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On existence of holomorphic Lambert-Tsallis functions

Hideto Nakashima and Piotr Graczyk

Abstract. In this paper, we study a new important class of special functions: the holomorphic

Lambert-Tsallis functions, which are a two-parameter generalization of the Lambert function. A
necessary and sufficient condition on the parameters is given for the existence of the main branch

of the Lambert-Tsallis function.

Resumé: Dans cet article, nous étudions une nouvelle classe importante de fonctions spéciales:
les fonctions holomorphes de Lambert-Tsallis qui sont une généralisation à deux paramètres de la

fonction de Lambert. Une condition nécessaire et suffisante sur les paramètres est donnée pour
l’existence de la branche principale de la fonction de Lambert-Tsallis.

Introduction

The Lambert W function is the multivariate inverse function of f(z) = zez, studied intensely in
[4]. It plays an important role in various fields (see Corless et al [4] and references therein), including
the study of asymptotics of Triangular Wishart Ensembles [3] in the Random Matrix Theory. In
a previous paper [10], its two-parameter generalization Wκ,γ , called Lambert-Tsallis function, was
introduced for some particular values of parameters κ, γ, with motivations and important applications
in Random Matrix Theory and statistics.

The function Wκ,γ is defined as a holomorphic extension of the inverse function of a function fκ,γ ,
called a generalized Tsallis function, which generalizes f above and is defined by the product of a
linear fraction of z and the Tsallis q-exponential function, see (1) for definition. We note that the
Tsallis q-exponential function is now actively studied in information geometry [2, 12] and physics [11].
There were several attempts of generalizing the Lambert function in many directions. In Mezö and
Baricz [8], z before ez is replaced by rational function of z (see also [6, 7]) and in da Silva and
Ramos [11], ez is replaced by the Tsallis q-exponential function. The matrix Lambert W function is
considered in [5] and [9].

In this note, generalized Tsallis exponential functions and Lambert-Tsallis functions are studied
for the first time in the whole range of parameters κ, γ and a necessary and sufficient condition on
parameters κ, γ is given for the existence of the main branch of the Lambert-Tsallis W function.
More precisely, in the main Theorem 1.3, we characterize the parameters κ, γ such that there exists a
complex domain Ω+ containing zero on the boundary, which is mapped bijectively to the upper half
plane C+ by the generalized Tsallis function fκ,γ .

The proof of Theorem 1.3 is based on involved complex analysis. We omit some technical details.

1. Preliminaries and main result

For a non zero real number κ, we set

expκ(z) :=
(

1 +
z

κ

)κ
(1 +

z

κ
∈ C \ R≤0),

where we take the main branch of the power function when κ is not integer. If κ = 1
1−q , then it is

exactly the so-called Tsallis q-exponential function (cf. [2, 12]). For the sake of simplicity, we use the
expression expκ with parameter κ 6= 0. By virtue of lim

κ→∞
expκ(z) = ez, we define exp∞(z) = ez.

For two real numbers κ, γ such that κ 6= 0, we introduce a holomorphic function fκ,γ(z), which we
call generalized Tsallis function, by

fκ,γ(z) :=
z

1 + γz
expκ(z) (1 +

z

κ
∈ C \ R≤0). (1)

Analogously to Tsallis q-exponential, we also consider f∞,γ(z) = zez

1+γz (z ∈ C). In particular,

f∞,0(z) = zez. Let D(fκ,γ) be the domain of fκ,γ , that is, if κ is integer then D(fκ,γ) = C \ {− 1
γ },

and if κ is not integer, then D(fκ,γ) = C \
{
x ∈ R; 1 + x

κ ≤ 0, or x = − 1
γ

}
.
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The purpose of this work is to study the inverse function to fκ,γ in detail. A multivariate inverse
function of f∞,0(z) = zez is called the Lambert W function and is studied intensively in [4]. Hence,
we call a multivariate inverse function of fκ,γ the Lambert–Tsallis W function. We have

f ′κ,γ(z) =
γz2 +

(
1 + 1/κ

)
z + 1

(1 + γz)2

(
1 +

z

κ

)κ−1
, (2)

so that f ′κ,γ(0) 6= 0. Consequently, in a neighborhood U of z = 0, the function fκ,γ(z) has an inverse
function, denoted wκ,γ :

wκ,γ ◦ fκ,γ(z) = z (z ∈ U),

and wκ,γ(0) = 0. Let z = x+ yi ∈ C and we set θ(x, y) := Arg
(
1 + z

κ

)
for finite κ 6= 0, where Arg(w)

stands for the principal argument of w; −π < Arg(w) ≤ π. Since we now take the main branch of
the power function, we have for finite κ 6= 0

fκ,γ(z) =
|1 + z

κ |
2

(1 + γx)2 + γ2y2

(
(x+ γx2 + γy2) cos(κθ(x, y))− y sin(κθ(x, y))

+i
{

(x+ γx2 + γy2) sin(κθ(x, y)) + y cos(κθ(x, y))
}) . (3)

If κ =∞, then we regard κθ(x, y) as y because we have lim
κ→∞

expκ(z) = ez = ex(cos y+ i sin y). Then,

fκ,γ(z) ∈ R implies

(x+ γx2 + γy2) sin(κθ(x, y)) + y cos(κθ(x, y)) = 0. (4)

If sin(κθ(x, y)) = 0, then cos(κθ(x, y)) does not vanish so that y needs to be zero. This means that
if z = x+ yi ∈ fκ,γ(R) with y 6= 0, then we have sin(κθ(x, y)) 6= 0. Thus, the equation (4) for y 6= 0
can be rewritten as

F (x, y) := (x+ γx2 + γy2) + y cot(κθ(x, y)) = 0. (5)

For y = 0, we set F (x, 0) := lim
y→0

F (x, y). If x = 0, then since θ(0, y) = Arctan( yκ ), we have

F (0, 0) = lim
y→0

y cot(κArctan( yκ )) = 1. Here, we take the main branch of Arctanx, that is, we have

Arctan 0 = 0. Let us introduce a connected domain Ω = Ωκ,γ by

Ω = Ωκ,γ := {z = x+ yi ∈ D(fκ,γ); F (x, y) > 0}◦ , (6)

where A◦ denotes the connected component of an open set A ⊂ C containing z = 0. Note that since
F is an even function in y, the domain Ω is symmetric with respect to the real axis. Set

S := R \ fκ,γ
(
Ωκ,γ ∩ R

)
. (7)

Definition 1.1. If there exists a unique holomorphic extension Wκ,γ of wκ,γ to C \ S, then we call
Wκ,γ the Lambert-Tsallis function.

Remark 1.2. Strictly speaking, the Lambert–Tsallis function Wκ,γ is the main branch of the multi-
valued Lambert-Tsallis W function (recall that Wκ,γ(0) = 0). In our terminology the Lambert-Tsallis
W function is multivalued and the Lambert-Tsallis function Wκ,γ is single-valued. In this paper, we
only study Wκ,γ among other branches of the Lambert-Tsallis W function.

Our goal is to prove the following theorem which is the main result of the paper.

