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Abstract: Xylan-type polysaccharides were isolated from the leaves of Argania spinosa (L.) Skeels
collected in the Tindouf area (southwestern Algeria). Xylan fractions were obtained by sequential
alkaline extractions and purified on Sepharose CL-4B. The xylan structure was investigated by
enzymatic hydrolysis with an endo-β(1→4)-xylanase followed by chromatography of the resulting
fragments on Biogel P2, characterization by sugar analysis and matrix-assisted laser desorption
ionization-time of flight mass spectrometry (MALDI-TOF MS ). The results show that the A. spinosa
xylan is composed of a β-(1→4)-D-xylopyranose backbone substituted with 4-O-methyl-D-glucuronic
acid and L-arabinose residues.
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1. Introduction

In Algeria, many plant species grow spontaneously, despite weather conditions that are not
always favorable. These plants colonize a fairly large area of the Sahara region and provide a
source of molecules, particularly polysaccharides including hemicellulose, that the food, cosmetic,
and pharmaceutical industries exploit for their remarkable properties.

Hemicelluloses constitute, after cellulose, the second most abundant polysaccharide in the
plant kingdom. Hemicelluloses are alkaline-soluble polysaccharides with varied content comprising
pentoses (D-xylose and L-arabinose), hexoses (D-glucose, D-galactose, L-fucose, D-mannose, and
L-rhamnose), and uronic acids (D-glucuronic and 4-O-methyl-D-glucuronic acids) [1]. Hemicelluloses of
plant cell walls include xyloglucans, xylans, mannans (galacto-/gluco-mannans), glucuronomannans,
and mixed glucans [2]. Xylans are the most abundant hemicellulose-type polysaccharides found in
plants. The structural diversity of xylans depends on the phylogenetic position of the species, the
varietal origin, the tissue or cell type, and the developmental age of the cells [3].

In this context, we were interested in cell wall hemicelluloses from the leaves of the Algerian
argan tree. This remnant of former tropical vegetation, belonging to the Sapotaceae family, is well
adapted to extreme conditions of aridity and temperature. It is endemic to Algeria (Tindouf area) and
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Morocco (southwest region, more particularly the Souss area) [4,5]. In the southern parts of these two
Maghreb countries, the argan tree is actually the last defense against desertification [6,7].

A previous study has characterized the structure of xylan and xylogucan-type hemicelluloses
found in argan trees growing in Morocco [8]. Enzymatic treatment of these polysaccharides was
conducted with an endo-(1-4)-β-D-xylanase (belonging to the glycoside hydrolase family 11) and with
an endo-(1-4)-β-D-glucanase (belonging to the glycoside hydrolase family 7), respectively. Applied to
xylan-type polysaccharides, the enzymatic hydrolysis generated oligomers whose structural units were
determined as Xyl(4-6)-4-O-MeGlcA(1-2). Applied to xyloglucan-type hemicelluloses, the enzymatic
treatment revealed some typical XXXG-type xyloglucans but an original feature was also obtained
with a β-D-Xylp-(1→2)-α-D-Xylp side chain linked to the cellotetraose sequence. Therefore, argan
trees could potentially contain some original polysaccharidic structures. However, studies analyzing
polysaccharides from Algerian argan trees are rare or non-existent. We have previously described the
cell wall pectin isolated from the leaves of the argan tree, collected in Algeria [9,10]. To the best of our
knowledge, the present study is the first report on cell wall-type xylan hemicellulose from the leaves
of this species growing in this specific environment.

2. Results and Discussion

2.1. Extraction and Isolation of Structural Polysaccharides

The yield for each extract obtained from successive extractions of structural polysaccharides from
argan leaves is listed in Table 1. The bulk material of the leaves consisted of molecules soluble in
acetone/isopropanol, such as pigments. The resulting cell wall residue represented 51% of the dry
mass of the leaves. The cellulosic extract (C6) comprised the main part of cell wall polymers by weight
(0.86 g), accounting for 21.1% of the cell wall residue. The total weight of the hemicellulosic extracts
was 0.75 g (18.5% of the cell wall residue) and that of the pectic extracts was 0.66 g (16.1% of the cell
wall residue).

Table 1. Yield (expressed in mass %) and composition of the cell wall extracts of argan leaves.

