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The purpose of this note is to represent a general analytic geometry problem implying Urquhart's Theorem. The proofs are elementary and rely on some calculations and trigonometric identities.

In this context we state the known Urquhart's theorem (see also [START_REF] Pedoe | The most elementary theorem of Euclidean geometry[END_REF]) as follows: ]). For αβ ≤ 0, a ≥ r and b = a we have IO + IC = JO + JC (see Figure 1). 

Theorem 1 ([1, 2 

Main Results

Considering the line (OA) resp. (OB) of equation y = tan(α)x resp. y = tan(β)x; by straight calculations we have:

A cos(α)(a 2 -r 2 ) 2a -2r cos(α) , sin(α)(a 2 -r 2 ) 2a -2r cos(α)
and thus

B cos(β)(b 2 -r 2 ) 2b -2r cos(β) , sin(β)(b 2 -r 2 ) 2b -2r cos(β) .
We also verify that the line (CA ) is:

y = sin(α)(a 2 -r 2 ) (r 2 + a 2 ) cos(α) -2ra x - r sin(α)(a 2 -r 2 ) (r 2 + a 2 ) cos(α) -2ar
.

The points I and J are:

I            x I = r cos(β) sin(α)(a 2 -r 2 ) cos(β) sin(α)(a 2 -r 2 ) -sin(β)((r 2 + a 2 ) cos(α) -2ar) y I = r sin(β) sin(α)(a 2 -r 2 ) cos(β) sin(α)(a 2 -r 2 ) -sin(β)((r 2 + a 2 ) cos(α) -2ar)
and by switching α ↔ β, a ↔ b:

J            x J = r cos(α) sin(β)(b 2 -r 2 ) cos(α) sin(β)(b 2 -r 2 ) -sin(α)((r 2 + b 2 ) cos(β) -2br) y J = r sin(α) sin(β)(b 2 -r 2 ) cos(α) sin(β)(b 2 -r 2 ) -sin(α)((r 2 + b 2 ) cos(β) -2br)
.

Hereafter we asume that sin(α) sin(β) = 0 since otherwise the configuration is trivial. The next lemma collects some identities that can be obtained at www. dcode.fr/math-expression-factor:

Lemma 1. Let α, β, r and a be reals numbers, set s = α+β

2 and d = α-β 2 : (2.1) (sin(α)(a 2 -r 2 )) 2 + ((r 2 + a 2 ) cos(α) -2ar) 2 = (a 2 + r 2 -2ar cos(α)) 2 . (2.2) r sin(α)(a 2 -r 2 ) + r sin(β)(a 2 + r 2 -2ar cos(α)) = 2r(a sin(s) + r sin(d))(a cos(d) -r cos(s)). (2.3) r sin(α)(a 2 -r 2 ) -r sin(β)(a 2 + r 2 -2ar cos(α)) = 2r(r sin(s) + a sin(d))(a cos(s) -r cos(d)). (2.4) cos(β) sin(α)(a 2 -r 2 ) -sin(β)((r 2 + a 2 ) cos(α) -2ar) = 2(a sin(d) + r sin(s))(a cos(d) -r cos(s)).
Lemma 2. With the given definitions we have:

• OA = |a 2 -r 2 | |2a -2r cos(α)| , OB = |b 2 -r 2 | |2b -2r cos(β)| • CA = a 2 + r 2 -2ar cos(α) |2a -2r cos(α)| and CB = b 2 + r 2 -2br cos(β) |2b -2r cos(β)| • OI = |r sin(α)(a 2 -r 2 )| | cos(β) sin(α)(a 2 -r 2 ) -sin(β)((r 2 + a 2 ) cos(α) -2ar)| • OJ = |r sin(β)(b 2 -r 2 )| | cos(α) sin(β)(b 2 -r 2 ) -sin(α)((r 2 + b 2 ) cos(β) -2br)| • CI = r| sin(β)|(a 2 + r 2 -2ar cos(α)) | cos(β) sin(α)(a 2 -r 2 ) -sin(β)((r 2 + a 2 ) cos(α) -2ar)| • CJ = r| sin(α)|(b 2 + r 2 -2br cos(β)) | cos(α) sin(β)(b 2 -r 2 ) -sin(α)((r 2 + b 2 ) cos(β) -2br)| • CB OB • OI CI = CJ OJ • OA CA
(see also [START_REF] Wanner | The Cramer-Castillon problem and Urquhart's 'most elementary' theorem[END_REF] page 63).

