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Evidence-based recommender system for high-entropy alloys

Existing data-driven approaches for exploring high-entropy alloys (HEAs) face three1

challenges: numerous element-combination candidates, designing appropriate de-2

scriptors, and limited and biased existing data. To overcome these issues, here we3

show the development of an evidence-based material recommender system (ERS)4

that adopts the Dempster–Shafer theory, a general framework for reasoning with un-5

certainty. Herein, without using material descriptors, we model, collect and combine6

pieces of evidence from data about the HEA phase existence of alloys. To evaluate7

the ERS, we compared its HEA-recommendation capability with those of matrix-8

factorization- and supervised-learning-based recommender systems on four widely9

known data sets of up-to-five-component alloys. The k-fold cross-validation on the10

data sets suggested the ERS outperforms all the competitors. Furthermore, the11

ERS shows good extrapolation capabilities in recommending quaternary and quinary12

HEAs. We experimentally validated the most strongly recommended Fe-Co-based13

magnetic HEA, namely FeCoMnNi, and confirmed that its thin film shows a body-14

centered cubic structure.15
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I. INTRODUCTION1

Multi-principle element alloys (MPEAs, among which alloys with ≥ 5 elements are also2

called high-entropy alloys, HEAs) are a new alloy development concept1–3, whereby the alloys3

comprise multiple elements and form highly disordered solid-solution phases. Since their4

discovery, MPEAs and HEAs have attracted the interest of the scientific community owing5

to their promising properties and potential applications4,5. Such alloys show high strength-6

to-weight ratios, tensile strengths, and corrosion and oxidation resistances. For consistency7

with the published data used in this study, we use the term HEA to refer to random alloys8

comprising multiple equiatomically combined elements and forming solid-solution phase.9

From the materials development perspective, specific element combinations that will most10

likely form single-phase HEAs must necessarily be recommended for experimental validation.11

Deductive and inductive approaches are both used to accomplish this task, and are based12

on entirely different concepts.13

In the deductive approach, it is necessary to understand the HEA formation mechanisms14

or begin with the quantum-mechanics equations derived based on numerous first-principles15

calculations. In previous HEA research, it was hypothesized that HEA constituent elements16

form a single-phase solid solution owing to configurational-entropy-induced stabilization.17

However, this hypothesis is correct only for some multicomponent alloys, most of which18

have been experimentally demonstrated to form multiple phases6. Although much atten-19

tion has been devoted to the formation mechanism driving HEA stability, the key factors20

governing the formation of single-phase HEAs remain unknown7. Constructing phase di-21

agrams for multicomponent alloys by first-principles calculations can also directly predict22

which alloys will form solid solutions8. However, this method involves energy calculations for23

many configurations and the implementation of statistical mechanical models for estimating24

thermodynamic properties, both of which are computationally demanding9. Therefore, it is25

imperative to search for HEAs by first-principles calculations.26

Several inductive screening methods have been developed using descriptors created from27

knowledge of condensed matter theory, with parameters fitted to the available experimental28

data to predict the possible HEA10,11 or their structure phases12–14. However, applying29

the inductive approach requires sufficient and balanced data to ensure prediction accuracy,30

usually not available with experimental material data that is either lacking or heavily biased31
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toward positive results15,16. In addition, although it would be desirable to quantitatively1

evaluate the prediction uncertainty even if a high prediction accuracy cannot be obtained,2

this has not yet been achieved. Another challenge is to design suitable material descriptors to3

represent the data of alloys comprising different numbers of elements. Descriptors calculated4

from the atomic properties of the constituent elements (e.g., mean, variance, and difference of5

atomic sizes) are often adopted14,17–21. However, it is mathematically difficult to accurately6

assess the similarity or dissimilarity between alloys with different numbers of compositions;7

and there are inevitable limits to the results obtained by data-driven approaches using these8

descriptors17,22. A solution for this problem is to describe the alloy using one-hot vectors of9

constituent elements; however, this approach raises another difficulty, which is designing a10

proper metric in this vector space23.11

To overcome these issues and focus on predicting whether the HEA phase exists for12

particular combinations of elements, we adopted the Dempster–Shafer theory24–26, referred13

to as the evidence theory, to develop a descriptor-free recommender system, called evidence-14

based recommender system (ERS), for exploring potential HEAs.15

The Dempster–Shafer theory can be considered as a generalization of the Bayesian ap-16

proach for dealing with situations of incomplete information and imperfect data, and is17

deemed suitable for solving material data problems. Given a set Ω of possibilities (called18

the frame of discernment), evidence theory assigns non-negative weights (summing to one)19

to subsets of Ω, instead of assigning them to elements of Ω as in the Bayesian approach. By20

adopting the evidence theory, we can model, collect and combine pieces of evidence from21

multiple alloy data without using material descriptors. Consequently, the proposed system22

can suggest HEAs by learning from multiple data of alloys with fewer constituent elements.23

The proposed recommender system is based on the elemental substitution method widely24

used to synthesize various materials. This method is used to replace the element or group of25

elements with a counterpart showing similar chemical functions, such that the properties of26

the target material are not affected. The difficulty in this approach is the proper assessment27

of the similarity between the chemical functions of the alloy metal combinations to discover28

potential HEAs. To address this issue, we consider each pair of observed alloys as a piece of29

evidence to compare the contribution of their constituent elements or a combination thereof30

to the target property (forming HEA phase). The obtained similarity evidence is then used31

to generate evidence for hypothesizing whether the substituted alloys are HEAs. The ERS32
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consists of three main steps (Supplementary Figure 1):1

1. Measure the similarity between element combinations: All the pieces of ev-2

idence obtained from the data are modeled and combined to conclude the similarity3

between the element combinations by using evidence theory.4

2. Evaluate the hypothesis on the properties of the substituted alloys: The5

pieces of evidence for the substituted alloys are modeled and combined to evaluate the6

hypothesis about the target property (forming HEA phase) by using evidence theory.7

3. Rank substituted alloys: The substituted alloys are ranked according to various8

criteria based on the combined evidence of their target properties to recommend po-9

tential HEAs.10

II. RESULTS11

A. Evidence-based recommender methodology12

Each alloy A in data set D is represented by a set of its components. The property13

of interest yA for the alloy A, which can be either HEA or ¬HEA (not HEA), indicates14

whether the HEA phase exists for the alloy A. We first measure the similarity between15

element combinations by adapting the evidence theory to model and combine all pieces of16

evidence obtained form the data set D.17

The similarity between objects appears in various forms27: ratings of pairs, sortings of18

objects, communality betweeen associations, substitutability, and correlation between occur-19

rences. Here, the solid-solution formability for combinations of elements are discussed, along20

with the measure of similarity, in terms of substitutability between the elements combina-21

tions. Each nondisjoint pair of alloys Ai and Aj in D is a source of evidence for measuring22

the substitutability between element combinations Ct = Ai − (Ai ∩ Aj) = Ai − Aj and23

Cv = Aj − (Ai ∩ Aj) = Aj − Ai (Figure 1 a). The nonempty intersection set Ai ∩ Aj is24

considered as the context for the similarity measurement. If yAi
= yAj

then Ct and Cv are25

substitutable, otherwise Ct and Cv are not substitutable.26

To model evidence about the similarity between any pair of element combinations, we first27

define a frame of discernment25 Ωsim = {similar, dissimilar} containing all possible values.28
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The evidence collected from alloys Ai and Aj is then represented by a mass function25 (or a1

basic probability assignment), mCt,Cv

Ai,Aj
, which assigns probability masses to all the nonempty2

subsets of Ωsim (i.e., {similar}, {dissimilar}, and {similar, dissimilar}), as follows:3

mCt,Cv

Ai,Aj
({similar}) =

α if yAi
= yAj

0 otherwise
, (1)

mCt,Cv

Ai,Aj
({dissimilar}) =

α if yAi
6= yAj

0 otherwise
, (2)

mCt,Cv

Ai,Aj
({similar, dissimilar}) = 1− α (3)

