

The Meteoritical Bulletin, No. 109

J. Gattacceca, Francis Mccubbin, Jeffrey Grossman, Audrey Bouvier, Emma Bullock, Hasnaa Chennaoui Aoudjehane, Vinciane Debaille, Massimo D'orazio, Mutsumi Komatsu, Bingkui Miao, et al.

▶ To cite this version:

J. Gattacceca, Francis Mccubbin, Jeffrey Grossman, Audrey Bouvier, Emma Bullock, et al.. The Meteoritical Bulletin, No. 109. Meteoritics and Planetary Science, 2021, 56 (8), pp.1626-1630. 10.1111/maps.13714 . hal-03291830

HAL Id: hal-03291830 https://hal.science/hal-03291830

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	The Meteoritical Bulletin, No. 109
2	Jérôme Gattacceca ¹ , Francis M. McCubbin ² , Jeffrey Grossman ³ , Audrey Bouvier ⁴
3	Emma Bullock ⁵ , Hasnaa Chennaoui Aoudjehane ⁶ , Vinciane Debaille ⁷ , Massimo
4	D'Orazio ⁸ , Mutsumi Komatsu ⁹ , Bingkui Miao ¹⁰ , Devin Schrader ¹¹
5	
6	¹ CNRS, Aix Marseille Univ, IRD, INRAE, CEREGE, Aix-en-Provence, France
7	² NASA Johnson Space Center, Mail Code XI, 2101 NASA Parkway, Houston, TX 77058, USA.
8	³ Reston, Virginia 20194, USA
9	⁴ Universität Bayreuth, Bayerisches Geoinstitut, 95447 Bayreuth, Germany
10	⁵ Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington,
11	DC 20015, USA.
12	⁶ GAIA Laboratory, Hassan II University of Casablanca, Faculty of Science Ain Chock, km8 route d'El Jadida
13	20150 Casablanca Morocco
14	⁷ Laboratoire G-Time, Université libre de Bruxelles, Brussels, Belgium
15	⁸ Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
16	⁹ The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, 240-0193, Japan
17	¹⁰ Guilin University of Technology, Guangxi Province, China
18	¹¹ Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East
19	Terrace Road, Tempe, AZ 85287, USA.
20	
21	Abstract
22	Meteoritical Bulletin 109 contains the 2790 meteorites approved by the Nomenclature
23	Committee of the Meteoritical Society in 2020. It includes 17 falls (Al Farciya, Auckland,
24	Cavezzo, Flensburg, Gatuto, Kolang, Mahadeva, Matarka, Narashino, Novo Mesto, Oslo,
25	Saint-Ouen-en-Champagne, Santa Filomena, Tarda, Tiros, Wad Lahteyba, Zhob), with
26	2336 ordinary chondrites, 131 carbonaceous chondrites (including 8 ungrouped ones), 123
	1

HED achondrites, 41 martian meteorites, 35 lunar meteorites, 23 iron meteorites, 21
ureilites, 17 primitive achondrites, 13 ungrouped achondrites, 12 mesosiderites, 12
Rumuruti chondrites, 9 enstatite chondrites, 8 pallasites, 4 unclassified meteorites
(identified at the surface of Mars), 3 enstatite achondrites, 1 angrite, and 1 ungrouped
chondrite. One thousand five hundred and forty-one are from Antarctica, 763 from Africa,
297 from South America, 127 from Asia, 31 from North America, 11 from Europe, 10 from
Oceania, 9 from Mars, and 1 from an unknown location.

35 1. Trends and specificities

Meteoritical Bulletin 109 (MB109) contains the 2790 meteorites reported to and accepted by the Nomenclature Committee of the Meteoritical Society in 2020. This is the highest number since Meteoritical Bulletin has been phased with calendar years starting with Meteoritical Bulletin 105 in 2016 (Figure 1). This high number is driven by the large numbers of Antarctic meteorites. The fraction of meteorites classified as Northwest Africa (NWA) meteorites is the lowest since 2016 with 22%. The 2790 meteorites in MB109 total 4.38 tons of material, including 7 meteorites over 100 kg, and 20 meteorites over 50 kg. In details, 1541 meteorites are from Antarctica, 763 from Africa, 297 from South America (99% from Chile), 127 from Asia, 31 from North America, 11 from Europe, 10 from Oceania, and 1 from an unknown location. As for the last few years, Chile, with 293 meteorites (13% of the total) is now the main meteorite source outside of north Africa and Antarctica.

48 It is noteworthy that the 1250 non-Antarctic meteorites were classified by a relatively
49 small number of scientists. Four scientists (Tony Irving at the University of Washington,

Jérôme Gattacceca at CEREGE in Aix-en-Provence, Ansgar Greshake at the Museum für
Naturkunde in Berlin, and Cyril A. Lorentz at the Verdnasky Institute in Moscow)
classified 55% of these 1250 meteorites. Ninety percent of these meteorites were classified
by only 10 scientists.

The meteorites classified in MB109 include 17 falls. Nine of these falls actually occurred in 2020, the others are from 2019 (4 falls) and before, including a 1799 French fall (Saint-Ouen-en-Champagne). It is noteworthy that the number of falls has increased significantly over the last 20 years (Figure 2). Since 2016, there were three years with more than 10 falls reported, whereas this occurred only 5 times before 2000 (1933 with 17 falls; 1950, 1949, and 1868, all with 12 falls; and 1938 with 11 falls). This increase may be driven, at least in part, by the increasing number of meteorites that are found using camera networks such as the Desert Fireball Network in Australia (Bland et al., 2012), or international networks such as FRIPON (Colas et al., 2020) and the Global Fireball Observatory (Devillepoix et al., 2020). In 2020, 4 meteorites were found with the contribution of such networks: Cavezzo (Italy), Madura Cave (Australia), Santa Filomena (Brazil), and to a lesser extent Tiros (Brazil).

The meteorites listed in MB109 comprise 1640 ordinary chondrites, 131 carbonaceous chondrites (including 41 CM, 41 CO, 34 CV, 30 CK among which 9 CK3, 6 CR, and 8 ungrouped carbonaceous chondrites), 123 HED achondrites, 41 martian meteorites, 35 lunar meteorites, 23 iron meteorites, 21 ureilites, 17 primitive achondrites, 12 Rumuruti chondrites, 12 mesosiderites, 9 enstatite chondrites, 8 pallasites, 3 enstatite achondrites, 1 angrite, as well as four unclassified stony iron meteorites identified at the surface of Mars by the Mars Exploration Rover, Opportunity.

Page 5 of 686

Running Head

The Nomenclature Committee now distinguishes CVred and CVox as different chondrite groups following Gattacceca et al. (2020). Compared to previous years, the number of ungrouped chondrites (8) and ungrouped achondrites (12) has increased significantly. These ungrouped chondrites include very primitive chondrites that are on the border between type 2 and type 3 (Chwichiya 002 and NWA 12957, which may in fact be paired), and hydrated chondrites whose oxygen isotopic composition is distinct from CM2 (e.g., NWA 13167, NWA 13249).

The number of martian meteorites classified each year has been increasing for the last 12 years and has reached a record high of 41 meteorites in 2020 (Figure 3), for a total of 33 kg of material. All these martian meteorites are from northwest Africa and most of them are shergottites. Noteworthy exceptions are NWA 13368 (1.1 kg nakhlite) and NWA 13179 (175 g olivine websterite). The number of lunar meteorites has been steady and high over the last few years (Figure 3), but this year has been exceptional in terms of mass with 167 kg of material, including three meteorites over 10 kg (NWA 13101 with 68.8 kg, Tisserlitine 001 with 57.4 kg, and NWA 13582 with 11.3 kg).

The following references were used to support the classification of meteorites in MB109: Bonal et al., 2020; DeHart et al., 1992; Evans et al., 1982; Fritz et al., 2017; Gattacceca et al., 2020; Grossmann and Brearley, 2005; Huss et al., 2006; Schröder et al., 2008; Schröder et al., 2010; Stöffler et al., 2018; Zurfluh et al., 2016.

2. Notable meteorites

94 Three carbonaceous chondrite falls are reported, including two ungrouped ones:
95 Flensburg (C1-ung), described in Bischoff et al. (2021), Tarda (C2-ung), described in

2
2
د ۸
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
- 1 0 /0
49
50
51
52
53
54
55
56
57
57
50
59
60

1

96	Chennaoui Aoudjehane et al. (2021) and Marrocchi et al. (2021), and Kolang (CM1/2),
97	briefly described in Schrader et al. (2021). Other notable falls are Santa Filomena (80 kg
98	H5-6), and Tiros (cumulate eucrite). Meteorite finds that are notable for their mass, rarity,
99	and/or scientific interest include Erg Chech 002 (32 kg ungrouped achondrite, described in
100	details in Barrat et al., 2021), NWA 13133 (90 kg EL6), Oiuru 001 (450 kg IVB iron),
101	Orlov Dol (151 kg IID iron), NWA 13583 (78 kg eucrite), NWA 11333 (56 kg ureilite),
102	Balambala (the 7 th IIF iron), and NWA 13368 (nakhlite).
103	
104	3. Alphabetical text entries for non-Antarctic meteorites
105	See online version of this article.
106	
107	4. New Dense Collection Areas (DCA)
108	In 2019, 21 new DCA were created in Algeria (Hassi el Biod, Hassi el Madani, Rafsa,
109	Tibertatine), Chile (Toconao), China (Pakepake, Tazhong, Kuiyibage, Liuyuan), Iran (Iran,
110	as a generic name for meteorites from this country but without precise coordinates), Lybia
111	(Gadamis, Ghadduwah, Oiuru), Mali (Tisserlitine), Mauritania (El Hassan Ould Hamed),
112	Morocco (Akka, Tata, Tazzarine), Niger (Gouchi), United States (Black Butte Nevada,
113	Crescent Valley). A full list of all approved DCAs, with maps, can be found at
114	https://www.lpi.usra.edu/meteor/DenseAreas.php.
115	

116 5. Listing of institutes and collections

Five new type specimen repositories were approved in 2020: Auckland War Memorial
Museum (New Zealand); Université des Sciences et de la Technologie H. Boumediene,

1		
2 3 4	119	Algiers (Algeria); Bayerisches Geoinstitut, University of Bayreuth (Germany); Georg-
5 6 7	120	August-Universität Göttingen (Germany); Natural History Museum University of Oslo
7 8 9	121	(Norway).
10 11	122	An up-to-date index of collections and approved repositories (next to a green check
12 13	123	mark) cited in the Meteorite Bulletin can be found here:
14 15 16	124	https://www.lpi.usra.edu/meteor/MetBullAddresses.php?grp=country
17 18	125	
19 20	126	Supporting information
21 22	127	Supplementary information can be found in the online version of this article: Table S1
23 24 25	128	of data including Antarctic meteorites; a complete copy of the text entries for non-Antarctic
26 27	129	meteorites.
28 29	130	Information about the approved meteorites can be obtained from the Meteoritical
30 31 32	131	Bulletin Database (MBD) available online at https://www.lpi.usra.edu/meteor/.
33 34	132	
35 36	133	References
3/	134	Barrat I-A Chaussidon M Yamaguchi A Beck P Villeneuve I Byrne D Broadley
39	135	M Marty B 2021 A 4 565-My-old andesite from an extinct chondritic protoplanet
40	136	PNAS 118 (11), e2026129118, doi:10.1079/pnas.2026129118
41	137	Bischoff A., Alexander C. M. O'D., Barrat JA., Burkhardt C., Busemann H., Degering
42	138	D., Di Rocco T., Fischer M., Fockenberg T., Foustoukos D. I., Gattacceca J., Godinho
43 44	139	J. R. A., Harries D., Heinlein D., Hellmann J. L., Hertkorn N., Holm A., Jull A. J. T.,
45	140	Kerraouch I., King A. J., Kleine T., Koll D., Lachner J., Ludwig T., Merchel
46	141	S., Mertens C. A. K., Morino P., Neumann W., Pack A., Patzek M., Pavetich S., Reitze
47	142	M. P., Rüfenacht M., Rugel G., Schmidt C., Schmitt-Kopplin P., Schönbächler M.,
48	143	Trieloff M., Wallner A., Wimmer K., Wölfer E. 2021. The old, unique C1 chondrite
49	144	Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the
50 51	145	diversity of water-bearing parent bodies and lithologies. Geochim. Cosmochim.
52	146	Acta. 293, 142–186.
53	147	Bland P. A., Spurny P., Bevan A. W. R., Howard K. T., Towner M. C., Benedix G. K.,
54	148	Greenwood R. C., Shrbeny L., Franchi I. A., Deacon G., Borovi_cka J., Ceplecha
55	149	Z., Vaughan D., Hough R. M. 2012. The Australian Desert Fireball Network: A new
56 57		
57 58		
59		6
60		Meteoritics & Planetary Science

era for planetary science. Australian J. Earth Sc. 59, 177–187. Bonal L., Gattacceca J., Garenne A., Eschrig J., Rochette P., Krämer Ruggiu L. 2020. Water and heat: New constraints on the evolution of the CV chondrite parent body. Geochim. Cosmochim. Acta 276 363-383. Chennaoui Aoudjehane H., Agee C. B., Ziegler K., Garvie L. A. J., Irving A., Sheikh D., Carpenter P. K., Zolensky M., Schmitt-Kopplin P., Trif L. 2021. Tarda (C2-Ung): A new and unusual carbonaceous chondrite meteorite fall from Morocco. 52nd Lunar Planet. Sc. Conf., abstract #1928. Colas F., Zanda B., Bouley S., Jeanne S., Malgovre A., Birlan M., Blanpain C., Gattacceca J., et al. 2020. FRIPON: a worldwide network to track incoming meteoroids. Astronomy & Astrophysics, 644 (6), pp. A53. DeHart J. M., Lofgren G. E., Lu J., Benoit P. H., Sears D. W. G. 1992. Chemical and physical studies of chondrites: X. Cathodoluminescence and phase composition studies of metamorphism and nebular processes in chondrules of type 3 ordinary chondrites. Geochim. Cosmochim. Acta56, 2791-3807. Devillepoix H. A. R., Cupák M., Bland P. A., Sansom E. K., Towner M. C., Howie R. M., Hartig B. A. D., Jansen-Sturgeon T., Shober P. M., Anderson S. L., Benedix G. K., Busan D., Sayers R., Jenniskens P., Albers J., Herd C. D. K., Hill P. J. A., Brown P. G., Krzeminski Z., Osinski G. R., Chennaoui Aoudjehane H., Benkhaldoun Z., Jabiri A., Guennoun M., Barka A., Darhmaoui H., Daly L., Collins G. S., McMullan S., Suttle M. D., Ireland M. D., Bonning G., Baeza L., Alrefay T. Y., Horner J., Swindle T. D., Hergenrother C. W., Fries M. D., Tomkins A., Langendam A., Rushmer T., O'Neill C., Janches D., Hormaechea J. L., Shaw C., Young J. S., Alexander M., Mardon A. D., Tate J. R. 2020. A global fireball observatory. 191, 105036, doi: 10.1016/j.pss.2020.105036 Evans J. C., Reeves J. H., Rancitelli L. A., Bogard D. D. 1982. Cosmogenic Nuclides in Recently Fallen Meteorites' Evidence for Galactic Cosmic Ray Variations During the Period 1967-1978. J. Geophys. Res. 87 Issue B7, 5577-5591. Fritz J., Greshake A., Fernandes V. A. 2017. Revising the shock classification of meteorites. Meteorit. Planet. Sci. 52, 1216-1232. Gattacceca J., Bonal L., Sonzogni C., Longerey J. CV chondrites: more than one parent body. 2020. Earth Planet. Sci. Letters, 147, 116467. Grossman J. N., Brearley A. J. 2005. The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci. 40, 87-122. Huss G. R., Rubin A. E., Grossman J. N. 2006. Thermal Metamorphism in Chondrites. in Meteorites and the Early Solar System II, D.S. Lauretta and H.Y. McSween Jr. (eds.), University of Arizona Press, Tucson, 943 pp., 567-586. Marrocchi Y., Avice G., Barrat J.-A. 2021. The Tarda meteorite: a window into the formation of D-type asteroids. Astrophysical J. Lett. 913, L9 (8pp.), doi:10.3847/2041/8213/abfaa3. Schrader D. L., Davidson J., McCoy T. J., Zega T. J., Russell S. S., Domanik K. J., and King A. J. 2021. The Fe/S ratio of pyrrhotite group sulfides in chondrites: An indicator of oxidation and implications for return samples from asteroids Ryugu and Bennu. Geochim. Cosmochim. Acta 303, 66-91. Schröder C., Herkenhoff K. E., Farrand W. H., Chappelow J. E., Wang W., Nittler L. R., Ashley J. W., Fleischer I., Gellert R., Golombek M. P., Johnson J. R., Klingelhöfer G.,

Running Head

2		
3	196	Li R., Morris R. V., Squyres S. W. 2010. Properties and distribution of paired
4	197	candidate stony meteorites at Meridiani Planum Mars J Geophys Res 115 E00F09
5	198	Schröder C Rodionov D S McCov T I Jolliff B I Gellert R Nittler I R Farrand
6	100	W H Johnson I D. Duff S. W. Ashlow I. W. Mittlefehldt D. W. Horkonhoff K. E.
7	199	W. H., Johnson J. K., Kull S. W., Ashey J. W., Mittleteniut D. W., Herkelmon K. E.,
8	200	Fleischer I., Haldemann A. F. C., Klingelhöfer G., Ming D. W., Morris R. V., de Souza
9	201	P. A. Jr., Squyres S. W., Weitz C., Yen A. S., Zipfel J., Economou T. 2008. Meteorites
10	202	on Mars observed with the Mars Exploration Rovers. J. Geophys. Res. Plan. 113,
11	203	E06S22.
12	204	Stöffler D., Hamann C., Metzler K. 2018. Shock metamorphism of planetary silicate rocks
15	205	and sediments: Proposal for an updated classification system. Meteorit. Planet. Sci. 53,
15	206	5-49.
16	207	Zurfluh F J Hofmann B A Gnos E Eggenberger U Jull A J T 2016 Weathering of
17	208	ordinary chondrites from Oman: Correlation of weathering parameters with ¹⁴ C
18	200	terrestrial ages and a refined weathering scale Meteorit Planet Sci 51 1685_1700
19	209	terrestrial ages and a terrifed weathering scale. Wetcont. I failet. Sci. 51, 1065–1700.
20	210	
21	011	
22	211	Figure captions
23		
24	212	Figure 1: Number of meteorites from Antarctica, northwest Africa, and other areas reported
25		
26	213	in the last 14 Meteoritical Bulletins.
27		
28	214	Figure 2: Number of falls per year since 2000.
29		
30	215	Figure 3. Number of lunar and martian meteorites reported in the last 14 Meteoritical
32	210	rigure 5. Number of fundi and martial meteorites reported in the last 11 meteorited
33	216	Bulleting
34	210	Dunctinis.
35		
36		
37		
38		
39		
40		
41		
42		
45 11		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
5/		
58		
59 60		Meteoritics & Planetary Science
00		

The Meteoritical Bulletin, No. 108

Supporting online material

1. Alphabetical text entries for non-Antarctic meteorites

Acfer 402 27°30'42.7"N, 3°56'54.7"E

Tamanghasset, Algeria

Find: 2019 Nov

Classification: Carbonaceous chondrite (CV3)

Petrography: Chondrite with large chondrules (mm-sized), AOAs, and CAIs set in an abundant fine-grained Fe-rich matrix. Main silicates include olivine, low-Ca, and Ca-pyroxene. Opaque areas are basically made of terrestrial alteration products.

Geochemistry: Most olivine in chondrules and AOAs is Fo-rich. The average composition of these olivines is $Fa_{4.2\pm4.8}$ (range: $Fa_{0.22}$; N=24). Low-Ca pyroxene is $Fs_{2.0\pm1.0}$ (range $Fs_{1.5}$; n=10).

Classification: Carbonaceous chondrite (CV3)

Akka 001 29°04'48"N, 8°51'26"W

South, Morocco

Find: 2020

Classification: Primitive achondrite (Acapulcoite)

History: Found by a meteorite hunter close to the village of Icht, Tata region, in Morocco. **Physical characteristics**: A single, fully crusted stone.

Petrography: (J. Gattacceca, *CEREGE*) Crystalline rock with triple junctions. Grain size \sim 250 µm. The main mineral is olivine. Other silicates are plagioclase and less abundant Capyroxene. Opaque minerals are metal and troilite.

Geochemistry: Olivine Fa_{10.6±0.2}, FeO/MnO = 26.0 (n=3). Ca-pyroxene Fs_{4.7}Wo_{44.3}, 1.45 wt% Cr₂O₃, FeO/MnO = 18.7 (n=2). Plagioclase An_{17.1}Ab_{79.3}Or_{3.6} (n=2).

Classification: Primitive achondrite (acapulcoite).

Specimens: Type specimen at CEREGE. Main mass with J. Bassemon.

Al Farciya 27°01'27.59"N, 9°44'39.59"W

Morocco/Western Sahara

Confirmed fall: 2019 Aug 20

Classification: Ordinary chondrite (L6)

History: (H. Chennaoui Aoudjehane, *FSAC*: A. Bouragaa "Moroccan Association of Meteorites", F.Z. Jadid *FSAC*) A fireball was seen by many nomads in Al Farciya area on the night of 19-20 August 2019 at 01:15 am (GMT+1). Eyewitnesses from Al Farciya region Ajanid Youssef and Benabbou Ahmed reported a fireball with red color crossing the clouds followed by two sonic booms. Another eyewitness, Salah Tehlaoui, described a red fireball from the Houza district. The reported direction by Azizi El Hassani and Moha Ould Aicha from Zag was north to south. In the morning of the same day, many hunters went to the area where the fall was expected, namely Al Farciya, and first pieces were found in the evening. Collected pieces show a strewnfield of around 8×1 km north to south in a good agreement with the testimonies. The area is mostly known by the name Al Farciya, however, some hunters used the name of Khdim Chham for this fall.

Meteoritics & Planetary Science

Physical characteristics: (H. Chennaoui Aoudjehane) Some pieces recovered, mostly complete and covered by fusion crust. The internal part of the meteorite shows brecciation with dark and clear grey zones. We notice some millimetric sulfide grains, metal is thin, some chondrules are detected. Shock veins and a kind of layering are visible in the rock. Some complete pieces show primary and secondary fusion crust black and mat. Magnetic susceptibility (H. Chennaoui Aoudjehane) measured by SM30 is $\log \chi$ (× 10⁻⁹ m³/kg) = 4.94. **Petrography**: (C. Agee, *UNM*) Microprobe examination of a polished mount shows scattered, faint, texturally equilibrated chondrules set in a recrystallized groundmass. Plagioclase grains are ubiquitous with sizes up to 100 microns in diameter. FeNi-metal and troilite observed throughout. Apatite and chromite are ubiquitous minor phases.

Geochemistry: (C. Agee, *UNM*) Olivine $Fa_{25.3\pm0.4}$, Fe/Mn=49±2, n=10; low-Ca pyroxene $Fs_{21.3\pm0.1}Wo_{1.6\pm0.2}$, n=6.

Classification: Ordinary chondrite (L6), S3, W0

Specimens: 20.3 g provided by the "Moroccan Association of Meteorites", 12 g provided by Hamza El Harbi (including microprobe mount at *UNM* 0.8 g) and 9 g provided by Ali Ben Amro on deposit at *FSAC*. Vincent Jacques holds 142 g (so far the main mass) and 98 g; 118.8 g, 97.6 g, 50.6 g, 35.8 g, 8.1 g, 4.1 g and 1.6 g on a private collection Casablanca.

Antarctica 001

Antarctica

Find: 1992-1993

Classification: Ordinary chondrite (L/LL4)

History: Two fragments weighing 1904 g and 399 g were collected by a Canadian pilot supporting ANSMET searching during the 1992-93 season, from an unspecified location within Antarctica.

Physical characteristics: Both masses have little fusion crust and show well-defined chondrules. Iron staining is prevalent. The two masses fit together.

Petrography: (C. Herd, *UAb*) Optical and microprobe examination of a polished thin section of each fragment shows well-defined chondrules in a fine-grained, clastic matrix. Chondrule glass was sought but not found, although equilibration is locally variable based on microprobe results. Sharp optical extinction with $< 2^{\circ}$ angular variation in olivine. Minor iron staining is present locally. Weathering grade according to <u>Zurfluh et al. (2016)</u>; shock stage according to Fritz et al. (2017).

Geochemistry: (C. Herd, *UAb*) Data obtained by EMP examination of two carbon-coated thin sections consisting of 7 chips of the rock: Olivine Fa_{26.4±1.4} (n=157); Low-Ca Pyroxene $Fs_{19.1\pm4.0}Wo_{1.2\pm1.1}$ (n=85).

Classification: Ordinary chondrite, L/LL4

Specimens: Entire specimens, including two thin sections are at *UAb*. Difference between recovered weight and type specimen is due to cutting losses.

Auckland 36°53.352'S, 174°48.362'E

Auckland, New Zealand

Confirmed fall: 2004 Jun 12

Classification: Ordinary chondrite (L5)

History: The meteorite came through the roof of the Archer family home in Ellerslie, New Zealand, on June 12, 2004, at 9:30 am local time, and landed on the couch in the lounge. **Physical characteristics**: Oriented fully crusted stone.

Petrography: Equilibrated ordinary chondrite with average plagioclase size below 50 μm.

Classification: Ordinary chondrite (L5).

Aydar 004 27.880°N, 10.418°W

South, Morocco

Find: 2019

Classification: HED achondrite (Eucrite, brecciated)

History: Found in 2019 in Reg Labyad, southern Morocco, by a nomad. Purchased in Zagora, Morocco, in August 2019 from a dealer by Juan Avilés Poblador on behalf of the Earth Sciences Department at the University of Alicante, Spain.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Complex breccia containing a variety of lithic eucrite clasts (with fine-intersertal, diabasic, porphyritic and vitrophyric textures) together with ~5 vol.% dark melt-matrix breccia clasts set in a finer grained matrix of related crystal debris. The melt-matrix breccia clasts contain angular grains of pyroxene and plagioclase in a quench-textured matrix. Pyroxene in all of the components is similarly pale brown in thin section. Minerals are compositionally-zoned low-Ca pyroxene (some exhibiting extremely fine exsolution features), calcic plagioclase, ferroan orthopyroxene, augite, ferroan pigeonite, subcalcic augite, silica polymorph, ilmenite intergrown with chromite, troilite, chlorapatite and minor kamacite. No diogenitic orthopyroxene was observed.

Geochemistry: Pigeonite cores ($Fs_{29,8-34,9}Wo_{6.1-7.2}$, FeO/MnO = 27-29, N = 3), ferroan low-Ca pyroxene rims ($Fs_{55,6-59,3}Wo_{3.8-4,3}$, FeO/MnO = 32, N = 3), orthopyroxene ($Fs_{63,2-63,8}Wo_{2.3-2.4}$, FeO/MnO = 32-33, N = 2), augite ($Fs_{28,0}Wo_{42,8}$, FeO/MnO = 34), ferroan pigeonite ($Fs_{54,3}Wo_{13.6}$, FeO/MnO = 33), subcalcic augite ($Fs_{44,5}Wo_{25.5}$, FeO/MnO = 31), plagioclase ($An_{87,6-92,2}Or_{0.5-0,3}$, N = 3).

Classification: Eucrite (breccia).

Specimens: 22.9 g including one polished thin section at *UWB*; remainder in the collection of *UAlic*.

Baja California 28°N, 113°W Baja California, Mexico Find: before July 2017 Classification: Iron meteorite (IIIAB)

History: (D. Hill, *UAz*) One meteorite specimen was found by Mr. Aguilar (date unknown) near a ranch 70 km east of Guerrero Negro, Baja California, Mexico, on a rocky mountain (probably near Rancho). Friends of the finder brought an endcut of the meteorite to the U. of Arizona for examination. It was eventually sold to a group of meteorite dealers in 2019. **Physical characteristics**: Total mass of a single specimen is approximately 10 kg. Dimensions are $30.5 \times 16 \times 5$ cm and tapers on one end. It is irregularly shaped and flat on one side. The meteorite's unusual shape is defined by a 10 cm cavity where an inclusion melted and ablated away during atmospheric passage. The specimen exhibits an oxidized brown to black-brown, weathered fusion crust with pits up to 7 mm in diameter over the entire surface. There are some whitish and bluish paint spots on the exterior. The meteorite has deep regmaglypts and large rounded regions ranging from a few cm across to 11 cm diameter and 4 cm deep where inclusions probably melted and softened during entry through the atmosphere.

Petrography: (D. Hill, *UAz*) Widmansatten pattern exhibits kamacite with average bandwith of 1.48±0.48 mm; largest bands are 3 mm wide. Kamacite bands are stubby in length; up to 10 mm. Taenite is zoned with plessite interiors, most commonly comb plessite. Schreibersite

tends to occur near pinched ends of taenite and as ribbons adjacent to taenite. Sulfides are present as 2 mm grains and complex, fine grained, spider-like regions containing kamacite, pentlandite, and schreibersite with nickel-bearing troilite as 10 μ m raisin-like inclusions. **Geochemistry**: Mineral compositions and geochemistry: (D. Hill, *UAz*): EMP data, kamacite: Fe = 92.47, Ni = 6.63; taenite: Fe = 63.77 Ni = 35.33 (all in %). Average composition: (N. Chabot, JHUAPL and R. Ash, UMD), LA-ICP-MS data (four laser tracks), Co = 4980±180, Cu = 180±30, Ga = 16.6±0.4, Ge = 37±1, As = 6.4±0.9, Ir = 0.238±0.028, Au = 0.72±0.03 (all in ppm). Distance, physical characteristics, and composition preclude pairing with Loreto (IIIAB), Mexico.

Classification: Iron, IIIAB. Coarse octahedrite.

