Supporting Information

Effect of UVC pre-irradiation on the Suwannee river natural organic matter (SRNOM) photoxidant properties: role of carbonyls

Davide Palma, Amina Khaled, Mohamad Sleiman, Guillaume Voyard, Claire Richard* Université Clermont Auvergne, CNRS, SIGMA-Clermont, ICCF, F-63000 Clermont-Ferrand, France

Text 1 : Measurement of I_{0}, the photon flux entering into the solution from the UVC source
I_{0} was evaluated by chemical actinometry from the rate of glyphosate consumption in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the device. Irradiation of $\mathrm{H}_{2} \mathrm{O}_{2}$ yields $\cdot \mathrm{OH}$ radicals that react with glyphosate according to:

$$
\mathrm{k}_{\mathrm{gly}} .
$$

Based on $\mathrm{k}_{\mathrm{gly}}=3.7 \times 10^{7} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$ [Vidal et al. 2015] and $\mathrm{k}_{\mathrm{H} 2 \mathrm{O} 2}=2.7 \times 10^{7} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$ [Stephan et al. 1996], one gets that glyphosate $\left(10^{-5} \mathrm{M}\right)$ in presence of $\mathrm{H}_{2} \mathrm{O}_{2}\left(10^{-5} \mathrm{M}\right)$ traps 58% of $\cdot \mathrm{OH}$ radicals. The rate of glyphosate loss $\left(\mathrm{R}_{\mathrm{gly}}\right)$ is thus equal to :

$$
\mathrm{R}_{\mathrm{Gly}}=\mathrm{I}_{\mathrm{a}}{ }^{\mathrm{H} 2 \mathrm{O} 2} \times \Phi_{\mathrm{OH}} \times 0.58=\mathrm{I}_{0} \times\left(1-10^{-\mathrm{AH} 2 \mathrm{O} 2}\right) \times \Phi_{\mathrm{OH}} \times 0.58
$$

where $\mathrm{I}_{\mathrm{a}}{ }^{\mathrm{H} 2 \mathrm{O} 2}$ is the rate of light absorption by $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{~A}^{\mathrm{H} 2 \mathrm{O} 2}$ is the absorbance of the solution at 254 nm . As only $\mathrm{H}_{2} \mathrm{O}_{2}$ absorbs 254 nm radiations, one gets :

$$
\mathrm{A}^{\mathrm{H} 2 \mathrm{O} 2}=\varepsilon_{\mathrm{H} 2 \mathrm{O} 2} \times\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \times \ell
$$

with $\varepsilon_{\mathrm{H} 2 \mathrm{O} 2}=19.6 \mathrm{M}^{-1} . \mathrm{cm}^{-1},\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=10^{-5} \mathrm{M}$ and $\ell=2 \mathrm{~cm}$.
From $\mathrm{R}_{\mathrm{gly}}=(9.3 \pm 0.5) \times 10^{-8} \mathrm{~min}^{-1}($ Fig SI-1 $)$, we get $\mathrm{I}_{0}=2.9 \times 10^{-6}$ Einstein $\mathrm{L}^{-1} \mathrm{~s}^{-1}$

Fig SI-1 : Loss of glyphosate $\left(10^{-5} \mathrm{M}\right)$ upon irradiation in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}\left(10^{-5} \mathrm{M}\right)$ in the UVC device equipped with 4 germicidal tubes (General Electric, 15W).

Vidal E., Negro A., Cassano A., Zalazar C. Simplified reaction kinetics. models and experiments for glyphosate degradation in water by the UV/H2O2 process
Photochem Photobiol Sci 2015, 14, 366-377
Stefan M. , Hoy A., Bolton J.R. Kinetics and Mechanism of the Degradation and Mineralization of Acetone in Dilute Aqueous Solution Sensitized by the UV Photolysis of Hydrogen Peroxide
Environ. Sci. Technol. 1996, 30, 2382-2390
Yu X.Y., Barker J. R. Hydrogen Peroxide Photolysis in Acidic Aqueous Solutions Containing Chloride Ions. II. Quantum Yield of $\mathrm{HO}^{*}(\mathrm{Aq})$ Radicals J. Phys. Chem. A 2003, 107, 9, 13251332

Text 2 : Analysis of carbonyls by DNPH derivatization.