Note that the masses assigned to {similar} and {dissimilar} indicate the degrees of belief4

exactly committed to Ai and Aj to support the similarity and dissimilarity between Ct and5

Cv, respectively. The weight assigned to subset {similar, dissimilar} expresses the degree of6

belief that Ai and Aj provide no information about the similarity (or dissimilarity) between7

Ct and Cv. Here, the parameter α is determined by an exhaustive search (0<α<1) for the8

best cross-validation score (Section IVC). We retain some degree of uncertainty (1−α) about9

the similarities collected from each piece of evidence for dealing with the inconsistencies in10

the data set. The sum of the masses assigned to all three nonempty subsets of Ωsim is 1.11

Suppose that we can collect multiple pieces of evidence from D to compare two element12

combinations Ct and Cv, all obtained mass functions corresponding to those pieces of evi-13

dence are then combined using the Dempster rule of combinations24 to assign the final mass14

mCt,Cv

D (Section IVA). Similar analyses are performed for all pairs of element combinations15

of interest to obtain a symmetric matrix M consisting of all the similarities between them16

(M [t, v] = M [v, t] = mCt,Cv

D ({similar})).17

For hypothesizing whether a potential alloy Anew forms an HEA phase, we apply the18

substitution method using the obtained matrix M . We replace a combination of elements,19

Ct, in an existing alloy, Ak, (Ct ⊂ Ak) with a combination of elements, Cv, adequate to20

obtain alloy Anew showing a property (label yAnew) similar to that of Ak (label yAk
). On the21

basis of the label of Ak and the similarity between Ct and Cv, the basic beliefs on the label22

of Anew are quantified (Figure 1 b). If Ct and Cv are substitutable (non-substitutable), this23

serves as a piece of evidence that the labels of Anew and Ak are the same (different).24
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To model evidence about existence of HEA phase in a particular alloy, we first define a1

frame of discernment25 ΩHEA = {HEA,¬HEA}.The evidence collected from Ak, Ct, and2

Cv is then represented by the mass function mAnew
Ak,Ct←Cv

, which assigns probability masses3

to all the nonempty subsets of ΩHEA (i.e., {HEA}, {¬HEA}, and {HEA,¬HEA}), as4

follows:5

mAnew
Ak,Ct←Cv

({HEA}) =

M [t, v] if yAk
= HEA

0 otherwise
, (4)

6

mAnew
Ak,Ct←Cv

({¬HEA}) =

M [t, v] if yAk
= ¬HEA

0 otherwise
, (5)

7

mAnew
Ak,Ct←Cv

({HEA,¬HEA}) = 1−M [t, v], (6)

Note that the masses assigned to {HEA} and {¬HEA} reflect the levels of confidence8

whereby Ak and the substitution of Cv for Ct support the probabilities that Anew is or is9

not an HEA, respectively. The mass assigned to subset {HEA, ¬HEA}, expresses the10

probability that Ak, Ct, and Cv provide no information about the property of Anew. The11

sum of the probability masses assigned to all three nonempty subsets of ΩHEA is 1.12

We assume that for a specific hypothetical alloy, Anew, we can collect pieces of evidence13

about its properties from D (pair of Ahost and the corresponding substitution to obtain Anew14

from Ahost). The obtained mass functions for Anew are then combined using the Dempster15

rule24 to obtain a final mass function mAnew (Section IVA). Similar analyses are performed16

for all the possible alloys (Anew) that are not included in the observed data. We then use17

the final value of mAnew
D ({HEA}) for sorting the ranking of recommendation. The proposed18

recommender system considers the alloys with a higher value of mAnew
D ({HEA}) to have the19

greater potential of having HEA phases.20

B. Experimental settings21

We use eight data sets (Table I) consisting of binary, ternary, quaternary, and quinary22

alloys comprising multiple equiatomically combined elements to evaluate the proposed sys-23

tem for recommending HEAs and revealing the HEA formation mechanisms. The alloys24

contained in the data sets comprise E = { Fe, Co, Ir, Cu, Ni, Pt, Pd, Rh, Au, Ag, Ru, Os,25
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Si, As, Al, Tc, Re, Mn, Ta, Ti, W, Mo, Cr, V, Hf, Nb, and Zr}. Any alloy contained in1

the following data sets is predicted as an HEA if its order-disorder transition temperature2

is below its melting temperature. All the data sets are shown in detail in Supplementary3

Section II.4

It should be noted that our system has the capability to collect and combine evidence5

from multiple data sets to reasonably draw the final conclusions. However, in the evaluation6

of HEA-recommendation capability, each data set comes from a different experiment or cal-7

culation method; therefore, we evaluate the proposed method with each data set separately8

to ensure the consistency between the training and test sets.9

We compare the HEA-recommendation performance of the proposed ERS with those of10

matrix-based recommender systems32 previously developed using nonnegative matrix fac-11

torization (NMF)33 and singular-value decomposition (SVD)34. To use the matrix-based12

recommender systems for exploring potential HEAs, we apply two types of rating-matrix13

representations. In addition, the performances of recommender systems based on supervised-14

learning methods (support vector machines35 (SVM), logistic-regression36, decision tree37,15

and Naïve-Bayes38) are compared with that of the ERS. We apply a compositional descrip-16

tor to employ the SVM- and logistic-regression-based recommender systems. The binary17

elemental descriptor is used to represent the alloys in our system and in the decision-tree-18

and Naïve-Bayes-based recommender systems. The material descriptors are shown in detail19

in the Methods section (IVB).20

C. Learning about the similarity between elements21

By applying the proposed ERS to the DASMI16, DCALPHAD, DAFLOW, and DLTVC data22

sets (Table I), we assess the similarity between the E elements and all the possible binary23

combinations obtained therein. Figure 2 (a, b, c, and d) show the MASMI16, MCALPHAD,24

MAFLOW, and MLTVC similarity matrices obtained for all the E elements in the first four25

experiments. These similarity matrices are then properly transformed into distance matrices26

to which Ward’s hierarchical agglomerative clustering39 can be applied to construct the27

corresponding hierarchically clustered structures of these elements (Figure 2 e, f, g, and h).28

The similarity matrix MASMI16 reveals three distinct element groups (Figure 2 e) consist-29

ing of Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, and W; Fe, Co, Ni, Cu, Rh, Pd, Ir, Pt, and Au;30
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and Al, Ag, Tc, Si, Ru, As, Re, and Os, where the first two groups correspond to the early1

and late transition metals, respectively. Given the similar physical and chemical properties2

of these elements, the high degree of similarity between the elements within the same group,3

as revealed by the ERS, is rational. Interestingly, the matrix MASMI16 shows a remarkable4

similarity between Mn (an earlier transition metal) and Au (a late transition metal). Fur-5

thermore, the similarity matrix MASMI16 indicates none of the belief about the similarity6

among the elements in the third group and between the elements of the third group and7

the other two groups because the binary alloys contained in DASMI16 do not contain these8

elements (Supplementary Figure 2 a). Therefore, no evidence of similarities can be collected9

from DASMI16 for these elements.10

The similarity matrix MCALPHAD also reveals three somewhat modified element groups11

(Figure 2 f) compared to those obtained from DASMI16. Because DCALPHAD contains some Tc-12

and Re-containing alloys, these elements join the group of early transition metals. Similarly,13

DCALPHAD contains more Ag- and Au-containing alloys, and these elements join the group14

of late transition metals. Therefore, only Al, Si, As, and Os remain in the third group.15

Although no evidence of any similarities between Si and As can be collected from DCALPHAD16

(Supplementary Figure 2 a), Os and Al are somewhat similar to the first and second groups,17

respectively.18

In contrast, it is difficult to divide all the elements contained in E into groups according to19

the matrix MAFLOW. However, some characteristic groups of metallic elements are distinct.20

Although two distinct groups of early or late transition metals are observed(Figure 2 g),21

there are some notable differences between these results and those obtained from DASMI1622

and DCALPHAD (Supplementary Section III). In addition, the similarity matrix MAFLOW23

does not show any similarity between Os and any of the other elements because very few24

