## An extension of Fellegi-Sunter record linkage model for mixed-type data with application to SNDS

Thanh Huan VO\*

Joint work with G. Chauvet, A. Happe, E. Oger, S. Paquelet and V. Garès

The 42nd Annual Conference of the International Society for Clinical Biostatistics

<sup>\*</sup>INSA Rennes and IRT b<>com ThanhHuan.Vo@b-com.com

#### **Contents**

Introduction

Record linkage model

Comparison step

Classification step

Application

Introduction

#### Introduction

#### Motivation

- SNDS (Système National des Données de Santé): is a national health information system of the French population
- GETBO: venous thromboembolism (VTE) cases recorded between 2013 and 2015 in Brest

| SNDS  |                               |                               |                               |  |  |  |
|-------|-------------------------------|-------------------------------|-------------------------------|--|--|--|
|       | $\mathbf{X} \in \mathbb{R}^p$ | $\mathbf{Y} \in \mathbb{R}^m$ | $\mathbf{Z} \in \mathbb{R}^n$ |  |  |  |
| 1     |                               |                               | -                             |  |  |  |
|       | Observed                      | Observed                      | serve                         |  |  |  |
|       | Obse                          | Obse                          | Unobserved                    |  |  |  |
| $n_A$ |                               |                               | _                             |  |  |  |

| GETBO          |                               |                               |                               |  |  |  |
|----------------|-------------------------------|-------------------------------|-------------------------------|--|--|--|
|                | $\mathbf{X} \in \mathbb{R}^p$ | $\mathbf{Y} \in \mathbb{R}^m$ | $\mathbf{Z} \in \mathbb{R}^n$ |  |  |  |
| 1              |                               | P                             |                               |  |  |  |
|                | Observed                      | serve                         | Observed                      |  |  |  |
|                | Obse                          | Unobserved                    | Obse                          |  |  |  |
| n <sub>B</sub> |                               | ر<br>                         |                               |  |  |  |

#### Record linkage

- process of combining data from different sources that refers to the same entity
- no identifying information is available

2

#### **Example**

|                | Postal code Cancer Date of echo |              | Date of echodoppler |
|----------------|---------------------------------|--------------|---------------------|
| a <sub>1</sub> | 29001                           | 1 10/03/2014 |                     |
| a <sub>2</sub> | 29002                           | 0            | 17/05/2013          |
| a <sub>3</sub> | 29003                           | 0            | 19/11/2013          |
| a4             | 29002                           | 0            | 01/03/2014          |

| Postal code           |       | Cancer | Date of echodoppler |
|-----------------------|-------|--------|---------------------|
| $b_1$                 | 29001 | 1      | 12/03/2014          |
| <i>b</i> <sub>2</sub> | 29002 | 0      | 17/05/2013          |

Database B

Database A

**Table 1:** Example of two databases with three matching variables: Postal code, cancer and date of echodoppler

#### Matching variables: are chosen among those in common between databases

- Categorical variables:
  - Binary data: sex, diagnosis code, ...
  - ▶ More than 3 categories: postal code, month of birth,...
- Continuous variables:
  - age, duration from an origin of dates (date of medical acts,...)

Record linkage model

#### Outline

Introduction

Record linkage model

Comparison step

Classification step

Application

## Comparison step

Let K be the number of matching variables and

$$a_i = (a_i^1, \dots, a_i^K), \quad i = 1, \dots, n_A$$
  
 $b_j = (b_j^1, \dots, b_j^K), \quad j = 1, \dots, n_B$ 

For each record pair  $(a_i, b_j)$ , we define a comparison vector

$$\gamma_{ij} = (\gamma_{ij}^1, \dots, \gamma_{ij}^K)$$

where

$$\qquad \gamma_{ij}^k = h^k(a_i^k, b_j^k)$$

 $\blacktriangleright$  and  $\mathit{h}^{\mathit{k}}(\cdot,\cdot)$  is a comparison function for the  $\mathit{k}^{\mathit{th}}$  matching variable.

