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Abstract

The motion of isolated heavy particles on the bottom wall of a turbulent shear flow is investigated

experimentally (using high frequency particle tracking), and correlated to that of the fluid (from

high resolution LDV measurements). Numerous particle diameter, particle density and flow velocity

are considered, where the particle remain within the viscous sublayer (particle Reynolds number

lower than 10). It is shown that fluid flow fluctuations within the viscous sublayer (varying Couette

flow) induce particle velocity fluctuations of same magnitude – slightly smaller –. The mean particle

velocity, standard deviation and Lagrangian correlation time, are found to scale with the viscous

scales. Particles roll and slide without takeoff, unlike what happens in viscous laminar flow where

the lift force may overcome the immersed particle weight. Arguments are given for this difference.

Probability density functions for the streamwise and spanwise velocity are found to follow Gamma

and Gaussian laws, respectively, which also scale with the viscous scales.
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I. INTRODUCTION

The shearing action of a water flow above a granular bed leads, for moderate shear stress,

to bedload transport where particles move close to the bed. This transport has been ex-

tensively studied at a macroscopic level with emphasis on the mean sediment discharge,

because the latter is the most relevant quantity for most applications (river morphodynam-

ics, hydraulic engineering. . . ). In this context, there exists a great variety of semi-empirical

sediment transport laws derived from laboratory experiments [1]. However, their applica-

bility range is quite narrow and discrepancy between predictions and in situ measurements

can be large, especially for shear-stress close to threshold [2, 3]. These laws put forward the

dominant effect of the fluid shear stress, as measured by the Shields number which repre-

sents the ratio of the hydrodynamic force on a particle to its immersed weight. However,

they generally do not account for the weaker effect of particle inertia (as measured by the

particle Reynolds number), nor the effect of other phenomena more difficult to control and

model such as the bed packing density or heterogeneities of the particles shape and size.

Deeper insights have been achieved from studies at the grain scale, using particle tracking

for the investigation of local dynamics, in viscous flows [4, 5] and turbulent streams [6, 7]. For

the latter, detailed and time-resolved measurements of the near-bed fluid flow have improved

our understanding of the interactions between turbulent structures and grain motion [8, 9]

and their feedback on the flow [10–12].

The need of work on the motion of solitary grains – over a bed of sticked particles – ap-

peared early, in order to get a deeper understanding of the hydrodynamic forces experienced

by the grain, interactions with the bed (rebounds, momentum transfer, friction coefficient),

and resulting trajectories. Quite different situations occur, from that of large grains (with

Reynolds number of a few hundreds) saltating over the bed [13], to that of small particles

reptating in viscous flows [14]. Other works were devoted to the problem of the flow condi-

tions necessary to dislodge a grain out of the bed, showing in particular that the relevant

quantity is the flow impulse (product of the instantaneous hydrodynamic force by its dura-

tion) rather than the force itself [15], or, equivalently, some energy transfer [16]. In another

direction, attention has been paid to the motion of particles over smooth walls, in relation

with industrial problems such as the cleaning of surfaces, filtration, or field-flow fractiona-

tion. Available studies typically provide correlations for the particle velocity as a function
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of the friction velocity [17–19].

This paper reports an experimental investigation of the motion of isolated particles (small

surface density) carried by a turbulent flow over a smooth bottom wall, for small particles

lying within the viscous sublayer. The objective is to clarify the link between the dynamics

and statistics of the near-wall fluid flow and those of individual grains, thanks to precise

and reliable velocity measurements of both phases, and find their relevant scales. The

experimental setup is first presented (Sec. II). Then results are given for the mean velocity,

standard deviation, probability density functions and correlation times, for both the flow

and the particles (Sec. III). Results are summarized in Sec. IV.

II. EXPERIMENTAL SET-UP

The experimental set-up, as sketched in Fig. 1, consists of a 5.59 m long duct with

rectangular cross section with inner height H = 59 mm and width B = 120 mm. It is

basically the same as that described in Ref. [20] with improvements given in Ref. [21].

