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Abstract

This work focuses on the study of the phenomenon of vortex-induced vibrations in overhead lines under the effect of

weak winds. Full three-dimensional simulation is not feasible because of the high length to width aspect ratios of the

overhead lines. Thus a quasi-3D method based on strip theory is adopted in this work. This method decouples the

system of interactions between the overhead line and the wind into a series of sub-systems. The fluid flow in each

sub-system is represented as a series of independent rigid oscillating cylinder flows that are only coupled through

the transmission line model. To avoid the use of a moving mesh for the fluid domain, a moving reference frame

approach is employed. In this approach, the coordinate axes of the flow simulation are attached to the oscillating

cylinder and an acceleration term in the flow equations accounts for the cable motion. Moreover, in order to take

into account the turbulent effect in the flow, turbulence models, including RANS, LES and DES, are evaluated for

the present application involving flows in the sub-critical regime. Finally, numerical test cases are performed in

order to validate the turbulence models and the moving reference frame approach, then cable dynamics test cases

are conducted to validate the quasi-3D method.

Keywords: fluid-structure interaction, vortex-induced vibration, strip-theory, moving reference frame, turbulence

models, sub-critical circular cylinder flow

1. Introduction

This work is devoted to the study of the phenomenon of vortex-induced vibrations of long flexible circular

cylinders, a phenomenon that affects overhead electrical transmission lines. Low wind speeds (approximately 1 to

10 m/s) induce vortex shedding downstream of the overhead line, creating an alternating lift force. The suspended

cable is free to move laterally and vertically meaning that vibrations are induced by the alternating lift force,5

generating cyclic stresses that can lead to fatigue failure of the individual wire strands. Thus predicting the

vibration amplitudes is essential for a better estimation of the lifespan of overhead lines.

At present, the Energy Balance Principle (EBP) is the approach used in industrial applications to assess the

maximum amplitude that can occur on a conductor span during aeolian vibrations [1, 2]. This approach is based on

comparison of the energy brought by the wind to the conductor and the energy dissipated through its self-damping10

and associated dampers at a given mode. The main limitations of this principle are that it does not take into
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account the spatial and temporal variations of the wind, in addition it does not account for contributions from

other spatial vibration modes.

Thus in this work, in order to have a better representation of the physics between the wind and the overhead

conductor, which involves a fluid-structure interaction problem, CFD simulation is used. Generally, the numerical15

methods for the resolution of a fluid-structure interaction problem can be classified into two categories according to

the coupling level between fluid and structure. In a monolithic method [3], a large system involving fluid and solid

dynamics is solved by taking interface conditions into consideration. This type of method is robust but requires large

computing resources when applied to realistic engineering problems. Whereas the second approach is a partitioned

method [4], where the fluid and solid dynamics are solved separately in two different codes. Then the interface20

conditions are communicated from one code to the other: the fluid force is transferred from the fluid solver to

the solid solver and the solid displacement is transferred inversely. This kind of method is more efficient than a

monolithic method, hence it is widely used in many applications [5, 6, 7]. Moreover, it allows the use of existing

codes and can take advantage of optimized formulations for each problem: fluid and solid dynamics. For example, in

[6], the OpenFOAM fluid dynamics toolbox (www.openfoam.com) is coupled with the industrial structural dynamics25

code Code Aster (www.code-aster.org), and in [7], the fluid dynamics code Code Saturne (www.code-saturne.org)

is coupled with Code Aster. Due to efficiency concerns, in the present work, a partitioned method is employed with

Code Saturne to solve fluid dynamics.

Between the EBP and CFD approaches, simplified models, such as wake oscillator models [8, 9], are often used

in the literature to predict VIV of cables in tension. In these models, the fluid forces due to vortex shedding in30

the cable wake are modelled using a dynamical system, with empirical parameters calibrated through experimental

data or CFD. These models have been successfully used in marine applications, e.g. VIV modelling of risers [10, 11].

In marine applications, the ratio of the mass of fluid displaced by the cable relative to the cable mass is low, which

means that the fluid structure interaction is strong. However, for overhead conductors subjected to air flow, the

mass ratio is normally of the order of 2000. Much work also exists on fluid structure interactions where the vortex35

shedding and structural frequencies have similar orders of magnitude. This is not the case in overhead conductor

applications, with vortex shedding at approximately 40 Hz and the cable fundamental frequency normally less than

1 Hz. Hence, first mode resonance cannot occur and thus excitation of the cable must come about through the

harmonics of the structure’s natural frequency.

However, due to the high length to width aspect ratios (of the order of several thousands) of transmission40

lines, three-dimensional (3-D) flow simulations at realistic Reynolds numbers are considered unfeasible. Similar to

simulation of marine riser pipes [12, 13], approximate techniques known as quasi-3D methods need to be used to

solve for the fluid flow. The main idea is to perform two-dimensional (2-D) simulation of air flow in 2-D sections

along a transmission line, which are then linked together to account for three-dimensional flow effects, and finally

the CFD simulations are coupled to the dynamics of the line. In [14, 15], the technique of strip theory is used to45

simulate riser response. The CFD computations are carried out in 2-D sections along a marine riser pipe, while the

riser response computation is conducted in three-dimensions using a non-linear finite element code in [14] and is

conducted in [15] using Euler-Bernoulli beam theory. The motion of the riser at each section affects the flow locally,

such that the flow and the forces are determined individually for each section, then coupled through the motions
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of the riser. In [16, 12, 17], flows around several spanwise 2-D sections of a riser are simulated, and are then linked50

hydrodynamically using a 3-D vortex lattice representation of the flow in the wake of the riser [12, 18]. In [19],

the flow and cable variables are assumed to be periodic in the spanwise direction. The 3-D problem is transformed

to a series of 2-D problems using a Fourier expansion, with each 2-D problem associated with a vibration mode.

These 2-D problems are then coupled by nonlinear terms modeling the cable motion. Instead of using Code Aster

as in [7] for the structural dynamics, simplified cable models [20, 19] are preferred due to their efficiency, as shown55

in [21], the numerical results using the model in [20] agree well with those obtained using Code Aster, however the

simulation with the simplified model is 30-45 times faster.

Many works have focused on numerical study of vortex-induced vibration of rigid circular cylinders in two-

dimensions [22, 23] or in three-dimensions with a low aspect ratio [24, 25], as has been explained previously, full-

scale simulation of the 3-D problem with a high aspect ratio is not feasible. The simulation of flow around a rigid60

circular cylinder in two-dimensions or in three-dimensions with a low aspect ratio is an important building block for

the overall cable simulation using the above-mentioned quasi-3D methods. Moreover, fluid dynamics computations

for these problems enable adequate mesh resolution for the fluid domain and an appropriate turbulence model that

can predict correctly the physics of the fluid flow.

The fluid flow around a rigid cylinder is influenced by a number of physical parameters, including Reynolds65

number, inlet free-stream turbulence level, wall roughness, etc. According to the Reynolds number, four different

flow regimes can be identified with different boundary layer characteristics [26, 22]: laminar or turbulent boundary

layer, separation point location, wake size, etc. For the present application with weak winds and cable diameters of

approximately 30 mm, the Reynolds number is between 2 × 103 and 2 × 104. Hence the flow is in the sub-critical

regime [22], meaning that the boundary layer flow remains laminar before the separation point, and the transition70

from laminar to turbulent flow takes place in the wake of the cylinder. Different methods are used in the literature

in order to resolve circular cylinder turbulent flow, including direct numerical simulation (DNS) [25, 27], large eddy

simulation (LES) [24, 28, 29], and Reynolds-averaged Navier-Stokes (RANS) simulation [22, 23, 30, 31]. DNS is

not considered here because of its large computational demands. Among the RANS models, the k − ω SST model

is an appropriate candidate [32, 30] for the present application that involves an adverse pressure gradient and flow75

separation. This model retains the near wall treatment ability of the Wilcox k−ω model and improves its behavior

with respect to inlet free-stream turbulence properties [33]. In addition to the basic k−ω SST model, modifications

have been introduced by several authors in order to improve its behavior under different physical conditions. In [34]

the turbulent kinetic energy production term is modified in order to avoid excessive turbulent energy production in

the stagnation regions. In [35] a curvature correction model is proposed to capture effects of streamline curvature80

and system rotation in a flow, and thus improves the accuracy of numerical results. The k−ω SST model assumes

fully turbulent flow, thus adaptation of the model is required for laminar-turbulent transition modelling. In [36],

the transition effect is taken into account by modifying the turbulent viscosity and empirical parameters in the

basic k − ω SST model. This transition correction model is also used in [37, 38]. In LES large-scale turbulence

that depends largely on the flow configuration is resolved, whereas less problem-dependant small-scale turbulence is85

modelled [24]. The main difficulty with LES for practical applications lies in its requirement of high grid resolution in

the near-wall region [29]. In [29] LES is combined with a wall-layer model to eliminate this difficulty. Alternatively,
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a hybrid RANS/LES approach can be used, which leads to Detached-Eddy Simulation (DES) [39, 40, 41]. The

DES approach combines the RANS equations for the boundary layers and LES for separated flows, which results

in improved separation prediction ability [40]. In this study, these three methods (RANS, LES and DES) are all90

used to simulate flow over a rigid circular cylinder.

