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A B S T R A C T

In the present study, the waste polyethylene (PE) pyrolysis under different non-isothermal conditions was
investigated to estimate the optimal conversions and pyrolysis rates. The pyrolysis study was carried out using
Thermogravimetry (TG) of the virgin and the waste PE under different heating rates of 5, 10, 15 and 20 �C/min.
The TG experiments indicated that the virgin and the waste PE pyrolysis processes mainly underwent in the
temperature range of 390–510 �C. Subsequently, the adaptive neural fuzzy model was adopted to predict the
conversions and the pyrolysis rates of the virgin and the waste PE. The optimal operating conditions in different
temperature ranges were optimized by the simulated annealing algorithm (SA). Moreover, the R-squared values of
the virgin PE conversions (~ 1) and pyrolysis rates (> 0.999), and the waste PE conversions (~ 1) and pyrolysis
rates (> 0.999) revealed the high accuracy of the adaptive neural fuzzy model predicted results.
1. Introduction

Due to the growing population, global annual plastic production has
reached 129 million tons [1]. However, only a few postconsumer waste
plastics were recycled [2]. Consequently, a large amount of plastic waste
accumulates in the environment every year [3]. Polyethylene (PE) is the
most consumed plastic and the most common type in waste plastics [3].
Waste plastics from municipal solid waste account for around 33 million
tons [4]. PE accounted for 29.8 % (12.3 % for high-density PE and 17.5 %
for low-density PE) of European plastic converter demand in 2016 [5].
The recycling of waste plastics has become an urgent issue since the
discarded plastics have caused hazards to both living creatures and en-
vironments [3]. Therefore, it is critical to developing new methods to
improve waste PE operation recycling.

Pyrolysis is a promising recycling method that could directly convert
the waste PE to fuels. Canopoli et al. [3] conducted the waste PE and
polypropylene (PP) pyrolysis investigation. They analyzed the pyrolysis
oil characteristics produced from waste PE and PP of different buried
time. Dobo et al. [6] investigated the pyrolysis for gasoline productions
(G. Debenest).
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from the waste PE, PP, polystyrene (PS), polyethylene terephthalate
(PET), and polyurethane (PUR). Park et al. [7] investigated the waste PE
co-pyrolysis with Quercus variabilis over different types of catalysts.
They found that the co-pyrolysis could promote the formation of aro-
matic compounds. Utami et al. [8] developed an experimental approach
that could produce gasoline-range liquid fuel from waste low-density PE.
Tomasek et al. [9] also investigated the high-quality liquid fuel produc-
tion from waste PE. Mangesh et al. [10] explored a pathway to produce
diesel engine fuel from different types of waste plastic pyrolysis, e.g. PE
and PP. Pyrolyzing PE could also generate gas and solid products. Bar-
barias et al. [11] utilized high-density PE pyrolysis to produce hydrogen
in two series reactors. Esfahani et al. [12] investigated hydrogen-rich
syngas and high-quality bio-char production by co-pyrolysis waste
high-density PE with coconut shells. Moreover, high-density PE
co-cracking with vacuum gasoil could yield dry gas and liquefied pe-
troleum gas, different ranges of liquid fuels and coke [13]. Considering
the above background, it is noteworthy that waste PE pyrolysis is a
prospective method to relieve environmental pollution and produce
different fuels.
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According to [14, 15], the temperature and the heating rate are two
deterministic parameters in the waste PE pyrolysis process and must be
determined to obtaining the optimal conversion and pyrolysis rate. Thus,
it is critical to determine the temperature and the heating rate for
obtaining the optimal conversion and pyrolysis rate. Teng et al. [16]
showed that machine learning, coupled with an optimization algorithm
method, is a useful methodology to model thermogravimetric (TG) data
and obtain the optimal pyrolysis operating conditions. The same
approach could be utilized in the investigation of the waste PE pyrolysis.
Dubdub and Al-Yaari [17] adopted an artificial neural network model to
determine the low-density PE thermal decomposition kinetic parameters.
Herein, the TG experiments at different heating rates are conducted to
obtain the original experimental data. Subsequently, the machine
learning establishes the mathematical expressions between the heating
rate and the temperature, and the waste PE conversion and pyrolysis rate.
Lastly, an optimization algorithm is applied to obtain the optimal oper-
ating parameters, based on the relevant mathematical expressions.

