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AN EMBEDDING OF RELU NETWORKS

AND AN ANALYSIS OF THEIR IDENTIFIABILITY

PIERRE STOCK AND RÉMI GRIBONVAL

Abstract. Neural networks with the Rectified Linear Unit (ReLU) nonlinearity are de-
scribed by a vector of parameters θ, and realized as a piecewise linear continuous function
Rθ : x ∈ Rd 7→ Rθ(x) ∈ Rk. Natural scalings and permutations operations on the pa-
rameters θ leave the realization unchanged, leading to equivalence classes of parameters
that yield the same realization. These considerations in turn lead to the notion of iden-
tifiability – the ability to recover (the equivalence class of) θ from the sole knowledge of
its realization Rθ. The overall objective of this paper is to introduce an embedding for
ReLU neural networks of any depth, Φ(θ), that is invariant to scalings and that provides
a locally linear parameterization of the realization of the network. Leveraging these two
key properties, we derive some conditions under which a deep ReLU network is indeed
locally identifiable from the knowledge of the realization on a finite set of samples xi ∈ Rd.
We study the shallow case in more depth, establishing necessary and sufficient conditions
for the network to be identifiable from a bounded subset X ⊆ Rd.

Contents

1. Introduction 2
Around Functional Identifiability 3
Embeddings Zoology 3
Applications 4
2. General setting and main results 4
2.1. Network architectures 5
2.2. Realization of a network 5
2.3. Invariance to permutation and scaling 5
2.4. An invariant embedding of ReLU networks 7
2.5. Some consequences of PS-identifiability 8
2.6. Identifiability conditions in the shallow case 11
2.7. A glimpse at the analysis of local identifiability 12
2.8. Non-degeneracy and irreducibility in shallow vs deeper architectures 13
2.9. Discussion 14
3. Rescaling invariance of the embedding 16
4. Analyzing local identifiability 19
4.1. Activation status of neurons and paths, and activation spaces 19
4.2. “Algebraic” expressions of the realization 20
4.3. Non-degeneracy and local S-identifiability 22

1



2 PIERRE STOCK AND RÉMI GRIBONVAL
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1. Introduction

The empirical success of Deep Neural Networks (DNNs) for traditional machine learning
tasks such as image classification is a well-known fact for the research community [1].
While this empirical success percolates to areas ranging from protein folding to symbolic
mathematics, a second well-known fact is that the theoretical tools to grasp DNNs and
uncover the reasons of their success are still lagging behind the fast-paced experimental
results. We argue that a deeper understanding of the expressivity and stability properties
of such networks could lead to practical improvements [2, 3]. In this paper, we introduce an
embedding, Φ(θ), of the vector θ of network parameters (weights and biases) that exhibits
interesting properties for networks based on the popular Rectified Linear Unit (ReLU): in
particular, Φ(θ) is invariant to natural rescalings of the parameters that leave unchanged
the function implemented by the network. To showcase the potential of this tool, we
leverage it to study the expressivity of DNNs from the perspective of their functional
equivalence classes.

In the remainder of this section, we first list the papers tackling identifiability of neural
networks with a given non-linearity function. We next present some related work that con-
struct an embedding for ReLU networks. Finally, we list applications directly or indirectly
derived from the two previous theoretical considerations.
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Around Functional Identifiability. First, various results dating back from the 90’s
identify conditions that allow to identify neural networks with one hidden layer equipped
with various non-linearities1 like the hyperbolic tangent [4, 5, 6, 7]. Such results do not
encompass the ReLU case. Simultaneously, Fefferman derived identifiability conditions
for deep networks equipped with the tanh nonlinearity using complex analysis [8]. More
recently, the work of Rolnick and Kording [9] reflects a renewed interest for this subject
and its application to ReLU networks. The authors propose to reverse-engineer deep ReLU
networks and present a constructive algorithm that samples network realizations Rθ(x) for
carefully chosen input points x to deduce the architecture of the network and its parameters,
up to rescalings and permutations. The authors prove that their algorithm terminates,
except for a measure-zero set of parameters2. Similarly, Fornasier et al. [10] propose to
recover the parameters of a two-hidden-layer neural network with smooth nonlinearity
by actively sampling finite difference approximations to Hessians of the network, and by
combining the insights gained from the sampling with a heuristic for precise attribution of
the parameters to the architecture. The authors demonstrate the empirical effectiveness
of their approach and claim that the proposed method can be generalized to networks
with any depth. Finally, Phuong and Lampert provide a result related to identifiability for
ReLU networks under some more restrictive assumptions [11].

Embeddings Zoology. We list here the neural network embeddings in the literature that
are the closest to our own embedding, Φ(θ), which is introduced in Definition 6. Its main
property is that it is invariant under the action of rescalings, as stated more formally in
Theorem 1. Schematically, Φ(θ) lives in the linear space indexed by network paths and
each coordinate is a product of weights and/or biases along a particular network path.
In a similar fashion, Malgouyres and Landsberg [12] consider a particular class of linear
structured networks called Deep Structured Neural Networks, without biases, and consider
only layer-wise rescalings. In [12, Section 6], the authors provide sufficient and necessary
conditions for local identifiability by studying complex algebraic varieties leveraging the
Segre embedding of such networks. The Segre embedding bears a resemblance with Φ(θ)
since it is also made of product of network parameters, but it does not encompass the
biases. Moreover, we consider neuron-wise rescalings in this paper as opposed to less
general layer-wise rescalings considered by the authors, and also emcompass the ReLU
non-linearity in our approach. Malgouyres later leverages the Segre embedding to study
local stability properties of sparse neural networks [13]. Finally, Neyshabur et al. introduce
a family of path regularizers to derive an optimization procedure that takes the invariance
of the realization Rθ under the action of the rescalings into account and called Path-
SGD [14, 15]. Such path regularizers are scalars – as opposed to vectorial embeddings
– that are obtained by summing, for any network path, the norm of the product of all
weights along this paths. Moreover, this approach does not take the biases into account,
as opposed to our embedding, Φ(θ).

1It should be noted that the functional equivalence class generally depends on the considered non-
linearity. For instance, with the hyperbolic tangent, the authors only consider permutations and sign flips.

2This measure-zero set of parameters is not explicitly described by the authors.
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Applications. As illustrated with Path-SGD [15], several papers attempt to perform the
optimization in the space of network parameters quotiented by the rescaling operation.
Several work follow and perform the optimization by alternating between a standard SGD
step and a projection step that modifies the rescaling coefficients without changing the
function implemented by the network [16, 17, 18, 19]. The main difference between these
papers is the projection step, that is performed either implicitly (with a regularizer) or
explicitly (by computing the optimal3 rescaling coefficients). In the latter case, the pro-
posed empirical methods may not yield the optimal rescaling coefficients but rather more
or less stable and good approximations. Another advantage of rescalings is to improve
post-training scalar quantization of neural networks by carefully selecting the rescaling co-
efficients such that the dynamic range of the weights within a layer is relatively small, with
as few outliers as possible [20, 21]. More related to the concept of (local) identifiability,
Carlini et al. [22] design a differential attack to efficiently recover the parameters of remote
model up to floating point precision, by sending carefully designed queries x to the remote
network and receiving only its output.

After introducing the main notations, we define Φ(θ) and state the main results of
the paper in Section 2. Then, we formally state and prove the main properties of the
embedding Φ(θ) in Section 3. In particular, we prove that Φ(θ) is invariant under the
action of the rescalings. Next, we leverage this embedding to derive partial and local
identifiability results for ReLU neural networks of any depth in Section 4. To further
demonstrate the validity of our approach, we fully study the shallow case in Section 5 and
provide conditions under which a ReLU neural network with one hidden layer is identifiable.
Finally, we argue that Φ(θ) may be leveraged to tackle other open problems in the Machine
Learning community.

2. General setting and main results

We consider fully-connected feedforward ReLU neural networks with L ≥ 2 affine layers.
Each network is supported on a graph G = (E, V ) with vertex set V composed of neurons
ν and edge set E composed of connections. The set of neurons V is partitioned into the
input layer N0, L − 1 hidden layers N`, 1 ≤ ` ≤ L − 1, and the output layer NL. Hidden
neurons compose the set H = ∪L−1

`=1 N`. Since we focus on fully-connected networks, the
set of connections E is made of all oriented edges e = ν → ν ′ between neurons belonging
to consecutive layers, ν ∈ N`−1, ν ′ ∈ N` for some 1 ≤ ` ≤ L. The subset of incoming edges
of neuron ν is denoted • → ν, while ν → • denotes its set of outgoing edges.

Each edge e ∈ E is equipped with a weight we and each hidden neuron ν ∈ H with
a bias bν . Output neurons, i.e. neurons from the last layer η ∈ NL, are also equipped
with a bias bη, which is sometimes constrained to be zero. The set of all neurons equipped
with biases is H̄ := H ∪NL. Parameters (weights and biases) are gathered in a parameter

vector θ ∈ RE∪H̄ where E ∪ H̄ indexes all possible weights and biases including biases
on the output layer. For brevity we may denote θe for weights and θν for biases. When

3In the sense that such coefficients globally minimize a given objective function.
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needed we also write θ = (θi)i∈E∪H̄ . Since we consider a fully connected architecture (this
does not prevent some weights to possibly vanish on some edges), θ can also be represented
as a set of L matrices W ` = (wν→ν′)ν′∈N`,ν∈N`−1

∈ RN`×N`−1 , 1 ≤ ` ≤ L and L vectors

b` = (bν)ν∈N` ∈ RN` , 1 ≤ ` ≤ L.

2.1. Network architectures. Many of the notions of parameter identifiability or non-
degeneracy that will be considered are relative to a choice of network “architecture”. This
is represented both by the graph G (which determines how many layers there are, and how

wide they are) but also by a possibly restricted set Θ ⊆ RE∪H̄ of network parameters,
which may for example account for the following type of constraints:

• restricting to a convolutional structure;
• restricting to sparse networks, possibly with structured sparsity patterns;
• restricting to networks without output biases (bη = 0 for every η ∈ NL);
• restricting to networks without biases (bν = 0 for every ν ∈ H ∪NL).

2.2. Realization of a network. Given a parameter θ and an input vector x ∈ RN0 , we
sequentially define y0(θ, x) = x and for each 1 ≤ ` ≤ L − 1 the pre-activation z`(θ, x) =
W `y`−1(θ, x) + b` ∈ RN` , the post-activation y`(θ, x) = ReLU(z`(θ, x)) ∈ RN` where the
rectified linear unit (ReLU) activation function, ReLU(t) = max(t, 0), is applied entrywise.
Finally we define the realization of the network as the function Rθ : x 7→ Rθ(x) :=
zL(θ, x) = W LyL−1(θ, x) + bL ∈ RNL . When needed we will use neuron-wise versions of
these notations, e.g. yν(θ, x) = (y`(θ, x))ν where ν ∈ N`. Note the general convention to
denote scalar-valued quantities in plain font to distinguish them from quantities that can
be vector-valued, which are generally denoted in bold.

2.3. Invariance to permutation and scaling. A well known fact [23] is that the real-
ization of any ReLU-network is invariant to permutations and scalings of the parameter
θ. The invariance to permutations is not specific to ReLU-networks, while the scaling-
invariance is due to the homogeneity of the ReLU: ReLU(λ·) = λReLU(·) for every λ > 0
and is also valid for other variants such as the leaky-ReLU. While various definitions co-
exist in the literature [24, 25, 26], it is convenient to focus first on the practical per-neuron
rescaling equivalence [23] as stated below.
Rescaling equivalence. Let ν ∈ H and λν > 0. A neuron-wise scaling multiplies the
incoming weights and the bias of ν by λν , and divides the outgoing weights by λν . It is
formally defined as sν,λν : θ = (w, b) 7→ θ′ = (w′, b′) where for every connection e ∈ E,

(1) ∀e ∈ E, w′e =


weλν if e ∈ • → ν
1
λν
we if e ∈ ν → •

we otherwise,

∀ν ∈ H, b′ν = bνλν .

Let S be the set of neuron-wise scalings. We observe that neuron-wise rescalings commute
and are invertible, the inverse of sν,λν being sν,1/λν . Let 〈S〉 be the commutative group
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generated by S. Every s ∈ 〈S〉 can be uniquely represented as the composition

s = ©
ν∈H

sν,λν

where the λν are strictly positive. Note that in this representation, every hidden neuron ν
is associated to exactly one neuron-wise rescaling λν .

Definition 1. θ and θ′ are rescaling equivalent if there exists s ∈ 〈S〉 such that θ′ = s(θ).
We then denote θ ∼S θ′.

Notice that if θ′ ∼S θ, then the output biases are equal: θ′η = θη for all η ∈ NL.

Fact 1. θ′ ∼S θ if, and only if, there exists diagonal matrices Λ` ∈ RN`×N` with positive
entries, 0 ≤ ` ≤ L such that Λ0 = IN0, ΛL = INL, and for every layer 1 ≤ ` ≤ L
(2) W ′

` = Λ`W `Λ
−1
`−1 and b′` = Λ`b`.

Permutation equivalence. Consider π := (π1, . . . , π`) where π` ∈ SN` is a permutation
of the `-th hidden layer (input and output layers are never permuted), 1 ≤ ` ≤ L − 1.
Denote SG = SN1 × . . . × SNL−1

the group of all such tuples of permutations. One can
define a natural action of the group SG on parameterizations via θ 7→ π◦θ := θ′ where each
weight matrix W ′

` is obtained from W ` by permuting rows according to π` and columns
according to π`−1, while bias vector b′` is a permuted version of b` according to π`.

Definition 2. Two parameters θ, θ′ are permutation-equivalent if, and only if, there exists
π ∈ SG such that θ′ = π ◦ θ. This is denoted θ ∼P θ′.
The parameters are permutation-scaling equivalent if, and only if, there exists θ′′ such that
θ ∼S θ′′ ∼P θ′. This is denoted θ ∼PS θ′.
The parameters are scaling-permutation equivalent if, and only if, there exists θ′′ such that
θ ∼P θ′′ ∼S θ′. This is denoted θ ∼SP θ′.

Fact 2. θ′ ∼PS θ if, and only if, θ′ ∼SP θ, if and only if there exists diagonal matrices
Λ` ∈ RN`×N` with positive entries and permutation matrices Π` ∈ RN`×N`, 0 ≤ ` ≤ L,
such that Π0 = Λ0 = IN0, ΠL = ΛL = INL, and for every layer 1 ≤ ` ≤ L
(3) W ′

` = Π`Λ`W `Λ
−1
`−1Π

−1
`−1 and b′` = Π`Λ`b`.

As widely documented [23, 24, 25, 26], PS-equivalent parameters share their realization
as proven, e.g., in [9][Lemma 1].

Lemma 1. For any θ, θ′ ∈ RE∪H̄ , if θ′ ∼PS θ then Rθ′ = Rθ.

A natural question is to determine conditions for the identifiability of (the equivalence
class up to scaling and permutation of) θ from Rθ. To be more specific, we consider
identifiability with respect to a family of parameters Θ, from a set X . A case of particular
interest will be when X is finite, in order to characterize whether θ can be recovered (up
to scaling and permutations) from finitely many samples of the network realization Rθ.
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Definition 3 (PS-identifiability). A parameter θ ∈ Θ ⊆ RE∪H̄ is PS-identifiable with
respect to Θ from X ⊆ RN0 if for every θ′ ∈ Θ, the equality Rθ = Rθ′ on X implies
θ′ ∼PS θ. When considering X = RN0, θ is simply said to be PS-identifiable with respect

to Θ. When considering Θ = RE∪H̄ , θ is simply said to be PS-identifiable (from X ).

A trivial observation is that if all outgoing weights of a hidden neuron are zero, then
the realization of the network is unchanged under arbitrary modifications of the incoming
weights and of the bias of this neuron, hence the corresponding parameter θ cannot be

PS-identifiable with respect to Θ = RE∪H̄ . A similar phenomenon occurs if all incoming
weights to a hidden neuron are zero. This motivates the definition of admissible parameters
and proves Lemma 2 below.