Solving fluid-structure interaction problems generally involves moving computational domains and dynamic re-

meshing. A general method that deals with a moving mesh is the Arbitrary Lagrangian Eulerian (ALE) formulation

[42]. Alternatively, we can eliminate the difficulty of a moving mesh by attaching the coordinate axes to the cable,

i.e. using a moving reference frame [43, 19]. The advantages of the moving reference frame method are multifold.95

Using a moving reference frame is more efficient than the ALE method, as resolution of the mesh dynamics is

avoided; moreover the added steps involved in moving the ALE mesh could cause the results to be disturbed,

whereas the fixed mesh does not entail such an effect. Especially as we can see later for turbulence models, the

mesh size around the cylinder is essential to ensure the validity of these models.

The program adopted in this work is as follows: we begin by simulating flow around fixed and rigid circular100

cylinders (in two-dimensions or three-dimensions with a low aspect ratio) in order to validate turbulence models,

determine appropriate grids (the problem is strongly mesh-dependent [25]), and also validate the moving reference

frame approach for a fluid-structure interaction problem; afterwards, we implement a quasi-3D method based on

strip theory, which is capable of simulating 3-D flows efficiently; finally we couple the quasi-3D method with a

simplified cable model so as to investigate vortex-induced vibration of overhead lines. In this preliminary work,105

only a simple quasi-3D method is used, where the fluid flows in each 2-D section are considered independent, and

the 3-D effects are only represented by the cable motion coupling. The main contributions include: evaluation and

validation of different turbulence models for cylinder flows in the sub-critical regime as well as correction models to

address the shortcomings of the basic k − ω SST RANS model; validation of the moving reference frame approach

in combination with turbulence models, which avoids the use of a moving mesh to deal with fluid-solid interaction;110

validation of the quasi-3D method and its implementation through cable dynamics test cases. The goal of the

present work is to present and validate a tool that can be used to evaluate wind effects on overhead conductors. In

future work, this tool will be improved (e.g. a more elaborate quasi-3D method) and used to evaluate the dynamics

of a realistic overhead conductor.

This paper is organized as follows. Section 2 presents the quasi-3D method, the pressure-based numerical115

method to solve fluid dynamics and also the moving reference frame approach to deal with fluid-structure interaction

problems. Section 3 describes the turbulence models used in this work. Section 4 shows numerical results to validate

the numerical methods and the turbulence models.

2. Numerical method

In this section, the quasi-3D method used in this work is first presented. This enables coupling of the fluid120

dynamics simulation with the cable model. The quasi-3D method divides the coupling system into a series of

independent sub-systems involving fluid flow over an oscillating cylinder, which are coupled only through the cable

model. A pressure-based numerical method is used for the fluid dynamics. Finally, a moving reference frame

approach for a rigid body is described. This is to avoid the use of a moving mesh to capture the cable motion in
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the fluid flow simulation. As with [17, 13], in the present quasi-3D method the flow around each cable section is125

considered as 2-D, and the 3-D effect is only taken into account through the coupling of each section in the cable

model. This is justified to a certain extent in the case of lock-in, because in this situation the vortex shedding is

correlated along substantial lengths of the cable. Other approaches exist to resolve the three-dimensionality of the

flow around the cable. Thick strips are modelled in [44], where each cable section has a local spanwise width and

the flow around each section is resolved using 3-D DNS, hence addressing the shortcomings of the quasi-3D method.130

In [12, 16], the flow around each cable section is solved using a 2-D Lagrangian vortex code, then a lower resolution

vortex lattice model is resolved based on the 2-D results to represent the 3-D vorticity field. Finally, a source term

corresponding to the 3-D vorticity field is added in the 2-D vortex code in order to account for the 3-D effect.

2.1. Quasi-3D method

For a vibrating beam of linear density mL (i.e. the mass per unit length) that is subjected to tension H [44]

mL
∂2y

∂t2
+ C

∂4y

∂z4
−H∂2y

∂z2
= F(z, t), (1)

where z is the coordinate in the spanwise direction of the cable, y(z, t) is the displacement of cable, F(z, t) is135

the fluid force per unit length, and we recover the equation (wave equation) of a vibrating string by imposing

bending stiffness C = 0. The cable model used in this work is for straight cables, where the effect of sagging is not

considered. As shown in [45], sagging can significantly influence the dynamics of an electrical cable by changing

its natural frequencies and mode shapes. However, the focus here is to validate the numerical methodology with

respect to the literature by simulating VIV with a simplified model. More elaborate models can be found in [20]140

and related the references listed in [19].

In this work, a simple quasi-3D method using strip theory [14, 44, 15] is adopted to resolve the interaction

between a moving cable and its surrounding fluid flow. The cable is cut into a series of sections, and the flow over

each section is simulated separately. As shown in Figure 1, the cable is discretized in space by placing N equally

distributed nodes with spatial discretization length scale ∆z = Lz/(N − 1), where Lz is the total length of the

cable. Each node is associated with a rigid cylinder, of spanwise length Ls, since the local cable deformation caused

by the fluid flow is considered to be negligible. There are no gaps between each cylinder if we take Ls = ∆z. Nodes

z1 and zN correspond to the two extremities of the cable. The bending stiffness term can be neglected for cables

(|C ∂4y
∂z4 | � |H

∂2y
∂z2 |), and then equation (1) is discretized in space using a centered scheme

mL
∂2y(zj , t)

∂t2
−H y(zj+1, t)− 2y(zj , t) + y(zj−1, t)

(∆z)2
= F(zj , t). (2)

Multiplying both sides of equation (2) by Ls and considering the contribution of neighbouring elements appearing

in the space discretization as an external force, yields a mass-spring equation for each cylinder

M ÿj(t) +Kyj(t) = f ext
j (t), (3)

where mass M = mLLs, stiffness K = 2HLs/(∆z)
2 and external force f ext

j (t) = F(zj , t)Ls + K
2 (yj+1 + yj−1).
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z1 z2 zN−1 zNzj−1 zj

Ls

∆z

Lz

Figure 1: Illustration of the strip theory discretization.

The resulting mass-spring system is solved using the Newmark Beta method [46, pp. 121]

yn+1 = yn + ∆t ẏn +
∆t2

2
[(1− 2β)ÿn + 2βÿn+1], (4)

ẏn+1 = ẏn + ∆t [(1− γ)ÿn + γÿn+1], (5)

where ∆t is the time step, and superscripts n and n + 1 are time instants. The two parameters β, γ are taken to

be 1/6 and 1/2 [46, pp. 122] respectively in this study.

2.2. Fluid dynamics145

The industrial open-source Code Saturne code [47] is used in this work to simulate fluid flow, and here the

numerical method is briefly given in terms of time discretization. The incompressible Navier-Stokes equations are

rewritten as

∂ρ

∂t
+∇ · (ρu) = 0, (6)

ρ
∂u

∂t
− u∇ · (ρu) +∇ · (ρu⊗ u) = −∇P +∇ · σ + s, (7)

where ρ is constant and we have used ∂ρu
∂t +∇ · (ρu ⊗ u) = ρ∂u∂t + u∂ρ∂t +∇ · (ρu ⊗ u) to deduce the momentum

equation, σ is the stress tensor and s is the source term. The numerical method is composed of two steps [48]:

Prediction step

Only the first-order implicit Euler scheme is considered here:

ρ
ũn+1 − un

∆t
+∇ · (ũn+1 ⊗ (ρu)n) = −∇Pn +∇ · σn+1 + sn+1 + ũn+1∇ · (ρu)n, (8)

where the velocity is solved using explicit pressure gradient. The terms (·)n+1 can be obtained implicitly by

extrapolating previous instants.150

Pressure correction step

The predicted velocity does not necessarily satisfy the zero divergence condition. Thus a correction step is

introduced using pressure gradient at time instant tn+1:

(ρun+1)− (ρũn+1)

∆t
= −∇(Pn+1 − Pn). (9)
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Imposing the zero divergence constraint for the new time-step velocity ∇ · (ρu)n+1 = 0 yields the Poisson equation

for the pressure at time instant tn+1 where only the pressure is the unknown variable. Once the new time-step

pressure is obtained, the velocity can finally be found using equation (9).

2.3. Moving reference frame method155

A moving reference frame attached to the rigid body is employed to avoid the use of a moving mesh for the fluid

domain. The Navier-Stokes equations in a moving reference frame [43, 19] are

∇ · u = 0, (10)

∂u

∂t
+ u · ∇u = −∇P + ν∆u− dus

dt
, (11)

where rotation is neglected so that only translation of the rigid body is considered and us is its velocity. A detailed

derivation of the Navier-Stokes equations in a moving reference frame is given in Appendix A. Neumann-type

conditions remain the same as for the fixed reference frame, whereas the Dirichlet-type condition for the velocity

at the inlet is rewritten as uin = u∗in − us, where u∗in is the velocity in the fixed reference frame.

