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On existence of holomorphic Lambert-Tsallis functions

In this paper, we study a new important class of special functions: the holomorphic Lambert-Tsallis functions, which are a two-parameter generalization of the Lambert function. A necessary and sufficient condition on the parameters is given for the existence of the main branch of the Lambert-Tsallis function.

Resumé: Dans cet article, nous étudions une nouvelle classe importante de fonctions spéciales: les fonctions holomorphes de Lambert-Tsallis qui sont une généralisation à deux paramètres de la fonction de Lambert. Une condition nécessaire et suffisante sur les paramètres est donnée pour l'existence de la branche principale de la fonction de Lambert-Tsallis.

Introduction

The Lambert W function is the multivariate inverse function of f (z) = ze z , studied intensely in [START_REF] Corless | On the Lambert W function[END_REF]. It plays an important role in various fields (see Corless et al [START_REF] Corless | On the Lambert W function[END_REF] and references therein), including the study of asymptotics of Triangular Wishart Ensembles [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] in the Random Matrix Theory. In a previous paper [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF], its two-parameter generalization W κ,γ , called Lambert-Tsallis function, was introduced for some particular values of parameters κ, γ, with motivations and important applications in Random Matrix Theory and statistics.

The function W κ,γ is defined as a holomorphic extension of the inverse function of a function f κ,γ , called a generalized Tsallis function, which generalizes f above and is defined by the product of a linear fraction of z and the Tsallis q-exponential function, see [START_REF] Ahlfors | Complex Analysis, An introduction to the theory of analytic functions of one complex variable[END_REF] for definition. We note that the Tsallis q-exponential function is now actively studied in information geometry [START_REF] Amari | Geometry of q-exponential family of probability distributions[END_REF][START_REF] Zhang | Information geometry on the curved q-exponential family with application to survival data analysis[END_REF] and physics [START_REF] Da Silva | The Lambert-Tsallis Wq function[END_REF]. There were several attempts of generalizing the Lambert function in many directions. In Mezö and Baricz [START_REF] Mezö | On the generalization of the Lambert W function[END_REF], z before e z is replaced by rational function of z (see also [START_REF] Jamilla | Solutions of neutral delay differential equations using a generalized Lambert W function[END_REF][START_REF] Maignan | Fleshing out the generalized Lambert W function[END_REF]) and in da Silva and Ramos [START_REF] Da Silva | The Lambert-Tsallis Wq function[END_REF], e z is replaced by the Tsallis q-exponential function. The matrix Lambert W function is considered in [START_REF] Corless | The sollution of s exp(s) = a is not always the Lambert w function of a[END_REF] and [START_REF] Miyajima | Verified computation for the matrix Lambert W function[END_REF].

In this note, generalized Tsallis exponential functions and Lambert-Tsallis functions are studied for the first time in the whole range of parameters κ, γ and a necessary and sufficient condition on parameters κ, γ is given for the existence of the main branch of the Lambert-Tsallis W function. More precisely, in the main Theorem 1.3, we characterize the parameters κ, γ such that there exists a complex domain Ω + containing zero on the boundary, which is mapped bijectively to the upper half plane C + by the generalized Tsallis function f κ,γ .

The proof of Theorem 1.3 is based on involved complex analysis. We omit some technical details.

Preliminaries and main result

For a non zero real number κ, we set

exp κ (z) := 1 + z κ κ (1 + z κ ∈ C \ R ≤0 ),
where we take the main branch of the power function when κ is not integer. If κ = 1 1-q , then it is exactly the so-called Tsallis q-exponential function (cf. [START_REF] Amari | Geometry of q-exponential family of probability distributions[END_REF][START_REF] Zhang | Information geometry on the curved q-exponential family with application to survival data analysis[END_REF]). For the sake of simplicity, we use the expression exp κ with parameter κ = 0. By virtue of lim κ→∞ exp κ (z) = e z , we define exp ∞ (z) = e z .

For two real numbers κ, γ such that κ = 0, we introduce a holomorphic function f κ,γ (z), which we call generalized Tsallis function, by

f κ,γ (z) := z 1 + γz exp κ (z) (1 + z κ ∈ C \ R ≤0 ). (1) 
Analogously to Tsallis q-exponential, we also consider f ∞,γ (z) = ze z 1+γz (z ∈ C). In particular, f ∞,0 (z) = ze z . Let D(f κ,γ ) be the domain of f κ,γ , that is, if κ is integer then D(f κ,γ ) = C \ {- 1 γ }, and if κ is not integer, then D(f κ,γ ) = C \ x ∈ R; 1 + x κ ≤ 0, or x = -1 γ .

The purpose of this work is to study the inverse function to f κ,γ in detail. A multivariate inverse function of f ∞,0 (z) = ze z is called the Lambert W function and is studied intensively in [START_REF] Corless | On the Lambert W function[END_REF]. Hence, we call a multivariate inverse function of f κ,γ the Lambert-Tsallis W function. We have

f κ,γ (z) = γz 2 + 1 + 1/κ z + 1 (1 + γz) 2 1 + z κ κ-1 , (2) 
so that f κ,γ (0) = 0. Consequently, in a neighborhood U of z = 0, the function f κ,γ (z) has an inverse function, denoted w κ,γ :

w κ,γ • f κ,γ (z) = z (z ∈ U ),
and w κ,γ (0) = 0. Let z = x + yi ∈ C and we set θ(x, y) := Arg 1 + z κ for finite κ = 0, where Arg(w) stands for the principal argument of w; -π < Arg(w) ≤ π. Since we now take the main branch of the power function, we have for finite κ = 0

f κ,γ (z) = |1 + z κ | 2 (1 + γx) 2 + γ 2 y 2 (x + γx 2 + γy 2 ) cos(κθ(x, y)) -y sin(κθ(x, y)) +i (x + γx 2 + γy 2 ) sin(κθ(x, y)) + y cos(κθ(x, y)) . (3) 
If κ = ∞, then we regard κθ(x, y) as y because we have lim κ→∞ exp κ (z) = e z = e x (cos y + i sin y). Then,

f κ,γ (z) ∈ R implies (x + γx 2 + γy 2 ) sin(κθ(x, y)) + y cos(κθ(x, y)) = 0. ( 4 
)
If sin(κθ(x, y)) = 0, then cos(κθ(x, y)) does not vanish so that y needs to be zero. This means that if z = x + yi ∈ f κ,γ (R) with y = 0, then we have sin(κθ(x, y)) = 0. Thus, the equation ( 4) for y = 0 can be rewritten as

F (x, y) := (x + γx 2 + γy 2 ) + y cot(κθ(x, y)) = 0. (5) 
For y = 0, we set F (x, 0) := lim y→0 F (x, y). If x = 0, then since θ(0, y) = Arctan( y κ ), we have

F (0, 0) = lim y→0 y cot(κArctan( y κ )) = 1.
Here, we take the main branch of Arctan x, that is, we have Arctan 0 = 0. Let us introduce a connected domain Ω = Ω κ,γ by

Ω = Ω κ,γ := {z = x + yi ∈ D(f κ,γ ); F (x, y) > 0} • , (6) 
where A • denotes the connected component of an open set A ⊂ C containing z = 0. Note that since F is an even function in y, the domain Ω is symmetric with respect to the real axis. Set

S := R \ f κ,γ Ω κ,γ ∩ R . (7) 
Definition 1.1. If there exists a unique holomorphic extension W κ,γ of w κ,γ to C \ S, then we call W κ,γ the Lambert-Tsallis function.