Proof. A straight application of previous calculations.

For any reals α, β, r and a we define F ± α,β (a) whenever the denominator is non zero by: (2.5)

F ± α,β (a) = r sin α(a 2 -r 2 ) ± r sin β(a 2 + r 2 -2ar cos(α)) cos(β) sin(α)(a 2 -r 2 ) -sin(β)((r 2 + a 2 ) cos(α) -2ar) ,
(with the same sign for ± on both sides). By Lemma 1 we know that In order to get identities of the form (1.1) we need to solve in b, F ± α,β (a) = ±F ± β,α (b). This is summarizd in the next theorems. (

F + α,β (a) =
) F - α,β (a) = F - β,α (b) if and only if b = a. (6) F - α,β (a) = -F - β,α (b) if and only if b = r a(1 + cos(α) cos(β)) -r(cos(β) + cos(α)) a(cos(β) + cos(α)) -r(1 + cos(α) cos(β)) . (7) F - α,β (a) = F + β,α (b) if and only if b = r r -a cos(β) r cos(β) -a . (8) F - α,β (a) = -F + β,α (b) if and only if b = r r -a cos(α) a -r cos(α) . 5 
Theorem 3. Take α and β in ]0; π[, a ≥ 0 with r > 0:

1) For b = r a(1 -cos(α) cos(β)) + r(cos(β) -cos(α)) r(1 -cos(α) cos(β)) + a(cos(β) -cos(α)) ,
• if α ≥ β then for a ≤ r; b ≤ r and |IO -IC| = |JO -JC|.

for a ≥ r; b ≥ r and IO + IC = JO + JC,

• if α < β then for r(cos(α)-cos(β)) 1-cos(α) cos(β) ≤ a ≤ r; 0 ≤ b ≤ r and |IO -IC| = |JO -JC|.

for r ≤ a < r(1-cos(α) cos(β)) (cos(α)-cos(β)) ; b ≥ r and IO + IC = JO + JC.

2) For b = r(a cos(α) -r) a -r cos(α) ,

• if 0 < α < π 2 then -for 0 ≤ a < r cos(α) ≤ r; b ≥ r and |IO -IC| = |JO -JC|, -for a ≥ r cos(α) ≥ r; b ≤ r and IO + IC = JO + JC. 3) For b = r(a cos(β) + r) a + r cos(β) , • if 0 < β ≤ π 2 then -for a ≥ r; b ≤ r and IO + IC = JO + JC, -for a ≤ r; b ≥ r and |IO -IC| = |JO -JC|. • if π 2 < β < π then -for -r cos(β) < a ≤ r; b ≥ r and |IO -IC| = |JO -JC|, -for r ≤ a ≤ -r cos(β) ; b ≤ r and IO + IC = JO + JC. 4) For b = a,
• for a ≥ r; |IO -IC| = |JO -JC|,

• for a ≤ r; IO + IC = JO + JC. We point out at last that if the coordinates of J are taken as real functions, the following couple values b give the same point J: 

5) For b = r a(1 + cos(α) cos(β)) -r(cos(β) + cos(α)) a(cos(β) + cos(α)) -r(1 + cos(α) cos(β)) , • if α + β ≤ π then -for 0 ≤ a ≤ r(cos(α)+cos(β)) 1+cos ( 

1 .

