Evidence-based recommender system for high-entropy alloys Existing data-driven approaches for exploring high-entropy alloys (HEAs) face three challenges: numerous element-combination candidates, designing appropriate descriptors, and limited and biased existing data. To overcome these issues, here we show the development of an evidence-based material recommender system (ERS) that adopts the Dempster-Shafer theory, a general framework for reasoning with uncertainty. Herein, without using material descriptors, we model, collect and combine pieces of evidence from data about the HEA phase existence of alloys. To evaluate the ERS, we compared its HEA-recommendation capability with those of matrixfactorization-and supervised-learning-based recommender systems on four widely known data sets of up-to-five-component alloys. The k-fold cross-validation on the data sets suggested the ERS outperforms all the competitors. Furthermore, the ERS shows good extrapolation capabilities in recommending quaternary and quinary HEAs. We experimentally validated the most strongly recommended Fe-Co-based magnetic HEA, namely FeCoMnNi, and confirmed that its thin film shows a bodycentered cubic structure.

I. INTRODUCTION

Multi-principle element alloys (MPEAs, among which alloys with ≥ 5 elements are also called high-entropy alloys, HEAs) are a new alloy development concept [1][2][3] , whereby the alloys comprise multiple elements and form highly disordered solid-solution phases. Since their discovery, MPEAs and HEAs have attracted the interest of the scientific community owing to their promising properties and potential applications 4,5 . Such alloys show high strengthto-weight ratios, tensile strengths, and corrosion and oxidation resistances. For consistency with the published data used in this study, we use the term HEA to refer to random alloys comprising multiple equiatomically combined elements and forming solid-solution phase.

From the materials development perspective, specific element combinations that will most likely form single-phase HEAs must necessarily be recommended for experimental validation.

Deductive and inductive approaches are both used to accomplish this task, and are based on entirely different concepts.

In the deductive approach, it is necessary to understand the HEA formation mechanisms or begin with the quantum-mechanics equations derived based on numerous first-principles calculations. In previous HEA research, it was hypothesized that HEA constituent elements form a single-phase solid solution owing to configurational-entropy-induced stabilization.

However, this hypothesis is correct only for some multicomponent alloys, most of which have been experimentally demonstrated to form multiple phases 6 . Although much attention has been devoted to the formation mechanism driving HEA stability, the key factors governing the formation of single-phase HEAs remain unknown 7 . Constructing phase diagrams for multicomponent alloys by first-principles calculations can also directly predict which alloys will form solid solutions [START_REF] Huhn | Prediction of A2 to B2 Phase Transition in the High-Entropy Alloy Mo-Nb-Ta-W[END_REF] . However, this method involves energy calculations for many configurations and the implementation of statistical mechanical models for estimating thermodynamic properties, both of which are computationally demanding [START_REF] Van De Walle | Self-driven lattice-model monte carlo simulations of alloy thermodynamic properties and phase diagrams[END_REF] . Therefore, it is imperative to search for HEAs by first-principles calculations.

Several inductive screening methods have been developed using descriptors created from knowledge of condensed matter theory, with parameters fitted to the available experimental data to predict the possible HEA [START_REF] Zhang | Solid-solution phase formation rules for multi-component alloys[END_REF][START_REF] Ye | Design of high entropy alloys: A singleparameter thermodynamic rule[END_REF] or their structure phases [START_REF] Tsai | Three strategies for the design of advanced high-entropy alloys[END_REF][START_REF] Tsai | Intermetallic phases in high-entropy alloys: Statistical analysis of their prevalence and structural inheritance[END_REF][START_REF] Huang | Machine-learning phase prediction of high-entropy 14 Evidence-based recommender system for high-entropy alloys alloys[END_REF] . However, applying the inductive approach requires sufficient and balanced data to ensure prediction accuracy, usually not available with experimental material data that is either lacking or heavily biased Evidence-based recommender system for high-entropy alloys toward positive results [START_REF] George | High-entropy alloys[END_REF][START_REF] Konno | Deep learning model for finding new superconductors[END_REF] . In addition, although it would be desirable to quantitatively evaluate the prediction uncertainty even if a high prediction accuracy cannot be obtained, this has not yet been achieved. Another challenge is to design suitable material descriptors to represent the data of alloys comprising different numbers of elements. Descriptors calculated from the atomic properties of the constituent elements (e.g., mean, variance, and difference of atomic sizes) are often adopted [START_REF] Huang | Machine-learning phase prediction of high-entropy 14 Evidence-based recommender system for high-entropy alloys alloys[END_REF][START_REF] Pham | Novel mixture model for the representation of potential energy surfaces[END_REF][START_REF] Kobayashi | Neural network potential for al-mg-si alloys[END_REF][START_REF] Tamura | Fast and scalable prediction of local energy at grain boundaries: machinelearning based modeling of first-principles calculations[END_REF][START_REF] Seko | Representation of compounds for machine-learning prediction of physical properties[END_REF][START_REF] Kobayashi | A molecular dynamics package with parameter-optimization programs for classical and machine-learning potentials[END_REF] . However, it is mathematically difficult to accurately assess the similarity or dissimilarity between alloys with different numbers of compositions; and there are inevitable limits to the results obtained by data-driven approaches using these descriptors [START_REF] Pham | Novel mixture model for the representation of potential energy surfaces[END_REF][START_REF] Nguyen | Committee machine that votes for similarity between materials[END_REF] . A solution for this problem is to describe the alloy using one-hot vectors of constituent elements; however, this approach raises another difficulty, which is designing a proper metric in this vector space [START_REF] Pham | Machine learning reveals orbital interaction in materials[END_REF] .

To overcome these issues and focus on predicting whether the HEA phase exists for particular combinations of elements, we adopted the Dempster-Shafer theory [START_REF] Dempster | A Generalization of Bayesian Inference[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF][START_REF] Denoeux | Representations of uncertainty in artificial intelligence: Beyond probability and possibility[END_REF] , referred to as the evidence theory, to develop a descriptor-free recommender system, called evidencebased recommender system (ERS), for exploring potential HEAs.