Remark 1.2. Strictly speaking, the Lambert-Tsallis function W κ,γ is the main branch of the multivalued Lambert-Tsallis W function (recall that W κ,γ (0) = 0). In our terminology the Lambert-Tsallis W function is multivalued and the Lambert-Tsallis function W κ,γ is single-valued. In this paper, we only study W κ,γ among other branches of the Lambert-Tsallis W function.

Our goal is to prove the following theorem which is the main result of the paper.

Theorem 1.3. There exists the main branch W κ,γ of the Lambert-Tsallis W function if and only if

(i) 0 < |κ| < 1 and γ ≤ min(0, 1 κ ), or (ii) |κ| ≥ 1 and γ ≤ 1 4 (1 + 1 κ ) 2 , or (iii) κ = ∞ and γ ≤ 1 4 . Moreover, W κ,γ maps C + onto Ω + := Ω ∩ C + bijectively.
Remark 1.4. As we shall see in §2.3, in the case κ > 1 and γ > 1 4 (1 + 1 κ ) 2 , the function f κ,γ maps Ω to C \ S two-to-one, and hence a holomorphic extension of w κ,γ exists on a smaller domain in Ω which is mapped by f κ,γ bijectively to C \ S, but it is not unique. In the case 0 < κ < 1 and γ > 0, the function f κ,γ : D(f κ,γ ) → C \ S is not surjective. Remark 1.5. In the recent paper [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF], we have proven Theorem 1.3 for the case γ ≤ 1 κ ≤ 1 and γ < 1, and when κ = ∞ and γ ≤ 0. Note that the case κ < 0 can be derived from the case κ > 0, see §2.3.5. Thus the sufficiency in the Theorem 1.3 is essentially new in the following three cases (a) 0 < κ < 1 and γ < 0, (b) κ > 1 and

1 κ < γ < 1 4 (1 + 1 κ ) 2 , (c) κ = ∞ and 0 < γ < 1 4
. The necessity part in the Theorem 1.3 is also a new result.

Proof of Theorem 1.3

The proof of the Theorem 1.3 is done in two steps. More precisely, we first give an explicit expression of Ω = Ω κ,γ , and then show that f κ,γ maps Ω to C \ S bijectively.

2.1. The domain Ω for 0 < κ < +∞. In this section, we shall determine the connected component Ω defined in [START_REF] Jamilla | Solutions of neutral delay differential equations using a generalized Lambert W function[END_REF] for the case 0 < κ < +∞. Let us change variables in [START_REF] Corless | The sollution of s exp(s) = a is not always the Lambert w function of a[END_REF] by

re iθ = 1 + z κ (r > 0, θ ∈ (0, π)), or equivalently x = κ(r cos θ -1), y = κr sin θ. (8) 
Set a := γκ and

b(θ) = (1 -2a) cos θ + sin θ cot(κθ) (θ = 0), b(0) = 1 -2a + 1 κ . (9) 
Then, the equation ( 5) can be written as

ar 2 + b(θ)r + a -1 = 0. ( 10 
)
If sin(κθ) = 0, then [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF] has a solution r = r ± (θ) = -b(θ) ± b(θ) 2 -4a(a -1) /(2a). Thus, for each angle θ, there exists at most two points on f -1 κ,γ (R). Since the change (8) of variables is the polar transformation, we need to know whether r ± (θ) is positive real or not. To do so, we shall study the function

D(θ) := b(θ) 2 -4a(a -1). Since D (θ) = 2b(θ)b (θ), we first consider b (θ). Set G(κ) := 2κ 2 + 3κ + 1 6κ .
Since b(θ) = 2(a -1) sin θ for κ = 1, 1 2 , we exclude these two cases. Lemma 2.1. Let us set I 0 := (0, min(π, π κ )). (1) Suppose that 0 < κ < 1 2 , or κ > 1. If a > G(κ), then there exists a unique ϕ * ∈ I 0 such that b (ϕ * ) = 0, and one has b (θ) > 0 for θ ∈ (0, ϕ * ), and b (θ) < 0 otherwise. If a < G(κ), then one has b (θ) < 0 for any θ ∈ I 0 .

(2) Suppose that 1 2 < κ < 1. If a ≤ G(κ), then there exists a unique ϕ * ∈ I 0 such that b (ϕ * ) = 0, and one has b (θ) < 0 for θ ∈ (0, ϕ * ), and b (θ) > 0 for θ ∈ (ϕ * , π). If a ≥ G(κ), then one has b (θ) > 0 for any θ ∈ I 0 .

Proof. Let us set for α, κ ∈ R

H α (x) := sin(αx) -α sin(x), F κ (x) := tan x • cot(κx), J κ (x) := - 2x -2κ -1 4κx -2κ -1 (x ∈ R). (11) 
For κ = 1, 1 2 , we have b(θ) = cos θ + sin θ cot(κθ) -2a cos θ = cos θ sin(κθ) + sin θ cos(κθ) sin(κθ) -2a cos θ, and hence b (θ) can be written as

b (θ) = H 2κ+1 (θ) 2 sin 2 (κθ) + 2a sin θ.
Let us set

B(θ) := 2 sin 2 (κθ)b (θ) = H 2κ+1 (θ) + 4a sin θ sin 2 (κθ), (κ, a) := 4aκ -2κ -1. ( 12 
)
Then, the signatures of b (θ) and B(θ) are the same on the interval I 0 , and hence we actually work with B(θ). We have B(0) = 0 for any κ > 0, and

B(π) = -cot(κπ) sin 2 (κπ) < 0 (if 0 < κ < 1 2 ), > 0 (if 1 2 < κ < 1) B π κ = -2κ sin π κ < 0 (κ > 1). ( 13 
)
In fact, we have B( π κ ) = H 2κ+1 ( π κ ) = -2κ sin π κ < 0 when κ > 1. The derivative of B(θ) is given as

B (θ) =    2 (κ, a) cos θ sin 2 (κθ) F κ (θ) -J κ (a) ( (κ, a) = 0), 1 -4κ 2 κ cos θ sin 2 (κθ) ( (κ, a) = 0). ( 14 
)
We note that the condition G(κ) = a comes from a condition F κ (0) -J κ (a) = 0. According to a case classification with respect to F κ (θ) (cf. Table 1), we need to divide cases into the following four cases: (i) 0 < κ < 1 2 , (ii) 1 2 < κ < 1, (iii) 1 < κ < 2, and (iv) κ ≥ 2. Let us first consider the equation

F κ (θ) -J κ (a) = 0 ⇐⇒ F κ (θ) = J κ (a) on I 0 = (0, min(π, π κ )). ( 15 
)
Since J κ (a) does not depend on θ, it is important to know where it meets end points or maximal/minimal values of F κ (θ). By Table 1, for end points, they are J κ (a) = 1 κ or 0, and its solutions on a are given as a = G(κ) or a = κ + 1/2, respectively. If 1 2 < κ < 2 (κ = 1), then we need a solution of J κ (a) = F κ (x * ). Since J κ is bijective, there exists a unique solution a * such that J κ (a * ) = F κ (x * ).

