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A novel flow instability emerging during a rheometric flow of a phase change material
sheared in the vicinity of the melting point is reported. Right above the onset of the
flow induced crystallisation, the presence of the crystals in the flow leads to a primary
bifurcation towards an oscillatory flow state. A further decrease of the temperature
beyond this point leads to an increase of both the volume fraction and the size of
the crystals which ultimately triggers a fully developed chaotic flow. A full stability
diagram as a function of the imposed deformation rate and the temperature is obtained
experimentally. The systematic experimental observations reported herein could trigger
further studies of the hydrodynamics of phase change materials and may find a number
of interesting applications in polymer processing and thermal storage. The experimental
findings are complemented by the analysis of a simple numerical model which provides
further insights into the physical origins and mechanism of the instability.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

In the absence of inertial contributions, a hydrodynamic system is still prone to losing
its hydrodynamic stability when a physical quantity contributing to the momentum
balance becomes strongly stratified in space. To help illustrate this point, thermal
convection may be triggered by differentially heating a flow cavity from below Bénard
(1900) or gravity induced density stratification may sustain internal gravity waves,
Landau & Lifschitz (1987).

The loss of hydrodynamic stability due to viscosity stratification has been predicted
theoretically several decades ago Yih (1967) and investigated both theoretically Hickox
(1971); Valluri et al. (2010); Boomkamp & Miesen (1996); Hooper (1985); Hooper & Boyd
(1983) and experimentally Charles & Lilleleht (1965); Sangalli et al. (1995); Barthelet
et al. (1995); Charles et al. (1961); Burghelea et al. (2007); Burghelea & Frigaard (2011).
For a comprehensive review of such instabilities the reader is referred to Govindarajan
& Sahu (2014).

There exist several distinct physical mechanisms that lead to a spatially inhomogeneous
distribution of viscosity in a low Reynolds number flow. A simple hydrodynamic setting
refers to co-flowing Newtonian fluids of different viscosities separated by sharp interfaces.
For a Couette flow configuration, a unified view of the instabilities that may arise due
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to the viscosity stratification is provided in Ref. Charru & Hinch (2000). A physically
similar loss of hydrodynamic stability may be observed in a Poiseuille flow in the presence
of viscosity stratification, Yiantsios & Higgins (1988).

The use of complex fluids provides additional avenues towards generating a spatially
inhomogeneous viscosity distribution and a subsequent loss of hydrodynamic stability in
the absence of inertial contributions. Structural changes induced by shear in supramolec-
ular assemblies have been reported for several self-assembled surfactant systems, Roux
et al. (1993); Herle et al. (2005). Such fluids typically exhibit a non-monotone stress-rate
of strain relationship that leads to the emergence of shear banding which may ultimately
result in a loss of hydrodynamic stability and the observation of the so called “rheochaos”,
Sprakel et al. (2008); Gentile et al. (2013).

Phase changing materials represent a broad class of materials that undergo a liquid-
solid phase transition when their temperature is gradually decreased. Within this class,
oil-paraffin mixtures are typically sought as “model systems” that closely mimic the
physical behaviour of crude oils. Consequently, there exists a large body of studies
of their rheological behaviour in both iso-thermal and non-isothermal conditions. The
presence of wax crystals in crude oils at low temperatures leads to highly non-trivial
rheological changes which often prevent optimal field operations during the industrial
production stages, Marshall & Lawton (2007). A number of systematic rheological studies
have clearly highlighted the strong thixotropic nature of oil-paraffin mixtures, Chang
et al. (1998); Dimitriou & McKinley (2014); Visintin et al. (2005); Geri et al. (2017).
It has been recently shown that the complex rheological response of these mixtures is
very well described by the Isotropic-Kinematic Hardening (IKH) model, Dimitriou &
McKinley (2014). Furthermore, oil-paraffin mixtures can exhibit brittle collapse with
irreversible breaking of the microstructure Andrade & Coussot (2019). Although the
flows of phase changing materials are ubiquitous in many industrial settings including
polymer processing, oil field industry and food industry, their hydrodynamic stability
has received practically no attention.

We report in this manuscript a novel hydrodynamic instability observed in an inertia
free rheometric flow of a pure paraffin wax when the temperature is gradually below the
onset of the crystallisation and further clarify several of its main features by means of a
simple numerical model.

The paper is organised as follows. The experimental methods are discussed in Sec.2.
The experimental results are presented in Sec. 3 which is structured in two parts.
A systematic discussion of various macro-rheological flow regimes observed at various
operating temperatures T and imposed rates of deformation γ̇ is presented in Sec. 3.1.
In Sec. 3.2 an in-situ description of the microscopic scale dynamics of solid and fluid
material elements obtained by means of time-resolved polarised microscopy synchronised
with the macro-rheological measurements is presented. The analysis of a numerical model
that is minimalistic but yet able to contribute further to understanding the physical
mechanisms of the instability described in Secs. 3.1, 3.2 is presented Sec. 4. The paper
closes with a summary of the main conclusions and their possible impact onto our current
understanding of the dynamics of phase change materials simultaneously subjected to
stress and heat.