Definition 4. θ is admissible if for each hidden neuron ν ∈ H we have w•→ν 6= 0 and
wν→• 6= 0. Equivalently, every hidden neuron belongs to a full path with nonzero weights.

Lemma 2. If θ is PS-identifiable from X with respect to Θ = RE∪H̄ , then it is admissible.

2.4. An invariant embedding of ReLU networks. The invariance with respect to
(permutations and) scalings (Lemma 1) calls for an invariant representation of equivalence
classes of network parameters. A central tool is a representation Φ(θ) mapping a network

parameter θ ∈ RE∪H̄ to a vector Φ(θ) in a space indexed by paths of the network, RP .
Before going further let us formally introduce paths, as illustrated in Figure 1

Definition 5. The set P`, 0 ≤ ` ≤ L (resp. Q`, 1 ≤ ` ≤ L−1) consists of all partial paths
from any neuron ν` ∈ N` to a neuron of the last (resp. penultimate) layer νL ∈ NL (resp.
νL−1 ∈ NL−1). Any path p ∈ P` is written as a tuple p = (p`, . . . , pL) where each pi ∈ V
is a neuron. We say that p is a full path if ` = 0, that is, if p connects the input and the
output layers. We may write p = p` → p`+1 → · · · → pL, as well as p = µ→ q → ν where
µ = p` ∈ N`, ν = pL ∈ NL and q = (p`+1, . . . , pL−1) ∈ Q`+1.

Remark 1. To streamline notations we say that an edge e = µ→ ν ∈ E belongs to p and
also write e ∈ p if there exists ` ≤ i ≤ L − 1 such that µ = pi and ν = pi+1. Similarly,
we choose to denote ν ∈ p if (and only if) the path p starts from neuron ν, i.e., when
p = (p`, . . . , pL) ∈ P`, if p` = ν.

We next introduce the representation Φ(·), which presents some connections with pre-
vious work [12, 13, 23] while being more generic as detailed in the introduction.

Definition 6. Given θ ∈ RE∪H̄ , the value of a path is

Φp(θ) = Πe∈pθe, for each full path p ∈ P0,(4)

Φp(θ) = θp`Πe∈pθe, for p = (p`, . . . , pL) ∈ P`, 1 ≤ ` ≤ L.(5)

For p ∈ PL, p = (η) with η ∈ NL, Φp(θ) = θpL = bη is the corresponding output bias.

Define P := ∪L`=0P`. For any θ ∈ RE∪H̄ we define

(6) Φ(θ) := (Φp(θ))p∈P ∈ RP
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Figure 1. We consider a particular network architecture with L = 4 layers
(equivalently, with two hidden layers). Left: A particular path belonging
to P0. Right: A particular path belonging to Q1.

This representation, combined with the entrywise sign of θ (with the convention sign(0) =
0), characterizes the classes of scaling-equivalent admissible parameters.

Theorem 1. Consider any θ′, θ ∈ RE∪H̄ .

a) Assume that θ ∼S θ′. Then Φ(θ) = Φ(θ′) and sign(θ′) = sign(θ).
b) Assume that θ is admissible, that Φ(θ′) = Φ(θ), and that sign(θ′E) = sign(θE).

Then θ ∼S θ′ and θ′ is also admissible.

The proof is in Section 3. A similar result is proven in [27, Theorem 3.3] without
considering the biases and by replacing the condition on the signs by a condition on the
activation statuses of all partial paths, which depend on the input variable x besides θ.

Remark 2. The map θ 7→ Φ(θ) will be referred to as an embedding of network parameters.
Stricto-sensu, as this map is not an injective function of network parameters, it does not
match the definition of an embedding. However, since it characterizes equivalence classes
of rescaling-equivalent admissible parameters, it can be used to define without ambiguity an
embedding of these equivalence classes in RP .

2.5. Some consequences of PS-identifiability. Using the embedding Φ(·), we show
that if θ is PS-identifiable then it is locally identifiable up to scaling only. Locality is
measured in the sense of open balls B(c, r) = {c′ : ‖c′ − c‖∞ < r}, where the ambient
linear space, equipped with the sup-norm, should always be clear from context.

Definition 7 (local S-identifiability). Given ε > 0, a parameter θ ∈ Θ ⊆ RE∪H̄ is ε-locally
S-identifiable from X ⊂ RN0 with respect to Θ, if for every θ′ ∈ Θ ∩ B(θ, ε), the identity
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Rθ = Rθ′ on X implies θ′ ∼S θ. If there exists ε > 0 such that θ is ε-locally S-identifiable

from X then θ is locally S-identifiable from X . When X = RN0 and/or Θ = RE∪H̄ we
adopt the same simplified terminology as with the notion of PS-identifiability.

Remark 3. If θ is PS-identifiable (resp. locally S-identifiable) from X ⊆ RN0 with respect

to Θ ⊆ RE∪H̄ then the same holds from any X ′ ⊇ X with respect to any Θ′ ⊆ Θ.

Our first result is the following theorem.

Theorem 2. Consider Θ ⊆ RE∪H̄ and X ⊂ RN0. If θ ∈ Θ is admissible and PS-identifiable
from X with respect to Θ then it is locally S-identifiable from X with respect to Θ.

The proof is in Appendix B and uses the embedding Φ(·). By Lemma 2, PS-identifiability

with respect to Θ = RE∪H̄ implies admissibility. Considering any Θ with a similar property,
a direct corollary of Theorem 2 is that PS-identifiability with respect to Θ implies local
S-identifiability with respect to Θ. Note however that the assumption that θ is admissible
cannot simply be skipped in Theorem 2.

Figure 2. Realizations of networks from (a) Example 1; (b) Example 2 ; (c) Example 4

An example shows that indeed, local S-identifiability depends on the constraint set Θ.

Example 1 (see Figure 2-(a)). On a shallow network architecture with two hidden neurons
ν1, ν2, the identity id : R→ R, x 7→ x can be written as x = ReLU(x−t)−ReLU(−(x−t))+t =
Rθt with θt = (wµ→ν1 = 1, wµ→ν2 = −1, bν1 = −t, bν2 = t, wν1→η = 1, wν2→η = −1, bη = t)
for every t ∈ R (µ is the input neuron, η the output neuron). Since θt and θt′, t 6= t′ have
different output bias, they are not PS-equivalent. This shows that, e.g., θ0 is not locally

S-identifiable with respect to Θ = RE∪H̄ . With respect to the set Θ of networks without
output bias (bη = 0), as detailed in Example 5, θ0 becomes PS-identifiable from X = R.

The above example includes two neurons which are twins in the following sense.

Definition 8 (Twin neurons). Consider a parameter θ on a network architecture of any
depth. Two hidden neurons ν 6= ν ′ from the same layer are said to be twins if there exists
λ ∈ R such that (w•→ν , bν) = λ(w•→ν′ , bν′). If θ is admissible then necessarily λ 6= 0, and
ν, ν ′ are said to be positive twins if λ > 0, negative twins otherwise.
NB: Even though each hidden neuron ν ∈ H is (positive) twin to itself, such a neuron is
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abusively said to have “no twin” if it is not twin with any ν ′ 6= ν from the same layer. We
also say that θ has no twins if none of its neurons have any twin.

Intuitively, if ν, ν ′ are twins then the corresponding pre-activation functions zν(θ, ·)
zν′(θ, ·) are collinear, and the resulting post-activation functions, yν(θ, ·) yν′(θ, ·) are also
collinear for positive twins. For negative twins, there exists linear combinations of the
post-activations that are simply proportional to the pre-activations, somehow bypassing
the effect of the ReLU nonlinearity. As proved in Appendix C, twins always prevent

identifiability with respect to Θ = RE∪H̄ .

Lemma 3. Consider θ ∈ Θ = RE∪H̄ .

a) Assume that θ is locally S-identifiable with respect to Θ.
Then θ has no positive twins.

b) Assume that θ is PS-identifiable from some bounded set X ⊆ RN0 with respect to Θ.
Then θ has no twins.

We will see in Example 4 (in section 5) that the absolute value function (see Figure 2-(c))
is the realization of a shallow network with two hidden neurons that are negative twins,

yet it is PS-identifiable (hence locally S-identifiable) with respect to Θ = RE∪H̄ . It is even
locally S-identifiable from some finite set F ⊆ R. Of course, by Lemma 3 such a network

cannot be PS-identifiable from any bounded set with respect to Θ = RE∪H̄ .
Twins are a form of local degeneracy. For shallow networks, we will show that this is the

only form of local degeneracy (see the upcoming Lemma 5 and Theorem 3), but we will
see other forms for deeper networks (see Example 3). As illustrated next, there are also
non-local degeneracies that can prevent identifiability.

Example 2 (see Figure 2-(b)). The function

f(x) =


−x, if x ≤ 0

0, if 0 ≤ x ≤ 1

x− 1, if x ≥ 1

satisfies f(x) = ReLU(−x) + ReLU(x − 1) = ReLU(x) + ReLU(−(x − 1)) − 1. It is thus the
realization of θ = (wµ→ν1 = −1, wµ→ν2 = 1, bν1 = 0, bν2 = −1, wν1→η = wν2→η = 1, bη = 0,
but also of θ′ = (w′µ→ν1 = 1, w′µ→ν2 = −1, b′ν1 = 0, b′ν2 = 1, w′ν1→η = w′ν2→η = 1, b′η = −1,
which are not PS-equivalent since bη 6= b′η. Yet the theory we establish (see Lemma 5)
shows that θ and θ′ are both locally S-identifiable from some finite set F ⊂ R.

It turns out that the above example fails to be irreducible as we formalize next.

Definition 9 (Irreducibility). A parameter θ is irreducible if for each hidden layer 1 ≤
` ≤ L− 1 and non-empty subset T ⊂ N` we have

(7) W `+1ITW ` 6= 0, with IT = diag(χT ),

with χT ∈ {0, 1}N` the indicator function of T : (χT )ν = 1 if, and only if, ν ∈ T . We

denote Θirr ⊂ RE∪H̄ the set of all irreducible parameters.
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Fact 3. Each irreducible parameter is also admissible.

In fact, as established in Appendix D, any PS-identifiable parameter with no twins must
be irreducible.

Lemma 4. If θ is PS-identifiable from X ⊆ RN0 with respect to Θ = RE∪H̄ and has no
twin, then it is irreducible.

In particular, in light of Lemma 3, every parameter that is PS-identifiable from a
bounded X is irreducible. In the shallow case, a direct consequence of irreducibility can be
obtained using an “algebraic” expression of the realization Rθ (Lemma 9 in section 4): for
every input vector x where Rθ is differentiable, the Jacobian of Rθ is given by W 2I1W 1

with I1 = diag(a1(θ, x)) (see section 4 for the introduction of notation a1(θ, x)). Irre-
ducibility thus implies that this Jacobian can only vanish if a1(θ, x) = 0, i.e., if all neurons
are inactive. As illustrated on Example 2 (see Figure 2-(b)) this however does not char-
acterize irreducibility, and an intuitive characterization of irreducibility in terms of simple
properties of Rθ is left to future work.

2.6. Identifiability conditions in the shallow case. For shallow neural networks, we
prove that admissible parameters with no twins are locally S-identifiable from a finite set.
Such results resonate with previous work on the identifiability of shallow networks equipped
with various activation functions other than the ReLU [4, 5, 6, 7].

Lemma 5. Consider a shallow architecture. If θ is admissible with no twins, then there is
a finite X ⊆ RN0 with card(X ) ≤ (|N0|+ 1)(|N1|+ 1) from which θ is locally S-identifiable

with respect to Θ = RE∪H̄ .

The proof is in Section 5.2. Combined with irreducibility, the absence of twins is further
shown to be equivalent to PS-identifiability from a bounded set. Whether this is also
equivalent to PS-identifiability from a finite set is left to future work, as well as a possible
explicit control of the cardinality of such a finite set.

Theorem 3. Consider a shallow network architecture. The following are equivalent:

a) there is a bounded X ⊆ RN0 from which θ is PS-identifiable with respect to Θ = RE∪H̄ ;
b) θ has no twins and is irreducible.

Proof. The implication a ⇒ b is a consequence of Lemma 3 and Lemma 4. The converse
b ⇒ a follows by Theorem 6-b in Section 5.3. �

As established with Theorem 6-a in Section 5.3, the shallow architecture itself is identi-
fiable in the following sense for irreducible parameters with no twins.

Theorem 4. Consider two shallow network architectures with the same input and output
layers, N0 and N2, and potentially distinct hidden layer H = N1, H ′ = N ′1. Let θ, θ′ be
parameters on each architecture. Assume that θ is irreducible with no twins, and that θ′ is
admissible with no twins. If Rθ = Rθ′ on RN0 then card(N1) = card(N ′1) and θ′ ∼PS θ.
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As illustrated by Example 4 in section 5, there are also shallow networks that are PS-
identifiable from X = RN0 but not from any bounded set. They are of course irreducible
by Lemma 4, and have no positive twin by Lemma 3, but they have one or more pairs of
negative twins.

2.7. A glimpse at the analysis of local identifiability. Much of the local identifiability
analysis, which is conducted in detail in section 4, relies on an important property of the
embedding Φ (besides its ability to characterize scaling equivalence, see Theorem 1): it
provides a locally linear parameterization of the realization of the network, in the sense that
given θ and for “most” x ∈ RN0 we have, for every θ′ in a (small enough) neighborhood θ

(8) Rθ′(x)−Rθ(x) = Cθ,x ·
(
Φ(θ′)−Φ(θ)

)
with Cθ,x ∈ RNL×P some linear operator that is independent of θ′, see Corrolary 3 for a
precise statement. This property holds provided x is a point where the gradient of Rθ (and
of all pre-activations at intermediate hidden layers) is well-defined and continuous, which
motivates the following definition.

Definition 10. Consider any network architecture. Given a parameter θ we define for each
hidden neuron ν ∈ H the set Γν(θ) of input vectors where zν(θ, x) = 0 and the gradient
∇zν(θ, x) is well-defined and nonzero,

Γν(θ) := {x ∈ RN0 : zν(θ, x) = 0 and ∇zν(θ, x) 6= 0}.(9)

We define Xθ ⊆ RN0 as the complement to ∪ν∈HΓν(θ).

Definition 10 is extremely close to the definition of Bent Hyperplanes [28] (except that
we add the non-nullity condition on the gradient). Informally, and as previously stated [29,
30, 31], bent hyperplanes separate the input space into linear regions where the realization
of the network x 7→ Rθ(x) is affine, see Figure 3 for an illustration.

For our needs, we will provide in Lemma 11 an alternate characterization of Xθ which
we have not found elsewhere in the literature. It will be used in Corollary 3 to formalize
Property (8) for x ∈ Xθ, which motivates the definition of non-degenerate parameters.

Definition 11 (Non-degeneracy). Consider the finite dimensional linear space

(10) V(θ) := ∩x∈Xθker(Cθ,x) ⊆ RP ,

where Cθ,x is introduced formally in Corrolary 3. A parameter θ ∈ Θ ⊆ RE∪H̄ is ε-non-
degenerate with respect to Θ, where ε > 0, if it is admissible and for every θ′ ∈ Θ∩B(θ, ε)
we have

(11) Φ(θ′)−Φ(θ) ∈ V(θ)⇒ Φ(θ′) = Φ(θ).

It is non-degenerate with respect to Θ if there exists ε > 0 such that it is ε-non-degenerate
with respect to Θ.

Exploiting the fact that all considered spaces are finite dimensional, we characterize
the space V(θ) in terms of certain activation spaces (Definition 14) and prove that non-
degeneracy is equivalent (see Theorem 5, the main result of section 4) to the existence
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Figure 3. We consider a network architecture with |N1| = 2 neurons on the
first hidden layer and |N2| = 1 neuron on the second hidden layer. The input
x is two-dimensional: |N0| = 2 and the output is scalar: |N4| = 1. Left:
bent hyperplanes for the first hidden layer, Γν(θ), ν ∈ N1 (blue) and second
hidden layer Γν(θ), ν ∈ N2 (red). Right: linear regions. All the weights and
biases were initialized randomly. The figures are generated with a PyTorch
script available at https://github.com/pierrestock/linear-regions/

blob/main/partition.ipynb.

of some finite set F ⊂ Xθ such that θ is locally S-identifiable from F (hence also locally
S-identifiable from X = RN0). The cardinality of F is bounded from above using the
dimension of activation spaces.