DNPH derivatives were prepared by mixing 1 mL of non irradiated or irradiated SRNOM solution with $200 \mu \mathrm{~L}$ of DNPH solution ($1 \mathrm{mg} . \mathrm{mL}^{-1}$ in acetonitrile) and $20 \mu \mathrm{~L}$ of phosphoric acid at 5 N . Mixture was mechanically stirred for 30 min . After the addition of 1 mL of acetonitrile, it was shortly analyzed by ultra-high performance liquid chromatography (UHPLC) coupled to high resolution mass spectrometry (HRMS).

In the presence of DNPH carbonyls yield imines and water according to:

The m / z value of the imine is used to determine the chemical formula of the carbonyl. Pyruvic acid $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)$ gives an adduct detected at $\mathrm{m} / \mathrm{z}=267.0374$ in negative mode corresponding to $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{~N}_{4}$. Methyl glyoxal $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ that contains 2 carbonyls is derivatized 2 times and gives an adduct detected at $\mathrm{m} / \mathrm{z}=431.0709$ corresponding to $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{8} \mathrm{~N}_{8}$.

Pyruvic acid and methylglyoxal were used as references for peak quantification for mono and dicarbonyls, respectively.

Fig SI-2 : Calibration curve of pyruvic acid and methylglyoxal

Figure SI-3 : UHPLC-MS of DNPH derivatives

$$
\mathrm{m} / \mathrm{z}=209.0309
$$

$\mathrm{m} / \mathrm{z}=239.0422$
Davide-DNPH-3 \#522 RT: 4.29 AV: 1 NL: 8.56E7
T: FTMS - p ESI Full ms [50.0000-750.0000]

$\mathrm{m} / \mathrm{z}=267.0374$
Davide-DNPH-3 \#570 RT: 4.68 AV: 1 NL: 1.97E7
T: FTMS - p ESI Full ms [50.0000-750.0000]

$\mathrm{m} / \mathrm{z}=281.0529$

$$
\mathrm{m} / \mathrm{z}=417.0551
$$

$\mathrm{m} / \mathrm{z}=445.0499$
Davide-DNPH-3 \#754 RT: 6.18 AV: 1 NL: 1.11E7
Davide-DNPH-3 \#754 RT: 6.18 AV: 1 NL:
T: FTMS - p ESIFull ms [50.0000-750.0000]

$\mathrm{m} / \mathrm{z}=461.0455$

$\mathrm{m} / \mathrm{z}=475.0615$

$$
\mathrm{m} / \mathrm{z}=489.0767
$$

$\mathrm{m} / \mathrm{z}=505.0716$

T: FTMS - p ESI Full ms [50.0000-750.0000]

$\mathrm{m} / \mathrm{z}=669.1066$

Davide-DNPH-3 \#826 RT: 6.76 AV: 1 NL: 1.44 E 7
T: FTMS - p ESI Full ms [50.0000-750.0000]

Text 3: UHPLC conditions in UHPLC-MS analyses

UHPLC separation conditions were the following: The aqueous solvent (A) consisted of a mixture of 0.1% formic acid, and the organic phase (B) was acetonitrile. Separation was achieved with a gradient program consisting of 0-7.5 min 5% and $7.5-8.5 \mathrm{~min} 99 \%$ of mobile phase B. After 8.5 min , the gradient was returned to the initial conditions and the analytical column was reconditioned for 3.5 min . The flow rate was set to $0.450 \mathrm{ml} . \mathrm{min}^{-1}$. The spectrometer operated in negative and positive modes. The formulas are proposed based on ppm < 5 .

Text 4: Analysis of carboxylic and hydroxylic intermediates by BSTFA derivatization.
BSTFA derivatization was conducted as follows. A stock solution of SRNOM was prepared at $40 \mathrm{mg} . \mathrm{L}^{-1}$ and neutralized to $\mathrm{pH} 7 \pm 0.2$ using $\mathrm{NaOH}(0.1 \mathrm{M})$. Six portions of 35 mL were irradiated in the quartz reactor until absorbance at 254 nm declined from 0.85 to 0.35 ; solutions were then pooled, acidified using $\mathrm{HCl}(0.1 \mathrm{M})$, and lyophilised until perfect dryness. Then, 1 mL of acetonitrile was added to the dried powder. The acetonitrile solution was withdrawn, transferred to a GC vial, and finally mixed with 0.3 mL of BSTFA $+1 \%$ TMCS.