Os-containing alloys are contained in the data set (Supplementary Figure 2 a). Further-25

more, the similarity matrices MLTVC and MAFLOW are approximately similar. However, the26

hierarchically clustered structure constructed from DLTVC indicates that Cu, Ag, and Au27

form a distinct subgroup (Figure 2 h).28

Figure 3 shows the correlation between the pairwise similarities learned from the DAFLOW29

and DLTVC data sets and the corresponding difference between the periodic-table group index30

obtained for each of the transition metal pairs contained in E . Clearly, the elements showing31

the same periodic-table group index (∆group = 0) tend to show high similarity scores (Figure32
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3 a and c) and low dissimilarity scores (Figure 3 b and d). Therefore, the elements in the1

same group similarly contribute to HEA formation and are substitutable for each other.2

However, it should be noted that several pairs of elements have a similarity with a low3

degree of belief even though they belong to the same groups, i.e. {(Ti, Zr), (Cu, Ag), (Fe,4

Ru)} in DAFLOW and {(Ti, Zr), (Mn, Re), (Ni, Pd)} in DLTVC (Figure 2 c and d).5

Furthermore, as the difference in the group index increases from 0 to 4, the similarity6

between the elements decreases (∆group : 0 → 4). The results learned from the DAFLOW7

and DLTVC data sets both show that the elements are the least similar when the difference8

between their group indices is three or four. However, the elements become slightly more9

similar as ∆group increases from 5 to 7, which is consistent with the domain knowledge about10

the differences between early and late transition metals.11

D. Evaluation of recommendation capability by cross-validation12

We apply k-fold cross-validation to the DASMI16, DCALPHAD, DAFLOW, and DLTVC data13

sets to assess the HEA-recommendation capabilities of the ERS, the four matrix-based14

recommender systems (NMF and SVD, each one with two types of matrix representations)32.15

These two matrix representations (type 1 and type 2 ) decompose an alloy into two elementary16

components A and B with different sizes (Section IVB). We also compare the ERS with the17

four supervised-learning-method-based (i.e., decision tree, Naïve-Bayes, logistic-regression,18

and SVM) recommender systems.19

The learned similarity matrix is used to rank all the alloys contained in the test set and all20

the possible combinatorial alloys other than those used to train the similarity matrix. The21

resulting alloy rankings are then used to evaluate the HEA-recommendation performance.22

We designed a virtual experiment that sequentially identifies the alloys on the basis of23

the order in which they were previously ranked. To evaluate the HEA-recommendation24

capability of the proposed ERS, we monitor the rank of HEAs in the test set and the HEA25

recall depending on the number of trials required to identify all possible HEAs. The detailed26

experimental conditions are shown in the section IVD.27

Figure 4 (a–d) illustrate the distributions of the HEA ranks of the test set recommended28

by the different systems. The HEAs in the test set are generally recommended with higher29

rank using the ERS (i.e., the ERS rank distributions are on the left of the curves for the30
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other systems). Consequently, the ERS can significantly reduce the number of trials required1

to recover the HEAs in the test set compared to the competitor systems. Only in the2

experiment with DASMI16, the distributions of the rank using the ERS and NMF (type 2 )3

are somewhat similar (Fig. 4 a). We also monitor the dependence of the HEA recall ratio on4

the number of trials required to measure the HEA-recommendation performance of the ERS5

quantitatively. In summary, the ERS outperforms the other systems in recalling one-half and6

three-quarters of the HEAs in the test set (Supplementary Section IV A). However, the ERS7

cannot reliably recall the remaining one-quarter of the HEAs because insufficient evidence is8

available in the training data to make inferences about the remaining HEAs. Interestingly, in9

theDASMI16 andDCALPHAD experiments, the supervised-method-based recommender systems10

either approximately randomly selected possible HEAs (Naïve Bayes and decision tree) or11

could not rank any at all (logistic regression and SVM) because these data sets contain only12

positively labeled HEAs.13

E. Evaluation of recommendation capability by extrapolation14

The cross-validation experiments show the recommendation systems based on supervised15

learning methods (SVMs35, logistic regression36, decision trees37, and Naïve-Bayes38) have16

much lower recommendation performance. These results are attributed to the inappropriate17

assessment of the similarity between alloys with different numbers of compositions (Section18

IVB). Therefore, to evaluate the HEA-recommendation capability when extrapolating the19

number of components, we focus on comparing the performances of the ERS with those of20

matrix-based recommender systems. The detailed experimental settings are shown in the21

Methods section (IVE).22

Figure 4 (e–h) illustrate the distributions of the recommended HEA rank of the quater-23

nary and quinary HEAs in the test set that are extrapolated using recommender systems.24

The obtained results show that the ERS outperforms the capability of the competitor sys-25

tems for recommending quaternary HEAs (Fig. 4 e and f) and substantially outperforms26

the capability of the other systems for recommending quinary HEAs (Fig. 4 g and h). In-27

terestingly, in the experiments with Dquinary
LTVC and Dquinary

AFLOW, the numbers of quinary HEAs in28

the test set, and those found in the top 100 and top 1,000 HEA candidates recommended by29

the ERS, are much larger than those predicted by the competitor systems. These numbers30

11
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are very high because the two data sets only contain quinary alloys of the early transition1

metals. Much of the evidence of the similarities between these element combinations can2

be collected from the corresponding data sets containing binary, ternary, and quaternary3

alloys (Supplementary Figure 2 b). Moreover, to recall 50 and 75% of the quinary HEAs4

from these data sets, approximately 10-100 fewer trials are required by the ERS than by5

the NMF and SVD-based recommender systems. The results of experiments monitoring the6

dependence of the HEA recall ratio on the number of trials required are listed in detail in7

Supplementary Section IV B. In the absence of sufficient evidence, the answer of the system,8

regarding a mixture of many types of elements, will retain a large degree of uncertainty9

(m({HEA,¬HEA}) ≈ 1).10

F. Synthesis of recommended FeMnCo-based HEAs11

Fe-Co-based film soft-magnetic materials have attracted interest from device community12

and will be applied to improve the performance of next-generation high-power devices40.13

Therefore, we focus on Fe-Co-based quaternary alloys containing the first transition-series14

elements. We combine all evidence collected from all the data sets to recommend quaternary15

Fe-Co-based HEAs for experimental validation.16

Figure 5 a shows the recommended possible magnetic quaternary HEAs containing Fe,17

Mn, and Co. Clearly, FeMnCoNi is the only HEA candidate recommended with a belief18

higher than 0.5. Although FeMnCoCr and FeMnCoCu are HEA candidates recommended19

with the next highest belief, some uncertainty still remains as to their potential as HEAs.20

Therefore, we chose FeMnCoNi as the target HEA candidate for the experimental validation21

(Figure 5, see the Methods section IVF for further information).22

Figure 5 c shows a 2D-XRD image of a region of the Fe0.25Co0.25Mn0.25Ni0.25 alloy an-23

nealed at 400◦C. A reflection attributed to the (110) plane of the BCC crystal structure24

appears in the ring pattern at 2θ = 44.7◦ (PDF 03-065-751941). Note that out-of-plane25

XRD measurements were also performed to identify the crystal structure in more detail,26

as shown in Supplementary Figure 6(a), indicating the formation of a polycrystalline film.27

Reportedly, the BCC crystal structure of the FeCoMn alloy is stable42, and previous re-28

ports have mentioned that FeCoMnNi alloy has an face-centered cubic FCC structure in29

high temperature synthesized bulk; however, detailed information is still not available43,44.30
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Therefore, to investigate the stability of the crystal structure, the effect of Ni doping on the1

crystal structure was analyzed based on the heat map generated from the X-ray diffraction2

patterns of FeCoMn films prepared with various Ni contents (Fig 5 d). For an Ni content3

above 0.3, the FCC structure is also observed at 2θ = 43.5◦, corresponding to the (111)4

reflection [Supplementary Figure 6(b)] (PDF 03-065-513141). These results suggest that the5