2. Experimental methods

The experimental setup is schematically illustrated in Fig.1. It consists of a 60 mm
diameter and 2 deg angle cone mounted on a commercial rheometer (Mars III, ThermoFis-
cher Scientific). The rheometer is equipped with a nano-torque module which, within the
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range of shear rates explored through this study, ensuring an instrumental accuracy of
roughly 2%. The temperature was controlled with an accuracy of±0.1◦C by both a Peltier
plate (Pe) embedded into the bottom plate of the geometry and a top electrical oven
(O) enclosing the cone. The presence of the top oven enclosure helps in minimising the
spatial gradients of temperature,∇T ≈ 0, which is crucial while measuring the rheological
response of a phase change material around its melting temperature Tm. A commercial
paraffin wax is used as working material. Its melting temperature was measured by
means of Differential Scanning Calorimetry (DSC), Tm ≈ 57.25oC. As the presence of a
flow systematically affects the onset and development of crystallisation, we emphasise at
this point that we draw no conclusion on the relationship between the average volume
fraction of crystals and the operating temperature from the DSC measurements. The
macro-rheological tests have been performed only after an equilibrium temperature has
been reached, ∂T

∂t ≈ 0.
To our best knowledge, systematic studies of the rheological response of chemically pure

paraffin waxes are rather scarce in the literature, Rossetti et al. (1999). It is commonly
known, however, that above the melting point paraffin waxes exhibit a linear (Newtonian)
rheological behaviour whereas below the melting point, a nonlinear response is observed.
Oil-paraffin mixtures which, like the pure paraffin yield to both heat (they become fluid
when heated above the melting temperature Tm) and stress (their micro-structure gets
destroyed when sufficiently large stresses are applied onto them), exhibit a complex
rheological behaviour including thixotropy and shear banding that can be described by
the Isotropic-Kinematic Hardening (IKH) Model, Dimitriou & McKinley (2014).

Two types of measurements have been performed. First, time series of the apparent
viscosity ηa were measured during 4000 s at various temperatures T and several im-
posed shear rates γ̇. During all the macro-rheological measurements reported herein the
Reynolds number never exceeded Remax ≈ 0.0575 meaning that inertial effects were
practically absent. Second, simultaneously with the macro-rheological measurements of
the apparent viscosity, the micro-structure of the material is visualised through crossed
polarisers using a microscope mounted below the bottom plate of the setup, Fig.1. The
size of the field of view is 200 × 300 µm2. The analyser is mounted on a precise micro-
stepping motor which allows one to orient its polarising axis along a direction orthogonal
to the axis of the polariser. Therefore the only light transmitted originates from the
presence of wax crystals in the field of view. For each temperature and shear rate explored,
a series of 2000 images was acquired with a digital camera, Prosilica GE camera with 16
bit quantisation (model GE680C from Allied Technologies), interfaced via Labview.

3. Experimental results

3.1. Description of the macroscopic flow regimes

Subsequent to reaching temperature equilibrium with a precision of 0.1oC during 200 s,
measurements of the apparent shear viscosity averaged during 4000 s performed at a
constant shear rate γ̇ = 10 s−1 and various temperatures are presented in Fig. 2. In
a fluid regime (T > 61oC) the time averaged viscosity follows a classical Arrhenius
dependence with the temperature, η = (1.309± 0.758) × 10−5exp

(
1964±195

T

)
. Upon a

gradual decrease of the temperature past the fluid regime a sharp increase of the apparent
viscosity is observed. This corresponds to the onset of the shear induced crystallisation.
Upon a further decrease of the temperature a roughly two orders of magnitude increase
of the time averaged apparent viscosity is observed. A rather intriguing feature observed
within this range of temperatures relates to the level of fluctuations of the apparent
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Figure 1: Schematic representation of the rheometer setup (not in scale): (C) - cone,
(O) - electrically heated oven enclosure, (Pe) - Peltier heating element, (GP) - glass

plate, (S) - sample, (WLS) - white light source, (CL) - collimating lens, (M1) -
semi-transparent mirror, (M2) - plane mirror, (P) - polariser, (MO) - microscope

objective, (CCD) - charged-coupled device, (EP) - eye piece, (A) - analyser.

viscosity which has increased drastically up to 20% of the mean value, the insert in Fig.
2. As discussed in Sec. 2, within this range of torques the instrumental error does not
exceed 2% of the mean value. Thus, the possibility of spurious torque measurements can
be safely ruled out and the fluctuations of the apparent viscosity observed around the
fluid-solid transition can be interpreted as physical rather than instrumental.

To get further insights into the dynamics of the liquid-solid transition, we focus on
individual measurements of time series of the apparent viscosity, Fig. 3. At T = 62◦C
which corresponds to the laminar and steady flow regime marked by a square in Fig. 2 the
time series of the apparent viscosity exhibits no fluctuations other than the instrumental
noise, panel (a) in Fig. 3. At T = 57.8◦C a seven fold monotonic increase of the apparent
viscosity is observed during the first 1000 s of data acquisition, panel (b) in Fig. 3.
According to the DSC characterisation of the sample, around this temperature one
expects the formation of paraffin crystals in the flow. This hypothesis will be later
confirmed by direct visualisation of the micro-structure in Sec. 3.2. At later times
t > 1000 s oscillations of the apparent viscosity slowly develop. The amplitude of these
oscillations increases linearly with time, ∆ηa ∝ At with the slope A ≈ 10−6Pa. At a
slightly lower temperature T = 57.4◦C the apparent viscosity signal is oscillatory, panel
(c) in Fig. 3.