Specimens: Type specimen: 311 g UAz

Balambala 0°3.555'N, 39°6.45'E

North-Eastern, Kenya

Find: 2018 Jan

Classification: Iron meteorite (IIF)

History: Dhagax Bir is the name attributed to the meteorite by the region's goat herders; the name means metal stone in the local spoken Somali dialect. According to the local residents the meteorite was in this location for as long as anyone could remember, including a woman 60 years of age who regularly herded goats past this stone since she was 10 years old. In January 2018, a nomad identified the stone as an iron meteorite, and then brought it to a local broker in the nearest city of Garissa. The broker began circulating photos and it was subsequently purchased by Mahamed Nur Ogle and John Higgins.

Physical characteristics: The single, approximately shield-shaped mass is about 33×41 cm in width and 10-15 cm thick. It is covered in large (~5 cm-wide) regmaglypts; a few cm-sized spherical holes are also present on one side. Some rust is present on the top surface, but otherwise, there is little evidence of oxidation.

Petrography: (C. Herd and L. Tunney, *UAb*) Optical investigation of a 4.5×6 cm polished and etched end slice reveals cm-scale rounded troilite inclusions, and lath-like (~1 × 8 mm) schreibersite inclusions, both swathed in kamacite. The bulk of the meteorite consists of kamacite spindles in a matrix of taenite. The spindles occur evenly throughout, except for adjacent to inclusions, where ~500 µm-wide spindle-poor regions are surrounded by ~200 µm-wide spindle-rich rings that broadly parallel the outlines of the inclusions. SEM investigation reveals that larger kamacite spindles or groupings of spindles are often cored by 50-100 µm subequant schreibersite crystals. The average kamacite bandwidth is 53±17 µm (n=36). Taenite is zoned to higher Ni adjacent to kamacite spindles. No alteration was observed.

Geochemistry: (C. Herd, L. Tunney, and G. Chen, *UAb*) ICP-MS data, using sample of North Chile (Filomena) as standard: Ni = 13.0, Co = 0.67 (both wt%); Ir = 5.2, Ge = 223, Ga = 8.1, As = 20.6, W = 0.76, Re = 0.45, Pt = 14.9, Cu = 208, Au = 2.6 (all $\mu g/g$).

Classification: Iron, IIF, based on the high Ge/Ga ratio, high Co content, and fit with regression parameters established by Kracher et al. (1980).

Specimens: Type specimen of 261 g at *UAb*. Main mass with Mahamed Nur Ogle and J. Higgins.

Balyer Bluff 27°27'50.81"S, 117°50'37.82"E

Western Australia, Australia Find: 2012 Dec 26

Classification: Ordinary chondrite (LL6) **History**: Two interlocking, freshly crusted fragments (351.79 and 1728.36 g) were found lying on the surface in 2012 and 2013, respectively, by M. Jefferson (Alex Bevan, WAM). Physical characteristics: Physical Characteristics: The wedge-shaped, reassembled mass measures $16.5 \times 12 \times 7$ cm. Total weight 2080.15 g (Alex Bevan, *WAM*). Petrography: (L. Daly, L. V. Forman, CUWA). Specimen has poorly defined chondrules that have been heavily recrystallized. The sample is domainal with an annealed red stained matrix and clean relict chondrules. The relict chondrules are grouped together and include types C, POP, and BO. Chondrule mesostases are coarsely crystalline. Sizes range from 1.52-5.13 mm with a mean of 2.7 mm (n=8). Mineralogy consists of olivine, pyroxene, chromite, feldspar, as well as some metal and sulfide. Olivine and pyroxene have undulose extinction, and planar fractures, some grains exhibit a weak mosaicism. Feldspars are $>50 \mu m$ and partially converted to maskelynite. The metal and sulfide present in the sample are blebby, representative of melt pockets, and have been approximately 10% replaced with iron oxide. Geochemistry: Mineral Compositions and Geochemistry: (L. Daly, L. V Forman, CUWA) EDS, Olivine: $Fa_{27\pm0.9}$ (n=11). Low-Ca pyroxene: $Fs_{22.4\pm0.9}$ Wo_{1.7\pm0.2} (n=6). Feldspar Ab_{86.7}. Classification: Ordinary Chondrite LL6, S4, W2 Specimens: The WAM holds the main mass now 1725.34 g and one thin section. Baqiangzi 43°54'09.2"N, 93°12'13.2"E Xinjiang, China Find: 2012 Classification: Enstatite chondrite (EL7) History: (Ziyao Wang) One piece was discovered by the geologist Jianming Wang (Hami/Xinjiang) during field work near Barkol in 2012. After confirmation of its meteoritic nature, Jianming Wang discovered further fragments in 2019. **Physical characteristics**: (Ziyao Wang) Three dark-yellowish, irregular stones of 899, 176 and 125 g. Petrography: (R. Bartoschewitz) Breccia of dark olive-green silicate clasts with fine metal particles in a lighter host, often separated by a spongy network of metal veins. Strongly recrystallized meteorite (av. grain size $\sim 100 \,\mu$ m), with few chondrules relict up to 0.8 mm. Main minerals are olivine, pyroxene, metal, and sulfides. Feldspar grains are up to 150 µm. Geochemistry: (R. Bartoschewitz, *Bart*, P. Appel and B. Mader, *Kiel*) olivine Fa_{0.2±0.1} (n=19); low-Ca pyroxene $Fs_{0.3\pm0.1}Wo_{1.4\pm0.3}$ (n=6); diopside $En_{53}Fs_1Wo_{46}$ (n=2); feldspar $An_{17\pm5}Or_2$ (n=3). Kamacite Ni=6.9, Co=0.7, Si<0.1 (n=6); troilite Cr=0.7, Ti=0.2 (n=4); alabandite Fe=6 (n=1) (all wt-%). Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× $10^{-9} \text{ m}^{3}/\text{kg}$) = 5.45 **Classification**: Enstatite chondrite (EL7, W1), based on texture and plagioclase size Specimens: 20.4 g on deposit at Kiel, Ziyao Wang holds the main mass, and 17 g with Bart. Bayin Gobi 003 (BG 003) ~41°19'N, ~105°20'E Nei Mongol, China Find: Oct 2015 Classification: Ordinary chondrite (L~6) History: (Ziyao Wang) Discovered by Xueming Tang in the desert near Bayin Gobi in Oct. 2015. He sold it to Songshan Wang and was purchased by Ziyao Wang in June 2020. Physical characteristics: (Ziyao Wang) brown stone of 3920 g without fusion crust

Petrography: (R. Bartoschewitz) brown stained recrystallized matrix with indistinct chondrules (0.4-1.5 mm, mean 0.8 mm), and tiny sulfide specks and mainly oxidized metal **Geochemistry**: Magnetic susceptibility (R. Bartoschewitz, *Bart*) log χ (× 10⁻⁹ m³/kg) = 4.37 **Classification**: Ordinary chondrite (L~6, W4)

Specimens: 21.3 g on deposit at *Kiel*, Weichao Li and Ziyao Wang hold the main mass, and 207 g with *Bart*.

Black Butte 001 (BB 001) 41°24.061'N, 118°13.198'W

Nevada, United States

Find: 2015 Aug 8

Classification: Ordinary chondrite (H3-4)

History: While searching for meteorites on a small drylake, Robert *Verish* recovered this stone on a west-facing stranding-surface.

Physical characteristics: This 27.5 g stone is an oriented individual with the aft-end having a subtle overlipping. Originally, this stone had a discoidal shape, but a fragment is missing, and now it is shield-shaped with a smooth, brownish-black fusion-crusted exterior. Cut surface shows a mottled, light-brown interior.

Petrography: (D. Sheikh, *FSU*) Sample contains well-defined chondrules (Av. 550 μm) along with metal and troilite. Both unequilibrated and equilibrated clasts present.

Geochemistry: Olivine in type 3 clasts (Fa_{15.2-26.3}, n=10), Olivine in type 4 clasts (Fa_{18.6±0.6}, n=12), Low-Ca Pyroxene in type 4 clasts (Fs_{17.0±0.7}Wo_{1.3±0.2}, n=10).

Classification: Ordinary Chondrite (H3-4). The sample contains both unequilibrated (type 3) and equilibrated (type 4) clasts.

Specimens: 5.5 grams at UCLA; main mass with Verish.

Black Butte 002 (BB 002) 41°24.207'N, 118°13.478'W

Nevada, United States

Find: 2015 Aug 9

Classification: Ordinary chondrite (H3-4)

History: While searching for meteorites, Robert *Verish* recovered this stone along the apron of a hummock which formed a west-facing stranding-surface.

Physical characteristics: This 9.9 g well-rounded, orangish-brown whole-stone has a rough, fusion-crusted exterior, and a cut surface reveals visible chondrules, metal-grains and troilite in a light-brown groundmass.

Petrography: (D. Sheikh, *FSU*) Sample contains well-defined chondrules (Av. 600 μm) along with metal and troilite. Both unequilibrated and equilibrated clasts present.

Geochemistry: Olivine in type 3 clasts (Fa_{17.4-26.1}, n=10), Low-Ca Pyroxene in type 3 clasts (Fs_{15.4-25.6}Wo_{1.0-1.8}, n=8), Olivine in type 4 clasts (Fa_{19.1±0.9}, n=12), Low-Ca Pyroxene in type 4 clasts (Fs_{16.8±0.8}Wo_{1.4±0.3}, n=10).

Classification: Ordinary Chondrite (H3-4). The sample contains both unequilibrated (type 3) and equilibrated (type 4) clasts.

Specimens: 2.2 grams at UCLA; main mass with Verish.

Black Butte 003 (BB 003) 41°23.3'N, 118°7.8'W

Nevada, United States Find: 2018 Sep 27

Classification: Ordinary chondrite (H4)

 History: This fragment was recovered by Robert *Verish* while he was searching for meteorites at the north end of a playa.

Physical characteristics: This angular 4.4 g dark brownish-black fragment has a very weathered exterior. A cut surface shows visible chondrules and metal-grains in a brown matrix.

Petrography: (D. Sheikh, *FSU*) Sample contains well-defined chondrules (Av. 500 μ m) along with metal and troilite. Chromite, merrilite, and secondary Fe-oxides present as well. **Geochemistry**: Olivine (Fa_{18.6±0.5}, n=42), Low-Ca Pyroxene (Fs_{16.3±0.4}Wo_{1.0±0.1}, n=14), High-Ca Pyroxene (Fs_{6.5}Wo_{41.1}, n=1), Calcic Plagioclase (An_{11.0}, n=1).

Classification: Ordinary Chondrite (H4)

Specimens: 1.1 grams at UCLA; main mass with Verish.

Blaubeuren 48°24'06.4"N, 9°46'01.3"E

Baden-Wurttemberg, Germany

Find: 1989

Classification: Ordinary chondrite (H4-5)

History: (D. *Heinlein*): In the garden of his property in Blaubeuren-Weiler, Mr. Hansjörg Bayer was laying an empty pipe for power cabling in 1989. When excavating the cable duct, he found a stone of over 30 kg at 50-70 cm depth, which had an unusually high density and was attracted to a magnet. The finder noticed the object as something special, hence he kept the stone in his garden from 1989 to 2015. In this period it was placed at different locations, always outdoors, exposed to weathering. Since 2015 the stone was kept dry in the basement of his house. In 2020 it was examined and recognized as a stony meteorite.

Physical characteristics: (D. *Heinlein*, A. Bischoff, *IfP*): The rock has a mass of 30.26 kg and is heavily weathered at the outside, since it was lying in the garden for several decades. Bulk density is 3.34 ± 0.01 g/cm3. Fusion crust is absent due to weathering. After the examination of the meteorit, e another fragment of 410 grams was found in the garden, which obviously was broken off from the main piece.

Petrography: (A. Bischoff, *IfP*): The meteorite is heavily weathered (W3). The remaining metal grains have thick rims of terrestrial alteration products (Fe-oxides and Fe-hydroxides). The rock is a breccia containing fragments of petrologic type 4 and type 5. The breccia is very weakly shocked (S2).

Geochemistry: (K. Klemm, A. Bischoff, *IfP*): The mean composition of olivine is $Fa_{18,4\pm0.3}$ with a compositional range of $Fa_{18,0-19,2}$ (n = 19). The low-Ca pyroxenes have a mean composition of $Fs_{16,2\pm0.4}$ (n = 18) with a range of $Fs_{15,7-17,4}$.

Classification: (K. Klemm, A. Bischoff, *IfP*): H4-5; the rock is a brecciated H-group ordinary chondrite containing fragments of petrologic type 4 and type 5.

Specimens: Type specimen: 20.2 g, IfP; the main mass with finder

Calama 058 22°21.521'S, 068°35.335'W

Antofagasta, Chile

Find: 2016-Oct-17

Classification: Carbonaceous chondrite (CR2)

Physical characteristics: Sawn surface shows many large, well-defined chondrules mostly of 0.5-1 mm but also few up to 3 mm in a fine-grained dark matrix containing abundant phyllosilicates. Abundant metal blebs and metal decorating chondrule rims. Stone moderately,

phyllosilicates. Abundant metal blebs and metal decorating chondrule rims. Stone moderately weathered.

Petrography: Thin section shows packed rounded to irregularly shaped chondrules separated by opaque matrix. Sulfide and metal abundant in matrix. Some metal weathered to iron oxides. Wide variety of chondrule types present.

Geochemistry: Olivine in the range $Fa_{0.5-70.5}$ (mean $Fa_{14.8\pm12.6}$, N=28). Cr₂O₃ in ferroan olivine 0.6±0.2 wt.% (N=12). Low-Ca pyroxene in the range $Fs_{3.0-25.7}$ (mean $Fs_{16.2\pm10.6}$, Wo_{1.1±0.6}, N=19).

Calama 062 22°25.615'S, 068°39.164'W

Antofagasta, Chile Find: 2017-Aug-27

Classification: Iron meteorite (IIAB)

Physical characteristics: A single mass partly sand-blasted. Sawn surface shows unweathered metallic interior.

Petrography: Optical investigation of a \sim 3 by 2 cm polished and etched section reveals a coarse texture of kamacite up to 1 cm, with 120° junctions. Inclusions of troilite and schreibersite up to 0.5 mm are abundant.

Geochemistry: ICP-OES data: Ni=57.6, Co=4.6, P=2.9 (all mg/g); ICP-MS data: Cu=128, Cr=80, S=114, Ge=147, Ga=49, Ir=6.8, Au=0.6 (all µg/g)

Calama 075 22°29.05'S, 68°48.17'W

Antofagasta, Chile

Find: 18 Oct 2019

Classification: Ordinary chondrite (H3)

Petrography: (Lorenz C.A., *Vernad*) The meteorite comprises chondrules and chondrule fragments with minor interstitial fine-grained, and in places, devitrified melt matrix, metal-troilite and troilite-silicate aggregates, opaque and silicate melt veinlets and melt pockets. Chondrules are well lineated. Olivine has undulatory and mosaic optical extinction, planar fractures and planar deformation features. Feldspatic glass is mostly isotropic, in places partially anisotropic.

Geochemistry: Mineral composition and geochemistry: Olivine Fa_{19.6±1.87}, PMD Fa_{9.5} (N=18); Pyroxene Fs_{15.9±0.98}Wo_{1.21±0.31} (N=17); rare large chondrules are Mg-rich: Ol Fa_{5.02±2.52}, PMD Fa₅₀ (N=19); Px Fs_{3.64±2.5}Wo_{1.16±1.35} (N=4).

Calama 076 22°29.320'S, 68° 53.347'W

Antofagasta, Chile

Find: 2019 Mar 30

Classification: HED achondrite (Diogenite)

History: Found on March 30, 2019, by Jimmy Pizarro and Alfonso Viera

Physical characteristics: One stone with some patch of fusion crust.

Petrography: (J. Gattacceca, *CEREGE*) Pyroxenite with grain size 1.5 mm. Mineralogy:

ultradominant pyroxene, and minor metal, silica, chromite, troilite.

Geochemistry: Pyroxene Fs_{22.5±0.7}Wo_{1.6±0.3}, FeO/MnO=32.2±3.0 (n=7)

Classification: Achondrite (diogenite)

Specimens: Type specimen at CEREGE, main mass with Kuntz

Calama 077 22°26.569'S, 68°37.983'W

1	
2	
3	Antofagasta, Chile
4	Find: 2017 Oct 19
5	Classification: Ordinary chondrite (H4)
6	History : Meteorite (175.26 g) was found 19 October 2017 by the <i>UrFU</i> meteorite expedition-
/	2017 in Chile (Pastukhovich A Vu Larionov M Vu Kruglikov N A Kolunin R N) near
0	Chin Chin
9 10	Ollu-Ollu. Deviced characteristics: Total mass is 175.26 g. The mateorite has roughly rounded shane
10	Exterior of the store is depart reliabed. The surface and interior of the meteorite is light to
12	Exterior of the stone is desert poisned. The surface and interior of the meteorite is light to
13	dark brown in color due to Fe-hydroxides. No fusion crust was observed.
14	Petrography : Classification (D. Dugushkina, RAS-UB). The meteorite consists mostly of a
15	fine-grained inequigranular recrystallized matrix and chondrules (15%). Chondrite consists of
16	olivine 55%, orthopyroxene 25%, clinopyroxene 7-10%, plagioclase 5%, chromite 1-2%,
17	troilite 2-3%, kamacite and taenite 2-4%. Also chondrite contains accessory apatite.
18	Porphyritic olivine (PO) and porphyritic olivine-pyroxene (POP) chondrules predominates.
19	Chondrules have clear boundaries. Petrographic type is 4. Chromite-plagioclase assemblages
20	are found in chondrite recrystallized matrix. The assemblages range in size from 50-300 um
21	and consist of 0.2-30-um-size rounded euhedral subhedral and anhedral chromite grains
22	surrounded by plagioclase or glass of plagioclase composition. There are grid of thin metal-
23	troilite shock veins in fractures in oliving pyroyene and plagioclase. Plagioclase is not
24	moltad. Shock stage is S2. Minor evide rims around metal and trailite, minor evide voins
25	Weathering grade is W1
27	weathering grade is with
28	Geochemistry: EDX analyses by K. Dugushkina, RAS-UB. The chondrite paragenesis
29	includes olivine Fa _{20±0.5} (N=23), orthopyroxene En _{82±0.5} Fs _{17±0.4} Wo _{1±0.2} (N=14), clinopyroxene
30	$En_{48\pm0.5} Fs_{14\pm1.4} Wo_{44\pm0.9}$ (N=10), plagioclase $An_{26\pm3.6}$ (N=9), chromite, troilite, kamacite (Ni
31	5.0-8.9 wt%), taenite (Ni 13.8-31.9 wt%), apatite. The average composition of chromite
32	(N=12): Cr ₂ O ₃ 55.3±0.5%, TiO ₂ 2.1±0.4%, Al ₂ O ₃ 6.5±0.3%, FeO 31.1±1.0%, MgO
33	3.7±0.7%, SiO ₂ 0.5±0.05%, MnO 0.8±0.1%.
34	Classification: (K. Dugushkina, RAS-UB) H4, ordinary chondrite.
35	Specimens : 168.56 g 2 samples and 3.7 g cut-off and thin section <i>UrFU</i>
30 27	
3/	
30	Calama 078 22°22 855'S 68°35 996'W
40	Antofagasta Chile
41	Find: 2018 Oct 14
42	Classification: Ordinary chandrite (LL 5)
43	U istorny One freement of meteorite (1686 00 c) was found 14 October 2017 by
44	History: One fragment of meteorite (1686.00 g) was found 14 October 2017 by
45	the UrFU meteorite expedition-2017 in Chile (Pastukhovich A. Yu., Larionov M. Yu.,
46	Kruglikov N.A., Kolunin R.N.).) near Chiu-Chiu.
47	Physical characteristics : Total mass is 1686.00 g. The meteorite has roughly rounded shape.
48	Exterior of the stone is desert polished. The surface and interior of the meteorite is light to
49	dark brown in color due to Fe-hydroxides. No fusion crust was observed.
50	Petrography: Classification (K. Dugushkina, RAS-UB). The meteorite consists mostly of a
51	fine-grained inequigranular recrystallized matrix and chondrules (25%). Chondrite consists of
52	olivine 60%, orthopyroxene 20%, clinopyroxene 5-7%, plagioclase 5-7%, chromite 1-2%,
54	troilite 2-3%. Fe-Ni-metal <2%. Also chondrite contains accessory apatite and ilmenite.
55	Predominant porphyritic olivine (PO) and porphyritic olivine-pyroxene (POP) chondrules
56	Chondrules have vague boundaries. Petrographic type is 5 Chromite-nlagioclase assemblages
57	are found in chondrite recrystallized matrix. The assemblages range in size from 10,1000 um
58	and consist of 0.2-30_um_size rounded subadral subhadral and anhadral abromita grains
59	and consist of 0.2-50-µm-size founded, cuncular, subficultar and anneolar chronille grains
60	surrounded by praglociase of glass of plaglociase composition. There are grid of thin metal-

troilite shock veins in fractures in olivine, pyroxene and plagioclase. Plagioclase is not melted. Shock stage is S2. Moderate oxidation of metal, about 20-60% being affected, alteration of mafic silicates is beginning. Metal and troilite is almost completely oxidized in the grid of thin shock veins. Weathering grade is W2-3.

Geochemistry: EDX analyses by K. Dugushkina, *RAS-UB*. The chondrite paragenesis includes olivine Fa_{27±0.5} (N=17), orthopyroxene En_{77±0.3}Fs_{22±0.4}Wo_{1±0.2} (N=11), clinopyroxene En_{45±0.8}Fs_{20±2.8}Wo_{43±1.2} (N=3), plagioclase An_{21±2.6} (N=10), chromite, apatite, troilite, kamacite, taenite, ilmenite. The average composition of chromite (N=6): Cr₂O₃ 52.8±1.7%, TiO₂ 2.9±0.6%, Al₂O₃ 6.5±1.2%, FeO 33.5±1.4%, MgO 3.0±0.9%, SiO₂ 0.7±0.2. **Classification**: (Kseniya Dugushkina, *RAS-UB*) LL5, ordinary chondrite. **Specimens**: 1676.4 g 2 samples and 9.6 g cut-off and thin section *UrFU*

Calama 079 22°24.362 S, 68°34.391 W

Antofagasta, Chile

Find: 2017 Oct 14

Classification: Ordinary chondrite (H4)

History: One fragment weighing 44.34 g was found 14 October 2017 by the *UrFU* meteorite expedition-2017 in Chile (Pastukhovich A.Yu., Larionov M.Yu., Kruglikov N.A., Kolunin R.N.) near Chiu-Chiu.

Physical characteristics: The meteorite has roughly rounded shape. Exterior of the stone is desert polished. The surface and interior of the meteorite is light to dark brown in color due to Fe-hydroxides. No fusion crust was observed.

Petrography: Classification (K. Dugushkina and S. Berzin, *RAS-UB*). The meteorite consists mainly of a fine-grained inequigranular recrystallized matrix; chondrules make up 25-30% of the volume. Predominantly porphyritic olivine (PO) and porphyritic olivine-pyroxene (POP) chondrules. Chondrules mostly have even boundaries. The meteorite consists mainly of olivine 55%, low-Ca pyroxene 20%, Ca pyroxene 10%, plagioclase 10%, troilite 2-3%, Fe-Ni-metal 2-3%. Also chondrite contains accessory apatite, chromite and ilmenite. Heavy oxidation of metal and troilite, 60-95% being replaced (W3). Shock stage is S3. **Geochemistry**: EDX analyses by K. Dugushkina, *RAS-UB*. Olivine Fa_{20.3±0.6} (N=16),

orthopyroxene $Fs_{17.8\pm0.8}Wo_{1.2\pm0.2}$ (N=14), clinopyroxene $En_{43\pm1.5}Fs_{20\pm2.8}Wo_{46\pm0.5}$, plagioclase $An_{37\pm0.14}$ (N=9), chromite, apatite, troilite and FeNi-metal.

Classification: H4, ordinary chondrite.

Specimens: 29.54 g sample and 14.8 g cut-off and thin section, UrFU

Calama 080 22°27.941'S, 68°38.858'W

Antofagasta, Chile

Find: 2017 Oct 24

Classification: Ordinary chondrite (H4)

History: Two fragments of meteorite (138.25 and 10.27 g) were found 24 October 2017 by the *UrFU* meteorite expedition-2017 in Chile (Pastukhovich A.Yu., Larionov M.Yu., Kruglikov N.A., Kolunin R.N.) near Chiu-Chiu.

Physical characteristics: Total mass is 148.52 g. The meteorite has roughly rounded shape. Exterior of the stone is desert polished. The surface and interior of the meteorite is light to dark-brown in color due to Fe-hydroxides. No fusion crust was observed.

Petrography: Classification (K. Dugushkina and S. Berzin, *RAS-UB*). The meteorite consists mostly of a fine-grained, inequigranula,r recrystallized matrix and chondrules (15%). Chondrite consists of olivine 60%, orthopyroxene 15%, clinopyroxene 7-10%, plagioclase 5-

Running Head

7%, chromite 1-2 porphyritic olivin vague boundaries grade - W1). Met pockets. Shock st found, consisting inclusions of oliv vol% and compos Geochemistry : C chromite, apatite, Cr_2O_3 58.4%, TiC composition of on 11.9±0.2%, MnO Classification : (H Specimens : 129.	%, troilite 4-6%, Fe-Ni-te (PO) and porphyritic of . Minor oxide rims around eorite is very weakly sho age is 1-2. A xenolith we mostly of orthopyroxen- ine (Fa $_{20\pm0.3}$ %) and a sm sed of plagioclase and cl linopyroxene En _{51±1.4} Fs troilite, kamacite (Ni 5. D_2 2.7%, Al ₂ O_3 6.04%, F thopyroxene from xenol 0.5±0.1%, CaO 0.6±0.1 K. Dugushkina, <i>RAS-UB</i> 32 g in 2 samples, plus	metal 3-5%, with acc olivine-pyroxene (PO nd metal and troilite, ocked. There are no of ith a size of 1.5×2.5 e En _{81±0.5} Fs _{18±0.4} Wo ₁₌ all amount of mesost inopyroxene. 15±0.1Wo _{41±1.5} (N=7), 1 8-6.5 wt%). The com reO 27.7%, MgO 4.7 ⁴ ith (N=12): SiO ₂ 56. %, Cr ₂ O ₃ ?0.1%.) H4, ordinary chond 19.2 g cut-off and this	pessory apatite. Predominately P) chondrules. Chondrules have minor oxide veins (weathering paque melt veins or melt mm and an angular shape was $_{\pm 0.3}$ (N=12) with rounded tasis. The mesostasis is 5-7 plagioclase An _{16±0.04} (N=12), position of chromite: %, SiO ₂ 0.5%. The average 4±0.2%, MgO 30.6±0.3%, FeC rite. n section, <i>UrFU</i>
Calama 082 Antofagasta, C Find: 19 Oct 2 Classification:	22°8.50'S, 68°37.37'W hile 019 HED achondrite (Dioge	nite, polymict)	
History : The num Chaplygin, who w Physical charact The largest pieces half of the stone s fusion crust and a collected fragment	nerous fragments of meta vas searching for meteor eristics : Physical proper s are 843, 476 and 350 g surface is covered with d are dark gray in color. The parts is 2850 g	eorite were collected ites in the Atacama I rties: The meteorite h . The stone of 843 g ark-gray fusion crust he brecciated texture	over 50 m ² by Mr. Ilya Desert. as more than 100 fragments. of mass has isometric shape; . Smaller fragments have not is visible. Total mass of
Petrography: (Le breccia comprises pyroxene-feldspa fine-grained clast silica, troilite and The rock is crosse	orenz C. A., <i>Vernad</i>) the s of fragments of pyroxe r rocks, recrystallized br ic matrix. Main phase is metal are rare. The melt ed by rare shock melt ve	meteorite has brecci nites, melt matrix bre eccias and sulfide-sil pyroxene; feldspar is matrix breccia fragmins.	ated texture. The poorly sorted eccias, minor fragments of icate breccias settled in the s minor, olivine, chromite, nents are up to 2 cm of size.
Geochemistry : M T. Kryachko, SEI 4.5 (Fe/Mn=21.5-3 lamellae of En _{41.5} Classification : po Specimens : The t	Ineral compositions and M, Technograd, Moscow (5.3); Olivine Fo _{62.3-66.3} ; _{-50.5} Wo _{41.5-44.6} . Feldspar <i>J</i> olymict diogenite type specimen of 564.3 §	l geochemistry: (N. N /): Low-Ca pyroxene Pyroxene in eucritic An _{87.4} Ab _{11.6} -An _{91.9} Ab g and four thin section	N. Kononkova, EMPA, Vernad is En63.5-En ₇₉ Wo _{1.4-} fragments En ₃₇₋₆₂ Wo _{2.4-4.4} with $^{8.1}$ ns are on deposit at Vernad.
wir. Unaplygin ho	nus the main mass.		
Calama 085 Antofagasta, C Find: 2017 Oc Classification:	22°26.854'S, 68°36.489 hile t 19 Ordinary chondrite (H(I	YW L)3)	
History: One frag the <i>UrFU</i> meteor Kruglikov N.A., I	gment of meteorite (1480 ite expedition-2017 in C Kolunin R.N.) near villa	6 g) was found 24 Oc hile (Pastukhovich A ge Chiu-Chiu.	tober 2017 by Yu., Larionov M.Yu.,

Physical characteristics: Total mass is 1486 g. The meteorite has roughly rounded shape. Exterior of the stone is desert polished. The surface and interior of the meteorite is light to dark brown in color due to Fe-hydroxides. No fusion crust was observed.

Petrography: (K. Dugushkina, *RAS-UB*) The meteorite has a dark-brown color. The sections show numerous distinct chondrules (average apparent diameter ~400-500 μm, up to 2 mm) in a fine-grained matrix of silicates, metal, and troilite. The meteorite is dominated by porphyritic olivine chondrules (PO) and olivine-pyroxene chondrules (POP). Also present are porphyritic pyroxene (PP), radiating pyroxene (RP), and barred olivine (BO) chondrules. Also chondrite contains accessory apatite and chromite. Heavy oxidation of metal and troilite, 60-95% being replaced (W3). Shock stage is S2/3.