The proof can be done by considering further cases according to the position of J κ (a). The calculations are delicate and tedious but elementary, and thus we only give a proof for the case

1 2 < κ < 1 and 0 ≤ J κ (a) ≤ F κ (x * ).
Assume that 1 2 < κ < 1. In this case, we have B(π) > 0 by (13). Recall that J κ is monotonic decreasing in a in this situation. Let x * be the maximal point of F κ in I 0 . Then, we have 0 < F κ (x * ) < 1. In fact, since x * ∈ ( π 2 , π), we have sin((1 -κ)x * ) > 0 and hence it implies that

sin x * cos(κx * ) -cos x * sin(κx * ) > 0 ⇐⇒ F κ (x * ) = sin x * cos(κx * ) cos x * sin(κx * ) < 1.
Here we use cos x * < 0 and sin(κx * ) > 0. Let a * be the unique solution of 1 tells us that we have three cases in the equation (15) as follows.

F κ (x * ) -J κ (a) = 0 in a. Then, we see that a * ∈ (1, 1 2 + κ) by J κ (1) = 1. Table
(a) It does not have a solution if

F κ (x * ) < J κ (a) < 1 κ , which is equivalent to the condition G(κ) < a < a * . Since F κ (x * ) > 0, we see that (κ, a) > 0 in this situation.
(b) The equation ( 15) has a unique solution ϕ if J κ (a) ≥ 1 κ or J κ (a) < 0. In the former case, the condition is equivalent to 1 2 + 1 4κ < a ≤ G(κ), and we have ϕ < π 2 and (κ, a) > 0. In the latter case, we have ϕ > π 2 , and the condition is divided into two situations; one is a > 1 2 + κ, and the other is

a < 1 2 + 1 4κ . (c) The equation (15) has two solutions ϕ 1 ≤ ϕ 2 if 0 ≤ J κ (a) ≤ F κ (x * ), which is equivalent to the condition a * ≤ a ≤ 1
2 + κ so that (κ, a) > 0. We note that we have ϕ i > π 2 , and if J κ (a) = F κ (x * ) then we have ϕ 1 = ϕ 2 . We only deal with the case (c).

Let us assume that 0 ≤ J κ (a) ≤ F κ (x * ), i.e., a * ≤ a ≤ 1 2 + κ. In this situation, the signature of B is negative in the interval (0, ϕ 1 ) and (ϕ 2 , π), and positive in (ϕ 1 , ϕ 2 ). In order to show that B(ϕ i ) > 0 (i = 1, 2), which implies b (θ) > 0 for any θ ∈ I 0 , we calculate b (θ) in a different way as follow. By differentiating b(θ) by using expression [START_REF] Miyajima | Verified computation for the matrix Lambert W function[END_REF], we obtain

b (θ) = (2a -1) sin θ + cos θ cot(κθ) - κ sin θ sin 2 (κθ) ,
and hence B(θ) can be also described as

B(θ) = 2(2a -κ -1) sin θ + 2 cos θ sin(κθ) cos(κθ)((2a -1)F κ (θ) + 1). ( 16 
)
Since

ϕ i (i = 1, 2) satisfy F κ (ϕ i ) -J κ (a) = 0 by definition, we see that (2a-1)F κ (ϕ i )+1 = (2a-1)J κ (a)+1 = -(2a -1)(2a -2κ -1) + (4aκ -2κ -1) (κ, a) = 4a(a -1) (κ, a) . (17) 
Now we assume a * < a < 1 2 + κ and we know a * > 1 so that we have 2a -κ -1 > 0 and (2a -1)F κ (ϕ i ) + 1 > 0 for i = 1, 2 by (17). Since ϕ i ∈ ( π 2κ , π), we see that cos ϕ i sin(κϕ i ) cos(κϕ i ) > 0 and hence we obtain B(ϕ i ) > 0 (i = 1, 2) by ( 16). Thus, we conclude b (θ) > 0 on the interval I 0 .

The other cases can be done similarly.

Now we are able to obtain explicit formulas of Ω. Note that, since

F (x, y) is a continuous function, the boundary ∂Ω is included in the set {z = x + yi ∈ C; F (x, y) = 0} ⊂ f -1 κ,γ (R). Proposition 2.2. Suppose that κ = 1. (1) If γ > 1, then one has Ω = C \ {-1 γ }. (2) If 0 < γ ≤ 1, then one has Ω = z = x + yi ∈ D(f κ,γ ); x + 1 γ 2 + y 2 > 1-γ γ 2 . (3) If γ = 0, then one has Ω = {z = x + yi ∈ D(f κ,γ ); 1 + 2x > 0}. (4) If γ < 0, then one has Ω = z = x + yi ∈ D(f κ,γ ); x + 1 γ 2 + y 2 < 1-γ γ 2
, which is bounded.

Table 1. Increasing/Decreasing table of F κ (θ) (A) 0 < κ ≤ 1 2 x 0 • • • π 2 • • • π F κ + × + F κ 1 κ +∞ × -∞ 0 (B) 1 2 < κ < 1 x 0 • • • π 2 • • • x * • • • π F κ + × + 0 - F κ 1 κ +∞ × -∞ F κ (x * ) 0 F κ (x * ) < 1 (C) 1 < κ < 2 x 0 • • • π 2 • • • x * • • • π κ F κ - × - 0 + F κ 1 κ -∞ × +∞ F κ (x * ) +∞ × F κ (x * ) > 1 (D) κ ≥ 2 x 0 • • • π κ F κ - × F κ 1 κ -∞ ×
In the table, the symbol × means that the functions are not defined at that point. The symbol x * denotes a maximal/minimal point in the interval I 0 , if it exists.

Proof. In the case κ = 1, we have θ(x, y) = Arg(1 + z) so that tan(θ(x, y)) = y/(1 + x). Thus, we have

F (x, y) = 1 + 2x + γx 2 + γy 2 =    γ x + 1 γ 2 + γy 2 + γ-1 γ (if γ = 0), 1 + 2x (if γ = 0). Note that z = 0 is contained in the set z = x + yi ∈ C; 1 + 2x + γx 2 + γy 2 > 0 .
Since it is connected, the proof is now completed.