Upon a further decrease of the temperature to T = 55◦C a component varying slowly
and seemingly random in time develops on the top of the oscillatory part of the apparent
viscosity time series, panel (d) in Fig. 3. For now we coin this macroscopic flow regime
only loosely (based on the visual impression provided by Fig. 3(d)) as ”chaotic” but we
will provide a systematic discussion and a quantitative proof for the choice of this term
through the rest of the manuscript.

Power spectral density (PSD) of the apparent viscosity time series measured for an
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Figure 2: Dependence of the time averaged apparent viscosity 〈ηa〉t on the temperature
T measured at a constant rate of shear γ̇ = 10 s−1. Corresponding to each temperature
the apparent viscosity was averaged during ∆t = 4000 s. The error bars are defined by
the standard deviation of each individual viscosity time series which is plotted in the

insert. The full line is a nonlinear fit by the Arrhenius law. The empty symbols
designate different flow regimes (see text for description): � - laminar and steady, O -

onset of crystal formation, ◦ - oscillatory behaviour, 4 - chaotic behaviour.

imposed shear rate γ̇ = 10 s−1 and two distinct temperatures corresponding to the
oscillatory and chaotic flow regimes are presented in Fig. 4. Within the steady flow regime
where the fluctuations of the apparent viscosity are solely due to the instrumental noise,
the power spectrum is flat over the entire range of frequencies, (the data set marked by a
square (�)) except for several small peaks observed at low frequencies and most probably
due to a slight mis-alignment of the rheometric geometry. Within both the oscillatory and
the chaotic flow regimes a fundamental harmonic is observed at f1 = 0.055 Hz as well as
two higher order harmonics at f = 2f1, 3f1. In the oscillatory case (the data set marked
by a circle ( )), the spectrum decays quickly (at f ≈ 0.8Hz) a plateau related to the
instrumental noise whereas in the chaotic case (the data set marked by a triangle (N))
it decays algebraically as PSD ∝ f−2 up to f ≈ 2Hz when the noise plateau is reached.
A power spectrum decaying over a broad range of frequencies is typically associated to
complex dynamics, Li et al. (2015); Valsakumar et al. (1997).

The dependence of the fundamental frequency of oscillations f1 of the time series of the
apparent viscosity obtained from the spectral analysis illustrated in Fig. 4 on the driving
rate of shear is presented in Fig. 5. The linearity of this dependence indicates that the
fundamental frequency of the oscillatory motion is set by the frequency of rotation of the
shaft of the rheometer.

A broad band power spectrum similar to the one illustrated in Fig. 4 measured at
T = 55◦C does not guarantee a chaotic behaviour. To distinguish between the oscillatory
flow states and the seemingly random ones a more systematic analysis is in order.

The traditional and mathematically sound method of testing if a dynamical system
is chaotic or not relates to the computation of the maximal Lyapunov exponent λ,
Kantz & Schreiber (2003). A positive Lyapunov exponent is a typical manifestation
of chaotic dynamics: if λ > 0, then trajectories initially closed in the phase space
separate exponentially in time and, conversely, if λ < 0 then the nearby trajectories
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Figure 3: Viscosity time series measured at several temperatures and revealing several
distinct macroscopic flow regimes: (a) T = 62◦C Laminar (�), (b) T = 57.8◦C Crystal

formation (H), (c) T = 57.4◦C Oscillatory behaviour ( ), (d) T = 55◦C Chaotic
behaviour (N).

remain confined in a close neighbourhood of each other. In the case when the equations
governing the dynamical system are unknown and one has to rely on experimental data
in order to assess the chaotic nature of the system. The largest Lyapunov exponent λ may
be estimated by reconstructing the phase space according to the method proposed by
Takens, Takens (1981). The reconstruction of the phase space may become problematic
for relatively short data sets and in the presence of instrumental noise.

Alternatively, Gottwald and Melbourne have recently proposed a test that does not
require the reconstruction of the phase space, Gottwald & Melbourne (2004, 2005). This
test works directly with an experimentally measured discrete time series and has two main
advantages. First, this test is binary and thus the issues related to distinguishing small
positive numbers from zero are minimised. Second, the nature of the discrete time series
and its dimensionality do not matter. We use the Matlab implementation of the code
made freely available by P. Matthews, Matthews (2009), which follows the guidelines
for discrete data sets given in Ref. Falconer et al. (2007). In brief, the steps of the
implementation are as follows. Using the time series of the apparent viscosity ηna = ηa (tn)
with 1 6 n 6 N and a scalar c randomly chosen between 0 and π, two sequences pn and
qn are constructed iteratively according to:

p(n+ 1) = p(n) + ηna cos(cn)

q(n+ 1) = q(n) + ηna sin(cn)
(3.1)
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Figure 4: Power spectral density (PSD) of the apparent viscosity time series measured
at γ̇ = 10 s−1 and three distinct temperatures: T = 62◦C within the laminar regime

(�), T = 57.4◦C within the oscillatory flow regime ( ) and T = 55◦C within the
chaotic flow regime (N). The vertical dotted lines highlight the first three harmonics.
The insert presents the same power spectra plotted on a logarhitmic-linear scale. The
dash dotted lines mark the high frequency noise plateaus whereas the dashed lines are

guides for the eye, PSD ∝ f−2.
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Figure 5: Dependence of the frequency f1 of the fundamental harmonic of the apparent
viscosity signal measured within the oscillatory and chaotic regimes on the driving

shear rate γ̇.