The Dempster-Shafer theory can be considered as a generalization of the Bayesian approach for dealing with situations of incomplete information and imperfect data, and is deemed suitable for solving material data problems. Given a set Ω of possibilities (called the frame of discernment), evidence theory assigns non-negative weights (summing to one) to subsets of Ω, instead of assigning them to elements of Ω as in the Bayesian approach. By adopting the evidence theory, we can model, collect and combine pieces of evidence from multiple alloy data without using material descriptors. Consequently, the proposed system can suggest HEAs by learning from multiple data of alloys with fewer constituent elements. The proposed recommender system is based on the elemental substitution method widely used to synthesize various materials. This method is used to replace the element or group of elements with a counterpart showing similar chemical functions, such that the properties of the target material are not affected. The difficulty in this approach is the proper assessment of the similarity between the chemical functions of the alloy metal combinations to discover potential HEAs. To address this issue, we consider each pair of observed alloys as a piece of evidence to compare the contribution of their constituent elements or a combination thereof to the target property (forming HEA phase). The obtained similarity evidence is then used to generate evidence for hypothesizing whether the substituted alloys are HEAs. The ERS Evidence-based recommender system for high-entropy alloys consists of three main steps (Supplementary Figure 1):

1. Measure the similarity between element combinations: All the pieces of evidence obtained from the data are modeled and combined to conclude the similarity between the element combinations by using evidence theory.

2. Evaluate the hypothesis on the properties of the substituted alloys: The pieces of evidence for the substituted alloys are modeled and combined to evaluate the hypothesis about the target property (forming HEA phase) by using evidence theory.

3. Rank substituted alloys: The substituted alloys are ranked according to various criteria based on the combined evidence of their target properties to recommend potential HEAs.

II. RESULTS

A. Evidence-based recommender methodology

Each alloy A in data set D is represented by a set of its components. The property of interest y A for the alloy A, which can be either HEA or ¬HEA (not HEA), indicates whether the HEA phase exists for the alloy A. We first measure the similarity between element combinations by adapting the evidence theory to model and combine all pieces of evidence obtained form the data set D.

The similarity between objects appears in various forms [START_REF] Tversky | Features of similarity[END_REF] : ratings of pairs, sortings of objects, communality betweeen associations, substitutability, and correlation between occurrences. Here, the solid-solution formability for combinations of elements are discussed, along with the measure of similarity, in terms of substitutability between the elements combinations. Each nondisjoint pair of alloys A i and A j in D is a source of evidence for measuring the substitutability between element combinations 1 a). The nonempty intersection set A i ∩ A j is considered as the context for the similarity measurement. If y A i = y A j then C t and C v are substitutable, otherwise C t and C v are not substitutable.

C t = A i -(A i ∩ A j ) = A i -A j and C v = A j -(A i ∩ A j ) = A j -A i (Figure
To model evidence about the similarity between any pair of element combinations, we first define a frame of discernment [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] Ω sim = {similar, dissimilar} containing all possible values.

Evidence-based recommender system for high-entropy alloys The evidence collected from alloys A i and A j is then represented by a mass function [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] (or a basic probability assignment), m Ct,Cv A i ,A j , which assigns probability masses to all the nonempty subsets of Ω sim (i.e., {similar}, {dissimilar}, and {similar, dissimilar}), as follows:

m Ct,Cv A i ,A j ({similar}) =      α if y A i = y A j 0 otherwise , (1) 
m Ct,Cv A i ,A j ({dissimilar}) =      α if y A i = y A j 0 otherwise , (2) 
m Ct,Cv A i ,A j ({similar, dissimilar}) = 1 -α (3) 
Note that the masses assigned to {similar} and {dissimilar} indicate the degrees of belief exactly committed to A i and A j to support the similarity and dissimilarity between C t and C v , respectively. The weight assigned to subset {similar, dissimilar} expresses the degree of belief that A i and A j provide no information about the similarity (or dissimilarity) between

C t and C v .
Here, the parameter α is determined by an exhaustive search (0<α<1) for the best cross-validation score (Section IV C). We retain some degree of uncertainty (1-α) about the similarities collected from each piece of evidence for dealing with the inconsistencies in the data set. The sum of the masses assigned to all three nonempty subsets of Ω sim is 1.

Suppose that we can collect multiple pieces of evidence from D to compare two element combinations C t and C v , all obtained mass functions corresponding to those pieces of evidence are then combined using the Dempster rule of combinations [START_REF] Dempster | A Generalization of Bayesian Inference[END_REF] to assign the final mass m Ct,Cv D (Section IV A). Similar analyses are performed for all pairs of element combinations of interest to obtain a symmetric matrix M consisting of all the similarities between them

(M [t, v] = M [v, t] = m Ct,Cv D ({similar})).
For hypothesizing whether a potential alloy A new forms an HEA phase, we apply the substitution method using the obtained matrix M . We replace a combination of elements, 

C t ,
m Anew A k ,Ct←Cv ({HEA}) =      M [t, v] if y A k = HEA 0 otherwise , (4) 
m Anew A k ,Ct←Cv ({¬HEA}) =      M [t, v] if y A k = ¬HEA 0 otherwise , (5) 
m Anew A k ,Ct←Cv ({HEA, ¬HEA}) = 1 -M [t, v], (6) 
Note that the masses assigned to {HEA} and {¬HEA} reflect the levels of confidence whereby A k and the substitution of C v for C t support the probabilities that A new is or is not an HEA, respectively. The mass assigned to subset {HEA, ¬HEA}, expresses the probability that A k , C t , and C v provide no information about the property of A new . The sum of the probability masses assigned to all three nonempty subsets of Ω HEA is 1.

We assume that for a specific hypothetical alloy, A new , we can collect pieces of evidence about its properties from D (pair of A host and the corresponding substitution to obtain A new from A host ). The obtained mass functions for A new are then combined using the Dempster rule [START_REF] Dempster | A Generalization of Bayesian Inference[END_REF] to obtain a final mass function m Anew (Section IV A). Similar analyses are performed for all the possible alloys (A new ) that are not included in the observed data. We then use the final value of m Anew D ({HEA}) for sorting the ranking of recommendation. The proposed recommender system considers the alloys with a higher value of m Anew D ({HEA}) to have the greater potential of having HEA phases.

B. Experimental settings

We use eight data sets ( It should be noted that our system has the capability to collect and combine evidence from multiple data sets to reasonably draw the final conclusions. However, in the evaluation of HEA-recommendation capability, each data set comes from a different experiment or calculation method; therefore, we evaluate the proposed method with each data set separately to ensure the consistency between the training and test sets.