Fe0.25Co0.25Mn0.25Ni0.25 HEA shows a BCC structure. In our experiment, the BCC structure6

of the starting material, FeCoMn, is considered as an essential reason for which the thin7

films produced by this method tend to be in the BCC phase.8

III. DISCUSSION9

Application of inductive approach usually requires sufficient and balanced data to ensure10

prediction accuracy. However, material data is usually lacking or heavily biased toward pos-11

itive results (Table I). It is very challenging to build prediction model using such small data12

and a very heavy skew toward positive results. In addition, conflicts within and between13

data sets of materials are also challenges that inductive approaches must overcome. There-14

fore quantitative assessment of the uncertainty of the prediction itself is indispensable. The15

ERS has the advantage in dealing with these situations. Instead of forcibly merging data16

from multiple data sets, our system rationally consider each data set as a source of evidence17

and combine the evidence to reasonably draw the final conclusions for recommending HEA,18

where the uncertainty can be quantitatively evaluated.19

To serve the purpose of screening the elements combination forming HEA phases, the ERS20

focuses on fundamental question of whether the HEA phase exists. We design a frame of21

discernment ΩHEA = {HEA,¬HEA} to model the existence of HEA phases with mass func-22

tions. Consequently, the ERS has not answered essential questions regarding the structure23

and other properties of the HEAs. However, by redesigning the frame of discernment reflect-24

ing the additional properties of interest, we can also construct a model that can recommend25

the potential alloys forming the HEA phases with the desirable properties. Furthermore, in26

the experimental validation, detailed quantitative investigation of the secondary phases in27

the synthesized FeCoMnNi alloy thin film was not done due to technical difficulties.28

13
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FIGURE LEGENDS8

Figure 1: An illustration of Evidence-based recommender methodology. Venn diagrams9

shows the logical relationships between alloys (Ai, Aj, Ak, and Anew) and element combi-10

nations (Ct and Cv), which are used to model evidence of (a) similarities between element11

combinations and (b) new alloys by element substitution method.12

Figure 2: Visualization of similarities between elements. Top: Heat maps for similarity13

matrices (a) MASMI16, (b) MCALPHAD, (c) MAFLOW, and (d) MLTVC. Each matrix element is14

the probability mass that the similarity mass function of the corresponding element pair is15

assigned to subset {similar} of Ωsim. These matrix elements indicate the degree of belief16

learned from the similarity data of the corresponding element pairs. In these figures, the17

degrees of belief are illustrated using colormap. Bottom: Hierarchically clustered structures18

of all elements in E constructed using hierarchical agglomerative clustering and these simi-19

larity matrices (e)MASMI16, (f)MCALPHAD, (g)MAFLOW, and (h)MLTVC data sets. The blue,20

green, and gray regions indicate groups of early and late transition metals, and elements21

without similarity evidence, respectively.22

Figure 3: Correlation between pairwise similarity and difference in group index (∆group) of23

elements. Sub-figures illustrate the distribution of pairwise similarities, which are obtained24

from (a, b) DAFLOW and (c, d) DLTVC data sets, according to the ∆group of these element25

pair. Colormap illustrates the estimated density of the distribution of pairwise similarity.26

Figure 4: Evaluation of HEA-recommendation capability. Probability density functions27

of the rank of the HEAs in the test sets in (a) DASMI16, (b) DCALPHAD, (c) DAFLOW, (d)28

18
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DLTVC, (e) Dquaternary
AFLOW , (f) Dquaternary

LTVC , (g) Dquinary
AFLOW, and (h) Dquinary

LTVC experiments. The ranks1

of HEAs in the test sets are expressed on a base-10 logarithmic scale. The HEAs with higher2

ranking order are recommended materials with a firmer belief in the formation of the HEA3

phase.4

Figure 5: Recommendation and experimental validation for thin film of FeCoMnNi HEA.5

(a) Recommended candidates for Fe-Co-based HEAs containing first-transition-series ele-6

ments: FeMnCoTi, FeMnCoV, FeMnCoCr, FeMnCoNi, and FeMnCoCu. (b) Schematic7

illustration of the sample, which includes 200 cycles of 0.5 nm spread film, was fabricated8

on SiO2/Si (100) substrate using the combinatorial method. Each spread film consists of a9

0.25 nm FeCoMn sublayer and a 0.25 nm 1-x(FeCoMn)-xNi sublayer. (c) 2D-XRD image10

of Fe0.25Co0.25Mn0.25Ni0.25 thin film measured by changing the incident angle of X-rays. (d)11

Heat map shows the dependence of the X-ray diffraction intensity of 1-x(FeCoMn)-xNi films12

on Ni composition and diffraction angle θ.13

19
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TABLE I. Summary of alloy data sets used in evaluation experiments. No. alloys: number of alloys

included in each data set; No. HEAs: number of the alloys confirmed or estimated to form HEA

phase in each data set; No. candidates: number of possible alloys generated using the set of all

elements in the data sets. The "HEA rate" is the ratio of No. HEA to No. alloys, whereas the

"Observation rate" is the ratio of No. alloys to No. candidates.

[h!] Data set No. alloys No. HEAs No. candidates HEAs rate Observation rate

DASMI16
28 45 binary alloys 45 351 100% 13%

DCALPHAD
3,29 243 ternary alloys 243 2925 100% 9%

DAFLOW
30 117 binary alloys 60 351 51% 33%

441 ternary alloys 234 2925 53% 15%

DLTVC
31 117 binary alloys 58 351 49% 33%

441 ternary alloys 148 2925 33% 15%

Dquaternary
AFLOW

30 1,110 quaternary alloys 754 17,550 68% 6%

Dquaternary
LTVC

31 1,110 quaternary alloys 480 17,550 43% 6%

Dquinary
AFLOW

30 130 quinary alloys 129 80,730 99% 0.16%

Dquinary
LTVC

31 130 quinary alloys 91 80,730 70% 0.16%

IV. METHODS1

A. Combining multiple pieces of evidence2

We assume that we can collect q pieces of evidence from D to compare a specific pair3

of element combinations, Ct and Cv. If no evidence is found, the mass function mCt,Cv
none is4

initialized, which assigns a probability mass of 1 to subset {similar, dissimilar}. mCt,Cv
none5

models the condition under which no information about the similarity (or dissimilarity)6

between Ct and Cv is available. Any two pieces of evidence a and b modeled by the cor-7

responding mass functions mCt,Cv
a and mCt,Cv

b can be combined using the Dempster rule248

to assign the joint mass mCt,Cv

a,b to each subset ω of Ωsim (i.e. {similar}, {dissimilar}, or9

20
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{similar, dissimilar}) as follows:1

mCt,Cv

a,b (ω) =
(
mCt,Cv

a ⊕mCt,Cv

b

)
(ω)

=

∑
∀ωk∩ωh=ω

mCt,Cv
a (ωk)×mCt,Cv

b (ωh)

1−
∑

∀ωk∩ωh=∅
mCt,Cv

a (ωk)×mCt,Cv

b (ωh)
,

(7)

where ω, ωk and ωh are subsets of Ωsim. Note that the Dempster rule is commutative and2

yields the same result by changing the order of mCt,Cv
a and mCt,Cv

b . All the q obtained mass3

functions corresponding to the q collected pieces of evidence from D are then combined using4

the Dempster rule to assign the final mass mCt,Cv

D as follows:5

mCt,Cv

D (ω) =
(
mCt,Cv

1 ⊕mCt,Cv

2 ⊕ · · · ⊕mCt,Cv
q

)
(ω). (8)

Multiple pieces of evidence about the label of each new alloy are combined using the6

similar manner. We assume that for a specific hypothetical alloy, Anew, we can collect pieces7

of evidence about its properties from D (pair of Ahost and the corresponding substitution8

to obtain Anew from Ahost). If no evidence is found, mAnew
none is initialized and a probability9

mass of 1 is applied to set {HEA,¬HEA}. mAnew
none models the condition that no information10

about the label of Anew can be obtained from D. The obtained mass functions for Anew are11

then combined using the Dempster rule24 to obtain a final mass function mAnew
D on ΩHEA.12