For a given value of the scalar c, p and q can be re-written as follows:

pc(n) =

N∑
n=1

ηna cos(cn)

qc(n) =

N∑
n=1

ηna sin(cn)

(3.2)
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Figure 6: Phase space behaviour obtained according to the 0− 1 chaos test performed
with the oscillatory times series shown in Fig. 3(c) (panel (a)) and the seemingly

random time series shown in Fig.3(d) (panel (b)). The operating temperatures and the
value of the asymptotic growth rate are given in the inserts.

According to Gottwald and Melbourne, if the time series ηna is regular (non chaotic)
the motion of p and q is bounded while p and q exhibit asymptotically a random-walk like
motion if the time series ηna is chaotic. The next step is to compute the mean squared
displacement of the translational variables for several values of c randomly chosen in
(0, π):

Mc(n) = lim
N→∞

1

N

N∑
k=1

[pc(k + n)− pc(k)]
2

+ [qc(k + n)− qc(k)]
2

(3.3)

For regular dynamics (stationary signals, periodic or quasi-periodic), M(n) is a
bounded function of n. The asymptotic growth rate K of M(n) can be numerically
determined by means of linear regression of log (M(n)) versus log(n). The estimation of
the asymptotic growth rate K allows one to distinguish a non-chaotic dynamics where
K ≈ 0 from a chaotic one where K ≈ 1.

The results of the 0 − 1 test applied for the time series presented in the panels (c-d)
of Fig. 3 are summarised in Fig. 6. As one would expect for an oscillatory behaviour,
for the time series measured at T = 57.4◦C the phase portrait p− q is bounded and the
asymptotic growth rate is K ≈ 0.15, panel (a) in Fig. 6.

Corresponding to the seemingly random apparent viscosity time series illustrated in
Fig. 3(d) a random walk like behaviour in the space (p, q) is observed, panel (b) in Fig.
6. The computed asymptotic growth rate is now K ≈ 0.97 which, according to 0−1 test,
is the signature of a chaotic behaviour which now fully justifies the terminology used in
describing the seemingly random dynamics observed at T = 55◦C and γ̇ = 10 s−1.

To obtain a full picture of the hydrodynamic stability of the system, measurements
similar to those illustrated in Fig. 3 have been performed for several values of the imposed
shear rate γ̇ and operating temperature T . The results are summarised in the stability
diagram presented in Fig. 7.

For the smallest rate of shear explored γ̇ = 5 s−1 and for temperatures in the range
T ∈ [55◦C, 60◦C] no chaotic states are observed. For shear rates γ̇ > 10 s−1 chaotic
states are systematically observed and occupy in the stability diagram a triangular shaped
region which widens as the rate of shear is increased, they are denoted by the up-triangles
(N) in Fig. 3. The oscillatory flow states are confined within a triangular region that
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Figure 7: Hydrodynamic stability diagram: � - stable flow, H - stable flow, crystal
formation,  - oscillatory flow, N - chaotic flow. The full lines delineate the distinct

flow regimes. The vertical arrow marks the melting temperature Tm obtained via DSC
measurements.

narrows as the shear rates are increased, the circles ( ) in Fig. 3. Corresponding to
the largest shear rate investigated γ̇ = 20 s−1 the intermediate states characterised by
a monotonic increase of the apparent viscosity exemplified in panel (b) of Fig. 3 and
marked by down-triangles (H) in Fig. 7 are no longer observed. As the temperature is
gradually decreased, the system transits abruptly from laminar flow states to the chaotic
ones.

To characterise the primary bifurcation from the stable hydrodynamic state observed
in a molten regime T > Tm towards the oscillatory flow states we consider as an order
parameter the reduced level of fluctuations of the apparent viscosity ηCov defined by

ηCov =

〈
(ηa−〈ηa〉t)

2
〉1/2

t

〈ηa〉t
and monitor its variation with respect to the reduced control

parameter ε = T
Tm
− 1, Fig. 8. Here the notation 〈·〉t refers to the time average of the

measured signal. Within a stable flow regime ηCov is small and solely related to the
instrumental noise of the measurements but it increases drastically when the primary
instability sets in.