Fraction Yield (Mass %) UA (%) NS (%)

S0: pigments 45.6 * - -
S1: minerals, simple sugars 3.5 * 25.1 74.9

S2: HM pectin 2.9 ** 48.6 51.4
S3: LM pectin 13.2 ** 67.9 32.1

S4: Hemicellulose KOH 11.8 ** 18.3 81.7
S5: Hemicellulose NaOH 6.7 ** 18.6 81.4

C6: Cellulose 21.1 ** - -

* Weight % from the starting material; ** Weight % from the cell wall residue; UA: Uronic Acids;
NS: Neutral Sugars.

2.2. Monosaccharide Composition of the Hemicellulosic Extracts

The hemicellulosic fractions extracted with potassium hydroxide (S4) and sodium hydroxide
(S5) were rich in xylose and arabinose (Table 2). The extracts also included lesser amounts of uronic
acids, which accounted for 18.3% and 18.6% of the dry mass of the S4 and S5 extracts, respectively.
The uronic acids contained small amounts of glucuronic acid (0.5%–0.6%), which indicated the
extraction of (arabino)glucuronoxylan or the presence of 4-O-methyl-glucuronic acid residues, which
are components of xylans. Nevertheless, the presence of xyloglucan polysaccharides could not be
excluded, since the Xyl/Glu ratios found in the S4 and S5 extracts were respectively found equal to 4
and 5. These results are consistent with previous studies which reported the presence of these two
kinds of hemicellulose in the leaves of Moroccan argan [8].
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Table 2. Monosaccharide composition determined by gas–liquid chromatography (GLC) of
hemicellulosic extracts isolated from A. spinosa.

Glycosyl Residues S4: Hemicelluloses KOH S5: Hemicelluloses NaOH

Rha 7.2 5.8
Fuc 1.6 2.3
Ara 39.4 31.9
Xyl 24.9 33.3

Man 1.3 1.0
Gal 8.2 8.0
Glc 6.3 6.8

Gal A 4.9 6.4
Glc A 0.6 0.5

4-O-Me Glc A 5.6 4.0

2.3. Infrared Analysis of the Hemicellulosic Extracts

Infrared spectroscopic analysis was conducted to compare the spectra of the two hemicellulosic
extracts S4 and S5. The spectra exhibited absorption bands characteristic of xylans, between 1000 and
1100 cm−1, with a peak at about 1053 cm−1, corresponding to the stretching vibrations of the ring
bonds and C–OH bonds [11]. An absorption band at about 1605 cm−1 indicated the presence of uronic
acids in the form of acid salts, this band is partially covered up by an absorption band at 1630 cm−1,
due to the presence of residual water. Additional bands detected at 1407–1415 cm−1 might indicate the
presence of residual lignin, whose characteristic absorption peaks are at about 1410 cm−1 [12].

2.4. Purification and Characterization of KOH and NaOH Hemicellulosic Fractions

2.4.1. Purification and Monosaccharide Composition

Typical chromatograms for the hemicellulosic polymers extracted with KOH and NaOH are
shown in Figure 1.
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We recovered the main fractions FI (the first elution fraction) and FIII (the third elution fraction)
from the KOH-soluble hemicellulosic extracts (chromatogram in Figure 1a), and FI and FIII for
the NaOH-extracted hemicellulosic extracts (chromatogram in Figure 1b). These fractions had the
following dry weights: 142.8 mg, 63.0 mg, 37.0 mg, and 30.0 mg, respectively. All fractions contained
significant proportions of uronic acids, between 17.1% and 30.8%. Analysis of the monosaccharidic
composition of the main fractions demonstrated that xylose and arabinose were the predominant
monosaccharides as they were present in all fractions collected (18%–30% xylose and 35%–43%
arabinose). The presence of relatively small amounts of other monosaccharides such as rhamnose
(less than 7%), glucose (8%), and trace amounts of glucuronic acid were also noted. Thus, the obtained
fractions retained the characteristics of the starting extracts (Table 3).

Table 3. Monosaccharidic composition determined by GLC of hemicellulosic fractions obtained after
Sepharose gel CL-4B chromatography.