Resolution of the overall system160

The resolution procedure of the overall system using the quasi-3D method is illustrated in Figure 2. Each fluid

solver is associated with a flow problem over an oscillating cylinder, and the cable solver resolves the overall cable

dynamics. Data transfer between the fluid solvers and the cable solver is realised using MPI (Message Passing

Interface) communication. The computational strategy for one iteration of the quasi-3D method is summarized as

follows. In step 1, the fluid flow over an oscillating cylinder is simulated using the moving reference frame approach165

and the fluid force on the cylinder can thus be deduced. For step 1, a predicted cylinder motion is used in the

moving reference frame approach because new time-step cylinder motion is only available after step 3. In step 2 the

fluid force is transferred to the cable solver via MPI communication. Then in step 3 the mass-spring equation (3) is

solved by taking into account the contribution of neighbouring cylinders on the right hand side term. The overall

cable dynamics are thus obtained. Finally, in step 4 the new cable motion is communicated to the fluid solvers in170

order to obtain the fluid force for the next time step. These four steps can be executed iteratively for one time

step to ensure that the difference between the predicted cylinder motion used in step 1 and the calculated cylinder

motion obtained in step 3 is inferior to a predefined threshold, which leads to an implicit method for improved

accuracy.

cable solver

fluid solver jfluid solver 1 fluid solver N

2

3

4

1

Figure 2: Resolution procedure for the quasi-3D method.
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Remark. The quasi-3D method is second-order in both time and space, because the centered scheme is used in (2)175

for the space derivative and the Newmark Beta scheme is used for the time derivative. The CFD simulation time

step length is limited by the CFL condition and the vortex shedding frequency, since a sufficient number of time

steps is required during one shedding period in order to adequately capture the shedding phenomenon. On the

other hand, time steps that are too small should not be used because this will lead to the checkerboard numerical

problem in Code Saturne. As for the time step when resolving the cable model, multiple time steps can be used180

during one time step of the CFD simulation in order to have better stability. Since the fluid force is only updated

at CFD time instants, this is thus assumed to be constant during multiple cable resolution time steps. In practice,

in order to improve the accuracy of the numerical results we only increase the number of sections to represent the

cable, with the spatial discretization of the 2D section remaining unchanged. As can be seen below in Section 4.1,

the mesh size is important to ensure the validity of the turbulence models. Nevertheless, the number of sections185

is limited by computing resources since each section is associated with a CFD simulation which is computationally

expensive.

3. Turbulence models

The flow is turbulent at the Reynolds numbers (between 2×103 and 2×104) induced by weak winds flowing over

conductor cables. In the context of this work, DNS requires excessive computing resources and so is not considered190

here. Appropriate models are thus required to represent turbulence effects in order to obtain reliable results within

the current calculation resources. This section presents the turbulence models used in the present work, including a

RANS model (k− ω SST model), a subgrid scale model for LES and a DES model based on the k− ω SST model.

3.1. k − ω SST model

The k−ω SST model [33, 32] is an appropriate candidate [30, 33] among RANS models, since we are dealing with195

vortex shedding phenomenon, which involves adverse pressure gradients and flow separation, as will be explained

in Section 4.1. This model is a combination of the Wilcox k − ω and the standard k − ε model, with the standard

k − ε model transformed to a k − ω model by substituting ε = kω. These two models are blended in order to take

advantage of the near wall treatment associated with the Wilcox model. In addition the SST model switches to a

k−ε behaviour in the free-stream, thus avoiding the excessive sensitivity of the k−ω model to the inlet free-stream200

turbulence properties.

The equations below describe the k − ω SST model [32]

∂(ρk)

∂t
+
∂(ρUjk)

∂xj
= P̃k − ρβ∗kω +

∂

∂xj

[
(µ+ σkµT )

∂k

∂xj

]
, (12)

∂(ρω)

∂t
+
∂(ρUjω)

∂xj
= αρ

Pk
µt
− ρβω2 +

∂

∂xj

[
(µ+ σωµT )

∂ω

∂xj

]
+ 2(1− F1)ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, (13)

where P̃k = min (Pk, 10ρβ∗kω), Pk = −ρu′iu′j
∂Ui

∂xj
represents the generation of turbulent kinetic energy, and the

turbulent shear stress is given

−ρu′iu′j = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3

(
ρk + µt

∂Ui
∂xi

)
δij , (14)
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according to the hypothesis of Boussinesq. The generation of turbulent kinetic energy Pk can be simplified as

Pk = µtS
2 in the incompressible flow case, where S =

√
2SijSij , the strain rate tensor Sij = 1

2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
.

Moreover, production of turbulent kinetic energy is limited to a maximum of 10ρβ∗kω in order to prevent the

build-up of turbulence in the stagnation region [40].205

The blending function F1 which appears in equation (13) and is used to switch between the k − ε and k − ω

formulations in the near wall region and far field, is given by

F1 = tanh


{

min

[
max

( √
k

β∗ωy
,

500ν

y2ω

)
,

4ρσω2k

CDkωy2

]}4
 , (15)

where

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
. (16)

The blending function F1 is also used to determine the constants (σk, · · · ) in the model by combining the

associated constants in the original k − ω model (σk1, · · · ) and in the transformed k − ε model (σk2, · · · ):

φ = F1φ1 + (1− F1)φ2. (17)

The values of the constants in the model are

β∗ = 0.09, σk1 = 0.85, σk2 = 1, σω1 = 0.5, σω2 = 0.856, α1 =
5

9
, α2 = 0.44, β1 =

3

40
, β2 = 0.0828. (18)

The turbulent viscosity is calculated by

µT = ρk ·min

(
1

ω
,

a1

S · F2

)
, (19)

where a1 = 0.31 and

F2 = tanh

[max

(
2
√
k

β∗ωy
,

500ν

y2ω

)]2
 . (20)

In addition to the basic k − ω SST model introduced above, a curvature correction model [35] is developed

in order to capture effects of streamline curvature. The curvature correction model uses a multiplier fr1 for the

production terms (Pk and αρS2 respectively in the transport equations for k and ω) in the k − ω SST model:

fr1 = max{min(frotation, f
max
r ), 0}, (21)

where fmax
r is a parameter that can be calibrated using numerical test cases and function frotation is defined as

frotation = (1 + cr1)
2r∗

1 + r∗
[
1− cr3 tan−1(cr2r̃)

]
− cr1 , (22)

where empirical constants cr1, cr2 and cr3 are set equal to 1, 2 and 1 respectively, and the two arguments of the

previous function are defined as:

r∗ =
S

Ω
, (23)

r̃ = 2ΩikSjk
dSij
dt

1

ΩD3
, (24)
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where Ωij = 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
, Ω =

√
2ΩijΩij and D =

√
max(S2, 0.09ω2).

The k−ω SST model assumes a fully turbulent flow in the whole domain. However, for the present application

with flow over a cylinder, the flow is in the sub-critical regime, i.e. the boundary layer flow around the cylinder

remains laminar before the separation point and laminar-turbulent transition occurs in the wake of the cylinder.

Transition models requiring supplementary transport equations may be more appropriate [49] and will be studied in210

future work. Here we consider only a transition correction for the k−ω SST model used in the literature [37, 38, 36]

based on the viscosity ratio RT = µt

µ = ρk
µω . The transition correction consists of

• damping of the turbulent viscosity

µt = ρk ·min

(
α∗

ω
,

a1

S · F2

)
, with α∗1 =

0.024 +RT /6

1 +RT /6
, α∗2 = 1, (25)

• damping of the turbulent kinetic energy sink term with β∗ in β∗kω recalculated by

β∗ = F1β
∗
1 + (1− F1)β∗2 , where β∗1 = 0.09

5/18 + (RT /8)4

1 + (RT /8)4
, β∗2 = 0.09, (26)

• damping of the specific dissipation rate source term with α in αρS2 recalculated by

α = F1α1 + (1− F1)α2, where α1 =
5

9

0.1 +RT /2.7

1 +RT /2.7
, α2 = 0.44. (27)

3.2. LES: Smagorinsky model

In LES two turbulence scales are considered and a spatial filter is used to separate them [24]. Large-scale flow

features are resolved directly, whereas the small-scale turbulence effects, which are less problem-dependent, are

represented by simple models. Here only the Smagorinsky model [50] is considered, giving

σaij = −2νTSij , (28)

where σaij is the anisotropic part of the subgrid scale Reynolds stress. The eddy viscosity νT is determined using

the strain rate tensor Sij and the subgrid length l:

νT = l2S, (29)

where l = Cs∆ is proportional to filter width ∆ and Cs is the Smagorinsky constant.

