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Abstract

The problem of flat output characterization for switched linear discrete-time
systems is addressed. First, an algebraic condition for an output to be flat is
provided. It applies for I-flat outputs with the integer I potentially strictly
greater than 1. Next, it is proved that such a characterization is decidable.
Finally, an efficient algorithm which allows to decide in polynomial time
whether a given output is flat is given. The algorithm is built from the
observation that the flat output characterization can be expressed in terms
of dead-beat stability of an associated constrained switched system. Thus,
the notions of joint spectral radius and graph theory play relevant roles in
this context.

Keywords: flatness; constrained switched linear systems; graph theory

1. Introduction

This paper investigates the flatness for switched linear discrete-time sys-
tems. Flatness for discrete-time systems, first reported in [1, 2], is called
difference flatness. It is the counterpart of differential flatness, introduced
in [3], dedicated to continuous-time systems. A discrete-time system is flat if
it admits flat outputs. A flat output is a function of the state of the system
and/or a finite number of consecutive inputs that admits a specific property.
This property stipulates that the state as well as the inputs of the system
can be written as a function of a finite number of forward or backward shifts
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in the output. Such a property is especially interesting both for state re-
construction and control perspectives. Indeed, from the definition, it is clear
that flatness provides a generic way of reconstructing the state vector in fi-
nite time despite possibly unknown inputs. On the other hand, for control
purposes, flatness is also relevant insofar as, given a flat output, the defini-
tion of flatness provides in a straightforward manner a constructive way of
designing a feedforward control to track a prescribed trajectory of the plant
output. For linear discrete-time systems, many applications are described in
the book [1]. Beyond process control, it turns out that flatness has been a
central purpose in secure communication as well. Indeed, it allows to design
specific cryptosystems called self-synchronizing stream ciphers encountered
in symmetric cryptography. In this context, the dynamical systems operate
on finite fields and take the form of automata. Flatness guarantees that the
state of an automaton can be expressed as a function of its past outputs,
the output playing the role of the cryptogram [4][5][6]. Besides, flatness for
discrete-time systems has also been considered in the context of security in
Cyber Physical Systems. In particular, the problem of reconstructing the
state of a flat system from measurements that may be corrupted by an ad-
versarial attack has been investigated in [7].

When dealing with flatness, we can be interested by at least two different
tasks: the construction of flat outputs and the test of flat outputs. As for the
first issue, the reader may refer to [1, 8, 9, 10] for LTI discrete-time systems
or [11, 12, 13] for nonlinear discrete-time systems. The other issue amounts
to check whether a given output is flat or not. A first approach consists
in trying to directly agree with the definition, that is attempting to express
the input and the state vector as a function exclusively involving shifts of
the output. Alternatively, dedicated approaches have been proposed in the
literature to deal with specific classes of discrete systems like linear systems
[1, 2, 8], submersive nonlinear systems [14]. For static feedback linearisable
discrete-time systems, an efficient test, based on the computation of certain
distributions, which can be generalized to the class of forward-flat systems
can be found in [15].
In [16], a first characterization of flat outputs for switched linear discrete-time
systems was given. It captured the hybrid feature of the problem inherent
to the class of switched system. Indeed, the flat output characterization was
recast as the characterization of dead-beat stability of a so-called switched
auxiliary system. However, until now and except for particular situations, no
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methodology to verify the dead-beat stability was proposed in the literature.
The contributions of this paper aim at giving a formal framework along with
a practical approach to tackle this issue. The notion of constrained switched
systems is central to this end. Three main results are provided. First, it
is shown that the characterization is decidable. Second, it is shown that
the decision can be performed in polynomial time. Finally, a step-by-step
algorithm, easily implementable using any standard numerical software, is
provided. Moreover, it is shown that the framework is well suited to enlarge
the class of admissible flat outputs called I-flat outputs.

The paper is organized as follows. In Section 2, the definitions of flatness
and I-flat output are recalled. They are illustrated by basic examples. Sec-
tion 3 is devoted to an algebraic characterization of flat outputs. The prob-
lem, first involving 0-flat and 1-flat outputs, is extended to I-flat outputs
with the integer I potentially strictly greater than 1. The computational
complexity for checking the conditions is discussed. Then, a graph-based
framework involving de Bruijn’s graphs is detailed in Section 4. It gives the
necessary material to establish a complete tractable characterization along
with an efficient algorithm provided in Section 5 to decide whether a given
output is flat. Finally, Section 6 aims at illustrating the results.

Standard notation: For any two integers n and m, 1n refers to the
n−dimensional identity matrix and 0n×m stands for the n × m zero ma-
trix. If irrelevant, the dimension of the zero matrix is omitted and is merely
written as 0. For a matrix Z, Z ′ stands for the transpose of Z. The value of
a vector z at time k is denoted zk. For a positive integer i, zk+i denotes the
ith forward shift of zk and zk−i denotes the ith backward shift of zk.

2. Background on flatness and problem statement

2.1. The general case

Let us first consider a general (linear or nonlinear) discrete-time controlled
dynamical system described by

xk+1 = f(xk, uk), (1)

where k ∈ N stands for the discrete time, xk ∈ Rn is the state vector (the

i-th component is denoted by x
(i)
k ), uk ∈ Rm is the input, f is the state
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transition function. Slightly different definitions of a flat output have been
given in the literature dealing with discrete-time systems. We give here the
definition from which the results of the present paper apply. The remarks
that will follow briefly highlight the peculiarities of the definitions.

Definition 1 (flat output). Let h be a function defined over either Rn or
Rn × (Rm)I with I a strictly positive integer and that takes values in Rm

(a flat output must be defined over the same set as the one of the input
uk). In those respective cases, for any integer k ∈ N, let yk = h(xk) or
yk = h(xk, uk+`0 , . . . , uk+`0+I−1) with `0 an integer ranging in {−I+1, · · · , 0}
(past and future inputs are possibly considered altogether). The function
h is said to be a flat output for the dynamical system (1) if there exists
a non negative integer k0 such that every variable of the system can be
expressed as a function of yk and a finite number of its backward and/or
forward iterates for k ≥ k0. In particular, there exist two functions F , G and
integers r1, r2, s1, s2 in Z, satisfying r1 ≤ r2 and s1 ≤ s2, and such that,{

xk = F (yk+r1 , · · · , yk+r2)
uk = G(yk+s1 , · · · , yk+s2)

(2)

Then, the standard definition of a flat system follows.