Set θ 0 := π κ and I 0 = (0, min(π, θ 0 )). Let r ± (θ) be the solutions of the equation ( 10) and let α i , i = 1, 2 be the solutions of the equation f κ,γ (z) = 0 which come from rational part of f κ,γ . If α i are real, then we assume that α 1 ≤ α 2 , and if not, then we assume that Im α 1 > Im α 2 . Recall that a = κγ and D(0

) = 1 + 1 κ 2 -4γ. Proposition 2.3. Let κ > 0 with κ = 1. For z ∈ D(f κ,γ ), one sets re θ = 1 + z κ .
Then, Ω can be described as follows.

(1) If a < 0, then there exists a unique θ * ∈ (0, π κ+1 ) such that r + (θ * ) = r -(θ * ) and that r ± (θ) are both positive with r -(θ) ≤ r + (θ) on (0, θ * ). Moreover, one has

Ω = {z ∈ D(f κ,γ ); |θ| < θ * and r -(θ) < r < r + (θ)} .
In particular, Ω is bounded. One has α 1 , α 2 ∈ ∂Ω and -1 γ ∈ Ω, whereas -κ ∈ Ω. (2) If a = 0, then one has r(θ) = r ± (θ) = sin(κθ) sin((κ+1)θ) which is positive on the interval (0, π κ+1 ). Moreover, one has

Ω = z ∈ D(f κ,γ ); |θ| < π κ + 1
and r > r(θ) .

Ω has an asymptotic line y = ±(tan π κ+1 )(x + κ 2 κ+1 ). One has

α 1 = α 2 = -κ κ+1 ∈ ∂Ω and -κ ∈ Ω. (3) If 0 < a < 1, then r + (θ)
is the only positive solution of (10) on I 0 , and one has 

Ω = {z ∈ D(f κ,γ ); |θ| < min(θ 0 , π) and r > r + (θ)} . One has α 2 ∈ ∂Ω, whereas α 1 , -1 γ , -κ ∈ Ω. If κ > 1, then Ω has an asymptotic line y = ±(tan θ 0 )(x + κ -1 a ). Note that if 0 < κ < 1 then Ω = D(f κ,γ ). ( 4 
Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 and r > r + (θ)} . One has α 2 = -1 ∈ ∂Ω, while α 1 = -κ = -1 γ ∈ Ω.
Moreover, Ω has an asymptotic line y = ±(tan θ 0 )(x + κ -1 a ). ( 5) Suppose that a > 1.

(a) If κ > 1 with D(0) ≥ 0, then r ± (θ) are both positive in I 0 with r -(θ) ≤ r + (θ), and one has

Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 and r > r + (θ)} .
Ω has an asymptotic line y = ±(tan θ 0 )(x+κ-1 a ). One has α 2 ∈ ∂Ω, while -κ, -1 γ , α 1 ∈ Ω. (b) If κ > 1 and D(0) < 0, then there exists a unique θ * ∈ (0, θ 0 ) such that D(θ * ) = 0, and r ± (θ) are both positive in the interval (θ * , θ 0 ). Moreover, one has

Ω = {z ∈ D(f κ,γ ); |θ| < θ 0 and if |θ| ≥ θ * then 0 < r < r -(θ) or r > r + (θ)} .
In this case, α i , i = 1, 2 are both non-real numbers and one has α i , -κ ∈ ∂Ω and -1 γ ∈ Ω. Moreover, Ω has an asymptotic line y = ±(tan θ 0 )(x + κ -1 a ). (c) If 0 < κ < 1, then there are no θ ∈ I 0 such that D(θ) > 0, and one has Ω = D(f κ,γ ).

Proof. Since Ω is symmetric with respect to the real axis, we shall actually work with the boundary ∂Ω + of Ω + = Ω ∩ C + . The cases (1)-( 3) are done in the previous paper [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF], and thus we omit them.

(4) Assume that a = 1 and κ = 1. In this case, α i , i = 1, 2 are given as α i = -1 or -1 γ = -κ, and the equation ( 10) reduces to r 2 + b(θ)r = 0, whose solutions are r(θ) = 0, -b(θ). Since b(θ) can be described as b(θ) = sin((1 -κ)θ)/ sin(κθ) in this case, it is easily verified that, if 0 < κ < 1 then b(θ) > 0, and if κ > 1 then b(θ) < 0 for any θ ∈ I 0 . This means that if 0 < κ < 1 then the equation [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF] does not have a positive solution, and hence we have

Ω + = {z ∈ D(f κ,γ ); 0 < θ < π, r > 0} = C + , which shows Ω = D(f κ,γ ). Since we have α 1 = -1 and α 2 = -κ = -1
γ , the assertion ( 4)-(a) is proved. On the other hand, if κ > 1, then we have b (θ) < 0 for θ ∈ I 0 by Lemma 2.1 together with the fact G(κ) > 1 for any κ > 1. Since b(0) = 1 + 1 κ -2 < 0 and lim θ→θ0-0 b(θ) = -∞, the function D(θ) is monotonic increasing on I 0 and hence we have lim θ→θ0-0 r + (θ) = +∞. Thus, the curve r + (θ), θ ∈ I 0 has an asymptotic line with gradient tan θ 0 , which is determined later. Therefore, we have Ω + = {z ∈ D(f κ,γ ); 0 < θ < θ 0 and r > r + (θ)} .

In this case, we have α 1 = -κ = -1 γ and α 2 = -1. The assertion (4)-(b) is now proved. (5) Suppose that a > 1 and κ = 1. In this case, we have b(0) = 1 + 1 κ -2a and lim

θ→θ0-0 b(θ) = -∞ (if κ > 1), b(π) = 2a -1 > 0 (0 < κ < 1). Note that b(0) > 0 if κ > 1. Since r + (θ) • r -(θ) = a-1
a > 0, two solutions r ± (θ) of ( 10) have the same signature if r ± (θ) are real. (a) We first consider the case κ > 1 and D(0) ≥ 0. Let us show that D(θ) > 0 for θ ∈ I 0 . If we set K(x) := x 4 1 + 1

x 2 , then the condition D(0) ≥ 0 is equivalent to a ≤ K(κ), and hence we have

a ≤ G(κ) because G(x) -K(x) = (x 2 -1)(12x) > 0 if x > 1.
By the assumption κ > 1, we see that b (θ) < 0 for any θ ∈ I 0 by Lemma 2.1 so that b is monotonic decreasing in this interval. Since b(0) < 0, the function b is negative in I 0 , and hence D (θ) = 2b(θ)b (θ) > 0 so that D(θ) is monotonic increasing in the interval I 0 , and in particular, it is positive on I 0 . Thus, we see that r ± (θ) are real on I 0 , and by r