The adaptive neural fuzzy model is a widely spread machine learning
method used to establish a mathematical correlation between the mul-
tiple independent and induced variables. Ustun et al. [18] utilized the
adaptive neural fuzzy model to determine the effects of proportional and
integral coefficients on the induction motor. Betiku et al. [19] investi-
gated the high-acidity palm kernel oil acid pretreating process by the
adaptive neural fuzzy model. Consequently, the operating conditions
were optimized to obtain the high-efficiency acid pretreatment by
adopting an optimization algorithm. Ighose et al. [20] adopted the
adaptive neural fuzzy model to optimize the methyl esters production
from the Thevetia peruviana seed oil. Khosravi et al. [21] investigated
the solar dish performance under different design parameters. The solar
dish with superior performance, was sequentially determined by the
adaptive neural fuzzy model coupled with an optimization algorithm.
Aghbashlo et al. [22] synthesized solketal from glycerol in different
operating conditions. They used the adaptive neural fuzzy model to
optimize the operating conditions for the maximum solketal production.
Furthermore, Sayyaadi et al. applied the adaptive neural fuzzy model to
the optimization of the benchmark cogeneration system [23], the energy
systems [24] and the steam power plant [25], respectively. Therefore, it
is of particular interest to couple the adaptive neural fuzzy model with
the optimization algorithm as a promising method to determine the
optimal operating conditions with multiple parameters.

This study investigated the waste PE thermal pyrolysis kinetic
modeling. The virgin PE thermal pyrolysis was investigated as a refer-
ence. The TG experiments at different heating rates were conducted to
provide the adaptive neural fuzzy model's training data. The adaptive
neural fuzzy model predicted results were compared with the experi-
mental ones to verify its reliability. Furthermore, the simulated annealing
algorithm (SA) [26] was adopted to optimize the operating parameters,
i.e. the temperature and the heating rate, in different temperature ranges.
Figure 1. Low-density PE samples:
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2. Materials and methods

This section introduces the materials used in the experiments and the
experimental method. Moreover, the adaptive neural fuzzy model and SA
are introduced comprehensively in this section.

2.1. PE samples

Two types of low-density PE samples were used in this work. A virgin
PE from the petrochemical industry and a waste PE from municipal solid
waste, both provided by LukPlast Ind. (ES-Brazil). The samples were used
as they were received, i.e., without any further preparation. The virgin PE
has a regular geometry with a diameter of around 4 mm and does not
have any pigmentation. Since the waste PE is a mixture of plastics, it has
irregular geometry with an average particle size of 2 mm and all sort of
pigmentations (Figure 1).

2.2. Methods

This sub-section introduces the specific method of the thermogravi-
metric experiment. The machine learning method, the adaptive neural
fuzzy model, and the SA optimization algorithm are described in math-
ematical expressions.

2.2.1. TG
The thermal decomposition behaviors of the PE samples were ob-

tained from TG experiments. The analysis was carried out on an STA
449F3 from NETZSCH Instruments under an inert atmosphere. A mass
sample in the range of 10–15 mg was placed in an Al2O3 crucible and
progressively heated from 20 to 670 �C at four heating rates, 5, 10, 15,
and 20 �C/min. The heating rates were strategically chosen to cover a
wide range of pyrolysis processes available in the literature [27, 28, 29,
30, 31]. The conversion (1 – instantaneous mass fraction) and pyrolysis
rate (a derivative of conversion against time) could be determined from
the experimental data.

2.2.2. Adaptive neural fuzzy model
The heating rate and the temperature were the two independent pa-

rameters chosen as governing the virgin and the waste PE pyrolysis
processes. Therefore, the conversion and the pyrolysis rate are the
dependent values. The adaptive neural fuzzy model can predict these
parameters and variables by expressing them as following [18, 19, 21,
24],

f ðx; yÞ¼Σn
i¼1ðai �FRiÞ
Σn
i¼1FRi

(1)

where x, y, f(x,y), ai, FRi and n represent the heating rate, the tempera-
ture, the conversion or the pyrolysis rate, the rule constant, the rule value
and the number of rules, respectively.
Virgin PE (a) and Waste PE (b).



Figure 2. SA algorithm flow chart.
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The rule value FRi could be expressed as the following,

FR¼
2
4
ux1
⋮
ux4

3
5 �½ uy1 ⋯ uy10 � (2)

where uxi and uyj represent the memberships of the heating rate and the
temperature, respectively. The heating rate was divided into 4 levels; and
the temperature was divided into 10 levels. Thus, the numbers of the rule
constant ai, the rule value FRi and the rules n are all 40.