Definition 2 (flat system). The dynamical system (1) is flat if it admits a
flat output.

Remark 1. A flat output is a function but, hereafter and with a somehow
abusive terminology, the value yk of the function h will also be referred as
flat output.

Remark 2. Definition 1 involves past, present and future values of the output
to express xk and uk in F and G. Such a characterization has been first con-
sidered in [17] for LTI discrete-time systems, then in [16] for switched linear
discrete-time systems and finally, considered in recent papers like [18][19]. It
generalizes the definitions given in [1] or [8] where only backward and for-
ward shifts were allowed leading to backward and forward difference flatness.
In particular, it allows to cope with arbitrary relative degrees for Single In-
put Single Output systems (or arbitrary inherent delays, an extension of the
relative degree to Multiple Input Multiple Outputs systems, see [20]).

Remark 3. Definition 1 involves possible successive forward-shifted inputs as
arguments of the function h. Such a feature characterizes the so-called I-flat
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outputs, a discrete-time counterpart of the definition given in [21]. Hence,
the flat outputs can be classified into several categories. If the flat output
is exclusively a function of the state xk, then the output is called 0-flat. If
the flat output is a function of only one (possibly shifted) input uk+`0 , then
the output is called 1-flat. More generally, if the flat output is a function
of I > 0 consecutive inputs, then the output is called I-flat. For discrete-
time systems, I-flat outputs have been discussed in [8] for LTI systems or in
[18] for nonlinear systems. Let us notice that similar functions h have been
considered in [19][22] although they are not explicitly called I-flat outputs.
When only forward shifts of the input is involved in the flat output, the
flatness is called forward flatness. In this respect, let us recall that the
property of forward flatness is equivalent to linearisability by an endogenous
dynamic feedback [23].

Remark 4. Hereafter, it will be assumed that the systems are controllable to
comply with Definition 1. However, the results still hold when this property is
not fulfilled. Let us just point out that in such a case, the definition of flatness
should be slightly reconsidered as in [18]. In such a case, Equations (2) are
only defined for trajectories lying in the controllable set.

Remark 5. If yk is a flat output for the system (1), the R-shift output y′k =
yk+R of (1), with R a non-negative integer, is still a flat output. Indeed,
Equations (2) still hold by substituting yk+i with y′k+i−R. The integers ri and
si must be shifted accordingly. The output y′k is well defined as a function h
involving the state xk and a finite number of consecutive inputs.

Remark 6. Let us recall (see [24] for example) that a dynamical system is
said to be left invertible if the input uk can be recovered from a finite number
r ∈ N of observations yk+i (i ∈ Z). It can be noticed that for the system (1)
to be flat, the property of left invertibility with respect to the output yk must
be fulfilled. Indeed, it is precisely what the existence of the function G in
Equations (2) means.

2.2. The special case of switched linear discrete-time systems

Hereafter, we will examine switched linear discrete-time systems denoted
by S and obeying

xk+1 = Aσ(k)xk +Bσ(k)uk. (3)

The state vector is xk ∈ Rn and the input is uk ∈ Rm. The matrices Aσ(k) ∈
Rn×n and Bσ(k) ∈ Rn×m belong to the respective finite setsA = {A1, . . . , AJ},
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B = {B1, . . . , BJ} of cardinality J . At a given time k, the mode σ(k) is
delivered by a switching function σ : k ∈ N 7−→ σ(k) ∈ {1, . . . , J} = J . A
mode sequence over an interval of time [k1, k2], that is {σ(k1), . . . , σ(k2)}, is
shortly denoted by σ(k1 : k2). If k2 < k1 then σ(k1 : k2) is the null sequence.
Let us notice that such a notation is somehow abusive since σ is defined over
N. For a given switching rule σ, the set of corresponding mode sequences
over an interval of time [k, k + T ] belongs to J T+1.

The output of the system S is a function h defined over either Rn or
Rn× (Rm)I with I a strictly positive integer and that takes values in Rm. In
those respective cases, for any integer k ∈ N and any integer `0 ranging in
{−I + 1, · · · , 0}, since the context of switched linear systems is considered,
we restrict our attention to the functions h of the form:

h : Rn → Rm

xk 7→ yk = Cσ(k)xk,
or

h : Rn × (Rm)I → Rm

(xk, uk+`0 , . . . , uk+`0+I−1) 7→ yk = Cσ(k)xk +
∑`0+I−1

`=`0
D`
σ(k+`)uk+`.

(4)
The matrices Cσ(k) ∈ Rm×n and D`

σ(k) ∈ Rm×m belong to the respective

finite sets C = {C1, . . . , CJ} and D = {D1, . . . , DJ} of cardinality J . Since
both uk and yk lie in Rm, the dynamical system S is called a square system.
The space of input sequences is denoted by U . When the system (3) is driven
by the input sequence {u}k1:k2 = {uk1 , . . . , uk2} ∈ U , for a mode sequence
σ(k1 : k2), the notation {x(xk1 , σ, u)}k1:k2 refers to the solution of (3) in the
interval of time [k1, k2] starting from xk1 and {y(xk1 , σ, u)}k1:k2 ∈ Y refers to
the corresponding output sequence in the same interval of time [k1, k2].

The following basic example aims at illustrating the main aforementioned
notions and remarks with a special focus on switched linear discrete-time sys-
tems like (3).