+ (θ) + r -(θ) = -b(θ)/a > 0 we have r ± (θ) > 0 (θ ∈ I 0 ). Since for ε = ±1 r ε (θ) = 1 2a -b (θ) + ε 2b(θ)b (θ) 2 D(θ) = -εb (θ) 2a • -b(θ) + ε D(θ) D(θ) = -εb (θ) r ε (θ) D(θ) , (18) 
we have r + (θ) > 0, and hence the function r + (θ) is monotonic increasing, whereas r -(θ) is monotonic decreasing because r -(θ) = a-1 ar+(θ) . Note that we have r + (θ) → +∞ and r 0 (θ) → 0 as θ → θ 0 -0. Thus, r + (θ), θ ∈ I 0 draws an unbounded curve connecting z = α 2 to ∞ with an asymptotic line with slope tan θ 0 , and r -(θ), θ ∈ I 0 draws a bounded curve connecting z = α 1 to z = -κ. Since we have -κ < -1 γ < α 1 < α 2 < 0 and since Ω is the connected component including z = 0, we have Ω + = {z ∈ D(f κ,γ ); 0 < θ < θ 0 , r > r + (θ)} .

(b) Next, we assume that κ > 1 and D(0) < 0. According to Lemma 2.1 (1), we consider the function b (θ) in two cases, that is, (i) a ≤ G(κ) and (ii) a > G(κ).

(i) Assume that a ≤ G(κ). Then, b is negative and hence b(θ) is monotonic decreasing. Since b(0) < 0, we see that b(θ) < 0 for any θ ∈ I 0 and therefore D (θ) = 2b(θ)b (θ) > 0 for any θ ∈ I 0 . Thus, D(θ) is monotonic increasing with D(0) < 0. Since D(θ) → +∞ as θ → θ 0 -0, we see that there exists a unique θ * such that D(θ * ) = 0, and r ± (θ) are real for θ ∈ (θ * , θ 0 ). In this interval, since r + (θ) + r -(θ) = -b(θ)/a > 0, we see that r ± (θ) are both positive. By (18), we have r + (θ) > 0 and thus the function r + (θ) is monotonic increasing, whereas r -(θ) is monotonic decreasing because r -(θ) = a-1 ar+(θ) . As θ → θ 0 -0, we have r + (θ) → +∞ and r -(θ) → 0. This means that r + (θ) draws an unbounded curve connecting z = α 1 and z = ∞, and r -(θ) draws a bounded curve connecting z = α 1 and z = -κ, where α 1 is the complex solution of f κ,γ (z) = 0 with positive imaginary part. Since we have -κ < -1 γ < 0, the domain Ω + is given as

Ω + = {z ∈ D(f κ,γ ); 0 < θ < θ 0 , if θ ≥ θ * then 0 < r < r -(θ) or r > r + (θ)} .
(ii) Assume that a > G(κ). In this case, we have D(0) < 0 and D(θ) → +∞ as θ → θ 0 -0. Then, there are two possibilities on b(ϕ * ), that is, it is positive or negative. If b(ϕ * ) ≤ 0, then D(θ) has a unique minimal point at θ = ϕ * . On the other hand, if b(ϕ * ) > 0, then there exist exactly two ϕ 1 < ϕ 2 in I 0 such that b(ϕ i ) = 0. Then, D(θ) has a unique maximal point at θ = ϕ * whereas there are exactly two minimal point at θ = ϕ 1 , ϕ 2 in I 0 . We note that D(ϕ i ) = b(ϕ i ) 2 -4a(a -1) < 0. Since r + (θ) + r -(θ) = -b(θ)/a, if D(ϕ * ) > 0, then r ± (θ) are both negative so that we need not deal with this case. Thus, regardless of whether b(ϕ * ) is positive or not, there exists a unique θ * ∈ I 0 such that D(θ * ) = 0 and r ± (θ) > 0 for any θ ∈ (θ * , θ 0 ). By (18), we see that r + (θ) is monotonic increasing on (θ * , θ 0 ), whereas r -(θ) is monotonic decreasing. Moreover, we have r + (θ) → +∞ and r -(θ) → 0 as θ → θ 0 -0, and hence the curves r ± (θ), θ ∈ (θ * , θ 0 ) form an unbounded curve connecting z = α 1 and z = ∞. Since -κ < -1 γ < 0, we have

Ω + = {z ∈ D(f κ,γ ); 0 < θ < θ 0 , and if θ ≥ θ * then 0 < r < r -(θ) or r > r + (θ)} .
(c) We finally assume that 0 < κ < 1. In this case, we have D(π) = (2a -1) 2 -4a(a -1) = 1. We note that b(0) < 0 implies D(0) < 0. In fact, b(0) < 0 means 1 + 1 κ < 2a so that

D(0) = 1 + 1 κ 2 - 4a κ < 2a 1 + 1 κ - 4a κ = 2a 1 - 1 κ < 0. ( 19 
)
Since a > 1, the signatures of r ± (θ) are the same, and they are the opposite to the signature of b(θ).

Let I D ⊂ I 0 be the maximal interval such that D is positive on I D . We shall show that there are no suitable solutions of [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF], that is, r ± (θ) < 0 for any θ ∈ I D , which yields that Ω + = C + and hence Ω = D(f κ,γ ). Let us recall Lemma 2.1.

(i) Assume that 0 < κ < 1 2 and a > G(κ). In this case, b(θ) have a unique maximal point at θ = ϕ * , and we have b(π) > 0. If b(0) ≥ 0, then we see that b(θ) > 0 for any θ ∈ I 0 , which implies r ± (θ) < 0 for any θ ∈ I D . If b(0) < 0, then there exists a unique 0 < ϕ < ϕ * such that b(ϕ) = 0, and we have D(0) < 0 by (19). Hence, D(θ) have a unique maximal point D(ϕ * ) > 0 at θ = ϕ * and a unique minimal point D(ϕ) < 0 at θ = ϕ. Thus, I D is included in (ϕ, π) and b is positive on I D , whence r ± (θ) < 0 for any θ ∈ I D .

(ii) Assume that 0 < κ < 1 2 and a ≤ G(κ). Then, Lemma 2.1 tells us that b (θ) < 0 for any θ ∈ I 0 . Thus, b(θ) is monotonic decreasing on the interval I 0 with b(π) > 0, and hence b(θ) > 0 for any θ ∈ I 0 . This means that D (θ) < 0 and D(θ) is monotonic decreasing on I 0 . Since D(π) = 1, we see that I D = I 0 and hence r ± (θ) < 0 for any θ ∈ I D .