## Simple comparison approach

In a simple approach, we define for k = 1, ..., K

$$\gamma_{ij}^{k} = h^{k}(a_{i}^{k}, b_{j}^{k}) = \mathbb{1}_{a_{i}^{k} = b_{i}^{k}}$$
(1)

|                | Postal code | Cancer | Date of echodoppler |
|----------------|-------------|--------|---------------------|
| a <sub>1</sub> | 29001       | 1      | 10/03/2014          |
| a <sub>2</sub> | 29002       | 0      | 17/05/2013          |
| a <sub>3</sub> | 29003       | 0      | 19/11/2013          |
| <b>a</b> 4     | 29002       | 0      | 01/03/2014          |

#### Database A

| Postal code           |       | Cancer | Date of echodoppler |
|-----------------------|-------|--------|---------------------|
| <i>b</i> <sub>1</sub> | 29001 | 1      | 12/03/2014          |
| b <sub>2</sub>        | 29002 | 0      | 17/05/2013          |

Database B

 $\gamma_{11}$ 0  $\gamma_{12}$ 0 0 0  $\gamma_{21}$ 1 1  $\gamma_{22}$ 0 0 0  $\gamma_{31}$ 0 0  $\gamma_{32}$ 0 0 0  $\gamma_{41}$ 0  $\gamma_{42}$ 

Table 2: Simple comparison matrix

## Proposed comparison approach

- For categorical matching variables with L different categories
  - $\longrightarrow \mathsf{L}^2$  configurations of possible pairs
  - Assign a number from 1 to L<sup>2</sup> (no order meaning) for each possible configuration

**Example:** For a binary matching variable, we have

$$\begin{cases} h(0,0) = 1\\ h(0,1) = 2\\ h(1,0) = 3\\ h(1,1) = 4 \end{cases}$$
 (2)

If we want to reduce the number of parameters

$$\begin{cases} h(0,0) = 1\\ h(0,1) = h(1,0) = 2\\ h(1,1) = 3 \end{cases}$$
 (3)

■ For continuous matching variables: Using distance (1-norm, 2-norm,...)

**Example:** 
$$a_1^3 = 10/03/2014, b_1^3 = 12/03/2014$$
  
 $\longrightarrow \gamma_{11}^3 = |a_1^3 - b_1^3| = 2$ 

## Proposed comparison approach

|                | Postal code | Cancer | Date of echodoppler |
|----------------|-------------|--------|---------------------|
| $a_1$          | 29001       | 1      | 10/03/2014          |
| a <sub>2</sub> | 29002       | 0      | 17/05/2013          |
| a <sub>3</sub> | 29003       | 0      | 19/11/2013          |
| <b>a</b> 4     | 29002       | 0      | 01/03/2014          |

Database A

|               | $\gamma^1$ | $\gamma^2$ | $\gamma^3$ |
|---------------|------------|------------|------------|
| $\gamma_{11}$ | 1          | 1          | 0          |
| $\gamma_{12}$ | 0          | 0          | 0          |
| $\gamma_{21}$ | 0          | 0          | 0          |
| $\gamma_{22}$ | 1          | 1          | 1          |
| $\gamma_{31}$ | 0          | 0          | 0          |
| $\gamma_{32}$ | 0          | 1          | 0          |
| $\gamma_{41}$ | 0          | 0          | 0          |
| $\gamma_{42}$ | 1          | 1          | 0          |

(a) Simple approach



Database B

| $\gamma^1$ | $\gamma^2$                 | $\gamma^3$                  |
|------------|----------------------------|-----------------------------|
| 1          | 3                          | 2                           |
| 0          | 2                          | 297                         |
| 0          | 2                          | 299                         |
| 1          | 1                          | 0                           |
| 0          | 2                          | 113                         |
| 0          | 1                          | 186                         |
| 0          | 2                          | 9                           |
| 1          | 1                          | 288                         |
|            | 1<br>0<br>0<br>1<br>0<br>0 | 1 3 0 2 0 2 1 1 0 2 0 1 0 2 |

(b) Proposed approach

Table 4: Two different comparison approaches

#### Outline

Introduction

Record linkage model

Comparison step

Classification step

Application

## Modeling

Comparison vector  $\gamma_{ij}$  of record pairs  $(a_i, b_j)$  is a mixed-type vector that includes