Example: Let us consider a switched linear discrete-time system like (3)
defined by: {

x
(1)
k+1 = aσ(k)x

(1)
k + uk

x
(2)
k+1 = uk,

(5)
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where aσ(k) belongs to a finite set of real numbers. The possible role of the
switching rule σ regarding flatness is briefly discussed after inspection of the
following situations.
Case 1.1: Consider the output defined as yk = x

(1)
k . Such an output is flat

because Equations (2) are fulfilled. Indeed, one easily obtains x
(1)
k = yk and

x
(2)
k = yk−aσ(k−1)yk−1 that define the function F and uk = yk+1−aσ(k)yk that

defines G. Let us notice that backward and forward shifts in the output are
involved. That corroborates Remark 2. Indeed, as it turns out, the relative
degree of (5) with respect to yk is equal to 1. According to Remark 3, yk is
a 0-flat output since it exclusively involves the state xk.
Case 1.2: Consider the output defined as yk = aσ(k)x

(1)
k + uk. Again, such

an output is flat because Equations (2) are fulfilled. Indeed, we obtain

x
(1)
k = yk−1 and x

(2)
k = yk−1 − aσ(k−1)yk−2 that define the function F and

uk = yk − aσ(k)yk−1 that defines G. For such an output, only backward
shifts are involved, the relative degree of (5) with respect to yk is equal to
zero. It is a 1-flat output since it involves uk only. Actually, the output
yk = aσ(k)x

(1)
k + uk is the 1-shift output of yk = x

(1)
k . The fact that it is also

a flat output illustrates Remark 5.
Case 1.3: Consider the output defined as yk = x

(2)
k . The system is left invert-

ible with respect to yk since uk = yk+1 and thus, clearly, uk can be uniquely
recovered from a finite sequence of shifted outputs. On the other hand, the
whole state cannot be recovered from yk because attempting to express x

(1)
k

as a function of the output fails down. That corroborates the fact that left
invertibility is not sufficient for an output to be flat as pointed out in Re-
mark 6.
It should be pointed out that the switching rule may or may not affect the
flatness property. In the cases 1.1 and 1.2, flatness is verified regardless of
the switching rule and values of aσ(k). Similarly, in the case 1.3, flatness is
not verified regardless of the switching rule and values of aσ(k). But even in
some basic situation, the switching rule may play a role. For example, let
us consider the one-dimensional system xk+1 = xk + aσ(k)uk. If, for a given
mode σ(k) at time k, aσ(k) vanishes, then, left invertibility and so flatness is
not fulfilled whereas if not so, flatness is always verified.

The aim of this paper is to provide a tractable algebraic condition along
with an efficient algorithm to decide whether a given output h is flat or not.
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3. Characterization of flat outputs

As stressed in Section 2, a candidate flat output must necessarily be an
output such that the system is left invertible. For this reason, we should now
recall results on left invertibility for switched linear discrete-time system.

3.1. Left invertibility for switched linear discrete-time systems

First, let us introduce the subsequent vectors and matrices notation:

uk:k+i =


uk
uk+1

...
uk+i

 , yk:k+i =


yk
yk+1

...
yk+i

 (6)

Im×r =
(
1m 0m×(m·r)

)

Oσ(k:k+i) =


Cσ(k)

Cσ(k+1)Aσ(k)
...

Cσ(k+i)A
σ(k+i−1)
σ(k)

 . (7)

In the equation above, we use the following notation:

A
σ(k1)
σ(k0)

= Aσ(k1)Aσ(k1−1) · · ·Aσ(k0) if k1 ≥ k0
= 1n if k1 < k0.

Finally, we recursively define the matrix

Mσ(k:k+i) =

(
Dσ(k) 0

Oσ(k+1:k+i)Bσ(k) Mσ(k+1:k+i)

)
(8)

with
Mσ(k:k) = Dσ(k)

The definition of left invertibility and its characterization recalled below
are borrowed from [25]. The existing characterization is restricted to outputs
of the form yk = Cσ(k)xk and yk = Cσ(k)xk + Dσ(k)uk. In the present paper,
the extension to the more general outputs described by Equation (4) will be
detailed in Section 3.3.
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Definition 3 (left invertibility [25]). The system (3) is left invertible with
respect to the output yk if there exists a non-negative integer r < ∞ such
that, for all mode sequences in J r+1, for any two inputs sequences {u}k:k+r ∈
U and {u′}k:k+r ∈ U , the following implication applies for any xk ∈ Rn:

{y(xk, σ, u)}k:k+r = {y(xk, σ, u
′)}k:k+r ⇒ uk = u′k. (9)

In others words, by left invertibility, we mean the ability to recover the
input uk from a finite number of r+1 observations yi (i = 0, . . . , r), the state
vector xk at time k and the mode sequences σ(k : k + r) being known.

The least integer r for which (3) is left invertible coincides with its left
inherent delay.

The following theorem, proved in [25], gives a necessary and sufficient
condition for the system (3) to be left invertible with respect to yk.

Theorem 1 ([25]). The system (3) is left invertible with respect to the output
yk if and only if there exists a non negative integer r <∞ such that, for all
mode sequences in J r+1,

rank

(
Mσ(k:k+r)

Im×r

)
= rankMσ(k:k+r). (10)

Remark 7. In practice, left invertibility is checked by an incremental ap-
proach. Start with r = 0 and if (10) is not fulfilled, repeat the test after
incrementing r by one. For linear discrete-time systems, it is well-known
that left invertibility is decidable. Indeed, r is bounded by the dimension n.
Hence, the iterative procedure stops after a finite number of tests. On the
other hand, for switched linear systems, the upper bound cannot be a priori
determined.

Finally, assuming that the system defined by Equation (3) is left invertible
with left inherent delay r, we recall from [25] the expression of the system
that allows to recover the input sequence of (3) from its output in a sequential
way, 

x̂k+r+1 = Pσ(k:k+r)x̂k+r
+Bσ(k)Im×r(Mσ(k:k+r))

†yk:k+r
ûk+r = −Im×r(Mσ(k:k+r))

†Oσ(k:k+r)x̂k+r
+Im×r(Mσ(k:k+r))

†yk:k+r

, (11)
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with
Pσ(k:k+r) = Aσ(k) −Bσ(k)Im×r(Mσ(k:k+r))

†Oσ(k:k+r). (12)

The matrix (Mσ(k:k+r))
† is the classical Moore-Penrose generalized inverse of

Mσ(k:k+r). Let us recall that for a given matrix Z, the Moore-Penrose gener-
alized inverse Z† is a matrix of the same dimension as Z ′ so that ZZ†Z = Z,
Z†ZZ† = Z†, ZZ† and Z†Z are Hermitian. The matrices Pσ(k:k+r) are the
dynamical matrices of the left-inverse dynamical system (11).