B. Materials descriptors13

Descriptors, which are the representation of alloys, play a crucial role in building a rec-14

ommender system to explore potential new HEAs. In this research, the raw data of alloys is15

represented in the form of elements combination. Several descriptors have been studied in16

materials informatics to represent the compounds45. To employ the data-driven approaches17

for this work, we applied compositional descriptor20, rating matrix representation32 and18

binary elemental descriptor45.19

Compositional descriptor represents an alloy by a set of 135 features composed of means,20

standard deviations, and covariance of established atomic representations that form the alloy.21

The descriptor can be applied not only to crystalline systems but also to molecular system.22

We adopted 15 atomic representations: (1) atomic number, (2) atomic mass,(3) period and23

(4) group in the periodic table, (5) first ionization energy, (6) second ionization energy,24
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(7) Pauling electronegativity, (8) Allen electronegativity, (9) van der Waals radius, (10)1

covalentradius, (11) atomic radius, (12) melting point, (13) boiling point, (14) density, and2

(15) specific heat. However, the compositional descriptor hardly distinguishes compounds3

which have different numbers of the atom because it is to regard the atomic representations4

of a compound as distributions of data. Therefore, the compositional descriptor cannot be5

applied in the case of having extrapolation in the number of components.6

The rating matrix representation, which is a descriptor-free approach, shows a robust7

performance of recommendations for a wide variety of data sets in the Machine Learning8

community. Seko et al. adopted the representation to build a recommender system for ex-9

ploring currently unknown chemically relevant compositions32. In that work, a composition10

data set needs to be transformed into just two feature sets, which corresponds to users and11

items in a user-item rating matrix. Ratings of missing elements are approximately predicted12

based on the similarity of features given by the representation. To build a recommender13

system for HEA, we first define the candidate alloys as AB, where A and B correspond to14

elementary components of the alloys. We introduce two kinds of matrix representations for15

the eight alloys data sets. An alloy is decomposed into two elementary components with the16

following number of elements.17

• Type 1 : |A| ∈ {1, 2} and |B| ∈ {1, 2, 3}. The numbers of possible components A and18

B are respectively 378 and 3303. The size of the rating matrix is (378× 3303).19

• Type 2 : |A| = 1 and |B| ∈ {1, 2, 3, 4}. The numbers of possible components A and B20

are 27 and 20853, respectively. The size of the rating matrix is (27× 20853).21

Binary elemental descriptors is simply a binary digit representing the presence of chemical22

elements. The number of binary elemental descriptors corresponds to the number of element23

types included in the training data. In this work, the alloys data sets are composed of24

27 kinds of elements; Thus, an alloy is described by a 27-dimensional binary vector with25

elements of one or zero.26

C. Tuning hyper-parameter of the ERS27

Because data sets used in this work are the output of calculation prediction methods, we28

add some degree of uncertainty α in the mass function which models similarity evidence. In29
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each data set, we use grid search to determine the α that best reproduced the alloy labels in1

the data set (achieving best cross-validation score). Details of the cross-validation schemes2

are mentioned in Section IVD. The search space of α is from 0.01 to 0.9 with a step of 0.01.3

However, the relative magnitudes of (degree of belief HEA ) and (degree of belief not HEA )4

are almost unchanged. In summary, the absolute value of alpha has little effect on the final5

result of the recommender system.6

D. Experimental settings for cross-validation7

Cross-validated testing accuracy rates of our method when considered as a supervised8

learning method are 80% and 75% in DAFLOW, and DLTVC data sets, respectively, which9

are almost at the same level with those in the previous study14. However, our work pays10

more attention toward calculating the recall, which is the percentage of the total HEAs11

correctly classified. This recall value is a more appropriate evaluation measure compared to12

supervised learning accuracy for finding new combinations of elements having HEA phases.13

Because the DASMI16 data set only contains binary alloys, we can learn a similarity matrix14

between the elements from a training set sampled from DASMI16. By applying the proposed15

process for recommending substituted alloys, we can rank all the possible binary alloys other16

than those in the training set. A total of 351 hypothetical binary alloys showing equivalent17

components can be generated from the 27 elements in E , 45 of which are contained in18

DASMI16. Because no information is available for the other 306 alloys, they are ranked by19

the constructed model. We apply 9-fold cross-validation to DASMI16. A total of 40 out of20

the 45 alloys in DASMI16 are used as the training set, and the remaining 5 alloys are used as21

the test set to evaluate the HEA recall rate. The model learned from the 40 alloys in the22

training set is then used to rank the other 311 alloys, including the 5 in the test set. This23

cross-validation is repeated 100 times so that the HEA-recommendation performance can24

be reliably calculated.25

Because the DCALPHAD data set only contains ternary alloys, we can learn a similarity26

matrix between the elements or binary combinations thereof from a training set sampled27

from DCALPHAD. We can build a model to rank all the possible ternary alloys other than28

those in the training set. There are 2,925 hypothetical ternary alloys showing equivalent29

components that can be generated from the 27 elements in E , 243 of which are contained in30
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DCALPHAD. Because no information is available for the other 2,682 alloys, they are ranked1

by the constructed model. We apply 9-fold cross-validation to DCALPHAD and use 216 of2

the 243 alloys in DCALPHAD as the training set. The remaining 27 alloys in DCALPHAD are3

used as the test set to evaluate the HEA recall rate. The model learned from the 2164

alloys in the training set is used to rank the other 2,709 alloys, including the 27 in the test5

set. This cross-validation is also repeated 100 times to ensure the reliable evaluation of the6

HEA-recommendation performance.7

In contrast, the DASMI16, DCALPHAD, DAFLOW, and DLTVC data sets contain both binary8

and ternary alloys. Owing to the information obtained from both types of alloys, we can learn9

a similarity matrix between the various elements, elements and binary combinations thereof,10

and binary element combinations obtained from the training set sampled from DAFLOW and11

DLTVC. We can build a model to rank all the possible candidates for binary and ternary12

alloys other than those in the training set. There are 3,276 hypothetical binary and ternary13

alloys showing equivalent components that can be generated from the 27 elements in E ,14

558 of which are contained in DAFLOW. Because no information is available for the other15

2,718 alloys, they are ranked by the constructed model. We apply 9-fold cross-validation16

to DAFLOW and use 496 of the 558 alloys in DAFLOW as the training set. The remaining 6217

alloys in DAFLOW are used as the test set to evaluate the HEA recall rate. The model learned18

from the 496 alloys in the training set is used to rank the other 2,780 alloys including the19

62 in the test set. The same evaluation method is applied to DAFLOW.20

A similar experiment is conducted with the DLTVC data set to evaluate the HEA-21

recommendation performance of the proposed ERS. Note that although the DLTVC data22

set contains the same alloys as the DAFLOW one, the target properties of the alloys are23

dissimilar because the values are estimated using different computation methods31,46.24

It should be noted that owing to the computational cost, these experiments do not use25

the selected alloys (i.e., those in the test set) to improve the accuracy of the HEA recommen-26

dation model for the next trial. A recommendation model based on the results of previous27

trials may work more accurately.28
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E. Experimental settings for evaluation of extrapolation capability1

Because DAFLOW contains both binary and ternary alloys, we can learn the similarities2

between the various elements and binary combinations thereof. Consequently, we can apply3

the ERS to DAFLOW to rank the 17,550 quaternary alloys comprising the 27 elements con-4

tained in E . Additionally, DAFLOW and Dquaternary
AFLOW are both used to build a recommender5

system that ranks all the possible candidates (i.e., 80,730 alloys) for synthesizing quinary6

HEAs. The 754 quaternary HEAs in Dquaternary
AFLOW and 129 quinary HEAs in Dquinary

AFLOW are used7

to monitor the HEA recall rate for recommending quaternary and quinary HEAs, respec-8

tively. Moreover, similar experiments are conducted on the DLTVC, Dquaternary
LTVC , and Dquinary

LTVC9

data sets to evaluate the HEA-recommendation performance of the ERS.10

F. Synthesis of FeMnCoNi high entropy alloy thin film11

As a case study, we fabricated a high entropy alloy film of Fe0.25Co0.25Mn0.25Ni0.25. A12

