Choose a component xit on which the plaintext
symbol mt is added. It follows that B = (0 . . . 1 0 . . . 0)T

(the entries 1 is located at column i, T stands for transpo-
sition).



Step S2: Choose a component xit (i ∈ {1, . . . , n})
as the desired flat output yt = xit. It follows that
C = (0 · · · 0 1 0 . . . 0) (the only entry 1 is located at the
i-th column of C). It can be shown that for the special case
when B = (1 0 . . .), the relative degree r coincides with i.

Step S3: Construct a digraph G(ΣΛ) fulfilling Conditions
C0-C2 with n vertices and na edges. Derive the matrices
IA and IB of the structured linear system ΣΛ. It can
be carried out from the adjacency matrix, denoted by I,
associated to the digraph G(ΣΛ). It is the (n+ 1)× (n+ 1)
matrix

I =


0 ITB
0

ITA...
0

 (21)

where ITA and ITB stands respectively for the transpose of
the structured matrices IA and IB . The entries Iij are
defined as follows for 1 ≤ i, j ≤ n

Iij =

{
1 if there exists an edge from vj to vi

0 otherwise.
(22)

Step S4: Replace some of the non-zero entries of IA
by a nonlinear function ρi(t) = ϕi(ct, ct−1, · · · , ct−s) to
construct the matrix Aρ(t) of (10) and set B = IB . Not all
’1’ entries of IA must be assigned to a non-linear function.
Some of them can be merely constant. The choice must
obey a trade-off between complexity of the architecture
and security (a matter discussed in next section). The
construction ensures flatness provided that the non-zero
entries assigned to the directed path connecting the input
vertex to the flat output one are constant.

Step S5: Complete the design by deriving the set of
Equations (10)-(18).

As an example, the following graph corresponds to a flat
structured LTI system with (n = 7, na = 15, r = 3).

Fig. 1. Digraph G(ΣΛ) related to a flat LTI system with
relative degree r = 3. The vertex v3 is the flat output.

The following matrices correspond respectively to the
adjacency matrix I, the extracted structured matrix IA,
the matrix Aρ(t) involving nonlinearities ϕ(t) and finally
the matrix Pρ(t:t+3) computed from the formula (16).

0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 1 1 1 0


I



1 0 1 0 0 0 1
1 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 1 1 0


IA



1 0 ϕ(t) 0 0 0 1
1 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 ϕ(t) 0 1 0 0
0 0 ϕ(t) 1 ϕ(t) 1 0


A



0 0 −ϕ(t) 0 −1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 ϕ(t) 0 1 0 0
0 0 ϕ(t) 1 ϕ(t) 1 0


P

4. A STATISTICAL SELF-SYNCHRONIZING
HYBRID ARCHITECTURE

This section stands as the main contribution of the pa-
per. The complexity of the SSSC depends on the triplet
(n, na, r) and on the type of S-boxes. The larger the in-
tegers n, na and r, the more the complexity. Clearly, a
relevant design must obey a trade-off between complexity
and security. As for security, an SSSC must be safe with
respect to distinct attacks or criteria like Time-memory-
data trade-off attacks, Guess-and-Determine attacks, Dif-
ferential / Linear Cryptanalysis, Algebraic Attacks, Cube
Attacks. The reader may refer to Francq et al. (2020) and
references therein for details of those attacks. Roughly
speaking, the more the integers n and na, the more the
security. It is rather intuitive. The role of the integer r is
less clear and deserves a special attention. It is the purpose
of the issue addressed below.

4.1 The role of the relative degree r

Due to the matrices multiplication involved in (16) at the
deciphering side, the size of the corresponding hardware
circuit grows up rapidly when r increases. Therefore, it
is natural to attempt to reduce the relative degree to
its minimum value, r = 1 (r = 0 would mean that the
ciphertext ct is equal to the plaintext mt and so makes no
sense).