After immediate sealing and mixing for 30 s , a $1 \mu \mathrm{~L}$ portion was injected in the GC-MS. A reference sample containing non irradiated SRNOM (210 ml at $40 \mathrm{mg} . \mathrm{L}^{-1}$) was prepared in the same conditions.

The reaction between compounds containing OH (alcohols or carboxylic acids) yields the following silylated derivative that is volatile and detectable by GC-MS :

Compound separation was achieved by an HP-5MS (5\% phenyl methyl siloxane) capillary column with 30 m length, 0.25 mm internal diameter, and 0.25 mm film thickness. The injector temperature was set at $250^{\circ} \mathrm{C}$ and the injection volume was $1.0 \mu \mathrm{~L}$ (split ratio of 20:1). The GC oven temperature program was: $50^{\circ} \mathrm{C}$ for 1 min followed by a gradient of 10 ${ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ to $250{ }^{\circ} \mathrm{C}$ and held for 5 min . Mass spectra were scanned between $\mathrm{m} / \mathrm{z} 50$ and m / z 500 with the source temperature set at $230^{\circ} \mathrm{C}$. Identification was based on matching query spectra to spectra present in the reference library (NIST17). with a minimum spectral similarity measure of 95%.

Glycolic acid was used as a reference compound for the quantification of the other photoproducts.

Text 5 : Ionic Chromatography-Mass spectrometry analyses

IC-MS was conducted on a Dionex ICS-6000 interfaced to a Thermo simple quadrupole mass spectrometer from Thermo Scientific. Samples were injected onto a Dionex IonPac AS-11-HC- $4 \mu \mathrm{~m} 2 \times 250 \mathrm{~mm}$ column with a Dionex AG11-HC-4 $\mu \mathrm{m}$ guard column. Elution was done with a KOH step gradient beginning at 1 mM KOH from 0 to $5 \mathrm{~min}, 30 \mathrm{mM} \mathrm{KOH}$ from 5.1 to $25 \mathrm{~min}, 60 \mathrm{mM} \mathrm{KOH}$ from 25.1 to 31 min .60 mM was held until 35 min , and the column reequilibrated at 1 mM KOH at 35.1 min at a flow rate of $0.36 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ and $40^{\circ} \mathrm{C}$. An electrochemical suppressor was used to neutralize the KOH eluent before reaching the mass spectrometer. The simple quadrupole mass spectrometer was operated in negative ion mode using electrospray ionization with an ESI capillary voltage of 3000 V . Full scan analysis (10$500 \mathrm{~m} / \mathrm{z}$ over 45 min) and targeted analysis (+/-0.5 amu) were done.

Text 6 : Peroxide measurements

Two mL of a phosphate buffer (pH 7.4) solution of horseradish peroxidase was mixed with 4 mL of 4-hydroxyphenylacetic acid $\left(10^{-3} \mathrm{M}\right)$ and $60 \mu \mathrm{~L}$ of sample. The formation of the dimer of 4-hydroxyphenylacetic acid was monitored by fluorescence (excitation wavelength at 320 nm) (Fig SI-4). It allowed to estimate the concentration of $\mathrm{RO}_{2} \mathrm{H}+\mathrm{RO}_{2} \mathrm{R}+\mathrm{H}_{2} \mathrm{O}_{2}$. To estimate the concentrations of peroxides $\left(\mathrm{RO}_{2} \mathrm{H}\right.$ and $\left.\mathrm{RO}_{2} \mathrm{R}\right)$ only, experiments were repeated by adding catalase in the solution containing 4-hydroxyphenylacetic acid and the sample before the mixing with horseradish peroxidase. The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ was obtained by difference. A calibration curve was drawn by titrating $\mathrm{H}_{2} \mathrm{O}_{2}$ solutions ($1-50 \mu \mathrm{M}$) in presence of SRNOM ($20 \mathrm{mg} \mathrm{L}^{-1}$).