(iii) Assume that 1 2 ≤ κ < 1. In this case, we have we have b (θ) > 0 for any θ ∈ I 0 so that b(θ) is monotonic increasing. In fact, if κ > 1 2 , then since G(κ) < 1 for 1 2 < κ < 1 and since a > 1, we always have a > G(κ) so that b (θ) > 0 by Lemma 2.1, and if κ = 1 2 then we have b (θ) = 2(a -1) sin θ so that b (θ) > 0. If b(0) ≥ 0, then we have b(θ) ≥ 0 for any θ ∈ I 0 and hence we see that r ± (θ) < 0 for θ ∈ I D . If b(0) < 0 then there exists a unique ϕ such that b(ϕ) = 0. Thus, D(θ) has a unique minimal point D(ϕ) < 0 with D(0) < 0 and D(π) > 0, and hence there are no θ ∈ I 0 such that D(θ) > 0 and b(θ) > 0. Thus, we have b(θ) > 0 for θ ∈ I D , which implies r ± (θ) < 0.

We shall determine an asymptotic line with respect to Ω + when r + (θ) → +∞ as θ → π κ or π κ+1 . To calculate them in one scheme, we set ϑ = π κ or π κ+1 , and denote its denominator by k. A line having gradient tan ϑ can be written as x sin ϑ -y cos ϑ = A with some constant A. Let us determine the constant A. Since x = κ(r(θ) cos θ -1) and y = κr(θ) sin θ as in (8), we have x sin ϑ -y cos ϑ = κ sin ϑ(r(θ) cos θ -1) -cos ϑr(θ) sin θ = -κ r(θ) sin(θ -ϑ) + sin ϑ .

A simple calculation yields that sin(θ-ϑ) sin(kϑ) → -1 k as θ → θ 0 -0, which implies lim θ→ϑ-0 b(θ) sin(θ -ϑ) = lim θ→ϑ-0

(1 -2a) cos θ sin(θ -ϑ) + sin θ cos(kθ) sin(θ -ϑ) sin(kθ) = sin ϑ ak .

Since r + (θ) can be described as

r + (θ) = -b(θ) + b(θ) 2 -4a(a -1) 2a = - b(θ) 2a 1 + 1 - 4a(a -1) b(θ) 2 ,
we have

lim θ→ϑ-0 r + (θ) sin(θ -ϑ) = lim θ→ϑ-0 - b(θ) sin(θ -ϑ) 2a 1 + 1 - 4a(a -1) b(θ) 2 = - sin ϑ ak .
Thus, we have

A = -κ(-sin θ0 aκ + sin θ 0 ) = 1 a -κ sin θ 0 (if k = κ), -κ(-sin θ1 κ+1 + sin θ 1 ) = -κ 2 κ+1 sin θ 1 (if k = κ + 1
), and therefore the proof is now complete.

2.2.

The domain Ω for κ = ∞. In this section, we deal with the case κ = ∞. Since κθ(x, y) is regarded as y in this case, the equation ( 5) can be written as

F (x, y) = x + γx 2 + γy 2 + y cot y = 0. ( 20 
)
Proposition 2.4. Assume that κ = ∞ and let x i (y), i = 1, 2 be solutions of (20) with x 1 (y) ≤ x 2 (y) if they are real.

(1) If γ = 0, then one has Ω = {z = x + yi; |y| < π and x > -y cot y}.

(2) Suppose that γ > (4) Suppose that γ < 0. Then, there exists a unique y 0 ∈ (0, π) such that x 1 (y 0 ) = x 2 (y 0 ) and if y ≤ y 0 then x i (y), i = 1, 2 are real. Moreover, one has

Ω = {z = x + yi ∈ C; |y| < y 0 and x 1 (y) < x < x 2 (y)} .
In particular, Ω is bounded.

Proof. Similarly to the proof of Proposition 2.3, we work with Ω + = Ω ∩ C + . Let us assume y > 0.

(i) The case γ ≤ 0 is dealt in the previous paper [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF], and hence we omit it. Note that The case γ = 0 corresponds to the case of the classical Lambert function (cf. [START_REF] Corless | On the Lambert W function[END_REF]).

(ii) Assume that γ > 0. Since there are no solutions of (20) on the line R + iπ and since Ω is symmetric with respect to the real axis, it is enough to consider y in the interval (0, π). The equation (20) can be calculated as

x 2 + x γ + y 2 + y cot y γ = 0 ⇐⇒ x + 1 2γ 2 = 1 4γ 2 -y 2 - y cot y γ =: h(y). (21) 
Let us set g(y) := cos y + 2γy sin y. Then, the function h(y) satisfies

h(y) = 1 -g(y) 2 4γ 2 sin 2 y , h(0) = lim y→0 h(y) = 1 -4γ 4γ 2 and lim y→π-0 |h(y)| = +∞.
In order that the equation (21) has a real solution in x and y, the function h(y) needs to be nonnegative, and it is equivalent to the condition that the absolute value of the function g(y) is less than or equal to 1. Thus we investigate the function g(y). At first, we observe that g(0) = 1 and g(π) = -1. Its derivative is calculated as g (y) = -sin y + 2γ(sin y + y cos y) = -(1 -2γ) sin y + 2γy cos y = (2γ -1) 2γ 2γ -1 y + tan y cos y.

Set c γ = 2γ 2γ-1 . Then, the signature of g can be determined by the product of signatures of 2γ -1, cos y and c γ y + tan y.

(ii-1) Assume that γ > 1 4 . If γ > 1 2 , then we have c γ > 1 and hence there exists a unique y * ∈ ( π 2 , π) such that c γ y + tan y = 0. If 1 4 < γ < 1 2 , we have c γ < -1 so that there exists a unique y * ∈ (0, π 2 ) such that c γ y * + tan y * = 0. Thus, for both cases, g(y) has a unique maximal point at y = y * with g(0) = 1 and g(π) = -1. If γ = 1 2 , then we have g (y) = y cos y, whence g (y) > 0 for y ∈ (0, π 2 ) and g (y) < 0 for y ∈ ( π 2 , π) so that in this case y * = π 2 is the only solution of g(y) = 0 for y ∈ (0, π). These observation shows that, if γ > 1 4 , then there exists one and only one y 0 ∈ (y * , π) such that g(y 0 ) = 1 and g(y 0 -ε) > 1 for ε ∈ (0, y 0 -y * ). In this case, h(y) is non-negative in the interval [y 0 , π), and h(h 0 -ε) < 0 for ε ∈ (0, y 0 -y * ). Let x i (y), i = 1, 2 be the real solutions of the equation ( 21) with x 1 (y) ≤ x 2 (y). Then, since we have x 1 (y 0 ) = x 2 (y 0 ), the curves x i (y), y ∈ (y 0 , π) form a connected curve. Moreover, since the correspondence of y ∈ (y 0 , π) to x i (y) is one-to-one and since x 1 (y) → -∞, and x 2 (y) → +∞ as y → π -0, the function y = y(x) connecting the two inverse functions of x = x i (y) is defined for any x ∈ R and its image is [y 0 , π). Thus, we have

Ω + = {z = x + yi ∈ C; x ∈ R and 0 < y < y(x)} .
(ii-2) Assume that 0 < γ ≤ 1 4 . Then, we have -1 ≤ c γ < 1 and hence there are no y ∈ (0, π) such that c γ y + tan y = 0. Thus, we obtain g (y) < 0 for any y ∈ (0, π) so that g is monotonic decreasing from g(0) = 1 to g(π) = -1. This shows that h(y) is non-negative in the interval (0, π). Let x i (y), i = 1, 2 be the solutions of the equation ( 21) with x 1 (y) ≤ x 2 (y). Then, since x 1 (y) → -∞ and x 2 (y) → +∞ as y → π -0, we have by x 1 (0) < x 2 (0) < 0 Ω + = {z = x + yi ∈ C; 0 < y < π and x > x 2 (y)} , which completes the proof.