We focus here on a security criteria called diffusion and
explained below. Let p denotes the power of a matrix
Z ∈ Mn(F). The diffusion delay, introduced in Arnault
et al. (2011), is the smallest value, denoted by d0, of p such
that Zp does not have any zero coefficient. In other words,
it is the smallest value of p such as each element of the
initial internal state x0 has influenced every element of xt
for t ≥ d0. Hence, the investigation of such properties relies
on symbolic matrices AS and PS obtained by replacing
any non zero entries of A and P by the symbol ’S’. It is
then a structural property. From design perspectives, the
smaller d0, the better the diffusion. Hence, it is natural to
investigate this property when r = 1.

Let us consider a digraph G(ΣΛ) related to r = 1 as
depicted on Figure 2.

The structured matrix IA and the matrix A related to
digraph G(ΣΛ) are respectively given by:

1 0 1 0 1 0 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 0 1 1 1 1 0


IA



1 0 ϕ(t) 0 ϕ(t) 0 ϕ(t)
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 ϕ(t) 0 1 0 0
1 0 1 1 1 1 0


A



v1 v2 v3 v4 v5 v6 v7m

Fig. 2. Digraph G(ΣΛ) related to a flat LTI system with
relative degree r = 1.

The matrix P obtained from the matrix A obeys (16). If
Pρ(t:t+1)[j] (j = 1, . . . , n− 1) stands for the row number j
of P , one has:

Pρ(t:t+1)[0] = Aρ(t)[0]−Aρ(t)[0] = 0
Pρ(t:t+1)[i] = Aρ(t)[i], 1 ≤ i ≤ n− 1

(23)

and thus,

P =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 ϕ(t) 0 1 0 0
1 0 1 1 1 1 0


In our context, the study of the diffusion must focus on the
successive powers ApS and P pS as p increases. Indeed, the
power of matrices results from the successive iterations of
the ciphering and the deciphering equations given by (10)
and (15) respectively.

Figures 3 shows that a complete diffusion is achieved
for AS and the delay of diffusion is equal to 3. On the
other hand, the successive powers of PP undergo a bad
diffusion as illustrated in Figure 4. Indeed, it can be
noticed that P is lower triangular. Actually, it can be
shown, by construction of the digraph fulfilling Conditions
C0-C2, that it is a general property for r = 1. And yet,
it can be easily proved that the product of two triangular
matrices is a triangular matrix. Indeed, for j > i, for two
triangular matrices A, B ∈Mn×n(F16), then

A · B =
∑n
k=1 aikbjk =

∑i
k=1 aik · 0 +

∑n
k=i+1 0 · bjk = 0.

Besides, P 7
S reaches the null matrix. It is not surprising

since P is nilpotent by construction. Indeed, in view of
(19), if the system is self-synchronizing, εt must reach zero
after a finite transient time, even in the LTI case where P
is constant.

(a) AS (b) A2
S (c) A3

S

Fig. 3. Powers of ApS with p ∈ [1, 3], r = 1. Black squares
represent diffusion.

4.2 Introducing a hybrid architecture

In order to conceal the triangularization of the powers of
P , one non-zero entry in the upper triangular part of the
matrix IA is added (2nd row, last column), having in mind

(a) PS (b) P 2
S (c) P 3

S (d) P 4
S

(e) P 5
S (f) P 6

S (g) P 7
S

Fig. 4. Powers of P pS for p ∈ [1, 7], r = 1. Black squares
correspond to non zero entries.

that the complexity must be preserved as most as possible.
In such a case, according to (23), the triangular pattern
of P is broken (let us notice that the non zero entry must
not be added on the first row of A since the first row of
matrix P is null by construction, see (23)). Hence, the new
structural matrix I ′A and the corresponding matrix P ′ are
obtained and given below.

1 0 1 0 1 0 1
1 0 0 0 0 0 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 0 1 1 1 1 0


I′
A



0 0 0 0 0 0 0
1 0 0 0 0 0 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 ϕ(t) 0 1 0 0
1 0 1 1 1 1 0


P ′

It is equivalent to state that a new edge is added in
digraph G(ΣΛ) yielding the new digraph G′(ΣΛ) depicted
in Figure 5

v1 v2 v3 v4 v5 v6 v7m

Fig. 5. Digraph G′(ΣΛ) related to the new LTI system with
relative degree r = 1. The dotted edge is added.