Figure SI-4 : Spectrofluorimetric quantification of peroxides . The calibration curve measures the concentration of the dimer of 4-hydroxyphenylacetic acid. The excitation wavelength was set at 320 nm .

Text 7 : Determination of the rate of glyphosate consumption in SRNOM solutions

Based on the following processes :
SRNOM $+\mathrm{h} \nu \rightarrow$ SRNOM $^{*} \rightarrow \quad \cdot \mathrm{OH} \quad \mathrm{I}_{\mathrm{a}} \Phi_{\mathrm{OH}}{ }^{\text {SRNOM }}$

$$
\begin{equation*}
\cdot \mathrm{OH}+\text { Glyphosate } \rightarrow \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{k}_{\mathrm{Gly}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\cdot \mathrm{OH}+\mathrm{SRNOM} \rightarrow \tag{3}
\end{equation*}
$$

$$
\mathrm{k}_{\mathrm{SRNOM}}
$$

the rate of glyphosate ($\mathrm{R}_{\text {Gly }}$) loss is equal to :

$$
\mathrm{R}_{\mathrm{Gly}}=\mathrm{k}_{\mathrm{Gly}}[\cdot \mathrm{OH}][\mathrm{Gly}]
$$

Using that the rate of $\cdot \mathrm{OH}$ formation is equal to its rate of loss once the quasi stationary state is reached, one can write that:
$\mathrm{I}_{\mathrm{a}} \Phi_{\mathrm{OH}}{ }^{\text {SRNOM }}=\mathrm{k}_{\mathrm{Gly}}[\cdot \mathrm{OH}]_{\mathrm{qss}}[\mathrm{Gly}]+\mathrm{k}_{\mathrm{SRNOM}}[\cdot \mathrm{OH}]_{\mathrm{qss}}[\mathrm{SRNOM}]$
This gives:
$[\cdot \mathrm{OH}]_{\mathrm{qSs}}=\mathrm{I}_{\mathrm{a}} \Phi_{\mathrm{OH}}{ }^{\mathrm{SRNOM}} / \mathrm{k}_{\mathrm{GII}}[\mathrm{Gly}]+\mathrm{k}_{\mathrm{SRNOM}}[$ SRNOM $]$

This finally gives :

$$
R_{G l y}=I_{0}\left(1-10^{\left.-A_{S R N O M}\right) \emptyset_{O H}^{S R N O M}} \frac{k_{g l y}[G l y]}{k_{g l y}[G l y]+k_{S R N O M}[S R N O M]}\right.
$$

Text 8 : Rate of light absorption of a compound in a mixture

The rate of light absorption of I alone is equal to :
$\mathrm{Ia}_{\mathrm{I}}=\mathrm{I}_{0}\left(1-10^{-(\mathrm{Al})}\right)$
while the rate of light absorption of I in mixture with II , $\left(\mathrm{Ia}_{\mathrm{I}}\right)^{\text {II }}$, is equal to :
$\left(\mathrm{Ia}_{\mathrm{I}}\right)^{\mathrm{II}}=\mathrm{I}_{0} \mathrm{~A}_{\mathrm{I}} /\left(\mathrm{A}_{\mathrm{I}}+\mathrm{A}_{\mathrm{II}}\right)\left(1-10^{-(\mathrm{AI}+\mathrm{AII})}\right)$

Where A_{I} and $A_{I I}$ are the absorbance of I and II respectively.

Table SI-1 : Carboxylic acids and carbohydrates detected in non-irradiated SRNOM by BSTFA derivatization coupled to GC-MS. The number of OH functions correspond to the number of TMS linked to the compound. NDB is the number of double bond.

	Compounds	Number of OH functions	NDB	Name	N°	m / z adduct and fragments
Acids	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{4}$	3	1	Glyceric acid	16	$\begin{gathered} 322,307,292,189 \\ 147,103,73 \end{gathered}$
	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$	2	2	Hexanedioic acid	31	$\begin{gathered} 290,275,172,147, \\ 111,73 \end{gathered}$
	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}$	2	2	Azelaic acid	38	332, 317, 217, 147, 73
	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}$	2	2	Dodecanedioic acid	39	374, 357, 217, 147, 73
	$\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}$	1	2	Oleic acid	40	396, 339, 183, 129, 73
Carbohy -drates	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$	4	1	Xylose	29	438, 217, 204, 147, 73
	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}$	4	1	L-Rhamnose	32	452, 204, 147, 73
	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}$	4	1	Fucose	33	452, 217, 204, 147, 73
	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	5	1	Glucose	34	540, 217, 204, 147, 73
	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	5	1	Galactose	35	540, 217, 204, 147, 73

Table SI-2: Carboxylic compounds detected in SRNOM $_{3 H}$ by BSTFA derivatization coupled to GC-MS and/or by CI coupled to MS. The number of OH functions corresponds to the number of TMS linked to the compound.