As already hinted by the data presented in Fig. 3(b) which shows a slow temporal
development of oscillations of the apparent viscosity, the primary bifurcation towards
oscillatory flow states is smooth (no discontinuity in the dependence of the order pa-
rameter on the control parameter is observed), the stars and the diamonds in Fig. 8.
The dependence of the reduced level of fluctuations ξ on the control parameter ε may
be described by the stationary Landau-Ginzburg model with a field of an imperfect
bifurcation (the full lines in Fig. 8):

εξ − aξ3 + h = 0 (3.4)

For γ̇ = 20 s−1 when upon a decrease of the temperature the system transits abruptly
from laminar flow states to the chaotic states the dependence of the reduced order
parameter ξ on the reduced control parameter ε is discontinuous at ε = 0 which is
an indicator of a first order bifurcation, the right triangles in Fig. 8.
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Figure 8: Dependence of the order parameter ξ on the control parameter ε obtained
from the rheological measurements (see text for description). Red diamonds, blue stars

and green triangles refer to constant shear rates γ̇ = 10, 15 and 20 s−1, respectively.
The full line is a Vandermonde fit by the stationary Landau-Ginzburg equation, using

the same colour code.

Figure 9: Crystal observations performed at T = 58◦C, γ̇ = 10 s−1 and six subsequent
time instants indicated in the top inserts. The white lines delineate the azimuthal

direction.

3.2. In-situ visualisation of the microstructure and its relationship with the macroscopic
hydrodynamic stability

To gain further insights into the physical origins of both the primary oscillatory
instability and the ultimate chaotic behaviour observed during the macro-rheological
measurements presented in Fig. 3 and detailed in Sec. 3.1 we resort to an in-situ
visualisation of the micro structure by means of polarised light microscopy according
to the procedure described in Sec. 2.

A sequence of images of the micro-structure recorded at T = 58◦C and γ̇ = 10 s−1

which corresponds to a monotonic increase of the apparent viscosity followed by a slow
development of oscillations (see Fig. 3(b)) is shown in Fig. 9.

The white lines are guides for the eye indicating the azimuthal direction of the flow
geometry. The dark background of each micro-graph relates to the molten paraffin while
the bright details refer to crystallised paraffin. Within these states one observes solitary
crystals being transported by the mean flow along the azimuthal direction. Upon a careful
monitoring of a long sequence of images acquired during 4000 s we observe no secondary
motion along a direction orthogonal to the azimuthal direction. Based on this in-situ
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Figure 10: Crystal observations performed at T = 55.5◦C, γ̇ = 10 s−1 and six
subsequent time instants indicated in the top inserts. The white lines delineate the

azimuthal direction.

visualisation of the micro-structure one may unequivocally associate the onset of the
primary oscillatory instability to the appearance of crystals in the flow. This leads to a
spatial inhomogeneous distribution of the physical properties of the material. Notably
a spatially inhomogeneous distribution of the viscosity in the flow typically leads to a
breakdown of the hydrodynamic stability, Yih (1967). At this point, based on the in-situ
visualisation of the micro-structure, a clear distinction between the unstable flows we
observe and unstable shear banding flows previously observed in the literature Divoux
et al. (2016) can be made. Around the onset of crystallisation we do not observe bands
of crystals forming but only solitary crystals being transported by the mean flow. This
indicates that the physical mechanisms underlying the experimentally observed loss of
hydrodynamic stability differ from the mechanism of shear banding instabilities.

A decrease of the operating temperature to T = 55.5◦C corresponding to the chaotic
flow regime (see Fig. 3(d)) leads to a more complex microscopic scale dynamics of
the solid-fluid interfaces, Fig. 10. The spatial extent of the solid material units is now
comparable in size to the size of the entire field of view. Over extended time periods, the
dynamics of the solid-fluid interfaces is highly irregular both over space and in time and
a radial motion of the structures consistent with the presence of a secondary flow may be
observed. To test the degree of similarity between the microscopic dynamics we observe
and shear banding flows we have performed observations at various radial positions be-
tween the centre of the geometry and its rim. At no instance we have observed crystalline
structures with a ring shape topology but solely agglomerations of crystals transported by
the flow alternating with pockets of molten paraffin. These observations clearly indicate
that the physical mechanism underlying the loss of hydrodynamic stability is presumably
different from that of the shear banding instabilities.

The space-time dynamics of solid-fluid interfaces may be described using space-time
diagrams built from an image sequence spanning 4000 s by extracting from each image
the vertical profile of brightness measured at x = 200 µm. Such space-time diagrams are
built within the oscillatory/chaotic flow regimes and illustrated in the top panels of Figs.
11 and 12, respectively.

For clarity of the presentation we show in the middle panels of these figures the time
series of the apparent viscosity recorded synchronously with the flow images use to build
the space-time diagrams and in the bottom panels the time series of the volume fraction
of solid φ obtained by averaging the brightness of each flow image over the entire field of
view.

The space-time diagram built close to the onset of the primary oscillatory instability
(T = 57.4◦C and γ̇ = 10 s−1) captures the emergence of the first crystalline structures
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Figure 11: Top: Space time diagram measured within the oscillatory flow regime at
T = 57.4◦C and γ̇ = 10 s−1. Middle: Time series of the apparent viscosity ηa.

Bottom: Time series of the local volume fraction of solid φ.

in the flow which is directly correlated to a monotonic increase of the apparent viscosity
followed by a regime where solid/fluid material units coexist and an oscillatory behaviour
of apparent viscosity slowly develops, top panel in Fig. 11. During the slow development
of the oscillations of the apparent viscosity a small drift of the solid material units along
the vertical direction y which corresponds to a slowly developing secondary motion may
be equally noticed in the space-time diagram.