Geochemistry: EDX analyses by K. Dugushkina, *RAS-UB*. The rock is unequilibrated with a large range in olivine composition (Fa_{3.7-28.8}, N=38). The mean olivine composition is Fa_{20.3±7.8} and it has a percent mean deviation (PMD for FeO in olivine) of 31%. The chondrite paragenesis, in addition to olivine, includes orthopyroxene En_{78.6±2.9}Fs_{20.1±2.7}Wo_{1.3±0.5} (N=15), clinopyroxene En_{47.1±0.7}Fs_{8.6±0.8}Wo_{44.±0.7} (N=5), chromite, apatite, troilite, taenite (Ni 14.3-45.8%) and kamacite (Ni ~6.8%). The average composition of chromite (N=6):

Cr₂O₃ 55.3±0.8 wt%, FeO 30.8±0.6 wt%, MgO 3.4±0.4 wt%, Al₂O₃ 5.7±0.4 wt%, TiO₂ 3.1±0.4 wt%, MnO 0.55±0.1 wt%, SiO₂ 0.8±0.1 wt%, CaO 0.3±0.5 wt%, NiO 0.2±0.1

wt%.

 Classification: Ordinary chondrite, H(L)3, estimated subtype 3.5. Chondrule size closer to the H range, but silicate compositions may indicate L group.

Specimens: 1474.00 g sample and 12.00 g cut-off and thin section UrFU

Calama 087 22°28.25'S, 68°51'W

Antofagasta, Chile

Find: 2018 Oct 27

Classification: Carbonaceous chondrite (CO3)

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with well-delineated chondrules (average apparent diameter $250\pm90 \mu m$, n=31) and small CAIs set in an abundant, fine grained, iron-rich matrix. Opaque are metal and troilite.

Geochemistry: Olivine Fa_{23.5±17.0}, range Fa_{1.2-55.8}, Fa PMD 65% (n=21), Cr₂O₃ in ferroan olivine 0.21 ± 0.26 wt% (n=19). Low-Ca pyroxene Fs_{4.8±3.0}Wo_{1.5±1.0} (n=8). **Classification**: Carbonaceous chondrite (CO3).

Calama 114 22°24.88'S, 68°37.61'W

Antofagasta, Chile

Find: 9 Apr 2018

Classification: Ordinary chondrite (L6, melt breccia)

Petrography: The meteorite is a melt-rock matrix breccia, composed of the mm-sized fragments of recrystallized chondritic texture joined together by poorly transparent devitrified melt (~15 vol.%).

Caleta el Cobre 037 (CeC 037) 24° 14' 1"S, 70° 18' 59"W Antofagasta, Chile Find: 2018 Classification: Ordinary chondrite (L6, melt breccia)

Petrography: (J. Gattacceca, *CEREGE*) Melt-rock supported breccia. Clasts are cm-sized, and are type 6.

Caleta el Cobre 041 (CeC 041) 24°17.678'W, 70°19.746'W Antofagasta, Chile Find: 2018 Dec Classification: Ordinary chondrite (L3)
Petrography: (J. Gattacceca, *CEREGE*) Chondrite with packed chondrules. Opaque are metal and troilite. Shock veins.
Geochemistry: Olivine Fa_{24.5±5.3}, Fa PMD = 16% (n=5). Low-Ca pyroxene Fs_{17.0±2.3}Wo_{0.9±0.6} (n=4).
Classification: Ordinary chondrite (L3). Possibly paired with Los Vientos 171.

Caleta el Cobre 050 (CeC 050) 24°15'S, 70°31'W

Antofagasta, Chile

Find: 2020 Apr 27

Classification: Ungrouped achondrite

Physical characteristics: Single brownish stone. Cut surface reveals a coarse crystalline interior with green (low-Ca pyroxene) and white (plagioclase) crystals. Some pyroxene are stained with rust. Ductile deformation is visible at cm scale.

Petrography: (J. Gattacceca, *CEREGE*) Fractured but unbrecciated igneous rock with triple junctions. Grain size 300 μ m. Main minerals are plagioclase and low-Ca pyroxene in similar abundances. Opaque minerals are kamacite and troilite, found as small grains or along grain rims. A few pyroxene grains are exsolved and contain ~10 μ m kamacite grains associated with the exsolutions.

Geochemistry: Plagioclase An_{57.0±3.8}Ab_{42.6±3.8}Or_{0.3±0.1} (n=4). Pyroxenes: low-Ca pyroxene Fs_{5.8±0.2}Wo_{2.3±0.1} (n=4), augite Fs_{2.4±0.0}Wo_{45.9±0.2} (n=2), FeO/MnO = 4.59±0.75 (n=6). Oxygen isotopic composition (J. Gattacceca, C. Sonzogni, *CEREGE*) from analysis of one 1.5 mg aliquot of a powdered 353 mg bulk sample is δ^{17} O=3.48‰, δ^{18} O=8.28‰, Δ^{17} O=-0.83‰ (slope 0.52, analytical uncertainties 0.08‰, 0.12‰, 0.01‰ respectively).

Classification: Achondrite-ungrouped. The ungrouped designation is based on the oxygen isotopic composition, mineralogy and mineral chemistry.

Specimens: Type specimen at CEREGE. Main mass at MMC.

Camel Donga 054 30°19'S, 126°37'E

Western Australia, Australia

Find: 2007 Apr 24

Classification: Ordinary chondrite (H6)

History: Found on the surface by K. Hicks on open plain within the strewnfield of the Camel Donga eucrite (A. Bevan, *WAM*)

Physical characteristics: Physical Characteristics: A crusted, broken, weathered fragment weighing 49.28 g, measuring 5x3x3.5 cm (A. Bevan, *WAM*).

Petrography: (L. Daly, L. V. Forman, Curtin). Specimen has poorly defined chondrules within a heavily stained red/opaque matrix. The chondrules include types RP, PO, POP, and BO, and chondrule mesostases are crystalline. Sizes range from 0.45-1.8 mm with a mean of 1.1 mm (n=18). Mineralogy consists of olivine, pyroxene, chromite, feldspar, and FeO. Olivine and pyroxene have undulose extinction, and planar fractures. Feldspars are mostly

 $<50 \ \mu\text{m}$ but some larger grains were observed. Any metal and sulfide previously present in the sample have been completely replaced with iron oxide $> 95 \ \%$.

Geochemistry: Mineral Compositions and Geochemistry: EDS, Olivine: $Fa_{20.1\pm0.6}$ (n=12). Low Ca pyroxene: $Fs_{17.6\pm1.2}Wo_{2.3\pm1.1}$ (n=6) rare diopside is present $Fs_{6.8}Wo_{46.4}$. Feldspar Ab_{86.5\pm1.3} with some rare Ca rich varieties Ab_{60-47.9}

Classification: Ordinary Chondrite, H6, S3, W4

Specimens: The *WAM* holds the main mass now 47.28 g and one thin section.

Carson Lake 38°36.432'N, 103°0.087'W

Colorado, United States

Find: 1941

Classification: Ordinary chondrite (H6)

History: Frank Jacobs discovered the 18.37 kg sample in 1941 in a farm field 7.2 miles N of Galatea, Kiowa Co., Colorado (CO Sect. 4 T17SR50W). In 2019, Jake Jacobs and his wife brought the sample to the Colorado School of Mines Museum of Earth Science for identification. Daniel Wray, a museum volunteer, recognized the sample as a meteorite.
Physical characteristics: The sample has an irregular, tabular shape with abundant broad shallow regmaglypts. The exterior of the sample is covered in an orange-colored weathered fusion crust. The interior is dark-brown in color and shows sulfides and a few shiny grains of un-weathered FeNi metal.

Petrography: Description and Classification (A. Love, *App*) Sample shows recrystallized chondritic texture composed of indistinct chondrules with an average apparent diameter of 623 μ m (n=29). Secondary plagioclase has an average grainsize of 60 μ m (n=38). Chondrule mesostasis has been completely recrystallized. A region of the sample, bounded by opaque shock veins, is composed of 25-200 μ m brecciated grains of olivine, pyroxene and plagioclase. Additional minerals are: troilite, phosphates and chromite.

Geochemistry: (A. Love, *App*) Olivine (Fa_{17.9±0.2}, Fe/Mn=35.7±0.8 n=12); low Ca pyroxene (Fs_{15.7±0.1}Wo_{1.3±-0.1}, n=12).

Classification: Ordinary Chondrite (H6, C-S3, W3). Based on mineral textures, compositions and grainsize of secondary plagioclase, this sample is an H6.

Specimens: Jake Jacobs holds the main mass. A 38.90 g fragment and a polished thin section are on deposit at *App*.

Catalina 344 24°56'27.5"S, 69°44'18.8"W

Antofagasta, Chile

Find: 2016 Nov 03

Classification: Ordinary chondrite (H4)

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with packed well-delineated chondrules with average apparent diameter 465±244 (n=215). Opaque minerals are metal and troilite. **Geochemistry**: Olivine Fa_{18.9±1.0}, range Fa15.6-Fa_{20.1}, Fa PMD 3.3% (n=15). Low-Ca pyroxene Fs_{12.8±3.8}Wo_{1.3±1.3}, range Fs4.7-Fs_{16.6} (n=13).

Classification: Ordinary chondrite (H4). This meteorite is classified as H from the apparent chondrule size and 37 vol% of opaques converted to oxyhydroxides.

Specimens: Type specimen at CEREGE. Main mass at MMC.

Cavezzo 44°49'44"N, 10°58'20"E Emilia-Romagna, Italy

Confirmed fall: 1 Jan 2020

Running Head

57

58

59

60

Classification: L5-an History: (INAF) On January 1, 2020, at 18:26:54 UT, a bolide was observed by many people in northern and central Italy. At the same time at least 8 all-sky cameras of the Italian PRISMA Fireball Network, which is part of the international FRIPON network, recorded a track, inclined at about 68° with respect to the Earth's surface, that started at an altitude of 76 km and ended at an altitude of 21.7 km. A pre-atmospheric speed of the meteoroid of about 12 km/s and an initial mass of several kg was estimated. During the fall, two main fragmentation events were registered at altitudes of 50 and 30 km, while the dark flight started at 21.7 km altitude. According to the PRISMA calculations the estimated strewn field of the fragments in the area between Rovereto sul Secchia, Disvetro and Cavezzo, near Modena. On January 4, at around 15.30 UT, Mr. Davide Gaddi, who had been informed through the newspapers of the notice published by PRISMA-INAF about the possible fall, was walking with his dog over the embankment of the Secchia river floodwater detention basin and was attracted by a little piece of a dark stone, that he picked up (sample #1). Later he looked around and was able to find the main mass a few meters away (sample #2). **Physical characteristics**: Two main samples weighing 52.2 and 3.6 g were recovered. Both are almost entirely covered by a black, shiny fusion crust. The big one has on one side an oriented and rounded shape while the other side displays a fragmented surface which shows an internal structure characterized by a fine-grained chondritic texture consisting of pale green and white crystals with scattered tiny shiny particles. At the boundary between the original and the fragmented surfaces signs of an impact with a hard, white rock, presumably a limestone, can be seen on the crust, suggesting a possible fragmentation on the ground. The small one has an almost spherical shape, is partially fragmented, too, and, on a cut surface, shows a marked chondritic structure with no traces of shiny particles. **Petrography**: (V. Moggi Cecchi, G. Pratesi, *UniFi*); Two thin sections were analyzed, sampling fragments from both the main mass and the small fragment. The thin section of the main mass (sample #2) displays a typical chondritic texture, with chondrules of various types (PO, POP, PP) ranging from 200 to 800 µm set in medium grained matrix consisting of orthopyroxene, olivine, plagioclase and minor clinopyroxene. Opaque phases are represented by scattered Fe,Ni alloys and sulphides both in chondrules and in the matrix. Merrillite and chromite are also present as rare small (max 50 µm) spots. The thin section of the small sample (#1) displays an anomalous chondritic texture, with chondrules ranging from 800 to 2000 µm in a coarse grained matrix; a chondrules/matrix ratio of 1 has been estimated; some chondrules belong to the BO type and display elongated olivine bars separated by a finegrained matrix consisting of clinopyroxene and minor plagioclase and orthopyroxene; most of the chondrules consist of large (200-600 μ m) olivine crystals, often fractured, with a continuous rim of olivine and separated by an interstitial matrix mostly consisting of clinopyroxene and plagioclase, with minor orthopyroxene; both types show diffuse tiny chromite veins and droplets cross-cutting crystals; the interchondrules matrix consists mostly of large olivine crystals with irregular rounded shapes separated by fine grained aggregates of clinopyroxene, olivine and plagioclase, with minor orthopyroxene; plagioclase is also found as rare large (200-400 µm) crystals in the matrix; minor apatite crystals ranging from 300 to 1000 µm are visible; metal is rare and can be found in tiny small droplet inside chromite veins $1-4 \mu m$ in size or as very rare larger (20-100 μm) blebs; chromite is diffuse, mainly as small droplets (20-40 µm) and veins (1-2 µm wide and up to 300 µm long) or, more rarely, as larger blebs up to 100 µm; ilmenite is present as rare scattered blebs 20-40 µm in size; troilite is absent. A modal analysis of sample #1 based on X-ray maps performed on 11 areas 1700x1200 μ m wide provided the following results (all in vol%): ol = 67; pl = 14.8; cpx = 9.1; opx = 5.6; apa = 3.1; chr = 0.2; Fe,Ni = 0.05;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi, UniFi); Sample #2 (main mass): Olivine in both chondrules and matrix (Fa_{24.6±0.2}Fo_{75.4±0.2}; Fe/Mn = 28.6, n=25); Orthopyroxene in chondrules and matrix (Fs_{20.5±0.3}En_{78.0±0.2}Wo_{1.5±0.1}, Fe/Mn = 48.1, n=18); High-Ca pyroxene both in chondrules and matrix (Fs_{7.3±0.1}En_{47.8±0.3}Wo_{43.7±0.3}); Plagioclase both in crystals and matrix $(An_{10,2}Ab_{83,9}Or_{5,8}, FeO = 0.44 Wt.\%)$; a bulk chemical analysis on major and minor elements performed by SEM-EDS on 15 areas 1700x1200 µm wide provided the following results (elements, all in mg/g): Si = 195.5, Ti = 0.8, Al = 18.9, Cr = 6.3, Fe = 153.0, Mn = 3.2, Mg = 145.1, Ca = 13.5, Na = 10.2, K = 1.4, P = 2.4, S = 17.7; A modal analysis of sample #1based on Xray maps performed on 15 areas 1700x1200 µm wide provided the following results (all in vol%): ol = 35; opx = 34; pl = 16; cpx = 9; troilite = 3.6; Fe,Ni = 1.7; chr = 0.7; Sample #1: Olivine in both chondrules and matrix ($Fa_{23.8\pm0.2}Fo_{76.2\pm0.2}$; Fe/Mn = 45.5, n=37); Orthopyroxene in chondrules and matrix ($Fs_{19.8\pm0.1}En_{78.7\pm0.1}Wo_{1.4\pm0.1}$, Fe/Mn = 26.6, n=8); High-Ca pyroxene both in chondrules and matrix $(Fs_{7.0\pm0.2}En_{47.8\pm0.1}Wo_{45.2\pm0.3}, Fe/Mn = 60.6,$ n=6; Al₂O₃ = 0.52, TiO₂ = 0.57, Cr₂O₃ = 0.80, Na₂O = 0.56, all in Wt.%); Plagioclase both in large crystals and in fine grained matrix $(An_{114}Ab_{831}Or_{55}, FeO = 0.37 Wt.\%)$; Metal: four clusters at Fe83.4Co1.3Ni15.3; Fe94.0Co1.8Ni4.2; Fe70.6Co1.6Ni27.8 Fe52.0Co1.0Ni47.0 (all in Wt.%); a bulk chemical analysis on major and minor elements performed by SEM-EDS on 15 areas 1700x1200 um wide of sample #1 provided the following results (elements, all in mg/g): Si = 200.5, Ti = 0.6, Al = 21.8, Cr = 4.1, Fe = 135.9, Mn = 2.4, Mg = 161.6, Ca = 28.0, Na = 10.3, K = 0.9, P = 7.2, S = 0.0; Oxygen isotopes (sample #1): (I.Franchi, R.Greenwood, OU) $\delta^{17}O = 3.25$ ‰, $\delta^{18}O = 4.74$ ‰, $\Delta^{17}O = 0.79$ ‰ Classification: Ordinary chondrite (anomalous) L5, S2, W0; Specimens: Both samples, totally weighing 55.3 g (#2, 52.2 g and #1, 3.1 g), two thin sections and two thick sections are on deposit at MSN-FI, inventory # I-3613 and I-3557). Sample #1 is property of INAF (Istituto Nazionale di Astrofisica).

Chug Chug 019 22°29.46'S, 69°07.57'W

Antofagasta, Chile

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17 18

19

20

21

22

23

24 25

26

27

28

29

30

35

36

37

38

39 40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

55 56

57

58

59

60

Find: 27 Oct 2018

Classification: Ordinary chondrite (H4, anomalous)

History: one piece of meteorite (field number 4-57) was found in the desert by Mr. T. V. Kryachko.

Physical characteristics: a sample of meteorite has a brown fusion crust.

Petrography: M. A. Ivanova (*Vernad*) Meteorite consists of well-defined chondrules, 0.34±0.21 cm in size, embedded in matrix enriched in Fe-oxides. POP and PP chondrules are abundand, BO and PR are rare; minerals are olivine, pyroxene, Fe,Ni-metal and iron oxides, sulfide, quartz, phosphate, carbonate and chromite. Glass of plagioclase composition occurs in chondrules. Shock stage is S1, weathering grade is W3.

Geochemistry: Mineral compositions and geochemistry: M. A. Ivanova. Olivine Fa_{10.2±0.28} (N=39), orthopyroxene Fs_{11.6±4.44}; Wo_{0.64±0.47}, Fe/Mn = 21.2±8.7 (N=32), clinopyroxene is represented by pigeonite : Fs₂₉₋₃₂Wo₈₋₁₂ and augite Fs₃₋₄Wo₃₇₋₄₃; plagioclase glass in chondrule has a variable composition: Ab₄₄₋₈₈Or_{0.7-13}; Fe,Ni-metal contains 4.0-15.7 wt% Ni, 0.48±0.04 wt% Co; sulfide is represented by troilite. Oxygen isotopic composition (*OU*): $\delta^{17}O = 3.100$, $\delta^{18}O 4.589$, $\Delta^{17}O = 0.714$; $\delta^{17}O 3.083$, $\delta^{18}O = 4.605$, $\Delta^{17}O 0.688$ (all ‰). **Classification**: based on chondrules size (0.34 ± 0.21 cm), very reduced silicates compared to H chondrite (Fa₁₀), Co content (0.48 wt.%) in low-Ni Fe,Ni-metal and oxygen isotopic composition, this meteorite is an anomalous H chondrite. Based on homogeneous olivine composition but very clear boundaries of chondrules and variable low-Ca pyroxene composition, petrological type should be 4.

 Specimens: individual sample of meteorite (1.54 g) and 1 polished section are deposited in *Vernad*.

Chug Chug 022 22°29.37'S, 69°8.20'W Antofagasta, Chile Find: 21 Oct 2019

Classification: Ordinary chondrite (L(H)3)

Petrography: The meteorite is composed of well-delineated chondrules with average apparent diameter $410\pm230 \ \mu m$ (N=110), chondrule fragments and opaque grains embedded in minor fine-grained matrix. Olivine has undulatory extinction and planar fractures; feldspatic glass is partly anisotropic; opaque phases are metal (6 vol%), minor troilite and rare chromite.

Geochemistry: Mineral composition and geochemistry: Olivine is $Fa_{22.7\pm8.28}$, PMD $Fa_{37.7}$ (N=36) including less ferroan main mass $Fa_{18.8\pm4.3}$, PMD Fa_{23} (N=28) and untypical Ferich objects containing $Fa_{36.3\pm4.7}$ (N=8); Pyroxene is $Fs_{14.5\pm7.61}$ Wo_{1.17\pm0.79} (N=23) **Classification**: Ordinary chondrite (L(H)3), estimated subtype 3.7. Metal content favors L classification, but the average chondrule size is closer to the H range. Hence the L(H) designation.

Chug Chug 044 22°29.969'S, 69°10.181'W

Antofagasta, Chile

Find: 2018 Mar 18

Classification: Ordinary chondrite (L4)

History: The meteorite (one piece) was found on March 31, 2018, by Ilya Chaplygin during a meteorite searching expedition organized by Timur Kryachko.

Physical characteristics: Total mass of the piece is about 1270 g. 90% of the meteorite is covered by black, rough fusion crust with cracks. Some parts are weathered or broken revealing uneven surface dominated by rounded chondrules. Bottom side is colored by light-reddish desert material. The interior of the meteorite is light-brown with clearly visible abundant chondrules and metal particles.

Petrography: (Pavel Yu. Plechov, *FMMR*). Petrographic observation of a polished section show that the meteorite consist of chondrules sizes vary from 300 to 750 μm (with predominant size 500-750 μm) in recrystallized matrix. Olivine, low-Ca pyroxene and metall blebs are the main minerals in matrix. Olivine is equilibrated (with PMD of FeO 1.14%) but low-Ca pyroxene is not equilibrated. Nonsilicates is present and consist of both merrillite and Cl-apatite. These features indicate a petrological type of 4 for the meteorite. Metall and sulfides are fresh but have rare weathering products (goethite) that occur as veins and in situ alteration of FeNi-metals and troilite (weathearing grade W1). Olivine has no undulatory extinction, and opaque shock veins and melt pockets are absent, indicating a shock stage of S1.

Geochemistry: Mineral composition and Geochemistry: EDS analyses (Pavel Yu. Plechov, *FMMR*, Sergey Ev. Borisovskiy, *IGEM*). The primary chondrite paragenesis includes olivine Fa_{25.2±1.4} (N=25), Low-Ca pyroxene Fs_{12.6±5.5}Wo_{1.01±0.91} (N=22), chromite Crt_{36.8±51.9}Spl_{36.9±34.7} (N=2).

Classification: Ordinary chondrite. L4, S1, W1.

Specimens: Type specimen: 62 g and thin section at *FMMR*.

Chug Chug 059 22°29.96'S, 69°2.04'W Antofagasta, Chile

Find: 30 Mar 2018

Classification: Ordinary chondrite (L5)

Petrography: the meteorite is impact melt breccia. It is composed of mm- to cm-sized chondritic fragments (~80 vol%) joined together by interstitial melt matrix. The matrix has a cryptocrystalline texture. Olivine in the fragments has undulatory extinction and weak mosaicism corresponding to S4 shock stage.

Chug Chug 080 22°29.88'S, 69°2.38'W

Antofagasta, Chile

Find: 17 Oct 2018

Classification: Ordinary chondrite (L5)

Petrography: The rock is composed of the fragments of type 5 chondrite up to 1 cm in size joined together by shock melt veins and pockets of fine-grained melt-matrix breccia.

Chwichiya 002 27°06'45.02"N, 11°10'25.2"W

Saguia el Hamra, Western Sahara Find: 2018 Jun 10

Classification: Carbonaceous chondrite (C3.00, ungrouped)

History: Found close to Houza village by Elho Sbiti on June 10, 2018. Bought from Mohamed Elguirad in Guelmim in June and October 2018. More samples bought from Mohamed Elguirah, Habib-Naji Naji and Youssef Ait El Caid in January 2019. Some material bought by Nourddine Azelmat.

Physical characteristics: Fragments and crusted stones, including a 158 g full stone. Cut surface reveals a dark porous interior with chondrules.

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with well-defined chondrules (average apparent diameter $480\pm300 \,\mu\text{m}$, n=29) set in an abundant fine-grained iron-rich matrix (74 vol%, by point counting, n=371). Opaques are troilite, magnetite, rare metal (as inclusion in silicates and in the matrix). XRD over a ~1 cm2 area on a polished section (D.

Borschnek, *CEREGE*) does not reveal the presence of hydrous phases (serpentine, tochilinite) typically observed in type 2 chondrites using the same experimental setup. In contrast to type 2 chondrites, IR transmission spectroscopy (L. Bonal, *IPAG*) on matrix grains only reveal a faint water and Si-O-band (attributable to phyllosilicates), reflecting a very low extent of aqueous alteration. Based on the structural order of the polyaromatic matter assessed by Raman spectroscopy (L. Bonal, *IPAG*), this meteorite appears to be less heated than the least heated type 3 ordinary chondrite, <u>Semarkona</u>.

Geochemistry: Olivine Fa_{37.6±16.7}, range Fa_{1.2-46.5} (n=16), Cr₂O₃ in ferroan olivine 0.39±0.12 wt% (n=11). Low-Ca pyroxene Fs_{3.1±3.0}Wo_{0.8±0.3} (n=4). Defocussed (10 μ m) microprobe totals in the matrix 90.9±1.2% (n=11). Oxygen isotopic composition (J. Gattacceca, C. Sonzogni, *CEREGE*) from analysis of one acid-washed 1.5 mg aliquot of a powdered 38 mg

bulk sample is $\delta^{17}O=0.42\%$, $\delta^{18}O=8.23\%$, $\Delta^{17}O=-3.88\%$ (linearized, slope 0.5247, analytical uncertainties 0.08‰, 0.12‰, 0.03‰ respectively).

Classification: Carbonaceous chondrite (C3.00-ungrouped). This meteorite is distinct from CM2 chondrites for its larger chondrule size and only incipient aqueous alteration. Type 3.00 is based on the non-detection of phyllosilicates by XRD and microprobe total in the matrix higher than usually measured in type 2 chondrites (see e.g., Ebert et al. 2019,

Running Head

MAPS doi:10.1111/maps.13212), and Raman spectroscopy. Possibly paired with NWA 12957 and NWA 11750 despite having distinct oxygen isotopic composition. **Specimens**: Type specimen at *CEREGE*. Main mass with Jean Redelsperger and Nourddine Azelmat. 27°14.39' N, 011° 40.12'W Chwichiya 005 Saguia el Hamra, Western Sahara Find: 2019 Classification: Carbonaceous chondrite (CO3) History: A single 249 g stone was found by Iken Mohamed in the Saguia el Hamra region of Western Sahara in 2019. John Higgins purchased the stone from Mohamed Elguirah in 2020. **Physical characteristics**: Sample is dark brown in color, has a triangular profile with a rounded convex face and a flat bottom. The convex face is weathered and shows and irregular pattern of fractures. The cut face shows abundant small chondrules in a dark brown matrix. **Petrography**: Description and classification (A. Love, *App*): Sample shows chondritic texture composed of chondrules with an average apparent diameter 208 μ m (n=60), fragments mineral grains and abundant refractory inclusions, abundant sulfide and weathered metal set within a fine-grained, opaque matrix. Additional minerals are: plagioclase, Si-polymorph, troilite and oxidized FeNi metal. Geochemistry: (A. Love, App) Olivine, Fa_{22.5±16.0} (Fa_{0.9-52.0}), n=18. Cr₂O₃ Wt% in type II chondrules - 0.4 ± 0.2 , n=15); low-Ca pyroxene, Fs_{4.7±3.8}Wo_{1.2±1.0} (Fs_{0.7-8.2}Wo_{0.3-1.6}, n=11); pigeonite, Fs_{3.5-5.8}Wo_{7.4-5.3}, n=2. Classification: Carbonaceous chondrite (CO3, C-S2, W3) Based on texture, chondrule diameter and magnetic susceptibility this sample is an CO chondrite. Specimens: John Higgins holds the main mass. An end cut, several smaller slices and fragments that comprise the 23.55 g type specimen and a polished thin section and mount are

Chwichiya 006 27° 7'40.65"N, 11°12'33.33"W Saguia el Hamra, Western Sahara

Purchased: 2020 Mar Classification: Ureilite

on deposit at *App*.

History: The meteorite was found by a Moroccan meteorite hunter on his way to hunt for Chwichiya specimens, acquired by a seller in Zagora and subsequently sold to Fabien *Kuntz*. **Physical characteristics**: Dark brownish rock without fusion crust.

Petrography: The meteorite shows a cumulate texture composed of up to 2 mm sized olivine and pigeonite grains. Both, olivine and pyroxene display characteristic reduced rims and the meteorite contains rare flaky graphite. Some cracks are filled with secondary clacite. **Geochemistry**: reduced rims in olivine: Fa_{3.6-13.0}; olivine contains 0.90 ± 0.06 wt% Cr₂O₃ and 0.43 ± 0.02 wt% CaO; reduced rims in pyroxene: Fs_{7.0-10.5}Wo_{6.6-11.4}; pigeonite contains 1.34 ± 0.05 wt% Cr₂O₃ and 0.60 ± 0.03 wt% Al₂O₃

Cleghorn Lakes 34°15.396'N, 115°47.188'W California, USA

Find: 2018 May 13 Classification: Ordinary chondrite (LL3)

55

56

57

58

History: On May 13, 2018, while searching for meteorites, Robert *Verish* found in a saddle (formed by the pediment of two mountain ridges) a tight cluster of many fragments of a stony meteorite.

Physical characteristics: Over 150 angular fragments were recovered (total over 1100 g) with many that could be physically paired, but not enough to reconstruct the original mass. Many fragments are missing, estimated to be 30%. A return trip to the find site resulted in only an additional 20 g.

Petrography: (D. Sheikh, *FSU*) Abundant chondrules (900 \pm 50 µm) set in a fine-grained matrix containing accessory chromite, Fe oxides, and stained Fe-Ni metal.

Geochemistry: Olivine (Fa_{0.7-44.3}, n=53), Low-Ca Pyroxene (Fs_{1.2-29.9}Wo_{0.2-3.9}, n=83).