The Gaussian membership function is reported in the literature as a
useful tool to obtain the predicted values with higher accuracy [19, 21,
32] and, therefore, was adopted to describe the memberships of the
heating rate and the temperature. The memberships of the heating rate
and the temperature are expressed as following equations,

μxi ¼ e�0:5 � ðx�xiÞ2=L2xi (3)

μyj ¼ e
�0:5 � ðy�yjÞ2

.
L2yj (4)

where xi and yi, Lxi and Lyi represent the values of the heating rate and the
temperature under different levels, and the Gaussian distribution widths
of the heating rate and the temperature, respectively.
3

2.2.3. SA
SA algorithm illustrated in Figure 2 was utilized to conduct the

optimization of the pyrolysis operating conditions. The SA is inspired by
the high-temperature liquid metal cooling process [33, 34, 35]. In the
cooling process, the metal system's energy decreases and eventually
reaches a minimum temperature value [36]. As depicted in Figure 2, in
the beginning, the initial solution ω is generated randomly. Furthermore,
the objective function f(ω) is calculated by Eq. (1). The following equa-
tions represent the perturbation step,

dωav ¼ k �T (5)

dω¼ 0:5 � randn � dωav þ dωav (6)

ω
0 ¼ωþ dω (7)

where dωav, k, T, dω, randn and ω0 are the average displacement distance,
the temperature displacement coefficient, the initial temperature, the
perturbation, the normally distributed random number and the new so-
lution, respectively.

Subsequently, the new objective function f(ω0) could be calculated.
The next step is to calculate the difference Δf between the new objective
function f(ω0) and the initial function f(ω). If Δf is not negative, then the
new solution ω0 is accepted. Otherwise, the new solution ω’ is accepted



Figure 3. Comparisons of virgin and waste PE mass fractions and pyrolysis rates at different heating rates from 5 �C/min (a), 10 �C/min (b), 15 �C/min (c) to 20 �C/
min (d).
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by the Metropolis criteria [36, 37]. The following equation expresses the
Metropolis criteria,

p¼ expð� 1 = ðkt �TÞÞ (8)

where p and kt represent the probability of acceptance and the temper-
ature probability coefficient.

After the iteration is complete, the next step is to determinewhether it
meets the termination conditions. If so, the calculation is finished, and
the optimal solution is obtained. Otherwise, it needs to decrease the
temperature and repeat the steps mentioned above. The temperature
decreasing is expressed by,

T
0 ¼ rd �T (9)

where T0 and rd represent the decreased temperature and the temperature
decrease rate.

The initial temperature T, the temperature displacement coefficient k,
the temperature probability coefficient kt, and the temperature decrease
rate rd were investigated in this study to more precisely obtain the
optimal operating conditions. Besides, multiple particles could enhance
SA optimization performance. Therefore, the number of particles was
also investigated.

The adaptive neural fuzzy model and SA were coded and run in
MATLAB R2016a with Inter(R) Core (TM) i7-9750H with NVIDIA
GeForce GTX 1060.

3. Results and discussion

This section introduces and discusses the virgin and the waste PE TG
experimental results firstly. With equal time intervals, one-sixth experi-
mental data was selected to conduct the adaptive neural fuzzy model
predictions, another one-sixth experimental data, also with equal time
intervals, was selected to evaluate the adaptive neural fuzzy model's
accuracy. This data was not covered in the previous predictions. The
4

virgin PE pyrolysis rate was served as the objective function to determine
the SA parameters. Subsequently, SA in different temperature ranges was
determined by the virgin and the waste PE optimal conversions and py-
rolysis rates.

3.1. TG analysis

Figure 3 illustrates the virgin and the waste PE's mass fractions and
pyrolysis rates at the heating rates of 5, 10, 15, and 20 �C/min, respec-
tively. The virgin and the waste PE gradually decomposed as the tem-
perature increased. Themass fraction decreased from 100 to 0 wt% in the
temperature range of 390–510 �C. The pyrolysis rate variation could be
divided into two stages: increased from 0 wt%/min to the peak value
firstly and then decreased to 0 wt%/min in the temperature range of
390–510 �C. Additionally, the mass fraction and pyrolysis rate curves of
the virgin and the waste PE shifted laterally to the higher temperatures
when the heating rate increased from 5 to 20 �C/min. The reaction
mechanism transformations may cause this at different heating rates
[38]. For the individual heating rate, the mass fraction and pyrolysis rate
curves of the waste PE shifted laterally to the higher temperatures than
the virgin one. The same phenomenon was observed in [39], indicating
that the waste PE is more challenging to be thermally decomposed than
the virgin PE. Moreover, as shown in Figure 3b, the mass fraction and
pyrolysis rate curves of the virgin and the waste PE had more significant
gaps at 10 �C/min, consistent with the literature [39]. However, to our
best knowledge, the abnormality at 10 �C/min has been undetermined to
date.