The main line of the proof follows. After letting εk = xk − x̂k+r, it
is shown in [25] that, from (3), (11) and (12), εk fulfills the dynamics:
εk+1 = Pσ(k:k+r)εk. Hence, under identical initial conditions x0 and identical
mode sequences, when driven by a sequence of vectors yk:k+r, the equalities
x̂k+r = xk and ûk+r = uk are ensured for all k ≥ 0. Thus, the input can be
indeed recovered. It is interesting to notice that the left inverse system plays
a central role to obtain the expression of F and G in (2). The reader may
refer to [16] to get the expressions as it is out of the scope of the present paper.

Next section is devoted to the characterization of 0-flat and 1-flat outputs
reading respectively yk = Cσ(k)xk and yk = Cσ(k)xk +Dσ(k)uk, assuming that
(3) is left invertible and that r has been determined (see Remark 7). Then,
the extension to I-flat outputs defined as (4) with I > 1 will be detailed.

3.2. 0-flat and 1-flat output characterization

The first characterization of a flat switched systems that we are aware
of is from [16]. It relies on the left-inverse dynamical system (11), and is
restricted to 0-flat and 1-flat outputs.

Theorem 2. Let yk = Cσ(k)xk (resp. yk = Cσ(k)xk + Dσ(k)uk) be the output
of system S and assume that S is left invertible with left inherent delay r.
Then, the output yk is a 0-flat output (resp. 1-flat output), if there exists a
non negative integer K such that, for all mode sequences in J r+K, and for
all k ≥ 0, the following product holds:

Pσ(k+K−1:k+K−1+r)Pσ(k+K−2:k+K−2+r) · · ·Pσ(k:k+r) = 0, (13)

where the matrices involved in the product are defined in (12).

The detailed proof is given in [16]. However, for a better understand-
ing, the main lines are recalled here. It substantially lies on the fact that,
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if (13) is fulfilled, then, after a finite number K of forward iterations of
(11), the state of the left inverse system x̂k+K+r will no longer depend on
the initial condition x̂k+r and will exclusively depend on shifted outputs yk+i
(i = 0, · · · , r +K) of S. Besides, the proof also shows that the dynamics of
the vector εk := xk − x̂k+r fulfills εk+1 = Pσ(k:k+r)εk. Hence, in view of (13),
it is inferred that after a finite number of iterations, xk = x̂k+r, and so xk,
will also exclusively depend of shifted outputs yk+i (i = 0, · · · , r + K) of S.
Finally, the proof shows that the same property applies for uk.

Theorem 2 recalls a characterization of a 0-flat output or 1-flat output
first given in [16]. The outcome of such a characterization is that it captures
the hybrid feature of the problem related to the specific class of switched sys-
tems. However, until now, besides the exhaustive search or some very specific
situations, no methodology to verify the condition (13) was proposed in the
literature. The contributions of this paper aim at giving a formal framework
along with a practical approach to improve on the computation-intensive ex-
haustive search. Indeed, the theorem above does not provide any bound on
the minimal number K of output values that is necessary to recover the state
and the input. Moreover, the computational cost of the test (13) grows expo-
nentially with respect to K. More precisely, the number of matrices involved
in the product is K while the number of sequences of length r + 1 are Jr+1.
Hence, an exhaustive search needs JK(r+1) tests, which can be prohibitive
for large triplets (J,K, r). We show in Section 5 that not only it is possible
to derive an upper bound on K, but also to propose an algorithm where the
number of tests may be significantly reduced. In fact, for a given switched
discrete-time system with left inherent delay r, the algorithm will allow to
decide whether an output is flat in polynomial time. Both the notion of
spectral radius and graph-based theory will be important to this end.

Before going into the graph-based framework, we address below, as new
results, the extension of left invertibility and flat output characterization, to
I-flat outputs (I > 1).

3.3. Extension to I-flat outputs with I > 1

The following theorem allows to characterize I-flat outputs in a similar
manner than for 0-flat and 1-flat outputs by considering an extended system.
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Theorem 3. A I-flat output (I > 1) for the system S is a 1-flat output for
the extended system defined by the state x̃k = [xk, uk+`0 , · · · , uk+`0+I−2] =
[xk, x̃

n+1
k , · · · , x̃n+I−1k ] ∈ X × U I−1 and input ũk = uk+`0+I−1.

Proof. Let us consider the extended state x̃k = [xk, uk+`0 , · · · , uk+`0+I−2] =
[xk, x̃

n+1
k , · · · , x̃n+I−1k ] ∈ X × U I−1 and input ũk = uk+`0+I−1. It verifies

the following n + m(I − 1)-dimensional state space description which reads
slightly differently according to the case I = 2 and I > 2.

Case I = 2

x̃k+1 =

(
xk+1

x̃
(n+1)
k+1

)
=

(
Aσ(k) Bσ(k)

0 0

)
x̃k +

(
0

1m

)
uk+`0+1

yk =
(
Cσ(k) D

`0
σ(k+`0)

)
x̃k +D`0+1

σ(k+`0+1)uk+`0+1

(14)

Case I > 2

x̃k+1 =



xk+1

x̃
(n+1)
k+1

.

.

.

x̃
(n+I−2)
k+1

x̃
(n+I−1)
k+1



=



Aσ(k) (0/Bσ(k))0 (0/Bσ(k))1 · · · (0/Bσ(k))I−2

0 0 1 0 · · ·
.
.
.

.

.

.
.
.
.

0 0 · · · 0 1
0 0 · · · 0 0

 x̃k +



(0/Bσ(k))I−1

0

.

.

.
0
1

uk+`0+I−1

yk =
(
Cσ(k) | D

`0
σ(k+`0)

· · · D`0+I−2

σ(k+`0+I−2)

)
x̃k +D

`0+I−1

σ(k+`0+I−1)
uk+`0+I−1

(15)

where (0/Bσ(k))i means that the block number i (i ∈ {0, . . . , I−1}) is either
0 or Bσ(k). Actually, only one block (0/Bσ(k))i is equal to Bσ(k). It is the block
that multiplies the component uk and thus, it depends on the value of l0. Re-
calling that `0 ∈ {−I+1, . . . , 0} and that x̃k = [xk, uk+`0 , · · · , uk+`0+I−2], the
only (0/Bσ(k))i block that is Bσ(k) is the block number −l0, the other blocks
are null matrices.