Classification: Ordinary Chondrite (LL3) due to chondrule size and magnetic susceptibility. **Specimens**: 40 grams at *UCLA*; main mass with *Verish*.

Crescent Valley 001 (CV 001)

40°25.924'N, 116°30.754'W

Nevada, United States

Find: 2013 Oct 16

Classification: Ordinary chondrite (H4)

History: These two fragments (which were less than a meter apart) were recovered by Robert *Verish* while he was searching for meteorites at the south end of a small drylake. **Physical characteristics**: These 1.6 and 0.87 g fragments are physically paired. There are still some small fragments missing. The orange-brown exterior has lost its fusion-crust due to weathering. A cut surface shows a brown interior with visible chondrules and metal-grains. **Petrography**: (D. Sheikh, *FSU*) Sample contains well-defined chondrules (Av. 500 μm) along with metal and troilite. Secondary Fe-oxides present as well.

Geochemistry: Olivine (Fa_{18.8±0.6}, n=14), Low-Ca Pyroxene (Fs_{16.4±0.7}Wo_{1.1±0.1}, n=12).

Classification: Ordinary Chondrite (H4)

Specimens: 0.87 grams at UCLA; main mass with Verish.

Crescent Valley 002 (CV 002) 40°25.754'N, 116°30.729'W

Nevada, United States

Find: 2013 Oct 22

Classification: Ordinary chondrite (H4)

History: This nearly whole individual was recovered 315 m SSE of Crescent Valley 001 by Robert *Verish* while he was searching for meteorites at the south end of a small drylake. **Physical characteristics**: This 6.4 g orangish-brown, rectangular, nearly whole stone has a rough exterior, which has had its fusion cust weathered-away. A cut surface reveals visible chondrules, metal-grains and many fractures filled-in with weathering-products.

Petrography: (D. Sheikh, *FSU*) Sample contains well-defined chondrules (Av. 500 μm). Sample is heavily weathered and contains numerous interconnected Fe-oxide veins; metal and troilite absent.

Geochemistry: Olivine (Fa_{18.6±0.5}, n=12), Low-Ca Pyroxene (Fs_{16.9±0.8}Wo_{1.1±0.2}, n=13). **Classification**: Ordinary Chondrite (H4)

Specimens: 1.7 grams at UCLA; main mass with Verish.

Dhofar 2102 (Dho 2102) 19°8.860'N, 54°39.316'E Zufar Oman

Zufar, Oman Find: 2010

Running Head

Physical characteristics: T Petrography: The plagioch	s found 2010 during a field trip in the Oman desert. Three dark brownish individuals lacking any fusion crust. ase grain size is about 80 μ m.
Dhofar 2104 (Dho 2104) Zufar, Oman Find: 2009	19°7.755'N, 54°36.036'E
Classification: Ordinary	chondrite (H4)
History: The meteorite was Physical characteristics: I	s found 2009 during a field trip in the Oman desert. Dark brownish fragment with some fusion crust.
Petrography : The meteorit chondrules (mean diameter and abundant FeNi metal. C	te displays a chondritic texture with small, partly flattened about 0.3 mm) in a fine-grained dark matrix that contains su Divine is equilibrated; low-Ca-pyroxene is unequilibrated.
Dhofar 2106 (Dho 2106)	✓18°21.638'N, 54°10.470'E
Zufar, Oman Find: 2010	
Classification: Carbonac	eous chondrite (CM2)
History. The meteorite was	s found 2010 during a field trip in the Oman desert
Physical characteristics: S	Small black individual without fusion crust.
Petrography: Carbonaceou	is chondrite composed of small (apparent mean diameter ab
250 μm) chondrules, chond	rule pseudomorphs mineral fragments and rare CAIs many
which surrounded by fine-g	grained dust rims set into abundant fine-grained matrix. Seve
which surrounded by fine-g chondrule pseudomorphs co	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundar
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan pates.
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundant mates.
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan nates.
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghoi Ching	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan ates. 8"N, 92°50'32"E
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan nates. 8"N, 92°50'32"E
 which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary 	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan ates. 8"N, 92°50'32"E
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History : (Ziyao Wang) Dis	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan ates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian
 which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History: (Ziyao Wang) Dis in July 2013. 	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan ates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian
 which surrounded by fine-g chondrule pseudomorphs cosulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History: (Ziyao Wang) Dis in July 2013. Physical characteristics: (2) 	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundant ates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g
 which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History: (Ziyao Wang) Dis in July 2013. Physical characteristics: (A Petrography: (R. Bartosch 	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan ates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g newitz, <i>Bart</i>) strong recrystallized matrix with indistinct
 which surrounded by fine-g chondrule pseudomorphs cosulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History: (Ziyao Wang) Disin July 2013. Physical characteristics: (Petrography: (R. Bartosch chondrules. Cracks are fille 	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abunda- nates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian, Ziyao Wang) dark brown fragment of 30.2 g ewitz, <i>Bart</i>) strong recrystallized matrix with indistinct ad mainly with iron hydroxides.
 which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History: (Ziyao Wang) Dis in July 2013. Physical characteristics: (A Petrography: (R. Bartosch chondrules. Cracks are fille Geochemistry: (R. Bartosch chondrules. Characteristics) 	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abunda- nates. 8"N, 92°50'32"E scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g ewitz, <i>Bart</i>) strong recrystallized matrix with indistinct ad mainly with iron hydroxides. Ehewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine
 which surrounded by fine-g chondrule pseudomorphs cosulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History: (Ziyao Wang) Disin July 2013. Physical characteristics: (A Petrography: (R. Bartosch chondrules. Cracks are fille Geochemistry: (R. Bartosch Fa_{24.2±0.5} (n=32); pyroxene I 	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundant ates. 8"N, 92°50'32"E 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g newitz, <i>Bart</i>) strong recrystallized matrix with indistinct ed mainly with iron hydroxides. chewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine Fs _{20.9±1.3} Wo _{1.7±0.2} (n=9); chromite CRAL86, FFM87; pyrrhot
 which surrounded by fine-g chondrule pseudomorphs cosulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History: (Ziyao Wang) Disin July 2013. Physical characteristics: (A Petrography: (R. Bartosch chondrules. Cracks are fille Geochemistry: (R. Bartosch Fa_{24.2±0.5} (n=32); pyroxene I Ni=4 wt%; pentlandite. Ma 	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundant ates. 8"N, 92°50'32"E 8"N, 92°50'32"E 2 chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g witz, <i>Bart</i>) strong recrystallized matrix with indistinct ad mainly with iron hydroxides. Schewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine Fs _{20.9±1.3} Wo _{1.7±0.2} (n=9); chromite CRAL86, FFM87; pyrrhot gnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ n
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History : (Ziyao Wang) Dis in July 2013. Physical characteristics : (<i>P</i> etrography : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartosch chondrules. (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartosch chondrules. (R	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundant ates. 8"N, 92°50'32"E scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g ewitz, <i>Bart</i>) strong recrystallized matrix with indistinct ed mainly with iron hydroxides. Ehewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine Fs _{20.9±1.3} Wo _{1.7±0.2} (n=9); chromite CRAL86, FFM87; pyrrhot gnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History : (Ziyao Wang) Dis in July 2013. Physical characteristics : (<i>P</i> etrography : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartosch chondrules. Ma = 4.62. Classification : Ordinary ch	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan- nates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g ewitz, <i>Bart</i>) strong recrystallized matrix with indistinct ed mainly with iron hydroxides. ehewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine Fs _{20.9±1.3} Wo _{1.7±0.2} (n=9); chromite CRAL86, FFM87; pyrrhot gnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m hondrite (L5, S4, W4)
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History : (Ziyao Wang) Dis in July 2013. Physical characteristics : (<i>P</i> etrography : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R.	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abunda tates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g ewitz, <i>Bart</i>) strong recrystallized matrix with indistinct ed mainly with iron hydroxides. chewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine Fs _{20.9±1.3} Wo _{1.7±0.2} (n=9); chromite CRAL86, FFM87; pyrrhot gnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ n hondrite (L5, S4, W4) it at <i>Kiel, Bart</i> holds the main mass.
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History : (Ziyao Wang) Dis in July 2013. Physical characteristics : (<i>P</i> etrography : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartosch $Fa_{24,2\pm0.5}$ (n=32); pyroxene H Ni=4 wt%; pentlandite. Ma = 4.62. Classification : Ordinary ch Specimens : 6.9 g on deposit	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundant ates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolian Ziyao Wang) dark brown fragment of 30.2 g ewitz, <i>Bart</i>) strong recrystallized matrix with indistinct ed mainly with iron hydroxides. ehewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine Fs _{20.9±1.3} Wo _{1.7±0.2} (n=9); chromite CRAL86, FFM87; pyrrhot gnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m hondrite (L5, S4, W4) it at <i>Kiel, Bart</i> holds the main mass.
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History : (Ziyao Wang) Dis in July 2013. Physical characteristics : (<i>I</i> Petrography : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartoscc Fa _{24,2±0.5} (n=32); pyroxene I Ni=4 wt%; pentlandite. Ma = 4.62. Classification : Ordinary ch Specimens : 6.9 g on deposi	grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundant ates. 8"N, 92°50'32"E chondrite (L5) scovered by Peng Zhenhong about 13 km SW of the Ebolians Ziyao Wang) dark brown fragment of 30.2 g ewitz, <i>Bart</i>) strong recrystallized matrix with indistinct ed mainly with iron hydroxides. Ehewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine Fs _{20.9±1.3} Wo _{1.7±0.2} (n=9); chromite CRAL86, FFM87; pyrrhot gnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m nondrite (L5, S4, W4) it at <i>Kiel, Bart</i> holds the main mass.
which surrounded by fine-g chondrule pseudomorphs co sulfides and rare Ca-carbon Eboliang 004 38°12'08 Qinghai, China Find: 2016 Classification: Ordinary History : (Ziyao Wang) Dis in July 2013. Physical characteristics : (<i>A</i> Petrography : (R. Bartosch chondrules. Cracks are fille Geochemistry : (R. Bartosch chondrules. Cracks are fille Geochemistry : (grained dust rims set into abundant fine-grained matrix. Seve ontain fibrous phyllosilicates. Matrix is Fe-rich with abundan lates. 8"N, 92°50'32"E %"N, 92°50'32"E %"N, 92°50'32"E %"N, 92°50'32"E %"N, 92°50'32"E %"N, 92°50'32"E %"N, 92°50'32"E %"N, 92°50'32"E %"N, 92°50'32"E %"N, 92°29'59.14"E %"N, 92°29'59.14"E

Classification: Ordinary chondrite (H4)

Petrography: The rock is mainly composed of olivine, low-Ca pyroxene, secondary plagioclase, Fe-Ni metal and troilite. The chondrules with rims are well defined. The size of the plagioclase is mainly from 2 to 10 μ m. Besides, The Fe-Ni metal and troilite have been nearly totally weathered.

Geochemistry: Olivine Fa_{18.9-19.0}, N=5; Low-Ca pyroxene Fs_{16.6-17.5}Wo_{1.03-1.45}, N=5 (EPMA)

El Hassan Ould Hamed 001 (EHOH 001) 2

25.229°N, 08.624°W

Tiris Zemmour, Mauritania

Find: 2019 Dec

Classification: HED achondrite (Eucrite, unbrecciated)

History: Found in December 2019 at a site NE of Imourene, Mauritania, and purchased a few weeks later by Mohamed Brahim Sueilem and Naji Ben Faraji from a dealer in Tindouf, Algeria.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Fresh protogranular gabbroic assemblage (grainsize up to 3.4 mm) of predominantly exsolved pigeonite and calcic plagioclase, together with accessory silica polymorph, Ti-Al-chromite, ilmenite, baddeleyite, zircon and troilite. Host low-Ca pyroxene in pyroxene grains exhibits distinctive polysynthetic twinning. Chromite and ilmenite grains occur mainly as inclusions within pyroxenes.

Geochemistry: Low-Ca pyroxene host (Fs_{57,2-59,0}Wo_{5,3-4,1}, FeO/MnO = 29-33, N = 4), augite exsolution lamellae (Fs_{26,6-27,1}Wo_{42,5-43,4}, FeO/MnO = 29-31, N = 4), plagioclase (An_{89,2-90,7}Or_{0,4-0,3}, N = 3). Oxygen isotopes (K. Ziegler, *UNM*): analyses of acid-washed subsamples by laser fluorination gave, respectively, $\delta^{17}O$ 1.652, 1.812, 1.789; $\delta^{18}O$ 3.676, 3.963, 3.944; $\Delta^{17}O$ -0.289, -0.280, -0.293 per mil.

Classification: Eucrite (unbrecciated, gabbroic, protogranular).

Specimens: 20.3 g including one polished thin section at *UWB*; remainder with Mr. N. Ben Faraji.

El Médano 444 (EM 444) 24°44.75'S, 70°21.49' W

Antofagasta, Chile

Find: 14 Nov. 2017

Classification: Enstatite chondrite (EL6)

Petrography (E. Jacquet, B. Doisneau, *MNHNP*): The meteorite shows a granular texture of enstatite (58 vol%), plagioclase (11 vol%), silica (2 vol%), with no olivine, with irregularly shaped (few 100 μ m) grains of Fe-Ni metal (24 vol%) associated with subordinate (<1 vol%) schreibersite, troilite, daubreelite (as exsolution lamellae in the former) and rare alabandite. Some trails of micron-sized metal and sulfide occur within silicates. Locally, metal may form symplectic intergrowths with plagioclase (10s of μ m). Graphite grains (4 vol%), sometimes euhedral, often in sheaves showing pressure lamellae such as Fig. 4 of Ramdohr (1963), up to 1 mm occur mostly associated with the metal. Only one relict radial pyroxene chondrule was recognized in the section studied.

Geochemistry: Enstatite Fs_{0.39±0.15}Wo_{1.53±0.07} (N=16); plagioclase

An_{16.1±0.3}Ab_{80.1±0.4}Or_{3.7±0.4} (N=9); silica 1.3±0.5 wt% Al₂O₃, 0.6±0.3 wt% FeO (N=9); Fe,Ni metal 5.8±0.4 wt% Ni, 1.1±0.05 wt% Si (N=32); troilite 0.45±0.05 wt% Ti, 0.87±0.11 wt% Cr (N=9).

Classification: Enstatite chondrite (EL6). Chondritic nature is indicated by the abundance of metal and tentative evidence of relict chondrules. The reduced mineralogy, and in particular

chondrules seems consistent Specimens : 135 g with <i>MNH</i>	gh end of the range. A petrographic type 6 despite the paucity with enstatite chondrite usage. <i>INP</i> (type specimen), 32 g at <i>CEREGE</i> .
El Médano 463 (EM 463) Antofagasta, Chile Find: 2016 Nov 04	24°51'S, 70°32'W
Classification: Carbonace	ous chondrite (CO3)
Physical characteristics: Sin	ngle brown stone.
Petrography : (J. Gattacceca apparent diameter $\sim 200 \ \mu m$)	and small CAIs set in abundant fine-grained iron-rich matrix.
Geochemistry: Olivine Fato	$r_{2,145}$ (n=5) Low-Ca pyroxene Fs ₁ (n=2)
Classification: Carbonaceou	s chondrite (CO3). Likely paired with El Médano 216.
(
El Médano 464 (EM 464) Antofagasta, Chile Find: 2019 Jan 09	24°51'S, 70°32'W
Classification: Carbonace	ous chondrite (CO3)
Physical characteristics: Sin	ngle brown stone.
Petrography: (J. Gattacceca	, CEREGE) Chondrite with well-defined chondrules (average
apparent diameter $\sim 200 \ \mu m)$	and CAIs (to 500 μ m) set in abundant fine-grained iron-rich
matrix. Opaque minerals are	mostly kamacite. $E = D (D = 4(0) (u=0) C = 0$ in former
olivine 0.09+0.03 wt% $(n=7)$	$_{7\pm12.9}$, range Fa _{0.3-39.7} , Fa PMD – 46% (n–8), Cr ₂ O ₃ in terroan
Classification: Carbonaceou	s chondrite (CO3). Likely paired with El Médano 216.
El Médano 465 (EM 465) Antofagasta, Chile	24°51'S, 70°32'W
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10	24°51'S, 70°32'W
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonaced	24°51'S, 70°32'W ous chondrite (CO3)
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonace Physical characteristics: Sin Petrography: (L Gattacceca	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. <i>CEREGE</i>) Chondrite with well-defined chondrules (average
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonace Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 ur	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average n, n=26) and CAIs (to 600 µm) set in abundant (31 vol%) fin
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonaced Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 µr grained iron-rich matrix. Opa	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average m, n=26) and CAIs (to 600 μm) set in abundant (31 vol%) fin- aque minerals are mostly kamacite.
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonace Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 µr grained iron-rich matrix. Opa Geochemistry: Olivine Fa ₂₇ .	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average n, n=26) and CAIs (to 600 μ m) set in abundant (31 vol%) fin aque minerals are mostly kamacite. 1±16.5, range Fa _{4.8-53.1} , Fa PMD = 54%, Cr ₂ O ₃ 0.08±0.04 (n=25)
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonace Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 µr grained iron-rich matrix. Opa Geochemistry: Olivine Fa ₂₇ . Low-Ca pyroxene Fs _{1.5±0.1} Wo	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average m, n=26) and CAIs (to 600 μ m) set in abundant (31 vol%) find aque minerals are mostly kamacite. 1±16.5, range Fa _{4.8-53.1} , Fa PMD = 54%, Cr ₂ O ₃ 0.08±0.04 (n=25 o _{1.5±0.8} (n=7). Ca-pyroxene Fs _{33.1} Wo _{51.0} (n=1).
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonace Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 μr grained iron-rich matrix. Opa Geochemistry: Olivine Fa ₂₇ . Low-Ca pyroxene Fs _{1.5±0.1} Wo Classification: Carbonaceou	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average m, n=26) and CAIs (to 600 μ m) set in abundant (31 vol%) fin- aque minerals are mostly kamacite. 1±16.5, range Fa _{4.8-53.1} , Fa PMD = 54%, Cr ₂ O ₃ 0.08±0.04 (n=25 o _{1.5±0.8} (n=7). Ca-pyroxene Fs _{33.1} Wo _{51.0} (n=1). s chondrite (CO3). Likely paired with <u>El Médano 216</u> .
El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonace Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200 \pm 80 µr grained iron-rich matrix. Opa Geochemistry: Olivine Fa ₂₇ . Low-Ca pyroxene Fs _{1.5\pm0.1} Wo Classification: Carbonaceou Erenhot \sim 43°40'N \sim 11	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average n, n=26) and CAIs (to 600 µm) set in abundant (31 vol%) fin aque minerals are mostly kamacite. 1 ± 16.5 , range Fa _{4.8-53.1} , Fa PMD = 54%, Cr ₂ O ₃ 0.08±0.04 (n=25 o _{1.5±0.8} (n=7). Ca-pyroxene Fs _{33.1} Wo _{51.0} (n=1). s chondrite (CO3). Likely paired with El Médano 216.
 El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonace Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 μr grained iron-rich matrix. Opa Geochemistry: Olivine Fa₂₇. Low-Ca pyroxene Fs_{1.5±0.1}Wo Classification: Carbonaceou Erenhot ~43°40'N, ~111 Nei Mongol China 	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average m, n=26) and CAIs (to 600 μ m) set in abundant (31 vol%) fin aque minerals are mostly kamacite. 1±16.5, range Fa _{4.8-53.1} , Fa PMD = 54%, Cr ₂ O ₃ 0.08±0.04 (n=25 o _{1.5±0.8} (n=7). Ca-pyroxene Fs _{33.1} Wo _{51.0} (n=1). s chondrite (CO3). Likely paired with <u>El Médano 216</u> . 2° 0'E
 El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonacea Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 μr grained iron-rich matrix. Opa Geochemistry: Olivine Fa₂₇. Low-Ca pyroxene Fs_{1.5±0.1}Wo Classification: Carbonaceou Erenhot ~43°40'N, ~111 Nei Mongol, China Find: 2018 	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average n, n=26) and CAIs (to 600 μ m) set in abundant (31 vol%) fin aque minerals are mostly kamacite. 1±16.5, range Fa _{4.8-53.1} , Fa PMD = 54%, Cr ₂ O ₃ 0.08±0.04 (n=25 0 _{1.5±0.8} (n=7). Ca-pyroxene Fs _{33.1} Wo _{51.0} (n=1). s chondrite (CO3). Likely paired with <u>El Médano 216</u> . 2° 0'E
 El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonace Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 μr grained iron-rich matrix. Opa Geochemistry: Olivine Fa₂₇. Low-Ca pyroxene Fs_{1.5±0.1}Wo Classification: Carbonaceou Erenhot ~43°40'N, ~11. Nei Mongol, China Find: 2018 Classification: Ordinary cl 	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average m, n=26) and CAIs (to 600 μ m) set in abundant (31 vol%) fin aque minerals are mostly kamacite. 1±16.5, range Fa _{4.8-53.1} , Fa PMD = 54%, Cr ₂ O ₃ 0.08±0.04 (n=2: 0 _{1.5±0.8} (n=7). Ca-pyroxene Fs _{33.1} Wo _{51.0} (n=1). s chondrite (CO3). Likely paired with El Médano 216. 2° 0'E hondrite (H~6)
 El Médano 465 (EM 465) Antofagasta, Chile Find: 2019 Jan 10 Classification: Carbonacea Physical characteristics: Sin Petrography: (J. Gattacceca apparent diameter 200±80 μr grained iron-rich matrix. Opa Geochemistry: Olivine Fa₂₇. Low-Ca pyroxene Fs_{1.5±0.1}Wo Classification: Carbonaceou Erenhot ~43°40'N, ~111 Nei Mongol, China Find: 2018 Classification: Ordinary cl History: (Ziyao Wang) Guiju 	24°51'S, 70°32'W ous chondrite (CO3) ngle brown stone. , <i>CEREGE</i>) Chondrite with well-defined chondrules (average n, n=26) and CAIs (to 600 μm) set in abundant (31 vol%) fin aque minerals are mostly kamacite. 1±16.5, range Fa _{4.8-53.1} , Fa PMD = 54%, Cr ₂ O ₃ 0.08±0.04 (n=2: 0 _{1.5±0.8} (n=7). Ca-pyroxene Fs _{33.1} Wo _{51.0} (n=1). s chondrite (CO3). Likely paired with <u>El Médano 216</u> . 2° 0'E hondrite (H~6) un Miao discovered this meteorite among many terrestrial root

merchant did not remember where he found that stone exactly, but he collected it in the steppe, southeast of Erenhot.

Physical characteristics: (Ziyao Wang) brown stone of 117.9 g without fusion crust

Petrography: (R. Bartoschewitz, *Bart*) dark gray, recrystallized, porous matrix with indistinct chondrules, little metal and sulfide.

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 4.90 **Classification**: Ordinary chondrite (H~6, W3)

Specimens: 21.1 g on deposit at *Kiel*, Ziyao Wang and Guijun Miao holds the main mass, and 17 g with *Bart*.

Erenhot 002 43°26'44"N, 111°57'9"E

Nei Mongol, China

Find: 2019 Apr 12

Classification: Ordinary chondrite (L5)

Petrography: The rock is mainly composed of olivine, low-Ca pyroxene, secondary plagioclase, Fe-Ni metal, and troilite. Chondrules with poorly defined rims are present. Chondrules are mainly PP, PO, POP, and BO. The size of the plagioclase is mainly from 2 to 50 µm.

Geochemistry: Olivine Fa_{24.4-25.7}, N=5; Low-Ca pyroxene Fs_{20.7-22.5}Wo_{1.13-1.81}, N=5 (EPMA)

Erg Chech 002 (EC 002) 26.032°N, 1.611°W

Adrar, Algeria

Find: 2020 May

Classification: Ungrouped achondrite

History: Numerous stones containing distinctive large greenish crystals were found in May 2020 near Bir Ben Takoul, southern Algeria, within the Erg Chech sand sea. Three of these stones (weighing 1839, 467, and 207 g) were obtained by Rachid Chaoui, and two of them were subsequently purchased by Mark Lyon and one by Jason Utas. Additional stones (110, 178, 355, 360, 408, 480, 550, 587, 750, 805, 855, 1071, 1175, 1417, 1857, 2647, 3485, 3910, 4130, and 4140 g) were purchased in June and July 2020 from different Moroccan dealers by Ben Hoefnagels, Eric Twelker, Luc Labenne, Darryl Pitt, Vincent Jacques, Ziyao Wang, Marcin Cimała, Adam Aaronson, Michael Farmer and Aziz Habibi.

Physical characteristics: The stones under classification (combined weight 31.783 kg) lack fusion crust, and have an overall relatively coarse grained, tan and beige appearance with sporadic larger green, yellow-green and less commonly yellow-brown crystals (up to 9 cm by 4 cm in some specimens). Some minor reddish-brown staining is evident in the groundmass regions. This classification is based on direct analysis of samples from the 1839 g stone augmented by examination of photographs and descriptions of other stones found with them. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Unbrecciated igneous texture. Sporadic pyroxene megacrysts (ranging in size from 1.7 to 11.5 mm in the studied thin section), exhibiting angular or ellipsoidal and embayed shapes, and comprising orthopyroxene (of varying composition), pigeonite and augite occur within a dominant, medium to relatively coarse grained groundmass. The cores of each of the analyzed megacrysts are fairly homogeneous in composition, but all are mantled by zones of different composition and distinct, fine grained rim overgrowths against the groundmass parallel to grain outlines (irrespective of geometry). Some low-Ca pyroxene cores contain thin lamellae and some larger inclusions (up to 300 µm) of Ti-poor chromite. The groundmass representing the major portion of the specimens (mean grainsize ~ 1.5 mm) is composed predominantly of exsolved
Running Head

59

60

pigeonite (commonly as radiating clusters of prismatic grains) and lath-like sodic plagioclase (zoned from irregular oligoclase cores to albitic rims with oriented dagger-like K-feldspar exsolution blades) together with accessory Ti-chromite, ilmenite (some as rims on chromite), troilite, silica polymorph (with a curved "fish-scale" fracture pattern suggestive of cristobalite), merrillite, and rare Ni-poor metal (in composite grain clusters with ilmenite, Tichromite and troilite). Secondary weathering products include minor goethite after primary troilite and metal, and sporadic very thin veinlets of calcite.

Geochemistry: Orthopyroxene megacryst #1 (core Fs_{17.7}Wo_{3.3}; mantle Fs_{23.4-31.1}Wo_{3.4-3.8}; rim $Fs_{37.6-42.5}Wo_{2.9-3.3}$; FeO/MnO = 21-26, $Cr_2O_3 = 0.3-0.5$ wt.%; N = 6), orthopyroxene megacryst #2 (core $Fs_{14,4\pm0.0}Wo_{2,2-2,3}$; mantle $Fs_{19,2-28,7}Wo_{2,0-2,1}$; rim $Fs_{33,1-36,8}Wo_{2,8-3,5}$; FeO/MnO = 17-26; $Cr_2O_3 = 0.3-1.0$ wt.%; N = 7), orthopyroxene megacryst #3 (core $Fs_{22.8}Wo_{1.2}$; mantle $Fs_{30.8}Wo_{2.2}$; rim $Fs_{43.5}Wo_{2.5}$; FeO/MnO = 16-23; $Cr_2O_3 = 0.2-0.4$ wt.%; N = 3), pigeonite megacryst (core $Fs_{21,3}Wo_{7,0}$; mantle $Fs_{23,4}Wo_{11,8}$; rim $Fs_{40,7}Wo_{5,0}$; FeO/MnO = 17-20; $Cr_2O_3 = 0.3-0.8$ wt.%; N = 3), augite megacryst (core $Fs_{14,7-19,4}Wo_{38,5-30,2}$; rim $Fs_{24.7}Wo_{38.1}$; FeO/MnO = 15-18; Cr₂O₃ = 1.1 wt.%; N = 4), groundmass exsolved pigeonite (low-Ca pyroxene host $Fs_{42,3-52,2}Wo_{2,9-4,6}$, FeO/MnO = 21-23, N = 6; augite exsolution lamellae $Fs_{18,1-25,9}Wo_{40,8-38,1}$, FeO/MnO = 18-22, N = 5), groundmass plagioclase (oligoclase cores and intergrown with pyroxene megacrysts $Ab_{68,8-79,0}An_{26,7-17,9}Or_{4,4-2,6}$, N = 6; albitic rims on laths $Ab_{84,4-86,7}An_{11,4-7,1}Or_{4,2-7,0}$, N = 5), K-feldspar exsolution blade in albite $(Or_{84.1}Ab_{11.3}An_{4.6})$, Fe metal (Ni = 0.13-0.18 wt.%, N = 2). Oxygen isotopes (K. Ziegler, UNM): analyses of acid-washed subsamples of groundmass and an orthopyroxene megacryst by laser fluorination gave, respectively: groundmass δ^{17} O 1.548, 1.788, 1.831, 1.773; δ^{18} O 3.201, 3.657, 3.728, 3.593; Δ^{17} O -0.142, -0.143, -0.137, -0.123 (linearized, all per mil, TFL slope = 0.528); megacryst δ^{17} O 1.780, 1.639, 1.682; δ^{18} O 3.594, 3.329, 3.379; Δ^{17} O -0.117, -0.119, -0.103 (linearized, all per mil, TFL slope = 0.528). Magnetic susceptibility log γ (× 10⁻⁹ m³/kg) = 3.06.

Classification: Achondrite (ungrouped, gabbroic with pyroxene megacrysts, sodic). Although the exsolved pigeonite in this meteorite is reminiscent of pyroxene in typical eucrites (with the notable exception of systematically much lower FeO/MnO ratios), the highly sodic and mildly potassic plagioclase is very different from the much more calcic plagioclase in eucrites (typically bytownite to anorthite, and only rarely as sodic as calcic labradorite Ab₃₃An₆₇). The cores of orthopyroxene megacrysts differ from typical diogenitic orthopyroxene in usually being more magnesian, more Cr-rich and having lower FeO/MnO ratios. Oxygen isotopes (Δ^{17} O values) plot between the field for the majority of eucrites and the trend for angrites, in the vicinity of values for anomalous eucrites <u>Bunburra Rockhole</u>, <u>Emmaville</u>, <u>Asuka</u> <u>881394</u> and <u>EET 92023</u>. However, Erg Chech 002 is mineralogically quite different from those four meteorites in many respects, most notably the prevalence of highly sodic plagioclase and lower FeO/MnO ratios in pyroxenes.