Concerning the conversion rate, the virgin and the waste PE had a
single peak at 5, 10, 15, and 20 �C/min. In the literature, the pyrolysis
rate curves of the virgin PE [38, 40] and the waste PE [40] also obtained
the lone peak at different heating rates. However, it does not suggest that
the virgin and the waste PE are decomposed in a one-step mechanism.
Both the decompositions of the virgin and the waste PE involve complex
multi-step scission reactions. The single peak reveals the overall pyrolysis
rate, which practically integrates all the reactions [38].



Figure 4. To, Tm, Te (a) and maximum pyrolysis rates (b) of the virgin and the
waste PE at different heating rates.
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The onset temperature (To), the temperature at maximum pyrolysis
rate (Tm), and end temperature (Te) were proposed to evaluate the
thermal pyrolysis process by different researchers [38, 39, 41]. Figure 4
depicts To, Tm, Te and the maximum pyrolysis rates of the virgin and the
waste PE at different heating rates. As shown in Figure 4a, the To, Tm and
Te values of the virgin and the waste PE ascended in sequence with the
heating rate. The waste PE had higher To, Tm and Te values than the
virgin PE. Besides, the To, Tm and Te values increased with the heating
rate, except for the waste PE's To at 10 �C/min. To of the waste PE at 10
�C/min was 435.84 �C, while the value was 433.29 �C at 15 �C/min.
Figure 4b illustrates the virgin and waste PE's maximum pyrolysis rates at
different heating rates. The virgin and the waste PE maximum pyrolysis
rates increased from 13.14 to 50.08 wt%/min, and from 12.80 to 52.02
wt%/min when the heating rate increased from 5 to 20 �C/min. More-
over, the waste PE had a higher maximum pyrolysis rate than the virgin
PE at the heating rates of 10, 15 and 20 �C/min.
Figure 5. Mass fraction (a) and pyrolysis rate (b) of the virgin PE predicted by
the adaptive neural fuzzy model.
3.2. Mass fraction and pyrolysis rate predicted by the adaptive neural
fuzzy model

In the previous subsection, the pyrolysis processes underwent mainly
in the temperature range of 390–510 �C at the heating rates of 5, 10, 15,
and 20 �C/min. Therefore, the computational calculations by the
5

adaptive neural fuzzy model were performed inside this range. Besides
improving the computation speed, one-sixth part of the experimental
data with equal time intervals was selected to conduct the prediction by
the adaptive neural fuzzy model.

3.2.1. Virgin PE
Figure 5 demonstrates the mass fraction and the pyrolysis rate of the

virgin PE in the temperature range of 390–510 �C, and the heating rate
range of 5–20 �C/min. As shown in Figure 5a, the predicted virgin PE's
mass fraction had the same variation tendency as the experimental
result in Figure 3. The mass fraction decreased from around 100 to 0 wt
% when the temperature increased from 390 to 510 �C. The virgin PE's
mass fraction surface leaned to the higher temperature and heating
rate. It indicated that the virgin PE's decomposition took place in the
higher temperature range when the heating rate increased. This cor-
responds to the experimental results in Figure 3, where the mass
fraction curve shifted to a higher temperature at a higher heating rate.
Besides, a small bulge emerged near the heating rate of 15 �C/min on
the mass fraction surface. The predicted virgin PE's pyrolysis rate
surface, as depicted in Figure 5b, is shaped like a ridge. The peak value
of virgin PE's pyrolysis rate increased with the heating rate. Moreover,
the location of the pyrolysis rate peak at higher heating rates shifted to
a higher temperature. It was also consistent with the experimental
result, as shown in Figure 3.

3.2.2. Waste PE
Figure 6 depicts the adaptive neural fuzzy model predicted mass

fraction and pyrolysis rate of the waste PE, which varied with the



Figure 6. Mass fraction (a) and pyrolysis rate (b) of the waste PE predicted by
the adaptive neural fuzzy model. Figure 7. Mass fraction differences (a) and pyrolysis rate (b) between the waste

and the virgin PE predicted results.
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temperature and the heating rate. The waste PE mass fraction and the
pyrolysis rate surfaces have similar shapes as the virgin PE. However, as
shown in Figure 6a, a small bulge emerged near the heating rate of 10 �C/
min on the mass fraction surface. The waste PE pyrolysis process was
undergoing in the higher temperature range compared to the virgin PE. It
coincided with the experimental results in Figure 3, in which the waste
PE mass fraction and the conversion rate curves shifted to higher tem-
peratures compared to the virgin PE at different heating rates.