2.8. Non-degeneracy and irreducibility in shallow vs deeper architectures. An
easy sufficient condition for non-degeneracy is to have a trivial space V(θ) = {0}. For
scalar-valued shallow networks (L = 2, |NL| = 1), we prove (cf Lemma 17 and Corollary 2

that non-degeneracy with respect to Θ = RE∪H̄ is in fact equivalent to V(θ) = {0}, and for
shallow (possibly vector-valued) networks, the latter is proved to hold if, and only if, there
are no twins (by Corollary 2 and Lemma 15). In light of Theorem 3, when combined with
irreducibility, the fact that V(θ) = {0} thus becomes equivalent (for shallow networks) to
the PS-identifiability of θ from some bounded set.

For networks of depth L ≥ 3, any parameter such that V(θ) = {0} is of course still
non-degenerate (hence locally S-identifiable from a finite set, by Theorem 5), but this
property is no longer equivalent to the absence of twins: further conditions between layers
are required, as illustrated by the following example.

Example 3. In Figure 4, we exhibit a two-hidden-layer architecture valued with a pa-
rameter θ that presents no twin neurons (see Definition 8) but such that θ is not locally
S-identifiable (see Definition 7).

https://github. com/pierrestock/linear-regions/blob/main/partition.ipynb.
https://github. com/pierrestock/linear-regions/blob/main/partition.ipynb.
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Figure 4. A network with two hidden layers that is not locally S-
identifiable, while having no twin hidden neurons. Weights we and w′e,
e ∈ E are set to one on the displayed edges and to zero on other edges, and
are not depicted here for readability. Left: parameterization θ valuing the
architecture. Center: alternative parameterization θ′ such that θ and θ′ are
not rescaling equivalent. Right: the two realizations Rθ and Rθ′ coincide:
for every input point x = (xµ1 , xµ2) ∈ R2, Rθ(x) = Rθ′(x). The construc-
tion is valid for arbitrary ε > 0.

Characterizing concrete conditions ensuring V(θ) = {0} is left to future work. A partic-
ular challenge is to understand whether the condition V(θ) = {0}, combined with (a possi-
bly strengthened version of) irreducibility remains equivalent to PS-identifiability from a
bounded set. We note that irreducibility in the shallow case is reminiscent of [32, Equation
(8)], a condition used to define so-called “general ReLU networks” to provide sufficient
identifiability conditions in deeper settings. This may serve as a guide to identify stronger
notions of irreducibility for deep networks. Preliminary investigations suggest that certain
tensor products of activation vectors play a role when analyzing non-degeneracy. This is
reminiscent of the tools studied by Fornasier et al. [10] with two hidden layers L = 3 in a
smooth context that cannot cover ReLU networks.

2.9. Discussion. Before diving into the technical contributions in the next Sections, we
discuss some topics of interest for the reader that are mostly out of the scope of this work.
We refer the reader to Figure 5 for a brief summary of the results proven in this paper.

Local identifiability and optimization. First, we argue that studying local (instead of global)
S-identifiability is of practical interest, as discussed e.g. in [12, 13]. Indeed, neural networks
are traditionally optimized with a variant of stochastic gradient descent, or SGD [33].
Hence, (1) during training, the optimization yields parameters that are close to the previous
ones and (2) the parameters obtained after convergence can be expected to be locally
optimal up to natural permutation and rescaling equivalences.
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Identifiability from a finite set. Since we are mainly interested in the problem of recov-
ering (the equivalence class of) θ from the knowledge of its realization Rθ, we list below
some questions calling for extensions of Theorem 3. Indeed, it is not always possible to
recover θ from its realization. Even when such a recovery is theoretically possible, it may
involve having full access to the function Rθ, which is not a concrete input to provide
to any reconstruction algorithm. A more practical question is: when can we recover (the
equivalence class of) θ from the knowledge of finitely many samples Rθ(xi), 1 ≤ i ≤ n ?
When there exists a choice (that may depend on θ) of n and xi, 1 ≤ i ≤ n such that this
is feasible, we also get as a byproduct a reconstruction of Rθ from the sole knowledge of
its samples at these points. Hence, another question of interest is: when can the function
Rθ be identified from the knowledge of finitely many of its samples ? This is possibly less
demanding, as here it is not required to be able to reconstruct (the equivalence class of)
θ from its realization. In both cases, since θ is not known beforehand, it is important to
ensure that the choice of the sampling set is algorithmically feasible, for example if it is
done iteratively at least the first sample must be chosen without any knowledge on θ or
Rθ. Of course, answers to these questions lead to further ones, that we do not touch upon:
if θ can be identified from finitely many samples, how many samples are sufficient4 (resp.
necessary) ? Can we explicit a scheme (possibly randomized) to choose these samples ?
Can we explicit an algorithm to perform reconstruction ? How stable is it to inaccuracies
in the evaluation of Rθ(xi) or to the knowledge of xi?

Reverse-engineering ReLU networks. Here, we dicuss the work of Rolnick and Kording [9]
more extensively than what was done in the Introduction. The goal is to position our work
with respect to this interesting work. The authors present a sampling algorithm to recover
a ReLU network’s architecture and parameters, up to permutations and rescalings. The
authors prove that their algorithm terminates except for a measure-zero set of networks
and do not provide the complexity of their method in terms of number of the samples
needed to recover Rθ, except for recovering the first layer’s parameters. They reason in
terms of so-called activation and linear regions [28] and make the following assumptions.
Recall that the sets Γν(θ) are introduced in Definition 9 for every hidden neuron ν. Γν(θ)
is often called the separating or bent hyperplane for neuron ν.

(1) Linear Regions assumption as stated by the authors: “Each [activation]5region
represents a maximal connected component of input space on which the [realization
Rθ] is given by a single linear function”. In other words, the authors assume that
activation regions and linear regions coincide (Section 3.2 in the original paper).

(2) All the sets Γν(θ) for ν ∈ H have codimension 16 hence the name separating hyper-
plane (implicitly assumed, see in particular the first paragraph of Section 3.3).

(3) For every hidden neuron ν in layer 1 ≤ ` ≤ L − 1, Γν(θ) intersects all the sets
Γν′(θ) for all neurons ν ′ in a previous layer 1 ≤ `′ < ` ≤ L− 1 (Section 5.2 in the
original paper).

4Lemma 5 partly answers this question regarding local S-identifiability for shallow networks.
5What the authors denote as linear regions are in fact known as activation regions, see [28].
6This prevents the case where ∇Rθ(x) = 0 for x ∈ B(x0, r).
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(4) For ν 6= ν ′ such that ν belong to layer ` and ν ′ belongs to layer `′ < `, “Γν(θ) bends
on Γν′(θ), but Γν(θ) and Γν′(θ) cannot both bend at their intersection” (implicitly
assumed, see in particular the first paragraph of Section 3.3).

(5) For every hidden neuron ν ∈ H, Γν(θ) is not bounded and not disconnected (Section
5.2 in the original paper).

According to the authors, parameters θ that do not satisfy at least one of these assump-
tions constitute a measure-zero set of networks, hence the authors discard these cases from
their analysis. In the remainder of this paper, we aim at more precisely characterizing
this measure-null zero set. This is fully done in the shallow case, and the developed tools
should be instrumental when pursuing this mathematical study in deeper settings.
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Figure 5. Summary of the various results proven in the paper. Theorem 3
further establishes that irreducibility and the absence of twins imply PS-
identifiability from a bounded set in the shallow case.

3. Rescaling invariance of the embedding

The proof of the main property of the embedding Φ(·), Theorem 1, exploits linear
operators related to Φ(·). The following definition is motivated by the obvious observation
that, if θ has positive entries θi = eαi , i ∈ E ∪ H̄, then Φ(θ) = ePα where the exponential
is taken componentwise. This is related to the idea of updating weights multiplicatively,
which is exploited in particular by Bernstein [34] to investigate learning stability.
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Definition 12. Consider P : RE∪H̄ → RP the linear operator defined for u ∈ RE∪H̄ as

(12) (Pu)p :=

{∑
e∈p ue, for each full path p ∈ P0;

up` +
∑

e∈p ue, for each partial path p = (p`, . . . , pL) ∈ P`, 1 ≤ ` ≤ L.
With the notations from Remark 1 we can also write (Pu)p =

∑
i∈p ui.

Before proving Theorem 1 we express a few technical lemmas.

Lemma 6. For every θ ∈ RE∪H̄ , with supp(Φ(θ)) = {p ∈ P : Φp(θ) 6= 0} we have

(13) {i ∈ E ∪ H̄ : ∃p ∈ supp(Φ(θ)), p 3 i} ⊆ {i ∈ E ∪ H̄ : θi 6= 0} = supp(θ).

If θ ∈ RE∪H̄ is admissible then we further have

(14) supp(θ) = {i ∈ E ∪ H̄ : ∃p ∈ supp(Φ(θ)), p 3 i}.
Proof. For each path p ∈ P denote Ip = {i ∈ E ∪ H̄ : i ∈ p} and observe first that the left
hand side in (13) is ∪p∈supp(Φ(θ))Ip. Consider p ∈ supp(Φ(θ)). Since Φp(θ) = Πi∈pθi, we
have θi 6= 0 for each i ∈ Ip, i.e., Ip ⊆ supp(θ). As this holds for every p ∈ supp(Φ(θ)) we
obtain ∪p∈supp(Φ(θ))Ip ⊆ supp(θ). This establishes (13).

Assuming now that θ is admissible, consider i ∈ supp(θ) and distinguish three cases. If
i = η ∈ NL is an output neuron, then p = (η) 3 i yields Φp(θ) = θη 6= 0. If i = ν ∈ H
is a hidden neuron, then since θ is admissible there is a path p 3 i with nonzero weights
connecting ν to an output neuron. This path satisfies Φp(θ) 6= 0. Finally, if i = ν → ν ′ is
an edge, then since θ is admissible there is a path connecting the input layer to ν and a
path connecting ν ′ to the output layer, both with nonzero weights. Concatenating them
yields a path p 3 i such that Φp(θ) 6= 0. In all cases, we obtain the existence of a path
p ∈ supp(Φ(θ)) such that p 3 i. This establishes (14). �

Corollary 1. Consider θ, θ′ ∈ RE∪H̄ such that Φ(θ′) = Φ(θ). If θ is admissible then
supp(θ′) = supp(θ) and θ′ is also admissible.

Proof. By Lemma 6 and the equality Φ(θ′) = Φ(θ) we have

supp(θ) = {i ∈ E ∪ H̄ : ∃p ∈ P,Φp(θ) 6= 0, i ∈ p}
= {i ∈ E ∪ H̄ : ∃p ∈ P,Φp(θ

′) 6= 0, i ∈ p} ⊆ supp(θ′).

The fact that θ is admissible is a property of its support, and the inclusion supp(θ) ⊆
supp(θ′) implies that θ′ is also admissible. It follows using Lemma 6 again that the right-
most inclusion above is an equality. �

Lemma 7. Given θ ∈ RE∪H̄ an admissible parameter, consider the spaces

Wθ := {α ∈ RE∪H̄ , [Φ(θ)� Pα]P0 = 0}(15)

Vθ := {α ∈Wθ, αH̄ = 0, supp(α) ⊆ supp(θ)}.(16)

Given α ∈Wθ, define for each hidden neuron ν ∈ H
(Sθα)ν , −

∑
e∈p

αe(17)



18 PIERRE STOCK AND RÉMI GRIBONVAL

with p any path with edges e ∈ E ∩ supp(θ) joining ν to an output neuron η.

a) The linear map Sθ : Wθ → RH is well-defined and independent of the choice of p and η;
b) Its restriction Sθ : Vθ → RH is an isomorphism. Its inverse S−1

θ : RH → Vθ is such that

for any β ∈ RH , S−1
θ β = α where αH̄ = 0 and for each edge e = µ→ ν ∈ E ∩ supp(θ),

αe ,


−βµ if µ ∈ NL−1 (and ν ∈ NL)

βν − βµ if µ ∈ N`, 1 ≤ ` ≤ L− 2

βν if µ ∈ N0.

(18)

while αe = 0 for each e ∈ E\supp(θ).

The proof is postponed to Appendix A to keep the reading flow.

Proof of Theorem 1. By Definition 1, θ ∼S θ′ if, and only if, there are {λν}ν∈H∪N0∪NL such
that

λν > 0, ∀ν ∈ H, and λν = 1, ∀ν ∈ N0 ∪NL(19)

θ′e = λ−1
µ θeλν , ∀e = µ→ ν ∈ E and θ′ν = θνλν , ∀ν ∈ H̄.(20)

Thus, if θ′ ∼S θ then sign(θ′) = sign(θ), and for every path p = (p0, . . . , pL) ∈ P0 we get

Φp(θ
′) = ΠL−1

k=0 θ
′
pk→pk+1

= ΠL−1
k=0 (λ−1

pk
θpk→pk+1

λpk+1
) = ΠL−1

k=0 θpk→pk+1
= Φp(θ),

while for p = (p`, . . . , pL) ∈ P`, 1 ≤ ` ≤ L

Φp(θ
′) = θ′p`Π

L−1
k=` θ

′
pk→pk+1

= θp`λp`Π
L−1
k=` (λ−1

pk
θpk→pk+1

λpk+1
) = θp`Π

L−1
k=0 θpk→pk+1

= Φp(θ).

This shows Φ(θ′) = Φ(θ).
Conversely, assume that θ is admissible and that Φ(θ′) = Φ(θ) and sign(θ′E) = sign(θE).

By Corollary 1, since θ is admissible and Φ(θ′) = Φ(θ), we have supp(θ′) = supp(θ)
hence there are γi 6= 0, i ∈ supp(θ) such that θ′i = γiθi for each i ∈ supp(θ). Since

sign(θ′E) = sign(θE), we have γe > 0 for every e ∈ E ∩ supp(θ). Consider α ∈ RE∪H̄ such
that αH̄ = 0, eαe = γe for e ∈ E ∩supp(θ), and αe = 0 for e ∈ E\supp(θ). For each p ∈ P0

Φp(θ
′) = Πe∈pθ

′
e = Πe∈p(θee

αe) = Φp(θ)e
∑
e∈p αe = Φp(θ)� e(Pα)p .

Since Φ(θ′) = Φ(θ), it follows that for each p ∈ P0 such that Φp(θ) 6= 0 we have e(P γ)p = 1,
i.e., (Pα)p = 0. Thus, Φp(θ)(Pα)p = 0 for all p ∈ P0, i.e., [Φ(θ) � Pα]P0 = 0. Since
αH̄ = 0, we get that α belongs to the space Vθ defined in (16) in Lemma 7. Since θ
is admissible, the linear operator Sθ defined in Lemma 7 is a well-defined bijection from
Vθ to RH , hence α is related to β := Sθα ∈ RH through the relation (18). Considering
δ ∈ RN0∪H∪NL with δν := βν for ν ∈ H, δν = 0 for ν ∈ N0 ∪NL, relation (18) implies

αe = δν − δµ, ∀e = µ→ ν ∈ E ∩ supp(θ).

Setting λν := eδν for each ν ∈ N0 ∪ H ∪ NL, it follows that for each e = µ → ν ∈ E we
have θ′e = λ−1

µ θeλν . Since supp(θ) = supp(θ), this also trivially holds for e ∈ E\supp(θ).

To conclude, we show that θ′ν = θνλν for each ν ∈ H̄. As this holds trivially for
ν ∈ H̄ ∩supp(θ), we focus on ν ∈ H̄ ∩supp(θ). First, we treat the case of η ∈ NL∩supp(θ)
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by observing that, with p = (η) ∈ PL we have θ′η = Φp(θ
′) = Φp(θ) = θη = θηλη since

λη = eδη = 1 by definition of δη := 0. Now consider ν ∈ H ∩supp(θ). Since θ is admissible,
there is a partial path p connecting ν to some output neuron η with edges in supp(θ).
Since −∑e∈p αe = (Sθα)ν = βν = δν we have

θ′νΠe∈pθ
′
e = Φp(θ

′) = Φp(θ) = θνΠe∈pθe = θνΠe∈pθ
′
ee
−αe = θν(Πe∈pθ

′
e)e
−

∑
e∈p αe

= θν(Πe∈pθ
′
e)e

δν = θν(Πe∈pθ
′
e)λν .