The first 4.08 meters of the duct are made in Perspex, the end section (1.59 m long) where

all experiments take place is made in a good quality glass in order to make observation

easier. The duct is entirely filled with tap water (closed-conduit flow i.e. no free surface)

and is pressurized by a 2 m high water column to avoid air bubble entrance. A divergent-

honeycomb-convergent system homogenizes the turbulence at the entrance of the duct. The

flow developpes along the Perspex part and one experimentally verified that it has reached

a uniform regime (downstream invariance) at the end section. The flow rate is varied via a

progressive cavity pump and monitored with an electromagnetic flow meter.

The duct Reynolds number Re = ρUdebD/η may reach 3 × 104, where Udeb is the mean

fluid flow velocity, D = 2BH/(B + H) the hydraulic diameter, ρ = 103 kg m−3 the water

density and η = ρν = 10−3 Pa s its viscosity. The flow field was measured by Laser Doppler

Velocimetry (Dantec Dynamics high power flowlite 2D system), in the vertical symmetry

plane, at 4.2 m downstream of the entrance of the duct. The LDV probe, mounted on a

3-axis traverse system, permits to scan the flow along the vertical. Measurements were taken

at every 0.05 mm within the first millimeter above the bottom wall, and at every millimeter

above. The typical acquisition rate was about 100 Hz, with 5000 samples collected at each

point.
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(a)(b)
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(f)
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FIG. 1. Sketch of the experimental set-up. (a) Progressive cavity pump; (b) electromagnetic

flow meter; (c) 2 m-high water column; (d) divergent, honeycomb and convergent; (e) duct with

rectangular cross section; (f) movie camera; (g) sedimentation tank.

Let us decompose the streamwise fluid velocity as u = u + u′ where u(y) is the time-

averaged velocity and u′ the fluctuation, with similar notations for the other velocity com-

ponents. The wall shear stress τw, as determined from the near-wall slope of the mean ve-

locity, τw = ρν(∂u/∂y)y→0, was found to agree with the Blasius correlation, τw/(
1
2
ρU2

deb) =

0.0791Re−1/4 [20]. This correlation was used to compute the wall scales: the shear velocity

uτ = (τw/ρ)1/2 and the viscous length δv = ν/uτ . Vertical profile of the mean velocity

u+(y+), in wall units, are displayed in Fig. 2(a) for three Reynolds number. As expected,

(a) (b)

FIG. 2. Streamwise fluid velocity in the vertical symmetry plane, in wall units, for Re = 18300 (2),

21600 (#), 25000 (3). (a) Mean velocity; ( ), u+ = y+; ( ), u+ = 1/κ log (y+) +B with

κ = 0.41 and B = 5.9. (b) Standard deviation σu = u′2
1/2

; ( ), Eq. (13) from Ref. 22.
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Label d (mm) ρp (kg m−3) Re uτ (mm s−1) Rep θ

G1 0.13 2500 18300 - 25000 13.5 - 17.7 1.8 - 2.3 0.095 - 0.16

G2 0.31 2500 18300 - 25000 13.5 - 17.7 4.2 - 5.4 0.040 - 0.069

G3 0.54 2500 18300 - 25000 13.5 - 17.7 7.3 - 9.6 0.023 - 0.040

Z1 0.31 3800 20000 - 28300 14.6 - 19.8 4.5 - 6.1 0.025 - 0.046

Z2 0.54 3800 20000 - 26600 14.6 - 18.7 7.9 - 10.1 0.014 - 0.024

TABLE I. Beads diameter and density, and range of the hydrodynamical conditions explored.

velocity increases linearly from the wall within the viscous sublayer (y+ . 10), and then

logarithmically in the inertial range 40 . y+ . 200. The standard deviation σu = u′2
1/2

,

displayed in Fig. 2(b), reaches a maximum σ+
u ≈ 3 at y+ ≈ 15 and then slowly decreases, in

agreement with the semi-empirical relationship given by Ref. 22 (solid line).