It is interesting to note at this point that an oscillatory behaviour is much less obvious
in the time series of the solid fraction φ than in that of the apparent viscosity ηa though
a simple visual inspection of the middle and bottom panels indicate a fair amount of
correlation in between the two. Absent a simultaneous visualisation of several distinct
regions of the flow (note that the observation window in Figs. 9, 10 is much smaller
than the size of the cone-plate geometry) we can only speculate at this point that this
correlation is due to combined long range hydrodynamic interactions between distinct
solid elements and material incompressibility. Bearing in mind that the apparent viscosity
is an integral physical quantity in the sense that it reflects the response of the material
averaged over the entire fluid volume contained within the cone-plate geometry it is
likely that its oscillatory behaviour results from the advection and mutual interaction of
several isolated crystals and not only the crystals passing through the field of view of the
polarised microscope. The local dynamics of the solid/fluid interface reflected by the time
series of the solid volume fraction φ is, according to the 0− 1 test regular (non-chaotic),
Fig. 13(a).

As compared to the oscillatory case, the space-time diagram built within the chaotic
flow regime (T = 55◦C and γ̇ = 10 s−1) reveals dramatic changes of the solid-fluid
interface as well as a clear secondary flow motion, top panel in Fig. 12. The temporal
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Figure 12: Top: Space time diagram measured within the chaotic flow regime at
T = 55◦C and γ̇ = 10 s−2. Middle: Time series of the apparent viscosity ηa. Bottom:
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Figure 13: Phase space behaviour obtained according to the 0− 1 chaos test performed
on the average image brightness φ time series: (a) at T = 57.4◦C shown in Fig. 11 and

(b) at T = 55◦C previously shown in Fig.12.

variations of the apparent viscosity and the locally measured volume fraction of solid
remain correlated (middle and bottom panel in Fig. 12).

According to the 0 − 1 test, the volume fraction φ evolves chaotically in time, panel
(b) in Fig. 13.
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4. Simple Numerical Model

The microscopic observations performed around the melting point and the onset of
the primary instability detailed in Sec. 3.2 clearly relate the emergence of this instability
to the presence of crystals in-homogeneously dispersed in a continuous molten phase.
Yet, our microscopic observations do have some limitations which prevent us from
obtaining a full description of the micro-structure dynamics and its relation with the
hydrodynamic stability. First, as we do not have direct access to the local velocity
field as this would have required us to implement an imaging system substantially
different from the polarised microscopy system we have used. Such measurements are
possible and have been reported by others Dimitriou & McKinley (2014) but they cannot
simultaneously provide direct information on the presence of crystals. A second limitation
of our microscopic visualisation technique relates to the size of field of view which is
limited to 200× 300 µm2. Thus, we are unable to monitor the interactions and collisions
of solid blobs larger than the size of our microscopic observation window.

To circumvent these experimental limitations and gain further insights into the phys-
ical origins of the instability observed experimentally, we propose in the following a
minimalistic model which aims to understand the impact of a spatially inhomogeneous
distribution of the viscosity on the hydrodynamic stability of a low Reynolds number
flow.

A minimalist way of modelling the crystals emerging in the flow around the melting
point is to consider a distribution of blobs of a highly viscous fluid in a matrix of a lower
viscosity fluid. The initial distribution of the viscous blobs is generated using a controlled
random algorithm that initialises the position of centroids of the highly viscous aggregates
randomly within a two dimensional Taylor-Couette geometry. Each blob is constructed
by iteratively adding ellipses with semi-axis randomly chosen within pre-chosen bounds.

Some of the iteratively added ellipses may coincide which further contributes to the
randomness of the microstructure. When the prescribed average volume fraction Φ is
reached the microstructure is saved and fed to code solving the governing equations.

The numerical model, discretised in the finite element method, is developped in-house
using the FreeFem++ library Hecht (2012). The governing equations solved in this model
include the mass and momentum conservation in Equations 4.1 and 4.2, respectively.

∇ · v = 0 (4.1)

Re

(
∂v

∂t
+ v · ∇v

)
= ∇ ·

[
ν
(
∇v +∇Tv

)]
−∇p (4.2)

where Re is the Reynolds number based on the smallest viscosity, that is the viscosity
of the continuous (molten) phase. ν > 1 is the viscosity ratio between the viscosity of the
highly viscous dispersed phase and that of the low viscosity continuous phase. The level
set method will be employed to track the aggregates. For simplicity, no molecular diffusion
will be considered. Therefore an advection equation in 4.3 will be used to transport the
passive scalar φ where φ = 0 refers to the molten phase and φ = 1 to the crystal aggregate.