It is clear that the state space descriptions (14) and (15) depend on a
sequence of modes {σ(k + l0), · · · , σ(k + l0 + I − 1)}. Hence, it can be
identified to a switched system of the form{

x̃k+1 = Ãσ̃(k)x̃k + B̃σ̃(k)ũk
yk = C̃σ̃(k)x̃k + D̃σ̃(k)ũk

(16)
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where σ̃ is a switching rule that depends on the mode sequence {σ(k +
l0), · · · , σ(k + l0 + I − 1)}.

Example: Let us consider the MIMO square system of dimension n with m
inputs and m outputs. The switching rule σ is not constrained and admits
two modes (J = 2) with the corresponding state space matrices(

A1 B1

C1 D1

)
,

(
A2 B2

C2 D2

)
.

Assume that we want to check whether the output yk = Cσ(k+1)Aσ(k)xk +
Cσ(k+1)Bσ(k)uk +Dσ(k+1)uk+1 is a flat output (if so, it would be a 2-flat out-
put). From this perspective, we must define the extended state x̃k = [xk, uk]
(here, l0 = 0 and I = 2) and the input ũk = uk+1. It verifies the (n + m)-
dimensional state space description

x̃k+1 =

(
xk+1

x̃
(n+1)
k+1

)
=

(
Aσ(k) Bσ(k)

0 0

)
x̃k +

(
0
1

)
uk+1

yk =
(
Cσ(k+1)Aσ(k) | Cσ(k+1)Bσ(k)

)
x̃k +Dσ(k+1)uk+1.

(17)
The state space description depends on the sequence of modes {σ(k), σ(k +
1)}. Thus, it can be identified to a switched system of the form (16) with

Ãσ̃(k) =

(
Aσ(k) Bσ(k)

0 0

)
, B̃σ̃(k) =

(
0
1

)
,

C̃σ̃(k) =
(
Cσ(k+1)Aσ(k) | Cσ(k+1)Bσ(k)

)
, D̃σ̃(k) = Dσ(k+1)

The switching rule σ̃ admits 4 modes corresponding respectively to A1 B1 0
0 0 1

C1A1 C1B1 D1

 ,

 A1 B1 0
0 0 1

C2A1 C2B1 D2

 ,

 A2 B2 0
0 0 1

C1A2 C1B2 D1

 ,

 A2 B2 0
0 0 1

C2A2 C2B2 D2

 .

Finally, from Theorem 3, all the developments and theorems (Theorem 1
for left invertibility and Theorem 2 for flat output characterization) of Subsec-
tions 3.1 and 3.2 respectively, still apply to check whether yk is a flat output,
after substituting the matrices A,B,C,D by Ã, B̃, C̃, D̃ and the switching
rule σ by σ̃.
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4. A graph-based framework

This section is instrumental in the perspective of proving Theorem 5 that
gives a solution to check whether a given output is flat or not. The notion
of feasibility transitions and its natural graph interpretation are central ele-
ments to conclude on decidability by deriving an upper bound and to assess
the polynomial-time complexity of Algorithm 1 proposed in Section 5. It
highlights the role played by the relative degree (or the inherent delay) of
the system when examining the combinatorics of the graph construction, the
graph coinciding with de Bruijns graph.
Every dynamical matrix of the left inverse system (11) involved in the test
product (13) depends on a sequence of r + 1 modes. Hence, except for sin-
gular situations or the case when r = 0, although σ is not constrained, the
mode sequences of two successive matrices involved in the product (13) are
related to each other. Indeed, consider the bijective mapping φ : J r+1 →
I = {1, . . . , Jr+1} that assigns to each possible sequence {σ(k), . . . , σ(k+r)}
an integer i from the set I which uniquely identifies the sequence. Then, the
switching rule σ′ is defined as the function from N to I which associates to
each integer k ∈ N the quantity σ′(k) = φ(σ(k), . . . , σ(k + r)) ∈ I. It holds
that σ′(k) = φ(σ(k), . . . , σ(k+r)) and σ′(k+1) = φ(σ(k+1), . . . , σ(k+r+1))
depend on the common subsequence {σ(k + 1), . . . , σ(k + r)} that stands as
the constraint on the switching rule σ′. To formalize the constraints, we
introduce the notion of feasible transitions and de Bruijn’s graphs.

4.1. Feasible transitions and de Bruijn’s graph

Definition 4. The set Γ(σ′(k)) of feasible transitions from a mode σ′(k) is
the set defined by

Γ(σ′(k)) = {i ∈ I : i = φ(σ(k + 1), . . . ,
σ(k + r + 1)), σ(k + r + 1) ∈ J } (18)

In other words, Γ(σ′(k)) is the set of modes i ∈ I which can be reached
at time k+1 when σ(k+r+1) varies over the whole range J , σ′(k) and thus
the sequence {σ(k+ 1), . . . , σ(k+ r)} being imposed. One has Γ(σ′(k)) ⊆ I.
If the switching rule σ′ is not constrained, then Γ(σ′(k)) = I. It is clear that
Γ(σ′(k)) can never be the empty set.

Example:
Consider system S with J = 2 and r = 1, then the sequences involved in the

14



test product (13) are of length r + 1 = 2 and read {σ(k), σ(k + 1)}. In such
a case, the bijective mapping φ : J r+1 → I = {1, . . . , Jr+1} is defined as:

φ({11}) = 1
φ({12}) = 2
φ({21}) = 3
φ({22}) = 4

The set of feasible transitions is defined as:

Γ(1) = {1, 2}
Γ(2) = {3, 4}
Γ(3) = {1, 2}
Γ(4) = {3, 4}

Actually, the family of systems presented here, whose switching signal is
constrained, is not new. They are called constrained switched systems, and an
efficient way to represent these constraints is through a directed graph. See,
e.g. [26, 27] for recent works and other applications involving constrained
switched systems. The directed graph, denoted hereafter G, describing the
constraints on the switching sequences orchestrated by σ′ is the combination
of a vertex set V and an edge set E . The vertex vi represents the mode i of σ′

(assigned through φ in a bijective way to a mode sequence (σ(k), · · · , σ(k +
r))) while the edge from the node vi1 to node vi2 describes a feasible transition
from the mode i1 to the mode i2. The directed graph G having Jr+1 vertices,
since each vertex has exactly J incoming and J outgoing edges, thus the
total number of edges equals J · Jr+1 = Jr+2.