The particles were white spherical glass or zirconium beads from Sigmund Lindner. Their

density and median diameter d, after sieving, are given in Table I together with the explored

ranges of the flow Reynolds number Re, friction velocity uτ , particle Reynolds number

Rep = uτd/ν and Shields number θ = τw/((ρp − ρ)gd) (dimensionless wall shear stress). It

can be seen that Rep, which represents the particle diameter in wall units, is always below 10,

which means that the particles remain within the viscous sublayer (of conventional thickness

11.6 δν [23]).

For a typical experiment, a few particles were released on the bottom wall of the duct

(painted in black to enhance the contrast with the white particles), with surface density of a

few particles per square centimeter. Their motion, as the flow was set out, was then followed

by a CCD camera (Basler ace acA2040-180km, 2000 × 2000 pixels) placed above the last

third of the duct length. The horizontal field of view was 18 × 18 mm2 and the frame rate

f was between 60 and 160 Hz. The images were then processed with a particle tracking

algorithm1 providing the particle trajectories and velocities. Note that the particles were

observed in the central third of the duct width, where the influence of the lateral walls is

quite negligible.

1 from D. Blair and E. Dufresne, freely available at http://site.physics.georgetown.edu/matlab/.
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(a)

(b) (c)

FIG. 3. (a) Chronophotography (from above, negative image) of a typical particle trajectory in the

horizontal plane (the scale in the right bottom corner is 2 mm long); (b) and (c), corresponding

streamwise and spanwise velocity components. Beads Z1 (see Table I), uτ = 14.6 mm s−1, Rep =

4.8, f = 80 Hz.

III. RESULTS

A. Particle trajectory and mean velocity

A typical particle trajectory in the horizontal plane, and the corresponding streamwise

and spanwise velocity components, U and W , are shown in Fig. 3 for Rep = d+ = 4.8.

It can be seen that the bead has an erratic motion with periods of sudden accelerations

and decelerations, up to 3uτ . This behavior, which was observed for all flow conditions,

shows that although the particle lies within the viscous sublayer (d+ < 11.6), its motion still

reflects some unsteadiness of the turbulent flow.

Figure 4 displays the mean particle velocity U
+

, in wall units, for the five bead types

(open symbols), as a function of the particle Reynolds number Rep. It appears that all the

data points fall onto the same curve, and that the particle velocity scales linearly with the

Reynolds number, as

U
+

= 0.26Rep. (1)

In other words, the mean particle velocity is 0.26 γd, where γ = u2τ/ν is the viscous shear
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FIG. 4. Mean velocity U
+

versus particle Reynolds number Rep. Data for Rep . 10 correspond to

the present experiments: (2), beads G1; (#), beads G2; (3), beads G3; (�), beads Z1; (�), beads

Z2. Data for Rep & 20, (×) and (+), are from Refs. 18 and 19. ( ), fit from from Ref. 18 (their

Eq. 7).

rate close to the wall, i.e. it is equal to the fluid velocity at the distance 0.26 d above the wall.

Figure 4 also displays velocity measurements from Refs. 18 and 19, for Rep & 20 – where

particles emerge out of the viscous sublayer in the buffer layer –, and a curve fitting their

data. This curve corresponds to a semi-empirical law for the mean fluid velocity within

the buffer layer, at the height y = d above the wall, given by Eq. (7) in Ref. 18. When

extrapolated down to the viscous sublayer, this law provides u+ ∼ 0.25 d+, which no longer

is the fluid velocity at the height y = d (where it is u+ = d+) but fits, by chance, the present

particle velocities.

B. Assessment of a viscous flow model

Let us now compare the above particle velocity (1) with that found for isolated heavy

particules in laminar viscous flow, by Leighton and coworkers [24, 25]. For their particles

with small inertia, these authors identified three regimes. First, for low shear rates, the

particle rolls on the wall with constant speed, without slipping. Then, slip occurs and

the particle velocity increases. Eventually, for high shear rates, the lift force overcomes the

immersed bead weight, the bead takes off and stabilizes at a finite (small) distance above the

7



wall. The dimensionless parameter that naturally emerges from the model, and governs both

transitions, is Re4p/Res where Res = Vsd/ν is the settling Reynolds number (based on the