We conclude using that Πe∈pθ
′
e 6= 0 since all edges e ∈ p belong to supp(θ′) = supp(θ). �

4. Analyzing local identifiability

Equipped with the rescaling-invariant embedding Φ(·) we now establish the claimed
local identifiability results. First, we need to introduce notations for the activation status
of neurons and paths and use them to provide several expressions of the realization Rθ

before providing the main result of the section, Theorem 5.

4.1. Activation status of neurons and paths, and activation spaces. The forth-
coming analysis heavily involves the activation status of each hidden neuron ν ∈ H,
aν(θ, x) = 1zν(θ,x)>0 ∈ {0, 1}, which gives rise to the activation status of each hidden
layer a`(θ, x) = (aν(θ, x))ν∈N` , 1 ≤ ` ≤ L − 1, and the global activation status a(θ, x) =
(aν(θ, x))ν∈H = (a`(θ, x))1≤`≤L−1.

Definition 13. The activation of a path p (full or partial) is defined as

αp(θ, x) := Πν∈H∩paν(θ, x) ∈ {0, 1}
where for p = (p`, . . . , pL) ∈ P` we denote the set of hidden neurons visited by the path p
using the shorthand H ∩ p := {ν ∈ H,∃i ∈ Jmax(`, 1), L− 1K, ν = pi} ⊂ H.

Remark 4. By convention, a product over an empty set is 1. If p contains no hidden
neuron (e.g. , if p = (η) ∈ PL, L ≥ 1) its activation is αp(θ, x) = 1 for every x.

With Q := ∪L−1
`=1 Q` the set of all “partial” paths q ∈ (q`, . . . , qL−1) from a hidden layer

1 ≤ ` ≤ L − 1 to the penultimate layer L − 1 (cf Definition 5 for the formal definition of
Q`), we define the binary-vector-valued function α(θ, x) := (αq(θ, x))q∈Q ∈ {0, 1}Q. We
also define variants that are notably useful to account for output biases

ā`(θ, x) =

(
a`(θ, x)

1

)
∈ {0, 1}N`+1 and ᾱ(θ, x) :=

(
α(θ, x)

1

)
∈ {0, 1}Q+1

where for any set A,B we use the shorthand AB+1 = AB ×A.
To state the connections between non-degeneracy and local S-identifiability from finite

sets, it is convenient to observe that the linear space V(θ) from Definition 11 can be char-
acterized using simpler linear spaces called activation spaces.
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Definition 14 (Activation spaces, activation dimension). The activation spaces associated

to θ ∈ RE∪H̄ are

Ā(θ) := span {ᾱ(θ, x), x ∈ Xθ} ⊆ RQ+1.(21)

A(θ) = span {Qᾱ(θ, x), x ∈ Xθ} = QĀ(θ) ⊆ RQ1(22)

with Q as in Lemma 10. We define its activation dimension as actdim(θ) = dim (Ā(θ)).

Remark 5. Observe that if θ and θ̃ share the same L − 1 first affine layers (W `, b`) =

(W̃ `, b̃`)
L−1
`=0 then their activation spaces are identical. This holds even if the dimension of

the output layers of θ̃ and θ differ.

Lemma 8. Viewing RP as the product of NL×N0 copies of RQ1 and NL copies of RQ+1,
V(θ) ⊂ RP is the product of NL ×N0 copies of A⊥(θ) ⊆ RQ1 and NL copies of Ā⊥(θ).

The proof is postponed to after Corollary 3 as it uses notations introduced there.

Corollary 2. V(θ) = {0} if, and only if, Ā(θ) = RQ+1.

Proof. If V(θ) = {0} then by Lemma 8 we have Ā⊥(θ) = {0} hence Ā(θ) = RQ+1. Vice-versa
if Ā(θ) = RQ+1 then A(θ) = QĀ(θ) = RQ1 . By Lemma 8 it follows that V(θ) = {0}, �

4.2. “Algebraic” expressions of the realization. We can express the realization using
weight matrices, bias vectors and layerwise binary activation vectors. A similar formula
is stated without taking the biases into account in [16][Lemma A.2] whereas [35] performs
analogous computations for gradient computations, still without biases.

Lemma 9. Consider θ a network parameter of depth L ≥ 1. Denote I0 = IdRN0 and for
each x and 1 ≤ ` ≤ L− 1, I` = diag(a`(θ, x)). The realization of θ satisfies

(23) Rθ(x) =
(
ΠL
`=1W`I`−1

)
x+

L∑
`′=1

(
ΠL
`=`′+1W `I`−1

)
b`′

with the convention that a product over an empty set is the identity matrix.

The proof is in Appendix E. To conduct an analysis of the local S-identifiability of a
parameter, another expression of Rθ where the embedding Φ(θ) appears more explicitly
will be useful. We rewrite (23) using Φ(θ) and the activation vector ᾱ(θ, x).

Lemma 10. Consider θ a network parameter of depth L ≥ 2. For each η ∈ NL, denote7

Φi
η(θ) := (Φµ→q→η(θ))q∈Q1,µ∈N0

∈ RQ1×N0(24)

Φh
η(θ) :=

(
(Φq→η(θ))q∈Q

θη

)
∈ RQ+1(25)

7Superscripts i and h stand for “input” and “hidden”, as Φi is associated to full paths starting from
the input layer, while Φh corresponds to partial paths starting from a hidden (or the output) layer.
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Up to reshaping, Φ(θ) ∈ RP is the concatenation of matrices Φi
η(θ) ∈ RQ1×N0 and vectors

Φh
η(θ) ∈ RQ+1 over all output neurons η ∈ NL. For each output neuron η ∈ NL we have

Rθ(x)η = 〈Qᾱ(θ, x),Φi
η(θ)x〉+ 〈ᾱ(θ, x),Φh

η(θ)〉(26)

where Q : RQ+1 → RQ1 is the canonical restriction to Q1 ⊂ Q.

The proof of Lemma 10 is in Appendix E. It yields an expression of Rθ that perfectly fits
the upcoming analysis of local S-identifiability. A more abstract (but probably somewhat
more digestible) version of the same result implies Property (8) as claimed.

Corollary 3. Consider θ a network parameter of depth L ≥ 2. For each x ∈ RN0 let Lθ,x
be the linear form on RQ1×N0 × RQ+1 defined as

Lθ,x{(M ,v)} := 〈Qᾱ(θ, x),Mx〉+ 〈ᾱ(θ, x),v〉, M ∈ RQ1×N0 , v ∈ RQ+1

Define Cθ,x ∈ RNL×P the matrix associated to the linear operator mapping each φ ∈ RP ,

seen as a reshaped concatenation of matrices φi
η ∈ RQ1×N0 and vectors φh

η ∈ RQ+1 as in

Lemma 10, to r := (rη)η∈NL, with rη = Lθ,x{(φi
η,φ

h
η)}. We have

(27) Rθ(x) = Cθ,x ·Φ(θ)

We are now equipped with the notations needed to prove Lemma 8. The proof also relies
on the following alternative characterization of the set Xθ from Definition 10 that we did
not find elsewhere. It is proved in Appendix F.

Lemma 11. Given a parameter θ, consider the open set of input variables x such that
(θ′, z) 7→ a(θ′, z) is locally constant in some neighborhood of (θ, x).

X ′θ := {x ∈ RN0 : ∃ε, r > 0, ∀(θ, z) ∈ B(θ, ε)×B(x, r), a(θ′, z) = a(θ, x)}.(28)

with the convention that X ′θ = RN0 if the network depth is L = 1. This set coincides exactly
with the set Xθ from Definition 10.

Proof of Lemma 8. Consider a vector φ ∈ RP and its representation as φi
η ∈ RQ1×N0 ,

φh
η ∈ RQ, η ∈ NL. By definition φ ∈ V(θ) if, and only if, Cθ,xφ = 0, ∀x ∈ Xθ, i.e., for each

η ∈ NL we have

〈Qᾱ(θ, x),φi
ηx〉+ 〈ᾱ(θ, x),φh

η〉 = 0, ∀x ∈ Xθ.(29)

By Lemma 11, x′ 7→ ᾱ(θ, x′) is locally constant in the neighborhood of each x ∈ Xθ, hence
the left-hand-side in (29) is locally affine with respect to x, and (29) is thus equivalent to{

[Qᾱ(θ, x)]>φi
η = 01×N0

〈ᾱ(θ, x),φh
η〉 = 0

, ∀x ∈ Xθ,(30)

that is to say each column of φi
η, is orthogonal to Qᾱ(θ, x), and φh

η is orthogonal to ᾱ(θ, x)
for every x ∈ Xθ. We conclude using the definition of A(θ), Ā(θ). �
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4.3. Non-degeneracy and local S-identifiability. We can now state the main result
of this section.

Theorem 5. Consider θ ∈ Θ ⊆ RE∪H̄ . The following are equivalent:

i) θ is non-degenerate with respect to Θ;
ii) there is a finite F ⊂ Xθ such that θ is locally S-identifiable from F with respect to Θ.

iii) there is a compact K ⊂ Xθ such that θ is locally S-identifiable from K wrt Θ.

When they hold, the finite set F can be chosen such that

(31) card(F ) ≤ (|N0|+ 1)actdim(θ).

Remark 6. We exhibit in Example 4 a PS-identifiable (hence locally S-identifiable) pa-
rameter θ that is degenerate, i.e., not locally S-identifiable from any compact K ⊆ Xθ.
Proof. i) ⇒ ii) Consider ε > 0 such that θ is ε-non-degenerate with respect to Θ. To
establish the existence of F such that θ is locally S-identifiable from F with respect to Θ,
we use a Lemma which proof is postponed.

Lemma 12. Consider θ ∈ RE∪H̄ .

a) There exists ε > 0 and a set F ⊂ Xθ of cardinality at most (N0 +1)actdim(θ) such that:
for each θ′ ∈ B(θ, ε), if Rθ′ = Rθ on F , then Φ(θ′)−Φ(θ) ∈ V(θ).

b) For every compact set K ⊂ Xθ, there exists ε′ > 0 such that: for each θ′ ∈ B(θ, ε′), if
Φ(θ′)−Φ(θ) ∈ V(θ), then Rθ′(x) = Rθ(x) for all x ∈ K.

Let ε0, F be given by Lemma 12-a and set ε1 := min(ε0, ε, η/2) where η := mini∈supp(θ) |θi|.
We will show that θ is ε1-locally S-identifiable from F . For this, consider θ′ ∈ Θ∩B(θ, ε1)
and assume that Rθ′ = Rθ on K. By Lemma 12-a, since θ′ ∈ B(θ, ε0), we have Φ(θ′) −
Φ(θ) ∈ V(θ). Since θ′ ∈ B(θ, ε) and θ is ε-non-degenerate, this implies Φ(θ′) = Φ(θ) hence
(recall that, since θ is non-degenerate, it is admissible by definition) by Lemma 6 we have
supp(θ′) = supp(θ). Since θ′ ∈ B(θ, η/2) we further have sign(θ′i) = sign(θi) for every
i ∈ supp(θ), hence sign(θ′) = sign(θ). By Theorem 1 we obtain θ′ ∼S θ.

ii) ⇒ iii) Simply observe that a finite set is compact.
iii) ⇒ i) Consider ε > 0 such that θ is ε-locally identifiable from K with respect to

Θ. By Lemma 12-b for the compact set K, there is ε0 > 0 such that: for each θ′ ∈
B(θ, ε0), Φ(θ′) − Φ(θ) ∈ V(θ) ⇒ (Rθ′(x) = Rθ(x),∀x ∈ K). Set ε1 := min(ε, ε0). We
will show that θ is ε1-non-degenerate with respect to Θ. Considering θ′ ∈ Θ ∩ B(θ, ε1)
such that Φ(θ′) − Φ(θ) ∈ V(θ) we now show that Φ(θ′) = Φ(θ). Since θ′ ∈ B(θ, ε0) and
Φ(θ′)−Φ(θ) ∈ V(θ), we have Rθ′(x) = Rθ(x) for all x ∈ K. Since θ′ ∈ Θ∩B(θ, ε) and θ is
locally S-identifiable from K with respect to Θ this implies θ′ ∼S θ, hence by Theorem 1
we have Φ(θ′) = Φ(θ). �

Proof of Lemma 12. We begin with some preliminaries. Since Ā(θ) ⊆ RQ+1, it is finite
dimensional hence there is a finite set Zθ ⊂ Xθ such that card(Zθ) = actdim(θ) and

Ā(θ) = span {ᾱ(θ, z), z ∈ Zθ} .(32)
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By Lemma 11, for each z ∈ Zθ there exists ε(z), r(z) > 0 such that, for every θ′ ∈ B(θ, ε(z))
and x ∈ B(z, r(z)), we have a(θ′, x) = a(θ, z), hence ᾱ(θ′, x) = ᾱ(θ, z). Since Zθ is finite,

ε := min
z∈Zθ

ε(z) > 0.

Consider θ′ ∈ B(θ, ε), z ∈ Zθ, x ∈ B(z, r(z)). Since ᾱ(θ′, x) = ᾱ(θ, z), we have for each
output neuron η ∈ NL {

[Qᾱ(θ′, x)]>Φi
η(θ
′) = [Qᾱ(θ′, z)]>Φi

η(θ
′)

ᾱ(θ′, x)>Φh
η(θ
′) = ᾱ(θ′, z)>Φh

η(θ
′)

hence using (26) we get

Rθ′(x)η −Rθ(x)η =[Qᾱ(θ, z)]>
(
Φi
η(θ
′)−Φi

η(θ)
)
x+ ᾱ>(θ, z)

(
Φh
η(θ
′)−Φh

η(θ)
)
.(33)

Considering z ∈ Zθ, define Fz := {xi}N0
i=0 ⊂ B(z, r(z)) ⊂ RN0 where x0 = z and for

1 ≤ i ≤ N0, xi = z + r(z)
2 δi with δi the i-th vector of the canonical basis. Observe

that if u ∈ RN0 , b ∈ R are such that u>x + b = 0 for every x ∈ Fz, then u = 0 (since
r(z)u>δi = u>(xi− x0) = u>xi + b− (u>x0 + b) = 0 for every i), and therefore b = 0 too.

a) The finite set F := ∪z∈ZθFz satisfies F ⊂ ∪z∈ZθB(z, r(z)) ⊂ Xθ. Assume that
Rθ′ = Rθ on F where θ′ ∈ B(θ, ε). By the preliminaries, this implies that the right hand
side in (33) is zero for each η ∈ NL, z ∈ Zθ, x ∈ Fz, hence{

[Qᾱ(θ, z)]>
(
Φi
η(θ
′)−Φi

η(θ)
)

= 01×N0

ᾱ>(θ, z)
(
Φh
η(θ
′)−Φh

η(θ)
)

= 0.

Since this holds for every η ∈ NL, z ∈ Zθ, in light of (32) this establishes that

∀η ∈ NL,


Φi
η(θ
′)−Φi

η(θ) ∈ A⊥(θ)× . . .× A⊥(θ)︸ ︷︷ ︸
N0 times

Φh
η(θ
′)−Φh

η(θ) ∈ Ā⊥(θ)

(34)

and we conclude using Lemma 8 and the fact that card(F ) ≤ card(Zθ)× (N0 + 1).
b) Since K ⊂ Xθ, for each z ∈ K there are ε(z), r(z) > 0 such that: for each θ′ ∈

B(θ, ε(z)), x ∈ B(z, r(z)), ᾱ(θ′, x) = ᾱ(θ, z). Since K is compact and K ⊂ ∪z∈KB(z, r(z)),
there is a finite set Z ⊂ K such that K ⊂ ∪z∈ZB(z, r(z)). Denote ε′ := minz∈Z ε(z) > 0.
Considering θ′ ∈ B(θ, ε′) such that Φ(θ′)−Φ(θ) ∈ V(θ), we now show that Rθ′(x) = Rθ(x)
for each x ∈ K. Given x ∈ K, since there is z ∈ Zθ such that x ∈ B(z, r(z)), we have

ᾱ(θ′, x) = ᾱ(θ, z) = ᾱ(θ, x).(35)

For each η ∈ NL, since by Lemma 8 Φ(θ′)−Φ(θ) ∈ V(θ) is equivalent to (34), we get

[Qᾱ(θ′, x)]>Φi
η(θ
′)

(35)
= [Qᾱ(θ, x)]>Φi

η(θ
′)

(34)
= [Qᾱ(θ, x)]>Φi

η(θ)

ᾱ>(θ′, x)Φh
η(θ
′)

(35)
= ᾱ>(θ, x)Φh

η(θ
′)

(34)
= ᾱ>(θ, x)Φh

η(θ).