We compare the HEA-recommendation performance of the proposed ERS with those of matrix-based recommender systems 32 previously developed using nonnegative matrix factorization (NMF) [START_REF] Paatero | Matrix factorization methods for analysing diffusion battery data[END_REF] and singular-value decomposition (SVD) [START_REF] Golub | Singular value decomposition and least squares solutions[END_REF] . To use the matrix-based recommender systems for exploring potential HEAs, we apply two types of rating-matrix representations. In addition, the performances of recommender systems based on supervisedlearning methods (support vector machines [START_REF] Hearst | Support vector machines[END_REF] (SVM), logistic-regression [START_REF] Lavalley | Logistic regression[END_REF] , decision tree 37 , and Naïve-Bayes 38 ) are compared with that of the ERS. We apply a compositional descriptor to employ the SVM-and logistic-regression-based recommender systems. The binary elemental descriptor is used to represent the alloys in our system and in the decision-treeand Naïve-Bayes-based recommender systems. The material descriptors are shown in detail in the Methods section (IV B).

C. Learning about the similarity between elements

By applying the proposed ERS to the D ASMI16 , D CALPHAD , D AFLOW , and D LTVC data sets (Table I), we assess the similarity between the E elements and all the possible binary combinations obtained therein. Evidence-based recommender system for high-entropy alloys and Al, Ag, Tc, Si, Ru, As, Re, and Os, where the first two groups correspond to the early and late transition metals, respectively. Given the similar physical and chemical properties of these elements, the high degree of similarity between the elements within the same group, as revealed by the ERS, is rational. Interestingly, the matrix M ASMI16 shows a remarkable similarity between Mn (an earlier transition metal) and Au (a late transition metal). Furthermore, the similarity matrix M ASMI16 indicates none of the belief about the similarity among the elements in the third group and between the elements of the third group and the other two groups because the binary alloys contained in D ASMI16 do not contain these elements (Supplementary Figure 2 a). Therefore, no evidence of similarities can be collected from D ASMI16 for these elements.

The similarity matrix M CALPHAD also reveals three somewhat modified element groups In contrast, it is difficult to divide all the elements contained in E into groups according to the matrix M AFLOW . However, some characteristic groups of metallic elements are distinct.

Although two distinct groups of early or late transition metals are observed(Figure 2 g), there are some notable differences between these results and those obtained from D ASMI16

and D CALPHAD (Supplementary Section III). In addition, the similarity matrix M AFLOW However, it should be noted that several pairs of elements have a similarity with a low degree of belief even though they belong to the same groups, i.e. {(Ti, Zr), (Cu, Ag), (Fe, Ru)} in D AFLOW and {(Ti, Zr), (Mn, Re), (Ni, Pd)} in D LTVC (Figure 2 c andd).

Furthermore, as the difference in the group index increases from 0 to 4, the similarity between the elements decreases (∆ group : 0 → 4). The results learned from the D AFLOW and D LTVC data sets both show that the elements are the least similar when the difference between their group indices is three or four. However, the elements become slightly more similar as ∆ group increases from 5 to 7, which is consistent with the domain knowledge about the differences between early and late transition metals.

D. Evaluation of recommendation capability by cross-validation

We apply k-fold cross-validation to the D ASMI16 , D CALPHAD , D AFLOW , and D LTVC data sets to assess the HEA-recommendation capabilities of the ERS, the four matrix-based recommender systems (NMF and SVD, each one with two types of matrix representations) [START_REF] Seko | Matrix-and tensor-based recommender systems for the discovery of currently unknown inorganic compounds[END_REF] .

These two matrix representations (type 1 and type 2 ) decompose an alloy into two elementary components A and B with different sizes (Section IV B). We also compare the ERS with the four supervised-learning-method-based (i.e., decision tree, Naïve-Bayes, logistic-regression, and SVM) recommender systems.

The learned similarity matrix is used to rank all the alloys contained in the test set and all the possible combinatorial alloys other than those used to train the similarity matrix. The resulting alloy rankings are then used to evaluate the HEA-recommendation performance.

We designed a virtual experiment that sequentially identifies the alloys on the basis of the order in which they were previously ranked. To evaluate the HEA-recommendation capability of the proposed ERS, we monitor the rank of HEAs in the test set and the HEA recall depending on the number of trials required to identify all possible HEAs. The detailed experimental conditions are shown in the section IV D. 

F. Synthesis of recommended FeMnCo-based HEAs

Fe-Co-based film soft-magnetic materials have attracted interest from device community and will be applied to improve the performance of next-generation high-power devices [START_REF] Silveyra | Soft magnetic materials for a sustainable and electrified world[END_REF] .

Therefore, we focus on Fe-Co-based quaternary alloys containing the first transition-series elements. We combine all evidence collected from all the data sets to recommend quaternary Fe-Co-based HEAs for experimental validation.

Figure 5 a shows the recommended possible magnetic quaternary HEAs containing Fe, Mn, and Co. Clearly, FeMnCoNi is the only HEA candidate recommended with a belief higher than 0.5. Although FeMnCoCr and FeMnCoCu are HEA candidates recommended with the next highest belief, some uncertainty still remains as to their potential as HEAs.

Therefore, we chose FeMnCoNi as the target HEA candidate for the experimental validation (Figure 5, see the Methods section IV F for further information). Reportedly, the BCC crystal structure of the FeCoMn alloy is stable [START_REF] Snow | Large moments in bcc Fe x Co y Mn z ternary alloy thin films[END_REF] , and previous reports have mentioned that FeCoMnNi alloy has an face-centered cubic FCC structure in high temperature synthesized bulk; however, detailed information is still not available [START_REF] Wu | Recovery, recrystallization, grain growth and phase stability of a family of fcc-structured multi-component equiatomic solid solution alloys[END_REF][START_REF] Cui | Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system[END_REF] .

Evidence-based recommender system for high-entropy alloys Therefore, to investigate the stability of the crystal structure, the effect of Ni doping on the crystal structure was analyzed based on the heat map generated from the X-ray diffraction 

III. DISCUSSION

Application of inductive approach usually requires sufficient and balanced data to ensure prediction accuracy. However, material data is usually lacking or heavily biased toward positive results (Table I). It is very challenging to build prediction model using such small data and a very heavy skew toward positive results. In addition, conflicts within and between data sets of materials are also challenges that inductive approaches must overcome. Therefore quantitative assessment of the uncertainty of the prediction itself is indispensable. The ERS has the advantage in dealing with these situations. Instead of forcibly merging data from multiple data sets, our system rationally consider each data set as a source of evidence and combine the evidence to reasonably draw the final conclusions for recommending HEA,

where the uncertainty can be quantitatively evaluated.