Stokes settling velocity Vs = (ρp−ρ)gd2/18η). The transitions to slipping and takeoff occur,

with our notations, for Re4p/Res ≈ 1.6 and Re4p/Res ≈ 32, respectively (corresponding, with

the notations of Refs. 24 and 25, to Re2γ/Res ≈ 0.2 and Re2γ/Res ≈ 4). The velocities and

transitions measured in Refs. 24 and 25 were found to agree with an analytical calculation

of the forces and torques on the particle, involving two parameters: a typical roughness size

εd of the bead surface, ε� 1, and a friction coefficient µf .

Figure 5 compares the present mean velocity measurements (data points) with the model

of Refs. 24 and 25 (solid line), as a function of Re4p/Res. It can be seen that the agreement is

good up to Re4p/Res ≈ 32. For higher shear, the model predicts takeoff and higher particle

velocity, whereas our observations do not reveal anything special: the velocity still scales

with the shear rate u2τ/ν (constant U
+
/Rep). The reason for the absence of any takeoff

transition may be explained as follows. The lift force, as calculated in Refs 24 and 25, is the

sum of six terms, each arising as the result of a pairwise combination of the translational

velocity, rotational velocity, and the shear rate. These terms involve a numerical coefficient

which may be positive (for four of them) or negative (for the last two). In turbulent flow,

where particles experience a wide range of sliding and rolling motions, and shear rates, it can

be expected that the resulting mean lift-force be very small, with either positive or negative

sign. Hence the absence of takeoff transition observed in Fig. 5 for our experiences, unlike

what happens in laminar flow. This explanation also corroborates direct visual observation,

which seem to indicate that particles always keep contact with the wall.

C. Standard deviations of the particle velocity and fluid velocity

It is well-known that heavy particles moving on a wall in turbulent flow may experience

large velocity fluctuations, see e.g. Ref. 17. We explore here more thoroughly the statistics

of these fluctuations and assess their correlation with those of the fluid. Figure 6(a) displays

the standard deviation of the streamwise velocity σU (or r.m.s velocity, filled symbols). (The

mean velocities U
+

previously shown in Fig. 4 are shown again, with open symbols, for easier

comparison.) It can be seen that all standard deviations fall close to the curve

σ+
U = 0.15Rep (2)
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FIG. 5. Mean particle velocity U
+

as a function of the shear parameter Re4p/Res, and theoretical

calculation (solid line) by Ref. 24 and 25 for relative roughness ε = 0.005 and friction coefficient

µf = 0.25. The vertical dashed lines locate the rolling-slipping and takeoff transitions predicted

by the model. (2), beads G1; (#), beads G2; (3), beads G3; (�), beads Z1; (�), beads Z2.

(dotted line in the figure). Thus, σ+
U scales with the particle Reynolds number, as the mean

velocity U
+

, and represents a large part of the latter, of about 60%. These results show

that, although the Reynolds stresses are small within the viscous sublayer, large fluctuations

may however exist there.

Figure 6(b) compares σU to the r.m.s. fluid velocity, σu, at the height of the center of

the particle, y = 1
2
d. It can be seen that σU increases approximately linearly with σu, and

is always smaller, according to

σU ≈ 0.7σu(y = 0.5d). (3)

Closer inspection shows that the r.m.s. velocity is slightly smaller for the heavy zirconium

beads than for the lighter glass ones, which may be interpreted as a filtering effect due to

particle inertia. The present fluid measurements agree with previous direct measurements

of the wall shear-stress [26] which showed that fluctuations may represent 40% of the mean

shear. These fluctuations likely correspond to the streamwise elongated streaks of alternating

fast and slow fluid that meander in the near-wall region, below y+ ≈ 100 [27].