Definition 5. A sequence {i1, i2, . . . , iN} is said to be admissible or equiva-
lently is accepted by G if for any l ∈ {1, · · · , N − 1},

il+1 ∈ Γ(il). (19)

In other words, a sequence {i1, i2, . . . , iN} is admissible if there exists
a directed path in G that links vi1 to viN and passes through vertices vl
(l = 1, . . . , N) according to the order of appearance in this sequence. As
it turns out, for a not constrained switching rule σ, the graph G is nothing
but the so-called de Bruijn’s graph [28] encountered in graph theory. A de
Bruijn’s graph is a directed graph representing overlaps between sequences
of a symbols in a finite set.
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Example:
Consider system S with J = 2 and r = 1 (sequences of length equal to 2),
then the graph G is depicted in Figure 1.

1
11

4
22

3

2

12

21

Figure 1: The de Bruijn’s graph for sequences of length 2 and alphabet of size 2

Example:
Consider system S with J = 2 and r = 2 (sequences of length equal to 3),
then the graph is depicted in Figure 2.

111
1 112

2
121

3

5
211

221
7 4

1226
212

222
8

Figure 2: de Bruijn’s graph for sequences of length 3 and alphabet of size 2

Hence, while the number of test in the product (13), performed by an
exhaustive search is JK(r+1), the number of tests based on the consideration
of the de Bruijn’s graph reduces to Jr+1 · JK−1 = Jr+K . Indeed, while Jr+1

possible sequences must be considered for the first matrix Pσ(k:k+r) of the
product (13), only J sequences must be considered for the K − 1 remaining
matrices of the product (13). Actually, it is an upper bound of the required
number of tests which can be further reduced as highlighted by the following
remark.
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Remark 8. Different sequences {σ(k), . . . , σ(k + r)} of (3) and so, different
modes σ′(k) = φ(σ(k), . . . , σ(k+r)) might lead to identical matrices Pσ(k:k+r).
This situation occurs for example when the output matrix is constant and
does not depend on the mode. As a result, the set P of matrices Pσ(k:k+r) is a
multiset1 and one may only consider distinct matrices of P in order to reduce
the computational cost of the test (13). We will denote this set by Q, the
number of distinct matrices of P by L (L ≤ Jr+1) and Ql an element of Q
(l ∈ {1, · · · , L}). In such a case, the digraph G may be simplified by merg-
ing the vertices of which corresponding mode sequences {σ(k), . . . , σ(k+ r)}
give the same matrix Pσ(k:k+r). The new digraph requires a relabeling of the
modes through a new mapping φ, which is not bijective in this case. The set
Q coincides with P when P involves only distinct elements.

Example: Let us consider again Example 1.1 of Section 2.2. It is a SISO
system of dimension n = 1. Let us assume that σ has no constraint. The
rank test (10) to check the left invertibility succeeds with left inherent delay
r = 1. Thus, the matrices Pσ(k:k+1) depend on mode sequences of length 2
({σ(k), σ(k + 1)}) and should involve 4 elements. They are computed from
Equation (12) and generically read:

Pσ(k:k+1) =

(
0 0

−aσ(k) 0

)
.

Clearly, two distinct mode sequences {σ(k), σ(k + 1)} of length 2 give the
same matrix Pσ(k:k+1) since P only depends on σ(k). As a result, there are
only L = 2 distinct matrices that will define the set of matrices Q.

In such a case, we can introduce an auxiliary system for (3), denoted by
S(G,Q), defined as the constrained switched linear system given by

qk+1 = Qσ′(k)qk (20)

with qk ∈ Rn, σ′ the constrained switching rule defined by
σ′(k) = φ(σ(k), . . . , σ(k + r)), the matrices of the mode σ′(k) verifying
Qσ′(k) = Pσ(k:k+r) and the constraints on the switching rule σ′ defined by
the digraph G.

1The notion of a multiset is a generalization of the notion of a set in which elements
are allowed to appear more than once.

17



We are now able to reformulate Theorem 2.

Theorem 4. Let yk = Cσ(k)xk (resp. yk = Cσ(k)xk + Dσ(k)uk) be the output
of system S and assume that S is left invertible with left inherent delay r.
Then, the output yk is a 0-flat output (resp. 1-flat output) if there exists a
non negative integer K such that, for all sequences σ′ accepted by the graph
G of the auxiliary system S(G,Q), the following product of matrices applies
for all k ≥ 0:

Qσ′(k+K−1)Qσ′(k+K−2) · · ·Qσ′(k) = 0 (21)

It is worth stressing that the auxiliary system S(G,Q) is a constrained
switched system. Hence, in other words, Theorem 4 stipulates that the sys-
tem S is 0-flat (resp. 1-flat) with flat output defined by yk = Cσ(k)xk (resp.
yk = Cσ(k)xk +Dσ(k)uk) if the constrained switched system S(G,Q) is dead-
beat stable.

Remark 9. When the switching rule σ of the system S is constrained, the
digraph G reduces to a subgraph of de Bruijn’s graph.

Remark 10. For the case when I > 1, Theorem 4 still applies by considering
the system defined by Equations (16) obtained after substituting the matrices
A,B,C,D by Ã, B̃, C̃, D̃ and the switching rule σ by σ̃.

Although the number of test products may be significantly reduced when
considering the constraints on the switching rule σ′ and the set Q, the cost
of the test (21) is still exponential with respect to K, and one can still not
provide a bound on K. The next section aims at providing an efficient al-
ternative to check (21). The characterization of flat outputs of S in terms of
dead-beat stability of S(G,Q) in central for that purpose.