Compound	Number of OH functions	NDB	Name	N°	
$\mathrm{CH}_{2} \mathrm{O}_{2}$	1	1	Formic acid	2	
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	1	1	Acetic acid	4	
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	2	2	Oxalic acid	9	
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$	2	1	Glycolic acid	7	$220,205,177,147,73$
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$	2	1	Lactic acid and fragments	11	$234,219,191,147,117,73$
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$	2	2	malonic acid	15	$248,233,147,73$
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{5}$	3	2	Tartronic acid	17	$336,321,292,221,147,102,73$
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{6}$	4	2	Dihydroxy malonic acid	18	$424,409,381,307,221,147,73$
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$	2	2	Butanedioic acid	23	$262,247,147,73$
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$	3	2	Malic acid	25	$350,335,307,245,233,175$,
	2	1	$4-$ amino butanoic acid	26	$274,260,184,147,73$
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{4}$	2	2	glutaric acid	27	$276,261,204,147,129,73$
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$	3	3	Tricarballylic acid	37	$392,377,302,259,217,185$,
$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$	1	1	Stearic acid	41	$356,341,145,117,73$

Table SI-3: Carbonyls compounds detected by DNPH derivatization and UHPLC-HRMS in irradiated in SRNOM solutions. The number of CO functions corresponds to the number of

Compound	Number of CO functions	NDB	Name	N°	$\Delta \mathrm{ppm}$	m/z adduct in ES
$\mathrm{CH}_{2} \mathrm{O}$	1	1	formaldehyde	1	1.9	209.0309
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	1	1	acetaldehyde	3	2.8	223.0469
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	1	1	glycoaldehyde	5	3.5	239.042
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$	2	2	glyoxal	6	3.1	417.0554
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}$	1	2	glyoxylic acid	8	4.5	253.0213
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$	2	2	methylglyoxal	10	2.7	431.0709

DNPH linked to the compound.

$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$	1	2	pyruvic acid	12	4.7	267.0374
$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$	3	3		13	3.0	625.0793
$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}$	2	3		14	3.9	461.0454
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$	1	2		19	5.0	265.0581
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$	2	3	butenedial	20	2.1	443.0706
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$	1	2		21	4.6	281.053
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{3}$	2	3		22	2.1	459.0662
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	2	3		24	3.2	475.0615
$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}$	3	3		28	4.0	489.0767
$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{6}$	2	3		30	3.7	505.0720