To serve the purpose of screening the elements combination forming HEA phases, the ERS focuses on fundamental question of whether the HEA phase exists. We design a frame of 
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IV. METHODS

A. Combining multiple pieces of evidence

We assume that we can collect q pieces of evidence from D to compare a specific pair 

ω) = m Ct,Cv a ⊕ m Ct,Cv b (ω) = ∀ω k ∩ω h =ω m Ct,Cv a (ω k ) × m Ct,Cv b (ω h ) 1 - ∀ω k ∩ω h =∅ m Ct,Cv a (ω k ) × m Ct,Cv b (ω h ) , ( 
where ω, ω k and ω h are subsets of Ω sim . Note that the Dempster rule is commutative and . All the q obtained mass functions corresponding to the q collected pieces of evidence from D are then combined using the Dempster rule to assign the final mass m Ct,Cv D as follows:

m Ct,Cv D (ω) = m Ct,Cv 1 ⊕ m Ct,Cv 2 ⊕ • • • ⊕ m Ct,Cv q (ω). ( 8 
)
Multiple pieces of evidence about the label of each new alloy are combined using the similar manner. We assume that for a specific hypothetical alloy, A new , we can collect pieces of evidence about its properties from D (pair of A host and the corresponding substitution to obtain A new from A host ). If no evidence is found, m Anew none is initialized and a probability mass of 1 is applied to set {HEA, ¬HEA}. m Anew none models the condition that no information about the label of A new can be obtained from D. The obtained mass functions for A new are then combined using the Dempster rule [START_REF] Dempster | A Generalization of Bayesian Inference[END_REF] to obtain a final mass function m Anew D on Ω HEA .

B. Materials descriptors

Descriptors, which are the representation of alloys, play a crucial role in building a recommender system to explore potential new HEAs. In this research, the raw data of alloys is represented in the form of elements combination. Several descriptors have been studied in materials informatics to represent the compounds [START_REF] Seko | Descriptors for Machine Learning of Materials 16 Evidence-based recommender system for high-entropy alloys Data[END_REF] . To employ the data-driven approaches for this work, we applied compositional descriptor [START_REF] Seko | Representation of compounds for machine-learning prediction of physical properties[END_REF] , rating matrix representation [START_REF] Seko | Matrix-and tensor-based recommender systems for the discovery of currently unknown inorganic compounds[END_REF] and binary elemental descriptor [START_REF] Seko | Descriptors for Machine Learning of Materials 16 Evidence-based recommender system for high-entropy alloys Data[END_REF] .

Compositional descriptor represents an alloy by a set of 135 features composed of means, standard deviations, and covariance of established atomic representations that form the alloy.

The descriptor can be applied not only to crystalline systems but also to molecular system. We adopted 15 atomic representations: (1) atomic number, (2) atomic mass,(3) period and

(4) group in the periodic table, (5) first ionization energy, ( 6) second ionization energy, Evidence-based recommender system for high-entropy alloys (7) Pauling electronegativity, (8) Allen electronegativity, (9) van der Waals radius, (10) covalentradius, (11) atomic radius, (12) melting point, (13) boiling point, ( 14) density, and (15) specific heat. However, the compositional descriptor hardly distinguishes compounds which have different numbers of the atom because it is to regard the atomic representations of a compound as distributions of data. Therefore, the compositional descriptor cannot be applied in the case of having extrapolation in the number of components.

The rating matrix representation, which is a descriptor-free approach, shows a robust performance of recommendations for a wide variety of data sets in the Machine Learning community. Seko et al. adopted the representation to build a recommender system for exploring currently unknown chemically relevant compositions [START_REF] Seko | Matrix-and tensor-based recommender systems for the discovery of currently unknown inorganic compounds[END_REF] . In that work, a composition data set needs to be transformed into just two feature sets, which corresponds to users and items in a user-item rating matrix. Ratings of missing elements are approximately predicted based on the similarity of features given by the representation. To build a recommender system for HEA, we first define the candidate alloys as AB, where A and B correspond to elementary components of the alloys. We introduce two kinds of matrix representations for the eight alloys data sets. An alloy is decomposed into two elementary components with the following number of elements.

• Binary elemental descriptors is simply a binary digit representing the presence of chemical elements. The number of binary elemental descriptors corresponds to the number of element types included in the training data. In this work, the alloys data sets are composed of 27 kinds of elements; Thus, an alloy is described by a 27-dimensional binary vector with elements of one or zero.

C. Tuning hyper-parameter of the ERS

Because data sets used in this work are the output of calculation prediction methods, we add some degree of uncertainty α in the mass function which models similarity evidence. In Evidence-based recommender system for high-entropy alloys each data set, we use grid search to determine the α that best reproduced the alloy labels in the data set (achieving best cross-validation score). Details of the cross-validation schemes are mentioned in Section IV D. The search space of α is from 0.01 to 0.9 with a step of 0.01.

However, the relative magnitudes of (degree of belief HEA ) and (degree of belief not HEA ) are almost unchanged. In summary, the absolute value of alpha has little effect on the final result of the recommender system.

D. Experimental settings for cross-validation

Cross-validated testing accuracy rates of our method when considered as a supervised learning method are 80% and 75% in D AFLOW , and D LTVC data sets, respectively, which are almost at the same level with those in the previous study [START_REF] Huang | Machine-learning phase prediction of high-entropy 14 Evidence-based recommender system for high-entropy alloys alloys[END_REF] . However, our work pays more attention toward calculating the recall, which is the percentage of the total HEAs correctly classified. This recall value is a more appropriate evaluation measure compared to supervised learning accuracy for finding new combinations of elements having HEA phases. 

F. Synthesis of FeMnCoNi high entropy alloy thin film

As a case study, we fabricated a high entropy alloy film of Fe 0.25 Co 0.25 Mn 0.25 Ni 0.25 . A 100 nm thick-thermal oxidized SiO 2 /Si (100) substrate was used. After the organic solvent and deionized water cleaning, the substrate was loaded in a combinatorial multi target RF-sputtering system (COMET inc., CMS-6400). To identify the stable crystal structure and its composition dependence, a composition spread film was fabricated by combinatorial method [START_REF] Koinuma | Combinatorial solid-state chemistry of inorganic materials[END_REF] . For the composition spread film, we used two targets of FeCoMn (1:1:1) and Ni (3N grade). The base pressure was below 1 × 10 -5 Pa, and Ar gas pressure was set as 0.3 Pa.