5. A polynomial time complexity algorithm to characterize a flat
output

As it turns out, if the switching rule σ′ of the auxiliary system is not
constrained, Equation (21) of Theorem 4 is equivalent to the property that
Q generates a nilpotent semigroup. This situation corresponds to the case
when the left inherent delay of the system is r = 0 (and some other singular
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cases when r > 0). Hence, in such a case, one can solve the problem effi-
ciently (see [29]) thanks to Levitsky’s theorem (Theorem 2.1.7 stated in [30])
which stipulates that any semigroup of nilpotent matrices can be triangular-
ized (for an efficient triangularization method, see e.g. [31] for example).

The aim of this section is to propose an efficient algorithm that checks
whether a given output yk of the system (3) is flat or not when the switching
rule σ′ is constrained. In such a case, the inherent delay r of the system (3)
is necessarily strictly greater than 0. Let us stress that by Theorem 3, we
can always assume that the output yk is 0-flat or 1-flat. If the output yk of
the system (3) is I-flat with I > 1, we must consider (16) instead of (3) in
Theorem 4 as stressed in Remark 10.

In order to verify whether (21) holds, the following algorithm is proposed.
A formal proof of its validity is then given. In the algorithm, the notation
jσ(1 : r) represents the concatenation of the mode j with the sequence of
modes σ(1 : r).

Algorithm 1. input:
A left-invertible switched system (3) (or (16)) with left-inherent delay r,
output:
YES if the output yk is flat and K, NO otherwise.
Main part:

• Build all the matrices Pσ(k:k+r) as in (12).

• initialize variables Sσ(1:r) = 1n for every r-tuple σ(1 : r)

• For i := 1 to nJr,

– For all r-tuple σ(1 : r), Sσ(1:r) :=
∑

j∈J Pjσ(1:r)Sjσ(1:(r−1))P
′

jσ(1:r)

– if all the variables Sσ(1:r) are zero, return YES, K = i and STOP

• Return NO.

end

Theorem 5. For any fixed r ∈ N, given a left invertible switched system
(3) (or (16)) with left-inherent delay r and output yk, Algorithm 1 decides
whether the output is flat or not and runs in polynomial time.
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Proof. Dead-beat stability: apply the construction of Section 4 in order to
obtain the auxiliary system in the form of a constrained switched system
S(G,Q). Then, by Theorem 4, the output yk is flat if and only if S(G,Q) is
dead-beat stable.
Decidability: if the output yk is flat, there exists an integer K such that all
the products of length larger than K in (21) are equal to zero, recalling the
equality Qσ′(k) = Pσ(k:k+r). Indeed, this is a consequence of [32, Theorem
3.1], which guarantees that if a constrained switched system is dead-beat
stable, the maximal length of any nonzero product is bounded by Jrn.
Computational complexity: computing the total number of possible products
of the form Qσ′(k+K−1)Qσ′(k+K−2) · · ·Qσ′(k) and of length K would give JnJ

r+r

matrix products, which can be prohibitive. However, from [32, Proposition
3.3], an alternative exists for the computation. Indeed, one can verify that
the variable Sσ(1:r) at step i in Algorithm 1 is equal to∑

Z∈{Pσ(k+i−1:k+i−1+r)Pσ(k+i−2:k+i−2+r)···Pσ(k:k+r)}

ZZ
′
.

Thus, at step i = K, the sum above is over all matrices of the shape
Z ∈ {Pσ(k+i−1:k+i−1+r)Pσ(k+i−2:k+i−2+r) · · ·Pσ(k:k+r)}, and this sum is zero if
and only if all matrices Z are zero. Indeed, the sum of symmetric positive
semi-definite matrices is zero if and only if all the matrices are zero.

Finally, in Algorithm 1, the main loop contains at most K iterations,
and in each loop, one has to compute 2Jr products of matrices of size n.
Hence, Algorithm 1 computes at most 2nJ2r matrix products, which ends
the proof.

6. Illustrative examples

We consider in this section two examples, one devoted to a SISO system
with a canonical flat output and another devoted to a MIMO system with a
flat output involving linear combination of state components.

Example 1:
Let us consider a ball and beam bench system. A sensor detects the ball posi-
tion along a beam and an actuator drives the beam to a desired angle through
a torque. From the Newton’s law, the linearized model can be described as
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a simple double integrator. A controller aims at regulating the ball at the
desired angle. Having in mind a digital implementation, the linearized model
is discretized with a sampling period that may not be constant and properly
adapted to the velocity of the ball (for computational reasons for example).
For simplicity, let the sampling period having two possible values. The result-
ing state space model, obtained after an Euler-based discretization method
admits a two-dimensional model with xk the state vector, its first component
x
(1)
k as the position of the ball, its second component x

(2)
k as the velocity of

the ball, uk as the one-dimensional input that corresponds to the controlled
angle and yk as the one-dimensional output that is nothing but the position
x
(1)
k of the ball. In this respect, the output is called canonical. Let Tk be the

sampling period assumed to take values in the set {T1 = 0.1s, T2 = 0.2s}.
At each time instant k, a supervisor decides on the value of Tk and thus, is
governed by a switching rule σ that admits two modes (J = 2) with no con-
straints. Otherwise stated, the sequence of sampling periods can be arbitrary.

After normalization, the classical state space matrices, resulting for the
discretization of a double integrator, read for each mode:

(
A1 B1

C1 D1

)
=

 1 T1 0
0 1 T1
1 0 0


(
A2 B2

C2 D2

)
=

 1 T2 0
0 1 T2
1 0 0


First, we perform the rank test (10) to check the left invertibility. It succeeds
with left inherent delay r = 2. Thus, the set P of matrices Pσ(k:k+2) involves 8
elements which are computed from Equation (12). It turns out that distinct
mode sequences {σ(k), σ(k+1), σ(k+2)} of length r+1 give the same matrix
Pσ(k:k+2) (actually, there are only L = 4 distinct matrices). Therefore, it is
useful to compute the set of matrices Q for the Jr+1 = 8 possible sequences
{σ(k), σ(k + 1), σ(k + 2)}.
For the sequences 111 and 112, we have that

Q1 = P111 = P112 =

(
1 0.1
−10 −1

)
.
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For the sequences 121 and 122, we have that

Q2 = P121 = P122 =

(
1 0.1
−5 −0.5

)
.