Now consider the fluctuations of the spanwise velocity, σW . Distributions (not shown)

were found to be Gaussian, consistently with previous findings for a particle on a rough bed

in viscous flow [14]. Fig. 7 shows that, in wall units, σ+
W scales with the particle Reynolds
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(a) (b)

FIG. 6. (a) r.m.s. fluctuations σ+U (filled symbols) and mean streamwise velocity U
+

(open sym-

bols), in wall units, as a function of the particle Reynolds number Rep. Symbols: see Fig. 5; ( ),

Eq. (1). ( ), Eq. (2). (b) σU versus the r.m.s. fluid velocity σu at the height y = 1
2d.

number Rep (i.e, σW scales with the viscous velocity u2τd/ν, as the streamwise component).

However, a particle density effect here appears: for the same Rep, the r.m.s. velocity is

much smaller for the heavy zirconium beads. In other words, heavy particles, with larger

inertia, resist more strongly to spanwise fluid velocity fluctuations. A general correlation

accounting for this inertia effect, also reported in Fig. 7, is

σ+
W = 0.21

ρ

ρp
Rep. (4)

D. Probability density functions

Now turn to the probability density functions (PDF ) of the fluid and particle streamwise

velocities. Figure 8(a) displays, for five values of the Reynolds number, the normalized PDF

of the dimensionless fluid velocity u+ at the height y = 0.31 mm (which corresponds to the

diameter of the beads G2). It can be seen that all the data points fall onto a single curve,

which shows that all statistics within the viscous sublayer scale with the wall units.

PDF of the grain velocities were computed, for each flow velocity, from typically 650

trajectories corresponding to a number of about 50 × 103 samples. Figure 8(b) displays,

for the beads G2 and five values of the Reynolds number, the normalized PDF of the

normalized velocity U/γd = U+/Rep (with γ the shear rate in the viscous sublayer). It can

be seen that, for U+/Rep . 0.5, all the data points fall onto a single curve, confirming that
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FIG. 7. Standard deviation of the spanwise velocity, σ+W , as a function of the particle Reynolds

number Rep; the lines correspond to Eq. (4). (2), beads G1; (#), beads G2; (3), beads G3; (�),

beads Z1; (�), beads Z2.

(a) (b)

FIG. 8. Probability density functions of the streamwise velocity: (a), fluid at the height y = 0.31

mm; (b), particles G2 with diameter d = 0.31 mm. (2) Re = 18300, (+) Re = 20000, (#) Re =

21600, (×) Re = 23300, (3) Re = 25000. ( ), Gamma distributions, see Eq. (5).

the particle motion scales with the viscous units with negligible inertia effect. However, for

U+/Rep & 0.5, which corresponds to velocity larger than twice the mean (U
+
/Rep = 0.26),

the PDF separate, without, however, any clear trend with the Reynolds number variations.

The solid lines in Figs. 8(a) and 8(b) correspond to the Gamma distributions with PDF :

PDF (X) =
1

baΓ(a)
Xa−1e−X/b, (5)

where X stands either for u+ or U+/Rep, Γ is the Gamma function, and a = X
2
/σ2

X and
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b = σ2
X/X are the two parameters of the distribution [23]. For the fluid (Fig. 8(a)), fitting

measurements with Eq. (5) provides a = 5.95 and b = 0.85. For the particles (Fig. 8(b)),

the parameters are a = 3.0 and b = 0.086, as deduced from Eqs. (1) and (2). It is noticeable

that both PDF, for the fluid and the grains, are well described by Gamma distributions. The

positive skewness of these distributions, very common in near-wall turbulence, is considered

as the signature of sweeps [28–31]. Regarding the grains, Gamma laws have been previously

evidenced in Ref. 19 (for shear higher than here) with long tails associated with the large

velocities attained during small saltation jumps. Here, particles rather roll and slide in close

contact with the wall (see the previous dicussion of Fig. 5). Such Gamma distributions of

the particle velocity, with close resemblance with those for the fluid, show that particles

follow the fluid fluctuations, consistently with the previous result that the mean and r.m.s.

velocities scale with the viscous velocity γd = u2τd/ν.