Specimens: 50.1 g including one polished thin section and one polished mount at *UWB*; main mass of the 1839 g stone and the 207 g stone with Mr. M. Lyon; 467 g stone with Mr. J. Utas; 110 g stone with Mr. E. Twelker; 4140 g stone, 355 g stone and main mass of 408 g stone with Mr. B. Hoefnagels; 480 g stone with Mr. L. Labenne; 587 g, 855 g, 1071 g and 1417 g stones with *DPitt;* 550 g stone with Mr. M. Cimała; 4130 g stone with Mr. V. Jacques; 805 g stone with Mr. Ziyao Wang; 1857 g stone with Mr. S. Jurvetson; 2647 g stone with Mr. T. Boudreaux; 1175 g and 3485 g stones with Farmer; 178 g and 360 g stones with *Aaronson*; 3910 g stone at MMGM; 750 g with Mr. A. Habibi; 892 g with Matthew Stream.

Errachidia 003 32°02.250'N, 4°03.733'W Centre-South, Morocco Purchased: 2020 Mar

Classification: Primitive achondrite (Winonaite)

Petrography: (J. Gattacceca, *CEREGE*) Highly recrystallized crystalline rock with triple junctions. Main mineral are olivine (~250 μ m), low-Ca pyroxene (~250 μ m), plagioclase (~200 μ m), and less abundant Ca-pyroxene (~100 μ m). Other minerals: troilite, kamacite, rare chromite.

Geochemistry: Olivine Fa_{1.2±0.2}, FeO/MnO = 6.2 (n=3). Pyroxenes: orthopyroxene Fs_{4.7}Wo_{2.2} (n=2), Ca-pyroxene Fs_{1.9}Wo_{45.1} (n=1), FeO/MnO = 4.0 (n=3). Plagioclase An_{10.1}Ab_{85.6}Or_{4.3} (n=2).

Classification: Primitive achondrite (winonaite)

Flensburg 54°45.6873' N, 9°22.7353' E

Schleswig-Holstein, Germany Confirmed fall: 2019 Sept 12

Confirmed fail: 2019 Sept 12

Classification: Carbonaceous chondrite (C1, ungrouped) **History**: (D. *Heinlein*): The bolide was observed on September 12, 2019, at 12:49:48 (UT) by hundreds of eye-witnesses from the Netherlands, Germany, Belgium, Denmark, and the UK. The daylight fireball was registered by an all-sky meteor camera from Herford, Germany, and there are several casual videos recordings (dash and security cams) from the Netherlands and Germany. One day later, on the 13 September, a small meteorite fragment resulting from this event was found by accident by Mr. Erik Due-Hansen on the lawn of his front yard in Flensburg.

Physical characteristics: (D. *Heinlein*): A meteorite with a total mass of 24.5 g (roughly 3.7×3.5 cm in size) was recovered one day after the fireball event. The rock has a very fresh black fusion crust showing contraction cracks and a thin layer of brownish secondary fusion crust on several patches where the primary crust has been broken off. The meteorite has a bulk density of 1.984 g/cm3.

Petrography: (M. Patzek and A. Bischoff, *IfP*): Rounded to ellipsoidal relict chondrules (0.05 to \sim 1 mm in apparent diameter) and clusters of sulfide and magnetite grains are set in a dark, fine-grained matrix. The most abundant phases are different phyllosilicates and S-bearing phase(s) (probably tochinilite). The relict chondrules are free of any anhydrous silicates (such as olivine and pyroxene), contain abundant phyllosilicates and carbonates, and are often surrounded by sulfide laths. Troilite, pyrrhotite, and pentlandite were identified as sulfides. Carbonates occur as calcites, Mn-bearing dolomites, and a Na-rich phase. The mean apparent size of altered chondrules is \sim 150 µm.

Geochemistry: (M. Patzek and A. Bischoff, *IfP*): No olivine and pyroxene could be identified and analyzed. Defocused beam microprobe analyses (n = 135) revealed a bulk composition (in wt%) of: O: 32.0; Na: 0.29; Mg: 10.7; Al: 1.04; Si: 11.7; K: 0.04; P: 0.12; S: 2.04; Ca: 1.15; Fe: 16.0; Co: 0.03; Ti: 0.05; Cr: 0.25; Mn: 0.15; Ni: 0.85; Total: 76.3. O-isotopes (A. Pack; *UGött*): The oxygen isotope compositions of three analyzed fragments of Flensburg are: $\delta^{17}O = 0.0806$; -0.73023; -0.57844 ‰ and $\delta^{18}O = 5.3032$; 3.0272; 3.2993 ‰, $\Delta^{17}O = -2.677$; -2.304; -2.294 ‰ (relative to a reference line with a slope of 0.5305). The data are within the ¹⁶O-rich part of the field for CM chondrites.

Classification: Carbonaceous chondrite (C1-ung, W0). This meteorite is distinct from CM chondrites for the following reasons: chondrule apparent size (150 μ m) is significantly different from that in CM chondrites (~270 μ m), an heavily-altered CM would have a δ^{18} O-rich composition compared to CM2 chondrites, Zn abundance (150 ppm) is too low for a CM (200 ppm without significant variations).

Specimens: Type specimen and PTS at *IfP*; the main mass is also at *IfP*.

Foum Agoutir 27 ^o	° 51.052'N, 12° 9.670'W
South, Morocco	,
Find: 2017 Apr 03	
Classification: Ordir	nary chondrite (L4)
History: A single stone	e was found in April 2017 by Hassan Oubaha about 27 km SSE of
Akhfennir, near Oued H	Khaoui Naam, Morocco
Petrography: (J. Gatta	cceca, <i>CEREGE</i>) Chondrite with well-defined packed chondrules.
Olivine are zoned com	positionally. Opaques are metal and troilite.
Specimens: Type speci	imen at CEREGE. Main mass with Kuntz.
Gadamis 001 30.2	203°N, 9.535°E
Ghadamis, Libya	
Purchased: 2019 Ma	ıy
Classification: Marti	ian meteorite (Shergottite)
History: Found by Bed	louins about 8.5 km north of Gadamis, Libya, in April 2019, and
purchased shortly thera	Ifter by Aziz Habibi.
Physical characteristi	cs: The specimen was found as three larger pieces which fit together to
make an almost comple	ete stone plus some additional fragments (total weight 7000 g). The
very fresh larger specir	nens exhibit primary and secondary, black to reddish-brown fusion
crusts.	
Petrography: (A. Irvin	ig, UWS and P. Carpenter, WUSL) Very fresh specimen with diabasic
texture. Composed pred	dominantly of zoned, prismatic clinopyroxene and lath-like
maskelynite (some as t	hin, curved grains in sheat-like bundles) together with accessory
merrillite, apatite, silica	a polymorph, titanomagnetite, ilmenite and pyrrhotite. Some pockets of
deep brown quenched,	glassy shock-melt are present.
Geochemistry: Subcal	cic augite cores (Fs _{23.4-23.7} Wo _{32.3-30.4} , FeO/MinO = $2/-28$, N = 2), augite $2 = 21$), formaria consists since (Fs
$(Fs_{19.5}Wo_{39.8}, FeO/MnO_{2})$	J = 31), ferropigeonite rims (Fs _{67.0-77.9} Wo _{20.9-16.2} , FeO/MnO = 39-43, N
= 3), maskelynite (An ₅)	4.2 Or _{0.8}).
Classification: Shergo	ttite (diabasic).
Specimens: 20.1 g incl	uding one polished thin section at <i>UWB</i> ; remainder with A. Habibi.
Gandom Beryan 012	31°52.223'N, 57°08.846'E
Kerman, Iran	
Find: 3 Jan 2017	
Classification: Ordir	hary chondrite (H5)
History: The meteorite	was found 3 January 2017 by the <i>UrFU</i> meteorite expedition-2017 in
Iran (Pastukhovich A.Y	(u., Larionov M.Yu., Kruglikov N.A., Zamyatin D.A.) in the northern
sandy part of the Lut de	esert.
Physical characteristi	cs: A dark-brown fragment with angular shape. The surface and
interior of the meteorite	e is light to dark brown in color due to abundant Fe-hydroxides. Some
parts have glassy-like s	surface due to desert weathering. No fusion crust was observed.
Petrography: Classific	cation (K. Dugushkina, $RAS-UB$). Chondrite with recrystallized texture.
Predominantly porphyr	itic olivine (PO) and porphyritic olivine-pyroxene (POP) chondrules.
weathering grade is W	3, neavy oxidation of metal and trollite. There is a network of thin
metal-trollite shock vei	ns in fractures in olivine, pyroxene and plagloclase. Plagloclase is not
melted. Shock stage is	53/4.

Geochemistry: EDX analyses by K. Dugushkina, *RAS-UB*. The chondrite paragenesis includes olivine Fa_{16.9±1.9} (N=33), orthopyroxene En_{84.7±0.8}Fs_{14.2±0.7}Wo_{1.1±0.2} (N=17), clinopyroxene En_{44.7±1.1}Fs_{6.7±0.7}Wo_{44.7±1.1} (N=4), plagioclase An_{23.3±1.5} (N=8), chromite, apatite, troilite, taenite and kamacite. The average composition of chromite (N=5): Cr₂O₃ 57.4±0.3 wt%, FeO 27.3±0.3 wt%, MgO 4.6±0.3 wt%, Al₂O₃ 7.4±0.6 wt%, TiO₂ 1.7±0.3 wt%, SiO₂ 0.7±0.3 wt%, NiO 0.1±0.04 wt%. **Classification**: (K. Dugushkina, *RAS-UB*) H5, ordinary chondrite. **Specimens**: 293 g sample and 4.19 g cut-off and thin section *UrFU*

Gandom Bervan 013 31°54.296'N, 57°02.350'E

Kerman, Iran

Find: 3 Jan 2017

Classification: Ordinary chondrite (H4)

History: Four fragments (65.68, 7.06, 3.14, and 2.87 g) were found found 3 January 2017 by the *UrFU* meteorite expedition-2017 in Iran (Pastukhovich A.Yu., Larionov M.Yu.,

Kruglikov N.A., Zamyatin D.A.) in the northern sandy part of the Lut desert.

Physical characteristics: All fragments have angular to roughly rounded shape. The surface and interior of the meteorite is light to dark brown in color due to abundant Fe-hydroxides. Some parts have glassy-like surface due to desert weathering. No fusion crust was observed. **Petrography**: Classification (K. Dugushkina, *RAS-UB*). Chondrite with fine-grained, recrystallized matrix. Predominantly porphyritic olivine (PO) and porphyritic olivine-pyroxene (POP) chondrules. Chondrules have clear boundaries. Heavy oxidation of metal and troilite, 60-95% being replaced (W3). There is a network of thin metal-troilite shock veins in fractures in olivine, pyroxene and plagioclase. Shock stage is S3.

Geochemistry: EDX analyses by K. Dugushkina, *RAS-UB*. The chondrite paragenesis includes olivine Fa_{17.8±1.0} (N=34), orthopyroxene En_{83.9±0.9}Fs_{15.0±0.8}Wo_{1.1±0.3} (N=14), clinopyroxene En_{45.6±0.5}Fs_{5.4±0.8}Wo_{49.0±0.9}, plagioclase, chromite (average composition (N=5): Cr₂O₃ 55.0±1.9 wt%, FeO 31.7±2.1 wt%, MgO 2.7±0.2 wt%, Al₂O₃ 6.8±0.4 wt%, TiO₂ 1.6±0.2 wt%, SiO₂ 0.6±0.1 wt%, NiO 0.3±0.2 wt%), troilite, FeNi-metal, apatite and merrillite (SiO₂ 1,38 wt%, FeO 2,74 wt%, MgO 3,92 wt%, CaO 45,38 wt%, Na₂O 2,69 wt%, P O 42.02 wt%)

P₂O₅42,92 wt%).

Classification: (K. Dugushkina, RAS-UB) H4, ordinary chondrite.

Specimens: 71.69 g (4 samples) and 6.30 g cut-off and thin section, UrFU

Ganq 004 37°35'29.80"N, 92°17'38.48"E

Qinghai, China

Find: 22. June 2014

Classification: Ordinary chondrite (L~5)

History: (Ziyao Wang) Five dark-brown rocks were discovered by Liu Binghan (Haixi/Qinghai) within 400 m during field work in the desert about 150 km SE of Huangtouzhen, Haixi Mongolian and Tibetan Autonomous Prefecture, Qinghai province on June 15 and 22, 2014.

Physical characteristics: Five dark brown rock fragments of 1953, 765, 579, 489, and 117 g **Petrography**: (R. Bartoschewitz, *Bart*) gray recrystallized matrix with well-defined chondrules (0.4 - 4 mm, av. 0.8 mm) and irregular metal and sulfide inclusions up to 3 mm (lager often intergrown).

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 4.99-5.09

Specime 181 g wi	ens: 21.1 g on deposit at <i>Kiel</i> , Liu Binghan (Haixi/Qinghai) holds the main mass, and th <i>Bart</i> .
Ganq 0 Qingł Find:	95 37°35'32.88"N, 92°17'53.90"E nai, China 22. June 2014
Class	ification: Ordinary chondrite (L~5)
History: desert at	(Ziyao Wang) Discovered by Liu Binghan (Haixi/Qinghai) during field work in the bout 150 km SE of Huangtouzhen, Haixi Mongolian and Tibetan Autonomous
Prefectu	re, Qinghai province on June 15, 2014.
Petrogra chondru	aphy: (R. Bartoschewitz, <i>Bart</i>) gray recrystallized matrix with well-defined les (0.4 - 2 mm, av. 0.8 mm) and irregular metal and sulfide inclusions up to 3 mm
(often in	tergrown).
Geocher Classifie	nistry : Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) $\log \chi$ (× 10 ⁻⁹ m ³ /kg) = 4.95 eation: Ordinary chondrite (L~5, W1)
Specime 15 g wit	e ns : 21.0 g on deposit at <i>Kiel</i> , Liu Binghan (Haixi/Qinghai) holds the main mass, and in <i>Bart</i> .
Ganq 00 Qingl Find:	06 ~37°35'30"N, ~92°17'30"E nai, China June 2014
History: desert at Prefectu	(Ziyao Wang) Discovered by Liu Binghan (Haixi/Qinghai) during field work in the pout 150 km SE of Huangtouzhen, Haixi Mongolian and Tibetan Autonomous re, Qinghai province on June 22, 2014.
Physical	characteristics: Dark brown fragment of 125.8 g
Petrogra chondru	aphy: (R. Bartoschewitz, <i>Bart</i>) gray recrystallized matrix with well-defined les (0.4 - 3 mm, av. 0.8 mm) and irregular metal and sulfide inclusions up to 3 mm
(often in Geocher Classifie	tergrown). nistry : Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m ³ /kg) = 4.88 ration : Ordinary chondrite (I ~5 W1)
Specime	ens: 20.4 g on deposit at <i>Kiel</i> , main mass of 96.3 g with <i>Bart</i> .
Ganq 00 Qingł	07 ~37°35'30"N, ~92°17'40"E nai, China
Find.	Julie 2014 ification: Ordinary chondrite (L. 6)
History	(Zivao Wang) Discovered by Liu Binghan (Haixi/Oinghai) during field work in the
desert at	out 150 km SE of Huangtouzhen, Haixi Mongolian and Tibetan Autonomous
Prefectu	re, Qinghai province in June 2014.
Physical	characteristics: Dark brown fragment of 150 g
Petrogra	aphy: (R. Bartoschewitz, <i>Bart</i>) gray recrystallized matrix with well-defined les (0.4 - 3 mm, av, 0.8 mm) and irregular metal and sulfide inclusions up to 3 mm

(often intergrown).

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 4.75

Classification: Ordinary chondrite (L~6, W1)

Specimens: 20.4 g on deposit at *Kiel*, Liu Binghan (Haixi/Qinghai) holds the main mass, and 4 g with *Bart*.

Gatuto 0° 34' 12"S, 37° 17' 24"E

Central, Kenya

Confirmed fall: 2020

Classification: Ordinary chondrite (L6)

History: (per J. Higgins and M. Farmer) At about 8:27 pm on the evening of April 24, 2020, several witnesses near the village of Gatuto, Kenya, saw a bright trail in the sky, and about 5 minutes later heard three detonations followed by another longer sound ending with a bang. One of the witnesses to these phenomena, Mr. Josphat Gakere, was outside his house near Gatuto road when he and his family saw the fireball and heard detonations. Moments later he witnessed the impact of an object 15 m away, and discovered a 1 m deep hole in his maize garden. The following morning, an intact 6140 g fusion-crusted stone was excavated from the hole. Mrs. Mary Wamburu was preparing supper in her house near the village of Kombuini (between Kagio and Kutus) when she heard a noise on the corrugated metal roof. She looked into the next room and saw a hole in the roof and shattered rock on the concrete floor. Further investigations led by Mr. Mahamed Nur Ogle resulted in the recovery of a 2290 g stone, excavated next to a tree with bark shredded at a high angle to the ground on the farm adjacent to Mr. Gakere's farm, as well as a 1 kg stone next to the Kerugoya-Kaguma road near the nearby village of Kimicha, an additional 494.4 g of fragments from other farms, and 117.7 g of fragments which had impacted and made white marks on the Kagio-Kutus road near Kimicha. Another >8 kg stone was excavated from its impact hole behind a man's home located 2.2 km NNW of Gatuto; although people struck the stone with a hammer and removed some fragments, a ~7.4 kg intact piece remained. Soon after the fall event John Higgins in collaboration with Mahamad Nur Ogle acquired a total of 10.122 kg of material, and independently Michael Farmer obtained a total of 9.3 kg of material.

Physical characteristics: The total weight of recovered material is estimated to be ~25 kg. The most complete stones are largely coated by black fusion crust. Their interiors and the broken fragments are light gray in color with a crystalline ("sugary") appearance and visible fresh metal grains. Some stones exhibit rare very thin, black shock veinlets.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Very sparse chondrules and partial chondrules occur within a recrystallized, locally poikiloblastic matrix containing unaltered kamacite, taenite, chromite, troilite and chlorapatite. A single 5 mm fine-grained type 7 clast exhibiting complete recrystallization and triple grain junction texture is present in the studied thin section.

Geochemistry: Olivine (Fa_{24.8±0.1}, range Fa_{24.7-25.0}, N = 5), low-Ca pyroxene

(Fs_{21.0±0.2}Wo_{1.6±0.1}, range Fs_{20.7-21.2}Wo_{1.4-1.8}, N = 5), augite (Fs_{8.2±0.2}Wo_{44.5±0.3}, range Fs_{8.1-8.4}Wo_{44.3-44.9}, N = 3), plagioclase (Ab_{84.0±0.7}An_{10.2±0.4}Or_{5.7±0.4}, range Ab_{83.3-84.6}An_{10.5-9.8}Or_{6.2-5.4}, N = 3), chromite (Cr_{1.56}Fe_{0.91}Al_{0.24}Mg_{0.12}Ti_{0.08}). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.71.

Classification: Ordinary chondrite (L6).

Specimens: 27.5 g including one polished thin section and one polished mount at *UWB*; 62 g at *ASU*; 10.1 kg including 6140 g main mass with Mr. J. Higgins; 9.3 kg with Farmer.

Ghadduwah 001 26.803056, 13.535278 Awbari, Libya

Find: 2020 Jan 7

Classification: Lunar meteorite (anorth)

History: This stone was found by vacationers on January 7, 2020, near Lake Gaberoun, Libya.

Physical characteristics: Single stone covered in pale-green, glassy fusion crust; oriented shape with a broad rollover lip. One side of the stone is broken and the interior is exposed, however this is not recent fracture as the surface is slightly weathered and smoothed. A freshly fractured surface shows a sugary, shiny texture of white to light gray grains.
Petrography: (C. Agee, UNM) Microprobe and SEM reveals an anorthitic plagioclase host without visible grain boundaries making up ~92% of this meteorite. Poikiolitically enclosed in the plagioclase are olivine and pyroxene grains, most in the size range 100-300 μm, making up a total of ~7% of this meteorite. Olivine grains are very homogeneous, some with resorbed

rims. Pyroxene grains have exsolution lamellae with coarser bands of low-Ca pyroxene and finer bands of augite. Accessory chromite was observed throughout. Fusion crust is \sim 75 µm thick.

Geochemistry: (C. Agee, *UNM*) Plagioclase $An_{98.1\pm0.8}Ab_{1.8\pm0.3}Or_{0.0\pm0.0}$, n=4; pyroxene $Fs_{30.5\pm6.2}Wo_{12.7\pm11.4}$, Fe/Mn=52±8, n=9; olivine $Fa_{40.9\pm0.3}$, Fe/Mn=88±3, n=6; fusion crust SiO_2 =43.1±0.2, Al_2O_3 =31.0±0.1, FeO=3.7±0.2, MgO=3.3±0.1, MnO=0.05±0.03, CaO=17.0±0.1, Na₂O=0.19±0.02 all wt%, n=5. Oxygen isotopes (K. Ziegler, *UNM*): 3 acid-washed fragments analyzed by laser fluorination gave $\delta^{18}O$ = 5.810, 6.152, 5.852; $\delta^{17}O$ = 3.038, 3.198, 3.042; $\Delta^{17}O$ = -0.029, -0.050, -0.047 (linearized, all per mil, TFL slope=0.528). **Classification**: Lunar ferroan anorthosite, unbrecciated. Olivine, pyroxene and plagioclase compositional values plot within the FAN suite field (after Warren, 1993). **Specimens**: 20.6 g on deposit at *UNM*, Abdelhadi Aithiba holds the main mass.

Golden Gate Mountain 32°08.999'N, 111°06.817'W

Arizona, USA

Find: 2011 May 1

Classification: Ordinary chondrite (H4)

History: Ingrid "Twink" Monrad found the meteorite on May 1, 2011, while she was meteorite hunting in the area where the <u>Cat Mountain</u> meteorite was found. The stone was found on top of the sand in a little dry streambed and was attracted to a magnet.

Physical characteristics: The 16.7 g complete stone is approximately $1.5 \times 2.5 \times 1.25$ cm. It exhibits patchy, remnant fusion crust along with desert varnish in some places. The exposed meteorite displays a caramel color that is in contrast to the black and brown-stained interior cut face. Deep fractures penetrate the entire rock, some containing thin deposits of caliche. Numerous well-delineated chondrules are visible in the hand specimen.

Petrography: (K. Domanik and D. Hill, UAz) Microprobe examination of a polished mount shows numerous distinct, round to irregularly shaped chondrules that range from 50 to 1300 µm in size. Most chondrules are less than 100 µm in diameter. POP, PO, and PP chondrules predominate with a few RP and BO also present. 10 to 50 µm plagioclase patches occur almost exclusively within chondrules and typically contain abundant, small, quench crystals of clinopyroxene. The matrix consists of smaller chondrule fragments. Numerous veins and grains of highly oxidized (weathered) metal and troilite form complex networks. Minor amounts of chromite, merrillite, and chlorapatite are also present.

Geochemistry: Mineral compositions and geochemistry: (K. Domanik, *UAz*) EMPA: Olivine Fa_{18.1±0.2}, Fe/Mn=36.1±2.1, (N=57); low-Ca pyroxene Fs_{16.0±0.2}Wo_{1.1±0.4}, Fe/Mn=22.4±3.1, (N=31); plagioclase An_{10.9±4.7}Ab_{83.8±3.5} Or_{5.3±1.4}, (N=6); kamacite Fe=92.9±0.4, Ni=6.5±0.1, Co=0.66±-0.04 (all in wt%), (N=6).

Classification: H4 (severe weathering)

Specimens: 13 g main mass, Ingrid "Twink" Monrad; 3.7 g UAz

Gömüce 36°23'18.3"N , 29°44'08.6"E Antalya, Turkey Find: 2018 Nov 20

Classification: Ordinary chondrite (L6)

History: The meteorite was found by Mr. Mehmet Güngör near the village of Gömüce, Turkey, when he was working in the field on 20 November 2018. In 2019, a friend of him, Mr. Erdal Karakehya, suspected that it might be a meteorite, and provided the type specimen. The main mass remains with Mr. Mehmet Güngör.

Petrography: Recrystallized chondrite containing indistinct chondrules in a coarsely crystalline matrix. Chondrule margins are difficult to discern. Highly weathered sample with abundant oxidation.

Gonggar 29°20'25.91"N, 91°4'57.12"E

Xizang, China

Find: 2017 Jul 12

Classification: Ordinary chondrite (L5)

History: Found on the bank of the Yaluzangbu River, Gonggar country, Xizang province. The meteorite was found by meteorite collector Deshi Wu and his friends.

Petrography: The rock is mainly composed of olivine, low-Ca pyroxene, secondary plagioclase, Fe-Ni metal, and troilite. Chondrules with poorly defined rims are present. The type of chondrules are mainly BO, PO, and PP. The size of the plagioclase is mainly from 2 to 50 µm.

Geochemistry: Olivine Fa_{24.5-25.7}, N=5; Low-Ca pyroxene Fs_{20.4-23.5}Wo_{1.50-1.94}, N=5 (EPMA)

Gouchi 001 13°49'15.4"N, 9°00'10.8"E

Zinder, Niger Find: June 2019

Classification: Rumuruti chondrite (R4)

Petrography: The rock has abundant olivine, but also contains some low-Ca pyroxene grains as well as Ca-pyroxene. The chondrite is heavily weathered (W4) and its chondrules are well defined making up about 50 vol.%. Chondrule types include BO, PP, PO, POP, C, and RP. **Geochemistry**: The olivine is equilibrated (Fa_{39.4±0.4}; N=18); and the low-Ca pyroxene has $Fs_{26.3\pm4.8}Wo_{1.2\pm0.9}$; N=9).

Gourara 003 29°48.79'N, 2°56.66'E

Ghardaia, Algeria

Find: 2020

Classification: HED achondrite (Eucrite, monomict)

History: A single fusion-crusted broken stone weighing 3273 g was found by nomads in the desert outside the town of Hassi Gara, Algeria, in early 2020. Broken fragments were subsequently purchased from a Moroccan dealer in April and May 2020 by Oz Backman, Topher Spinnato, and Jason Bliss.

Physical characteristics: Fragments of the single broken stone display an extremely fresh, black glossy fusion crust. Certain fragments display radial flowlines, rollover lip, and regmaglypts. A slice of the interior reveals a brecciated sample with an assortment of light and dark clasts set in a finer-grained matrix.

Petrography: (D. Sheikh, FSU) Specimen is a monomict breccia consisting of eucrite lithic clasts exhibiting primarily diabasic textures (grain size 800 µm, up to 3 mm) set in a finegrained clastic matrix of similar lithology with approximately 50% pyroxene, 45% plagioclase, 4% opaques, and 1% shock-melt veins. Mineral phases include pigeonite (most displaying exsolution lamellae of varying width; some inverted to orthopyroxene), augite

(some exsolved from pigeonite), orthopyroxene, calcic plagioclase (display both polysynthetic and carlsbad twinning under cross-polarized light), ilmenite, chromite (some Tirich), and SiO₂-rich glass.

Geochemistry: Orthopyroxene (Fs_{51.5±1.9}Wo_{4.9±0.7}, range Fs_{48.5-55.0}Wo_{3.6-5.7}, FeO/MnO = 31 ± 4 , n=15), Pigeonite (Fs_{50,7±1.3}Wo_{7.4±1.2}, range Fs_{47,9-53.3}Wo_{6.1-10.8}, FeO/MnO = 32±4, n=26), Augite ($F_{27,7\pm3,4}Wo_{37,7\pm4,6}$, range $F_{21,3-33,9}Wo_{27,1-42,3}$, FeO/MnO = 28±4, n=8), Calcic Plagioclase (An_{91 6±1.2}, range An_{88,7-94,2}, n=42).

Classification: HED Achondrite (Eucrite, monomict breccia).

Specimens: 20.21 g at UNM; 430 g with Oz Backman; 2714 g with Topher Spinnato; 129 g with Jason Bliss.

14.60107°S, 175.526855°E Gusev Crater 001

Mars

Find: 2 Jun 2006

Classification: Iron meteorite

History: The Mars Exploration Rover Spirit observed the rock informally named Allan Hills (henceforth Gusev Crater 001) on sol 858, while the rover was parked on the flank of Low Ridge, within the Columbia Hills inside Gusev crater (Schröder et al. 2008).

Physical characteristics: 28 cm in its longest dimension.

Classification: Gusev Crater 001 has a pitted, light-colored, spectrally gray surface in Pancam images and thermal infrared characteristics in Mini-TES spectra similar to those of Meridiani Planum 001, an iron meteorite. Because Gusev Crater 001 and 002 are located less than a meter apart, they may be paired.

Gusev Crater 002 14.60107°S, 175.526855°E

Mars

Find: 2 Jun 2006

Classification: Iron meteorite

History: The Mars Exploration Rover Spirit observed the rock informally named Zhong Shan (henceforth Gusev Crater 002) on sol 858, while the rover was parked on the flank of Low Ridge, within the Columbia Hills inside Gusev Crater (Schröder et al. 2008).

Physical characteristics: Dimensions: 25-30 cm.

Classification: Gusev Crater 002 has a pitted, spectrally gray surface in Pancam images and thermal infrared characteristics in Mini-TES spectra similar to those of Meridiani Planum 001, an iron meteorite. Because Gusev Crater 001 and 002 are located less than a meter apart, they may be paired.