3.3. k − ω SST DES model215

The DES method is a hybrid RANS/LES approach that utilises a RANS model in low grid resolution areas

and the LES formulation for sufficiently fine grid resolution areas [41]. RANS is used in boundary layers to avoid

the need for excessive mesh refinement, and in separated regions LES is used to improve the separation prediction

capability [39, 51, 41]. The DES formulation based on the k − ω SST model is employed here by modifying the

dissipation term in the k-equation:

β∗ρkω −→ β∗ρkωFDES, with FDES = max

(
Lt

CDES∆
, 1

)
, (30)
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where the switch from RANS to LES is achieved by comparing the RANS turbulence length scale Lt =
√
k

β∗ω to the

LES turbulence length scale CDES∆, where ∆ is the local grid spacing, and CDES is an empirical DES formulation

constant. Moreover, in order to avoid the switch from RANS to DES occurring inside the boundary layer, which

reduces the accuracy of the separation prediction, the DES limiter is altered to

FDES = max

(
Lt

CDES∆
(1− F2), 1

)
, (31)

where F2 is given by (20).

4. Numerical results

As mentioned previously, the quasi-3D method is composed of several elements: a cable is divided into 2-D

sections or in some cases, 3-D sections with a low aspect ratio are used to investigate 3-D effects; then each section

is considered as a fluid-structure interaction problem and is solved independently; finally the quasi-3D method is220

used to couple the different sections in order to simulate the overall cable dynamics. Numerical results are presented

in this section to validate the numerical method presented in Section 2 and the turbulence models in Section 3.

Flow over a fixed circular cylinder is first simulated in order to validate the turbulence models. Then flow over a

flexibly mounted cylinder is considered for validation of the moving reference frame method to treat fluid-structure

interaction problems. Finally, the cable dynamics are simulated using the quasi-3D approach. For weak winds225

flowing over electrical lines, the Reynolds number based on the line sectional diameter and wind velocity is typically

between 2× 103 and 2× 104, which corresponds to a sub-critical cylinder flow, as will be explained in detail below.

Therefore, in the rigid cylinder flow test cases here Re = 104. Then benchmark marine applications, where mass

ratios are small, are simulated in order to validate the numerical methodology. For the laminar cases, vortex

shedding frequency and cable fundamental frequency are of similar order, and for the turbulent case, the maximal230

vortex shedding frequency is about 20 times the cable fundamental frequency. However, in overhead conductor

applications the ratios of cable material to fluid mass and vortex shedding to cable fundamental frequency are high.

Simulation of realistic overhead conductor applications will be presented in future work.

4.1. Flow over a fixed circular cylinder

The flow over a fixed circular cylinder is first considered, as shown in Figure 3, where the angle θ is in the

clockwise direction from the upstream stagnation point A (θ = 0). In Figure 4, a typical pressure coefficient

distribution around a circular cylinder as a function of θ is presented, with the following definition for the pressure

coefficient CP

CP =
P − P0

1
2ρU

2
0

, (32)

where P0 and U0 are respectively the free stream pressure and velocity, and ρ is the fluid density. At the stagnation235

point A, the pressure attains its maximum. Then from point A to point B, the pressure drops as the flow is

accelerated. The pressure eventually becomes lower than the reference pressure P0 at CP = 0, and then attains its

minimum where the velocity at its maximum at θ ≈ 90◦. Afterwards, the adverse pressure gradient means that the

velocity decreases, and eventually separation occurs.
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Figure 3: Cylinder coordinate system.

0 90 180

-1.0

1.0

Base pressure 
 coefficient Cpb

Flow separation θs

Figure 4: Pressure distribution CP around a circular cylinder

[23].
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Figure 5: Illustration of the 4 flow regimes: drag coefficient

as a function of the Reynolds number.

Due to the instability of flow separation, vortices shed periodically from lower and upper part of the cylinder,

thus the well-known von Karman vortex street develops. For our application, particular attention is paid to the

determination of fluid forces on the cylinders, including the drag and lift forces. These forces are then coupled with

the cable dynamics in order to evaluate cable motion. Two non-dimensional numbers are thus defined: the mean

drag coefficient CD, the root-mean-square lift coefficient r.m.s. CL, rms.

CD =
FD

1
2ρU

2
0D

and CL, rms =
FL, rms
1
2ρU

2
0D

, (33)

where FD and FL, rms are respectively the time-averaged drag force per unit length and root-mean-square lift force

per unit length, and D is the diameter of the cylinder. Another important non-dimensional number is the Strouhal

number, that relates the shedding frequency to the velocity of the flow and a characteristic dimension of the body,

St =
f D

U0
, (34)

where f is the vortex shedding frequency.240

For smooth cylinders, four regimes can be distinguished according to the Reynolds number (Re = ρU0D
µ ) with

different flow characteristics [26, 22] (e.g. separation point, base pressure coefficient Cpb, etc.). These regimes are
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sub-critical flow 2×102 < Re < 1.5×105, critical flow 1.5×105 < Re < 4×105, super-critical flow 4×105 < Re < 107,

trans-critical flow Re > 107. In Figure 5 the dependence of drag coefficient on flow regimes is illustrated. For the

present application, the cable diameter is about 3 cm, the inlet wind velocity is between 1 and 10 m/s, which245

corresponds to Reynolds numbers between 2× 103 and 2× 104, thus the flow is in the sub-critical regime. In this

flow regime the boundary layer remains laminar [22], and the drag coefficient CD ≈ 1.0 − 1.2, is not dependent

on Re (Figure 5). The Strouhal number St ≈ 0.2, and the location of separation φs is between 75◦ and 85◦. A

transition from laminar to turbulent flow occurs behind the separation point and in the region where the wake is

formed. The flow characteristics of the other regimes can be found in [22].250

Computational domain. The computational domain is depicted in Figure 6, and the outer edge of the domain is

circular as in [24, 22], with a radius extended to 20D in order to avoid boundary effects. The circular arc with

radius r = 20D and θ ∈ {−π/2, π/2} forms the inlet boundary, and the circular arc r = 20D and θ ∈ {π/2, 3π/2}

forms the outlet boundary.

In order to capture the vortex shedding phenomenon, the mesh needs to be refined at the wall. The dimensionless

wall distance y+ which can be used to specify the mesh resolution at the wall, has the following definition:

y+ =
yu∗

ν
, (35)

where ν is the kinematic viscosity, and the friction velocity at the wall u∗ is defined as u∗ =
√
τw/ρ, where τw is255

the wall shear stress. To correctly resolve the viscous sublayer, it is necessary to place at least a few cells within

the y+ < 5 region and to have the first cell adjacent to the cylinder at y+ ≈ 1 [30].

20D

D

θ
Inlet Outlet

Figure 6: Computational domain where the cylinder is represented by the red disk.

Boundary conditions. For the k − ω SST model, the following boundary conditions are used for k and ω:

• At the inlet, the turbulent kinetic energy can be specified using k = 3
2 (I|uref|)2, where I is the turbulent

intensity and uref is a reference velocity. The specific rate of dissipation ω can either be defined using the260

turbulence length scale ω =
√
k
l , or the turbulent viscosity ω = k

νt
. These two methods for definition of ω at

the inlet can be used to double-check the resulting turbulent viscosity or turbulence length in order to make

sure that reasonable values are given.
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• At the wall, Menter [32] recommends the use of k = 0, ω =
60ν

β1(∆y1)2
, where ∆y1 is the distance to the next

point away from the wall.265

4.1.1. 2-D simulation

The numerical results of two 2-D test cases at different Reynolds numbers are presented in this section to

evaluate the k − ω SST model.

Case: Re = 106. A super-critical flow with Re = 106 is first considered, whereas for our application of weak winds

on overhead lines, the flow is in the sub-critical regime. The k−ω SST model is used with Menter’s formulation for ω270

at the wall. At the inlet, turbulent intensity I = 0.2% and turbulent viscosity νt = ν [31] are used to determine the

boundary conditions for k and ω. The simulation yields St = 0.289, CL, rms = 0.183, CD = 0.523, which correspond

well to results presented in [29, 31]. In Figure 7, the mean pressure distribution on the cylinder is compared with

other simulations from the literature [29, 31]. The LES and the RANS simulation from Catalano et al. [29] are

3-D computations. So we can expect the physical representation to be more complete in these two cases. A smaller275

base pressure coefficient with respect to the 3-D simulation is obtained here, which is coherent with the fact that

3-D simulation tends to decrease the drag force [52].
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RANS (Catalano)
k-ω SST (Pang)

Figure 7: Mean pressure distribution on the cylinder.

The numerical result can be improved by for example considering a 3-D simulation or by using a more refined

mesh in the wake. However, since our interest lies primarily in the sub-critical regime, 3-D simulation and mesh

refinement are not performed for this Reynolds number. The objective here is to show that the k−ω SST model with280

Menter’s boundary condition for ω at the wall works well at this super-critical regime. In this case the boundary

layer becomes turbulent before the separation point, which is not the case in the sub-critical regime, but this has

allowed validation of the turbulence model.