Glycosyl Residues (Molar %)
S4: Hemicelluloses KOH S5: Hemicelluloses NaOH

FI FIII FI FIII

UA (%) 17.1 20.6 30.8 17.1
NS (%) 82.9 79.4 69.2 82.9

Rha 6.6 8.3 6.7 7.1
Fuc 1.2 2.2 2.5 4.3
Ara 35.8 43.0 35.4 36.1
Xyl 29.8 18.2 30.8 22.2

Man 0.9 0.8 0.7 1.7
Gal 6.3 10.8 6.2 8.6
Glc 8.4 6.0 7.4 8.3

Gal A 7.6 7.4 7.1 8.2
Glc A 0.5 1.2 0.5 0.6

4-O-Me Glc A 2.9 2.1 2.8 2.7

2.4.2. Oligosaccharide Fractions Obtained by Enzymatic Hydrolysis

The monosaccharidic composition of the oligosaccharide fractions derived from enzymatic
hydrolysis of the hemicellulosic fractions is shown in Table 4. Xylose was the major monosaccharide
present in all oligosaccharide fractions and accounted for 24%–58% of the total. Arabinose was present
in large amounts and represented 20.4% of the KOH oligosaccharide fraction (FIII). The decrease in
Ara content compared to the polysaccharidic fractions may be due to the substrate specificity of the
enzyme, described as an endo-β-1-4-xylanase, which could be unable to hydrolyze xylan-type chains
highly substituted with arabinose units [13]. Xyl/4-O-MeGlcA molar ratios equal to 10:1 have been
found. These results are in agreement with those typically reported in the literature [14]. Such values
are often encountered among dicotyledons, even if the MeGlcA content is extremely variable [15].
The Xyl/4-O-MeGlcA molar ratio can be larger than 20:1, such as in birch tree [16], where the insoluble
hemicellulosic fractions isolated from the pericarp of the Opuntia ficus-indica fruit contain 12–65 xylose
residues per uronic acid unit [17].

2.4.3. Mass Spectrometry Analysis

The molecular weights and the degree of polymerization (DP) of the oligosaccharides present in
the enzymatic hydrolyzates were determined by matrix-assisted laser desorption ionization-time of
flight mass spectrometry (MALDI-TOF MS). The samples were studied in the native form. The results
are shown in Table 5.
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Table 4. Monosaccharide composition determined by GLC of oligosaccharides fractions derived from
the hemicellulosic fractions by hydrolysis with endo-xylanase.

Glycosyl Residues
Oligosaccharides KOH Obtained by

Enzymatic Hydrolysis
Oligosaccharides NaOH Obtained

by Enzymatic Hydrolysis

FI FIII FI FIII

Rha 4.3 3.3 4.3 5.2
Fuc 0.0 0.0 0.0 0.0
Ara 17.1 20.4 16.1 15.8
Xyl 58.1 45.8 24.0 31.6

Man 2.2 8.1 24.1 19.3
Gal 1.5 14.9 10.2 10.0
Glc 2.1 2.3 6.8 10.9

Gal A 5.4 0.3 9.1 3.9
Glc A 0.6 1.9 2.6 1.2

4-O-Me Glc A 8.7 3.0 2.8 2.1

Table 5. Positive-ion mode matrix-assisted laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF-MS) of the oligosaccharides generated from the hemicellulosic fractions by hydrolysis
with endo-xylanase.

Subfraction Obtained by
Enzymatic Hydrolysis Compound [M + Na]+

FI KOH

3(pentose) + 1(uronic acid methylated) 627.2
4(pentose) + 1(uronic acid methylated) 759.3
5(pentose) + 1(uronic acid methylated) 891.3
6(pentose) + 1(uronic acid methylated) 1023.4
5(pentose) + 2(uronic acid methylated) 1081.4

FIII KOH
3(pentose) + 1(uronic acid methylated) 627.2
4(pentose) + 1(uronic acid methylated) 759.3
5(pentose) + 1(uronic acid methylated) 891.3

FI NaOH
3(pentose) + 1(uronic acid methylated) 627.2
4(pentose) + 1(uronic acid methylated) 759.3

FIII NaOH
3(pentose) + 1(uronic acid methylated) 627.2
4(pentose) + 1(uronic acid methylated) 759.3