Theorem 1.3. There exists the main branch Wκ,γ of the Lambert-Tsallis W function if and only if
(i) 0 < |κ| < 1 and γ ≤ min(0, 1κ ), or (ii) |κ| ≥ 1 and γ ≤ 1

4 (1 + 1
κ )2, or (iii) κ = ∞ and γ ≤ 1

4 .
Moreover, Wκ,γ maps C+ onto Ω+ := Ω ∩ C+ bijectively.

Remark 1.4. As we shall see in §2.3, in the case κ > 1 and γ > 1
4 (1 + 1

κ )2, the function fκ,γ maps

Ω to C \ S two-to-one, and hence a holomorphic extension of wκ,γ exists on a smaller domain in Ω

which is mapped by fκ,γ bijectively to C \ S, but it is not unique. In the case 0 < κ < 1 and γ > 0,

the function fκ,γ : D(fκ,γ)→ C \ S is not surjective.

Remark 1.5. In the recent paper [10], we have proven Theorem 1.3 for the case γ ≤ 1
κ ≤ 1 and

γ < 1, and when κ =∞ and γ ≤ 0. Note that the case κ < 0 can be derived from the case κ > 0, see
§2.3.5. Thus the sufficiency in the Theorem 1.3 is essentially new in the following three cases

(a) 0 < κ < 1 and γ < 0, (b) κ > 1 and 1
κ < γ < 1

4 (1 + 1
κ )2, (c) κ =∞ and 0 < γ < 1

4 .

The necessity part in the Theorem 1.3 is also a new result.
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2. Proof of Theorem 1.3

The proof of the Theorem 1.3 is done in two steps. More precisely, we first give an explicit
expression of Ω = Ωκ,γ , and then show that fκ,γ maps Ω to C \ S bijectively.

2.1. The domain Ω for 0 < κ < +∞. In this section, we shall determine the connected component
Ω defined in (6) for the case 0 < κ < +∞. Let us change variables in (5) by

reiθ = 1 +
z

κ
(r > 0, θ ∈ (0, π)), or equivalently

{
x = κ(r cos θ − 1),

y = κr sin θ.
(8)

Set a := γκ and

b(θ) = (1− 2a) cos θ + sin θ cot(κθ) (θ 6= 0), b(0) = 1− 2a+
1

κ
. (9)

Then, the equation (5) can be written as

ar2 + b(θ)r + a− 1 = 0. (10)

If sin(κθ) 6= 0, then (10) has a solution r = r±(θ) =
(
−b(θ) ±

√
b(θ)2 − 4a(a− 1)

)
/(2a). Thus, for

each angle θ, there exists at most two points on f−1κ,γ(R). Since the change (8) of variables is the polar
transformation, we need to know whether r±(θ) is positive real or not. To do so, we shall study the
function

D(θ) := b(θ)2 − 4a(a− 1).

Since D′(θ) = 2b(θ)b′(θ), we first consider b′(θ). Set

G(κ) :=
2κ2 + 3κ+ 1

6κ
.

Since b(θ) = 2(a− 1) sin θ for κ = 1, 12 , we exclude these two cases.

Lemma 2.1. Let us set I0 := (0,min(π, πκ )).

(1) Suppose that 0 < κ < 1
2 , or κ > 1. If a > G(κ), then there exists a unique ϕ∗ ∈ I0 such that

b′(ϕ∗) = 0, and one has b′(θ) > 0 for θ ∈ (0, ϕ∗), and b′(θ) < 0 otherwise. If a < G(κ), then one
has b′(θ) < 0 for any θ ∈ I0.

(2) Suppose that 1
2 < κ < 1. If a ≤ G(κ), then there exists a unique ϕ∗ ∈ I0 such that b′(ϕ∗) = 0,

and one has b′(θ) < 0 for θ ∈ (0, ϕ∗), and b′(θ) > 0 for θ ∈ (ϕ∗, π). If a ≥ G(κ), then one has
b′(θ) > 0 for any θ ∈ I0.

Proof. Let us set for α, κ ∈ R

Hα(x) := sin(αx)− α sin(x), Fκ(x) := tanx · cot(κx), Jκ(x) := − 2x− 2κ− 1

4κx− 2κ− 1
(x ∈ R). (11)

For κ 6= 1, 12 , we have

b(θ) = cos θ + sin θ cot(κθ)− 2a cos θ =
cos θ sin(κθ) + sin θ cos(κθ)

sin(κθ)
− 2a cos θ,

and hence b′(θ) can be written as

b′(θ) =
H2κ+1(θ)

2 sin2(κθ)
+ 2a sin θ.

Let us set

B(θ) := 2 sin2(κθ)b′(θ) = H2κ+1(θ) + 4a sin θ sin2(κθ), `(κ, a) := 4aκ− 2κ− 1. (12)

Then, the signatures of b′(θ) and B(θ) are the same on the interval I0, and hence we actually work
with B(θ). We have B(0) = 0 for any κ > 0, and

B(π) = − cot(κπ) sin2(κπ)

{
< 0 (if 0 < κ < 1

2 ),

> 0 (if 1
2 < κ < 1)

B
(π
κ

)
= −2κ sin

π

κ
< 0 (κ > 1). (13)

In fact, we have B(πκ ) = H2κ+1(πκ ) = −2κ sin π
κ < 0 when κ > 1. The derivative of B(θ) is given as

B′(θ) =

2`(κ, a) cos θ sin2(κθ)
(
Fκ(θ)− Jκ(a)

)
(`(κ, a) 6= 0),

1− 4κ2

κ
cos θ sin2(κθ) (`(κ, a) = 0).

(14)
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We note that the condition G(κ) = a comes from a condition Fκ(0)− Jκ(a) = 0. According to a case
classification with respect to Fκ(θ) (cf. Table 1), we need to divide cases into the following four cases:
(i) 0 < κ < 1

2 , (ii) 1
2 < κ < 1, (iii) 1 < κ < 2, and (iv) κ ≥ 2.

Let us first consider the equation

Fκ(θ)− Jκ(a) = 0 ⇐⇒ Fκ(θ) = Jκ(a) on I0 = (0,min(π, πκ )). (15)

Since Jκ(a) does not depend on θ, it is important to know where it meets end points or maxi-
mal/minimal values of Fκ(θ). By Table 1, for end points, they are Jκ(a) = 1

κ or 0, and its solutions

on a are given as a = G(κ) or a = κ+1/2, respectively. If 1
2 < κ < 2 (κ 6= 1), then we need a solution

of Jκ(a) = Fκ(x∗). Since Jκ is bijective, there exists a unique solution a∗ such that Jκ(a∗) = Fκ(x∗).
The proof can be done by considering further cases according to the position of Jκ(a). The

calculations are delicate and tedious but elementary, and thus we only give a proof for the case
1
2 < κ < 1 and 0 ≤ Jκ(a) ≤ Fκ(x∗).