Using (26) we conclude that Rθ′(x)η = Rθ(x)η for all η ∈ NL, i.e., Rθ′(x) = Rθ(x). �
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5. Identifiability for shallow neural networks

In this section we focus on shallow networks, for which the set Q = Q1 of paths is in
bijection with the set H = N1 of hidden neurons. Identifying these sets the activation
vectors also coincide α(θ, x) = a1(θ, x) ∈ RQ = RN1 = RH . After giving a complete
characterization of the activation space Ā(θ) using the notion of twin neurons, we show
that the absence of twin neurons implies non-degeneracy (hence local S-identifiability),
and that its combination with irreducibility implies PS-identifiability. Finally, we discuss
what happens in the presence of twin neurons.

5.1. Activation spaces and twin neurons. Whenever θ is admissible, each hidden neu-
ron ν ∈ H is not dead, i.e. w•→ν 6= 0 and wν→• 6= 0. According to Definition 8, neurons
are twins if their extended vectors (w•→ν , bν) are colinear. This defines an equivalence
relation, and the hidden layer H = N1 can be partitioned into equivalence classes of twin
neurons, denoted

Tc ⊂ H, 1 ≤ c ≤ C.
Each equivalence class Tc is partitioned into Ic, Jc, where all neurons in Ic are positive
twins, all neurons in Jc are positive twins, and ν ∈ Ic, ν

′ ∈ Jc are negative twins. By
convention Ic is always non-empty, while Jc may be empty if there are no negative twins
in Tc. For each class, we can define a class signature vector

sc = 1Ic − 1Jc ∈ RH ,

which is zero out of Tc, with ±1 entries on Tc, and has at least one +1 entry. When
Tc contains both positive and negative twins, sc is only defined up to a global sign. An
equivalence class is said to be nontrivial if its cardinal is at least two. Equipped with these
notions, we prove in Appendix G the following characterization of activation spaces.

Lemma 13. Consider an admissible parameter θ on a shallow network architecture. Using
the notations introduced above, its activation spaces are

A(θ) = span {1H , sc, 1 ≤ c ≤ C} ⊆ RH(36)

Ā(θ) = span {(1H , 2), (sc, 0), 1 ≤ c ≤ C} ⊆ RH+1.(37)

5.2. Proof of Lemma 5: no twins implies non-degeneracy. Lemma 5 is a direct
consequence of the combination of Theorem 5 with the following two results.

Lemma 14. On any network architecture, if θ ∈ RE∪H̄ is admissible and Ā(θ) = RQ+1

then8 θ is non-degenerate with respect to any Θ ⊂ RE∪H̄ that contains it.

Proof. Since Ā(θ) = RQ+1, by Corollary 2 V(θ) = {0}, hence Φ(θ′) − Φ(θ) ∈ V(θ) is
equivalent to Φ(θ′) = Φ(θ). Since θ is admissible, this shows that θ is non-degenerate. �

Lemma 15. Consider a shallow architecture and θ ∈ RE∪H̄ . The equality Ā(θ) = RQ+1

holds if, and only if, there is no twin. When this holds, actdim(θ) = |H|+ 1 = |N1|+ 1.

8The converse does not hold: there are non-degenerate parameters with Ā(θ) 6= RQ+1, see Lemma 16.
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Proof. Equivalence classes of twin neurons form a partition of H, hence |C| ≤ |H| = |Q|.
By Lemma 13, Ā(θ) is the span of |C|+1 vectors, hence its dimension is at most |C|+1. In
the presence of twins we get |C| < |H| hence Ā(θ) 6= RQ+1. In the absence of twins, each
equivalence class Tc is trivial, i.e. |Tc| = 1. We obtain that |C| = |H|, that each signature
vector sc is a distinct canonical vector δc, and obtain Ā(θ) = RQ+1 by Lemma 13. �

5.3. Proof of Theorem 3: irreducibility and no twins implies PS-identifiability.

By Lemma 3, PS-identifiability from a bounded set with respect to Θ = RE∪H̄ implies
that θ has no twins, hence by Lemma 4), it is irreducible (hence admissible), and local
S-identifiable, by Theorem 2. For shallow networks, we show that conversely, irreducibility
and the absence of twins imply PS-identifiability from a bounded set.

Theorem 6. Consider N1, N ′1 two finite sets of indices, empty or not9, and integers
d, k ≥ 1. Consider c ∈ Rk and for each ν ∈ N1, let vν ∈ Rk, wν ∈ Rd and bν ∈ R. Define

ϕ(x) =
∑
ν∈N1

vνReLU(〈wν , x〉+ bν) + c, x ∈ Rd.

Similarly define ψ(x) with v′ν ∈ Rk, w′ν ∈ Rd, b′ν ∈ R for ν ∈ N ′1, and c′ ∈ Rk.

a) Assume that
• {(wν , bν)}ν∈N1 are pairwise not collinear, and vν ,wν 6= 0;
• {(w′ν , b′ν)}ν∈N ′1 are pairwise not collinear, and v′ν ,w

′
ν 6= 0.

If ϕ(x) = ψ(x) for every x ∈ Rd then card(N1) = card(N ′1).
b) Assume that {(wν , bν)}i∈N1 are pairwise not collinear, and

(38)
∑
ν∈T

vνw
>
ν 6= 0, for all non-empty T ⊂ N1.

There exists a bounded set X ⊆ RN0 (which depends on θ) such that: if N ′1 = N1 and
ϕ(x) = ψ(x) for every x ∈ X , then10 c = c′ and there exists a permutation π of N1 and
λν > 0, ν ∈ N1 such that

∀ν ∈ N1 : v′π(ν) = λ−1
ν vν ; w′π(ν) = λνwν and b′π(ν) = λνbν .(39)

Proof. As a preliminary, consider ν ∈ N1 and denote Vν := {x ∈ RN0 : 〈wν , x〉 + bν = 0}.
Since wν 6= 0, the set Vν is a hyperplane which matches the set Γν(θ) from Definition 10
when considering θ such that ϕ = Rθ. As none of the (wν , bν) is collinear to another, the
hyperplanes associated to ν 6= ν ′ ∈ N1 are distinct. As vν 6= 0 for every ν ∈ N1 and ϕ is
continuous and piecewise affine, this function is differentiable exactly on the complement
of T := ∪ν∈N1Vν , which is a union of card(N1) distinct hyperplanes.

a) Similarly, since none of the (w′ν , b
′
ν) is collinear to another and v′ν 6= 0,w′ν 6= 0 for

each ν ∈ N ′1, the function ψ is differentiable exactly on the complement of a union of
card(N ′1) distinct hyperplanes, T ′ = ∪ν∈N ′V ′ν , where V ′ν := {x ∈ RN0 : 〈w′ν , x〉+ b′ν = 0}.
Note that T may be empty since N1 may be empty, and similarly for T ′. Since ϕ = ψ, we

9We use the convention:
∑
∅ = 0.

10Let us emphasize that here no further assumption is made on w′ν , b
′
ν ,v
′
ν , ν ∈ N1.
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have T = T ′ hence card(N1) = card(N ′1), otherwise there would exist one point x ∈ Rd
where one function would be differentiable and the other not.

b) We now assume N ′1 = N1, but make no specific assumption on v′ν ∈ Rk, w′ν ∈ Rd,
b′ν ∈ R for ν ∈ N1 or on c′ ∈ Rk. By (38) with T = {ν} we have vνw

>
ν 6= 0 hence, as in the

preliminary, Vν , ν ∈ N1 are pairwise distinct hyperplanes. Consider an arbitrary hidden
neuron ν ∈ N1. As the hyperplanes {Vµ}µ∈N1 are pairwise distinct, there exist xν ∈ Vν
and εν > 0 such that Ων := B(xν , εν) satisfies Ων ∩ T = Ων ∩ Vν . We will show that the
result holds with X := ∪ν∈N1Ων , which is easily seen to be bounded.

From now, assume that ψ(x) = ϕ(x) for every x ∈ X .

For each ν ∈ N̂1 := {ν ∈ N1 : v′ν 6= 0,w′ν 6= 0}, since w′ν 6= 0, the set V ′ν is a hyperplane.

Consider the equivalence relation on N̂1 defined by: ν ∼ µ ⇔ V ′ν = V ′µ, and the resulting

quotient set N̄1 = N̂1/∼. For each equivalence class ν̄ ∈ N̄1, denote V ′ν̄ the common
hyperplane associated to every ν ∈ ν̄, and set T̄ = ∪ν̄∈N̄1

V ′ν̄ . We will prove below that

there exists an injective map π : N1 → N̄1 such that Vν = V ′π(ν) for every ν ∈ N1. This

will imply that card(N̄1) ≥ card(N1), and since card(N̄1) ≤ card(N̂1) ≤ card(N1), it will

follow that N̂1 = N1 (hence v′ν 6= 0, w′ν 6= 0 for every ν ∈ N1) and that each equivalence
class ν̄ is a singleton. In other words, π is indeed a permutation of N1, and the hyperplanes
V ′{ν}, ν ∈ N1 are pairwise distinct.

To build π, consider a hidden neuron ν ∈ N1. For the sake of contradiction, assume
that V ′µ̄ 6= Vν for every µ̄ ∈ N̄1. This implies the existence of x′ν ∈ Ων ∩ Vν and of ε′ν > 0

such that Ω′ν := B(x′ν , ε
′
ν) ⊆ Ων and Ω′ν ∩ T̄ ′ = ∅ and Ω′ν ∩ Vν = Vν . Since Ω′ν ∩ T̄ = ∅,

the function ψ is affine linear on Ω′ν , hence it has constant Jacobian on Ω′ν . Denote
Ω+
ν := {x ∈ Ω′ν : 〈wν , x〉 + bν > 0}, Ω−ν := {x ∈ Ω′ν : 〈wν , x〉 + bν < 0}, and observe that

both sets are non-empty. For any x ∈ Ω′ν\Vν = Ω+
ν ∪ Ω−ν , the function ϕ is differentiable

and its Jacobian is ϕ′(x) = vνw
>
ν H(〈wν , x〉+ bν) + d where d ∈ Rk and

H(t) :=

{
1, if t > 0

0, otherwise.

For each x+
ν ∈ Ω+

ν , x
−
ν ∈ Ω−ν we have H(〈wν , x

+
ν 〉 + bν) − H(〈wν , x

−
ν 〉 + bν) = 1, hence

ϕ′(x+
ν ) − ϕ′(x−ν ) = vνw

>
ν . As ψ = ϕ on X ⊇ Ων ⊇ Ω′ν and ψ has constant Jacobian on

Ω′ν , it follows that vνwν = 0, which contradicts our assumptions. Hence, there is µ̄ ∈ N̄1

such that V ′µ̄ = Vν . Since the hyperplanes {V ′ν̄}ν̄∈N̄1
are pairwise disjoint by construction,

such a µ̄ is unique and we define π(ν) := µ̄. Since this holds for every ν ∈ N1, we can
define the map π : N1 → N̄1 with π(ν) := µ̄. For ν 6= ν ′ we have V ′π(ν′) = Vν′ 6= Vν = V ′π(ν)

since the hyperplanes {Vν}ν∈N1 are pairwise distinct. This proves the injectivity of π. As
we have seen, this means that indeed π is a permutation of N1. Without loss of generality,
to simplify notations, we assume from now on that π is the identity.

For each ν ∈ N1, since V ′ν = V ′π(ν) = Vν there is a nonzero λν ∈ R such that

(w′ν , b
′
ν) = λν(wν , bν).
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Reasoning as above, with Ω±ν defined using Ω′ν := Ων , we obtain that

ϕ′(x+
ν )−ϕ′(x−ν ) = vνw

>
ν .

for each x+
ν ∈ Ω+

ν , x
−
ν ∈ Ω−ν , and that for each x ∈ Ων\Vν , the Jacobian of ψ satisfies

ψ′(x) = v′ν(w′ν)>H(〈w′ν , x〉+b′ν)+d′ with some d′ ∈ Rk, hence for each x+
ν ∈ Ω+

ν , x
−
ν ∈ Ω−ν

ψ′(x+
ν )−ψ′(x−ν ) = v′ν(w′ν)>

(
H(〈w′ν , x+

ν 〉+ b′ν)−H(〈w′ν , x−ν 〉+ b′ν)
)
.

Since (w′ν , b
′
ν) = λν(wν , bν) and sign(〈wν , x

±
ν 〉+ bν) = ±1, we have

H(〈w′ν , x+
ν 〉+ b′ν)−H(〈w′ν , x−ν 〉+ b′ν) = sign(λν).

Moreover, as ψ = ϕ on X , we have ϕ′(x+
ν )−ϕ′(x−ν ) = ψ′(x+

ν )−ψ′(x−ν ), hence

vνw
>
ν = v′ν(w′ν)>sign(λν).

Since w′ν = λνwν , this simplifies to

(40) vνw
>
ν = v′ν(w′ν)>sign(λν) = v′νw

>
ν λνsign(λν) = |λν |v′νw>ν

Hence, v′ν = vν/|λν | for each ν ∈ N1.
To conclude, it is enough to prove that λν > 0 for every ν ∈ Nν . Using (40), we can

re-write the equality ϕ(x) = ψ(x) for every x as follows:

(41)
∑
ν∈N1

vν

[
ReLU(〈wν , x〉+ bν)− |λν |−1ReLU(〈w′ν , x〉+ b′ν︸ ︷︷ ︸

λν(〈wν ,x〉+bν)

)
]

+ c− c′ = 0.

Now, we observe that
(42)

ReLU(〈wν , x〉+ bν)− |λν |−1ReLU(λν(〈wν , x〉+ bν)) =

{
0 if sign(λν) = 1

〈wν , x〉+ bν if sign(λν) = −1

We now show that T := {ν ∈ N1 | sign(λν) = −1} = ∅. Using (42), we re-write (41) as:

(43)
∑
ν∈T

vν(〈wν , x〉+ bν) + c− c′ = 0.

Since this is valid for all x ∈ RN0 we get c = c′ and
∑

ν∈T vνw
>
ν = 0. In light of (38) the

latter implies T = ∅, hence sign(λν) = 1 for all ν ∈ N1. �

5.4. Local S-identifiability despite the presence of twins. It is natural to wonder
if there exists shallow networks with twins that are nevertheless either non-degenerate,
or locally S-identifiable, or PS-identifiable. Positive twins are excluded (for any network
depth) by Lemma 3, hence we can focus on the case where there are K ≥ 1 nontrivial
classes of twins, each made of a single pair of (distinct) negative twins (as any equivalence
class with at least three twins necessarily contains two positive ones). We detail here the
case K = 1 and leave to future work a more detailed analysis of what happens for K ≥ 2.
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Lemma 16 (Single pair of negative twins). Consider a shallow network architecture.

If θ ∈ Θ ⊆ RE∪H̄ is admissible with a single pair of negative twins, {ν1, ν2} ⊆ H, then

(44) A⊥(θ) = {0} and Ā⊥(θ) = span {δν1 + δν2 − δ?} 6= {0}
where δν ∈ RH+1, ν ∈ H is the ν-th canonical eigenvector, and δ? = (0H , 1).