3.2.3. Comparisons of virgin and waste PE
Figure 7 depicts the differences between mass fraction and con-

version rate between the waste PE and the virgin PE predicted results.
As shown in Figure 7a, the mass fraction difference values were posi-
tive in broader heating rates and temperature ranges. The negative
mass fraction difference values were in smaller ranges, around 5–7 and
13–20 �C/min, and 390–420 �C. The minimum value was -2.01 wt% at
408 �C and 5 �C/min, while the maximum value was up to 24.28 wt% at
465 �C and 8.75 �C/min. It indicated that the waste PE's thermal py-
rolysis process was more difficult to start than the virgin PE [39].
Figure 7b demonstrates the pyrolysis rate differences between the
waste PE and the virgin PE. The virgin PE had a higher pyrolysis rate in
a lower temperature range, around 390–480 �C. While in a higher
temperature range, around 480–510 �C, the waste PE underwent a
faster pyrolysis process. Additionally, the maximum pyrolysis rate
difference value was 11.77 wt%/min at the temperature of 480 �C, and
the heating rate of 10.62 �C/min. In contrast, the minimum pyrolysis
rate difference value was -5.95 wt%/min at the temperature of 465 �C
and the heating rate of 20 �C/min.
6

3.3. The accuracy analysis of the adaptive neural fuzzy model

To evaluate the accuracy of the adaptive neural fuzzymodel predicted
mass fractions and pyrolysis rates, one-sixth part of the experimental data
with equal time intervals, which was not covered in the previous pre-
dictions, was selected for the verification. Hence, the experimental and
predicted results were compared for the virgin and the waste PE. More-
over, the R-squared values were calculated at the heating rates of 5, 10,
15, and 20 �C/min as references.

3.3.1. Virgin PE
Figure 8 shows the experimental and the predicted mass fractions and

pyrolysis rates of the virgin PE at the heating rates of 5, 10, 15, and 20
�C/min, respectively. Additionally, the R-squared values between the
experimental and predicted results at different heating rates are depicted
in Figure 9.

As illustrated in Figure 8, the experimental and predicted mass frac-
tion curves almost coincided with each other. This revealed a high ac-
curacy of the adaptive neural fuzzy model predicted mass fraction.
Moreover, as described in Figure 9a, the R-squared values of virgin PE
mass fraction were 1, 0.99997, 0.99999, and 0.99999 at the heating rates
of 5, 10, 15, and 20 �C/min, respectively.

The adaptive neural fuzzy model predicted mass fraction is much
more accurate than the widely used model-free isoconversional method.
Aboulkas et al. [42] adopted Friedman's isoconversional method coupled
with the “Contracting Sphere” model to investigate the virgin
low-density PE thermal degradation behavior. Accordingly, the
R-squared value of the virgin low-density PE mass fraction between the
experimental and the predicted data was 0.99778 at 10 �C/min. Kim and



Figure 8. Comparisons of the experimental virgin PE mass fraction and the
pyrolysis rate, and the predicted ones by the adaptive neural fuzzy model from 5
�C/min (a), 10 �C/min (b), 15 �C/min (c) to 20 �C/min (d).

Figure 9. R-squared values of the experimental and the predicted virgin PE
mass fractions (a) and pyrolysis rates (b) at different heating rates.
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Kim [43] adopted isothermal kinetic results coupled with the “Con-
tracting Cylinder” model to investigate high-density PE pyrolysis
7

behavior. The average R-squared value of mass fraction was merely
0.984.

The advanced isoconversional method [38] has been reported to be
superior to the isoconversional methods. The average R-squared values of
low-density PE and high-density PE mass fractions were 0.9990 and
0.9984, respectively. However, the R-squared values are still lower than
the results in this study. The fit goodness between the experimental and
the predicted results was more unsatisfactory than the mass fraction re-
sults for the pyrolysis rate. Nevertheless, the predicted pyrolysis rate
could still meet the experimental result to a great extent. As depicted in
Figure 8c,d, the predicted pyrolysis rate curves roughened in the tem-
perature range of 450–470 �C, which correspond to the experimental
ones. Simultaneously, as demonstrated in Figure 9b, the R-squared values
of virgin PE pyrolysis rate were 0.99975, 0.99977, 0.99979, and 0.99991
at the heating rates 5, 10, 15, and 20 �C/min, respectively. The R-squared
values were all larger than 0.999. This also exhibited the high accuracy of
the adaptive neural fuzzy model predicted the pyrolysis rate.