Assume that 1
2 < κ < 1. In this case, we have B(π) > 0 by (13). Recall that Jκ is monotonic

decreasing in a in this situation. Let x∗ be the maximal point of Fκ in I0. Then, we have 0 <
Fκ(x∗) < 1. In fact, since x∗ ∈ (π2 , π), we have sin((1− κ)x∗) > 0 and hence it implies that

sinx∗ cos(κx∗)− cosx∗ sin(κx∗) > 0 ⇐⇒ Fκ(x∗) =
sinx∗ cos(κx∗)

cosx∗ sin(κx∗)
< 1.

Here we use cosx∗ < 0 and sin(κx∗) > 0. Let a∗ be the unique solution of Fκ(x∗) − Jκ(a) = 0 in
a. Then, we see that a∗ ∈ (1, 12 + κ) by Jκ(1) = 1. Table 1 tells us that we have three cases in the
equation (15) as follows.

(a) It does not have a solution if Fκ(x∗) < Jκ(a) < 1
κ , which is equivalent to the condition

G(κ) < a < a∗. Since Fκ(x∗) > 0, we see that `(κ, a) > 0 in this situation.
(b) The equation (15) has a unique solution ϕ if Jκ(a) ≥ 1

κ or Jκ(a) < 0. In the former case, the

condition is equivalent to 1
2 + 1

4κ < a ≤ G(κ), and we have ϕ < π
2 and `(κ, a) > 0. In the latter case,

we have ϕ > π
2 , and the condition is divided into two situations; one is a > 1

2 + κ, and the other is

a < 1
2 + 1

4κ .
(c) The equation (15) has two solutions ϕ1 ≤ ϕ2 if 0 ≤ Jκ(a) ≤ Fκ(x∗), which is equivalent to the

condition a∗ ≤ a ≤ 1
2 + κ so that `(κ, a) > 0. We note that we have ϕi >

π
2 , and if Jκ(a) = Fκ(x∗)

then we have ϕ1 = ϕ2. We only deal with the case (c).
Let us assume that 0 ≤ Jκ(a) ≤ Fκ(x∗), i.e., a∗ ≤ a ≤ 1

2 + κ. In this situation, the signature
of B′ is negative in the interval (0, ϕ1) and (ϕ2, π), and positive in (ϕ1, ϕ2). In order to show that
B(ϕi) > 0 (i = 1, 2), which implies b′(θ) > 0 for any θ ∈ I0, we calculate b′(θ) in a different way as
follow. By differentiating b(θ) by using expression (9), we obtain

b′(θ) = (2a− 1) sin θ + cos θ cot(κθ)− κ sin θ

sin2(κθ)
,

and hence B(θ) can be also described as

B(θ) = 2(2a− κ− 1) sin θ + 2 cos θ sin(κθ) cos(κθ)((2a− 1)Fκ(θ) + 1). (16)

Since ϕi (i = 1, 2) satisfy Fκ(ϕi)− Jκ(a) = 0 by definition, we see that

(2a−1)Fκ(ϕi)+1 = (2a−1)Jκ(a)+1 =
−(2a− 1)(2a− 2κ− 1) + (4aκ− 2κ− 1)

`(κ, a)
=

4a(a− 1)

`(κ, a)
. (17)

Now we assume a∗ < a < 1
2 + κ and we know a∗ > 1 so that we have 2a − κ − 1 > 0 and

(2a−1)Fκ(ϕi)+1 > 0 for i = 1, 2 by (17). Since ϕi ∈ ( π2κ , π), we see that cosϕi sin(κϕi) cos(κϕi) > 0
and hence we obtain B(ϕi) > 0 (i = 1, 2) by (16). Thus, we conclude b′(θ) > 0 on the interval I0.

The other cases can be done similarly. �

Now we are able to obtain explicit formulas of Ω. Note that, since F (x, y) is a continuous function,
the boundary ∂Ω is included in the set {z = x+ yi ∈ C; F (x, y) = 0} ⊂ f−1κ,γ(R).

Proposition 2.2. Suppose that κ = 1.

(1) If γ > 1, then one has Ω = C \ {− 1
γ }.

(2) If 0 < γ ≤ 1, then one has Ω =
{
z = x+ yi ∈ D(fκ,γ);

(
x+ 1

γ

)2
+ y2 > 1−γ

γ2

}
.

(3) If γ = 0, then one has Ω = {z = x+ yi ∈ D(fκ,γ); 1 + 2x > 0}.
(4) If γ < 0, then one has Ω =

{
z = x+ yi ∈ D(fκ,γ);

(
x+ 1

γ

)2
+ y2 < 1−γ

γ2

}
, which is bounded.
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Table 1. Increasing/Decreasing table of Fκ(θ)

(A) 0 < κ ≤ 1

2

x 0 · · · π
2 · · · π

F ′κ + × +
Fκ

1
κ ↗+∞ × −∞ ↗ 0

(B)
1

2
< κ < 1

x 0 · · · π
2 · · · x∗ · · · π

F ′κ + × + 0 −
Fκ

1
κ ↗+∞ × −∞ ↗ Fκ(x∗) ↘ 0

Fκ(x∗) < 1

(C) 1 < κ < 2

x 0 · · · π
2 · · · x∗ · · · π

κ

F ′κ − × − 0 +
Fκ

1
κ ↘−∞ × +∞ ↘ Fκ(x∗) ↗+∞ ×

Fκ(x∗) > 1

(D) κ ≥ 2

x 0 · · · π
κ

F ′κ − ×
Fκ

1
κ ↘−∞ ×

In the table, the symbol × means that the functions are not defined at that point. The symbol x∗
denotes a maximal/minimal point in the interval I0, if it exists.

Proof. In the case κ = 1, we have θ(x, y) = Arg(1 + z) so that tan(θ(x, y)) = y/(1 + x). Thus, we
have

F (x, y) = 1 + 2x+ γx2 + γy2 =

γ
(
x+ 1

γ

)2
+ γy2 + γ−1

γ (if γ 6= 0),

1 + 2x (if γ = 0).

Note that z = 0 is contained in the set
{
z = x+ yi ∈ C; 1 + 2x+ γx2 + γy2 > 0

}
. Since it is con-

nected, the proof is now completed. �

Set θ0 := π
κ and I0 = (0,min(π, θ0)). Let r±(θ) be the solutions of the equation (10) and let αi,

i = 1, 2 be the solutions of the equation fκ,γ(z) = 0 which come from rational part of fκ,γ . If αi
are real, then we assume that α1 ≤ α2, and if not, then we assume that Imα1 > Imα2. Recall that

a = κγ and D(0) =
(
1 + 1

κ

)2 − 4γ.

Proposition 2.3. Let κ > 0 with κ 6= 1. For z ∈ D(fκ,γ), one sets reθ = 1 + z
κ . Then, Ω can be

described as follows.

(1) If a < 0, then there exists a unique θ∗ ∈ (0, π
κ+1 ) such that r+(θ∗) = r−(θ∗) and that r±(θ) are

both positive with r−(θ) ≤ r+(θ) on (0, θ∗). Moreover, one has

Ω = {z ∈ D(fκ,γ); |θ| < θ∗ and r−(θ) < r < r+(θ)} .