Halloran Spring 35°25.63'N, 115°55.62'W

California, United States Find: March 2019 Classification: Iron meteorite (IIIAB)

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17 18

19

20

21

22

23

24 25

26

27

28

29

30

31 32 33

34

35

36

37

38

39

40 41

42

43

44

45

46

47 48

49

50

51

52

53

54

59

60

History: Found by the owner on their property near Halloran Spring, California, while he was prospecting with a metal detector in March 2019.

Physical characteristics: The meteorite measures approximately $33 \times 30 \times 15$ cm, is irregularly shaped and has an orange-red exterior surface. Mass was readily broken after discovery into numerous silvery-black, ~kg-sized fragments with red-brown exteriors. **Petrography**: (C. Herd, *UAb*) Optical investigation of several specimens including a $\sim 3 \times 5$ cm polished surface reveals a highly weathered iron meteorite, with veins following and cross-cutting kamacite lamellae boundaries. In some specimens, metal has been completely replaced by magnetite. Measurement of kamacite lamellae, while difficult due to the alteration, suggests a medium to course octahedrite (BW 1.5±0.2 mm; n=9). Several mmscale lath-shaped inclusions (replaced by oxide) with swathing kamacite are present. Geochemistry: ICP-MS data, using sample of North Chile (Filomena) as standard (C. Herd and G. Chen, UAb): Ni = 5.6, Co = 0.3 (both wt%); Ir = 1.4, Ga = 72, Ge = 94, As = 11, W = 0.8, Re = 0.15, Pt = 4.8, Cu = 125, Au = 1.1 (all μ/g).

Classification: (C. Herd, *UAb*): The highly altered nature of the meteorite is a challenge for classification. Ni, Co, Ga, Ge, and possibly As values have likely been modified by alteration. Other values are consistent with trends observed in IIIAB meteorites. If the meteorite is a IIIAB, then known Au-Ni relationships in IIIAB meteorites indicates that the original Ni content was ~8.5 wt%.

Specimens: Type specimen consisting of 468 g and 249 g representative masses, and 288 g of numerous small fragments, at UAb. Main mass with Peter Goldy.

41°7.0'N, 118°19.0'W Hardpan Flat

Nevada, United States

Find: 2015 Aug 06 Classification: Ureilite

History: While searching for meteorites on the evening of 2015 August 06, Robert Verish hastily gathered a bagful of pebbles from the surface of a dry lake just before nightfall. It was not until 2019 August that he scrutinized the contents of that bag, and recognized one of the small pebbles as being a meteorite.

Physical characteristics: This 2.6 g, black fusion-crusted, oriented pebble has a wellpreserved exterior. A cut surface reveals a gray, coarse-crystalline matrix.

Petrography: The silicates are about 90% olivine, 10% pigeonite. In typical ureilite fashion an additional minor component is dark interstitial matter, presumably carbon; and olivine rims are sprinkled with tiny Fe-metals formed by reduction. The silicates are uniformly close to 1.0 \times 0.5 mm; with maximum dimension found (in one small thin section) about 1.8 mm. The silicate grains show a clear preferred alignment of their long axes (lamination).

Geochemistry: Olivine core composition clusters very tightly at $Fa_{16,48\pm0,14}$ (9 analyses), but reduced rim compositions (7 analyses) are as FeO-depleted as Fa_{3.3}. Pigeonite clusters very tightly at Fs_{14.2}Wo_{8.8} (8 analyses).

Classification: Ureilite

Specimens: 1.1 grams at UCLA; main mass with Verish.

Hassi el Biod 001 (HeB 001)

Ouargla, Algeria

28°46'16.10"N, 05°30'10.00"E

Purchased: 2020 Jan 2 Classification: HED achondrite (Diogenite, anomalous)
History: The meteorite was found by a nomad named Abo Zaid on January 2, 2020, in the great Sahara south of the village of Wargla, Algeria, and subsequently purchased by the main mass holder, Said Yousfi.
Physical characteristics: Light-brownish rock with very minor fusion crust.

Petrography: Unbrecciated ultramafic rock displaying a cumulate texture of up to 0.6 mm sized low-Ca pyroxene poikilitically enclosing rounded to subrounded olivine grains 20 to 400 μ m in size. Most regions are pyroxene-dominated while few contain abundant clustered olivine grains. Pyroxene is compositionally zoned, i.e., exhibits Mg-rich cores and Fe-rich rims. Olivine grains are compositionally homogeneous but of four distinct compositions varying in Fe/Mg ratios. Many olivine grains show outer rims of symplectic intergrowth of chromite and silica. Plagioclase is a minor component typically occurring interstitial to pyroxene and olivine and is of highly variable composition. Opaques include Ti-poor zoned chromite, troilite blebs, and kamacite often intergrown with FeS.

Geochemistry: low-Ca pyroxene: $F_{5_{23,7\pm2.3}}W_{0_{2,8\pm1,2}}$ ($F_{5_{17,7-28,8}}W_{0_{1,8+4,8}}$, FeO/MnO=22-32, n=39); predominant olivine: $Fa_{28,9\pm0.2}$ ($Fa_{28,6-29,1}$, FeO/MnO=41±2, n=22); Fe-rich olivine: $Fa_{31,0\pm0.1}$ ($Fa_{30,8-31,2}$, FeO/MnO=40±2, n=5); intermediate olivine: $Fa_{25,6\pm0.1}$ ($Fa_{25,4-25,8}$, FeO/MnO=43±2, n=5); Fe-poorer olivine: $Fa_{24,1\pm0.2}$ ($Fa_{23,9-24,3}$, FeO/MnO=42±4, n=5); plagioclase: $An_{84,5\pm4.1}Ab_{14,9\pm3.9}Or_{0.5\pm0.2}$ ($An_{76,2-91,3}Ab_{8,4-22,5}Or_{0,3-1,4}$, n=19); chromite: Cr_2O_3 45.22-52.41, TiO₂ 0.84-1.24, Al₂O₃ 14.31-20.17, MgO 5.82-6.91 (all in wt%); Oxygen isotopes (K. Ziegler, *UNM*): 3 acid-washed fragments analyzed by laser fluorination gave: $\delta^{18}O=3.816$, 3.852, 3.830; $\delta^{17}O=1.734$, 1.753, 1.748; $\Delta^{17}O=-0.280$, -0.280, -0.274 (all per mil)

Classification: Achondrite (diogenite-anomalous, harzburgitic). The anomalous designation comes from the texture (pronounced cumulate texture of orthopyroxene poikilitically enclosing rounded olivine), and the oxygen isotopic composition that is apart from typical diogenites.

28.772° N, 01.539° W

Hassi el Madani 001 (HeM 001)

Adrar, Algeria

Find, possible fall: 2019 Aug 01

Classification: Ordinary chondrite (LL4)

History: On August 1, 2019, observers in the vicinity of Adrar, Algeria, witnessed a bright fireball event. After searching in the desert for several days, crusted and broken stones were found by an anonymous hunter on August 7 in the region north of Adrar and close to a named well (Hassi el Madani). Subsequently in early October 2019, Naji Ben Faraji purchased the stones from the finder in Tindouf, Algeria.

Physical characteristics: Many of the broken stones (total weight 6115 g) are partially coated in fresh black fusion crust and the light gray interiors contain visible, slightly stained but mostly very fresh metal.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Very fresh specimen composed of fairly closely packed, relatively large, equilibrated PO, BO and RP chondrules set in a finer grained, partly recrystallized matrix containing taenite, stained kamacite, troilite, chromite, merrillite and chlorapatite. PO chondrules consist of euhedral olivine and pyroxene grains within a groundmass of glassy microcrystalline material containing albitic plagioclase. Calcic plagioclase was observed in one BO chondrule. A metal-rich nugget (0.4 mm across) in the studied thin section is composed of taenite, stained kamacite and troilite.

Geochemistry: Olivine (Fa_{27.0±0.2}, range Fa_{26.8-27.2}, N = 9), low-Ca pyroxene

(Fs_{21.5±0.8}Wo_{2.2±1.6}, range Fs_{20.2-22.2}Wo_{0.4-4.4}, N = 5), pigeonite (Fs_{19.0}Wo_{9.2}; Fs_{17.1}Wo_{17.4}; N = 2), augite (Fs_{7.6}Wo_{45.9}), plagioclase in BO chondrule (An_{80.4}Ab_{19.4}Or_{0.3}). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.58. Oxygen isotopes (K. Ziegler, *UNM*): analyses of acid-washed subsamples by laser fluorination gave, respectively, δ^{17} O 4.299, 4.234, 4.335, 4.104; δ^{18} O 5.799, 5.197, 5.841, 5.425; Δ^{17} O 1.237, 1.490, 1.251, 1.240 per mil (all data linearized).

Classification: Ordinary chondrite (LL4).

Specimens: 24.1 g including one polished thin section at *UWB*; remainder with Mr. N. Ben Faraji.

Hongliu Daquan 40°57'25.79"N, 98°32'49.35"E

Nei Mongol, China

Find: 2019 May 11

Classification: Ordinary chondrite (H~6)

History: (Ziyao Wang) Discovered by Ba Gena near Ma Zong mountain, Ejin Qi (Inner Mongolia) on 2019 May 11

Physical characteristics: (Ziyao Wang) seven light-brown stones with a total weight of 2.9 kg were discovered within 10 m distance.

Petrography: (R. Bartoschewitz, *Bart*) light-brown matrix with indistinct chondrules (0.3-1.5 mm, av. 0.6 mm), cracks with iron oxides/-hydroxides

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 4.84 **Classification**: Ordinary chondrite (H~6, W3)

Specimens: 22.3 g on deposit at Kiel, Ziyao Wang holds the main mass, and 142 g with Bart.

Hongshijing 002 40°16'13.63"N, 92° 0'54.63"E

Xinjiang, China

Find: 2017

Classification: Ordinary chondrite (LL4)

History: (Ziyao Wang) Discovered by Wentao Yang (Urumqi) in the desert near Hongshijing (Xinjiang Province) in 2017

Physical characteristics: (Ziyao Wang) Oval brown-yellow stone of 710 g. On the surface, many chondrules are visible

Petrography: (R. Bartoschewitz, *Bart*) recrystallized brown stained matrix with well developed chondrules of various types (0.4-3 mm, av. 0.9 mm).

Geochemistry: (R. Bartoschewitz, *Bart*, P. Appel and B. Mader, *Kiel*) Olivine Fa_{26.5±0.2} (n=20); pyroxene Fs_{19.3±3.9}Wo_{0.8±0.8} (n=20); chromite CRAL87, FFM91. Kamacite Ni=4.2, Co=1.4 (n=1); taenite Ni=21-40, Co=1.0-1.3 (n=2); troilite; smythite Ni=5.4, Co=0.4 (all wt%). Magnetic susceptibility (R. Bartoschewitz, *Bart*) log χ (× 10⁻⁹ m³/kg) = 4.65 **Classification**: Ordinary chondrite (LL4, S2, W4)

Specimens: 23.0 g on deposit at Kiel, Ziyao Wang holds the main mass, and 74 g with Bart.

Huangtuya 002 42°38'45"N, 91°15'20"E

Xinjiang, China Find: 2016 Sep 23 Classification: Iron meteorite (IIIAB)

4

5

6

7

8

9 10

11

12

13

14

19

20

21

22

23

24

25 26

27

28

29

30

31 32

33

34

35

36 37 38

39 40

41

42

43

44

45

46

47 48

49

50

51

52

53

54 55

56

57 58 59

60

History: The meteorite was found in September 2016 by Dr. Gaojie in the Gobi desert of Shanshan County, Xinjiang Province. A local meteorite hunter Han Yongfeng identified it as an iron meteorite. Physical characteristics: The total mass of the meteorite is 5345 g. It is a cone-shaped mass with fusion crust and regmaglypts. Petrography: Bands of kamacite and taenite can be found in the sample, with the bandwidth of 1.5-2 mm, in a coarse Widmanstatten pattern. Some inclusions of troilite can be found in the sample, including an elliptical one with a long axis of 15 mm. Geochemistry: (By using ELAN DRC-e Q-ICP-MS) Fe=90.3, Ni=7.90, Co=0.13 (in wt%). Ga=17.19, Ge=30.87 As=3.39 W=1.23, Ir=4.80, Au=0.65 (in ppm) Classification: Iron Meteorite (Og), IIIAB 30°8'S, 129°8'E Hughes 059 South Australia, Australia Find: 1975 Classification: Ordinary chondrite (H5) **History**: Weathered fragments of 181 g, and two interlocking fragments totaling 11.4 g were found on open plain. **Physical characteristics**: The irregular and partly interlocking fragments are deeply weathered. **Petrography**: (A.W.R. Bevan *WAM*) Recognizable chondrules, radiating pyroxene, porphyritic olivine and barred olivine, in crystalline matrix. Most metal and troilite grains altered to oxyhydroxides of iron. Heavy oxide staining and veining. Olivine shows undulose extinction and planar fracturing. Geochemistry: Mineral compositions and geochemistry: (A. W. R. Bevan, WAM). Mineral compositions as determined by EMP: olivine Fa_{18.6}; orthopyroxene Fs_{15.6}. Classification: (H5); S3, W4. Specimens: Sectioned fragments 32.9 g, WAM. Main mass in the SAM Hughes 060 30°7'46.03"S, 129°8'47.84"E South Australia, Australia Find: 1982 Classification: Ordinary chondrite (H5) History: A single stone weighing 39.3 g was found on open plain Physical characteristics: A completely crusted individual with flight markings. **Petrography**: (A. W. R. Bevan, *WAM*) Discernable chondrules in a moderately crystalline matrix. Chondrules include barred olivine, porphyritic olivine, and pyroxene-olivine types, all with microcrystalline mesostases. Some chondrules contain relict polysynthetically twinned clinopyroxene. Olivine shows slight undulose extinction. Heavily weathered with extensive oxide veining. Geochemistry: Mineral compositions and geochemistry: (A. W. R. Bevan WAM). Mineral compositions as determined by EMP: olivine Fa_{19.5}; orthopyroxene Fs_{17.5}. Petrographically and mineralogically distinct from Hughes 059. Classification: (H5); S2, W4. Specimens: Main mass and thin section at WAM Hughes 061 30°34'S, 129°0.7'E

South Australia, Australia Find: 1986 Classification: Ordinary chondrite (H5)

History: A single stone was found on open plain.

Physical characteristics: Physical characterisitics: A large crusted, but deeply weathered stone missing only a few fragments.

Petrography: (A. W. R. Bevan *WAM*) The stone comprises recognizable chondrules in a moderately crystalline matrix. Chondrule types include BO, RP, and PO. Olivine shows slight undulose extinction. Metal and troilite particles are heavily weathered to oxyhydroxides of iron, and there is extensive oxide veining. Petrographically distinct from Hughes 060.

Geochemistry: Mineral compositions and geochemistry: (A. W. R. Bevan, *WAM*). Mineral compositions as determined by EMP: olivine $Fa_{18.9}$; orthopyroxene $Fs_{17.0}Wo_{1.24}$.

Classification: (H5); S2, W3.

Specimens: Main mass and thin section at WAM

Huntsman (b) 41°13.498'N, 103°1.595'W

Nebraska, United States

Find: 1977

Classification: Ordinary chondrite (H3)

History: 10.215 kg found in 1977 on the Spiker family farm near Huntsman, Nebraska. Sample was initially screened and passed on for classification by New England Meteoritical Services (NEMS).

Physical characteristics: Physical Characteristics: Single stone, weathered dark-brown exterior with sparse minor patches of weathered fusion crust. Saw cut reveals dark interior with scattered chondrules, numerous bright grains of iron-nickel metal and sulfide, and a small darker inclusion lacking metal or sulfide grains.

Petrography: (K. Domanik and F. Stephan, UAz) Microprobe examination of a polished mount shows numerous recognizable chondrules averaging ~500 µm in diameter set in a fragmental matrix. Silicate compositions of both chondrules and matrix are highly variable. Secondary plagioclase is minor to absent. Kamacite grains, 200-400 µm in size constitute ~10 vol% of the meteorite and are associated with lesser amounts of troilite and Ni-rich taenite. The sample examined contains several small, recrystallized shock veins as well as a 9 × 3 mm melt area containing zoned euhedral to subhedral olivine crystals set in a matrix of isotropic glass. Minor merrillite and silica were also observed.

Geochemistry: Mineral compositions and geochemistry: (K. Domanik and F. Stephan, *UAz*) Olivine Fa_{16.9±5.6}, range Fa_{0.6-33.0}, PMD-FeO 20.8%, Fe/Mn=39.3±7.7, n=112; low-Ca pyroxene Fs_{11.3±6.4}Wo_{0.9±0.6}, range Fs_{1.6-30.6}, PMD-FeO 44.7, Fe/Mn=20.3±7.1, n=48. Kamacite Fe=92.9±0.9, Ni=6.1±0.9, Co=0.5±0.1 (wt%), n=24.

Classification: Ordinary Chondrite (H3), consistent with type 3.6 based on PMD-FeO of olivine and low-Ca pyroxene, sigma Fa vs. average Fa content of olivine, and low Co heterogeneity in kamacite. Found 5.2 km NW of <u>Huntsman</u> [which now gets the synonym Huntsman (a)] and maybe potentially paired with it given the proximity. Although Huntsman (a) is classified as H4, data for Fa and Fs variability are currently lacking for this specimen.
Specimens: 48.1 g, two probe mounts and a thin section on deposit at *UAz*, Jerry Spiker holds the main mass.

Iran 001

Semnan, Iran

Find: 2019

Classification: Ordinary chondrite (L6)

History: Meteorite with the generic name Iran were purchased in Iran, and were found at undisclosed locations in the country.

Iran 005

Kerman, Iran Find: 2019

 $\frac{1}{2019}$

Classification: Ordinary chondrite (L6) **Petrography**: (J. Gattacceca) Contains a clast of L6-impact melt breccia (L6 clasts set in a melt rock matrix).

Istifane 006 31°34.91'N, 5°32.32'W South, Morocco Find: 2017 Feb 12 Classification: Ordinary chondrite (L6)

History: The meteorite was found in Morocco on February 12, 2017, by Aadel Bouzada, who contacted John Shea via Facebook. John Shea purchased the sample on March 17, 2017, and sent a piece to the *Cascadia* for classification.

Physical characteristics: Individual covered entirely by dark fusion crust, with patches of rust. Complex dark veins surrounding small clasts of the host meteorite crosscut the cut face of the sample.

Petrography: (M. Hutson, A. Ruzicka, W. Fish, *Cascadia*): In thin section, most of the meteorite is very well integrated, with a few barely discernible chondrules. Feldspathic material consists of maskelynite areas up to 150 µm across. The host is crosscut by an elaborate network of shock veins containing abundant dendritic metal-sulfide intergrowths forming droplets, small veins, and irregular patches. Purple ringwoodite grains are visible in thin section in transmitted light, and were observed to be intergrown with equant subhedral grains of majorite-garnet in a portion of the shock vein examined with BSE imaging and EDS mapping.

Geochemistry: Mineral compositions and geochemistry: Olivine and pyroxene grains are equilibrated: $Fa_{25,1\pm0,2}$, N=15; $Fs_{21,0\pm0,2}Wo_{1,6\pm0,2}$, N=12.

Classification: Ordinary chondrite (L6) based on chemistry and texture.

Specimens: *Cascadia* holds 24.1 g in one piece, in addition to two polished thin sections and a mounted butt. The main mass is held by John Shea.

Jdiriya 003 27°36'59.42"N, 10°26'48.85"W

Saguia el Hamra, Western Sahara

Find: 2019 Dec 18

Classification: HED achondrite (Eucrite)

History: Found by Zaid Oualguirah on 2019 Dec 18.

Physical characteristics: A single crusted stone. Cut surface reveals a light homogeneous interior with \sim 500 µm plagioclase and pyroxene grains.

Petrography: (J. Gattacceca, *CEREGE*) Igneous rock with subophitic texture. Main minerals are pyroxene (with both fine- and large-scale exsolutions) and plagioclase, with typical grain size 400 μm. Other minerals: chromite, ilmenite, metal, troilite, silica.

Geochemistry : Low-Ca pyroxene Fs ₅₈ , Fs _{26.2} Wo _{44.5} (n=2), FeO/MnO 31.2±1.9 Specimens : Type specimen at <i>CEREG</i> .	$_{0\pm2.8}$ Wo _{6.0±3.3} (n=6), Ca-pyroxene exsolutions (n=8). Plagioclase An _{88.4±0.6} Ab _{11.3±0.6} Or _{0.3±0.1} (n=6). <i>E</i> . Main mass with Jean Redelsperger.
Jiddat al Harasis 1107 (JaH 1107) Al Wusta, Oman Find: 2010	19°40.668'N, 55°44.913'E
Classification: Ordinary chondrite (F History: The meteorite was found 2010 Physical characteristics: Dark browni Petrography: The plagioclase grain siz	H6) O during a field trip in the Oman desert. sh individual lacking any fusion crust. ze is about 70 μm.
Jiddat al Harasis 1108 (JaH 1108) Al Wusta, Oman Find: 2010	19°37.511'N, 55°47.111'E
Classification: Ordinary chondrite (I History: The meteorite was found 2010 Physical characteristics: Dark-browni Petrography: The meteorite is a melt b regions (plagioclase grain size about 80 shock melt veins and pockets with char	LL6, melt breccia)) during a field trip in the Oman desert. sh individual with some fusion crust. preccia composed of completely recrystallized LL6) µm) and abundant up to 2 cm wide recrystallized acteristic FeNi metal and sulfide spherules.
Jiddat al Harasis 1110 (JaH 1110) Al Wusta, Oman Find: 2012 Classification: Ordinary chondrite (I History: The meteorite was found 2012 by Jens Bäumer from the anonymous fi Physical characteristics: Dark browni Petrography: The plagioclase grain size	19°47'48,18''N, 55°53'30,34''E 2.5) 2 during a field trip in the Oman desert and purchased inder. sh fragment with some fusion crust. ze is about 20 μm.
Kerman 205 30°46.41'N, 57°47.7 Kerman, Iran Find: 13 Mar 2017 Classification: Ordinary chondrite (F	1'E
History: Collected during the 2017 join Physical characteristics: A single piece Petrography: (G. Giuli, <i>UniCam</i> ; V. M displays a chondritic texture, with rare matrix. Kamacite and troilite are diffuse veins, altered to iron ixides, are visible; Geochemistry: EMP (V. Moggi Cecch chondrules and matrix; (Fa _{19.0} Fo _{81.0} , N=	 int Italian-Iranian recovery campaign int Italian-Iranian recovery campaign int even weighing 52.2 g. int Moggi Cecchi, G. Pratesi UniFi; The thin section int chondrules of various types set in abundant silicate int and partially weathered to iron oxides. Several metal int, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in int (1999); Orthopyroxene in chondrules and matrix

 $(Fs_{16.2}En_{82.4}Wo_{1.4}, N=5);$

4

5

6

7

12

13

14

15

16

17

18 19

20

21

22

23

24 25

26

27

28

29

30

31 32 33

34

Classification: Ordinary chondrite (H5); S1; W3; Possibly paired with Kerman 206 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 21.07 g specimen is on deposit at MSN-FI; 6 g at SBU. Main mass (23.7 g) at *OAM*.

Kerman 206 30°46.41'N, 57°47.71'E

Kerman, Iran

Find: 13 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 10.2 g.

Petrography: (G. Giuli, UniCam; V. Moggi Cecchi, G. Pratesi UniFi); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in chondrules and matrix; (Fa_{20.6}Fo_{79.4}, N=7); Orthopyroxene in chondrules and matrix $(Fs_{180}En_{808}Wo_{12}, N=6);$

Classification: Ordinary chondrite (H5); S2; W2; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 9.27 g specimen (main mass) is on deposit at MSN-FI; 0.86 g at SBU.

30°46.41'N, 57°47.71'E Kerman 207

Kerman, Iran

Find: 13 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign Physical characteristics: 5 pieces totally weighing 6.8 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in chondrules and matrix; (Fa_{19.3}Fo_{80.7}, N=7); Orthopyroxene in chondrules and matrix $(Fs_{17} En_{81} Wo_{14}, N=9);$

Classification: Ordinary chondrite (H5); S1; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 2.1 g specimen is on deposit at MSN-FI; 3 pcs (tot. 1.92 g) at SBU. Main mass (2.8 g) at University of Camerino, Italy.

Kerman 208 30°46.41'N, 57°47.71'E

Kerman, Iran Find: 13 Mar 2017 Classification: Ordinary chondrite (H5) **History**: Collected during the 2017 joint Italian-Iranian recovery campaign **Physical characteristics**: A single piece weighing 14.8 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=18); Orthopyroxene in chondrules and matrix (Fs_{18.3}En_{80.2}Wo_{1.5}, N=9);

Classification: Ordinary chondrite (H5); S1; W2; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 13.16 g specimen (main mass) is on deposit at MSN-FI; 1.50 g at SBU.

Kerman 209 30°46.41'N, 57°47.71'E

Kerman, Iran

 Find: 13 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 35.6 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=8); Orthopyroxene in chondrules and matrix (Fs_{18.5}En_{80.0}Wo_{1.5}, N=6);

Classification: Ordinary chondrite (H5); S2; W4; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 30.9 g specimen (main mass) is on deposit at *MSN-FI*; 2 pcs (tot. 4.26 g) at *SBU*.

Kerman 210 30°46.41'N, 57°47.71'E

Kerman, Iran Find: 13 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign **Physical characteristics**: A single piece weighing 23.0 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=7); Orthopyroxene in chondrules and matrix (Fs_{17.9}En_{80.4}Wo_{1.7}, N=7);

4

5

6

7

12

13

14

15

16

17 18

19

20

21

22

23

24 25

26

27

28

29

30

31 32 33

34

35

36

37

38

39 40

41

42

43

44

45

46

47 48

49

50

51

52

57

58

59

60

Classification: Ordinary chondrite (H5); S1; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248. Specimens: A total of 20.1 g specimen (main mass) is on deposit at MSN-FI; 2 pcs (tot. 2.37

g) at SBU.

Kerman 211 30°46.41'N, 57°47.71'E

Kerman, Iran

Find: 13 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 20.6 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=9); Orthopyroxene in chondrules and matrix $(Fs_{16} En_{82} Wo_{13}, N=10);$

Classification: Ordinary chondrite (H5); S1; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 18.5 g specimen (main mass) is on deposit at *MSN-FI*; 1.80 g at *SBU*.

30°46.41'N, 57°47.71'E Kerman 212

Kerman, Iran

Find: 13 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign Physical characteristics: 15 pieces totally weighing 51.9 g.

Petrography: (G. Giuli, UniCam; V. Moggi Cecchi, G. Pratesi UniFi); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in chondrules and matrix; (Fa_{20.7}Fo_{79.3}, N=9); Orthopyroxene in chondrules and matrix $(Fs_{184}En_{803}Wo_{13}, N=10);$

Classification: Ordinary chondrite (H5); S1; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 42.71 g specimen (main mass) is on deposit at MSN-FI; 7 pcs (tot. 9.16 g) at SBU.

Kerman 213 30°46.41'N, 57°47.71'E Kerman, Iran Find: 13 Mar 2017 Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign **Physical characteristics**: 8 pieces totally weighing 9.9 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Čecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=7); Orthopyroxene in chondrules and matrix (Fs_{17.3}En_{81.2}Wo_{1.3}, N=7);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 6.91 g specimen (main mass) is on deposit at *MSN-FI*; 3 pcs (tot. 2.88 g) at *SBU*.

Kerman 214 30°46.41'N, 57°47.71'E

Kerman, Iran

Find: 13 Mar 2017

Classification: Ordinary chondrite (H4)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 19.9 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a marked chondritic texture, with scattered evident chondrules of various types set in silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides; **Geochemistry**: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.1}Fo_{79.9}, N=14); Orthopyroxene in chondrules and matrix (Fs_{16.8}En_{81.9}Wo_{1.3}, N=6);

Classification: Ordinary chondrite (H4); S3; W3

Specimens: A total of 6.71 g specimen is on deposit at *MSN-FI*; 2.16 g at *SBU*. Main mass (10.6 g) at University of Camerino, Italy.

Kerman 215 30°46.41'N, 57°47.71'E

Kerman, Iran

Find: 13 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 28.8 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.5}Fo_{79.5}, N=8); Orthopyroxene in chondrules and matrix (Fs_{17.4}En_{81.5}Wo_{1.1}, N=7);

Classification: Ordinary chondrite (H5); S1; W3; Possibly paired with Kerman 205 to 213, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

 Specimens: A total of 12.15 g specimen is on deposit at *MSN-FI*; 3.24 g at *SBU*. Main mass (12.4 g) at University of Camerino, Italy.

Kerman 216 30°46.41'N, 57°47.71'E

Kerman, Iran

Find: 13 Mar 2017

Classification: Ordinary chondrite (H4)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 16.7 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a marked chondritic texture, with scattered evident chondrules of various types set in silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides; **Geochemistry**: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{19.3}Fo_{80.7}, N=5); Orthopyroxene in chondrules and matrix (Fs_{16.8}En_{81.7}Wo_{1.5}, N=5);

Classification: Ordinary chondrite (H4); S2; W3

Specimens: A total of 6.70 g specimen is on deposit at *MSN-FI*; 2.19 g at *SBU*. Main mass (7.1 g) at *OAM*.

Kerman 217 30°46.41'N, 57°47.71'E

Kerman, Iran Find: 13 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: 5 pieces totally weighing 14.5.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.5}Fo_{79.5}, N=7); Orthopyroxene in chondrules and matrix (Fs_{19.0}En_{79.6}Wo_{1.4}, N=6);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 218 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 9.74 g specimen (main mass) is on deposit at *MSN-FI*; 3 pcs (tot. 4.82 g) at *SBU*.

Kerman 218 30°44.15'N, 57°48.83'E

Kerman, Iran

Find: 14 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 10.6 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate

matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in chondrules and matrix; (Fa_{19.8}Fo_{80.2}, N=5); Orthopyroxene in chondrules and matrix (Fs_{17.9}En_{81.1}Wo_{1.0}, N=6);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 3.73 g specimen is on deposit at *MSN-FI*; 1.59 g at *SBU*. Main mass (4.7 g) at *OAM*.