Case: Re = 104. As in [30], for this test case turbulent intensity I = 0.2% and turbulence length scale l = 0.1D

are specified at the inlet to determine the free stream turbulence level, which corresponds to a turbulence viscosity285

of νt = 2.5ν. The time step ∆t is set to be Tvortex

200 , where Tvortex is the vortex shedding period, which can be

estimated using the Strouhal number. Menter’s boundary condition for ω at the wall is used and Figures 8 and 9
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(blue line) show the calculated lift and drag coefficients (Run 1). The values in Table 2 show that these forces are

over-predicted by the present calculation compared with the literature values listed in Table 1. The mesh resolution

at the wall is verified, for the present calculation without use of the wall function, y+ is ensured to be around 1 as290

shown in Figure 10. The y+ value is also verified for all the turbulence modelling approaches listed in Table 2 in

order to confirm that its value is around 1.

The difference between the present simulation and the reference data could be explained by the two following

considerations. First, at Re = 104, the flow is in the sub-critical regime, meaning that the flow remains laminar

before the separation point. However, the k − ω SST model assumes that the flow is turbulent throughout the295

domain. Thus, use of a transition model could improve the results [49] and this will be studied in future work. Only

some adaptations of the k− ω SST model to the sub-critical regime are tested here. Second, the flow is considered

2-D for the present calculation, whereas for most of the reference data listed in Table 1 the 3-D flow is simulated.

At such a Reynolds number, the 3-D effect is important [52], which will result in a reduction in the fluid forces due

to the effect of spanwise components of the Reynolds stresses. Therefore, some 3-D calculations with the use of300

transition correction models are now carried out.

Before performing 3-D simulations, a 2-D test using a small value for ω at the wall [53] (Run 2) to account for

the transition effect is simulated. It is seen in Figures 8 and 9 (red line) that the resulting lift and drag coefficients of

Run 2 are closer than Run 1 to that reported in the literature (CL, rms ∈ [0.36−0.64] and CD ∈ [1.1−1.2]). In Figure

11, the pressure distribution on the cylinder obtained by these two numerical calculations are compared with an305

experimental result [54]. These two calculations give reasonable pressure on the front portion of the cylinder surface,

however the magnitude of the minimum pressure and the base pressure on the cylinder are overpredicted. Moreover,

Run 2 gives a closer result than Run 1 to the experimental result. The improvement in Run 2 demonstrates that

improved results are achieved when the transition effect is accounted for.
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Figure 8: Comparison of lift coefficient with different wall

boundary conditions for ω.

200 210 220 230 240 250 260
tU

0
/D [-]

1

1,5

2

C
D

 [
-]

Run 1
Run 2

Figure 9: Comparison of drag coefficient with different wall

boundary conditions for ω.
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Figure 10: y+ distribution around the cylinder for Run 1.

Table 1: Reference data for flow past a fixed cylinder at Re = 104: the Strouhal number St, drag coefficient CD, r.m.s. lift coefficient

CL, rms, and base pressure coefficient Cpb .

References L/D St CD CL, rms −Cpb
k − ω SST 2-D Unal et al. [30] - 0.221 1.162 0.634

DNS Dong et al. [25] π 0.2 1.208 0.547 1.201

RANS Nguyen et al. [41] 6 0.2014 1.4101 0.9346

DES Nguyen et al. [41] 6 0.1961 1.1329 0.3629

Experiment Norberg [55] 4− 18 0.2 - 0.394

Experiment Bishop et al. [56] 0.2 1.1 0.6
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Figure 11: Comparison of mean pressure distribution on the cylinder.

4.1.2. 3-D simulation310

A series of 3-D simulations (RANS) based on the k − ω SST model are performed. In Run 3, only the basic

turbulence model is used, while in Run 4 the transition correction model (25)-(27) is then tested, and in Runs 5

and 6 the curvature correction model (21) is applied with two different parameters for the turbulence production
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Table 2: Numerical results from simulations of flow past a fixed cylinder at Re = 104: the Strouhal number St, drag coefficient CD,

r.m.s. lift coefficient CL, rms, and base pressure coefficient Cpb .

Test case Dimension L/D St CD CL, rms −Cpb
DNS Dong et al. [25] 3-D π 0.2 1.208 0.547 1.201

Run 1 (Menter’s condition for ωwall) 2-D - 0.217 1.627 1.253 1.435

Run 2 (ωwall = 10−12) 2-D - 0.214 1.281 0.932 1.280

Run 3 (basic k − ω SST model) 3-D π 0.210 1.175 0.759

Run 4 (transition correction model) 3-D π 0.207 1.154 0.683 1.105

Run 5 (curvature correction model 1) 3-D π 0.213 1.155 0.712

Run 6 (curvature correction model 2) 3-D π 0.213 1.098 0.616

Run 7 (LES) 3-D π 0.212 1.105 0.364

Run 8 (DES) 3-D π 0.197 1.179 0.529

limit fmax
r . The resulting fluid forces from these runs are compared in Figures 12 and 13, and also in Table 2. As

explained in [52], the addition of spanwise Reynolds stress components in 3-D simulation tends to cause a reduction315

in the lift and drag coefficients with respect to 2-D simulation, which can also be observed here in Run 3 compared

to Run 2. The transition correction model improves the numerical result in the sense that the results (see Table

2) are closer to the reference data listed in Table 1. The curvature correction model also influences the numerical

results. Using fmax
r = 1.25 as given by [35], the resulting force coefficients are decreased compared to Run 3. Then

using fmax
r = 1.4, a result is obtained that lies in the reference data range shown in Table 1: CL, rms ∈ [0.36− 0.64]320

and CD ∈ [1.1− 1.2].

The lift coefficient varies strongly for the simulations reported in Table 1. This could be due to the fact that

different mesh resolutions are used in the spanwise direction. As shown in [25], the lift coefficient is highly sensitive

to the mesh resolution whereas other physical quantities, e.g. the Strouhal number, drag coefficient are generally

not influenced. For the cylinder with spanwise length L = πD considered here, 32 space discretization steps are325

used. Moreover, it was observed in [41] that the aspect ratio L/D also has a large influence on the lift coefficient

prediction. The comparison of pressure coefficient between the 2-D and 3-D simulations is shown in Figure 11.

The 2-D simulation gives a larger magnitude for the base pressure coefficient, which corresponds to a larger drag

coefficient, and the 3-D result is in better agreement with the experimental measured values.

A 3-D LES is also conducted using the Smagorinsky model (Run 7). LES is well adapted for the present330

application where the flow is in the sub-critical regime [24, 28]. For LES, it is essential to consider a 3-D flow,

as it is demonstrated in [24] that a 2-D LES yields unphysical results. Finally a DES model is used to simulate

the flow in 3-D (Run 8), where the near wall flow characteristics are modelled using the k − ω SST model, and

the wake flow is resolved using a LES approach. Both LES and DES produce results in good agreement with

the reference data, as can be seen in Table 2, where the numerical results are averaged over 200D/U0 time units.335

Figures 14 and 15 show respectively the comparison of lift and drag coefficients between RANS (Run 4), LES and

DES. The RANS predicts a well organised periodic flow, whereas the LES and DES results demonstrate irregular
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turbulence characteristics. The small amplitude of the drag coefficient oscillation in RANS is coherent with its

strongly dissipative nature [29]. Figure 16 presents a comparison of the mean streamwise velocity distribution for

the RANS calculation and the LES. The two calculations produce nearly the same streamwise velocity distribution340

in upstream flow before the separation point, then after the separation, the LES gives a larger and much longer

wake than the RANS calculation, which is different from a super-critical flow [29]. Contours of the instantaneous

vorticity magnitude computed by RANS and LES at the middle spanwise plane are plotted in Figures 18 and 19.

A vortex-shedding pattern can be observed in both results. The LES produces a less organized von Karman vortex

street and a larger wake than the RANS calculation. Similar to the LES, the DES also produces a larger and longer345

wake than the RANS calculation, as shown in Figure 17. Figure 20 gives contours of the instantaneous vorticity

magnitude computed using DES at the middle spanwise plane, which shows behaviour somewhere between LES

and RANS in terms of wake size and regularity of the von Karman vortex street.
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Figure 12: Time history of lift coefficients for different runs.
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Figure 13: Time history of drag coefficients for different runs.
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Figure 14: Comparison of time histories of lift coefficient.
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Figure 16: Comparison of mean streamwise velocity distribution,

upper: RANS and lower: LES.
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Figure 17: Comparison of mean streamwise velocity distribution,

upper: RANS and lower: DES.

Figure 18: Instantaneous vorticity magnitude at the spanwise mid

plane for a RANS simulation (Run 4).

Figure 19: Instantaneous vorticity magnitude at the spanwise mid

plane for a LES (Run 7).

Figure 20: Instantaneous vorticity magnitude at the spanwise mid plane for a DES (Run 8).