To adjust the deposition rate as 0.23 ± 0.01 nm/s, RF-sputtering powers of FeCoMn and Ni targets were set at 100 and 120 W, respectively. To enhance the crystallinity, the sample was annealed at 400 • C for 30 min under a vacuum condition below 6 × 10 -3 Pa (Advanced RIKO, MILA-3000). Evidence-based recommender system for high-entropy alloys x(FeCoMn)-xNi composition spread layer/ FeCoMn stack structure is 0.5 nm. Alternating between the three deposition steps created composition-spread region with a width of 18.5 mm. The total film thickness in the composition-spread region was set to 100 nm. The composition spread was confirmed by an X-ray fluorescence spectrometer (XRF: Shimadzu, µEDX-1400) with a measuring spot diameter of 50 µm, as shown in Supplementary Figure 5.

The crystal structure was identified by X-ray diffraction (XRD). An XRD system with a 5-kW rotating anode Cu target x-ray source and a high-resolution 2D-detector (BRUKER AXS, D8 Discover Super Speed with GADDS) was used to determine the crystal structure. The 2D-detector system can detect part of the Debye-Scherrer ring rapidly and twodimensionally [START_REF] He | Geometry and Fundamentals[END_REF] In the evaluation of the phase separation temperature and magnetization properties of the other FeCoMn-X compositions, we found that the phase separation and inflection point were observed near 400 • C. Therefore, we set the annealing temperature as 400 • C. In the reported experiment, the annealing was performed at only 400 • C; however, for FeCoMnNi, structural changes at higher temperatures are expected and are currently under investigation. Supplementary Figure 7 shows the XRD patterns of the sample as deposited and annealed. The BCC phase was confirmed for the annealed thin film sample at the equiatomical composition of FeCoMnNi (x=0.25). Even at room temperature, a weak peak of the BCC can be observed for the FeCoM-rich composition. 
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I. ILLUSTRATIVE EXAMPLES

The following examples provide explanations of how the evidence theory work to learn the similarity and infer the HEA formation for new element combinations, identifying equiatomic alloys.

Example 1: Suppose we have collected four pairs of alloys from experiments. Three of those pairs are alloys that both form HEA phase: We consider each pair as a source of evidence support that {D} is similar to {E} in term of substitutability to form the HEA phase. Each evidence is modeled using mass function as follows: ({similar, dissimilar}) = 0.9

pair 1 = ({A 1 , B 1 , C 1 , D}, {A 1 , B 1 , C
m {C},{D} pair 1 ({similar}) = 0.1, m {C},{D} pair 1 ({dissimilar}) 
The three pieces of evidence are combined using the Dempster' rule of combination to accumulate the believe that {D} is similar to {E}: Next, if we observed (included in the data) that the HEA phase exists for alloy {G, H, I, D}, the ERS (which focuses on finding some chance for discovering new combination of elements that the HEA phase exist and ignores the belief regarding ¬HEA) will consider that there is some believe that the HEA phase also exists for {G, H, I, E} (by substituting {D} with {E}). The evidence is modeled using mass function as follows: Consequently, if we observed (included in the data) that the HEA phase exists for {G, H, I, C}, the algorithm (which focuses on finding some chance for discovering new combination of elements that the HEA phase exist and ignores the belief regarding ¬HEA) will consider that there is some believe that the HEA phase also exists for {G, H, I, D, E} (by substituting {C} with {D, E}). 

Figure 2 (

 2 a, b, c, and d) show the M ASMI16 , M CALPHAD , M AFLOW , and M LTVC similarity matrices obtained for all the E elements in the first four experiments. These similarity matrices are then properly transformed into distance matrices to which Ward's hierarchical agglomerative clustering 39 can be applied to construct the corresponding hierarchically clustered structures of these elements (Figure2 e, f, g, and h).The similarity matrix M ASMI16 reveals three distinct element groups (Figure2 e) consisting of Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, and W; Fe, Co, Ni, Cu, Rh, Pd, Ir, Pt, and Au;

(

  Figure 2 f) compared to those obtained from D ASMI16 . Because D CALPHAD contains some Tcand Re-containing alloys, these elements join the group of early transition metals. Similarly, D CALPHAD contains more Ag-and Au-containing alloys, and these elements join the group of late transition metals. Therefore, only Al, Si, As, and Os remain in the third group. Although no evidence of any similarities between Si and As can be collected from D CALPHAD (Supplementary Figure 2 a), Os and Al are somewhat similar to the first and second groups, respectively.

  does not show any similarity between Os and any of the other elements because very few Os-containing alloys are contained in the data set (Supplementary Figure2 a). Furthermore, the similarity matrices M LTVC and M AFLOW are approximately similar. However, the hierarchically clustered structure constructed from D LTVC indicates that Cu, Ag, and Au form a distinct subgroup (Figure2 h).

Figure 3

 3 Figure3shows the correlation between the pairwise similarities learned from the D AFLOW and D LTVC data sets and the corresponding difference between the periodic-table group index obtained for each of the transition metal pairs contained in E. Clearly, the elements showing the same periodic-table group index (∆ group = 0) tend to show high similarity scores (Figure

Figure 4 (

 4 Figure4 (a-d) illustrate the distributions of the HEA ranks of the test set recommended by the different systems. The HEAs in the test set are generally recommended with higher rank using the ERS (i.e., the ERS rank distributions are on the left of the curves for the

Figure 4 (

 4 Figure4 (e-h) illustrate the distributions of the recommended HEA rank of the quaternary and quinary HEAs in the test set that are extrapolated using recommender systems.The obtained results show that the ERS outperforms the capability of the competitor systems for recommending quaternary HEAs (Fig.4 e and f) and substantially outperforms the capability of the other systems for recommending quinary HEAs (Fig.4 g and h). Interestingly, in the experiments with D quinary LTVC and D quinary AFLOW , the numbers of quinary HEAs in the test set, and those found in the top 100 and top 1,000 HEA candidates recommended by the ERS, are much larger than those predicted by the competitor systems. These numbers

Figure 5 c

 5 Figure 5 c shows a 2D-XRD image of a region of the Fe 0.25 Co 0.25 Mn 0.25 Ni 0.25 alloy annealed at 400 • C. A reflection attributed to the (110) plane of the BCC crystal structure appears in the ring pattern at 2θ = 44.7 • (PDF 03-065-7519[START_REF] Gates-Rector | The powder diffraction file: a quality materials characterization database[END_REF] ). Note that out-of-plane XRD measurements were also performed to identify the crystal structure in more detail, as shown in Supplementary Figure6(a), indicating the formation of a polycrystalline film.