In particular, Ω is bounded. One has α1, α2 ∈ ∂Ω and − 1
γ ∈ Ω, whereas −κ 6∈ Ω.

(2) If a = 0, then one has r(θ) = r±(θ) = sin(κθ)
sin((κ+1)θ) which is positive on the interval (0, π

κ+1 ).

Moreover, one has

Ω =

{
z ∈ D(fκ,γ); |θ| < π

κ+ 1
and r > r(θ)

}
.

Ω has an asymptotic line y = ±(tan π
κ+1 )(x + κ2

κ+1 ). One has α1 = α2 = − κ
κ+1 ∈ ∂Ω and

−κ 6∈ Ω.
(3) If 0 < a < 1, then r+(θ) is the only positive solution of (10) on I0, and one has

Ω = {z ∈ D(fκ,γ); |θ| < min(θ0, π) and r > r+(θ)} .

One has α2 ∈ ∂Ω, whereas α1,− 1
γ ,−κ 6∈ Ω. If κ > 1, then Ω has an asymptotic line y =

±(tan θ0)(x+ κ− 1
a ). Note that if 0 < κ < 1 then Ω = D(fκ,γ).

(4) Suppose that a = 1 and κ 6= 1.
(a) If 0 < κ < 1, then one has r+(θ) = 0 and r−(θ) = −b(θ) < 0 for θ ∈ I0, and Ω = D(fκ,γ).

One has α1 = −1 ∈ ∂Ω and α2 = −κ = − 1
γ ∈ ∂Ω.

(b) If κ > 1, then one has r+(θ) = −b(θ) > 0 and r−(θ) = 0 for θ ∈ I0, and one has

Ω = {z ∈ D(fκ,γ); |θ| < θ0 and r > r+(θ)} .
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One has α2 = −1 ∈ ∂Ω, while α1 = −κ = − 1
γ 6∈ Ω. Moreover, Ω has an asymptotic line

y = ±(tan θ0)(x+ κ− 1
a ).

(5) Suppose that a > 1.
(a) If κ > 1 with D(0) ≥ 0, then r±(θ) are both positive in I0 with r−(θ) ≤ r+(θ), and one has

Ω = {z ∈ D(fκ,γ); |θ| < θ0 and r > r+(θ)} .

Ω has an asymptotic line y = ±(tan θ0)(x+κ− 1
a ). One has α2 ∈ ∂Ω, while −κ,− 1

γ , α1 6∈ Ω.

(b) If κ > 1 and D(0) < 0, then there exists a unique θ∗ ∈ (0, θ0) such that D(θ∗) = 0, and
r±(θ) are both positive in the interval (θ∗, θ0). Moreover, one has

Ω = {z ∈ D(fκ,γ); |θ| < θ0 and if |θ| ≥ θ∗ then 0 < r < r−(θ) or r > r+(θ)} .

In this case, αi, i = 1, 2 are both non-real numbers and one has αi,−κ ∈ ∂Ω and − 1
γ ∈ Ω.

Moreover, Ω has an asymptotic line y = ±(tan θ0)(x+ κ− 1
a ).

(c) If 0 < κ < 1, then there are no θ ∈ I0 such that D(θ) > 0, and one has Ω = D(fκ,γ).

Proof. Since Ω is symmetric with respect to the real axis, we shall actually work with the boundary
∂Ω+ of Ω+ = Ω∩C+. The cases (1)–(3) are done in the previous paper [10], and thus we omit them.

(4) Assume that a = 1 and κ 6= 1. In this case, αi, i = 1, 2 are given as αi = −1 or − 1
γ = −κ,

and the equation (10) reduces to r2 + b(θ)r = 0, whose solutions are r(θ) = 0, −b(θ). Since b(θ) can
be described as b(θ) = sin((1 − κ)θ)/ sin(κθ) in this case, it is easily verified that, if 0 < κ < 1 then
b(θ) > 0, and if κ > 1 then b(θ) < 0 for any θ ∈ I0. This means that if 0 < κ < 1 then the equation
(10) does not have a positive solution, and hence we have

Ω+ = {z ∈ D(fκ,γ); 0 < θ < π, r > 0} = C+,

which shows Ω = D(fκ,γ). Since we have α1 = −1 and α2 = −κ = − 1
γ , the assertion (4)-(a) is proved.

On the other hand, if κ > 1, then we have b′(θ) < 0 for θ ∈ I0 by Lemma 2.1 together with the fact
G(κ) > 1 for any κ > 1. Since b(0) = 1 + 1

κ − 2 < 0 and limθ→θ0−0 b(θ) = −∞, the function D(θ) is
monotonic increasing on I0 and hence we have limθ→θ0−0 r+(θ) = +∞. Thus, the curve r+(θ), θ ∈ I0
has an asymptotic line with gradient tan θ0, which is determined later. Therefore, we have

Ω+ = {z ∈ D(fκ,γ); 0 < θ < θ0 and r > r+(θ)} .

In this case, we have α1 = −κ = − 1
γ and α2 = −1. The assertion (4)-(b) is now proved.

(5) Suppose that a > 1 and κ 6= 1. In this case, we have b(0) = 1 + 1
κ − 2a and

lim
θ→θ0−0

b(θ) = −∞ (if κ > 1), b(π) = 2a− 1 > 0 (0 < κ < 1).

Note that b(0) > 0 if κ > 1. Since r+(θ) · r−(θ) = a−1
a > 0, two solutions r±(θ) of (10) have the same

signature if r±(θ) are real.
(a) We first consider the case κ > 1 and D(0) ≥ 0. Let us show that D(θ) > 0 for θ ∈ I0. If we

set K(x) := x
4

(
1 + 1

x

)2
, then the condition D(0) ≥ 0 is equivalent to a ≤ K(κ), and hence we have

a ≤ G(κ) because G(x) − K(x) = (x2 − 1)(12x) > 0 if x > 1. By the assumption κ > 1, we see
that b′(θ) < 0 for any θ ∈ I0 by Lemma 2.1 so that b is monotonic decreasing in this interval. Since
b(0) < 0, the function b is negative in I0, and hence D′(θ) = 2b(θ)b′(θ) > 0 so that D(θ) is monotonic
increasing in the interval I0, and in particular, it is positive on I0. Thus, we see that r±(θ) are real
on I0, and by r+(θ) + r−(θ) = −b(θ)/a > 0 we have r±(θ) > 0 (θ ∈ I0). Since for ε = ±1

r′ε(θ) =
1

2a

(
−b′(θ) + ε

2b(θ)b′(θ)

2
√
D(θ)

)
=
−εb′(θ)

2a
·
−b(θ) + ε

√
D(θ)√

D(θ)
= −εb′(θ) rε(θ)√

D(θ)
, (18)

we have r′+(θ) > 0, and hence the function r+(θ) is monotonic increasing, whereas r−(θ) is monotonic

decreasing because r−(θ) = a−1
ar+(θ) . Note that we have r+(θ) → +∞ and r0(θ) → 0 as θ → θ0 − 0.