Moreover, if at least one of the following conditions holds:

i) wν1→•, wν2→• are linearly independent (which is only possible if |N2| ≥ 2); or
ii) Θ is contained in the set of parameters with zero output bias;

then θ is non-degenerate with respect to Θ. Conversely, if

iii) wν1→•, wν2→• are linearly dependent and θ belongs to the interior of Θ,

then θ is degenerate with respect to Θ.

Remark 7. Inspecting the proof shows that the assumption in iii) that θ is in the interior
of Θ can be relaxed to: for small enough ε, each parameter θ′ ∈ B(θ, ε) differing from θ
only in terms of biases belongs to Θ ∩B(θ, ε).

The proof is in Appendix H. We are now equipped to show with an example that non-
degeneracy and local-identifiability are distinct concepts.

Example 4 (Absolute value). Consider a shallow architecture with scalar input and output
and two hidden neurons. The absolute value can be written as |x| = ReLU(x)+ReLU(−x) =
Rθ where θ = (wµ→ν1 = 1, wµ→ν2 = −1, bν1 = bν2 = 0, wν1→η = wν2→η = 1, bη = 0) has a
single pair of negative twins. This parameter θ satisfies the following properties

i) it is not PS-identifiable from any bounded set X ⊂ R (by Lemma 3);
ii) it is not locally S-identifiable from any finite F ⊂ Xθ (i.e., it is degenerate, see below);

iii) it is PS-identifiable (hence locally S-identifiable) from X = R;
iv) it is locally S-identifiable from F ∪ {0} for some finite set F ⊂ Xθ;

The last two points are detailed in Appendix I. Let us detail ii) here. Since |N2| = 1,

by Lemma 16-iii) we get that θ is degenerate with respect to Θ = RE∪H̄ , i.e. not locally
S-identifiable from any finite F ⊆ Xθ. Indeed, if F ⊆ Xθ = R\{0} is finite then F ⊂
(−∞,−t] ∪ [t,+∞) for some t > 0, and abs coincides on F with (see Figure 2-(c))

ReLU(x− t) + ReLU(−(x+ t)) + t =


−x, x ≤ −t
t, |x| ≤ t
x, x ≥ t.

= Rθ′(x)

where θ′ has nonzero biases, so that θ′ 6∼PS θ.

Example 5 (Revisiting the identity function from Example 1). The identity function from

Example 1 is another example with a single pair of twin neurons. With Θ = RE∪H̄ the
parameter θ0 is not locally S-identifiable (from X = R) as already explained in Example 1.

With Θ = Θ0 ( RE∪H̄ the set of parameters with zero output bias, θ0 is on the contrary
PS-identifiable from R (see details in Appendix J). It can also be shown that θ0 is non-
degenerate with respect to Θ0, using arguments similar to those used in Appendix I to prove
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item iv) of Example 4. This illustrates the fact that, in the presence of a pair of negative
twins, many things can happen: the parameter can be PS-identifiable and non- degenerate,
or not even locally S-identifiable.

5.5. Discussion of the role of activation spaces. For shallow irreducible networks, PS-
identifiability from a bounded set is equivalent (Theorem 3) to the absence of twin neurons,
which corresponds (Lemma 15) to a completeness property of the activation space that
reads Ā⊥(θ) = {0}. The property Ā⊥(θ) = {0} also implies non-degeneracy (Lemma 14),
yet a consequence of Lemma 16 is that the converse does not generally hold (and that
the weaker assumption A⊥(θ) = {0} is no longer sufficient to imply non-degeneracy). An
exception occurs for scalar-valued shallow networks.

Lemma 17. Consider a scalar-valued shallow architecture (|N2| = 1). If θ belongs to the

interior of Θ ⊆ RE∪H̄ and is non-degenerate with respect to Θ then Ā⊥(θ) = {0}.

This exception is a consequence of the following result.

Lemma 18. Consider a scalar-valued shallow network architecture. If θ is admissible then
there is 0 < C <∞ such that: for each z ∈ RQ+1, there exists θ′ ∈ B(θ, C‖z‖∞)

Φi
η(θ
′)−Φi

η(θ) = 0Q1×N0 ,(45)

Φh
η(θ
′)−Φh

η(θ) = z(46)

where η is the single output neuron constituting the output layer NL. The parameters θ
and θ′ differ only in terms of biases.

Proof. Write z = (y, γ) with y ∈ RQ = RH and γ ∈ R. For each hidden neuron ν ∈
H = N1, denote vν = vν→η the unique weight from neuron ν to the single output neuron.
For each input neuron µ ∈ N0, the µ-th column of Φi

η(θ) is Φi
µ→η(θ) := (wµ→νvν)ν∈H ,

and Φh
η(θ) = ((bνvν)ν∈H , bη)

>. To prove the result we define θ′ with identical weights
as θ, v′ν := vν , w′µ→ν := wµ→ν , and set the output bias to b′η := bη + γ. This implies

w′µ→νv
′
ν = wµ→νvν for every ν ∈ H,µ ∈ N0, hence Φi

η(θ
′) = Φi

η(θ). We now seek b′ν such
that b′νv

′
ν = bνvν + yν , for each ν ∈ H. Since θ is admissible, vν 6= 0 for all ν ∈ H, hence

we can choose b′ν := bν + yν/vν . We conclude with Cθ driven by minν 1/|vν |. �

Proof of Lemma 17. We prove the contraposition. Assume that θ is admissible, that it

belongs to the interior of Θ ⊂ RE∪H̄ , and that Ā⊥(θ) 6= {0}. Since θ is in the interior of
Θ, there is η > 0 such that B(θ, η) ⊆ Θ. For each 0 < ε < η there exists z ∈ Ā⊥(θ) with
norm ‖z‖∞ = ε/C where C is the constant from Lemma 18. Since θ is admissible, by
Lemma 18 and the characterization of V(θ) (Lemma 8) there exists θ′ ∈ B(θ, C‖z‖∞) =
B(θ, ε) = Θ ∩ B(θ, ε) such that 0 6= Φ(θ′)−Φ(θ) ∈ V(θ). This shows that θ is degenerate
with respect to Θ. �

Remark 8. The assumption that θ is in the interior of Θ can be relaxed to: each parameter
θ′ ∈ B(θ, ε) differing from θ only in terms of biases belongs to Θ ∩B(θ, ε).
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Appendix A. Proof of Lemma 7

To lighten notations we omit the dependence of W,V and S on θ. The proof follows
three steps.
1) S is well-defined. Consider α ∈ W and ν ∈ H. First, since θ is admissible, there exists
at least one path p connecting ν to some output neuron η through edges e ∈ E ∩ supp(θ).
We wish to show that if p and p′ are two such partial paths then

∑
e∈p αe =

∑
e∈p′ αe.

Since θ is admissible, there exists a partial path p̄ going from some input neuron µ to ν
through edges e ∈ E ∩ supp(θ). Since p̄` = p` = p′`, define by concatenation the full paths
q = (p̄0, . . . , p̄`, p`+1, . . . , pL) and q′ = (p̄0, . . . , p̄`, p

′
`+1, . . . , p

′
L). As q and q′ have all their

edges in supp(θ), we have Φq(θ) 6= 0 6= Φq′(θ). Since α ∈ W and q, q′ ∈ P0, we have
Φq(θ) · (Pα)q = Φq′(θ) · (Pα)q′ = 0, hence (Pα)q = (Pα)q′ = 0 and∑

e∈p
αe +

∑
e∈p

αe =
∑
e∈q

αe = (Pα)q = 0 = (Pα)q′ =
∑
e∈p

αe +
∑
e∈p′

αe.

Thus,
∑

e∈q αe =
∑

e∈q′ αe and S is well-defined.

2) S is injective on V . Note that S is linear hence it is sufficient to show that its kernel
is reduced to zero. Let α ∈ V such that Sα = 0. Since αH̄ = 0 and supp(α) ⊆ supp(θ),
we have αe = 0 for each e ∈ E\supp(θ), hence it is sufficient to show αe = 0 for any edge
e = µ→ ν ∈ E ∩ supp(θ). Since θ is admissible, there is a partial path p going from ν to
some output neuron η through edges e′ ∈ E∩supp(θ). Since e ∈ E∩supp(θ), the extended
path p := µ→ p also has all its edges in E ∩ supp(θ) and joins µ to an output neuron. We
distinguish three cases: in the first case, µ, ν are two hidden neurons, and

αe =
∑
e′∈p

αe′ −
∑
e′∈p

αe′ = −(Sα)µ + (Sα)ν = 0.

In the second case, µ ∈ N0 is an input neuron, hence p is a full path with edges e′ ∈
E∩supp(θ), so that Φp(θ) 6= 0. Since α ∈W it follows that

∑
e′∈p αe′ = (Pα)p = 0 and we

also obtain αe = 0. Finally, in the third case, ν ∈ NL is an output neuron hence p̄ = (ν)
contains no edge, so that

∑
e′∈p̄ αe′ = 0 and we get αe = 0 as well.
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c) S is surjective. Consider β ∈ RH , and α ∈ RE∪H̄ as defined around (18). Consider
p = (p`, . . . , pL) ∈ P (with 0 ≤ ` ≤ L − 1) a full or partial path going from some neuron
µ = p` ∈ N0∪H to an arbitrary output neuron η = pL ∈ NL through edges e ∈ E∩supp(θ).
In the case of a full path, µ ∈ N0 and

∑
e∈p

αe = −βpL−1 +

L−1∑
j=1

(βpj − βpj−1) + βp0 = 0.

As this holds for any full path with edges e ∈ supp(θ), and since αH̄ = 0, we get α ∈ W .
Since αe = 0 for e ∈ E\supp(θ) we have indeed supp(α) ⊆ supp(θ) hence α ∈ V .

In the case of a partial path (` ≥ 1), we have µ ∈ H and similarly

∑
e∈p

αe = −βpL−1 +

L−1∑
j=`+1

(βpj − βpj−1) = −βp` = −βµ

hence (Sα)µ = βµ. As this holds for any µ ∈ H, this shows that (Sα) = β.

Appendix B. Proof of Theorem 2

Denote η = mini∈supp(θ) |θi|. Assume by contradiction that θ is not locally S-identifiable
from X with respect to Θ. This implies that for each n ≥ 1 there is θn ∈ Θ∩B(θ,min(η, 1/n))
which is not scaling-equivalent to θ such that Rθn = Rθ on X . For n ≥ 1/ε, since θ is
PS-identifiable from X with respect to Θ and since θn ∈ Θ satisfies Rθn = Rθ on X , we
have θn ∼PS θ, hence there is a permutation πn ∈ SG such that πn ◦ θn ∼S θ, hence by
Theorem 1

sign(πn ◦ θn) = sign(θ), and Φ(πn ◦ θn) = Φ(θ).(47)

Since the set of permutations is finite, there exists π ∈ SG, and an increasing subsequence
nk such that πnk = π for each k ≥ 1. By (47), for every k we have

sign(π ◦ θnk) = sign(θ) and Φ(π ◦ θnk) = Φ(θ).(48)

There is a permutation matrix Π ∈ RP×P such that Φ(π ◦ θ′) = ΠΦ(θ′) for all θ′ ∈ RE∪H̄ .
Since limk→∞ θnk = θ, by continuity of Φ we obtain ΠΦ(θ) = Φ(π ◦ θ) = Φ(θ) hence for
every k ≥ 1

Φ(θ) = Π−1Φ(θ)
(48)
= Π−1ΠΦ(θ′nk) = Φ(θnk).(49)

Since θ is admissible, by Corollary 1, the equality Φ(θnk) = Φ(θ) implies supp(θnk) =
supp(θ). This implies that sign((θnk)i) = 0 = sign(θi) for each i /∈ supp(θ). Since θnk ∈
B(θ, η) for each k, we also have sign((θ′nk)i) = sign(θi) ∈ {−1, 1} for every i ∈ supp(θ),
hence sign(θnk) = sign(θ) for every k. Since θ is admissible, by Theorem 1, the fact that
sign(θnk) = sign(θ) and Φ(θnk) = Φ(θ) implies θ′n ∼S θ. This contradicts our assumption
that θ′n 6∼S θ for every n.
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Appendix C. Proof of Lemma 3

We will prove the contraposition using the following observation.

Fact 4. Consider α, β ∈ R and M > 0. For any t ∈ [−M,∞) we have

αReLU(t) + βReLU(−t) =

{
αt, t ≥ 0

−βt, t ≤ 0
= (α+ β)ReLU(t)− βReLU(t+M) +M.

Assuming that θ has twins, consider a hidden layer 1 ≤ ` ≤ L− 1 and T ⊆ N` a pair of
twin neurons T = {ν1, ν2}. Denote wi = w•→νi , bi = bνi , vi = wνi→•. As these neurons
are twins, there is λ ∈ R such that for every x ∈ RN0 ,

zν2(θ, x) = 〈w2, y`−1(θ, x)〉+ b2 = λ (〈w1, y`−1(θ, x)〉+ b1) = λzν1(θ, x)

In the case of positive twins we have λ > 0, hence yν1(θ, x) = λyν2(θ, x) for every x. Given
ε > 0 consider θ′(ε) obtained by keeping unchanged all weights and biases in θ except
the weights outgoing from neurons νi, i = 1, 2: v′1 = v1 + λε1N`+1

, v′2 = v2 − ε1N`+1
.

Since the linear layers and biases of hidden neurons up to layer ` are unchanged, we have
y`(θ, x) = y`(θ

′, x) for all x. For every neuron ν ∈ N`\T , since the outgoing weights are
unchanged, we get for every x

yν(θ′, x)w′ν→• = yν(θ, x)wν→•.

Moreover, since yν2(θ, x) = λyν1(θ, x) and y`(θ, x) = y`(θ
′, x), we obtain for every x

yν1(θ′, x)w′ν1→• + yν2(θ′, x)w′ν2→• = yν1(θ, x)v′1 + yν2(θ, x)v′2

= yν1(θ, x)(v1 + λε1N`+1
) + λyν1(θ, x)(v2 − ε1N`+1

)

= yν1(θ, x)v1 + λyν1(θ, x)v2

= yν1(θ, x)wν1→• + yν2(θ, x)wν2→•.

Summing over all hidden neurons we obtain z`+1(θ, x) = z`+1(θ′, x) for every x, and since
all the next affine layers are unchanged, we obtainRθ′ = Rθ. It is not difficult to check that
θ′ = θ′(ε) is not scaling equivalent to θ and can be made arbitrarily close to it. This shows
that θ is not locally S-identifiable from RN0 . By contraposition, if θ is locally S-identifiable
from RN0 then it has no positive twins.

In the case of negative twins we have yν1(θ, x) = ReLU(t) and yν2(θ, x) = |λ|ReLU(−t)
with t = t(x) := zν1(θ, x) = 〈w1, y`−1(θ, x)〉 + b1. Since X is bounded there is some finite
M > 0 such that |zν1(θ, x)| ≤ M for every x ∈ X . Consider θ′ obtained by keeping all
weights and biases unchanged from θ except the incoming and outgoing weights of ν1, ν2,
their biases, and the biases of the neurons of the next layer, η ∈ N`+1, which are set as:

• w′•→ν1 = w′•→ν2 = w•→ν1 ;
• b′ν1 = bν1 ; b′ν2 = bν1 +M ;
• w′ν1→• = wν1→• + |λ|wν2→•; w

′
ν2→• = −|λ|wν2→•;

• b′η = bη +M
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For each η ∈ N`+1, using Fact 4 for α = wν1→η, β = |λ|wν2→η we obtain

yν1(θ, x)wν1→η + yν2(θ, x)wν2→η = αReLU(t) + βReLU(−t)
= (α+ β)ReLU(t)− βReLU(t+M) +M

= (wν1→η + |λ|wν2→η)ReLU(t)− |λ|wν2→ηReLU(t+M) +M

= w′ν1→ηReLU(t) + w′ν2→ηReLU(t+M) +M

= w′ν1→ηReLU(zν1(θ′, x)) + w′ν2→ηReLU(zν2(θ′, x)) +M

= w′ν1→ηyν1(θ′, x) + w′ν2→ηyν2(θ′, x) +M.