Kerman 219 30°44.15'N, 57°48.83'E

Kerman, Iran

Find: 14 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: 2 pieces totally weighing 5.5 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=9); Orthopyroxene in chondrules and matrix (Fs_{18.5}En_{80.4}Wo_{1.1}, N=5);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 2.12 g specimen is on deposit at *MSN-FI*; Di Martino holds the main mass (3.4 g).

Kerman 220 30°43.35'N, 57°49.30'E

Kerman, Iran

Find: 14 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 1.6 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.5}Fo_{79.5}, N=7); Orthopyroxene in chondrules and matrix (Fs_{17.5}En_{81.1}Wo_{1.4}, N=5);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 0.53 g specimen (main mass) is on deposit at *MSN-FI*; 0.32 g at *SBU*. Di Martino holds the main mass (0.54 g).

1	
2	
3	
4	
5	
6	Kerman 221 30°45.12'N, 57°48.59'E
7	Kerman, Iran
/	Find: 14 Mar 2017
8	$\frac{1}{1} \frac{1}{1} \frac{1}$
9	Classification: Ordinary chondrite (H5)
10	History : Collected during the 2017 joint Italian-Iranian recovery campaign
11	Physical characteristics : A single piece weighing 13.2 g.
12	Petrography: (G. Giuli UniCam: V. Moggi Cecchi G. Pratesi UniFi): The thin section
13	i crography. (O. Orun, Oncam, V. Woggi Ceceni, O. Fratesi Oniri), The unit section
14	displays a chondrific texture, with rare chondrules of various types set in abundant silicate
15	matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal
16	veins altered to iron ixides are visible
17	Coochemistry: EMP (V Moggi Cocchi G Pratesi UniFi: G Giuli UniCam): Olivino in
17	Geochemistry. Elvir (V. Woggi Ceccii, O. Fratesi - Omri, O. Olur - Omcum), Olivine in
10	chondrules and matrix; (Fa _{19.9} Fo _{80.1} , N=6); Orthopyroxene in chondrules and matrix
19	$(Fs_{17.7}En_{81.2}Wo_{1.1}, N=5);$
20	Classification : Ordinary chondrite (H5): S2: W3: Possibly paired with Kerman 205 to 213
21	Korman 215 Korman 217 to 225 Korman 228 & 220 Korman 222 & 222 Korman 226 &
22	Kerman 215, Kerman 217 to 225, Kerman 226 & 229, Kerman 252 & 255, Kerman 250 & 227 Kerman 256
23	237, Kerman 240 to 248.
24	Specimens: A total of 10.16 g specimen (main mass) is on deposit at MSN-FI; 2.82 g at SBU.
25	
26	
27	
28	Kerman 222 30°45.12′N, 57°48.59′E
20	Kerman, Iran
29	Find: 14 Mar 2017
30	Classification: Ordinary chandrite (H5)
31	Classification. Ordinary choliditie (HS)
32	History : Collected during the 2017 joint Italian-Iranian recovery campaign
33	Physical characteristics : 45 piece totally weighing 106.3.
34	Petrography : (G. Giuli UniCam: V. Moggi Cecchi G. Pratesi UniFi). The thin section
35	displays a chondritic texture, with rare chondrules of various types set in abundant silicate
36	displays a choliditie texture, with face cholidities of various types set in abundant sineate
37	matrix. Kamacite and trollite are diffuse and partially weathered to iron oxides. Several metal
38	veins, altered to iron ixides, are visible;
39	Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in
40	chondrules and matrix: (Fange Eoroge N=11): Orthonyroyene in chondrules and matrix
41	$(E_2 - E_3 - W_2 - N - 12)$
41 42	$(FS_{18.0}En_{80.2}WO_{1.8}, N=13);$
42	Classification : Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213,
	Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 &
44	237 Kerman 240 to 248
45	Specimens: A total of 90 6 a specimen (main mass) is on deposit at MSN EI: 15 per (tot
46	specimens. A total of 89.0 g specimen (main mass) is on deposit at <i>MSN-F1</i> , 15 pcs (tot
47	23.23 g) at <i>SBU</i> .
48	
49	
50	Kormon 113 20046 41'NI 57047 71'E
51	Kerman 225 30°40.41 N, 37°47.71 E
52	Kerman, Iran
53	Find: 14 Mar 2017
54	Classification: Ordinary chondrite (H5)
55	Histon y: Collocted during the 2017 joint Italian Iranian receivery compaign
55 F6	History . Concelled during the 2017 joint Ranan-framan recovery campaign
20	Physical characteristics: A single piece weighing 4.0 g.
5/	Petrography: (G. Giuli, UniCam; V. Moggi Cecchi, G. Pratesi UniFi); The thin section
58	displays a chondritic texture, with rare chondrules of various types set in abundant silicate
59	and and a second the vertice of the tare of tare o
60	

matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.2}Fo_{79.8}, N=6); Orthopyroxene in chondrules and matrix (Fs_{17.7}En_{80.3}Wo_{2.0}, N=5);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 3.65 g specimen (main mass) is on deposit at MSN-FI; 0.25 g at SBU.

Kerman 224 30°46.41'N, 57°47.71'E

Kerman, Iran

Find: 14 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 2.5 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{19.8}Fo_{80.2}, N=5); Orthopyroxene in chondrules and matrix (Fs_{17.7}En_{80.2}Wo_{2.1}, N=8);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 2.1 g specimen (main mass) is on deposit at MSN-FI; 0.40 g at SBU.

Kerman 225 30°44.62'N, 57°48.49'E

Find: 14 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 9.9 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=7); Orthopyroxene in chondrules and matrix (Fs_{17.8}En_{80.8}Wo_{1.4}, N=6);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 224, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 3.88 g specimen is on deposit at *MSN-FI*; 1.11 g at *SBU*. Main mass (4.2 g) at University of Camerino, Italy.

Kerman, Iran

3	Kerman 226 30°39.92'N, 57°50.37'E
5	Kerman, Iran
6	Find: 14 Mar 2017
7	Classification: Ordinary chondrite (H5)
8	History : Collected during the 2017 joint Italian-Iranian recovery campaign
9	Physical characteristics . A single piece weighing 229.0 g covered with fusion crust
10	Petrography : (G. Giuli UniCam: V. Moggi Cecchi G. Pratesi UniFi): The thin section
11	displays a abondritic taxture, with rare abondrules of various types set in abundant silicate
12	usplays a choliditud texture, with fall choliditudes of various types set in additional sincate
13	matrix. Kamacite and trollite are diffuse and partially weathered to from oxides;
14	Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in
15	chondrules and matrix; (Fa _{18.4} Fo _{81.6} , N=7); Orthopyroxene in chondrules and matrix
16	$(Fs_{16.0}En_{82.6}Wo_{1.4}, N=6);$
17	Classification: Ordinary chondrite (H5); S1; W2
18	Specimens: A total of 180.1 g specimen (main mass) is on deposit at MSN-FI; 46.69 g
19	at SBU
20	
21	
22	K
23	Kerman 22 / 30°42.42 N, 57°49.40 E
24	Kerman, Iran
25	Find: 14 Mar 2017
26	Classification: Ordinary chondrite (H3)
27	History: Collected during the 2017 joint Italian-Iranian recovery campaign
28	Physical characteristics : A single piece weighing 954.9 g covered with fusion crust
29	Petrography : (G. Giuli, <i>UniCam</i> : V. Moggi Cecchi, G. Pratesi <i>UniFi</i>): The thin section
3U 21	displays a marked chondritic texture, with abundant well delineated chondrules of various
27	turges set in silicate matrix. Kamagita and trailite are diffuse and partially weathered to iron
32	types set in sincate matrix. Kamache and nonne are unruse and partiany weathered to non
34	$\begin{array}{c} \text{Oxides}, \\ \\ \\ \text{Oxides}, \\ \\ \\ \text{Oxides}, \\ \\ \\ \\ \text{Oxides}, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
35	Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi; G. Giuli, UniCam); Olivine in chondrules
36	$(Fa_{12.5\pm5.7}Fo_{87.5\pm5.7}, N=11)$; Olivine in matrix; $(Fa_{17.3\pm3.9}Fo_{82.7\pm3.9}, N=13)$; Orthopyroxene in
37	chondrules ($Fs_{8.8\pm4.4}En_{90.3\pm4.4}Wo_{0.9\pm0.1}$, N=10); Orthopyroxene in matrix
38	$(Fs_{14,4\pm4,2}En_{84,8\pm4,2}Wo_{0,8\pm0,1}, N=12);$
39	Classification : Ordinary chondrite (H3); estimated subtype 3.8; S1; W3
40	Specimens: A total of 754.31 g specimen (main mass) is on deposit at MSN-FI: 166.0 g
41	at SBI/
42	
43	
44	V 000 20040 (7)N 57050 5775
45	Kerman 228 30°40.67 N, 57°50.57 E
46	Kerman, Iran
47	Find: 15 Mar 2017
48	Classification: Ordinary chondrite (H5)
49	History : Collected during the 2017 joint Italian-Iranian recovery campaign
50	Physical characteristics . A single piece weighing 134 7 g covered with fusion crust
51	Petrography : (G. Giuli UniCam: V. Moggi Cecchi G. Pratesi UniFi): The thin section
52	displays a chondritic texture with rare chondrules of various types set in abundant silicate
53	motive Kamagita and trailite are diffuse and partially weathered to iron avides. Several motal
54	maura. Ramache and nonne are unfuse and partially weathered to non oxides. Several metal
55	veins, altered to iron ixides, are visible; C = 1 $C = 1$
50 57	Geocnemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in
58	chondrules and matrix; ($Fa_{20.3}Fo_{79.7}$, N=10); Orthopyroxene in chondrules and matrix
59	$(Fs_{17.5}En_{81.6}Wo_{0.9}, N=7);$
60	

Classification: Ordinary chondrite (H5); S1; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248. **Specimens**: A total of 125.9 g specimen (main mass) is on deposit at *MSN-FI*; 7.67 g at *SBU*.

Kerman 229 30°35.45'N, 57°52.87'E

Kerman, Iran

Find: 15 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: 2 pieces totally weighing 4.3 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.2}Fo_{79.8}, N=6); Orthopyroxene in chondrules and matrix (Fs_{17.4}En_{81.6}Wo_{1.0}, N=6);

Classification: Ordinary chondrite (H5); S1; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 3.44 g specimen (main mass) is on deposit at MSN-FI; 0.86 g at SBU.

Kerman 230 30°40.67'N, 57°50.57'E

Kerman, Iran

Find: 15 Mar 2017

Classification: Ordinary chondrite (L5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: 3 pieces totally weighing 230.5 g with fusion crust.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Scattered kamacite and troilite grains, partially weathered to iron oxides are visible; **Geochemistry**: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{25.0}Fo_{75.0}, N=5); Orthopyroxene in chondrules and matrix (Fs_{21.7}En_{76.7}Wo_{1.6}, N=6);

Classification: Ordinary chondrite (L5); S1; W2

Specimens: A total of 69.8 g specimen is on deposit at *MSN-FI*; 10.0 g at *SBU*. Main mass (143.9 g) at University of Camerino, Italy.

Kerman 231 30°39.85'N, 57°50.93'E

Kerman, Iran

Find: 15 Mar 2017

Classification: Ordinary chondrite (H3)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 404.6 g covered with fusion crust.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a marked chondritic texture, with abundant well delineated chondrules of various

2	
3	types set in silicate matrix. Kamacite and trailite are diffuse and partially weathered to iron
4	types set in sineate matrix. Kamache and nonne are unfuse and partiany weathered to non
5	oxides;
5	Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi; G. Giuli, <i>UniCam</i>); Olivine in chondrules
0	$(Fa_{15,4+7,3}Fo_{84,6+7,3}, N=12)$; Olivine in matrix: $(Fa_{23,8+4,7}Fo_{76,2+4,7}, N=8)$; Orthopyroxene in
/	$(= u_{1,j,4\pm 1}, j \in v_{0,4,0\pm 1}, j, j \in v_{0,2,1,4}, j \in v_{0,2,2,4}, j \in v_{0,2,2,4}, j \in v_{0,3,2,4}, j \in v_{0,3,2}, j \in$
8	$(15_{13,0\pm4,9},0\pm1,8_{6,2\pm4,9},0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
9	$(Fs_{17.8\pm0.7}En_{81.3\pm0.7}Wo_{0.9\pm0.1}, N=6);$
10	Classification: Ordinary chondrite (H3); estimated subtype 3.8; S2; W3
11	Specimens : A total of 336.2 g specimen (main mass) is on deposit at MSN-FI: 64.94 g
12	at SRU
13	
14	
15	
16	Kerman 232 30°39.85'N, 57°50.93'E
17	Kerman Iran
18	Find: 15 Mar 2017
19	$\frac{1}{10} \frac{1}{10} \frac$
20	Classification: Ordinary chondrite (H5)
21	History : Collected during the 2017 joint Italian-Iranian recovery campaign
21	Physical characteristics : A single piece weighing 3.5 g.
22	Petrography : (G. Giuli UniCam, V. Moggi Cecchi, G. Pratesi UniFi). The thin section
23	dignlave a abandritie texture with rare abandrules of various types get in abundant silicate
24	displays a chondiffic texture, with fall chondiffues of various types set in abundant sincate
25	matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal
26	veins, altered to iron ixides, are visible;
27	Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi: G. Giuli - UniCam): Olivine in
28	chondrules and matrix: ($F_{a,a}$, $F_{0,a}$, $N=6$): Orthonyroxene in chondrules and matrix
29	$(E_{a}, E_{a}, W_{a}, N-7)$
30	$(FS_{17.1}En_{81.4}WO_{1.5}, N-7);$
31	Classification : Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213,
32	Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 233, Kerman 236 & 237,
33	Kerman 240 to 248
34	Specimens: A total of 3.46 a specimen (main mass) is on deposit at MSN El:
35	specificitis. A total of 5.40 g specificit (main mass) is on deposit at <i>MSIV-1</i> -1,
36	
37	
38	Kerman 233 30°46.23'N, 57°48.20'E
39	Kerman Iran
40	Find: 15 Mar 2017
40 //1	
41	Classification: Ordinary chondrite (H5)
42	History : Collected during the 2017 joint Italian-Iranian recovery campaign
43	Physical characteristics : A single piece weighing 88.6 g.
44	Petrography: (G. Giuli UniCam. V. Moggi Cecchi, G. Pratesi UniFi). The thin section
45	dignlave a abandritie texture with rore abandrules of various types get in abundant silicate
46	displays a chondruic texture, with fare chondrules of various types set in abundant sincate
47	matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal
48	veins, altered to iron ixides, are visible;
49	Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi: G. Giuli - UniCam): Olivine in
50	chondrules and matrix: $(F_{a,a}, F_{a,a}, F_{a$
51	$(\Gamma_{2} - \Gamma_{2} - M_{2} - M_{2})$
52	$(FS_{17.0}En_{81.6}WO_{1.4}, N-5);$
53	Classification : Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213,
54	Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232, Kerman 236 & 237,
55	Kerman 240 to 248
56	Specimens: A total of 35.63 a specimen is on denosit at MSN FI: 7.73 a at SRU Main mass
57	specificity. A total of 55.05 g specificity is on deposit at $MSN^{-1/1}$, 7.75 g at SDO . Wall mass (46.2 s) at University of Conversion. Italy
58	(40.5 g) at University of Camerino, Italy.
59	
60	
00	

Kerman 234	30°46.23'N, 57°48.20'E
Kerman, Iran	
Find: 15 Mar 2	.017
Classification:	Ordinary chondrite (H6)
History: Collecte	d during the 2017 joint Italian-Iranian recovery campaign
Physical charact	eristics: A single piece weighing 207.2 g covered with fusion crust.
Petrography : (G	. Giuli, UniCam; V. Moggi Cecchi, G. Pratesi UniFi); The thin section
displays a faint ch	iondritic texture, with very rare relic chondrules in a fine-grained silicate
matrix. Kamacite	and troilite are diffuse and partially weathered to iron oxides;
Geochemistry: E	MP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in
chondrules and m	atrix; ($Fa_{19.7}Fo_{80.3}$, N=9); Orthopyroxene in chondrules and matrix
$(FS_{17.1}En_{81.5}WO_{1.4}$	N=8);
Classification: O	rainary chondrite (Ho); S2; W3
Specimens: A tot (01.2 g) at Univer	at 01 74.5 g speciments on deposit at <i>MSN-FT</i> , 55.67 g at 5BU. Main mass
(91.5 g) at Oniver	sity of Camerino, nary.
Kerman 235	30°46 23'N 57°48 20'E
Kerman Iran	50 T0.25 IN, 57 T0.20 L
Find: 15 Mar 2	\mathbb{C}^{017}
Classification ⁻	Ordinary chondrite (H4)
History: Collecte	d during the 2017 joint Italian-Iranian recovery campaign
Physical charact	eristics: A single piece weighing 125.4 g covered with fusion crust.
Petrography: (G	. Giuli, UniCam; V. Moggi Cecchi, G. Pratesi UniFi); The thin section
displays a marked	l chondritic texture, with scattered evident chondrules of various types set in
silicate matrix. Ka	amacite and troilite are diffuse and partially weathered to iron oxides;
Geochemistry: E	MP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in
chondrules and m	atrix; (Fa _{19.2} Fo _{80.8} , N=7); Orthopyroxene in chondrules and matrix
$(Fs_{16.7}En_{81.9}Wo_{1.4})$, N=5);
Classification : O	rdinary chondrite (H4); S2; W3
Specimens: A tot	al of 45.7 g specimen is on deposit at <i>MSN-FI</i> ; 27.3 g at <i>SBU</i> . Di Martino
holds the main ma	ass (46.4 g).
V	2004(222NL 57040 202F
Kerman 236	30°46.23 N, 57°48.20 E
Find: 15 Mar 2	017
Classification:	Ordinary chondrite (H5)
History: Collecte	of during the 2017 joint Italian-Iranian recovery campaign
Physical charact	eristics: 4 nieces totally weighing 70.7 g with fusion crust
Petrogranhy [•] (G	Giuli UniCam [•] V Moggi Cecchi G Pratesi UniFi) [•] The thin section
displays a chondr	itic texture, with rare chondrules of various types set in abundant silicate
matrix. Kamacite	and troilite are diffuse and partially weathered to iron oxides. Several metal
veins, altered to in	ron ixides, are visible:
Geochemistry: E	MP (V. Moggi Cecchi, G. Pratesi - <i>UniFi</i> ; G. Giuli - <i>UniCam</i>); Olivine in
chondrules and m	atrix; (Fa _{19.1} Fo _{80.9} , N=6); Orthopyroxene in chondrules and matrix
(Fs _{17.9} En _{80.9} Wo _{1.2}	, N=6);
Classification : O	rdinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213,
Kerman 215, Ker	man 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 237,
Kerman 240 to 24	48.

Running Head

at SBU.	tal of 54.67 g specimen (main mass) is on deposit at <i>MSN-FI</i> ; 15.99 g
Kerman 237 Kerman, Iran Find: 15 Mar 2	30°46.23'N, 57°48.20'E 2017
Classification	: Ordinary chondrite (H5)
History: Collecto	ed during the 2017 joint Italian-Iranian recovery campaign
Physical charac	teristics: 3 pieces totally weighing 16.6 g.
Petrography : (G displays a chondu matrix. Kamacite veins altered to i	B. Giuli, <i>UniCam</i> ; V. Moggi Cecchi, G. Pratesi <i>UniFi</i>); The thin section ritic texture, with rare chondrules of various types set in abundant silicate e and troilite are diffuse and partially weathered to iron oxides. Several m iron ixides are visible:
Geochemistry: E chondrules and n	EMP (V. Moggi Cecchi, G. Pratesi - $UniFi$; G. Giuli - $UniCam$); Olivine natrix; (Fa _{19.7} Fo _{80.3} , N=7); Orthopyroxene in chondrules and matrix
(Fs _{16.8} En _{81.9} Wo _{1.2}	3, N=6);
Classification: C Kerman 215, Ker	Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 21 rman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236,
Kerman 240 to 2	.48. tal of 12,17 a gradience (main mass) is an demosit at MSN EL 4.40 a at S
specifiens. A to	tal of 12.17 g specifien (main mass) is on deposit at <i>MSN-F1</i> , 4.40 g at 5
Kerman 238 Kerman, Iran Find: 15 Mar 2 Classification: History: Collecte Physical charace Petrography: (G displays a chondr matrix. Scattered Geochemistry: F chondrules and n (Fs _{21.3} En _{77.2} Wo _{1.2} Classification: C Specimens: A to	30°47.28'N, 57°47.88'E 2017 : Ordinary chondrite (L5) ed during the 2017 joint Italian-Iranian recovery campaign teristics : A single piece weighing 76.9 g covered with fusion crust. 3. Giuli, <i>UniCam</i> ; V. Moggi Cecchi, G. Pratesi <i>UniFi</i>); The thin section ritic texture, with rare chondrules of various types set in abundant silicated 1 kamacite and troilite grains, partially weathered to iron oxides are visibl EMP (V. Moggi Cecchi, G. Pratesi - <i>UniFi</i> ; G. Giuli - <i>UniCam</i>); Olivine natrix; (Fa _{25.7} Fo _{74.3} , N=10); Orthopyroxene in chondrules and matrix 5, N=10); Ordinary chondrite (L5); S1; W3 tal of 76.9 g specimen (main mass) is on deposit at <i>MSN-FI</i> ;
Kerman 239 Kerman, Iran	30°35.52'N, 57°51.80'Е 2017

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.0}Fo_{80.0}, N=12); Orthopyroxene in chondrules and matrix (Fs_{17.4}En_{81.1}Wo_{1.5}, N=10);

Classification: Ordinary chondrite (H5); S1; W3

Specimens: A total of 3.13 g specimen is on deposit at *MSN-FI*; 1.50 g at *SBU*. Main mass (3.4 g) at University of Camerino, Italy.

Kerman 240 30°46.42'N, 57°49.15'E

Kerman, Iran

Find: 16 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: 5 pieces totally weighing 14.6 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.7}Fo_{79.3}, N=6); Orthopyroxene in chondrules and matrix (Fs_{19.0}En_{80.0}Wo_{1.0}, N=7);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 241 to 248.

Specimens: A total of 12.08 g specimen (main mass) is on deposit at *MSN-FI*; 4 pcs (tot 2.51 g) at *SBU*.

Kerman 241 30°39.98'N, 57°58.15'E

Kerman, Iran

Find: 18 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign **Physical characteristics**: A single piece weighing 255.0 g covered with fusion crust. **Petrography**: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - UniFi; G. Giuli - UniCam); Olivine in chondrules and matrix; (Fa_{19.5}Fo_{80.5}, N=5); Orthopyroxene in chondrules and matrix (Fs_{17.9}En_{81.0}Wo_{1.1}, N=6);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 198.3 g specimen (main mass) is on deposit at *MSN-FI*; 3 pcs (tot 51.40 g) at *SBU*.

Kerman 242 30°46.00'N, 57°47.52'E Kerman, Iran

Find: 19 Mar 2017 Classification: Ordinary chondrite (H5) **History**: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 31.2 g covered with fusion crust. **Petrography**: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=8); Orthopyroxene in chondrules and matrix (Fs_{18.0}En_{80.5}Wo_{1.5}, N=9);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 9.98 g specimen is on deposit at *MSN-FI*; 3.57 g at *SBU*. Main mass (16.9 g) at *OAM*.

Kerman 243 30°45.83'N, 57°47.52'E

Kerman, Iran

Find: 19 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 68.9 g covered with fusion crust. **Petrography**: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.0}Fo_{80.0}, N=9); Orthopyroxene in chondrules and matrix (Fs_{17.4}En_{81.3}Wo_{1.3}, N=6);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 56.7 g specimen (main mass) is on deposit at MSN-FI; 10.7 g at SBU.

Kerman 244 30°45.73'N, 57°47.60'E

Kerman, Iran Find: 19 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 13.2 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{79.2}, N=6); Orthopyroxene in chondrules and matrix (Fs_{18.7}En_{80.0}Wo_{1.3}, N=5);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 12.3 g specimen (main mass) is on deposit at MSN-FI; 0.90 g at SBU.

Kerman 245 30°45.70'N, 57°47.62'E

Kerman, Iran

Find: 19 Mar 2017

Classification: Ordinary chondrite (L5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 9.1 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Scattered kamacite and troilite grains, partially weathered to iron oxides are visible; **Geochemistry**: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{23.6}Fo_{76.4}, N=7); Orthopyroxene in chondrules and matrix (Fs_{21.3}En_{77.2}Wo_{1.5}, N=6);

Classification: Ordinary chondrite (L5); S2; W3;

Specimens: A total of 8.17 g specimen (main mass) is on deposit at MSN-FI; 0.63 g at SBU.

Kerman 246 30°45.55'N, 57°47.74'E

Kerman, Iran

Find: 19 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: 14 pieces totally weighing 90.7g with fusion crust.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{19.2}Fo_{80.8}, N=9); Orthopyroxene in chondrules and matrix (Fs_{16.7}En_{82.1}Wo_{1.2}, N=7);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 72.24 g specimen (main mass) is on deposit at *MSN-FI*; 7 pcs (tot 18.48 g) at *SBU*.

Kerman 247 30°45.36'N, 57°47.71'E

Kerman, Iran

Find: 19 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: 2 pieces totally weighing 54.0 g with fusion crust.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate

2	
2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
10	
11	
12	
13	
1.4	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
24	
21	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
26	
50	
37	
38	
39	
10	
40	
41	
42	
43	
11	
44	
45	
46	
47	
10	
40	
49	
50	
51	
51	
52	
53	
54	
55	
55	
20	
57	

58

59

60

matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.2}Fo_{79.8}, N=6); Orthopyroxene in chondrules and matrix (Fs_{17.8}En_{80.6}Wo_{1.6}, N=6);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 248.

Specimens: A total of 16.6 g specimen is on deposit at *MSN-FI*; 1.55 g at *SBU*. Main mass (33.4 g) at University of Camerino, Italy.

Kerman 248 30°45.36'N, 57°47.71'E

Kerman, Iran

Find: 19 Mar 2017

Classification: Ordinary chondrite (H5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: 3 pieces totally weighing 4.7 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Kamacite and troilite are diffuse and partially weathered to iron oxides. Several metal veins, altered to iron ixides, are visible;

Geochemistry: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{20.8}Fo_{78.0}, N=5); Orthopyroxene in chondrules and matrix (Fs_{18.9}En_{79.9}Wo_{1.2}, N=5);

Classification: Ordinary chondrite (H5); S2; W3; Possibly paired with Kerman 205 to 213, Kerman 215, Kerman 217 to 225, Kerman 228 & 229, Kerman 232 & 233, Kerman 236 & 237, Kerman 240 to 247.

Specimens: A total of 1.25 g specimen is on deposit at *MSN-FI*; 0.94 g at *SBU*. Main mass (2.5 g) at University of Camerino, Italy.

Kerman 249 30°32.73'N, 57°45.93'E

Kerman, Iran

Find: 17 Mar 2017

Classification: Ordinary chondrite (L5)

History: Collected during the 2017 joint Italian-Iranian recovery campaign

Physical characteristics: A single piece weighing 17.0 g.

Petrography: (G. Giuli, *UniCam*; V. Moggi Cecchi, G. Pratesi *UniFi*); The thin section displays a chondritic texture, with rare chondrules of various types set in abundant silicate matrix. Scattered kamacite and troilite grains, partially weathered to iron oxides are visible; **Geochemistry**: EMP (V. Moggi Cecchi, G. Pratesi - *UniFi*; G. Giuli - *UniCam*); Olivine in chondrules and matrix; (Fa_{26.0}Fo_{74.0}, N=6); Orthopyroxene in chondrules and matrix (Fs_{22.6}En_{76.1}Wo_{1.3}, N=6);

Classification: Ordinary chondrite (L5); S2; W3

Specimens: A total of 10.5 g specimen (main mass) is on deposit at MSN-FI; 6.30 g at SBU.

Kerman 253 30°45.353'N, 57°48.126'E Kerman, Iran Find: 2017 Jan 9

Classification: Ordinary chondrite (H5)

History: Meteorite (one sample, 29.4 g) was found 9 January 2017 by the *UrFU* meteorite expedition-2017 in Iran (Pastukhovich A.Yu., Larionov M.Yu., Kruglikov N.A., Zamyatin D.A.) in the northwest part of the Kalout region of the Lut desert. This meteorite was observed on the hard surface (probably, the place of fall).

Physical characteristics: Total mass is 29.4 g. Meteorite has angular to roughly rounded shape. The surface and interior of the meteorite is light to dark brown in color due to abundant Fe-hydroxides. Some parts have glassy-like surface due to desert weathering. Fusion crust was locally observed (60-150 µm). Some small cracks are totally filled with Fe-hydroxides. Petrography: Classification (Victor V. Sharygin, SIGM and UrFU). Petrographic observation of a polished section shows chondrules in a recrystallized matrix. Chondrules are readily delineated and their sizes mostly vary from 200 to 700 µm. They have BO, POP and RP texture and some of them consist of Ol+Opx+Cpx+Pl±Crt or Ol+Opx+Pl±Crt. Large chondrules (1.5-5 mm) also occur. Olivine, low-Ca pyroxene and plagioclase are the main minerals in matrix. Plagioclase grains are less than 50 µm. This indicates a petrologic type of 5 for the meteorite. Undulatory extinction and irregular fractures in olivine, as well as the absence of opaque shock veins and melt pockets, indicate a shock stage of S2. Relics of fresh FeNi metals (kamacite, taenite, tetrataenite, up to 450 µm) and troilite (up to 200 µm) are rare due to intensive alteration. Weathering products (goethite, "hydrogoethite", akaganeite, droninoite and other Fe-hydroxides, rarely siderite and anhydrite) occur as veins and in situ alteration of FeNi-metals and troilite and fill all microfractures in minerals from matrix and chondrules. The replacement of olivine by serpentine is occasionally fixed in outer zones of grains (weathering grade -W3). Clinopyroxene, chromite, chlorapatite and merrillite (up to 200 µm) occur locally in the matrix. Pyrrhotite and hydrated sulfide FeS•nH₂O (alteration of troilite?) form grains up to 100 um. Fusion crust (60-150 um in thickness) is fine-grained and contains skeletal crystals of olivine (10-50 µm), mafic glass and metal-sulfide blebs (martensite or taenite and troilite, $1-20 \mu m$).