For the sequences 211 and 212, we have that

Q3 = P211 = P212 =

(
1 0.2
−10 −2

)
.

Finally, for the sequences 221 and 222, we have that

Q4 = P221 = P222 =

(
1 0.2
−5 −1

)
.

Therefore, the switching rule σ′ of the auxiliary system S(G,Q) admits 4
modes. The admissible mode sequences fulfills the constraints explicited
in the graph G depicted on Figure 3. The graph G has been obtained by
merging all vertices vi of de Bruijn’s graph corresponding to J = 2 and
r = 2 assigned to the sequences {σ(k), σ(k+1), σ(k+2)} leading to identical
matrices Pσ(k:k+2).

111, 1121

2

3

221, 222 4

211, 212

121, 122

Figure 3: Simplified graph G from de Bruijn’s graph for J = 2 and r = 2

Let us apply Algorithm 1.

The computation at step i = 1 reads:

S11 := P1111nP
′
111 + P2111nP

′
211 S12 := P1121nP

′
112 + P2121nP

′
212

S21 := P1211nP
′
121 + P2211nP

′
221 S22 := P1221nP

′
122 + P2221nP

′
222.
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which boils down, according to the graph of Figure 3, to

S11 = S12 := Q11nQ
′
1 +Q31nQ

′
3 S21 = S22 := Q21nQ

′
2 +Q41nQ

′
4.

These matrices are nonzero. we have

S11 = S12 =

(
2.05 −20.5
−20.5 205

)
, S21 = S22 =

(
2.05 −10.25
−10.25 51.25

)
Hence, we now move to the second iteration of the loop, and we compute

S11 := P111S11P
′
111 + P211S21P

′
211 S12 := P112S11P

′
112 + P212S21P

′
212

S21 := P121S12P
′
121 + P221S22P

′
221 S22 := P122S12P

′
122 + P222S22P

′
222.

which boils down, according to the graph of Figure 3, to

S11 = S12 := Q1S11Q
′
1 +Q3S21Q

′
3 S21 = S22 := Q2S12Q

′
2 +Q4S22Q

′
4.

All these matrices are zero, and we conclude that the output yk is flat.

Example 2:
Let us consider a numerical example involving a MIMO square system of
dimension n = 4 with 2 inputs and 2 outputs (m = 2). The switching rule σ
admits two modes (J = 2). Let us assume that σ has no constraints. Hence,
any mode sequence is admissible. The state space matrices for each mode
read:

(
A1 B1

C1 D1

)
=


0 −0.3 −0.4 0.2 0 −1.5
−1 0.3 2 0 1 −0.5
−0.05 0.005 0 −0.2 0 −0.5

0 0.005 0.4 0 0.5 0
1 −1 −2 2 0 0
3 −1 −8 2 0 0



(
A2 B2

C2 D2

)
=


0 −0.3 −0.4 0.2 0 −1.5
−2 0.3 2 0 1 −0.5
−0.05 0.005 0 −0.2 0 −0.5

0 0.3 0.4 0 0.5 0
1 −1 −2 2 0 0
3 −1 −8 2 0 0


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We illustrate here that the procedure for checking whether an output is flat
or not applies in a similar fashion and with the same complexity for MIMO
systems and even if the output is not canonical. Similarly to example 1, the
rank test (10) succeeds with left inherent delay r = 2, the set P of matrices
Pσ(k:k+2) involves 8 elements which are computed from Equation (12) and
actually, there are only L = 4 distinct matrices. The matrices of the set
Q for the Jr+1 = 8 possible sequences {σ(k), σ(k + 1), σ(k + 2)} are the
following.
For the sequences 111 and 112,

Q1 = P111 = P112 =


−7.9451 3.6890 11.5604 −4.3495
−15.8462 6.9692 22.7692 −7.5385
−2.6984 1.3347 3.9868 −1.7165
−6.0989 2.7198 8.7912 −3.0110

 .

For the sequences 121 and 122,

Q2 = P121 = P122 =


0.5647 −0.1580 −0.7445 0.0044
−4.1661 1.6890 5.8801 −1.5626
0.1382 0.0523 −0.1148 −0.2652
−1.6772 0.7208 2.3975 −0.7487

 .

For the sequences 211 and 212,

Q3 = P211 = P212 =


−15.1648 0.0791 11.5604 −4.3495
−30.4615 −0.3385 22.7692 −7.5385
−5.1049 0.1314 3.9868 −1.7165
−11.7033 −0.0824 8.7912 −3.0110

 .

Finally, for the sequences 221 and 222,

Q4 = P221 = P222 =


1.1356 0.1274 −0.7445 0.0044
−8.0883 −0.2721 5.8801 −1.5626
0.3285 0.1475 −0.1148 −0.2652
−3.2334 −0.0573 2.3975 −0.7487

 .

The same considerations as in example 1 lead to a switching rule σ′ of the
auxiliary system S(G,Q) admitting 4 modes with admissible mode sequences
fulfilling the constraints explicited in the same graph G depicted on Figure 3.

Let us apply Algorithm 1.
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The computation at step i = 1 gives matrices which are nonzero. As an
example, we have

S11 = 1000 ·


0.6118 1.2055 0.2109 0.4654
1.2055 2.3782 0.4150 0.9179
0.2109 0.4150 0.0728 0.1603
0.4654 0.9179 0.1603 0.3543

 .

Hence, we now move to the second iteration of the loop. The computation
gives S11 = S12 = S21 = S22 = 0. We conclude that the output yk is flat.

7. Conclusion

We have addressed the problem of flat output characterization for switched
linear discrete-time systems. An algebraic condition has been provided and
extends existing results to I-flat outputs with the integer I potentially strictly
greater than 1. It has been proved that such a characterization is decidable
and an efficient algorithm which allows to decide in polynomial time whether
a given output is flat has been given. The algorithm has been derived from
the context of constrained switched systems and a graph-based framework
involving de Bruijn’s graph.
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