The chemical species in the different hydrolyzates identified with MALDI and Electrospray
ionization (ESI) sources of ionization mainly corresponded to a series of pentose residues bearing a
methylated uronic acid. Two species bearing two methylated uronic acids were identified by MALDI
in positive mode (m/z 1081.4 and m/z 1213.5) (Figure 2).
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The hydrolyzates of the different hemicellulosic fractions probably comprised arabinoxylo-
oligosaccharide substituted with a methylated uronic acid unit, probably 4-O-methyl-glucuronic
acid. They have been obtained by using an endo-β-(1→4)-xylanase originated from Aspergillus oryzae.
This type of xylanase belongs to the GH-10 family which is known to require a low number of
consecutive unsubstituted β-1,4-xylopyranosyl units in order to act on xylan chains [18], and is also
known for its strong affinity for the links located close to the branch points of the main xylan chain [19].
It appears that the Aspergillus oryzae enzyme recognizes the glucuronosyl substituents and hydrolyzes
the β-1,4-xylosyl linkage of the adjacent unsubstituted xylosyl residue in glucuronoxylans [20].
This endoxylanase does not seem to be strongly specific of a particular type of xylan, because it
can hydrolyze hardwood glucuronoxylans, cereal arabinoxylans, as well as algal β-1,4-β-1,3-xylan [21].
The present results are consistent with this mode of action, which may explain the specific nature of
the enzymatic hydrolysis that generates only oligosaccharides (one methylated uronic acid unit per six
xylose/arabinose units). In addition, the current results showed some differences with those previously
reported about xylan isolated from the leaves of Moroccan argan [8]: in the latter case, the enzymatic
hydrolysate contained only traces of Ara and a high level of Xyl. Only the non-hydrolyzed-fraction
of the polymer contained a high level of Ara (21%). That is why a xylan-type structure has been
proposed for the hemicellulose of Morrocan leaf argan. A similar pattern has been described for
alkali-soluble-xylans from the pericarp of prickly pear fruit [17] and from two species endemic to
Central Africa [22].

The literature indicates that most 4-O-methyl-glucuronoxylans are isolated from tissues that
contain secondary walls or mucilage. However, Dinand and Vignon (2001) [23] demonstrated, on
the surface of cellulose microfibrils of sugar beet pulp, the presence of a 4-O-methyl-glucuronoxylan
structure with similar rates of branching. These polysaccharides are considered to be constituents of
the side walls and are generally infrequent in the primary wall.

Finally, an original structure has been obtained from the leaves of the Algerian argan
tree. Alkali extractions followed by an endo-β-1-4-xylanase treatment have led to arabino-4-O-
Me-glucuronoxylan-type oligosaccharides as confirmed by the monosaccharidic composition of
oligosaccharidic fractions determined by GLC.

3. Materials and Methods

3.1. Biological Material

Argan tree leaves used in this study were collected in June 2010 from the Tindouf Province in
southwestern Algeria. After collection, the leaves were dried in a ventilated oven (40 ◦C), ground
(particle size < 200 µm), and stored in desiccators at room temperature.

3.2. Chemicals and Enzyme

All chemicals used were of analytical grade and were purchased from the following providers:
Sigma (St. Louis, MO, USA), Acros (Morris Plains, NJ, USA), Alltech (Deerfield, IL, USA), Fluka
(Buchs, Switzerland), Supelco (Bellefonte, PA, USA), Prolabo, and VWR (Fontenaysous Bois, France).
Endo-β-(1→4)-xylanase isolated from Aspergillus oryzae (Novazymes, EC 3.2.1.8, Shearzyme 2X, GH-10)
that were used to hydrolyze xylans were obtained from Sigma.

3.3. Isolation of Hemicellulose Fractions

Dry Argania spinosa leaves (10 g) were treated sequentially with acetone/isopropanol (v/v) and
80% EtOH (20 min at 90 ◦C) to remove hydrocarbons, lipids, flavonoids, and oligomers. The alcohol
insoluble residue (5.1 g) was depectinated by treatment with hot water (20 min at 100 ◦C), and 1%
ammonium oxalate solution (2 h at 85 ◦C). The residue was then twice extracted, sequentially
with 500 mL of 24% KOH and 4.3 M NaOH solutions containing NaBH4 (3 mg·mL−1) for 24 h.
The different alkali extracts were neutralized by addition of glacial acetic acid and dialyzed against
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water (MWCO 6–8000 Da, Spectrapor, Rancho Dominguez, CA, USA). Hemicelluloses were finally
precipitated by addition of three volumes of ethanol to the aqueous solution; the pellet was recovered
after centrifugation, solubilized in water, and then freeze-dried and stored (Figure 3).Molecules 2016, 21, 1587 7 of 9 
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3.4. Purification of Hemicellulose Fractions

Hemicellulose fractions were purified by size-exclusion chromatography on Sepharose CL-4B
(BIORAD-MWCO 30–5000 kDa; column Ø: 2.5 cm × 50 cm), and eluted at 15 mL/h with 50 mM
sodium acetate solution, pH 5, at room temperature. The column effluent was monitored using a
refractive index detector. The salts were removed from the recovered fractions by gel-permeation
chromatography on a Bio-Gel P-2 column (Biorad; MWCO 100–1800 Da; column Ø: 2.5 cm × 70 cm)
using water as the eluent to yield the purified hemicellulose soluble fractions.