4.2. Flow over a flexibly mounted cylinder

This section presents the simulation of flow over a moving cylinder. This is an important element of the quasi-350

3D method which will allow calculation of the overall cable dynamics. Numerical results are shown to validate

the moving reference frame approach and the turbulence models. VIV lock-in phenomenon, where the vibration

frequency is independent of the external force and is instead equal to the natural frequency of the cylinder, is

highlighted here.

4.2.1. Laminar case355

First, we consider laminar cases where no turbulence model is needed. Two test cases are made:
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a) Forced vertical oscillation. The rigid circular cylinder is subjected to a fixed vertical motion, and the fluid flow

is in the horizontal direction. The vertical velocity of the cylinder is a function of time u = 0.004 cos(12πt). In

Figure 21, the lift and drag coefficients are compared with values found using the ALE method, which is available

in Code Saturne. These two numerical results agree well. Moreover, a spectral analysis of the resulting lift force360

gives a principal oscillation frequency of around 6 Hz, which corresponds to the frequency of the imposed cylinder

motion. For the simulation of a physical time of 50 seconds, the CPU time used for the moving reference frame

method and the ALE method is respectively about 29 minutes and 44 minutes, which indicates that the moving

reference frame method is more efficient because it avoids the resolution of a moving mesh at each time step.
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Figure 21: Comparison of lift and drag coefficients calculated using the moving reference frame method and the ALE method.

b) Free vertical oscillation. The moving reference frame approach is used to simulate a freely oscillating cylinder.365

The cylinder is initially fixed to allow the flow to become fully developed, then the cylinder is allowed to move in

the transverse vertical direction using a mass-spring system. The set-up of the simulation is chosen to match the

experimental work in [57] with mass ratio m∗ = mL

ρD2 = 234.2, where mL is the linear mass of the cylinder and

the natural frequency of the cylinder is fn = 7.016 Hz. These same parameters were also used in [58, 43, 59] for

numerical investigation of VIV phenomenon. At Re = 90 the system is not in the lock-in regime and the transverse370

displacement is small, as shown in Figure 22 by the red line. At Re = 100, the system is in the lock-in regime, and

the cylinder displacement reaches a peak amplitude of about 0.56 cylinder diameters, as shown in Figure 22 by the

blue line. In addition frequency measurement of the displacement is equal to the natural frequency of the cylinder

(mass-spring system), which confirms that this case lies within the lock-in regime. Whereas the vortex shedding

frequency derived from the Strouhal number is f = StU0

D = 6.548 Hz. A series of calculations was performed with375

different Reynolds numbers in order to determine the lock-in range, and are compared with other works, as shown

in Figure 23. The numerical results agree reasonably well with the experimentally measured values [57] and the

numerical results in [59, 58], where large displacements that are taking place within the lock-in range are captured.
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Figure 22: Temporal evolution of cylinder displacement at Re = 90 and Re = 100.
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Figure 23: Lock-in range: comparison of cylinder displacements as function of the Reynolds number.

4.2.2. Turbulent case

Here we consider a turbulent flow over a rigid circular cylinder subjected to a fixed motion with the displacement

as in [60, 25]

y = Y0D cos(2πf0U0/Dt), (36)

where D is the cylinder diameter, Y0 = 0.3 is the oscillation magnitude nondimensionalized using D, and f0 is a380

nondimensional frequency.

Numerical results using LES and DES for a range of frequencies f0 ∈ {0.14, 0.17, 0.19, 0.21, 0.25, 0.27, 0.30}

are compared with the experimental data in [60] and the DNS results in [25] in Figures 24 and 25. From the

experimental data, one can observe an abrupt increase in the mean drag coefficient at f0 ≈ 0.18, whereas at other

frequencies except high frequencies f0 > 0.3 where there is a higher harmonic frequency, the mean drag coefficient385

is close to the stationary cylinder value. At low frequencies the lift coefficient magnitude increases slightly, and

then rises sharply and reaches a peak at f0 ≈ 0.18 due to resonance between the vortex shedding and the imposed
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motion. At higher frequencies the lift coefficient magnitude continues to rise steadily due to the effect of added

mass [60].

In the LES the increase in the mean drag coefficient is captured but at a higher frequency f0 ≈ 0.21 than the390

reference data. The method detailed in [60, pp. 60-61] is used to determine the lift coefficient magnitude. The

peak lift coefficient magnitude is attained at f0 ≈ 0.19, but with a magnitude much larger than the experimentally

measured value. The fall in the lift coefficient after the peak and the increase at higher frequencies are well calculated

by LES. For the DES, increase in the mean drag coefficient due to resonance is obtained at f0 ≈ 0.19, and the lift

coefficient magnitude peak is observed at the same frequency. Globally, the numerical results agree reasonably well395

with the reference data.
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Figure 24: Mean drag coefficient as a function of nondimen-

sional frequency f0.
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Figure 25: Lift coefficient magnitude as a function of nondi-

mensional frequency f0.

4.3. Cable dynamic

For the four test cases presented here, the cable is only allowed to move in the transverse direction of the fluid

flow.

Case 1: 4 nodes400

A very simple test case is performed in order to validate the MPI (Message Passing Interface) communication

between the CFD instances. Four nodes are equally distributed along the cable, as shown in Figure 1 with N = 4.

The two extremities are fixed by setting the corresponding displacements to y1 = y4 = 0. For interior nodes, from

equation (3) with Ls = ∆z we have

M
d2y2(t)

dt2
+Ky2 =

K

2
y3 + f2, (37)

M
d2y3(t)

dt2
+Ky3 =

K

2
y2 + f3, (38)

where M = mL∆z, K = 2H/∆z and fj is the fluid force applied to cylinder j.

By symmetry y2 = y3 and f2 = f3, so the movement of each cylinder satisfies

M
d2yj(t)

dt2
+
K

2
yj = fj , j ∈ {2, 3}. (39)
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One can remark that the movement of the two interior nodes is equivalent to that of a single flexibly mounted

cylinder with mass M and stiffness K/2. The single flexibly mounted cylinder is simulated as a reference solution,

which is compared with the coupled simulation using 4 nodes, as shown in Figure 26. Explicit and implicit coupled

simulations are performed. In the explicit case, only one MPI communication is made between the cable solver and405

each fluid solver for each time step, thus the value at time instant tn for yj is used on right hand side of equations

(37)-(38). For the implicit case, sub-iterations are used with multiple MPI communications to find a convergent

solution of yj at each time step. As shown in Figure 26, the numerical results using the coupled simulations are in

good agreement with the reference solution, while they are further improved using the implicit method.
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Figure 26: Comparison of displacements, where the reference solution is obtained using equation (39).

Case 2: Re = 100410

As in [19, 44], the motion of a cable with spanwise length Lz = 4πD and mass ratio m∗ = mL

ρfD2 = 2 is simulated

using the quasi-3D method. Following [19] to determine the cable tension by considering a standing-wave response

y(z, t) = A cos(ωt) cos(2πz/Lz), (40)

to the cable equation (1). Substitution of the standing-wave response (40) into equation (1) by neglecting the

bending stiffness C yields

ω =
2π

Lz

√
H

mL
. (41)

For the first harmonic of VIV, it can be assumed that the frequency f = ω
2π of the standing-wave response is the

same as that of the forcing due to vortex shedding on a circular cylinder with the same diameter, i.e. f = St·U0

D .

Hence the appropriate cable tension can be computed from H =
(

St·U0

D Lz
)2
mL. The flow for the present calculation

is at Re = 100, the corresponding Strouhal number St = 0.167 for a fixed cylinder (an empirical relation between

the Strouhal number and the Reynolds number can be found in [57]). Finally, using the quasi-3D method, the cable

is decoupled into a series of cylinders, and each cylinder satisfies the mass-spring equation (3) with

M = m∗ρfD
2Ls, K =

2HLs
(∆z)2

= K∗ρfU
2
0Ls, (42)
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where K∗ = 2St2m∗
(
Lz

∆z

)2
, ∆z is the distance between neighbouring cylinders (see Figure 1). Here we use 30 nodes

and a periodic boundary condition to represent the cable. A non-dimensional time step of U0∆t
D = 0.008 is used

giving about 750 time steps per shedding cycle. Figure 27 shows the temporal evolution of the displacement y/D

along the cable, where a standing-wave response can be observed. This response is not stable and it transitions to a

travelling wave later, as shown in Figure 28. The same cable behavior is obtained in the simulations of [19, 44]. In415

Figure 29 the power spectra density (PSD) of the displacement of an anti-node in the case of a standing wave and

the PSD of the displacement of the same point in the case of a travelling wave are shown. The vibration frequencies

are the same in the two cases, where fcal ∈ [0.01953, 0.03906] Hz. The theoretical vortex shedding frequency based

on the Strouhal number fref = 0.0267 Hz, as represented by the dashed line, lies within the calculated frequency

interval.420
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Figure 27: Early time history of displacement along the cable.