Thus, r+(θ), θ ∈ I0 draws an unbounded curve connecting z = α2 to∞ with an asymptotic line with
slope tan θ0, and r−(θ), θ ∈ I0 draws a bounded curve connecting z = α1 to z = −κ. Since we have
−κ < − 1

γ < α1 < α2 < 0 and since Ω is the connected component including z = 0, we have

Ω+ = {z ∈ D(fκ,γ); 0 < θ < θ0, r > r+(θ)} .

(b) Next, we assume that κ > 1 and D(0) < 0. According to Lemma 2.1 (1), we consider the function
b′(θ) in two cases, that is, (i) a ≤ G(κ) and (ii) a > G(κ).
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(i) Assume that a ≤ G(κ). Then, b′ is negative and hence b(θ) is monotonic decreasing. Since
b(0) < 0, we see that b(θ) < 0 for any θ ∈ I0 and therefore D′(θ) = 2b(θ)b′(θ) > 0 for any θ ∈ I0.
Thus, D(θ) is monotonic increasing with D(0) < 0. Since D(θ) → +∞ as θ → θ0 − 0, we see that
there exists a unique θ∗ such that D(θ∗) = 0, and r±(θ) are real for θ ∈ (θ∗, θ0). In this interval,
since r+(θ) + r−(θ) = −b(θ)/a > 0, we see that r±(θ) are both positive. By (18), we have r′+(θ) > 0
and thus the function r+(θ) is monotonic increasing, whereas r−(θ) is monotonic decreasing because
r−(θ) = a−1

ar+(θ) . As θ → θ0 − 0, we have r+(θ)→ +∞ and r−(θ)→ 0. This means that r+(θ) draws

an unbounded curve connecting z = α1 and z = ∞, and r−(θ) draws a bounded curve connecting
z = α1 and z = −κ, where α1 is the complex solution of fκ,γ(z) = 0 with positive imaginary part.
Since we have −κ < − 1

γ < 0, the domain Ω+ is given as

Ω+ = {z ∈ D(fκ,γ); 0 < θ < θ0, if θ ≥ θ∗ then 0 < r < r−(θ) or r > r+(θ)} .

(ii) Assume that a > G(κ). In this case, we have D(0) < 0 and D(θ)→ +∞ as θ → θ0 − 0. Then,
there are two possibilities on b(ϕ∗), that is, it is positive or negative. If b(ϕ∗) ≤ 0, then D(θ) has
a unique minimal point at θ = ϕ∗. On the other hand, if b(ϕ∗) > 0, then there exist exactly two
ϕ1 < ϕ2 in I0 such that b(ϕi) = 0. Then, D(θ) has a unique maximal point at θ = ϕ∗ whereas there
are exactly two minimal point at θ = ϕ1, ϕ2 in I0. We note that D(ϕi) = b(ϕi)

2 − 4a(a − 1) < 0.
Since r+(θ) + r−(θ) = −b(θ)/a, if D(ϕ∗) > 0, then r±(θ) are both negative so that we need not deal
with this case. Thus, regardless of whether b(ϕ∗) is positive or not, there exists a unique θ∗ ∈ I0 such
that D(θ∗) = 0 and r±(θ) > 0 for any θ ∈ (θ∗, θ0). By (18), we see that r+(θ) is monotonic increasing
on (θ∗, θ0), whereas r−(θ) is monotonic decreasing. Moreover, we have r+(θ)→ +∞ and r−(θ)→ 0
as θ → θ0 − 0, and hence the curves r±(θ), θ ∈ (θ∗, θ0) form an unbounded curve connecting z = α1

and z =∞. Since −κ < − 1
γ < 0, we have

Ω+ = {z ∈ D(fκ,γ); 0 < θ < θ0, and if θ ≥ θ∗ then 0 < r < r−(θ) or r > r+(θ)} .

(c) We finally assume that 0 < κ < 1. In this case, we have D(π) = (2a − 1)2 − 4a(a − 1) = 1. We
note that b(0) < 0 implies D(0) < 0. In fact, b(0) < 0 means 1 + 1

κ < 2a so that

D(0) =
(

1 +
1

κ

)2
− 4a

κ
< 2a

(
1 +

1

κ

)
− 4a

κ
= 2a

(
1− 1

κ

)
< 0. (19)

Since a > 1, the signatures of r±(θ) are the same, and they are the opposite to the signature of b(θ).
Let ID ⊂ I0 be the maximal interval such that D is positive on ID. We shall show that there are

no suitable solutions of (10), that is, r±(θ) < 0 for any θ ∈ ID, which yields that Ω+ = C+ and hence
Ω = D(fκ,γ). Let us recall Lemma 2.1.

(i) Assume that 0 < κ < 1
2 and a > G(κ). In this case, b(θ) have a unique maximal point at

θ = ϕ∗, and we have b(π) > 0. If b(0) ≥ 0, then we see that b(θ) > 0 for any θ ∈ I0, which implies
r±(θ) < 0 for any θ ∈ ID. If b(0) < 0, then there exists a unique 0 < ϕ < ϕ∗ such that b(ϕ) = 0,
and we have D(0) < 0 by (19). Hence, D(θ) have a unique maximal point D(ϕ∗) > 0 at θ = ϕ∗ and
a unique minimal point D(ϕ) < 0 at θ = ϕ. Thus, ID is included in (ϕ, π) and b is positive on ID,
whence r±(θ) < 0 for any θ ∈ ID.

(ii) Assume that 0 < κ < 1
2 and a ≤ G(κ). Then, Lemma 2.1 tells us that b′(θ) < 0 for any θ ∈ I0.

Thus, b(θ) is monotonic decreasing on the interval I0 with b(π) > 0, and hence b(θ) > 0 for any
θ ∈ I0. This means that D′(θ) < 0 and D(θ) is monotonic decreasing on I0. Since D(π) = 1, we see
that ID = I0 and hence r±(θ) < 0 for any θ ∈ ID.

(iii) Assume that 1
2 ≤ κ < 1. In this case, we have we have b′(θ) > 0 for any θ ∈ I0 so that b(θ) is

monotonic increasing. In fact, if κ > 1
2 , then since G(κ) < 1 for 1

2 < κ < 1 and since a > 1, we always

have a > G(κ) so that b′(θ) > 0 by Lemma 2.1, and if κ = 1
2 then we have b′(θ) = 2(a − 1) sin θ so

that b′(θ) > 0. If b(0) ≥ 0, then we have b(θ) ≥ 0 for any θ ∈ I0 and hence we see that r±(θ) < 0 for
θ ∈ ID. If b(0) < 0 then there exists a unique ϕ such that b(ϕ) = 0. Thus, D(θ) has a unique minimal
point D(ϕ) < 0 with D(0) < 0 and D(π) > 0, and hence there are no θ ∈ I0 such that D(θ) > 0 and
b(θ) > 0. Thus, we have b(θ) > 0 for θ ∈ ID, which implies r±(θ) < 0.