2.3. Bijectivity of f κ,γ . We consider the domain Ω + := Ω ∩ C + , and investigate whether f κ,γ maps D to C + bijectively or not. Then, since f κ,γ (z) = f κ,γ (z), the bijectivity of f κ,γ from Ω to C \ S is obtained at the same time.

The key tool is the argument principle (see [1, Theorem 18, p.152], for example).

Theorem 2.5 (The argument principle). If f (z) is meromorphic in a domain Ω with the zeros a j and the poles b k , then

1 2πi γ f (z) f (z) dz = j n(γ, a j ) - k n(γ, b k )
for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros or poles. Here, n(γ, a) is the winding number of γ with respect to a.

We also use the following elementary property of holomorphic functions.

Lemma 2.6. Let f (z) = u(x, y) + iv(x, y) be a holomorphic function. The implicit function v(x, y) = 0 has an intersection point at z = x + yi only if f (z) = 0.

2.3.1. The case κ ≥ 1 and γ ≤ 0. This case is done in the previous paper [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF], and thus we omit it.

2.3.2. The case κ ≥ 1 and γ > 0. In this case, Propositions 2.3, 2.2 and 2.4 tell us that Ω is unbounded. We first consider S defined in [START_REF] Maignan | Fleshing out the generalized Lambert W function[END_REF]. Note that the case (κ, γ) = (1, 1) is the trivial case f κ,γ (z) = z.

Lemma 2.7. Let α i , i = 1, 2 be the solutions of [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF].

(1) Assume that κ > 1 or κ = ∞ together with D(0) ≥ 0. Then, α i are both real and S = (-∞, f κ,γ (α 2 )) with f κ,γ (α 2 ) < 0. (2) Assume that κ = 1 and 0 < γ < 1. Then, α i are both real, and one has S = (f κ,γ (α 1 ), f κ,γ (α 2 ))

with f κ,γ (α 2 ) < 0. Note that 0 < γ < 1 is equivalent to D(0) > 0.

(3) Assume that κ ≥ 1 or κ = ∞ together with D(0) < 0. Then, α i are both non-real, and one has S = ∅. On the other hand, one has f κ,γ (∂Ω ∩ C + ) = (-∞, 0).

Proof. The proof is elementary so we only deal with the latter assertion in [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] 

f κ,γ (z) = 1 + z κ κ 1 + γz 2 • -y sin(κθ(x, y)) < 0. ( 22 
)
This means that, if z ∈ C + goes to ∞ along the path ∂Ω ∩ C + , then f κ,γ must tend to -∞. On the other hand, taking a limit y → +0 along ∂Ω ∩ C + is equivalent to z → -κ in this case and hence f κ,γ (z) → 0. Since f κ,γ is continuous, the assertion is now proved.

For L > 0, let Γ L be the circle -κ+Le iθ of origin z = -κ with radius L. We divide cases according to this lemma.

The case [START_REF] Ahlfors | Complex Analysis, An introduction to the theory of analytic functions of one complex variable[END_REF]. In this case, Ω is given in Propositions 2.3 or 2.4. Let us take a path C = C(t), t ∈ (0, 1) in such a way that by starting from z = ∞, it goes to z = α 2 along the curve r + describing ∂Ω ∩ C + in the upper half plane, and then goes to z = ∞ along the real axis. Here, we can assume that C (t) = 0 whenever C(t) = α i , i = 1, 2 because f κ,γ (C(t)) = 0 otherwise. We take an arc-length parameter t so that C (t) represents the direction of the tangent line at x + yi = C(t). Lemma 2.6 tells us that g(t) := f κ,γ C(t) is a monotonic increasing function on (0, 1) such that g(t) → -∞ as t → 0 and g(t) → +∞ as t → 1.

We shall show that for any w 0 ∈ C + there exists one and only one z 0 ∈ C + such that f κ,γ (z 0 ) = w 0 . Recall that Im f κ,γ (z) > 0 for any z ∈ C + . Let us take an R > 0 such that |w 0 | < R. For an L > 0, let z i , i = 1, 2 be two distinct intersection points of C and Γ L . Note that we can take z 1 = -κ+L ∈ R and z 2 ∈ C + . Let C be a closed path obtained from C by connecting z 1 and z 2 via the arc A L of Γ L included in C + .

Let Ω + be the inside set of C. Since f κ,γ is non-singular on the arc A, the curve f κ,γ (A) does not have a singular point so that it is homotopic to a semi-circle in C + . In particular, we can take an L such that its radius is larger than R so that the inside set f κ,γ ( Ω + ) of the curve f κ,γ ( C) is a bounded domain including w 0 ∈ C + . Since the winding number of the path f κ,γ ( C) about w = w 0 is exactly one, we see that

1 2πi C f κ,γ (z) f κ,γ (z) -w 0 dz = 1 2πi fκ,γ ( C) dw w -w 0 = 1.
Since f κ,γ does not have a pole on D be definition, the function f κ,γ (z) -w 0 has the only one zero point, say z 0 , by the argument principle in Theorem 2.5. Then, we obtain f κ,γ (z 0 ) = w 0 , and such z 0 is unique. Since we can take w 0 ∈ C + arbitrary, we conclude that the map f κ,γ is a bijection from D to the upper half plane C + . The case (2). In this case, Ω is given in Proposition 2.2 (2). As in the case (1), it is enough to show that an approximating domain Ω + of Ω + = Ω ∩ C + satisfies that the image of its boundary curve C = ∂ Ω + under f κ,γ has a winding number about w = w 0 being exactly one for any w 0 ∈ C + .