320 325 330 335 340 345 350
tU0/D [−]

0.0

0.2

0.4

0.6

0.8

1.0

z/
L
z

[−
]

−0.60

−0.48

−0.36

−0.24

−0.12

0.00

0.12

0.24

0.36

0.48

Figure 28: Later time history of displacement along the cable.
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Case 3: linearly sheared inflow

A flexible riser subjected to currents with a linearly sheared velocity profile is simulated by [12]. The riser is

allowed to vibrate in the transverse direction of the incoming flow with the two ends fixed. The inflow Reynolds

number based on the cable diameter is Re = 200 at the top end of the riser and Re = 100 at the bottom end, giving

Strouhal numbers in the range [0.167, 0.190] (the Strouhal number can be approximated as St = 0.212(1−21.2/Re)425

[57]). The aspect ratio of the riser is Lz/D = 100, the mass ratio m∗ = mL

ρfD2 = 2.13 and here 30 nodes are used

to represent the long flexible cylinder. The fundamental modal frequency of the riser f1 = c
2Lz

, where c =
√

H
mL

is

the wave propagation speed in the riser, is chosen to be equal to the vortex shedding frequency at the mid-plane

(Re = 150) in the spanwise direction of the riser f1 = St·Umid

D .

Figure 30 shows a comparison of the rms displacement of the riser along the spanwise direction between the430

present work and the reference solution [12]. The two results have a similar fundamental mode form, and as in [12],

the peak displacement is obtained towards the low Reynolds number end (z = 44.8D). The amplitude difference

between the two results can be explained by the fact that different structural models are used, and in [12] the

bending stiffness is also considered. Indeed, as shown in Figure 31, increased bending stiffness tends to reduce the

displacement. And a rms displacement close to the reference solution is obtained with bending stiffness C = 4C0,435

where C0 = 0.01HD2. Moreover, this test case is also simulated using the same wake oscillator model as in [9, 10],

where a quasi-fundamental mode form is obtained with a peak displacement slightly towards the low Reynolds

number end of the cable (z = 47.9D). Here in the wake oscillator calculation, the bending stiffness of the cable

model is not considered. Figure 32 shows a comparison of the Strouhal number for flow around a stationary riser

(dashed line, obtained using the above-mentioned empirical relation from [57]) and a vibrating riser (blue line).440

As expected, at the two ends the shedding frequencies are close in the two cases. Whereas far from the two ends,

the shedding frequencies are significantly modified. The shedding frequencies away from the ends are locked to the

fundamental frequency of the riser, as indicated by the superposition of the blue line and the red line in Figure 32,

where the red line represents the Strouhal number calculated using the vibration frequency of the riser. Figures 33

and 35 show respectively the time evolution of the lift coefficient CL and the displacement y/D. As in [12], we can445

observe an abrupt phase change in CL at z/Lz ≈ 0.35, where CL and y/D are in phase at low Reynolds numbers,

and are out of phase at high Reynolds numbers. The lift coefficient oscillations on the higher Reynolds number

part of the riser are also much weaker, most likely due to the negative interaction between the cable motion and

the vortex shedding. Figure 34 shows the time evolution of the lift coefficient along the cable calculated using the

wake oscillator method, where no phase change in CL is observed and the lift force frequency corresponds to that450

of the high Reynolds number end of the cable calculated using the quasi-3D method. The wake oscillator model

yields a qualitatively correct vibration amplitude, however the phase change of the force along the cable is not well

produced. Figure 36 shows the rms displacement of the riser along the spanwise direction with different numbers

of sections N to represent the riser. As can be seen, use of N = 30 sections is enough to calculate accurately the

cable dynamics, and increased N yields slightly greater displacements.455
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Figure 30: Rms displacement of the riser along the spanwise di-
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Figure 31: Rms displacement of the riser along the spanwise di-

rection with different bending stiffness.
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Figure 32: Comparison of the Strouhal number for flow around

a stationary riser [57] (dashed line) and a vibrating riser (blue

line). The red line is the Strouhal number at the riser frequency.
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Figure 33: Time evolution of the lift coefficient along the riser

calculated using the quasi-3D method.
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Figure 34: Time evolution of the lift coefficient along the riser

calculated using the wake oscillator method.
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Figure 35: Time evolution of the riser displacement calculated

using the quasi-3D method.
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Figure 36: Rms displacement of the riser along the spanwise direction with different section numbers.

Case 4: linearly sheared turbulent inflow

This test case has been simulated using DNS in [61], where the cable is subjected to a linearly sheared flow, with

the cable fixed at both ends. The inflow velocity satisfies Umin = 0.3Umax and the maximal inflow velocity Umax

corresponds to a cable diameter Reynolds number Re = 103, hence in the turbulent regime. The cable characteristics

are taken from [9]: the aspect ratio Lz/D = 2028, the mass ratio m∗ = mL/(ρD
2) = 2, the dimensionless tension460

c̃ =
√

H
mL

1
DΩ0

= 27.8, where Ω0 = 2πStUmax

D is the angular frequency of the vortex shedding, and St = 0.2 is the

reference Strouhal number. Figure 37 shows the rms displacement of the cable along the spanwise direction. A

standing wave response is observed at the two fixed ends and a travelling wave response is obtained away from the

ends. The result obtained using the quasi-3D method agrees well with DNS at the high Reynolds number end of the

cable. The difference between the two results at the low Reynolds number end of the cable could be due to the fact465

that in our quasi-3D calculation the k − ω SST turbulence model is used for the whole length of the cable, where

the use of the turbulence model is not physically justified at low Reynolds numbers. No further investigation is

conducted to get a closer numerical result compared to the DNS result because we are mainly interested in turbulent

cases for future overhead conductor applications, and here we are only seeking a qualitative comparision with the

DNS results. The same wake oscillator model for the fluid force as in [9, 10] is also used to simulate this test case,470

and the numerical result is qualitatively comparable to those of the quasi-3D method and the DNS. Moreover in

the travelling wave region (away from the two ends) the quasi-3D method and the wake oscillator model give peak

vibration amplitude towards the high Reynolds number end, whereas the DNS peak vibration amplitude is around

the middle of the cable length. Figure 38 shows the PSD for the temporal evolution of the displacement of the cable

section located at z = 685D, where a multi-modal response can be observed. The fundamental frequency of the475

riser is f1 = 0.199 Hz, and the vortex shedding frequency based on the maximal inflow velocity is fmax
vortex = 4.616 Hz

using St = 0.2, which corresponds to the 23rd mode. Figure 38 confirms that the number of modes excited is below

23. Figure 39 shows the rms displacements with different N to represent the cable, the displacements are globally

close between the 3 cases, and increased N yields smoother rms displacements along the spanwise direction.
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Figure 37: Rms displacement of the cable along the spanwise direction.
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Figure 38: PSD of the temporal evolution of the displacement of the cable section located at z = 685D.
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Figure 39: Rms displacement of the cable along the spanwise direction with different cable section numbers.

5. Conclusion480

In this work, a quasi-3D method based on strip theory is used in order to simulate the effect of weak winds

on overhead lines. This approach is necessary because fully 3-D simulation is not feasible. The quasi-3D method
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transforms the overhead line model into a series of mass-spring systems with fluid effects appearing as an external

force. The fluid flow simulation is carried out using the industrial Code Saturne code and a moving reference frame

approach is employed in order to avoid the use of a moving mesh for the fluid domain. The moving mesh method485

would be more costly and less robust. Turbulence models, including the k− ω SST model, the Smagorinsky model

for LES and a DES model based on the k − ω SST model, are used to take into account the effect of turbulence in

the flow.

Numerical simulations are conducted for flow around a stationary cylinder in order to validate the turbulence

models. For 2-D simulation, the k − ω SST model with Menter’s boundary condition for ω overpredicts the fluid490

force. Reynolds numbers are low in the current application, meaning that the flow is in the sub-critical regime.

Hence, 3-D simulation is necessary to resolve influential spanwise flow structures along with transition correction

models to better correspond with the sub-critical flow where transition occurs after separation. LES and DES give

numerical results in good agreement with reference data. Flows over a flexibly mounted cylinder in both the laminar

and turbulent regimes are then simulated in order to validate the moving reference frame method and the turbulence495

models in a moving frame. Finally, flexible cable dynamics were simulated using the quasi-3D method, yielding

similar overall cable behavior to that found in the literature. These behaviors include a standing wave response that

becomes unstable and transitions to a travelling wave in the case of an infinite cable, shedding frequencies that are

locked to the natural frequency of the structure in the case of a riser subjected to a sheared flow, and a multi-modal

VIV response that is observed in the case of a very high aspect ratio cable subjected to a turbulent sheared flow.500

In upcoming work, the numerical model presented in this paper will be further developed and integrated into a

multi-scale numerical model for overhead conductors. The purpose of the multi-scale model is to assess the lifespan

of overhead power lines due to mechanical fatigue phenomena [62, 63]. At the macro-scale level, for now, the EBP

approach is used to calculate the dynamics of overhead conductors. Our aim is that the new model will be a more

accurate and realistic alternative to the EBP approach.505

Acknowledgements

This work was partially financed by RTE (Réseau de transport d’électricité) R&D.