Reasoning as in the case of positive twins we obtain z`+1(θ′, x) = z`+1(θ, x) and eventually
Rθ′(x) = Rθ(x) for every x in the bounded set X . Since the sign of wν2→• has changed,
θ′ is not PS-equivalent to θ. This shows that θ is not PS-identifiable from X with respect

to Θ = RE∪H̄ .
By contraposition, assuming that θ is PS-identifiable from a bounded set X with respect

to Θ = RE∪H̄ , there is no negative twin. Besides, by Theorem 2, such a θ is also locally

S-identifiable from X with respect to Θ = RE∪H̄ , hence it is locally S-identifiable from RN0

with respect to Θ = RE∪H̄ . By the first part of the lemma, we conclude that θ has no
positive twins either. Hence, it has no twins.

Appendix D. Proof of Lemma 4

We will use the following observation.

Fact 5. for χ ∈ {0, 1} and e = (−1)χ we have ReLU(t) = χt+ eReLU(et) for every t ∈ R.

Assume for the sake of contradiction that θ is not irreducible: W `+1ITW ` = 0 for some
non-empty T ⊂ N` with some 1 ≤ ` ≤ L− 1. Denote θ′ a network with the same weights
and biases as θ except on layers ` and ` + 1, where W ′

`,W
′
`+1 and b′`, b

′
`+1 will soon be

described. By an easy induction we have y`′(θ
′, x) = y`′(θ, x) for 0 ≤ `′ ≤ `− 1.

Defining JT = diag(eν)ν∈N` with eν = −1 if ν ∈ T and eν = 1 otherwise, we obtain from
Fact 5 that for every vector z` ∈ RN` , ReLU(z`) = ITz` + JT ReLU(JTz`). Define W ′

` =
JTW `, W

′
`+1 = W `+1JT , b′` = JTb`. For each x ∈ RN0 , since y`−1(θ, x) = y`−1(θ′, x)

and J2
T = IdRN` we get using the shorthands zi = zi(θ, x), z′i = zi(θ

′, x), i ∈ {`, `+ 1}
z` =W `y`−1(θ, x) + b` = JT

(
JTW `y`−1(θ, x) + JTb`

)
= JTz

′
`

z`+1 =W `+1 ReLU(z`) + b`+1 = W `+1 (ITz` + JT ReLU(JTz`)) + b`+1

=W `+1ITW `︸ ︷︷ ︸
=0

y`−1(θ, x) +W `+1ITb` +W ′
`+1 ReLU(z′`) + b`+1

=W ′
`+1 ReLU(z′`) + (W `+1ITb` + b`+1).

Defining b′`+1 := W `+1ITb`+b`+1, we get z`+1(θ, x) = z′`+1(θ′, x) for all x. Since all other

layers of θ and θ′ are identical, an easy induction yields Rθ = Rθ′ , where θ′ ∈ RE∪H̄ =
Θ. To conclude, we prove below that θ′ is not PS-equivalent to θ: this contradicts the
assumption that θ is PS-identifiable and concludes the proof.
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For the sake of (yet another) contradiction, assume that θ′ ∼PS , so that there ex-
ists diagonal matrices Λ`′ ∈ RN`′×N`′ with positive entries and permutation matrices
Π`′ ∈ RN`′×N`′ , 0 ≤ `′ ≤ L, such that Λ0 = Π0 = IN0 , ΛL = ΠL = INL , W ′

`′ =

Π`′Λ`′W `′Λ
−1
`′−1Π

−1
`′−1, and b′`′ = Π`′Λ`′b`′ for every 1 ≤ `′ ≤ L. We show by induction

that Λ`′ = Π`′ = IN`′ for every 0 ≤ `′ < `. This trivially holds for `′ = 0. If it holds for

some `′ < `− 1 then, as (W ′
`′+1, b

′
`′+1) = (W `′+1, b`′+1) by construction of θ′, we have

(W `′+1, b`′+1) = (W ′
`′+1, b

′
`′+1) = (Π`′+1Λ`′+1W `′+1Λ

−1
`′ Π−1

`′ ,Π`′+1Λ`′+1b`′+1)

= Π`′+1Λ`′+1(W `′+1, b`′+1),

i.e., (w•→ν , bν) = λπ(ν)(w•→π(ν), bπ(ν)) for every ν ∈ N`′+1, with π the permutation of
N`′+1 associated to Π`′+1 and Λ`′+1 = diag(λν)ν∈N`′+1

. Since θ has no twin, it follows
that π is the identity and λν = 1 for every ν ∈ N`′+1, which concludes the induction. Now,
since (W ′

`, b
′
`) = JT (W `, b`) by construction of θ′, we have

JT (W `, b`) = (W ′
`, b
′
`) = (Π`Λ`W `Λ

−1
`−1Π

−1
`−1,Π`Λ`b`) = Π`Λ`(W `, b`).

As a result, for each ν ∈ T 6= ∅ we have −(w•→ν , bν) = λπ(ν)(w•→π(ν), bπ(ν)) where π is
the permutation of N` associated to Π` and Λ` = diag(λν)ν∈N` . However, since θ has
no twin, (w•→ν , bν) is not collinear to any (w•→ν′ , bν′), ν

′ ∈ N`, ν
′ 6= ν, hence π(ν) = ν.

It follows the −(w•→ν , bν) = λν(w•→ν , bν), and as λν > 0 we obtain (w•→ν , bν) = 0,
therefore θ is not admissible. However, by Lemma 2, since θ is PS-identifiable with respect

to Θ = RE∪H̄ , it is admissible. Hence the desired contradiction.

Appendix E. Proof of Lemma 9 and Lemma 10

Proof of Lemma 9. The proof is by induction on L. For L = 1, since I0 is the identity

Rθ(x) = z1(θ, x) = W 1x+ b1 = W 1I0x+ b1.

With the convention that a product of matrices over an empty index set is the identity,
this establishes (23) for L = 1. Now, assuming that (23) holds for every network of depth
L, let us prove it for θ of depth L + 1. For this, observe that zL(θ, x) is the realization
of a network θ of depth L made of the first L affine layers of θ, hence by the induction
hypothesis we can use (23) to get

zL(θ, x) = Rθ(x) =
(
ΠL
`=1W `I`−1

)
x+

L−1∑
`′=1

(
ΠL
`=`′+1W `I`

)
b`′

Since yL(θ, x) = aL(θ, x)� zL(θ, x) = ILzL(θ, x) we get

Rθ(x) = zL+1(θ, x) = W L+1yL(θ, x) + bL+1

= W L+1IL

((
ΠL
`=1W `I`−1

)
x+

L∑
`′=1

(
ΠL
`=`′+1W `I`−1

)
b`′

)
+ bL+1.
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To conclude simply observe that

W L+1IL
(
ΠL
`=1W `I`−1

)
=
(

ΠL+1
`=1 W `I`−1

)
,

W L+1IL

(
L∑

`′=1

(
ΠL
`=`′+1W `I`−1

)
b`′

)
=

L∑
`′=1

(
ΠL+1
`=`′+1W `I`−1

)
b`′

and that with `′ = L+ 1, bL+1 = b`′ =
(

ΠL+1
`=`′+1W `I`−1

)
b`′ . �

Proof of Lemma 10. With PH := ∪L−1
`=1 P` the set of all paths from a hidden neuron to an

output neuron, for each output neuron η ∈ NL we prove at the end of this section that

Rθ(x)η =
∑

p∈P0,pL=η

αp(θ, x)Φp(θ)xp0 +
∑

p∈PH ,pL=η

αp(θ, x)Φp(θ) + θη(50)

Any p ∈ P0 is uniquely written p = µ → q → η with µ = p0 its input neuron, η ∈ NL

its output neuron, and q = (p1, . . . , pL−1) ∈ Q1 a partial path from the first layer to the
penultimate layer, and αµ→q→η(θ, x) = αq(θ, x) for every q ∈ Q1 and any µ ∈ N0,η ∈ NL.
Similarly, for 1 ≤ ` ≤ L− 1, every partial path p ∈ P` starting from the `-th hidden layer
and ending at the output layer can be written as p = q → η where η = pL ∈ NL and
q ∈ Q` starts from the `-th hidden layer and ends at the penultimate layer, and we have
αq→η(θ, x) = αq(θ, x) for all θ, x. Therefore, (50) can be rewritten as

Rθ(x)η =
∑
q∈Q1

αq(θ, x)
∑
µ∈N0

Φµ→q→η(θ)xµ +
∑
q∈Q

αq(θ, x)Φq→η(θ) + θη

=
∑
q∈Q1

αq(θ, x)[Φi
η(θ)x]q +

∑
q∈Q+1

[ᾱ(θ, x)]q[Φ
h
η(θ)]q

= 〈Qᾱ(θ, x),Φi
η(θ)x〉+ 〈ᾱ(θ, x),Φh

η(θ)〉.

where we used that ᾱ(θ, x) := (α(θ, x), 1) with α(θ, x) := (αq(θ, x))q∈Q, and Q is the
canonical restriction from Q+ 1 to Q1. �

Proof of Equation (50). We prove the result by induction on the number of layers L.
For L = 1 we have P0 = {(µ, η)}µ∈N0,η∈N1 and P1 = {(η)}η∈N1 . Since H = ∅, αp(θ, x) =

1 for all p ∈ P and PH = ∅. We have Φp(θ) = wµ→η for all p = (µ, η) ∈ P0 and Φp(θ) = bη
for each p = (η) ∈ P1. It follows that∑
p∈P0
pL=η

αp(θ, x)Φp(θ)xp0 +
∑
p∈PH
pL=η

αp(θ, x)Φp(θ) + θη =
∑
µ∈N0

wµ→ηxµ + bη = (W 1x+ b1)η = (Rθ(x))η.

This establishes (50) for L = 1. Assume now that (50) holds for networks of depth L ≥ 1.

With θ a network of depth L+ 1, observe that zL(θ, x) = Rθ̃(x) with θ̃ the network made
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of the first L affine layers of θ. Using the induction hypothesis, we get, for ν ∈ NL−1,

zν(θ, x) =
∑
p̃∈P̃0
p̃L−1=ν

αp̃(θ̃, x)Φp̃(θ̃)xp̃0 +
∑
p̃∈P̃H
p̃L−1=ν

αp̃(θ̃, x)Φp̃(θ̃)(51)

with P̃0 = {(p0, . . . , pL−1) | p ∈ P0}, P̃H = {(p`, . . . , pL−1) | p = (p`, . . . , pL) ∈ PH}. Since
ReLU (zν(θ, x)) = aν(θ, x)zν(θ, x) we get

(Rθ(x))η =
∑

ν∈NL−1

yν(θ, x)wν→η + bη =
∑

ν∈NL−1

ReLU (zν(θ, x))wν→η + bη

=
∑

ν∈NL−1

aν(θ, x)zν(θ, x)wν→η + bη

=
∑

ν∈NL−1

∑
p̃∈P̃0
p̃L−1=ν

aν(θ, x)αp̃(θ̃, x)Φp̃(θ̃)wν→ηxp̃0

+
∑

ν∈NL−1

∑
p̃∈P̃H
p̃L−1=ν

aν(θ, x)αp̃(θ̃, x)Φp̃(θ̃)wν→η

+ bη

For each path such that p̃L−1 = ν ∈ NL−1 we have aν(θ, x)αp̃(θ̃, x)Φp̃(θ̃)wν→η = αp̃→η(θ, x)Φp̃→η(θ),

and p := p̃→ η belongs to P0 (resp. to PH) if, and only if, p̃ ∈ P̃0 (resp. p̃ ∈ P̃H). Thus,

(Rθ(x))η =
∑

ν∈NL−1

∑
p̃∈P̃0
p̃L−1=ν

αp̃→η(θ, x)Φp̃→η(θ)xp̃0 +
∑

ν∈NL−1

∑
p̃∈P̃H
p̃L−1=ν

αp̃→η(θ, x)Φp̃→η(θ) + bη

=
∑
p∈P0
pL=η

αp(θ, x)Φp(θ)xp0 +
∑
p∈PH
pL=η

αp(θ, x)Φp(θ) + bη. �

Appendix F. Proof of Lemma 11

The result is proved by induction on the network’s depth. The case L = 1 is trivial with
the convention that a union over an empty family is empty. For any depth, since

(∪ν∈HΓν(θ))c = ∩ν∈HΓcν(θ) = ∩L−1
`=1 (∩ν∈N`Γcν(θ)) = ∩L−1

`=1 (∪ν∈N`Γν(θ))c

the result is equivalent to X ′θ = ∩L−1
`=1 (∪ν∈N`Γν(θ))c, which is the quantity manipulated in

the induction. Assume that the result is valid for all parameters of depth L and consider
θ a parameter of depth L+ 1 ≥ 2. Denoting θ = g(θ) its restriction to its first L layers, we
will show that X ′θ = X ′θ ∩ (∪ν∈NLΓν(θ))c. First we prove (X ′θ)c ∪ (∪ν∈NLΓν) ⊂ (X ′θ)c.

• if x /∈ X ′θ then (by definition of X ′θ) the function (θ′, x′) 7→ a(θ′, x′) is not locally

constant around (θ, x) hence there exists 1 ≤ ` ≤ L − 1 and ν ∈ N` such that
aν(θ′, x′) is not locally constant around (θ, x). Since ` ≤ L − 1, for every θ′, x′ we
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have aν(θ′, x′) = aν(θ′, x′) with θ′ = g(θ′) the restriction of θ′ to its first L layers.
We obtain that aν(θ′, x′) is not locally constant around (θ, x), showing that x /∈ X ′θ.
• If x ∈ ∪ν∈NLΓν(θ), there exists ν ∈ NL such that x ∈ Γν(θ) hence zν(θ, x) = 0, the

gradient is well-defined, and ∇zν(θ, x) 6= 0. This implies that the sign of zν(θ, x′) is
not locally constant around x, hence x′ 7→ aν(θ, x′) is not locally constant around
x, therefore (θ′, x′) 7→ a(θ′, x′) is not locally constant around (θ, x). Thus, x /∈ X ′θ.

This establishes equivalently that X ′θ ⊂ X ′θ ∩ (∪ν∈NLΓν)c.

Vice-versa, consider x ∈ X ′θ ∩ (∪ν∈NLΓν(θ))c. Since x ∈ X ′θ, a(θ′, x′) is locally constant

around (θ, x), hence (θ′, x′) 7→ a`(g(θ′), x′) = a`(θ
′, x′) is locally constant around (θ, x)

for each 1 ≤ ` ≤ L − 1. There remains to show that aL(θ′, x′) is locally constant around
(θ, x). Indeed, since x /∈ ∪ν∈NLΓν , we have zν(θ, x) 6= 0 for every ν ∈ NL. By continuity
of (θ′, x′) 7→ zL(θ′, x′), there exists a neighborhood of (θ, x) on which sign(zν(θ′, x′)) is
constant for every ν ∈ NL, hence aL(θ′, x′) is locally constant around (θ, x). Overall, we
get that (θ, x) 7→ a(θ′, x′) is locally constant around (θ, x), i.e. x ∈ X ′θ. This concludes the
proof that X ′θ ∩ (∪ν∈NLΓν(θ))c ⊂ X ′θ, hence the equality X ′θ = X ′θ ∩ (∪ν∈NLΓν(θ))c.

Appendix G. Proof of Lemma 13

First we prove that sc ∈ A(θ) and (sc, 0) ∈ Ā(θ) for each c. Since θ is admissible, one
can check (cf Definition 8) that two hidden neurons ν, ν ′ ∈ H of a shallow network are:

• positive twins if, and only if, aν(θ, x) = aν′(θ, x) for all x ∈ Xθ;
• negative twins if, and only if, aν(θ, x) = 1− aν′(θ, x) for all x ∈ Xθ;

Since we are on a shallow architecture, we identify Q = Q1 with H and a(θ, x) with
α(θ, x). Considering the c-th equivalence class Tc of twins, it follows that for every x there
is εc(x) ∈ {−1,+1} such that

2αTc(θ, x) = 2aTc(θ, x) = 1Tc + εc(x) · sc(52)

where for any u ∈ RH , uT ∈ RH is its restriction to T (which matches u on its coordinates
indexed by T and is zero elsewhere), and 1H ∈ RH is the vector with all entries equal to
one, while 1T is its restriction to T . To continue we use the following result.