100 nm thick-thermal oxidized SiO2/Si (100) substrate was used. After the organic solvent13

and deionized water cleaning, the substrate was loaded in a combinatorial multi target14

RF-sputtering system (COMET inc., CMS-6400). To identify the stable crystal structure15

and its composition dependence, a composition spread film was fabricated by combinatorial16

method47. For the composition spread film, we used two targets of FeCoMn (1:1:1) and Ni17

(3N grade). The base pressure was below 1×10−5 Pa, and Ar gas pressure was set as 0.3 Pa.18

To adjust the deposition rate as 0.23± 0.01 nm/s, RF-sputtering powers of FeCoMn and Ni19

targets were set at 100 and 120 W, respectively. To enhance the crystallinity, the sample20

was annealed at 400◦C for 30 min under a vacuum condition below 6× 10−3 Pa (Advanced21

RIKO, MILA-3000).22

Figure 5(b) shows the sample structure. The composition film layer consists of three23

layers. One is a single FeCoMn layer with a thickness of 0.25 nm. The other layers are24

composition spread film formed by FeCoMn and Ni layers. For the composition-spread film25

deposition, during the FeCoMn layer deposition, a mask moved 18.5 mm at constant speed26

from a point 1.5 mm from the edge of the substrate to another end where the film thickness27

gradually changed. After that, the targets were changed to Ni. The mask moved to the28

opposite direction during the Ni film deposition. The total thickness of one unit of the 1-29
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x(FeCoMn)-xNi composition spread layer/ FeCoMn stack structure is 0.5 nm. Alternating1

between the three deposition steps created composition-spread region with a width of 18.52

mm. The total film thickness in the composition-spread region was set to 100 nm. The3

composition spread was confirmed by an X-ray fluorescence spectrometer (XRF: Shimadzu,4

µEDX-1400) with a measuring spot diameter of 50 µm, as shown in Supplementary Figure5

5.6

The crystal structure was identified by X-ray diffraction (XRD). An XRD system with a7

5-kW rotating anode Cu target x-ray source and a high-resolution 2D-detector (BRUKER8

AXS, D8 Discover Super Speed with GADDS) was used to determine the crystal struc-9

ture. The 2D-detector system can detect part of the Debye–Scherrer ring rapidly and two-10

dimensionally4811

In the evaluation of the phase separation temperature and magnetization properties of12

the other FeCoMn-X compositions, we found that the phase separation and inflection point13

were observed near 400◦C. Therefore, we set the annealing temperature as 400◦C. In the14

reported experiment, the annealing was performed at only 400◦C; however, for FeCoMnNi,15

structural changes at higher temperatures are expected and are currently under investi-16

gation. Supplementary Figure 7 shows the XRD patterns of the sample as deposited and17

annealed. The BCC phase was confirmed for the annealed thin film sample at the equiatom-18

ical composition of FeCoMnNi (x=0.25). Even at room temperature, a weak peak of the19

BCC can be observed for the FeCoM-rich composition.20

DATA AVAILABILITY21

Supporting data for all data plotted in Figures 1–5 (as well as Supplementary Figures 1–7)22

are available as source data in spreadsheets and the Supplementary Information, respectively.23

Data sets related to this article are deposited to Zenodo repository49.24

CODE AVAILABILITY25

The full code, along with 1) a basic example to show the usage of commender system, 2)26

an example to illustrate the similarity measurement and 3) an example to explain the method27

to evaluate the recommender system using an experiment with k-folds cross-validation, have28

26
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been deposited to Code Ocean repository50.1
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I. ILLUSTRATIVE EXAMPLES

The following examples provide explanations of how the evidence theory work to learn the

similarity and infer the HEA formation for new element combinations, identifying equiatomic

alloys.

Example 1: Suppose we have collected four pairs of alloys from experiments. Three of

those pairs are alloys that both form HEA phase: pair1 = ({A1, B1, C1, D}, {A1, B1, C1, E});

pair2 = ({A2, B2, C2, D}, {A2, B2, C2, E}); and pair3 = ({A3, B3, C3, D}, {A3, B3, C3, E}).

The fourth pair pair4 = ({A4, B4, C4, D}, {A4, B4, C4, E}) is different from the other three,

in which {A4, B4, C4, D} forms HEA phase while {A4, B4, C4, E} does not form HEA phase.

We consider each pair as a source of evidence support that {D} is similar to {E} in term of

substitutability to form the HEA phase. Each evidence is modeled using mass function as

follows:

m
{C},{D}
pair1

({similar}) = 0.1,

m
{C},{D}
pair1

({dissimilar}) = 0,

m
{C},{D}
pair1

({similar, dissimilar}) = 0.9

m
{C},{D}
pair2

({similar}) = 0.1,

m
{C},{D}
pair2

({dissimilar}) = 0,

m
{C},{D}
pair2

({similar, dissimilar}) = 0.9

m
{C},{D}
pair3

({similar}) = 0.1,

m
{C},{D}
pair3

({dissimilar}) = 0,

m
{C},{D}
pair3

({similar, dissimilar}) = 0.9

m
{C},{D}
pair4

({similar}) = 0,

m
{C},{D}
pair4

({dissimilar}) = 0.1,

m
{C},{D}
pair4

({similar, dissimilar}) = 0.9

The three pieces of evidence are combined using the Dempster’ rule of combination to

accumulate the believe that {D} is similar to {E}:

2



Supplementary Information

m{C},{D}({similar}) = 0.25,

m{C},{D}({dissimilar}) = 0.075,

m{C},{D}({similar, dissimilar}) = 0.675

Next, if we observed (included in the data) that the HEA phase exists for alloy {G,H, I,D},

the ERS (which focuses on finding some chance for discovering new combination of elements

that the HEA phase exist and ignores the belief regarding ¬HEA) will consider that there

is some believe that the HEA phase also exists for {G,H, I, E} (by substituting {D} with

{E}). The evidence is modeled using mass function as follows:

m
{G,H,I,E}
{G,H,I,D},{D}←{E}({¬HEA}) = 0,

m
{G,H,I,E}
{G,H,I,D},{D}←{E}({HEA}) = mC,D({similar}) = 0.25,

m
{G,H,I,E}
{G,H,I,D},{D}←{E}({HEA,¬HEA}) = 1−mC,D({similar}) = 0.75

Example 2: In a same manner but for an extrapolative recommendation: if the HEA

phases exist for all the alloys in the three following pairs: pair1 = ({A1, B1, C}, {A1, B1, D,E}),

pair2 = ({A2, B2, C}, {A2, B2, D,E}), pair3 = ({A3, B3, C}, {A3, B3, D,E}). In the

fourth pair pair4 = ({A4, B4, C}, {A4, B4, D,E}), {A4, B4, C} forms HEA phase while

{A4, B4, D,E} does not form HEA phase. The algorithm will accumulate the believe that

{C} is similar to {D,E} as follows:

m{C},{D,E}({similar}) = 0.25,

m{C},{D,E}({dissimilar}) = 0.075,

m{C},{D,E}({similar, dissimilar}) = 0.675

Consequently, if we observed (included in the data) that the HEA phase exists for

{G,H, I, C}, the algorithm (which focuses on finding some chance for discovering new com-

bination of elements that the HEA phase exist and ignores the belief regarding ¬HEA) will

consider that there is some believe that the HEA phase also exists for {G,H, I,D,E} (by

substituting {C} with {D,E}).

m
{G,H,I,D,E}
{G,H,I,C},{C}←{D,E}({¬HEA}) = 0,

m
{G,H,I,D,E}
{G,H,I,C},{C}←{D,E}({HEA}) = mC,D({similar}) = 0.25,

m
{G,H,I,D,E}
{G,H,I,C},{C}←{D,E}({HEA,¬HEA}) = 1−mC,D({similar}) = 0.75

3
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II. ALLOYS DATA SETS

In the evaluation experiments, we use eight data sets consisting of binary, ternary, quater-

nary, and quinary alloys comprising multiple equiatomically combined elements. The data

sets consist of data from experiments and calculations. In this section, we will follow Ref.