Appendix A. Moving reference frame method

Appendix A.1. Moving reference frame for Navier-Stokes equations

A derivation of Navier-Stokes equations in a moving reference frame is given in this section based on the work of

[43]. Here, only 2-D translations are considered, where the coordinates in the absolute reference frame are (x∗1, x
∗
2)

and the coordinates in the moving reference frame are (x1, x2) , so we have x∗1 = x1 + ds1(t),

x∗2 = x2 + ds2(t),
(A.1)

where ds(t) = (ds1(t), ds2(t))T is the displacement of the moving reference frame. It is first shown that the spacial

gradient of a physical variable φ (e.g. P or uj) is invariant with respect to the reference frame. For each variable
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φ, the moving and fixed reference frames are related by the following equation:

φ∗(x∗1, x
∗
2, t) = φ(x1, x2, t) + aφ · us(t) = φ(x∗1 − ds1(t), x∗2 − ds2(t), t) + aφ · us(t), (A.2)

where us = ḋs(t) is the velocity of the moving reference frame and the dot denotes a derivative with respect to time,

aφ is a constant vector that has different values for each variable depending on whether the variable is affected by

the moving reference frame. For example aP = (0, 0) because the pressure is unaffected by the moving reference

frame and auj = ej , where ej is the unit vector in the direction xj , because the velocity changes in the moving

reference frame. Using the chain rule we have

∂φ∗(x∗1, x
∗
2, t)

∂x∗j
=

2∑
i=1

∂φ(x1, x2, t)

∂xi

∂xi
∂x∗j

+
∂aφ · us(t)

∂x∗j

=
∂φ(x1, x2, t)

∂xj
. (A.3)

Similarly for the time derivative of the velocities, we have

∂u∗j (x
∗
1, x

∗
2, t)

∂t
=
∂uj(x1, x2, t)

∂t
+

2∑
i=1

∂uj(x1, x2, t)

∂xi

∂xi
∂t
|x∗1 , x∗2 + u̇sj(t)

=
∂uj(x1, x2, t)

∂t
− ∂uj(x1, x2, t)

∂xi
usi (t) + u̇sj(t), (A.4)

The momentum equation in the absolute reference frame is

∂u∗j (x
∗
1, x

∗
2, t)

∂t
+ u∗i

∂u∗j (x
∗
1, x

∗
2, t)

∂x∗i
= − ∂P

∂x∗j
+ ν

∂2u∗j (x
∗
1, x

∗
2, t)

∂x∗i
2 , (A.5)

which in the moving reference frame becomes

∂uj(x1, x2, t)

∂t
+ ui

∂uj(x1, x2, t)

∂xi
= − ∂P

∂x1
+ ν

∂2uj(x1, x2, t)

∂x2
i

− u̇sj(t), (A.6)

with the resulting new term −u̇sj(t).510

Appendix A.2. Moving reference frame for turbulence models

The adjustments made to the turbulence models for the moving reference frame are now briefly explained. In

RANS models the velocity is decomposed into a mean and a fluctuating part

u = U + u′, (A.7)

where U can be obtained from an ensemble average for a given experiment over N realisations

U = lim
N→∞

1

N

N∑
α=1

u(α), (A.8)

where α is the realisation index. A similar decomposition exists for the velocity u∗ in the absolute reference frame.

Differentiating equation (A.1) with respect to time gives the velocity relation in the two reference frames:

u∗ = u + us(t). (A.9)
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We follow [64] to show that the fluctuating velocity is frame invariant. The fluctuating velocity in the moving

reference frame can be rewritten in three steps

u′ = u− lim
N→∞

1

N

N∑
α=1

u(α)

= u∗ − us(t)− lim
N→∞

1

N

N∑
α=1

(
u∗(α) − us(t)

(α)
)

= u∗ − lim
N→∞

1

N

N∑
α=1

u∗(α), (A.10)

where in the second step we have used the velocity relation (A.9), in the last step the velocity of the moving

reference frame is cancelled because it is independent of the experimental realisations. The fluctuating velocity in

the moving reference frame is therefore the same as in the absolute reference frame, hence the turbulent kinetic

energy k = u′iu
′
i/2. The turbulent dissipation rate ε = ν

∂u′i
∂xj

∂u′j
∂xi

is also frame invariant since it involves the515

fluctuating velocity and spatial derivatives. The frame invariance property is also valid for the specific turbulence

dissipation rate ω = ε/k. Using the chain rule for k and ω as has been done for the velocity in the previous section

(see equations (A.3) and (A.4)), one can show that the transport equations for k and ω are frame indifferent [65].

For the Smagorinsky model the turbulent viscosity only depends on the strain rate tensor Sij , therefore it is frame

invariant [65].520

Remark. In the absolute reference frame, the domain changes with time. Therefore in the Eulerian description of the

domain (x, t), we can have points which are in the fluid domain at some times and in the structure domain at other

times, which makes ensemble averaging impossible in the derivation of turbulence models. In order to overcome this

difficulty, one can consider deriving the physical equations in the time-independent ALE domain (χ, t) [42], with

the help of a time-dependent mapping x = A(χ, t) to relate the Eulerian domain to the ALE domain. It should be525

noted that the ALE domain is different to the domain in the moving reference frame approach. In the former case

the domain boundary remains the same with the time, whereas in the latter case the domain boundary changes

with the time.
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driques seuls ou en réseaux, Ph.D. thesis, UPMC (2011).

[8] M. L. Facchinetti, E. de Langre, F. Biolley, Coupling of structure and wake oscillators in vortex-induced

vibrations, Journal of Fluids and Structures 19 (2) (2004) 123–140. doi:10.1016/j.jfluidstructs.2003.545

12.004.

[9] R. Violette, E. de Langre, J. Szydlowski, Computation of vortex-induced vibrations of long structures using a

wake oscillator model: Comparison with DNS and experiments, Computers and Structures 85 (11-14) (2007)

1134–1141. doi:10.1016/j.compstruc.2006.08.005.

[10] Y. Gao, Z. Zong, L. Zou, S. Takagi, Vortex-induced vibrations and waves of a long circular cylinder predicted550

using a wake oscillator model, Ocean Engineering 156 (2018) 294–305. doi:10.1016/j.oceaneng.2018.03.

034.

[11] N. Srinil, M. Wiercigroch, P. O’Brien, Reduced-order modelling of vortex-induced vibration of catenary riser,

Ocean Engineering 36 (17-18) (2009) 1404–1414. doi:10.1016/j.oceaneng.2009.08.010.

[12] R. H. J. Willden, J. M. R. Graham, Numerical prediction of VIV on long flexible circular cylinders, Journal of555

Fluids and Structures 15 (2001) 659–669. doi:10.1006/jfls.2000.0359.

[13] J. R. Meneghini, F. Saltara, R. de Andrade Fregonesi, C. T. Yamamoto, E. Casaprima, J. A. Ferrari, Numerical

simulations of VIV on long flexible cylinders immersed in complex flow fields, European Journal of Mechanics

B/Fluids 23 (2004) 51–63. doi:10.1016/j.euromechflu.2003.09.006.

[14] K. Herfjord, T. Holmas, K. Randa, A parallel approach for numerical solution of vortex induced vibrations of560

very long risers, in: Computational Mechanics - New Trends and Applications, 1998.

[15] Y. Duanmu, L. Zou, D.-c. Wan, Numerical simulations of vortex-induced vibrations of a flexible riser with

different aspect ratios in uniform and shear currents, Journal of Hydrodynamics 29 (6) (2017) 1010–1022.

doi:10.1016/S1001-6058(16)60815-6.

[16] R. H. J. Willden, J. M. R. Graham, Vortex induced vibration of deep water risers, in: The 7th International565

Conference on Flow-Induced Vibration, 2000, pp. 29–36.

[17] R. H. J. Willden, J. M. R. Graham, Multi-modal vortex-induced vibrations of a vertical riser pipe subject

to a uniform current profile, European Journal of Mechanics - B/Fluids 23 (2004) 209–218. doi:10.1016/j.

euromechflu.2003.09.011.

[18] R. H. J. Willden, J. M. R. Graham, CFD simulations of the vortex-induced vibrations of model riser pipes, in:570

24th International Conference on Offshore Mechanics and Arctic Engineering, 2005.

32



[19] D. J. Newman, G. E. Karniadakis, A direct numerical simulation study of flow past a freely vibrating cable,

Journal of Fluid Mechanics 344 (1997) 95–136. doi:10.1017/S002211209700582X.

[20] C. L. Lee, N. C. Perkins, Nonlinear oscillations of suspended cables containing a two-to-one internal resonance,

Nonlinear Dynamics 3 (1992) 465–490.575

[21] Eurobios Scientific Computing Branch, Mise en œuvre d’un modèle simplifié de vibration d’un conducteur et
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