  patterns of FeCoMn films prepared with various Ni contents (Fig5 d). For an Ni content above 0.3, the FCC structure is also observed at 2θ = 43.5 • , corresponding to the (111) reflection [Supplementary Figure6(b)] (PDF 03-065-5131[START_REF] Gates-Rector | The powder diffraction file: a quality materials characterization database[END_REF] ). These results suggest that the Fe 0.25 Co 0.25 Mn 0.25 Ni 0.25 HEA shows a BCC structure. In our experiment, the BCC structure of the starting material, FeCoMn, is considered as an essential reason for which the thin films produced by this method tend to be in the BCC phase.

  discernment Ω HEA = {HEA, ¬HEA} to model the existence of HEA phases with mass functions. Consequently, the ERS has not answered essential questions regarding the structure and other properties of the HEAs. However, by redesigning the frame of discernment reflecting the additional properties of interest, we can also construct a model that can recommend the potential alloys forming the HEA phases with the desirable properties. Furthermore, in the experimental validation, detailed quantitative investigation of the secondary phases in the synthesized FeCoMnNi alloy thin film was not done due to technical difficulties. Evidence-based recommender system for high-entropy alloys alyzed the data, Wrote the paper. T.M.: Conceived and designed the experiments, Wrote the paper. T.D.: Conceived and designed the experiments, Writing -Review & Editing. V.-N.H.: Conceived and designed the experiments, Wrote the paper. H.-C.D.: Conceived and designed the experiments, Performed the experiments, Analyzed the data, Contributed materials/analysis tools, Wrote the paper.

Figure 1 :

 1 Figure 1: An illustration of Evidence-based recommender methodology. Venn diagrams shows the logical relationships between alloys (A i , A j , A k , and A new ) and element combinations (C t and C v ), which are used to model evidence of (a) similarities between element combinations and (b) new alloys by element substitution method.

Figure 2 :

 2 Figure 2: Visualization of similarities between elements. Top: Heat maps for similarity matrices (a) M ASMI16 , (b) M CALPHAD , (c) M AFLOW , and (d) M LTVC . Each matrix element is the probability mass that the similarity mass function of the corresponding element pair is assigned to subset {similar} of Ω sim . These matrix elements indicate the degree of belief learned from the similarity data of the corresponding element pairs. In these figures, the degrees of belief are illustrated using colormap. Bottom: Hierarchically clustered structures of all elements in E constructed using hierarchical agglomerative clustering and these similarity matrices (e) M ASMI16 , (f) M CALPHAD , (g) M AFLOW , and (h) M LTVC data sets. The blue, green, and gray regions indicate groups of early and late transition metals, and elements without similarity evidence, respectively.

Figure 3 :

 3 Figure 3: Correlation between pairwise similarity and difference in group index (∆ group ) of elements. Sub-figures illustrate the distribution of pairwise similarities, which are obtained from (a, b) D AFLOW and (c, d) D LTVC data sets, according to the ∆ group of these element pair. Colormap illustrates the estimated density of the distribution of pairwise similarity.

Figure 4 :

 4 Figure 4: Evaluation of HEA-recommendation capability. Probability density functions of the rank of the HEAs in the test sets in (a) D ASMI16 , (b) D CALPHAD , (c) D AFLOW , (d)

Figure 5 :

 5 Figure 5: Recommendation and experimental validation for thin film of FeCoMnNi HEA. (a) Recommended candidates for Fe-Co-based HEAs containing first-transition-series elements: FeMnCoTi, FeMnCoV, FeMnCoCr, FeMnCoNi, and FeMnCoCu. (b) Schematic illustration of the sample, which includes 200 cycles of 0.5 nm spread film, was fabricated on SiO 2 /Si (100) substrate using the combinatorial method. Each spread film consists of a 0.25 nm FeCoMn sublayer and a 0.25 nm 1-x(FeCoMn)-xNi sublayer. (c) 2D-XRD image of Fe 0.25 Co 0.25 Mn 0.25 Ni 0.25 thin film measured by changing the incident angle of X-rays. (d) Heat map shows the dependence of the X-ray diffraction intensity of 1-x(FeCoMn)-xNi films on Ni composition and diffraction angle θ.

  of element combinations, C t and C v . If no evidence is found, the mass function m Ct,Cv none is initialized, which assigns a probability mass of 1 to subset {similar, dissimilar}. m Ct,Cv none models the condition under which no information about the similarity (or dissimilarity) between C t and C v is available. Any two pieces of evidence a and b modeled by the corresponding mass functions m Ct,Cv a and m Ct,Cv b can be combined using the Dempster rule 24 to assign the joint mass m Ct,Cv a,b to each subset ω of Ω sim (i.e. {similar}, {dissimilar}, or Evidence-based recommender system for high-entropy alloys {similar, dissimilar}) as follows: m Ct,Cv a,b

  yields the same result by changing the order of m Ct,Cv a and m Ct,Cv b

Type 1 :

 1 |A| ∈ {1, 2} and |B| ∈ {1, 2, 3}. The numbers of possible components A and B are respectively 378 and 3303. The size of the rating matrix is (378 × 3303). • Type 2 : |A| = 1 and |B| ∈ {1, 2, 3, 4}. The numbers of possible components A and B are 27 and 20853, respectively. The size of the rating matrix is (27 × 20853).