We shall determine an asymptotic line with respect to Ω+ when r+(θ) → +∞ as θ → π
κ or π

κ+1 .
To calculate them in one scheme, we set ϑ = π

κ or π
κ+1 , and denote its denominator by k. A line

having gradient tanϑ can be written as x sinϑ− y cosϑ = A with some constant A. Let us determine
the constant A. Since x = κ(r(θ) cos θ − 1) and y = κr(θ) sin θ as in (8), we have

x sinϑ− y cosϑ = κ
{

sinϑ(r(θ) cos θ − 1)− cosϑr(θ) sin θ
}

= −κ
{
r(θ) sin(θ − ϑ) + sinϑ

}
.



8 Hideto Nakashima and Piotr Graczyk

A simple calculation yields that sin(θ−ϑ)
sin(kϑ) → −

1
k as θ → θ0 − 0, which implies

lim
θ→ϑ−0

b(θ) sin(θ − ϑ) = lim
θ→ϑ−0

(
(1− 2a) cos θ sin(θ − ϑ) + sin θ cos(kθ)

sin(θ − ϑ)

sin(kθ)

)
=

sinϑ

ak
.

Since r+(θ) can be described as

r+(θ) =
−b(θ) +

√
b(θ)2 − 4a(a− 1)

2a
= −b(θ)

2a

(
1 +

√
1− 4a(a− 1)

b(θ)2

)
,

we have

lim
θ→ϑ−0

r+(θ) sin(θ − ϑ) = lim
θ→ϑ−0

−b(θ) sin(θ − ϑ)

2a

(
1 +

√
1− 4a(a− 1)

b(θ)2

)
= − sinϑ

ak
.

Thus, we have

A =

{
−κ(− sin θ0

aκ + sin θ0) =
(

1
a − κ

)
sin θ0 (if k = κ),

−κ(− sin θ1
κ+1 + sin θ1) = − κ2

κ+1 sin θ1 (if k = κ+ 1),

and therefore the proof is now complete. �

2.2. The domain Ω for κ = ∞. In this section, we deal with the case κ = ∞. Since κθ(x, y) is
regarded as y in this case, the equation (5) can be written as

F (x, y) = x+ γx2 + γy2 + y cot y = 0. (20)

Proposition 2.4. Assume that κ =∞ and let xi(y), i = 1, 2 be solutions of (20) with x1(y) ≤ x2(y)
if they are real.

(1) If γ = 0, then one has Ω = {z = x+ yi; |y| < π and x > −y cot y}.
(2) Suppose that γ > 1

4 . Then, there exists a unique function y = y(x) defined on R such that

Ω = {z = x+ yi ∈ C; x ∈ R and |y| < y(x)} .
The function y(x) has a unique minimal point and satisfies limx→±∞ y(x) = π.

(3) If 0 < γ ≤ 1
4 , then xi(y), i = 1, 2 are both real for any y ∈ (0, π), and one has

Ω = {z = x+ yi ∈ C; |y| < π and x > x2(y)} .
(4) Suppose that γ < 0. Then, there exists a unique y0 ∈ (0, π) such that x1(y0) = x2(y0) and if

y ≤ y0 then xi(y), i = 1, 2 are real. Moreover, one has

Ω = {z = x+ yi ∈ C; |y| < y0 and x1(y) < x < x2(y)} .
In particular, Ω is bounded.

Proof. Similarly to the proof of Proposition 2.3, we work with Ω+ = Ω ∩ C+. Let us assume y > 0.
(i) The case γ ≤ 0 is dealt in the previous paper [10], and hence we omit it. Note that The case

γ = 0 corresponds to the case of the classical Lambert function (cf. [4]).
(ii) Assume that γ > 0. Since there are no solutions of (20) on the line R + iπ and since Ω is

symmetric with respect to the real axis, it is enough to consider y in the interval (0, π). The equation
(20) can be calculated as

x2 +
x

γ
+ y2 +

y cot y

γ
= 0 ⇐⇒

(
x+

1

2γ

)2
=

1

4γ2
− y2 − y cot y

γ
=: h(y). (21)

Let us set g(y) := cos y + 2γy sin y. Then, the function h(y) satisfies

h(y) =
1− g(y)2

4γ2 sin2 y
, h(0) = lim

y→0
h(y) =

1− 4γ

4γ2
and lim

y→π−0
|h(y)| = +∞.

In order that the equation (21) has a real solution in x and y, the function h(y) needs to be non-
negative, and it is equivalent to the condition that the absolute value of the function g(y) is less
than or equal to 1. Thus we investigate the function g(y). At first, we observe that g(0) = 1 and
g(π) = −1. Its derivative is calculated as

g′(y) = − sin y + 2γ(sin y + y cos y) = −(1− 2γ) sin y + 2γy cos y = (2γ − 1)
( 2γ

2γ − 1
y + tan y

)
cos y.

Set cγ = 2γ
2γ−1 . Then, the signature of g′ can be determined by the product of signatures of 2γ − 1,

cos y and cγy + tan y.
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(ii-1) Assume that γ > 1
4 . If γ > 1

2 , then we have cγ > 1 and hence there exists a unique y∗ ∈ (π2 , π)

such that cγy + tan y = 0. If 1
4 < γ < 1

2 , we have cγ < −1 so that there exists a unique y∗ ∈ (0, π2 )
such that cγy∗ + tan y∗ = 0. Thus, for both cases, g(y) has a unique maximal point at y = y∗ with
g(0) = 1 and g(π) = −1. If γ = 1

2 , then we have g′(y) = y cos y, whence g′(y) > 0 for y ∈ (0, π2 ) and
g′(y) < 0 for y ∈ (π2 , π) so that in this case y∗ = π

2 is the only solution of g(y) = 0 for y ∈ (0, π).

These observation shows that, if γ > 1
4 , then there exists one and only one y0 ∈ (y∗, π) such

that g(y0) = 1 and g(y0 − ε) > 1 for ε ∈ (0, y0 − y∗). In this case, h(y) is non-negative in the
interval [y0, π), and h(h0 − ε) < 0 for ε ∈ (0, y0 − y∗). Let xi(y), i = 1, 2 be the real solutions of the
equation (21) with x1(y) ≤ x2(y). Then, since we have x1(y0) = x2(y0), the curves xi(y), y ∈ (y0, π)
form a connected curve. Moreover, since the correspondence of y ∈ (y0, π) to xi(y) is one-to-one and
since x1(y)→ −∞, and x2(y)→ +∞ as y → π− 0, the function y = y(x) connecting the two inverse
functions of x = xi(y) is defined for any x ∈ R and its image is [y0, π). Thus, we have

Ω+ = {z = x+ yi ∈ C; x ∈ R and 0 < y < y(x)} .
(ii-2) Assume that 0 < γ ≤ 1

4 . Then, we have −1 ≤ cγ < 1 and hence there are no y ∈ (0, π) such
that cγy + tan y = 0. Thus, we obtain g′(y) < 0 for any y ∈ (0, π) so that g is monotonic decreasing
from g(0) = 1 to g(π) = −1. This shows that h(y) is non-negative in the interval (0, π). Let xi(y),
i = 1, 2 be the solutions of the equation (21) with x1(y) ≤ x2(y). Then, since x1(y) → −∞ and
x2(y)→ +∞ as y → π − 0, we have by x1(0) < x2(0) < 0

Ω+ = {z = x+ yi ∈ C; 0 < y < π and x > x2(y)} ,
which completes the proof. �

2.3. Bijectivity of fκ,γ. We consider the domain Ω+ := Ω∩C+, and investigate whether fκ,γ maps

D to C+ bijectively or not. Then, since fκ,γ(z̄) = fκ,γ(z), the bijectivity of fκ,γ from Ω to C \ S is
obtained at the same time.