35 to describe the data sets. The alloys contained in the data sets comprise E = { Fe, Co,

Ir, Cu, Ni, Pt, Pd, Rh, Au, Ag, Ru, Os, Si, As, Al, Tc, Re, Mn, Ta, Ti, W, Mo, Cr, V, Hf,

Nb, and Zr}. Supplementary Figure 2 shows the proportion of 27 elements in the data sets.

Any alloy contained in the following data sets is considered as an HEA if its order-disorder

transition temperature is below its melting temperature.

• DASMI16: The order-disorder transition temperatures (T exp
c ) and melting temperatures

(T exp
m ) of the alloys are both experimentally evaluated1. All of the alloys contained in

DASMI16 show an order-disorder transition temperature below their melting tempera-

ture (T exp
c < T exp

m ).

• DCALPHAD: The order-disorder transition temperatures (T ?
c ) and melting temperatures

(T ?
m) of the alloys are both predicted using calculated-phase-diagram (CALPHAD)

calculations2–4 based on the temperatures for some binary alloys (three possible for

each ternary alloy) found in the Thermo-Calc software SSOL5 database5. Similar

to the DASMI16 data set, the DCALPHAD data set only contains the alloys satisfying

T ?
c < T ?

m.

• DAFLOW, Dquaternary
AFLOW , andDquinary

AFLOW: The order-disorder transition temperatures (TAFLOW
c )

of the alloys contained in these data sets are estimated using the automatic flow

(AFLOW) convex-hull database6. The melting temperatures T exp
m and T ?

m are applied

to the binary and ternary alloys, respectively. The alloy is considered as an HEA

if TAFLOW
c < T exp

m for binary alloys and TAFLOW
c < T ?

m for ternary, quaternary, and

quinary alloys).

• DLTVC, Dquaternary
LTVC , and Dquinary

LTVC : These data sets contain the same alloys as those

contained in data sets DAFLOW, Dquaternary
AFLOW , and Dquinary

AFLOW, respectively. However, the

properties of the alloys contained in these data sets are predicted using the method

of Lederer, Toher, Vecchio, and Curtarolo (LTVC)7. Ab-initio calculations are used

4
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to estimate the order-disorder transition temperatures (T LTVC
c ) of the alloys contained

in these data sets. In addition, the Tm values are the same as those of the alloys

contained in the AFLOW data sets. Any alloy in these data sets is predicted as an

HEA if T LTVC
c < T exp

m for binary alloys and T LTVC
c < T ?

m for ternary, quaternary, and

quinary alloys

Note that DASMI16 and DCALPHAD only contain confirmed and predicted HEAs, respec-

tively. Therefore, although we assume that the properties of all the other binary or ternary

alloys (not included in the data set) have not yet been confirmed, we do not assume that

those alloys are not HEAs.

III. DIFFERENCES BETWEEN SIMILARITY MATRICES LEARNED

FROM DCALPHAD AND DAFLOW

There are some notable differences between these results obtained from experiments with

DCALPHAD and DAFLOW. The similarity matrix learned from DAFLOW shows that Au and Ag

are very similar (Supplementary Figure 3 b). Furthermore, both are similar to V, Mn, and

Al but not to other late transition metals (Supplementary Figure 3 a). Mn is also similar

to Tc, Re, and Cr but not to the other early transition metals. However, Tc and Re are

somewhat similar to the other early transition metals. Furthermore, Zr is somewhat similar

to the late transition metals, but different from the early transition metals. Clearly, these

results are different from that obtained from DCALPHAD owing to the difference between

the predicted label (HEA or ¬HEA) for the Zr-containing alloys recommended based on

CALPHAD and AFLOW calculations, as listed in Supplementary Table 1. Al, Si, and As

are all similar to each other and to Fe and Co (Supplementary Figure 3 a). However, Al is

similar to V, Cr, and Mn but not to Ti, whereas Si and As are very similar to Ti but not to

V or Cr.

5
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IV. MONITORING HEA RECALL RATIOS IN TEST SET

A. Evaluation of HEA-recommendation capability by cross-validation

In the experiment with DASMI16, the result shows that the ERS can significantly reduce

the number of trials required to recall all the HEAs in the test set compared to the com-

petitor systems (Supplementary Figure 4 a). The proposed ERS requires less than 12, 25,

and 80% of all the possible trials to recall one-half, three-quarters, and all the HEAs in

the test set, respectively (Supplementary Table 2). In the DCALPHAD experiment, the ERS

requires less than 2 and 5% of all the possible trials to recall one-half and three-quarters of

the HEAs in the test set, respectively, which are the fewest trials required among all the rec-

ommender systems (Supplementary Figure 4 b and Supplementary Table 2). Interestingly,

in the DASMI16 and DCALPHAD experiments, the supervised-method-based recommender sys-

tems either approximately randomly selected possible HEAs (Naïve Bayes and decision tree)

or could not rank any (logistic regression and SVM) at all because these data sets contain

only positively labeled HEAs.

The result in DAFLOW experiment demonstrates that the ERS also outperforms the com-

petitor systems in recalling one-half of the HEAs in the test set. However, the ERS cannot

reliably recall the one-quarter of the HEAs remaining in the test set because not enough

evidence is available in the training data to make inferences about the remaining HEAs (Sup-

plementary Figure 4 c and Supplementary Table 2). The DLTVC and DAFLOW experimental

results are identical(Supplementary Figure 4 d). Although the ERS performs better than

the other recommendation systems in recovering one-half of the test HEAs in the DLTVC

data set (requiring only less than 3% of the number of possible trials), it cannot reliably

recover the remaining one-quarter of the test HEAs owing to the lack of evidence in the

training data (Supplementary Table 2).

B. Evaluation of HEA-recommendation capability by extrapolation

In the Dquaternary
AFLOW experiment, the ERS performs significantly better than the NMF-based

recommender system, requiring less than 5 and 19% of the total number of possible HEA

candidates to recall 50 and 75% of the HEAs in the test set, respectively (Supplementary

Table 3). In the Dquaternary
LTVC experiment, the ERS and competitor matrix-based system devel-

6



Supplementary Information

oped using the first type of matrix representation require 13 and 32% and 14 and 41% of the

total number of possible HEA candidates to recall 50 and 75% of the HEAs in the test set,

respectively (Supplementary Table 3). Further investigation indicates that the ERS hardly

recommends any quaternary alloys in Dquaternary
LTVC because these alloys cannot be generated

by substituting elements in any of the ternary alloys in DLTVC (Supplementary Table 4).

Therefore, the properties of these alloys cannot be inferred from the evidence collected from

DLTVC. As a result, the rankings obtained for these alloys are significantly low; therefore, the

HEA recall rate is even lower than those obtained for randomly recommended HEAs. The

results obtained for Dquinary
LTVC and Dquinary

AFLOW both show that the ERS drastically outperforms

the capability of the competitor systems for recommending quinary HEAs. To recall 50, 75,

and 100% of the HEAs from these data sets, 10–100 times fewer trials are required using the

ERS than are required using the matrix-based recommender systems (Supplementary Table

3).
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Supplementary Table 1. Comparison of the properties of alloys containing Zr in the two datasets

DASMI16 and DCALPHAD to those predicted in DLTVC and DAFLOW.

DASMI16 DCALPHAD
4 alloys 19 alloys

#in agreement with DAFLOW 4 10
#disagreement with DAFLOW 0 9

#in agreement with DLTVC 3 10
#disagreement with DLTVC 1 9

8
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Supplementary Table 2. Ratio of number of trials (out of total number of possible trials) required

to recall 50, 75, and 100% of HEAs in test set.