E. Correlation times

A last viscous argument may now be added to the above results, involving correlation

times. Let us consider the autocorrelation function

RXX(τ) =
1

σ2
X

X(t)X(t+ τ) (6)

where X stands either for the velocity fluctuations u′ or U ′, τ is the time lag and the

overbar still denotes temporal average. Figure 9(a) displays, for five Reynolds numbers,

the autocorrelation function of the fluid velocity at the height y = 0.31 mm (equal to the

diameter of the beads G2). Similarly, Fig. 9(b) displays the autocorrelation function of

the particle velocity, averaged over numerous trajectories. All plots in both figures display

similar decrease with the time lag τ , with similar timescales a few hundreds of milliseconds.

The higher the duct Reynolds number is, the shorter the timescale for both the fluid and

the particles.

More quantitatively, a correlation time τc can be defined as the time lag where the

autocorrelation has decreased to some conventional value, here of 0.2, corresponding, in

Fig. 9, to the dotted lines (we have checked that choosing other values of the cut-off do

not alter the conclusions to be drawn). Figure 10 displays the correlation times for the

fluid (filled symbol) and all grain types (open symbols). They appear to decrease with the
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(a) (b)

FIG. 9. Autocorrelation functions of the streamwise r.m.s. velocity. (a), fluid at the height

y = 0.31 mm; (b), glass beads with d = 0.31 mm. Insets: long time behavior. (2) Re = 18300,

(+) Re = 20000, (#) Re = 21600, (×) Re = 23300, (3) Re = 25000.

FIG. 10. Correlation times of the streamwise velocity of the fluid (K) and grains (open symbols,

see the caption of Fig. 5) with the duct Reynolds number. Inset : correlation times in wall units.

Reynolds number, those of the beads being about one-half that of the fluid. No clear trend

can be seen from one grain type to the other, as the grain density or diameter varies. The

inset in Fig. 10 displays the same times once normalized with the viscous time γ−1 = ν/u2τ .

The dimensionless times now appear quasi constant with the duct Reynolds number, as

expected, with γτc in the range 20-25 for the fluid and 10-15 for the grains. As a hint, the

distance travelled by a grain with mean velocity 0.26 γd during the correlation time 15 γ−1

provides a correlation distance of about four diameters.
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IV. SUMMARY AND CONCLUSION

The experimental study reported in this paper shows that in a turbulent boundary layer,

the motion of heavy particles with Reynolds number Rep = uτd/ν lower than 10 (i.e. par-

ticles within the viscous sublayer of characteristic thickness 11.6 ν/uτ ) closely follow fluid

fluctuations (unsteady and space-varying Couette flow with mean shear rate γ = u2τ/ν).

Consequently, all velocity statistics – mean velocity, standard deviation, PDF – scale with

the viscous velocity γd = u2τd/ν = uτ Rep which corresponds to the mean fluid velocity at

the distance d above the wall. In particular, the mean streamwise particle velocity was found

to be U ≈ 0.26 γd and its standard deviation σU ≈ 0.15 γd. Accordingly, the correlation

time was found to be 15 γ−1, corresponding to a correlation distance of about four particle

diameters.

Although the above scalings indicate small particle inertia, the spanwise motion was

found to be affected by the particle density, with standard deviation proportional to the

density ratio ρ/ρp (i.e. smaller for heavier particles, as expected).

The fact that the particle velocity scales with the fluid velocity γd indicates that, within

the explored range of flow conditions, particles do not take off and keep contact with the bed.

This result, which is consistent with visual observations, was assessed by comparison with a

theoretical model for a particle in (steady) laminar flow. Indeed, this model, validated with

previous experiments, predicts that beyond some particle Reynolds number, the lift force

on the particle exceeds its immersed weight. Then, the particle takes off, and its velocity

departs from the previous viscous scaling, which phenomenon was not observed here. Then

it can be argued from the structure of the expression of the lift force (see the discussion in

the previous section) that in the unsteady and space-varying Couette flow taking place in

the viscous sublayer, the positive and negative contributions to the lift force nearly cancel,

so that takeoff cannot occur.

As a conclusion, it can be said that further investigations are now needed in order to

understand how the above conclusions may be altered for larger particles emerging out of

the viscous sublayer, on the one hand, and for particles over a rough wall, on the other hand.
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