Table SI-4 : Concentration of carbonyls (M) in original and irradiated SRNOM

Compound	N°	SRNOM	SRNOM $_{1 \mathrm{~h}}$	SRNOM $_{2 \mathrm{~h}}$	SRNOM $_{3 \mathrm{~h}}$	SRNOM $_{4 \mathrm{~h}}$
formaldehyde	1	$4.6 \mathrm{E}-06$	$2.1 \mathrm{E}-05$	$1.7 \mathrm{E}-04$	$1.2 \mathrm{E}-04$	$7.5 \mathrm{E}-05$
glycoaldehyde	5	$8.3 \mathrm{E}-09$	$4.1 \mathrm{E}-06$	$7.8 \mathrm{E}-06$	$8.2 \mathrm{E}-06$	$8.7 \mathrm{E}-06$
glyoxylic acid	8	$5.4 \mathrm{E}-08$	$1.4 \mathrm{E}-05$	$3.3 \mathrm{E}-05$	$2.2 \mathrm{E}-05$	$1.3 \mathrm{E}-05$
pyruvic acid	12	$5.4 \mathrm{E}-08$	$5.3 \mathrm{E}-06$	$1.0 \mathrm{E}-05$	$1.1 \mathrm{E}-05$	$1.2 \mathrm{E}-05$
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$	19	$1.2 \mathrm{E}-08$	$8.3 \mathrm{E}-07$	$1.2 \mathrm{E}-06$	$1.0 \mathrm{E}-06$	$7.9 \mathrm{E}-07$
glyoxal	6	$0.00 \mathrm{E}+00$	$5.1 \mathrm{E}-06$	$2.0 \mathrm{E}-05$	$2.3 \mathrm{E}-05$	$2.5 \mathrm{E}-05$
methylglyoxal	10	$1.4 \mathrm{E}-07$	$2.5 \mathrm{E}-06$	$5.1 \mathrm{E}-06$	$7.6 \mathrm{E}-06$	$8.9 \mathrm{E}-06$
$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$	13	$1.1 \mathrm{E}-07$	$1.7 \mathrm{E}-06$	$1.1 \mathrm{E}-05$	$1.6 \mathrm{E}-05$	$2.0 \mathrm{E}-05$
$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}$	14	$0.00 \mathrm{E}+00$	$8.0 \mathrm{E}-07$	$2.8 \mathrm{E}-06$	$2.5 \mathrm{E}-06$	$5.8 \mathrm{E}-07$
butenedial	20	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$8.3 \mathrm{E}-08$	$1.8 \mathrm{E}-07$	$7.1 \mathrm{E}-08$
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{3}$	22	$0.00 \mathrm{E}+00$	$7.5 \mathrm{E}-07$	$7.1 \mathrm{E}-07$	$3.1 \mathrm{E}-06$	$1.2 \mathrm{E}-06$
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	24	$0.00 \mathrm{E}+00$	$2.9 \mathrm{E}-07$	$3.1 \mathrm{E}-07$	$9.6 \mathrm{E}-07$	$3.9 \mathrm{E}-07$
$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}$	28	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$4.2 \mathrm{E}-07$	$6.2 \mathrm{E}-07$	$5.0 \mathrm{E}-07$
$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{6}$	30	$0.00 \mathrm{E}+00$	$3.6 \mathrm{E}-08$	$1.1 \mathrm{E}-07$	$2.6 \mathrm{E}-07$	$1.7 \mathrm{E}-07$
$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$	13	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$7.5 \mathrm{E}-07$	$3.4 \mathrm{E}-06$	$5.0 \mathrm{E}-06$

Table SI-5 : Concentration of carboxylic acids in SRNOM and SRNOM Sh $_{3}$

Compound	N°	SRNOM CI		SRNOM $_{3 \mathrm{~h}}$	
		BSTFA		CI	
BSTFA					
Formic acid	2	traces	nd	traces	nd
Acetic acid	4	$1.57 \mathrm{E}-7$	nd	$1.12 \mathrm{E}-6$	nd
Glycolic acid	7	$3.85 \mathrm{E}-7$	nd	$1.39 \mathrm{E}-6$	$9.11 \mathrm{E}-7$
Oxalic acid	9	$3.07 \mathrm{E}-6$	nd	$6.42 \mathrm{E}-6$	nd
Lactic acid	11		nd	nd	$4.80 \mathrm{E}-7$
Malonic acid	15	$1.65 \mathrm{E}-7$	nd	$1.66 \mathrm{E}-6$	$1.12 \mathrm{E}-6$
Tartronic acid	17	traces	nd	$4.49 \mathrm{E}-7$	$1.57 \mathrm{E}-7$
Dihydroxymalonic acid	18	$6.70 \mathrm{E}-8$	nd	$1.05 \mathrm{E}-6$	$1.10 \mathrm{E}-7$
Butanedioic acid	23	$7.08 \mathrm{E}-7$	nd	$1.77 \mathrm{E}-6$	$1.32 \mathrm{E}-6$
Malic acid	25	$4.07 \mathrm{E}-7$	nd	$2.09 \mathrm{E}-6$	$2.80 \mathrm{E}-6$
Glutaric acid	27	traces	nd	$1.17 \mathrm{E}-7$	$5.36 \mathrm{E}-8$
Tricarballylic acid	37	traces	nd	$1.80 \mathrm{E}-6$	$2.23 \mathrm{E}-7$