Lemma 19. Consider a shallow network with parameter θ, and T ⊂ H an equivalence
class of twin neurons. There are x+

T , x
−
T ∈ Xθ such that

(53) |aν(θ, x+
T )− aν(θ, x−T )| =

{
1, if ν ∈ T
0, otherwise

Proof. For each ν ∈ H denote Vν = {x ∈ RN0 : 〈w•→ν , x〉+ bν = 0}. Since θ is admissible,
w•→ν 6= 0 for each ν ∈ H, hence these linear spaces are hyperplanes. The hyperplanes
associated to two neurons coincide if, and only if, these neurons are twins. Choose an
arbitrary ν ∈ T . Since Vν is distinct from each of the (finitely many) Vν′ , ν ′ /∈ T , there
exists x0 ∈ Vν that belongs to the complement of ∪ν′ /∈TVν′ . As this complement is open,
there exists ε > 0 such that B(x0, ε‖w•→ν‖2) does not intersect any of the hyperplanes Vν′ ,
ν ′ /∈ T . Since x±T := x0 ±w•→νε/2 ∈ B(x0, ε‖w•→ν‖2) we obtain: aν′(θ, x

+
T ) = aν′(θ, x

−
T )
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for every ν ′ /∈ T , and sign(〈w•→ν , x±T 〉 + bν) = ±1 hence aν(θ, x+
T ) = 1 − aν(θ, x−T ). The

latter extends to each ν ′ ∈ T by the twin property, and yields the conclusion. �

By Lemma 19 there are x+
c , x

−
c ∈ Xθ such that

(54) |aν(θ, x+
c )− aν(θ, x−c )| =

{
1, if ν ∈ Tc
0, if ν ∈ H\Tc

It follows that α(θ, x+
c )−α(θ, x−c ) = αTc(θ, x

+
c )−αTc(θ, x−c ) = ±sc. As a result

sc = ±
(
α(θ, x+

c )−α(θ, x−c )
)
∈ A(θ)

(sc, 0) = ±
(
ᾱ(θ, x+

c )− ᾱ(θ, x−c )
)
∈ Ā(θ)

as claimed. Using (52) and the partition of H into T1, . . . , TC we have for any x ∈ Xθ
2α(θ, x) =

∑
c

2αTc(θ, x) =
∑
c

(1Tc + εc(x) · sc) = 1H +
∑
c

εc(x)sc(55)

We obtain

1H = 2α(θ, x)−
∑
c

εc(x)sc,(56)

and since α(θ, x) ∈ A(θ) and sc ∈ A(θ) for all c, it follows that 1H ∈ A(θ). This proves
span {1H , sc, 1 ≤ c ≤ C} ⊆ A(θ). Vice-versa, (55) showsα(θ, x) ∈ span {1H , sc, 1 ≤ c ≤ C}
for every x ∈ Xθ, hence A(θ) ⊆ span {1H , sc, 1 ≤ c ≤ C}. By (56) we also get

(1H , 2) = 2(α(θ, x), 1)−
∑
c

εc(x)(sc, 0),

and since (α(θ, x), 1) = ᾱ(θ, x) ∈ Ā(θ) and (sc, 0) ∈ Ā(θ), we get (1H , 2) ∈ Ā(θ). This
proves span {(1H , 2), (sc, 0), 1 ≤ c ≤ C} ⊆ Ā(θ), and also implies

2ᾱ(θ, x) = (1H , 2) +
∑
c

εc(x)(sc, 0)

hence Ā(θ) ⊆ span {(1H , 2), (sc, 0), 1 ≤ c ≤ C}.

Appendix H. Proof of Lemma 16

We use the shorthands wν = w•→ν , vν = wν→•.
Given the assumption there are C = |H| − 1 classes of twin neurons, all being trivial

except one made of a pair of negative twins {ν, ν ′}. Without loss of generality we enumerate
the neurons and their classes such that T1 = {ν1, ν2} = {ν, ν ′} and Tc = {νc+1}, 2 ≤ c ≤
C = |H| − 1. First we establish that, with this numbering,

(57) Ā⊥(θ) = span {(1, 1, 0, . . . , 0,−1)} and A⊥(θ) = {0}.
The signatures of the classes are s1 = δ1 − δ2 and sc = δc+1, 2 ≤ c ≤ C. By Lemma 13 we
have A(θ) = span {1H , sc, 1 ≤ c ≤ C}. It is not difficult to check 11 that the C + 1 = |H|

11If, instead of a single pair of negative twins, we consider a single pair of positive twins, then s1 = δ1+δ2
and the spanning vectors of A(θ) become linearly dependent, with A⊥(θ) = span {(1,−1, 0, . . . , 0)} 6= {0}.
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spanning vectors are linearly independent, hence A(θ) = RH and A⊥(θ) = {0}. Now,
consider v = (v1, . . . , v|H|+1) ∈ Ā⊥(θ). By Lemma 13, this vector is orthogonal to each
(sc, 0), 1 ≤ c ≤ C, and to (1H , 2). For 2 ≤ c ≤ C, orthogonality to (sc, 0) = (δc+1, 0)
implies vc+1 = 0, hence v = (α, β, 0, . . . , 0, γ) for some α, β, γ ∈ R. Orthogonality to
(s1, 0) = (1,−1, 0, . . . , 0) implies β = α, and orthogonality to (1H , 2) implies γ = −α, hence
v is proportional to (1, 1, 0, . . . , 0,−1) as claimed. Since Ā(θ) is spanned by C + 1 = |H|
vectors, its dimension is at most |H|, hence the dimension of Ā⊥(θ) is at least one. This
concludes the proof that Ā⊥(θ) = span {(1, 1, 0, . . . , 0,−1)}.

Since θ is admissible, there is an input neuron µ ∈ N0 such that wµ→ν1 6= 0. Since ν1,ν2

are twins, we also have wµ→ν2 6= 0. Let ε0 := min1≤j≤2 |wµ→νj |/2. Consider θ′ ∈ B(θ, ε0)
such that Φ(θ′) −Φ(θ) ∈ V(θ). First, observe that w′µ→νj 6= 0 for j = 1, 2. Then, in light

of Lemma 8 and (57), for every η ∈ N2, we have Φi
η(θ
′) = Φi

η(θ) and

(58) Φh
η(θ
′)−Φh

η(θ) ∈ span {(1, 1, 0, . . . , 0,−1)} ,

hence b′νc+1
w′νc+1→η = bνc+1wνc+1→η for 2 ≤ c ≤ C, and there are scalars λη ∈ R such that

b′νjw
′
νj→η − bνjwνj→η = λη, ∀j ∈ {1, 2} and b′η − bη = −λη.(59)

When Θ is the set of parameters with zero output biases, the fact that θ, θ′ ∈ Θ implies
b′η = bη = 0, hence λη = 0 and Φh

η(θ
′) = Φh

η(θ) for every η ∈ N2. We show below that the
same holds for arbitrary Θ when wν1→• and wν2→• are linearly independent. This implies
Φ(θ′) = Φ(θ), hence θ is then ε-non-degenerate with respect to Θ.

Indeed, the equality Φi
η(θ
′) = Φi

η(θ) for all η ∈ N2 implies that for 1 ≤ j ≤ 2,

w′µ→νjw
′
νj→η = wµ→νjwνj→η, ∀η ∈ N2,(60)

and since w′µ→νj 6= 0 for j = 1, 2, we obtain from (59) and (60) that for each η ∈ N2,

λη = b′νjw
′
νj→η − bνjwνj→η = b′νj

w′µ→νjw
′
νj→η

w′µ→νj
− bνjwνj→η

= b′νj
wµ→νjwνj→η

w′µ→νj
− bνjwνj→η =

(
b′νj

wµ→νj
w′µ→νj

− bνj

)
wνj→η

We obtain λ = xjwνj→•, j = 1, 2 where λ := (λη)η∈N2 and xj := b′νj
wµ→νj
w′µ→νj

− bνj . Since

wν1→• and wν2→• are linearly independent, it follows that x1 = x2 = 0, hence λ = 0.
Assume now that wν1→• and wν2→• are linearly dependent, and recall that since θ is

admissible they are both nonzero vectors, hencewν2→• = αwν2→• for some α 6= 0. Consider
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0 < ε < ε0 and set θ′ as follows:

W ′
` = W `, 1 ≤ ` ≤ 2;

b′ν = bν , ν ∈ H\{ν1, ν2};
b′ν1 = bν1 + γε;

b′ν2 = bν2 + γε/α, j = 1, 2;

b′η = bη − wν1→ηγε, η ∈ N2,

with 0 < γ < min(1, |α|, 1/‖wν1→•‖∞) so that θ′ ∈ B(θ, ε). Since the weights of θ′ and θ
coincide we have Φi

η(θ
′) = Φi

η(θ) for every η ∈ N2. It is not difficult to check that, with

λη := wν1→ηε, we also have Φh
η(θ
′) −Φh

η(θ) = λη(1, 1, 0, . . . , 0,−1), hence Φ(θ′) −Φ(θ) ∈
V(θ). Yet, Φ(θ′) 6= Φ(θ) since λ := (λη)η∈N2 = εwν1→• 6= 0. Assuming that θ belongs to
the interior of Θ, we have θ′ ∈ Θ∩B(θ, ε) for small enough ε. It follows that θ is degenerate.

Appendix I. Details on Example 4

θ is PS-identifiable from X = R. Consider an arbitrary θ′ ∈ Θ = RE∪H̄ . If Rθ′(x) =
Rθ(x) = |x| on R then θ′ is admissible (otherwise its realization would be, up to an additive
constant, proportional to a single shifted version of the ReLU, which would prevent it from
being equal to Rθ = abs) hence w′ν→νi 6= 0, i = 1, 2. Writing αi = |w′µ→νi | w′νi→η and
βi = −b′νi/|w′µ→νi |, and si = sign(w′µ→νi) ∈ {−1,+1} for i = 1, 2, we have αi 6= 0 and

Rθ′(x) = α1ReLU(s1(x− s1β1)) + α2ReLU(s2(x− s2β2)) + b′η, ∀x ∈ R.

If we had s1β1 6= s2β2, Rθ′ would be non-differentiable at two distinct points s1β1, s2β2.
However Rθ′ = Rθ = abs is differentiable on R\{0}, hence s1β1 = s2β2, and a similar
reasoning yields s1β1 = s2β2 = 0. Since |si| = 1, we get β1 = β2 = 0 and

Rθ′(x) = α1ReLU(s1x) + α2ReLU(s2x) + b′η, ∀x ∈ R.

If we had s1 = s2, the realization would be (α1 + α2)ReLU(s1x) + b′η, which cannot match
abs, hence s2 = −s1. Without loss of generality (up to a permutation of indices of the
hidden layer) s1 = 1, s2 = −1. Now, for x < 0 we have −x = |x| = Rθ′(x) = −α2x + b′η
while for x > 0 we get x = |x| = Rθ′(x) = α1x+ bη, hence α1 = 1, α2 = 1, b′η = 0. Overall,
up to the possible permutation of the hidden layer, we obtain sign(θ′) = sign(θ) and
α1s1 = 1, α2s2 = −1, α1β1 = α2β2 = 0, b′η = 0, hence Φ(θ′) = Φ(θ). Since θ is admissible,
it follows by Theorem 1 that θ′ ∼PS θ. Since this holds for any θ′ such that Rθ′ = Rθ,

this shows that θ is PS-identifiable from X = R with respect to Θ = RE∪H̄ .
θ is locally S-identifiable from some finite set F ⊂ R (with 0 ∈ F )
With the same notations as above, observe that there is ε > 0 such that for ev-

ery θ′ ∈ B(θ, ε) we have si := sign(w′µ→νi) = sign(wµ→νi), i = 1, 2, and max(|α1 −
1|, |α2 − 1|, |β1|, |β2|, |b′η|) ≤ 1/2. Consider θ′ ∈ B(θ, ε) such that Rθ′ = Rθ′ on F =
{−3,−2,−1, 0, 1, 2, 3}. We have s1 = +1, s2 = −1 hence

Rθ′(x) = α1ReLU(x− β1) + α2ReLU(−x− β2) + b′η.
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Since |βi| ≤ 1/2 for i = 1, 2, we have Rθ′(x) = α1(x − β1) + b′η for every x ≥ 1/2, hence
α1(y − x) = Rθ′(y) − Rθ′(x) = Rθ(y) − Rθ(x) = |y| − |x| = y − x for (x, y) = (1, 2).
Therefore α1 = 1. A similar reasoning with (x, y) = (−2,−1) shows that α2 = 1, hence

Rθ′(x) = ReLU(x− β1) + ReLU(−x− β2) + b′η

Specializing to x = 1, since x − β1 > 0 and −x − β2 < 0 we get 1 = |x| = Rθ′(x) =
x− β1 + b′η = 1− β1 + b′η hence b′η = β1. Similarly, with x = −1, we get b′η = β2 hence

Rθ′(x) = ReLU(x− b′η) + ReLU(−x− b′η) + b′η.

Specializing to x = 0 ∈ F yields

0 = |x| = Rθ′(x) = b′η + 2ReLU(−b′η) =

{
b′η if b′η ≥ 0

−b′η if b′η ≤ 0
= |b′η|

hence b′η = 0. Overall we have shown that for every θ′ ∈ B(θ, ε) such that Rθ′ = Rθ on
F = {−2,−1, 0, 1, 2} we have α1 = α2 = 1, s1 = 1, s2 = −1, β1 = β2 = b′η = 0. These
imply Φ(θ′) = Φ(θ) and sign(θ′) = sign(θ) hence θ′ ∼S θ. In other words, θ is locally
S-identifiable from F .

Appendix J. Details on Example 5

Here we show, as claimed in Example 5 that the parameter θ0 ∈ RE∪H̄ from Example 1
is PS-identifiable from X = R with respect to the set Θ0 of parameters with zero output
biases. Consider an arbitrary θ′ ∈ Θ0. If Rθ′(x) = Rθ0(x) = x on X then θ′ is admissible
(otherwise its realization would be, up to an additive constant, proportional to a single
shifted version of the ReLU, which would prevent it from being equal to Rθ = id) hence
w′ν→νi 6= 0, i = 1, 2. Writing αi = |w′µ→νi | w′νi→η and βi = −b′νi/|w′µ→νi |, and si =
sign(w′µ→νi) ∈ {−1,+1} for i = 1, 2, we have αi 6= 0 and since the output bias is zero

Rθ′(x) = α1ReLU(s1(x− s1β1)) + α2ReLU(s2(x− s2β2)), ∀x ∈ X .
If we had s1β1 6= s2β2, Rθ′ would be non-differentiable at two distinct points s1β1, s2β2.
However Rθ′ = Rθ0 = id is differentiable on R, hence s1β1 = s2β2. It follows that
s2β1 = s1β1 = id(s1β1) = Rθ′(s1β1) = 0. Since |si| = 1, we get β1 = β2 = 0 and

Rθ′(x) = α1ReLU(s1x) + α2ReLU(s2x), ∀x ∈ X .
If we had s1 = s2, the realization would be (α1 +α2)ReLU(s1x), which cannot match id on
X , hence s2 = −s1. Without loss of generality (up to a permutation of indices of the hidden
layer) s1 = 1, s2 = −1. Now, for x < 0 we have x = id(x) = Rθ′(x) = −α2x while for x > 0
we get x = id(x) = Rθ′(x) = α1x, hence α1 = 1, α2 = −1 (and b′η = 0 because θ′ ∈ Θ0).
Overall, up to the possible permutation of the hidden layer, we obtain sign(θ′) = sign(θ0)
and α1s1 = 1, α2s2 = −1, α1β1 = α2β2 = 0, b′η = 0, hence Φ(θ′) = Φ(θ0). Since θ0 is
admissible, it follows by Theorem 1 that θ′ ∼PS θ0. Since this holds for any θ′ ∈ Θ0 such
that Rθ′ = Rθ0 , this shows that θ is PS-identifiable from X = R with respect to Θ0.
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