3.3.2. Waste PE
Figure 10 illustrates the experimental and the predicted mass frac-

tions and pyrolysis rates of the waste PE at the heating rates of 5, 10, 15,
and 20 �C/min, respectively. Besides, the R-squared values between the
experimental and predicted results at different heating rates are
described in Figure 11. As described in Figure 10, the predicted mass
fraction fitted the predicted result extraordinary. Figure 11a shows the R-
squared values between the experimental and the predicted mass frac-
tions were 1, 0.99998, 0.99998, and 0.99999 at 5, 10, 15, and 20 �C/min,



Figure 10. Comparisons of the experimental waste PE mass fraction and the
pyrolysis rate, and the predicted ones by the adaptive neural fuzzy model from 5
�C/min (a), 10 �C/min (b), 15 �C/min (c) to 20 �C/min (d).
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respectively. The R-squared values were very close to 1, which revealed
high accuracy of the adaptive neural fuzzy model predicted mass frac-
tion. In reference [44], the genetic algorithm was adopted to conduct the
kinetic modeling waste PE. The average R-squared value of mass fraction
was 0.9992, which is lower than this study's result. Ibrahim and Al-Yaari
[17] utilized Arrhenius and Coats-Redfern methods and the artificial
neural network model to conduct the recycled low-density PE kinetic
modeling. The average mass fraction R-squared values by Arrhenius and
Coats-Redfern methods were merely 0.9724 and 0.9401, respectively.
While the average R-squared value of mass fraction between artificial
neural network model predicted and experimental data was larger than
0.9999. It indicates that machine learning methods are suitable for
conducting plastic pyrolysis kinetic modeling.

Regarding the pyrolysis rate, the predicted values were more accurate
at the heating rates of 5 and 20 �C/min, as demonstrated in Figure 10a, d.
Moreover, as shown in Figure 11b, the R-squared values between the
experimental and the predicted pyrolysis rates were 0.99972, 0.99969,
0.99945, and 0.99991 at 5, 10, 15 and 20 �C/min, respectively. The
average R-squared value of the genetic algorithm's waste PE pyrolysis
rate was merely 0.9772 in the literature [44]. In conclusion, the adaptive
neural fuzzy model was accurate in both the mass fraction calculations,
R-squared values were close to 1, and the pyrolysis rate calculations,
R-squared values were larger than 0.999.

3.4. SA parameters determination

This study utilized the SA to calculate optimal virgin's operating pa-
rameters and the waste PE conversions and pyrolysis rates in different
Figure 11. R-squared values of the experimental and the predicted waste PE
mass fractions (a) and pyrolysis rates (b) at different heating rates.



Table 1. SA parameters used in the illustration of SA optimization process.

Number of particles Initial temperature Temperature displacement coefficient Temperature probability coefficient Temperature decrease rate

40 20 0.4 0.05 0.99
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temperature ranges. The specific calculation processes were discussed in
Appendix A. The parameters utilized in the following SA optimization
calculations are listed in Table 1.

Figure 12 depicts the SA optimization process. The SA is used to
calculate the virgin PE optimal pyrolysis rate. In the beginning, as
demonstrated in Figure 12a, 40 randomly distributed particles were
generated on the pyrolysis rate surface. After 1000 iterations and the
temperature decreased from 20 to 0, 40 particles converged to the peak
of the pyrolysis rate surface as shown in Figure 12b. Moreover, the SA
optimized pyrolysis rate was 50.02 wt%/min at the heating rate of 20 �C/
min and the temperature of 481.29 �C.

3.5. SA optimized results

According to the discussions of subsection 3.1, the pyrolysis processes
of the virgin and the waste PE mainly underwent in the temperature
range of 390–510 �C. Therefore, this study investigated the virgin and the
waste PE optimal conversions and pyrolysis rates in four individual
temperature ranges: 390–420, 420–450, 450–480 and 480–510 �C.
Figure 12. Illustration of SA optimization process with 40 randomly distributed
particles (a), to the converged solution (b).
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3.5.1. Virgin PE
Figure 13 illustrates the optimal virgin PE conversions in different