∂φ

∂t
+ v · ∇φ = 0 (4.3)

A no slip velocity boundary condition is prescribed at the inner boundary and a
constant angular velocity is imposed on the outer. The momentum and mass conser-
vation equations are coupled in a fully implicit approach using the Galerkin method,
with Taylor-Hood Taylor & Hood (1973) elements that satisfy the LBB (or inf-sup)
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Figure 14: Time series of the area weighted average of the stress using three different
viscosity ratio ν, namely 102, 103 and 104; in black, blue and red, respectively. The
time axis is normalised with the period of rotation of the outer disk. The average

volume fraction is Φ = 19%.

condition. The Advective dominated transport equation (4.3) is discretised using the
Streamline Upwind/Petrov Galerkin (SUPG) approach Brooks & Hughes (1982). A mesh
sensitivity analysis has been carried out with two different meshes densities using BAMG the
bidimensional anisotropic mesh generator developed by Hecht (2006) with an automatic
mesh adaption after each time step based on the hessian of the passive scalar. Thus, it
was verified that the results are mesh-independent. The maximum number of vertices for
the mesh adaption retained in this study is 200000. The time-dependent discretisation
is first order to allow adaptive time stepping controlled by the CFL condition. The
numerical method used in this study was validated with several benchmark problems,
such as the Rayleigh Taylor instability inside an enclosure with several viscosity ratios van
Keken et al. (1997). The highest error on the velocity for all the tested benchmarks never
exceeded 2%.

Throughout this study, the Reynolds number will be fixed to Re = 0.05 (based on
the lower viscosity of the continuous phase) which is comparable in magnitude to that
achieved during the rheological tests. The ratio of viscosity of the highly viscous blobs
(where φ = 1) to that of the low viscosity fluid matrix (where φ = 0) is defined by

ν = (ηp/ηs). The space averaged volume is defined by Φ =
∫
φdA∫
dA

where dA is the unit

surface of the geometry. Starting from the same initial spatial distribution of the viscous
blobs, three distinct viscosity ratios ν are tested, namely 102, 103 and 104. The time
dependence of the stress averaged over the entire geometry which is physically equivalent
to the torque measured during the rheological tests is shown in Figure 14.

For the lowest viscosity ratio tested (ν = 102) the stress evolves more or less steadily
with time, bottom panel in Fig. 14. As the viscosity ratio is gradually increased a
monotonic increase of the level of fluctuations of the average stress is observed (middle
and top panels in Fig. 14). For the highest viscosity ratio tested the space averaged stress
signal exhibits a periodic behaviour with the period set by the period of rotation T of the
outer boundary of the geometry which is qualitatively similar to the behaviour through
the experiments (panels (b-d) in Fig. 3). This first numerical result clearly indicates that
the instability originates from the presence of a spatially inhomogeneous distribution of
the viscosity in the flow induced by the emergence of the primary paraffin crystals in the
flow.
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In order to explore the physical mechanism of the instability in relation to the micro-
structure, we now fix the viscosity ratio ν = 104 and the average volume fraction Φ = 19%
and test different characteristic sizes of the high viscosity fluid blobs initially distributed
within the continuous phase, Fig. 15. The initial distributions of the highly viscous blobs
are shown on the left column as binary images (bright details - φ = 1, dark background
- φ = 0). For a nearly mono-disperse distribution consisting of small blobs more or
less uniformly distributed in the flow, the time series of the space averaged stress is
nearly stationary and the small fluctuations can solely be attributed to the numerical
accuracy which becomes slightly problematic due to computational limitations of the
mesh refinement, bottom panel in Fig. 15. This is indeed what one would expect for the
response of a suspension of non-Brownian and nearly mono-disperse particles. Coarser the
initial distribution of viscous blobs becomes (or, in other words, larger the average size
of the blobs becomes), stronger fluctuations of the space averaged stress are observed.
Corresponding to the initial configuration with the largest blobs which nearly fill the
geometry the stress signal becomes periodic, top panel in Fig. 15. This second result
suggests a plausible physical mechanism of the instability in terms of the local dynamics
of the micro-structure. When initially small paraffin crystals grow in size up to the point
they nearly fill the geometry they locally de-stabilise the flow by both hydrodynamic
interactions and collisions of neighbouring blobs during the flow which overall translates
into an unsteady evolution of the space averaged stress. The periodic motion of the outer
boundary of the geometry translates into a periodicity of the inter-blob collisions which
ultimately results in the time periodic evolution of the space averaged stress observed
during the experiments.

Next, we fix the viscosity ratio ν = 104 and the average size of the viscous blobs and
monitor the time series of the space averaged stress computed for several values of the
average volume fraction Φ ranging from 0% to 25%, Fig. 16.

As one would expect, for small volume fractions Φ 6 Φc with Φc ≈ 5%, no time
dependence of the space averaged stress is observed. Beyond this critical value of the
volume fraction, the average stress time series becomes time dependent and for Φ = 15%
a time periodic behaviour is clearly observed. A further increase of the volume fractions
leads to an increase of the level of stress fluctuations and a depletion of its periodic
behaviour. However, as this model is rather minimalistic (i. e. the kinetics of formation
of crystals during flow is not modelled), we do not attempt comparing the results obtained
for large volume fraction with the experimental ones.

The conclusions we draw from the analysis of this model may be summarised as
follows. First, the emergence of a time periodic behaviour of the space averaged stress
qualitatively similar to that observed in the experiments is observed only in the presence
of a high viscosity contrast between the dispersed phase and the matrix. Second, the
emergence of the oscillatory instability is directly related to the characteristic size of the
micro-structure: for a given average volume fraction of the dispersed phase the instability
is observed only for sufficiently large (with sizes of the same order of magnitude as the
gap of the geometry) highly viscous blobs. The presence of such large blobs in the flow
leads to both strong hydrodynamic interactions and collisions which locally destabilise
the flow. Last, the instability is also controlled by the space averaged volume fraction of
the highly viscous dispersion in the sense that there exists a critical volume fraction Φc
such that the flow is stable for Φ 6 Φc.
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Figure 15: On the left, four randomly generated microstructures are shown in yellow
surrounded by the less viscous solvent in black. On the right, are the corresponding

stress time series for each given initial microstructure. The volume fraction is kept the
same here, namely 19%.