Data set Model
Recall rates

Half Three-quarters Full
ERS 12% 25% 80%

NMF (type 1) 16% 25% 92%
NMF (type 2) 13% 26% 98%
SVD (type 1) 31% 68% 99%

DASMI16 SVD (type 2) 23% 64% 99%
Decision Tree 77% 90% 99%
Naïve Bayes 77% 90% 99%

Logistic Regression - - -
SVM - - -
ERS 2% 5% 92%

NMF (type 1) 3% 7% 89%
NMF (type 2) 3% 8% 93%
SVD (type 1) 14% 28% 94%

DCALPHAD SVD (type 2) 17 37% 93%
Decision Tree 39% 52% 94%
Naïve Bayes 39% 52% 94%

Logistic Regression - - -
SVM - - -
ERS 2% 8% 97%

NMF (type 1) 3% 6% 96%
NMF (type 2) 3% 6% 85%
SVD (type 1) 16% 35% 99%

DAFLOW SVD (type 2) 20% 50% 99%
Decision Tree 31% 51% 99%
Naïve Bayes 33% 53% 99%

Logistic Regression 20% 29% 93%
SVM 15% 26% 99%
ERS 3% 23% 97 %

NMF (type 1) 4% 6% 96%
NMF (type 2) 4% 7% 86%
SVD (type 1) 14% 33% 99%

DLTVC SVD (type 2) 19% 52% 99%
Decision Tree 32% 48% 99%
Naïve Bayes 26% 42% 99%

Logistic Regression 17% 26% 89%
SVM 12% 26% 99%
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Supplementary Table 3. Ratio of number of trials (out of total number of possible trials) required

to recall 50, 75, and 100% of HEAs in test set by extrapolating HEA-recommendation capability.

Data set Model
Recall rates

Half Three-quarters Full
ERS 5% 19% 99%

NMF (type 1) 10% 24% 99%
Dquaternary

AFLOW NMF (type 2) 50% 67% 99%
SVD (type 1) 13% 32% 99%
SVD (type 2) 53% 67% 99%

ERS 0.4% 1% 3%
NMF (type 1) 10% 56% 98%

Dquinary
AFLOW NMF (type 2) 9% 14% 47%

SVD (type 1) 15% 27% 99%
SVD (type 2) 8% 57% 99%

ERS 13% 32% 99%
NMF (type 1) 14% 41% 99%

Dquaternary
LTVC NMF (type 2) 50% 71% 99%

SVD (type 1) 15% 39% 99%
SVD (type 2) 53% 71% 99%

ERS 0.07% 0.2% 2%
Dquinary

LTVC NMF (type 1) 11% 16% 47%
NMF (type 2) 10% 53% 93%
SVD (type 1) 15% 27% 99%
SVD (type 2) 7% 54% 93%
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Supplementary Table 4. List of 63 quaternary HEAs in Dquaternary
LTVC that no evidence about their

properties is found.

FeAuRePd AuNiPdOs NiRePtOs RhRePtOs RePtOsAg
FeNiRePd AuRhRePd NiPdRuOs RhPdOsAg PdRuOsAg
FeMoOsAg AuRhPdOs NiPdCuOs CoRePdRu PdCuOsCr
FeRhPdOs AuRePdRu NiPdOsCr CoRePdCu ReCuPtOs
FeRePdRu AuRePdCu NiPdOsAg CoRePdOs RhRePdAg
FeRePdCu AuRePdOs MoRhPdOs CoRePdAg NiRePdAg
FeRePdOs AuRePdAg MoRePdOs CoReRuPt AuNiReAg
FeReRuAg NiMoPdOs MoRePtOs CoRePtOs ReRuPtOs
FeReOsAg NiRhRePd MoReOsAg CoPdRuOs RhRePdOs
FePdRuOs NiRhPdOs MoPdRuOs CoRuPtOs NiRePdOs
FePdCuOs NiCoRePd MoRuPtOs RePdRuOs FeCuOsAg
FePdOsCr NiRePdRu RhCoPdOs RePdPtOs
FeRuOsAg NiRePdCu RhRePdCu RePdOsAg
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Alloys data 𝓓 = 𝑨!, 𝑨", … , 𝑨#

Rank new substituted compound using mixtures of different criteria for recommendations
1) High belief as HEA,  2) Low belief as ¬HEA, 3) High belief as no_information

Collect all beliefs for comparing 
element combinations

Model evidence for similarity with mass function

𝑚𝑨! ,𝑨"	
𝑪# ,	𝑪$ : {𝑠𝑖𝑚𝑖𝑙𝑎𝑟, 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟,𝑛𝑜_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛}

Combine all the mass functions for comparing each pair 
𝑪% and 𝑪& to 𝑚𝑪# ,𝑪$ 	using Dempster rule

Collect evidence from every pairs of compounds 
(𝑨' , 𝑨(|𝐴' ∩ 𝐴( ≠ ∅) for comparing two combinations 

of elemens 
𝑪% = 𝑨' −𝑨( and 𝑪& = 𝑨( − 𝑨'

Belief matrix for similarities between all the combinations

𝑀 =

𝑪) = {𝑒)} ⋯ 𝑪% ⋯
𝑪) = {𝑒)} {1.0, 0.0,0.0} ⋯ 𝑚𝑪# , 𝑪% ⋯

⋮ ⋮ ⋮ ⋮ ⋮
𝑪& 𝑚𝑪% ,	𝑪$ ⋯ 𝑚𝑪#,	𝑪$ ⋯
⋮ ⋮ ⋮ ⋮ ⋮

Model evidence for property with mass function

𝑚𝑨𝒌 ,𝑪#	←𝑪$
𝑨'() : {𝐻𝐸𝐴,¬𝐻𝐸𝐴,𝑛𝑜_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛}

Combine all mass functions for the property of each 
𝑨+,- to 𝑚𝑨'() using Dempster rule

Create all possible new alloy 𝑨+,- 	from any 𝑨. by 
substituting any 𝑪% ⊂ 𝑨. with any 𝑪&

Collect all beliefs for new 
substituted compounds

Element set: 𝓔 = {𝑒) , 𝑒/ , … , 𝑒0}
Alloy: 𝑨 = 𝑒1% ,𝑒1* ,… , 𝑒1+

1 2

3 Recommend new potential compounds

Supplementary Figure 1. Workflow chart illustrating three ERS stages required for recommending

undiscovered HEAs. The data set D includes observed materials generated from a finite set E of

elements.

(a) (b)

Supplementary Figure 2. Proportions of 27 elements in DASMI16, DCALPHAD, DAFLOW, Dquaternary
AFLOW ,

Dquinary
AFLOW, DLTVC, Dquaternary

LTVC , and Dquinary
LTVC data sets.
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Supplementary Figure 3. (a) Heat maps for similarity matrices among 27 elements E obtained

fromDAFLOW data set. (b) Hierarchically clustered structure of all elements in E constructed using

the similarity matrix and hierarchical agglomerative clustering. Blue and green regions indicate

groups of early and late transition metals, respectively.

(a) (b) (d)(c)

Supplementary Figure 4. Dependence of HEA recall ratio in the test sets on the number of trial

required using k-fold cross-validation on (a) DASMI16, (b) DCALPHAD, (c) DAFLOW, and (d) DLTVC

data sets.
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Supplementary Figure 5. Heatmapping image of Fe, Co, Mn, and Ni concentration estimated by

EDX analysis. Composition was estimated from the XRF intensity of balk target materials and

single-phase films of FeCoMn and Ni.
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Supplementary Figure 6. 2D-XRD images at center γ angles of 0 and 45 ◦of FeCoMn-Ni films with

low- (a,b) and high- (c,d) Ni concentrations. According to the powder diffraction pattern data base8

(PDF 03-065-7519 and PDF 03-065-5131), for BCC, except for the reflection from (110), the signal

intensities from other plane are not enough high to detect them in film form. So, the reflection

from (110) is only detected. For FCC, in addition to the reflection from (111), the second strongest

signal from (200) can barely be detected. The signals do not show no γ angle dependence, meaning

the films are polycrystals in disordered crystal orientation.
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Supplementary Figure 7. XRD patterns of the as deposited and annealed at 400◦C of FeCoMn-Ni

film using an XRD system with a 5-kW rotating anode Cu target x-ray source. The BCC phase

was confirmed for the annealed thin film sample at the equiatomical composition of FeCoMnNi

(x=0.25)
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