 1 Introduction We start by stating this simple problem: In the Euclidean plane (O, two concentric circles (A) respectively (B) of radius a respectively b centered at O. Let A ∈ (A) with A(a cos(α); a sin(α)) and B ∈ (B) with B(b cos(β); b sin(β)) for some reals α and β in [-π, π]. For C(r, 0), r > 0 the perpendicular bisector of [AC] resp. [BC] intersect (OA) at A resp. (OB) at B . Assuming that no opposite sides of the quadrilateral OA CB are parallel, let I = (A C) ∩ (OB ) and J = (B C) ∩ (OA ). We fix all parameters except the radius b considered as a variable b ≥ 0 and want to find b for which (1.1) |IO ± IC| = |JO ± JC|.
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 1 Figure 1. Urquhart's theorem
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  (a sin(s) + r sin(d)) a sin(d) + r sin(s) and F - α,β (a) = r(a cos(s) -r cos(d)) a cos(d) -r cos(s) .

Theorem 2 .

 2 Under previous notations assuming sin(α) sin(β) = 0:(1) F + α,β (a) = F + β,α (b) if and only if b = r a(1 -cos(α) cos(β)) + r(cos(β) -cos(α)) r(1 -cos(α) cos(β)) + a(cos(β) -cos(α)) .(2) F + α,β (a) = -F + β,α (b) if and only if b = -a. (3) F + α,β (a) = F - β,α (b) if and only if b = r a cos(α) -r a -r cos(α) . (4) F + α,β (a) = -F - β,α(b) if and only if b = r a cos(β) + r r cos(β) + a .

, 73 ,√ 3 -45 73 ,

 73373 α) cos(β) ≤ r; b ≤ r and IO + IC = JO + JC, for r ≤ r(1+cos(α) cos(β)) cos(α)+cos(β) < a; b ≥ r and |IO -IC| = |JO -JC|.6) For b = r(r -a cos(β)) r cos(β) -a , • if 0 < β < π 2 then for 0 ≤ a < r cos(β) ≤ r; b ≥ r and IO + IC = JO + JC, for a ≥ r cos(β) ≥ r; b ≤ r and |IO -IC| = |JO -JC|. 7) For b = r(r -a cos(α)) a -r cos(α) , • if 0 < α < π 2 then for r cos(α) < a ≤ r; b ≥ r and IO + IC = JO + JC, for r ≤ a ≤ r cos(α) ; b ≤ r and |IO -IC| = |JO -JC|. • if π 2 ≤ α < πthen for a ≥ r; b ≤ r and |IO -IC| = |JO -JC|, for a ≤ r; b ≥ r and IO + IC = JO + JC. Proof. The expressions of b are direct computations from Theorem 2. The bounds on (α, β, a) are to verify that b is nonnegative and the bounds on b can be deduced by taking the derivative of b as a function in a. The case α ∈]0; π[ and β ∈] -π; 0[ can be deduced from the previous theorem by replacing (verbatim) β with |β| and switching identities that is IO + IC = JO + JC ↔ |IO -IC| = |JO -JC| and vice versa. This gives for example Theorem 1 as a consequence of case 4) which also appeared in [3]. Example 1. In this example we illustrate the proven identities for a = 5, r = 3, α = π 3 and β = -π 6 . |IO -IC| = |JO -JC| 3) b = 96 √ 3+45 |IO -IC| = |JO -JC| 4) b = 5, IO + IC = JO + JC 5) b = 288 √ 3+21 143 , IO + IC = JO + JC 6) b = 96 IO + IC = JO + JC 7) b = 3 7 , IO + IC = JO + JC.

  a, r r -a cos β r cos(β) -a , -a, r r + a cos β r cos(β) + a , r a cos(α) -r a -r cos(α) , r a(1 -cos(α) cos(β)) + r(cos(β) -cos(α)) r(1 -cos(α) cos(β)) + a(cos(β) -cos(α)) and r r -a cos(α) a -r cos(α) , r a(1 + cos(α) cos(β)) -r(cos(β) + cos(α)) a(cos(β) + cos(α)) -r(1 + cos(α) cos(β)) .
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