5. Summary of conclusions, outlook

The hydrodynamic stability of a rheometric flow of a phase change material sheared
within a broad range of temperatures around the melting temperature Tm is presented.
Due to the absence of inertial contributions, sufficiently far above the melting tempera-
ture Tm the flow is linear, laminar and steady for each shear rate investigated. Within this
flow regime the apparent viscosity of the solution follows a classical Arrhenius relationship
with the temperature. At a fixed rate of shear, a gradual decrease of the temperature first
leads to a monotone increase of the apparent viscosity associated to the onset of the flow
induced crystallisation, panel (b) in Fig. 3, followed by the emergence of an instability
manifested through an oscillatory time series of the apparent viscosity, panel (c) in Fig. 3.
Decreasing the temperature even further leads to an evolution of the apparent viscosity
seemingly random in time, panel (d) in Fig. 3. We coin this flow regime as ”chaotic
regime”.

In the oscillatory case the power spectrum exhibits a sharp peak associated to the
fundamental frequency of oscillation as well as several higher order harmonics followed
by a plateau related to the instrumental noise of the viscosity measurements, Fig. 4.
In the chaotic regime a broad band spectrum is observed, Fig. 4. The frequency of the
apparent viscosity oscillations observed within both the oscillatory and chaotic regimes
is set by the frequency of rotation of the shaft of the rheometer, Fig. 5.

A clear and mathematically sound distinction between the oscillatory and the chaotic
flow regimes is made using the 0 − 1 chaos test. Whereas within the oscillatory regime
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Figure 16: Stress time series for several average volume fractions Φ indicated in the left
inserts. The time axis is normalised by the period of rotation T .

the trajectories in the phase space p− q are bounded, panel (a) in Fig. 6, a random walk
like behaviour is observed within the chaotic regime, panel (b) in Fig. 6.

Based on measurements of the apparent viscosity performed for four distinct values
of the imposed shear rate and 26 values of temperature evenly spanning the interval
T ∈ [55◦C, 60◦C] a hydrodynamic stability diagram is obtained, Fig. 7.

The dependence of the reduced level of fluctuations ξ of the apparent viscosity on
the reduced temperature ε reveals a continuous bifurcation towards oscillatory states
that can be described by the stationary Landau-Ginzburg model with a field, Fig. 8.
Similar measurements performed for the transition to the chaotic regime indicate a
discontinuous (first order) bifurcation. By means of in-situ visualisation of the micro-
structure in polarised light we confirm that the emergence of the primary bifurcation
towards oscillatory flow states is indeed associated to the presence of solitary paraffin
crystals advected by the flow, Figs. 9. Within the chaotic flow regime one observes a
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coexistence between highly aggregated crystals and molten paraffin characterised by a
geometrically complex interface evolving randomly with time as well as an indication of
secondary flow motion, Fig.10. Within both the oscillatory and chaotic flow regimes the
temporal evolution of the apparent viscosity and the local volume fraction of solid are
correlated, Figs. 11, 12.

To gain further insights into the physical mechanisms responsible for the loss of
hydrodynamic stability, we have complemented our experimental observations with the
analysis of a simple numerical model. First, the numerical results clearly indicate that
the loss of hydrodynamic instability is clearly related to the presence of a spatially
inhomogeneous distribution of the viscosity in the flow which is experimentally realised
by the emergence of the primary wax crystals in the flow, Fig. 14. This result allows one
to include the instability in the broader class of inertia free instabilities triggered by a
viscosity stratification, Govindarajan & Sahu (2014). We further show that the onset of
the instability is related to a critical value of the characteristic space scale associated to
the spatial distribution of the viscosity which throughout the simulations is set by the
average size of highly viscous blobs distributed within the low viscosity matrix: for a fixed
volume fractions Φ of the highly viscous blobs the flow remains stable if the characteristic
size of the blobs is small with respect to the gap of the computational geometry whereas
an oscillatory flow behaviour is observed for large blob sizes. This result suggest a physical
mechanism for the instability in terms of strong hydrodynamic interactions and collisions
of the highly viscous blobs. The analysis of the model also allows one to conclude that for
a fixed ratio ν between the viscosity of the blobs and that of the low viscosity matrix the
instability emerges at a critical average volume fraction Φc ≈ 5%. Corresponding to this
critical volume fraction the hydrodynamic interactions become sufficiently strong and
inter-blob collisions systematically drive the hydrodynamic away from its stable state.

In closing, the relevance of our experimental observation of a novel hydrodynamic
instability around the onset of the crystallisation is two-fold. From a fundamental
perspective our findings clearly call for future theoretical developments on flows of phase-
change materials. From a practical standpoint, such instabilities may exist in a variety
of basic polymer processing operations and ultimately influence the quality of the final
products.
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