- K<sub>1</sub> categorical values
- K<sub>2</sub> continuous values

$$\gamma_{ij} \equiv \left(\gamma_{ij}^1, \dots, \gamma_{ij}^{K_1}, \gamma_{ij}^{K_1+1}, \dots, \gamma_{ij}^{K_1+K_2}\right)$$

Mixture model (P. Fellegi and B. Sunter, 1969)

$$\mathbb{P}(\gamma) = \mathbb{P}(\gamma|M)\mathbb{P}(M) + \mathbb{P}(\gamma|U)\left[1 - \mathbb{P}(M)\right]$$

#### Classification

- Once all parameters are estimated
  - $\longrightarrow$  Estimate probability of matching for all record pairs using Bayes formula

$$q_{ij} = \mathbb{P}\left((a_i, b_j) \in M | \gamma_{ij}\right) = \frac{\mathbb{P}\left(\gamma_{ij} | M\right) \mathbb{P}(M)}{\mathbb{P}(\gamma_{ij})} \tag{4}$$

- Classify the set of all record pairs into
  - Matched set:

$$M = \{(a_i, b_j) | q_{ij} \geq \tau\}$$

Unmatched set:

$$U = \{(a_i, b_j) | q_{ij} < \tau\}$$

where  $\tau$  is a predefined threshold (e.g. 0.5)

# Application

#### Context

- Databases:
  - ▶ SNDS: 48 102 medical acts corresponding to 32 382 patients
  - ▶ GETBO: 1919 medical acts corresponding to 1332 patients

    - → then, deduce pairs of patients
- Blocking variables:
  - Month of birth
  - Type of medical acts (echodoppler, scintigraphy, angiography, ...)
  - $\longrightarrow$  Reduce 48 102  $\times$  1 919 = 92 307 738 to 4 308 847 possible pairs
- Four matching variables:
  - Year of birth
  - Residency code
  - Gender
  - Date of medical acts

#### Methods

- FS-ext: Our proposed model for mixed-type data
  - ▶ Binary comparison for year of birth and residency code
  - ► Three categorical comparison (3) for gender
  - Absolute distance for date of medical acts
- FS: Traditional model
  - Binary comparison for all matching variables
- Deterministic method: a pair of medical acts is classified as a match if
  - the same type of medical act, month, year of birth, gender, residency code, and.
  - ▶ the difference between date of medical acts is less than or equal to 3 days

## Comparison of results

|       | Classified as a match by |              |                         |                   |                                   |                               |
|-------|--------------------------|--------------|-------------------------|-------------------|-----------------------------------|-------------------------------|
|       | FS-ext                   |              | Peterministic FS method | Number of         | $\overline{\hat{q}}_{FS-ext}(sd)$ | $\overline{\hat{q}}_{FS}(sd)$ |
|       |                          |              |                         | pairs of patients | 7F5-ext(==)                       |                               |
|       | X                        | X            | Χ                       | 867               | 0.993 (0.003)                     | 0.996 (0)                     |
|       | X                        | X            |                         | 245               | 0.900 (0.045)                     | 0.911 (0)                     |
|       | X                        |              |                         | 34                | 0.868 (0.136)                     |                               |
|       |                          | Χ            |                         | 2                 |                                   | 0.911 (0)                     |
| Total | 1146 (86%)               | 1114 (83.6%) | 867 (65%)               |                   |                                   |                               |

**Table 5:** Comparison of three different record linkage methods with the number of pairs, the average of estimated posterior probability of matching mean( $\hat{q}$ ) and the standard deviation (in parentheses)

## **Concluding remarks**

- In the Monte Carlo simulation, our proposed approaches improve the performance of Fellegi-Sunter model in both scenarios
  - Low prevalence binary matching variables
  - Continuous matching variables
- In application, our extension model predicts more matching patients in SNDS for patients registered in GETBO with high probability

## **Concluding remarks**

- In the Monte Carlo simulation, our proposed approaches improve the performance of Fellegi-Sunter model in both scenarios
  - Low prevalence binary matching variables
  - Continuous matching variables
- In application, our extension model predicts more matching patients in SNDS for patients registered in GETBO with high probability

## Thank you for your attention!

References

Ivan P. Fellegi and Alan B. Sunter. A theory for record linkage. Journal of the American Statistical Association, 64:1183–1210, 12 1969. doi: 10.1080/01621459.1969.10501049.