  Because the D ASMI16 data set only contains binary alloys, we can learn a similarity matrix between the elements from a training set sampled from D ASMI16 . By applying the proposed process for recommending substituted alloys, we can rank all the possible binary alloys other than those in the training set. A total of 351 hypothetical binary alloys showing equivalent components can be generated from the 27 elements in E, 45 of which are contained in D ASMI16 . Because no information is available for the other 306 alloys, they are ranked by the constructed model. We apply 9-fold cross-validation to D ASMI16 . A total of 40 out of the 45 alloys in D ASMI16 are used as the training set, and the remaining 5 alloys are used as the test set to evaluate the HEA recall rate. The model learned from the 40 alloys in the training set is then used to rank the other 311 alloys, including the 5 in the test set. This cross-validation is repeated 100 times so that the HEA-recommendation performance can be reliably calculated. Because the D CALPHAD data set only contains ternary alloys, we can learn a similarity matrix between the elements or binary combinations thereof from a training set sampled from D CALPHAD . We can build a model to rank all the possible ternary alloys other than those in the training set. There are 2,925 hypothetical ternary alloys showing equivalent components that can be generated from the 27 elements in E, 243 of which are contained in Evidence-based recommender system for high-entropy alloys D CALPHAD . Because no information is available for the other 2,682 alloys, they are ranked by the constructed model. We apply 9-fold cross-validation to D CALPHAD and use 216 of the 243 alloys in D CALPHAD as the training set. The remaining 27 alloys in D CALPHAD are used as the test set to evaluate the HEA recall rate. The model learned from the 216 alloys in the training set is used to rank the other 2,709 alloys, including the 27 in the test set. This cross-validation is also repeated 100 times to ensure the reliable evaluation of the HEA-recommendation performance. In contrast, the D ASMI16 , D CALPHAD , D AFLOW , and D LTVC data sets contain both binary and ternary alloys. Owing to the information obtained from both types of alloys, we can learn a similarity matrix between the various elements, elements and binary combinations thereof, and binary element combinations obtained from the training set sampled from D AFLOW and D LTVC . We can build a model to rank all the possible candidates for binary and ternary alloys other than those in the training set. There are 3,276 hypothetical binary and ternary alloys showing equivalent components that can be generated from the 27 elements in E, 558 of which are contained in D AFLOW . Because no information is available for the other 2,718 alloys, they are ranked by the constructed model. We apply 9-fold cross-validation to D AFLOW and use 496 of the 558 alloys in D AFLOW as the training set. The remaining 62 alloys in D AFLOW are used as the test set to evaluate the HEA recall rate. The model learned from the 496 alloys in the training set is used to rank the other 2,780 alloys including the 62 in the test set. The same evaluation method is applied to D AFLOW . A similar experiment is conducted with the D LTVC data set to evaluate the HEArecommendation performance of the proposed ERS. Note that although the D LTVC data set contains the same alloys as the D AFLOW one, the target properties of the alloys are dissimilar because the values are estimated using different computation methods 31,46 . It should be noted that owing to the computational cost, these experiments do not use the selected alloys (i.e., those in the test set) to improve the accuracy of the HEA recommendation model for the next trial. A recommendation model based on the results of previous trials may work more accurately. Evidence-based recommender system for high-entropy alloys E. Experimental settings for evaluation of extrapolation capability Because D AFLOW contains both binary and ternary alloys, we can learn the similarities between the various elements and binary combinations thereof. Consequently, we can apply the ERS to D AFLOW to rank the 17,550 quaternary alloys comprising the 27 elements contained in E. Additionally, D AFLOW and D quaternary AFLOW are both used to build a recommender system that ranks all the possible candidates (i.e., 80,730 alloys) for synthesizing quinary HEAs. The 754 quaternary HEAs in D quaternary AFLOW and 129 quinary HEAs in D quinary AFLOW are used to monitor the HEA recall rate for recommending quaternary and quinary HEAs, respectively. Moreover, similar experiments are conducted on the D LTVC , D quaternary LTVC , and D quinary LTVC data sets to evaluate the HEA-recommendation performance of the ERS.

Figure 5 (

 5 Figure 5(b) shows the sample structure. The composition film layer consists of three layers. One is a single FeCoMn layer with a thickness of 0.25 nm. The other layers are composition spread film formed by FeCoMn and Ni layers. For the composition-spread film deposition, during the FeCoMn layer deposition, a mask moved 18.5 mm at constant speed from a point 1.5 mm from the edge of the substrate to another end where the film thickness gradually changed. After that, the targets were changed to Ni. The mask moved to the opposite direction during the Ni film deposition. The total thickness of one unit of the 1-

m

  {C},{D} ({similar}) = 0.25, m {C},{D} ({dissimilar}) = 0.075, m {C},{D} ({similar, dissimilar}) = 0.675

m

  {G,H,I,E} {G,H,I,D},{D}←{E} ({¬HEA}) = 0, m {G,H,I,E} {G,H,I,D},{D}←{E} ({HEA}) = m C,D ({similar}) = 0.25, m {G,H,I,E} {G,H,I,D},{D}←{E} ({HEA, ¬HEA}) = 1 -m C,D ({similar}) = 0.75 Example 2: In a same manner but for an extrapolative recommendation: if the HEA phases exist for all the alloys in the three following pairs: pair 1 = ({A 1 , B 1 , C}, {A 1 , B 1 , D, E}), pair 2 = ({A 2 , B 2 , C}, {A 2 , B 2 , D, E}), pair 3 = ({A 3 , B 3 , C}, {A 3 , B 3 , D, E}). In the fourth pair pair 4 = ({A 4 , B 4 , C}, {A 4 , B 4 , D, E}), {A 4 , B 4 , C} forms HEA phase while {A 4 , B 4 , D, E} does not form HEA phase. The algorithm will accumulate the believe that {C} is similar to {D, E} as follows: m {C},{D,E} ({similar}) = 0.25, m {C},{D,E} ({dissimilar}) = 0.075, m {C},{D,E} ({similar, dissimilar}) = 0.675

m

  {G,H,I,D,E} {G,H,I,C},{C}←{D,E} ({¬HEA}) = 0, m {G,H,I,D,E} {G,H,I,C},{C}←{D,E} ({HEA}) = m C,D ({similar}) = 0.25, m {G,H,I,D,E} {G,H,I,C},{C}←{D,E} ({HEA, ¬HEA}) = 1 -m C,D ({similar}) = 0.75

  

  

  

  

  in an existing alloy, A k , (C t ⊂ A k ) with a combination of elements, C v , adequate to obtain alloy A new showing a property (label y Anew ) similar to that of A k (label y A k ). On the basis of the label of A k and the similarity between C t and C v , the basic beliefs on the label of A new are quantified (Figure1 b). If C t and C v are substitutable (non-substitutable), this serves as a piece of evidence that the labels of A new and A k are the same (different). HEA = {HEA, ¬HEA}.The evidence collected from A k , C t , and C v is then represented by the mass function m Anew A k ,Ct←Cv , which assigns probability masses

	Evidence-based recommender system for high-entropy alloys
	To model evidence about existence of HEA phase in a particular alloy, we first define a
	frame of discernment 25 Ω to all the nonempty subsets of Ω HEA (i.e., {HEA}, {¬HEA}, and {HEA, ¬HEA}), as
	follows:

Table I

 I 

	Evidence-based recommender system for high-entropy alloys
	Si, As, Al, Tc, Re, Mn, Ta, Ti, W, Mo, Cr, V, Hf, Nb, and Zr}. Any alloy contained in
	the following data sets is predicted as an HEA if its order-disorder transition temperature
	is below its melting temperature. All the data sets are shown in detail in Supplementary
	Section II.
	) consisting of binary, ternary, quaternary, and quinary
	alloys comprising multiple equiatomically combined elements to evaluate the proposed sys-
	tem for recommending HEAs and revealing the HEA formation mechanisms. The alloys
	contained in the data sets comprise E = { Fe, Co, Ir, Cu, Ni, Pt, Pd, Rh, Au, Ag, Ru, Os,

TABLE I .