Figure 6 gives the diffusion property in this new mode
of operation. Clearly, the diffusion is now much better
achieved.

(a) P ′
S (b) P ′2

S (c) P ′3
S (d) P ′4

S

(e) P ′5
S (f) P ′6

S (g) P ′7
S (h) P ′8

S

Fig. 6. Powers of P pS for p ∈ [1, 8], r = 1. Black squares
correspond to non zero entries.

However, it is worth pointing out that adding a non zero
entry in the matrix IA and so on the matrix P induces a
corresponding digraph G′(ΣΛ) that does no longer meet
Conditions C0-C2 guaranteeing flatness. And yet, let



us recall that flatness is necessary to ensure the self-
synchronization. This is the reason how a hybrid archi-
tecture is proposed as detailed below.

The hybrid architecture with switching rule σ obeys the
following state space representation at the cipher part:

xt+1 =

{
Aρ(t)xt +Bmt if σ(t) = 1

A′ρ(t)xt +Bmt if σ(t) = 2
(24)

with xt ∈ Fn is the state vector of the cipher, mt ∈ F is the
plaintext input. The matrices A ∈ Fn×n and A′ ∈ Fn×n
are the dynamical matrices of respective modes 1 and 2 ,
B ∈ Fn×1 is the input matrix of the cipher.
The hybrid architecture obeys the following state space
representation at the decipher part:

x̂t+1 =

{
Pρ(t:t+1)x̂t +BT −1ct+1 if σ(t) = 1

P ′ρ(t:t+1)x̂t +BT −1ct+1 if σ(t) = 2
(25)

All the equations (11)-(14) and (16)-(18) still hold except
that A is replaced by A′ for the mode 2.
Now, let us characterize each mode.

• For the mode σ(t) = 1, the system with dynamical
matrix A is flat. The corresponding digraph G(ΣΛ)
fulfills Conditions C0-C2 and the system gets the
self-synchronization property. In other words, for any
initial conditions of the cipher and the decipher
and any plaintext message, the synchronization is
guaranteed with a delay bounded by the dimension
n of the system. However, the property of diffusion
is not optimal because of the inherent triangular
structure of P .

• For the mode σ(t) = 2, the system with dynamical
matrix A′ is not flat. The corresponding digraph
G′(ΣΛ) does not fulfill Conditions C0-C2 and since
those conditions are Necessary and Sufficient ones,
the system does not get the self-synchronization prop-
erty. On the other hand, the diffusion property is
much more significant.

This being the case, the following switching rule σ is
proposed. The hybrid architecture is equipped with a
supervisor at both sides that manages the synchronization
as follows. At the initialization, both the cipher and the
decipher are in the mode σ(t) = 1. After n iterations,
since the synchronization is ensured, the cipher and the
decipher switch on the mode σ(t) = 2. In this mode, since
the synchronization had already occurred, although the
system is not flat, the synchronization is preserved (see
Equation (19)). However, it may happen that a transmis-
sion error produces a bad cryptogram ct that the decipher
will receive. The cipher is not affected. Recalling that the
dynamical matrices A and P of both the cipher and the
decipher depend on the cryptogram (through time-varying
entries in the form of S-boxes yielding an LPV dynamics),
they will not coincide and a desynchronization will occur.
To overcome this issue, in the mode σ(t) = 2, the su-
pervisor at both sides is scanning on-line the sequence c
of cryptograms. Let us notice that both the cipher and
the decipher have knowledge of this sequence. The se-
quence is compared on-line with a cryptogram of reference
(called sync pattern) of length l ∈ N. It is denoted by
(p0, . . . , pl−1) with pi ∈ F. Then, when they coincide, the
supervisor of both the cipher and the decipher switches in

mode σ(t) = 1. The same strategy applies continuously.