The key tool is the argument principle (see [1, Theorem 18, p.152], for example).

Theorem 2.5 (The argument principle). If f(z) is meromorphic in a domain Ω with the zeros
aj and the poles bk, then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
j

n(γ, aj)−
∑
k

n(γ, bk)

for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros or
poles. Here, n(γ, a) is the winding number of γ with respect to a.

We also use the following elementary property of holomorphic functions.

Lemma 2.6. Let f(z) = u(x, y)+ iv(x, y) be a holomorphic function. The implicit function v(x, y) =
0 has an intersection point at z = x+ yi only if f ′(z) = 0.

2.3.1. The case κ ≥ 1 and γ ≤ 0. This case is done in the previous paper [10], and thus we omit it.

2.3.2. The case κ ≥ 1 and γ > 0. In this case, Propositions 2.3, 2.2 and 2.4 tell us that Ω is
unbounded. We first consider S defined in (7). Note that the case (κ, γ) = (1, 1) is the trivial case
fκ,γ(z) = z.

Lemma 2.7. Let αi, i = 1, 2 be the solutions of (10).

(1) Assume that κ > 1 or κ = ∞ together with D(0) ≥ 0. Then, αi are both real and S =
(−∞, fκ,γ(α2)) with fκ,γ(α2) < 0.

(2) Assume that κ = 1 and 0 < γ < 1. Then, αi are both real, and one has S = (fκ,γ(α1), fκ,γ(α2))
with fκ,γ(α2) < 0. Note that 0 < γ < 1 is equivalent to D(0) > 0.

(3) Assume that κ ≥ 1 or κ = ∞ together with D(0) < 0. Then, αi are both non-real, and one has
S = ∅. On the other hand, one has fκ,γ(∂Ω ∩ C+) = (−∞, 0).

Proof. The proof is elementary so we only deal with the latter assertion in (3). It is easily verified
that |fκ,γ(z)| → +∞ as |z| → +∞ by κ > 1. Propositions 2.3, 2.2 and 2.4 show that if a point
z = x+ yi ∈ C+ is on the curve ∂Ω ∩ C+, then we have F (x, y) = 0 and

fκ,γ(z) =

∣∣1 + z
κ

∣∣κ∣∣1 + γz
∣∣2 · −y

sin(κθ(x, y))
< 0. (22)
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This means that, if z ∈ C+ goes to ∞ along the path ∂Ω ∩C+, then fκ,γ must tend to −∞. On the
other hand, taking a limit y → +0 along ∂Ω ∩ C+ is equivalent to z → −κ in this case and hence
fκ,γ(z)→ 0. Since fκ,γ is continuous, the assertion is now proved. �

For L > 0, let ΓL be the circle −κ+Leiθ of origin z = −κ with radius L. We divide cases according
to this lemma.

The case (1). In this case, Ω is given in Propositions 2.3 or 2.4. Let us take a path C = C(t),
t ∈ (0, 1) in such a way that by starting from z =∞, it goes to z = α2 along the curve r+ describing
∂Ω ∩ C+ in the upper half plane, and then goes to z = ∞ along the real axis. Here, we can assume
that C ′(t) 6= 0 whenever C(t) 6= αi, i = 1, 2 because f ′κ,γ(C(t)) 6= 0 otherwise. We take an arc-length
parameter t so that C ′(t) represents the direction of the tangent line at x + yi = C(t). Lemma 2.6
tells us that g(t) := fκ,γ

(
C(t)

)
is a monotonic increasing function on (0, 1) such that g(t)→ −∞ as

t→ 0 and g(t)→ +∞ as t→ 1.
We shall show that for any w0 ∈ C+ there exists one and only one z0 ∈ C+ such that fκ,γ(z0) = w0.

Recall that Im f ′κ,γ(z) > 0 for any z ∈ C+. Let us take an R > 0 such that |w0| < R. For an L > 0,
let zi, i = 1, 2 be two distinct intersection points of C and ΓL. Note that we can take z1 = −κ+L ∈ R
and z2 ∈ C+. Let C̃ be a closed path obtained from C by connecting z1 and z2 via the arc AL of ΓL
included in C+.

Let Ω̃+ be the inside set of C̃. Since fκ,γ is non-singular on the arc A, the curve fκ,γ(A) does not
have a singular point so that it is homotopic to a semi-circle in C+. In particular, we can take an L

such that its radius is larger than R so that the inside set fκ,γ(Ω̃+) of the curve fκ,γ(C̃) is a bounded

domain including w0 ∈ C+. Since the winding number of the path fκ,γ(C̃) about w = w0 is exactly
one, we see that

1

2πi

∫
C̃

f ′κ,γ(z)

fκ,γ(z)− w0
dz =

1

2πi

∫
fκ,γ(C̃)

dw

w − w0
= 1.

Since fκ,γ does not have a pole on D̃ be definition, the function fκ,γ(z) − w0 has the only one zero
point, say z0, by the argument principle in Theorem 2.5. Then, we obtain fκ,γ(z0) = w0, and such
z0 is unique. Since we can take w0 ∈ C+ arbitrary, we conclude that the map fκ,γ is a bijection from
D to the upper half plane C+.

The case (2). In this case, Ω is given in Proposition 2.2 (2). As in the case (1), it is enough to

show that an approximating domain Ω̃+ of Ω+ = Ω ∩ C+ satisfies that the image of its boundary

curve C̃ = ∂Ω̃+ under fκ,γ has a winding number about w = w0 being exactly one for any w0 ∈ C+.
By the proof of Proposition 2.2, the boundary of Ω+ can be described as a path C(t), t ∈ (0, 1)

defined in a such a way that by staring z =∞, it goes to z = α1 along the real axis, and then it goes
to z = α2 along the curve ∂Ω ∩ C+, which is a semi-circle of origin z = − 1

γ with radius
√

1− γ/γ,

and then it goes to z = ∞ along the real axis. Notice that f ′κ,γ(C̃(t)) 6= 0 for any t ∈ (0, 1) except
for ti such that C(ti) = αi, i = 1, 2. In particular, Lemma 2.6 tells us that fκ,γ(C(t)) is monotonic
increasing in the interval (t1, t2), and hence the function fκ,γ(C(t)) maps (0, 1) to R bijectively.

Therefore, we can construct an approximating domain Ω̃+ from C(t) and ΓL similar to the case (1),

such that the image of its boundary C̃ under fκ,γ has a winding number being exactly one, and hence
we have shown the bijectivity of fκ,γ on Ω+ to C+.