temperature ranges calculated by the SA. As depicted in Figure 13a, the
virgin PE conversion varied from 0.39 to 9.12 % in the temperature range
of 390–420 �C. The virgin PE conversion increased with the temperature;
it is consistent with the experimental result described in Figure 3.
Whereas the conversion increased with the heating rate in the range of
about 5–10 �C/min; then the conversion decreased with the heating rate
in the range of about 10–20 �C/min. Consequently, the virgin PE optimal
conversion was 9.12 % at the temperature of 420 �C, and the heating rate
of 9.58 �C/min in the temperature range of 390–420 �C. According to the
literature [44], due to different raw materials and varying manufacturing
processes, PE's performance differs significantly from materials used in
other literature. However, the optimal conversion and pyrolysis rate of
this study could still provide references for other polymers. Subse-
quently, as shown in Figure 13b–d, the virgin PE optimal conversions
were 41.75 % at the temperature of 450 �C and the heating rate of 5.02
�C/min in the temperature range of 420–450 �C; 99.53 % at the tem-
perature of 480 �C and the heating rate of 5 �C/min in the temperature
range of 450–480 �C; 100.09 % at the temperature of 490.11 �C and the
heating rate of 9.03 �C/min in the temperature range of 480–510 �C. It is
noteworthy that the optimal virgin PE conversion is larger than 100 % in
the temperature range of 480–510 �C. This is because there are still errors
between the adaptive neural fuzzy model predicted results and the
experimental results. In reference [17], the artificial neural network
model predicted conversion also appeared to be greater than 100 %. As
demonstrated in Figure 3, the virgin PE mass fraction values were
negative in the temperature range of 505.32–510 �C at 10 �C/min. It
might be caused by the instrumental error of the thermogravimetric
analyzer. Nevertheless, the virgin PE optimal conversions were obtained
at higher temperatures. Besides, in the medium temperature ranges, i.e.,
420–450 and 450–480 �C, the optimal conversions were obtained at
around 5 �C/min heating rate; while in the lower and higher temperature
ranges, i.e., 390–420 and 480–510 �C, the optimal conversions were
obtained in the heating rate of 9–10 �C/min.

Figure 14 shows the optimal virgin PE pyrolysis rates in different
temperature ranges calculated by the SA. As described in Figure 14a,b,
the virgin PE pyrolysis rates had a similar variation tendency, which
increased with the heating rate in the range of about 5–10 �C/min and
decreased with the heating rate in the range of about 10–20 �C/min.
Moreover, the pyrolysis rates increased with the temperature in the
temperature ranges of 390–420 and 420–450 �C. Furthermore, the SA
optimized pyrolysis rates were 4.30 wt%/min at 420 �C and 10.45 �C/
min, 17.38 wt%/min at 450 �C and 14 �C/min, 49.77 wt%/min at 480 �C
and 20 �C/min, and 50.02 wt%/min at 481.29 �C and 20 �C/min in the
temperature ranges of 390–420, 420–450, 450–480 and 480–510 �C,
respectively. It could be concluded that a higher optimal pyrolysis rate
would be obtained in the higher temperature range. The optimal pyrol-
ysis rates were obtained at higher temperatures in the temperature
ranges of 390–420, 420–450 and 450–480 �C. Ulteriorly, in the higher
temperature ranges, i.e., 450–480 and 480–510 �C, the optimal pyrolysis
rates were obtained at the heating rate of 20 �C/min.

3.5.2. Waste PE
Figure 15 depicts the optimal waste PE conversions in different

temperature ranges calculated by the SA. The waste PE conversion has
more complex variation trends compared to the virgin PE in Figure 13.
Nevertheless, the waste PE conversion increased with the temperature in
all temperature ranges. Subsequently, the SA optimized waste PE con-
versions were 8.48 % at 420 �C and 5 �C/min, 38.71 % at 450 �C and 5



Figure 13. Optimal virgin PE conversions in different temperature ranges calculated by the SA: 390–420 �C (a), 420–450 �C (b), 450–480 �C (c) and 480–510 �C (d).
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�C/min, 97.91% at 480 �C and 5 �C/min, and 99.16% at 510 �C and 9.82
�C/min in 390–420 �C, 420–450 �C, 450–480 �C, and 480–510 �C ranges,
respectively. The optimal heating rate of the waste PE pyrolysis was 5 �C/
min in the temperature ranges of 390–420, 420–450 and 450–480. Be-
sides, the waste PE conversion was 98.75% at 510 �C and 5 �C/min in the
temperature range of 480–510 �C. Therefore, it could be concluded that
higher temperatures and lower heating rates can enhance waste PE
conversion.