 I Summary of alloy data sets used in evaluation experiments. No. alloys: number of alloys included in each data set; No. HEAs: number of the alloys confirmed or estimated to form HEA phase in each data set; No. candidates: number of possible alloys generated using the set of all elements in the data sets. The "HEA rate" is the ratio of No. HEA to No. alloys, whereas the "Observation rate" is the ratio of No. alloys to No. candidates.

	[h!] Data set	No. alloys	No. HEAs No. candidates HEAs rate Observation rate
	D ASMI16	28	45 binary alloys	45	351	100%	13%
	D CALPHAD	3,29	243 ternary alloys	243	2925	100%	9%
	D AFLOW	30	117 binary alloys	60	351	51%	33%
								441 ternary alloys	234	2925	53%	15%
	D LTVC	31		117 binary alloys	58	351	49%	33%
								441 ternary alloys	148	2925	33%	15%
	D quaternary AFLOW	30 1,110 quaternary alloys	754	17,550	68%	6%
	D quaternary LTVC	31 1,110 quaternary alloys	480	17,550	43%	6%
	D quinary AFLOW	30	130 quinary alloys	129	80,730	99%	0.16%
	D quinary LTVC	31	130 quinary alloys	91	80,730	70%	0.16%

  1 , E});pair 2 = ({A 2 , B 2 , C 2 , D}, {A 2 , B 2 , C 2 , E}); and pair 3 = ({A 3 , B 3 , C 3 , D}, {A 3 , B 3 , C 3 , E}).The fourth pair pair 4 = ({A 4 , B 4 , C 4 , D}, {A 4 , B 4 , C 4 , E}) is different from the other three, in which {A 4 , B 4 , C 4 , D} forms HEA phase while {A 4 , B 4 , C 4 , E} does not form HEA phase.
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Supplementary Information

Minh-Quyet Ha, 1 Duong-Nguyen Nguyen, 1 Viet-Cuong Nguyen, 2 Takahiro Nagata, 3 Toyohiro Chikyow, 4 Hiori Kino, 4 Takashi Miyake, 5 Thierry Denoeux, 6 Van-Nam Huynh, 1 and Hieu-Chi Dam 1 1) Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

2) HPC SYSTEMS Inc., Minato, Tokyo 108-0022, Japan

3) RCFM, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan 4) MaDIS, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan 

Supplementary Information

Supplementary Information

II. ALLOYS DATA SETS

In the evaluation experiments, we use eight data sets consisting of binary, ternary, quaternary, and quinary alloys comprising multiple equiatomically combined elements. The data sets consist of data from experiments and calculations. In this section, we will follow Ref.

35 to describe the data sets. The alloys contained in the data sets comprise E = { Fe, Co, Ir, Cu, Ni, Pt, Pd, Rh, Au, Ag, Ru, Os, Si, As, Al, Tc, Re, Mn, Ta, Ti, W, Mo, Cr, V, Hf, Nb, and Zr}. Supplementary Figure 2 shows the proportion of 27 elements in the data sets.

Any alloy contained in the following data sets is considered as an HEA if its order-disorder transition temperature is below its melting temperature. 

III. DIFFERENCES BETWEEN SIMILARITY MATRICES LEARNED FROM D CALPHAD AND D AFLOW

There are some notable differences between these results obtained from experiments with D CALPHAD and D AFLOW . The similarity matrix learned from D AFLOW shows that Au and Ag are very similar (Supplementary Figure 3 b). Furthermore, both are similar to V, Mn, and Al but not to other late transition metals (Supplementary Figure 3 a). Mn is also similar to Tc, Re, and Cr but not to the other early transition metals. However, Tc and Re are somewhat similar to the other early transition metals. Furthermore, Zr is somewhat similar to the late transition metals, but different from the early transition metals. Clearly, these results are different from that obtained from D CALPHAD owing to the difference between the predicted label (HEA or ¬HEA) for the Zr-containing alloys recommended based on CALPHAD and AFLOW calculations, as listed in Supplementary Table 1. Al, Si, and As are all similar to each other and to Fe and Co (Supplementary Figure 3 a). However, Al is similar to V, Cr, and Mn but not to Ti, whereas Si and As are very similar to Ti but not to V or Cr.

Supplementary Information

IV. MONITORING HEA RECALL RATIOS IN TEST SET A. Evaluation of HEA-recommendation capability by cross-validation

In the experiment with D ASMI16 , the result shows that the ERS can significantly reduce the number of trials required to recall all the HEAs in the test set compared to the competitor systems (Supplementary Figure 4 a). The proposed ERS requires less than 12, 25, and 80% of all the possible trials to recall one-half, three-quarters, and all the HEAs in the test set, respectively (Supplementary Table 2). In the D CALPHAD experiment, the ERS requires less than 2 and 5% of all the possible trials to recall one-half and three-quarters of the HEAs in the test set, respectively, which are the fewest trials required among all the recommender systems (Supplementary Figure 4 b and Supplementary Table 2). Interestingly, 2).

B. Evaluation of HEA-recommendation capability by extrapolation

In the D quaternary AFLOW experiment, the ERS performs significantly better than the NMF-based recommender system, requiring less than 5 and 19% of the total number of possible HEA candidates to recall 50 and 75% of the HEAs in the test set, respectively (Supplementary Table 3). In the D quaternary LTVC experiment, the ERS and competitor matrix-based system devel-Supplementary Information oped using the first type of matrix representation require 13 and 32% and 14 and 41% of the total number of possible HEA candidates to recall 50 and 75% of the HEAs in the test set, respectively (Supplementary Table 3). Further investigation indicates that the ERS hardly recommends any quaternary alloys in D quaternary LTVC because these alloys cannot be generated by substituting elements in any of the ternary alloys in D LTVC (Supplementary Table 4).

Therefore, the properties of these alloys cannot be inferred from the evidence collected from D LTVC . As a result, the rankings obtained for these alloys are significantly low; therefore, the HEA recall rate is even lower than those obtained for randomly recommended HEAs. The results obtained for D quinary LTVC and D quinary AFLOW both show that the ERS drastically outperforms the capability of the competitor systems for recommending quinary HEAs. To recall 50, 75, and 100% of the HEAs from these data sets, 10-100 times fewer trials are required using the ERS than are required using the matrix-based recommender systems (Supplementary Table 3). Belief matrix for similarities between all the combinations 
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A high-throughput ab-initio approach," Acta Mater. 159, 364-383 (2018).