The case (3). In this case, we shall show that the approximating domain Ω̃+ of Ω+ = Ω ∩ C+

satisfies that the image of its boundary curve C̃ = ∂Ω̃+ under fκ,γ has a winding number about
w = w0 being exactly two for any w0 ∈ C+, and hence the function fκ,γ maps Ω+ to C+ two-to-one.

(i) Let us assume that κ ≥ 1. The domain Ω is given in Proposition 2.3 (5-b). Let C(t), t ∈ (0, 1)
be a path defined in such a way that by starting from z = ∞, it goes to z = −κ along the curve
∂Ω ∩C+, and then goes to z = +∞ along the real axis. Let t0 ∈ (0, 1) such that C(t0) = −κ. Then,
Lemma 2.7 (3) tells us that fκ,γ(C(t)) maps (0, t0) to (−∞, 0) bijectively, and hence we see that it

maps (0, 1) to R in two-to-one correspondence. Let Ω̃+ = Ω+ ∩ΓL and C̃ its boundary. the image of

its boundary curve C̃ = ∂Ω̃+ under fκ,γ has a winding number about w = w0 being exactly two for
any w0 ∈ C+, and hence the function fκ,γ maps Ω+ to C+ two-to-one.

(ii) Assume that κ =∞ together with D(0) < 0, i.e., γ > 1
4 . Then, Ω is described in Proposition 2.4

(2). Take a large R > 0 and a small ε > 0 such that ε < |w0| < R. Then, we approximate Ω+ by the

curve C̃(t), t ∈ [0, 1] defined in such a way that, for L > 0 and δ > 0, by starting from C̃(0) = −L, it
goes to z = L along the real axis avoiding z = − 1

γ along a semicircle of radius δ > 0 in C+, and next
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to z = L + y(L)i along the line parallel to the imaginary axis, and next to z = −L + y(−L)i along

∂Ω ∩ C+ and finally goes back to C̃(1) = −L along the line parallel to the imaginary axis. Then,

since |f∞,γ(z)| =
∣∣ z
1+γz

∣∣ex = ex

|γ+ 1
z |

, we can choose L > 0 such that

|f∞,γ(−L+ yi)| < ε (y ∈ (0, y(−L))), |f∞,γ(L+ yi)| > R (y ∈ (0, y(L))),

and since |1 + γz| = γδ and zez are bounded around z = − 1
γ , we can choose δ > 0 such that∣∣f∞,γ(− 1

γ + δeiθ)
∣∣ > R. Since f∞,γ is non-singular on the lines ±L + yi, y ∈ (0, y(±L)), the curve

f∞,γ(C ′(t)), t ∈ [0, 1] contains the domain obtained from a semicircle of radiusR removing a semicircle
of radius ε. In particular, it contains w0. Since we can show that the winding number of the path

f∞,γ(C̃) with respect to w = w0 is exactly two, we conclude that the function fκ,γ maps Ω+ to C+

in two-to-one by a similar argument as in (i) above.

2.3.3. The case 0 < κ < 1 and γ ≤ 0. Although this case is out of the result stated in the previous
paper [10], the same proof given there (see the supplemental material of [10]) is valid, and thus we
omit it.

2.3.4. The case 0 < κ < 1 and γ > 0. In this case, Proposition 2.3 tells us that if 0 < a = κγ < 1

then Ω ∩ R = (α2,+∞), and if a > 1 then Ω ∩ R =
{
x ∈ R; x > −κ and x 6= − 1

γ

}
. If fκ,γ maps Ω+

to C+ bijectively, then it needs map ∂Ω+ to R. However, if x ∈ R satisfies x < min(α1,−κ), then

expκ(z) tends to
∣∣1 + x

κ

∣∣κ eiκπ as z → x via the arc reiθ = 1 + z
κ . Since 0 < κ < 1, then we see that

limz→x fκ,γ(z) is not real and hence fκ,γ cannot map Ω+ to C+ bijectively.

2.3.5. The case of κ < 0. We shall complete the proof of Theorem 1.3 by proving it for the case κ < 0.
To do so, let us recall the homographic (linear fractional) action of SL(2,R) on C: g · z := az+b

cz+d for

g =
(
a b
c d

)
∈ SL(2,R) and z ∈ C+. For each g ∈ SL(2,R), the corresponding homographic action

map C+ to C+ bijectively. Let κ = −κ′ with positive κ′ > 0. Consider the transformation

1 +
z′

κ′
=
(

1 +
z

κ

)−1
.

Notice that this transformation can be written as a homographic action as z′ =
(

1 0
1/κ 1

)
·z, and hence

it maps C+ to C+ bijectively. Then, since

z

1 + γz
=

z′

1 + (γ + 1/κ′)z′
and

(
1 +

z

κ

)κ
=

((
1 +

z

κ

)−1)−κ
=
(

1 +
z′

κ′

)κ′

(recall that we are taking the main branch so that log z = − log(z−1)), we obtain

fγ,κ(z) =
z

1 + γz

(
1 +

z

κ

)κ
=

z′

1 + (γ + 1/κ′)z′

(
1 +

z′

κ′

)κ′

= fγ+1/κ′, κ′(z′).

Set γ′ = γ+1/κ′. Since homographic actions map C+ to C+ bijectively, there exists a domain Ω such
that fκ,γ maps Ω+ = Ω ∩ C+ to C+ bijectively if and only if it holds for fγ′,κ′ . Thus, the condition
γ′ ≤ 0 is equivalent to γ ≤ 1

κ , and the condition κ′ > 1 and γ′ > 0 with γ′ ≤ 1
4 (1 + 1

κ′ )
2 is equivalent

to

γ >
1

κ
and κ < −1 with γ − 1

κ
≤ 1

4

(
1− 1

κ

)2
⇐⇒ γ ≤ 1

4

(
1 +

1

κ

)2
.

This shows the case κ < 0, and therefore we have completed the proof of Theorem 1.3. �
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[8] I. Mezö and Á. Baricz, On the generalization of the Lambert W function, Trans. Amer. Math. Soc. 369 11 (2017),

7917–7934.
[9] S. Miyajima, Verified computation for the matrix Lambert W function, App. Math. Compt. 362 (2019), 124555.

[10] Nakashima, H., Graczyk, P., Wigner and Wishart ensembles for sparse Vinberg models, to appear in Annals of

the Institute of Statistical Mathematics.
[11] da Silva, G.B., Ramos, R.V., The Lambert-Tsallis Wq function, Phys. A 525 (2019), 164–170.

[12] Zhang, F. D., Ng, H. K. T., Shi, Y. M. (2018), Information geometry on the curved q-exponential family with

application to survival data analysis, Phys. A 512, 788–802.

(Hideto Nakashima) The Institute of Statistical Mathematics, Midori-cho 10-3, Tachikawa, Tokyo, 190-

8562, Japan

E-mail address: hideto@ism.ac.jp

(Piotr Graczyk) Université d’Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France

E-mail address: piotr.graczyk@univ-angers.fr