It must be pointed out that the sync pattern occurs in a
statistically distributed way in the cryptogram c. Hence,
the time before resynchronization is statistical and no
longer deterministic. This is the price to pay to meet
the trade-off between the quality of synchronization and
the safety regarding the diffusion. Such a strategy and
such hybrid architecture should not be considered as a
pure engineering-based design. Actually, it follows a well-
admitted framework as motivated for the first time in Jung
and Ruland (1999). Essentially, the concept of statistical
self-synchronization embeds the properties of two modes
operations. In the context of the paper Jung and Ruland
(1999), the first mode benefits from a deterministic syn-
chronization property but suffers from low data rate while
the second mode suffers from a so-called error propagation
weakness but allows higher encryption rate. The LPV-
based hybrid architecture presented in this section is in the
same vein. It is motivated by achieving a trade-off between
synchronization quality and diffusion property for security
purpose.

4.3 Proof-of-Concept Example

This section gives an example that illustrates the way how
the LPV-based statistical self-synchronization operates.
To this end, let us considers an automaton operating over
the finite field F16 defined by F2[X]/(X4 +X + 1). Then,
let us consider a plaintext m with symbols mt ∈ F`16 to be
encrypted. The nonlinearity defined by ϕ is given by

ϕ : F16 → F16

ct 7→
1

ct
+ α2 if ct 6= 0, α2 otherwise

where α is a primitive element of F16 given by α4 + α +
1 = 0. Two sync patterns of respective length 1 and 2 are
used. The first one is a singleton α2 +1 and the second one
is the sequence (0, α2 + 1). The statistical SSSC has been
implemented with Sagemath. Figure 7 gives the result by
depicting the error mt − m̂t+1 (let us notice that due to
the relative degree, there is a delay r = 1 between the
plaintext symbol and the deciphered one as seen in the
Equation (2)).

Fig. 7. Time evolution of the error mt − m̂t+1.

A time t = 0, the cipher and the decipher are in mode
σ(t) = 1. As expected, the synchronization is performed



after t = 7. Indeed, the flatness guarantees synchronization
after a transient time no greater than n = 7. Then, for
t ≥ 7, the supervisor of both the cipher and the decipher
switches to mode σ(t) = 2. At t = 21, mimicking a
disturbance (bit slip for example), the cipher ct is cor-
rupted by changing the value delivered by the cipher. As
expected, that causes a desynchronization and no self-
synchronization can occur since the mode σ(t) = 2 is
not flat. The bit pattern appears at t = 30. Then, the
supervisor switches the cipher and the decipher in mode
σ(t) = 1. After t = 37, the self-synchronization is again
recovered. If no disturbance occurs, the synchronization
error remains indefinitely at zero and the deciphering is
achieved properly.

Finally, to illustrate the impact of the length of the
sync pattern, for arbitrary messages and arbitrary initial
conditions, 1000 runs have been performed. The ratio
between the number of successful resynchronizations after
a time t and the total number of runs has been reported
in Figure 8 for a pattern’s length l equal to 1 and 2
respectively. As expected, the plots show that the more
the length of the sync pattern, the more the time before
resynchronization. Indeed, the probability that the sync
pattern occurs decreases with respect to the length l.
Besides, the plots tend towards 1 as the time t before
synchronization tends towards infinity as expected as well.

Fig. 8. ] successful resynchronizations after a time t/
] total number of runs for a pattern’s length equal to
1 and to 2 respectively

5. CONCLUSION

In this paper, we have proposed a new architecture of
statistical self-synchronizing stream ciphers. It involves an
hybrid architecture with two modes of operations, each
one governed by an LPV model exhibiting a nonlinear
dynamics. It has been explained how the design problem
can be recast as a switched system design under security
constraints. It has been shown that control-theoretic con-
cepts like flatness and structural analysis are relevant to
this end. We have focus on a specific security criteria, that
is diffusion. The results should be considered as a proof-
of-concept but they are encouraging and deserve further
work. Checking the scalability of the proposed framework
and addressing other security properties before defining a
complete real-world cipher will be challenging issues in a
near future.
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