3.5. Enzymatic Hydrolysis

Enzymatic hydrolysis was performed with an endo-β-(1→4)-xylanase (EC 3.2.1.8, Shearzyme 2X)
at 55 ◦C for 1 h. The reaction was inactivated by the addition of three volumes of ethanol.
The upernatant and precipitate were separated by filtration. The oligosaccharide hydrolyzate was then
purified by size exclusion chromatography on Biogel P2. The elution profile was monitored by TLC
using butanol/acetic acid/water (2/1/1, v/v/v) as the eluent. The revelation of spots was carried out
by spraying orcinol-sulfuric acid reagent (0.001% of orcinol m/v in a 10% H2SO4 solution v/v) and
heating at 100 ◦C.

3.6. Chemical Characterizations

3.6.1. Chemical Composition of Extracts

Total sugar content of glucuronoxylans was measured by the phenol–sulfuric acid colorimetric
method [24], using xylose as the standard; absorbance was read at 490 nm. Uronic acid content was
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determined colorimetrically at 520 nm by the m-hydroxydiphenyl method [25], with glucuronic acid
as the standard.

3.6.2. Monosaccharide Composition

Monosaccharide composition of polysaccharides was determined by gas–liquid chromatography,
using a Perichrom gas chromatograph fitted with a flame-ionization detector. Monosaccharides
were liberated from polysaccharides (200 µg) after methanolysis (MeOH/HCl 1 M, 24 h, 80 ◦C).
Then the solutions (containing myo-inositol as the internal standard) were evaporated under
nitrogen and 1 mL of methanol was added. Samples were defatted three times with 1 mL
of heptane. After evaporation of the solutions, trimethylsilylation was carried out with BSTFA
(N,O-bis-trimethylsilyl-trifluoroacetamide)-pyridine (1:1, v/v; 200 µL) at 27 ◦C for 2 h. Separation
of the pertrimethyl-silylated methylglycosides was done using a CPSIL-5CB capillary column
(Chrompack, 0.32 mm × 50 m), with the following temperature program; 120–240 ◦C at 2 ◦C·min−1.
Nitrogen was the carrier gas at 0.5 atm.

3.6.3. FT-IR Spectroscopy

Samples were characterized by Infrared (IR) spectroscopy with a 1000 FT-IR Perkin-Elmer
Spectrum spectrometer in the 400–4000 cm−1 frequency range.

3.6.4. Mass Spectrometry

Mass spectrometry analyses were conducted by the platform “Biopolymers-Interactions-Structural
Biology” (INRA Research Unit 1268) (http://www.angers-nantes.inra.fr/plateformes_et_plateaux_
techniques/plate_forme_bibs). Electrospray ionization ESI-MS and/or ESI-MS/MS data acquisition
were performed on a Q-TOF Global mass spectrometer (Waters, UK). Samples were dissolved in
H2O/MeOH (50:50) and introduced at a flow rate of 2 µL·min−1 in negative or in positive ionization
mode. Matrix-assisted laser desorption/ionization (MALDI)-MS data acquisition was performed on a
MALDI Autoflex III Smartbeam (Bruker Daltonics, Bremen, Germany). Samples were dissolved in
H2O/Acetonitrile/DimethylAniline (50/50/0.2) at a concentration of 100 mg·mL−1.

4. Conclusions

Monosaccharidic analysis by GC and MALDI-TOF spectrometry was conducted to elucidate the
composition and structure of xylans in the leaves of Algerian argan trees. The results confirmed that the
main structure comprised arabino-4-O-methylglucurono-xylans and comparison with the litterature
led to the proposal that the β(1→4) xylopyranose chain was partially substituted with α-L-Araf -(1→3)
residues and 2/3-substituted with uronic acid residues optionally methylated (4-O-methyl-glucuronic
acid) with a degree of polymerization (DP) comprised between 4 and 7. To precisely identify their
structure, the presently described oligosaccharidic fractions are being currently subjected to purification
in view of further analysis by 1H- and 13C-NMR spectroscopy.
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