Figure 16 demonstrates the optimal waste PE pyrolysis rates in
different temperature ranges calculated by the SA. As depicted in
Figures 16a, b, the waste PE pyrolysis rates had a similar variation
tendency, which increased with the heating rate in the range of about
5–15 �C/min and decreased with the heating rate in the range of
about 15–20 �C/min. The waste PE pyrolysis rate increased with the
temperature in the temperature ranges of 390–420 and 420–450 �C.
Furthermore, the waste PE pyrolysis rates optimized by the SA were
2.91 wt%/min at 420 �C and 14.81 �C/min, 12.91 wt%/min at 450 �C
and 14.77 �C/min, 50.18 wt%/min at 480 �C and 20 �C/min, and
52.13 wt%/min at 483.64 �C and 20 �C/min in the temperature
ranges of 390–420, 420–450, 450–480 and 480–510 �C, respectively.
In conclusion, a higher optimal waste PE pyrolysis rate would be
obtained in the higher temperature range. Besides, as the virgin PE in
Figure 14, the optimal pyrolysis rates were obtained at higher tem-
peratures in the temperature ranges of 390–420, 420–450, and
450–480 �C. Moreover, within lower temperature ranges, i.e., 390–420
and 420–450 �C, the optimal pyrolysis rates were obtained at the
heating rate of about 14.80 �C/min. However, in the higher temper-
ature ranges, i.e., 450–480, and 480–510 �C, the optimal pyrolysis
rates were obtained at the heating rate of 20 �C/min.
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The adaptive neural fuzzy model, coupled with SA, could be used in
other polymers pyrolysis processes. Moreover, it may be utilized to
analyze more complex pyrolysis or combustion processes.

4. Conclusion

This study adopted the adaptive neural fuzzy model coupled with SA
to investigate the virgin and the waste PE thermal pyrolysis processes for
determining the optimal conversions and pyrolysis rates. It is worth
mentioning that the optimization method used in this study may be
replaced by other computational intelligence algorithms, such as mon-
arch butterfly optimization (MBO), earthworm optimization algorithm
(EWA), elephant herding optimization (EHO), moth search (MS) algo-
rithm, etc. The TG experiments at different heating rates were conducted
to obtain the experimental data. According to the TG results, the virgin
and waste PE's pyrolysis processes took place in the temperature range of
390–510 �C. The waste PE was more challenging to start thermal
decomposing compared to the virgin PE. Furthermore, the adaptive
neural fuzzy model was adopted to establish the mathematical expres-
sions between the operating parameters, i.e., the pairs temperature and
the heating rate, and conversions and pyrolysis rates of the virgin and the
waste PE. The R-squared values of the virgin PE conversions (close to 1)
and pyrolysis rates (larger than 0.999), and the waste PE conversions
(close to 1) and pyrolysis rates (larger than 0.999) revealed the high
accuracy of the adaptive neural fuzzy model predicted results. Moreover,
SA was utilized to optimize the operating parameters in different tem-
perature ranges; consequently, the SA superior parameters for the opti-
mization calculations were determined. Then, the virgin and the waste
PE's optimal conversions and pyrolysis rates were determined by the SA.



Figure 14. Optimal virgin PE pyrolysis rates in different temperature ranges calculated by the SA: 390–420 �C (a), 420–450 �C (b), 450–480 �C (c) and 480–510
�C (d).

Figure 15. Optimal waste PE conversions in different temperature ranges calculated by the SA: 390–420 �C (a), 420–450 �C (b), 450–480 �C (c) and 480–510 �C (d).
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According to the SA optimized results, the optimal conversions of virgin
PE were obtained at around 5 �C/min in the medium temperature ranges,
i.e., 420–450 �C and 450–480 �C. Whereas the optimal conversions were
obtained in the heating rate of 9–10 �C/min in the lower and higher
11
temperature ranges, i.e., 390–420 �C and 480–510 �C. As for the waste
PE, the optimal conversions were obtained at 5 �C/min in different
temperature ranges. Regarding to the pyrolysis rate, the virgin PE py-
rolysis rates optimized by the SAwere 4.30 wt%/min at 420 �C and 10.45



Figure 16. Optimal waste PE pyrolysis rates in different temperature ranges calculated by the SA: 390–420 �C (a), 420–450 �C (b), 450–480 �C (c) and 480–510
�C (d).
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�C/min, 17.38 wt%/min at 450 �C and 14 �C/min, 49.77 wt%/min at
480 �C and 20 �C/min, and 50.02 wt%/min at 481.29 �C and 20 �C/min
in the temperature ranges of 390–420, 420–450, 450–480 and 480–510
�C, respectively. Moreover, the SA optimized pyrolysis rates of the waste
PE were 2.91 wt%/min at 420 �C and 14.81 �C/min, 12.91 wt%/min at
450 �C and 14.77 �C/min, 50.18 wt%/min at 480 �C and 20 �C/min, and
52.13 wt%/min at 483.64 �C and 20 �C/min in the temperature ranges of
390–420 �C, 420–450 �C, 450–480 �C, and 480–510 �C, respectively.
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