By the proof of Proposition 2.2, the boundary of Ω + can be described as a path C(t), t ∈ (0, 1) defined in a such a way that by staring z = ∞, it goes to z = α 1 along the real axis, and then it goes to z = α 2 along the curve ∂Ω ∩ C + , which is a semi-circle of origin z = -1 γ with radius √ 1 -γ/γ, and then it goes to z = ∞ along the real axis. Notice that f κ,γ ( C(t)) = 0 for any t ∈ (0, 1) except for t i such that C(t i ) = α i , i = 1, 2. In particular, Lemma 2.6 tells us that f κ,γ (C(t)) is monotonic increasing in the interval (t 1 , t 2 ), and hence the function f κ,γ (C(t)) maps (0, 1) to R bijectively. Therefore, we can construct an approximating domain Ω + from C(t) and Γ L similar to the case (1), such that the image of its boundary C under f κ,γ has a winding number being exactly one, and hence we have shown the bijectivity of f κ,γ on Ω + to C + . The case (3). In this case, we shall show that the approximating domain Ω + of Ω + = Ω ∩ C + satisfies that the image of its boundary curve C = ∂ Ω + under f κ,γ has a winding number about w = w 0 being exactly two for any w 0 ∈ C + , and hence the function f κ,γ maps Ω + to C + two-to-one.

(i) Let us assume that κ ≥ 1. The domain Ω is given in Proposition 2.3 (5-b). Let C(t), t ∈ (0, 1) be a path defined in such a way that by starting from z = ∞, it goes to z = -κ along the curve ∂Ω ∩ C + , and then goes to z = +∞ along the real axis. Let t 0 ∈ (0, 1) such that C(t 0 ) = -κ. Then, Lemma 2.7 (3) tells us that f κ,γ (C(t)) maps (0, t 0 ) to (-∞, 0) bijectively, and hence we see that it maps (0, 1) to R in two-to-one correspondence. Let Ω + = Ω + ∩ Γ L and C its boundary. the image of its boundary curve C = ∂ Ω + under f κ,γ has a winding number about w = w 0 being exactly two for any w 0 ∈ C + , and hence the function f κ,γ maps Ω + to C + two-to-one.

(ii) Assume that κ = ∞ together with D(0) < 0, i.e., γ > 1 4 . Then, Ω is described in Proposition 2.4 (2). Take a large R > 0 and a small ε > 0 such that ε < |w 0 | < R. Then, we approximate Ω + by the curve C(t), t ∈ [0, 1] defined in such a way that, for L > 0 and δ > 0, by starting from C(0) = -L, it goes to z = L along the real axis avoiding z = - γ , we can choose δ > 0 such that f ∞,γ (-1 γ + δe iθ ) > R. Since f ∞,γ is non-singular on the lines ±L + yi, y ∈ (0, y(±L)), the curve f ∞,γ (C (t)), t ∈ [0, 1] contains the domain obtained from a semicircle of radius R removing a semicircle of radius ε. In particular, it contains w 0 . Since we can show that the winding number of the path f ∞,γ ( C) with respect to w = w 0 is exactly two, we conclude that the function f κ,γ maps Ω + to C + in two-to-one by a similar argument as in (i) above.

2.3.3. The case 0 < κ < 1 and γ ≤ 0. Although this case is out of the result stated in the previous paper [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF], the same proof given there (see the supplemental material of [START_REF] Nakashima | Wigner and Wishart ensembles for sparse Vinberg models[END_REF]) is valid, and thus we omit it.

2.3.4. The case 0 < κ < 1 and γ > 0. In this case, Proposition 2.3 tells us that if 0 < a = κγ < 1 then Ω ∩ R = (α 2 , +∞), and if a > 1 then Ω ∩ R = x ∈ R; x > -κ and x = -1 γ . If f κ,γ maps Ω + to C + bijectively, then it needs map ∂Ω + to R. However, if x ∈ R satisfies x < min(α 1 , -κ), then exp κ (z) tends to 1 + x κ κ e iκπ as z → x via the arc re iθ = 1 + z κ . Since 0 < κ < 1, then we see that lim z→x f κ,γ (z) is not real and hence f κ,γ cannot map Ω + to C + bijectively. .

Notice that this transformation can be written as a homographic action as z = 1 0 1/κ 1 • z, and hence it maps C + to C + bijectively. Then, since Set γ = γ + 1/κ . Since homographic actions map C + to C + bijectively, there exists a domain Ω such that f κ,γ maps Ω + = Ω ∩ C + to C + bijectively if and only if it holds for f γ ,κ . Thus, the condition γ ≤ 0 is equivalent to γ ≤ 1 κ , and the condition κ > 1 and γ > 0 with γ ≤ 1 4 (1 + 1 κ ) 2 is equivalent to γ > 1 κ and κ < -1 with γ -

1 κ ≤ 1 4 1 - 1 κ 2 ⇐⇒ γ ≤ 1 4 1 + 1 κ 2 .
This shows the case κ < 0, and therefore we have completed the proof of Theorem 1.3.

)

  Suppose that a = 1 and κ = 1. (a) If 0 < κ < 1, then one has r + (θ) = 0 and r -(θ) = -b(θ) < 0 for θ ∈ I 0 , and Ω = D(f κ,γ ). One has α 1 = -1 ∈ ∂Ω and α 2 = -κ = -1 γ ∈ ∂Ω. (b) If κ > 1, then one has r + (θ) = -b(θ) > 0 and r -(θ) = 0 for θ ∈ I 0 , and one has

1 4 . 3 )

 43 Then, there exists a unique function y = y(x) defined on R such that Ω = {z = x + yi ∈ C; x ∈ R and |y| < y(x)} . The function y(x) has a unique minimal point and satisfies lim x→±∞ y(x) = π. (If 0 < γ ≤ 1 4 , then x i (y), i = 1, 2 are both real for any y ∈ (0, π), and one has Ω = {z = x + yi ∈ C; |y| < π and x > x 2 (y)} .
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 11 along a semicircle of radius δ > 0 in C + , and next to z = L + y(L)i along the line parallel to the imaginary axis, and next to z = -L + y(-L)i along ∂Ω ∩ C + and finally goes back to C(1) = -L along the line parallel to the imaginary axis. Then, since |f ∞,γ (z)| = z 1+γz e x = e x |γ+ | , we can choose L > 0 such that |f ∞,γ (-L + yi)| < ε (y ∈ (0, y(-L))), |f ∞,γ (L + yi)| > R (y ∈ (0, y(L))), and since |1 + γz| = γδ and ze z are bounded around z = -1

2. 3 . 5 .

 35 The case of κ < 0. We shall complete the proof of Theorem 1.3 by proving it for the case κ < 0. To do so, let us recall the homographic (linear fractional) action of SL(2, R) on C: g • z := az+b cz+d for g = a b c d ∈ SL(2, R) and z ∈ C + . For each g ∈ SL(2, R), the corresponding homographic action map C + to C + bijectively. Let κ = -κ with positive κ > 0. Consider the transformation 1

1 =

 1 we are taking the main branch so that log z = -log(z -1 )), we obtainf γ,κ (z) = z f γ+1/κ , κ (z ).

  . It is easily verified that |f κ,γ (z)| → +∞ as |z| → +∞ by κ > 1. Propositions 2.3, 2.2 and 2.4 show that if a point z = x + yi ∈ C + is on the curve ∂Ω ∩ C + , then we have F (x, y) = 0 and