Geochemistry: EDS-WDS analyses (Victor V. Sharygin, *SIGM* and *UrFU*). The primary chondrite paragenesis includes olivine Fa_{19.51±0.13} (N=24), low-Ca-pyroxene Fs_{17.37±0.38}Wo_{1.29±0.15} (N=26), plagioclase Ab_{83.0}An_{11.5}Or_{5.5} (N=7), Cr-bearing clinopyroxene En_{47.0}Fs_{6.7}Wo_{46.3} (Cr₂O₃ – 0.8 wt.%, N=1), chromite Crt_{80.4}Spl_{14.3} (N=8), chlorapatite, merrillite, FeNi-metals and troilite. Chlorapatite contains F (0.9 wt.%) and Cl (4.4 wt.%, N=1). Merrillite is poor in FeO (0.4-0.7 wt.%, N=7). Composition of metals (in wt.%): kamacite (N=16) – Fe 92.51±1.21, Ni – 6.80±1.10, Co – 0.57±0.08; taenite (N=3) – Fe 68.73, Ni 31.03, Co 0.27; tetrataenite (N=6) – Fe 49.92±3.95; Ni 49.89±3.96, Co 0.22±0.02. Troilite is close to ideal FeS. Composition of pyrrhotite (in wt.%, N=8): Fe 59.54±1.44, Ni 1.44±1.08; S 39.04±0.53. Fe-rich serpentine-group mineral contains NiO (up to 1.1 wt.%). Goethite and "hydrogoethite" contain 3.9-16.1 wt.% NiO, up to 0.6 wt.% CoO. Droninoite bears NiO (47.4), FeO (19.4) and Cl (8.6 wt.%).

Classification: (Victor V. Sharygin, *SIGM* and *UrFU*). Ordinary chondrite. H5, S2, W2-3. **Specimens**: 14.7 g (cut-off) – *UrFU*; 7.2 g (cut-off) and thin section – *SIGM*.

Kerman 254 30°45.299'N, 57°48.005'E

Kerman, Iran

Find: 2017 Jan 9

Classification: Ordinary chondrite (H5)

History: Meteorite (11 samples, 534.28 g) was found 9 January 2017 by the *UrFU* meteorite expedition-2017 in Iran (Pastukhovich A.Yu., Larionov M.Yu., Kruglikov N.A., Zamyatin

D.A.) in the northwest part of the Kalout region of the Lut desert. All fragments of the meteorite were observed on the hard surface (probably, the place of fall).

Physical characteristics: Total mass is 534.28 g. All fragments have angular to roughly rounded shape. The surface and interior of the meteorite is light to dark brown in color due to abundant Fe-hydroxides. Some parts have glassy-like surface due to desert weathering. Some small cracks are totally filled with Fe-hydroxides and sulfates.

Petrography: Classification (Victor V. Sharygin, SIGM and UrFU). Petrographic observation of a polished section shows chondrules in a recrystallized matrix. Chondrules are readily delineated and their sizes mostly vary from 600 to 1000 µm. They have BO, POP and GOP texture and some of them consist of Ol+Opx+Cpx+Pl±Crt or Ol+Opx+Pl±Crt. Olivine, low-Ca-pyroxene and plagioclase are main minerals in middle-grained matrix. Plagioclase grains are less than 50 μ m. This indicates a petrologic type of 5 for the meteorite. Undulatory extinction and irregular fractures in olivine, as well as the absence of opaque shock veins and melt pockets, indicate a shock stage of S2. Fresh FeNi metals and troilite are very rare due to intensive alteration. Relics of taenite grains (up to 50 μ m) were observed only. Weathering products (goethite, "hydrogoethite", akaganeite, droninoite and other Fe-hydroxides, rarely siderite and anhydrite) are very abundant and occur as veins and in situ alteration of FeNimetals and troilite and fill all microfractures in minerals from matrix and chondrules (weathering grade – W3-4). Clinopyroxene, chromite, chlorapatite and merrillite (up to 150 µm) occur locally in the matrix; K-feldspar is found in the BO chondrules. Pyrrhotite and hydrated sulfide FeS•nH₂O (alteration after troilite?) form grains up to 20-50 µm. Association of anhydrite and natrojarosite is occasionally present in alteration products. Geochemistry: EDS-WDS analyses (Victor V. Sharygin, SIGM and UrFU). The primary chondrite paragenesis includes olivine 19.32±0.19 (N=33), low-Ca pyroxene $Fs_{17,29\pm0,28}Wo_{1,45\pm0,21}$ (N=28)), plagioclase Ab_{81,2}An_{12,3}Or_{6.5} (N=15), K-feldspar

Ab_{8.6}An_{4.7}Or_{86.7} (N=1), Cr-bearing clinopyroxene En_{46.2}Fs_{7.2}Wo_{46.6} (Cr₂O₃ – 0.9 wt.%, N=4), chromite Crt_{80.5}Spl_{14.3} (N=12), chlorapatite, merrillite, FeNi-metals and troilite. Chlorapatite contains F (0.8 wt.%) and Cl (5.2 wt.%, N=4). Merrillite is poor in FeO (0.4-0.8 wt.%, N=6). Composition of taenite (in wt.%, N=4): Fe 74.51, Ni 25.26, Co 0.25. Pyrrhotite bears up to 7.6 wt.% Ni. Fe-rich serpentine-group mineral contains NiO (up to 1.1 wt.%). Goethite and "hydrogoethite" contain 2.5-13.4 wt.% NiO, up to 0.8 wt.% CoO.

Classification: (Victor V. Sharygin, *SIGM* and *UrFU*). Ordinary chondrite. H5, S2, W3-4. **Specimens**: 521.54 g (10 samples) – *UrFU*; 12.74 g (1 sample) and thin section – *SIGM*.

Kerman 255 30°45.477'N, 57°48.085'E

Kerman, Iran

Find: 2017 Jan 9

Classification: Ordinary chondrite (H5)

History: Meteorite (3 samples, 35.3 g) was found 9 January 2017 by the *UrFU* meteorite expedition-2017 in Iran (Pastukhovich A.Yu., Larionov M.Yu., Kruglikov N.A., Zamyatin D.A.) in the northwest part of the Kalout region of the Lut desert. All fragments of the meteorite were observed on the hard surface (probably, the place of fall).

Physical characteristics: Total mass is 35.3 g. All fragments have angular to roughly rounded shape. The surface and interior of the meteorite is light to dark brown in color due to abundant Fe-hydroxides. Some parts have glassy-like surface due to desert weathering. Some small cracks are totally filled with Fe-hydroxides and sulfates.

Petrography: Classification (Victor V. Sharygin, *SIGM* and *UrFU*). Petrographic observation of a polished section shows chondrules in a recrystallized matrix. Chondrules are readily delineated and their sizes mostly vary from 600 to 1000 μm. They have PO, POP and RP

texture and some of them consist of Ol+Opx+Cpx+Pl±Crt or Ol+Opx+Pl±Crt. Olivine, low-Ca-pyroxene and plagioclase are main minerals in middle-grained matrix. Plagioclase grains are less than 50 μ m. This indicates a petrologic type of 5 for the meteorite. Undulatory extinction and irregular fractures in olivine, as well as the absence of opaque shock veins and melt pockets, indicate a shock stage of S2. Grains of FeNi metals (kamacite, taenite, tetrataenite, up to 300 μ m) and troilite (up to 250 μ m) are partially altered. Weathering products (goethite, "hydrogoethite", akaganeite and other Fe-hydroxides, rarely anhydrite and magnetite) occur as veins and in situ alteration of FeNi-metals and troilite and fill all microfractures in minerals from matrix and chondrules (weathering grade – W2). Clinopyroxene, chromite, chlorapatite and merrillite (up to 300 μ m) occur locally in the matrix. Pyrrhotite and hydrated sulfide FeS•nH₂O (alteration after troilite?) form grains up to 100-200 μ m.

Geochemistry: EDS-WDS analyses (Victor V. Sharygin, *SIGM* and *UrFU*). The primary chondrite paragenesis includes olivine Fa_{19,68±0,20} (N=42), low-Ca-pyroxene Fs_{17.03±0,23}Wo_{1.42±0,22} (N=31), plagioclase Ab_{82.8}An_{11.1}Or_{6.1} (N=11), Cr-bearing clinopyroxene En_{46.6}Fs_{7.7}Wo_{45.7} (Cr₂O₃ – 0.8 wt.%, N=5), chromite Crt_{80.9}Spl_{13.9} (N=7), chlorapatite, merrillite, FeNi-metals and troilite. Chlorapatite contains F (0.8-1.1 wt.%) and Cl (4.5-4.9 wt.%, N=2). Merrillite is poor in FeO (0.5-1.8 wt.%, N=12). Composition of metals (in wt.%): kamacite (N=11) – Fe 93.69±1.88, Ni – 5.76±1.86, Co – 0.56±0.07; taenite (N=14) – Fe 72.97±4.06, Ni 26.68±4.11, Co 0.32±0.05; tetrataenite (N=10) – Fe 48.34±1.78; Ni 51.39±1.88, Co 0.20±0.08. Troilite is close to ideal FeS. Pyrrhotite bears up to 2.2 wt.% Ni. Goethite and "hydrogoethite" contain up to 6.6 wt.% NiO and up to 0.7 wt.% CoO. **Classification**: (Victor V. Sharygin, *SIGM* and *UrFU*). Ordinary chondrite. H5, S2, W2. **Specimens**: 24.7 g (2 samples) – *UrFU*; 10.6 g (1 sample) and thin section – *SIGM*.

Kolang 1°53'18.8"N, 98°39'39.6"E

Sumatera Utara, Indonesia

Fall: 1 Aug 2020

Classification: Carbonaceous chondrite (CM1/2)

History: (M. Farmer, Arizona) Around 4 pm local time (9 am UTC) on 1 August 2020, residents in northwest Sumatra (Central Tapanuli Regency) heard loud booming sounds that shook their houses. A single stone weighing ~2100 g went through the roof of a house in Kolang at 1°53'18.8"N 98°39'39.6"E (Satahi Nauli, Kolang, Central Tapanuli Regency, North Sumatra, Indonesia) and embedded itself into the soil beside the house. Another stone impacted in a rice paddy about 2.2 km south of the main mass. Two more stones were found ~7.8 km to the SE (around 1°49'50.22"N 98°41'51.22"E). Michael Farmer initially acquired 266 g, which includes fragments from the main mass and the rice paddy stone. This material was used for the classification.

Physical characteristics: To date, four stones have been recovered 2100 g (main mass), ~250 g (rice paddy), ~100 g (in two pieces), and ~100 g (complete stone). The masses of the two 100 g stones were estimated from their photographs. The main mass is blocky with a flat face and well-developed regmaglypts. About 250 g was broken off the main mass revealing a highly brecciated interior. Fragments crushed with water emit a delicate, earthy smell, though not as persistent or complex as that from Aguas Zarcas or Murchison.

Petrography: (L. Garvie, *ASU*) The interior of the stones are dark gray to black and sparsely decorated with light-colored speckles, and host common breccia fragments that protrude from the fracture surfaces. One fragment shows a large (3 mm) CAI with a pinkish hue. Three breccia types are visible: hard with conchoidal fracture and lacking or poor in chondrules; chondrule rich; and, greenish gray. Powder XRD shows considerable mineralogical diversity
Running Head

2	
3	between different greas of matrix and clasts. Representative pieces from the bulk matrix are
4	deministed by some anting, with medium, to low intensity reflections for recycledy.
5	dominated by serpentine, with medium- to low-intensity reflections for regularly
6	interstratified tochilinite/cronstedute, tochilinite, calcite, pyrrhotite, and pentlandite. Some
7	areas contain two distinct serpentines with basal spacings of 7.297 and 7.213 Å. BSE images
8	from an $\sim 1.5 \times 2$ cm fragment from the visually average lithology shows intense brecciation
9	at all magnification scales but is best described by two end-member netrographies A)
10	Interneally comminuted consisting of braceia fragments, sparse silicate fragments, and rare
10	intensely commuted consisting of directia fragments, sparse sincate fragments, and fare
17	recognizable chondrules in a fine-grained matrix that is locally PCP rich. The chondrules and
12	silicate fragments show a range of alteration to hydrous phases and many lack anhydrous
13	silicates. B) Chondrule-rich breccia clast with a matrix dominated by PCP-rich objects.
14	Chondrule mean diameter=125 μ m (n=41 range 34 to 291 μ m) not including a large 1.5 \times 1
15	mm BO chondrule. Particularly noticeable in hand specimen are sparsely distributed greenish.
10	initial bo chondrule. I articularly noticeable in hand specificin are sparsery distributed greenish-
17	gray breccia clasts (to 2 cm). Powder XRD shows the clast to be dominated by two
18	serpentines, pyrrhotite, pentlandite, and calcite, and a medium-intensity basal reflection from
19	well-crystallized smectite. Polished mount of this clast shows abundant chondrule
20	pseudomorphs and coarse-grained sulfides.
21	Geochemistry: Oxygen isotones (K Ziegler UNM) (linearized all per mil TEL
22	slope=0.529): Eight fragments were analyzed by lager fluoringtion of which seven lie within
23	slope-0.526). Eight fragments were analyzed by laser fluorination of which seven he within
24	the CM field. Two pieces were run from each fragment. Sample weights for each
25	measurement were between 2.0 and 5.6 mg. All data in ‰. These include: Average lithology
26	fragment 1 (δ^{18} O 7.669, δ^{17} O 1.332, Δ^{17} O -2.717 and δ^{18} O 8.591, δ^{17} O 1.493, D18O -3.043);
27	Average lithology fragment 2 (δ^{18} O 9.141, δ^{17} O 2.171, Δ^{17} O -2.656 and δ^{18} O 8.477, δ^{17} O
28	1.992 Λ^{17} O -2.484). Chondrule-rich lithology (δ^{18} O 7.310 δ^{17} O 1.480 Λ^{17} O -2.380 and δ^{18} O
29	$0.245 \ \text{S}^{17} \text{O} \ 2.224 \ \text{A}^{17} \text{O} \ 2.658$; Chandrula poor alast 1 (S180 11 278 S170 2 708 A170
30	$9.245, 0.00, 2.224, \Delta^{-1}0, 2.008), Choliditule-pool clast 1 (0.00, 11.578, 0.00, 2.708, \Delta^{-1}0 -$
31	3.299 and δ^{10} O 11.137, δ^{17} O 2.580, Δ^{17} O -3.301); Chondrule-poor clast 2 (δ^{10} O 8.774, δ^{17} O
32	2.116, $\Delta^{1/O}$ -2.517 and δ^{18O} 9.765, $\delta^{1/O}$ 2.414, $\Delta^{1/O}$ -2.742), Chondrule-poor clast 3 (δ^{18O}
33	13.133, δ^{17} O 3.984, Δ^{17} O -2.950 and δ^{18} O 12.346, δ^{17} O 3.310, Δ^{17} O -3.209). Greenish-grey
34	breccia clast (δ^{18} O 6.377, δ^{17} O 0.642, Δ^{17} O -2.725 and δ^{18} O 6.790, δ^{17} O 0.848, Δ^{17} O -2.737).
35	The data for the metal-rich and chondrule-rich clast falls outside the CM field (δ^{18} O -0.161
36	\$170 6 190 $$170$ 6 104 and $$180$ 1 505 $$170$ 4 274 $$170$ 5 216) Mioroprohe (I
37	$0^{-1}0^{-$
38	Garvie, ASU): Olivine shows a wide compositional range from $Fa_{0.5}$ to $Fa_{41.5}$ (n=13), with
39	CaO up to 0.5 wt%, Cr_2O_3 up to 0.6 wt%, NiO up to 0.1 wt%, and Al_2O_3 up to 0.5 wt%.
40	Classification : CM1/2. All the oxygen isotopes, except the metal- and chondrule-rich clast,
41	fall within the CM field. The dominant lithology contains areas with chondrules completely
42	replaced by hydrous silicates and intimately associated and mixed with chondrules and olivine
43	fragments partially replaced by hydrous phases $(CM1/2)$ to areas more typical of CM2
44	nagments partially replaced by hydrous phases (CM172), to areas more typical of CM2
45	meteorites. The bulk mineralogy is largely consistent with CMT to 2 meteorites.
46	Specimens : Total known weight of approximately 2550 g. The distribution of the masses are
47	as follows Michael Farmer (296 g); ASU 28.7 g off the main mass; remaining main mass of
48	1843 g was purchased by Robert Wesel. Mark Lyon and Jared Collins and now owned by Jav
49	Piatek The whereabouts of the two smaller stones is unknown
50	
51	
52	
53	Kuiyibage 38°5.02'N, 77°9.51'E
54	Xinjiang, China

Find: 2018

55 56

57

58

59

60

Classification: Ordinary chondrite (H5)

History: Purchased by Corey Kuo on 17 June 2018 from a local in Xinjiang named Mr. Hu, who had previously found the stone in the Gobi desert nearby to a town called Kuiyibage. **Physical characteristics**: Single stone with dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) Sample is an equilibrated chondrite containing blurred chondrules (0.2-1.2 mm, n=12), secondary recrystallized albitic feldspar (Av. 25±5 μ m), troilite, kamacite, taenite, Fe-oxides, chlorapatite, and chromite. **Geochemistry**: Olivine (Fa_{17.9±0.2}, range Fa_{17.6-18.3}, n=24), Low-Ca Pyroxene (Fs_{16.0±0.3}Wo_{1.3±0.2}, range Fs_{15.6-16.5}Wo_{0.8±1.7}, n=18).

Classification: Ordinary Chondrite (H5)

Specimens: 45 grams at UCLA; main mass with Corey Kuo.

Kumtag 041 41°31'2.12"N, 93°36'35.08"E

Xinjiang, China

Find: 21. Aug 2012

Classification: Ordinary chondrite (L~5)

History: (Ziyao Wang) Discovered by the geologist Wang Jianming (Hami/Xinjiang) during field work in the Kumtag Desert on 21. Aug 2012.

Physical characteristics: (Ziyao Wang) Dark-black stone of 53 g, partly covered with fusion crust

Petrography: (R. Bartoschewitz, *Bart*) gray-black matrix with many vugs (av. 0.2 mm), poorly defined chondrules (0.2-2.0 mm) and irregular rounded metal and sulfide inclusions. Silicate cracks are filled with metal/sulfide.

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 5.00 **Classification**: Ordinary chondrite (L5, S4, W3)

Specimens: 11.0 g on deposit at Kiel, Ziyao Wang holds the main mass, and 13 g with Bart.

Kumtag 055 41°35'51.44"N, 93°47'42.43"E

Xinjiang, China

Find: 2013

Classification: Ordinary chondrite (L6)

History: (Ziyao Wang) Discovered by the geologist Jianming Wang (Hami/Xinjiang) during field work in the Kumtag Desert in 2013

Physical characteristics: (Ziyao Wang) Black, irregular stone without fusion crust of 235.3 g **Petrography**: (R. Bartoschewitz, *Bart*) fractured shock-darkened matrix with chondrules and mineral fragments.

Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine

 $Fa_{23,9\pm0.7}$ (n=20); poor Ca pyroxene $Fs_{20,3\pm0.6}$ (n=9), $Wo_{2,0\pm0.4}$: high Ca pyroxene

 $En_{75}Fs_{18}Wo_7$ Magnetic susceptibility (R. Bartoschewitz, *Bart*) log χ (× 10⁻⁹ m³/kg) = 4.71.

Classification: Ordinary chondrite (L6 shock darkened, S4, W2)

Specimens: 22.3 g on deposit at *Kiel*, Ziyao Wang holds the main mass, and 30 g with *Bart*.

Kumtag 056 41°42'3.15"N, 93°43'26.98"E

Xinjiang, China

Find: 2019 Mar

Classification: Ordinary chondrite (L5)

History: (Ziyao Wang) Discovered by Wentao Yang (Urumqi) in the desert near Kumtag (Xinjiang Province) in Mar 2019

Physical characteristics: (Ziyao Wang) Three black stones with a total weight of 1020 g were discovered within 1.5 m distance.

/	
3	Petrography . (R. Bartoschewitz <i>Bart</i>) well-defined chondrules (0.3-1.0 mm av 0.6 mm) of
4	various types and chondrule fragments are set in recrystallized matrix. Metal and sulfide
5	nenetration into cracks blackened the meteorite
6	Caashamistry: (D. Dartoschowitz, Part D. Annal and D. Madar, Kiel) Olivina Fa
7	Geochemistry. (R. Bartoschewitz, <i>Bart</i> , P. Appel and B. Madel, <i>Klet</i>) Onvine $Fa_{23.5\pm0}$.
8	$_{5}$ (n=20); pyroxene Fs _{19.1±0.3} Wo _{1.8±1.1} (n=5); chromite CRAL=86,m FFM=/5. Magnetic
9	susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m ³ /kg) = 4.68
10	Classification: Ordinary chondrite (L5, W2)
11	Specimens: 22.6 g on deposit at <i>Kiel</i> , Ziyao Wang holds the main mass, and 101 g with <i>Bart</i> .
12	
13	
14 1 <i>г</i>	Kumtag 059 41°37'8 50"N 93°41'23 56"E
15	Vinijang China
10	Eind: 2012
17 18	$\begin{array}{c} \text{Find. } 2012 \\ \text{Cl} \begin{array}{c} \text{Cl} \text{if } 0 1 \\ \text{if } 1 1 \text{if } (1.5) \\ \end{array}$
10	Classification: Ordinary chondrite (LS)
20	History : (Ziyao Wang) Discovered by the geologist Jianming Wang (Hami/Xinjiang) during
20	field work in the Kumtag Desert in 2012.
27	Physical characteristics: (Ziyao Wang) Black stone of 11.3 kg without fusion crust
23	Petrography : (R. Bartoschewitz, <i>Bart</i>) fractured recrystallized matrix with poorly developed
24	chondrules of various types (0.4-1.5 mm, av. 0.7 mm). Fractures filled with iron hydroxides.
25	Geochemistry: (R. Bartoschewitz <i>Bart</i> P. Annel and B. Mader <i>Kiel</i>) Olivine
26	Equation ($n=21$): purposene Equation ($n=1$): diapoid Energy Wou ($n=1$). Magnetic
27	$r_{a_{23,0\pm0,4}}(n-21)$, pyroxene r s _{19,5} w o _{1,5} (n-1), diopsid Elis ₂ r s ₈ w o ₄₀ (n-1). Wagnetic
28	susceptibility (R. Bartoschewitz, Bart) $\log \chi$ (× 10 × m ³ /kg) – 4.85
29	Classification: Ordinary chondrite (H5, S1, W4)
30	Specimens: 21.3 g at <i>Kiel</i> on deposit, Ziyao Wang holds the main mass and 138 g with <i>Bart</i> .
31	
32	
33	Kumtag 061 41°16'9.20''N, 93°14'14.10''E
34	Xinijang, China
35	Find: 27 Oct 2019
36	Classification: Primitive achondrite (Brachinite)
37	History: The metaorite was discovered by Wang Zijien and Chen Bengli in Kumtag desert
38	during their meteorite hypeting comparison on 27 Oct 2010
39	during then meteorite numing campaign on 27 Oct 2019.
40	Physical characteristics: One stone partly covered with fusion crust. The mass of the
41	meteorite is 2540 g.
42	Petrography: Dunitic rock with subequigranular texture. The dominant mineral of the
45 44	meteorite is olivine (grain size 0.25-1.2 mm). Both pyroxene and plagioclase with grain size
45	varies from several microns to about 0.7 mm. Troilite is dispersed in other grains and gaps
46	among minerials. Anhedral chromite grains with sizes between 0.1 to 0.7 mm.
47	Geochemistry : Olivine Fa _{24.8.26.2} FeO/MnO=65 3-98 7 N=12 [•] low-Ca pyroxene Fs _{27.7}
48	$W_{02} = EP(Mn) = 66.0-69.9$ N=8: Plagioclase $\Delta n_{02} = 2.5$ (FPMA)
49	$29.5 \times 02.1-5.1$, 1 co/1 \times 110 00.0-09.9, 1 \times 0, 1 laglociase $7.1129.2-35.4$ (L1 $\times 17.1$).
50	
51	
52	Kumtag 062 41°31′56.14″N, 93°19′49.80″E
53	Xinjiang, China
54	Find: 2019 Dec 8
55	Classification: Ordinary chondrite (L6)
56	Petrography : The rock is mainly composed of olivine. low-Ca pyroxene. secondary
57	plagioclase Fe-Ni metal and troilite Most of the chondrules have been altered totally. The
58	size of the plagioclase is mainly larger than 10 um. The Fe-Ni metal and troilite have been
59	size of the pragrociase is manny larger than 10 µm. The re-fit metal and tonice have been

nearly totally weathered.

Geochemistry: Olivine Fa_{24,6-25,3}, N=5; Low-Ca pyroxene Fs_{20,5-20,9}Wo_{1,90-2,29}, N=4 (EPMA) 41°17'42.75"N, 93°19'20.36"E Kumtag 063 Xinjiang, China Find: 2019 Oct 27 Classification: Ordinary chondrite (H4) **Petrography**: The rock is mainly composed of olivine, low-Ca pyroxene, secondary plagioclase, Fe-Ni metal, and troilite. Chondrules with well-preserved rims are present. The size of the plagioclase is mainly from 2 to 10 µm. The Fe-Ni metal and troilite have been nearly totally weathered. Geochemistry: Olivine Fa_{17.0-17.7}, N=5; Low-Ca pyroxene Fs_{14.4-15.1}Wo_{0.18-0.26}, N=5 (EPMA) 41°25'57"N, 93°29'37"E Kumtag 064 Xinjiang, China Find: 2020 Mar 27 Classification: Ordinary chondrite (L6) **Petrography**: The rock is mainly composed of olivine, low-Ca pyroxene, secondary plagioclase, Fe-Ni metal and troilite. Most of the chondrules in this rock are altered totally. The size of most plagioclases is larger than 50um. 60%-90% of the Fe-Ni metal and troilite have been weathered. Geochemistry: Olivine Fa_{24.8-25.5}, N=5; Low-Ca pyroxene Fs_{20.8-21.3}Wo_{1.1-1.5}, N=5 (EPMA) 51°02'10.64"N, 19°05'33.31"E Kuźnica Czestochowa, Poland Find: 2008 Classification: Ordinary chondrite (H5) **History**: An anonymous citizen of the Czestochowa city in Poland found the rock during summer, 2008. The village where the meteorite was found is Kuźnica, close to the Kocinką river. The specimen was found in an aeolian sand, where exotic rocks connected with glaciers activity are not known. The suspected meteorite was kept by the owner until autumn 2018. The owner then contacted the owners of the wiki.meteoritica.pl web-page. After the meeting, Jan Woreczko and Wadi bought the meteorite, which is now the part of their collection. **Physical characteristics**: The fusion crust is black to brownish and typical for a chondrite. Regmaglypts are visible. Petrography: Chondrules apparent diameter 150 µm to 1 mm The most common type of chondrules are barred olivine, porphyritic chondrules, and radial pyroxene chondrules. Modal abundances: pyroxene and olivine 71.9 vol%., plagioclase 11.2 vol%, metallic phases 7.0 vol%, troilite 4.2 vol%, Cr-spinel 1.1 vol%, terrestrial weathering products 4.4 vol%. Chlorapatite and merrillite are also present. Geochemistry: Plagioclase Ab_{82.06-78.79}Or_{6.69-4.15}An_{17.61-12.3}; Augite Fs_{9.6}Wo_{44.7}; Troilite: Ni up to 0.01; Kamacite: Ni 6.90-5.83Co0.56-0.43; Taenite: Ni39.4-33.1Co0.09-0.06; Tetrataenite: Ni50.46-49.68, Co up to 0.05. **Classification**: Ordinary chondrite (H5) Specimens: The main mass is 2037 g, in the Jan Woreczko and Wadi private collection. 5.8 g are with K. Skadanek. 21 g and two thin sections are stored by USil (catalog no: WNoZ/Mt/105)

60

2	
3	
4	
5	
6	Lake Gwynne 30°31'57"S, 121°36'27"E
7	Western Australia, Australia
0	Find: 2003
0	Classification: Ordinary abandrita (H5)
9	Classification. Ordinary chonume (HS)
10	History: A single stone was found on the surface.
11	Physical characteristics : Physical characterisitics: A completely crusted stone.
12	Petrography : (A. W. R. Bevan, <i>WAM</i>). Indistinct chondrules are set in a moderately
13	crystalline matrix Chondrule mesostases are devitrified to microcrystalline. Heavily shocked
14	with abundant black voing with mobilized trailite and metal. Oliving shows variable undulase
15	with abundant black venis with mobilized to me and metal. On vine shows variable undulose
16	extinction to strong mosaicism and planar fracturing closer to snock veins.
17	Geochemistry: Mineral compositions and geochemistry: (P. Downes <i>WAM</i>). Mineral
18	compositions as determined by EMP: olivine Fa_{19} ; orthopyroxene $Fs_{16,9}$ Wo _{1,06} ; chromite #Cr
19	85.8: kamacite (average n=8) Ni 6.28%. Co 0.52%. Petrographically and mineralogically
20	similar to Mount Marion found 63.8 km away
21	Charifficiations (115): SA: W1
22	Classification: (H5); 54: W1.
23	Specimens : Type specimens 23.68 g and thin section <i>WAM</i> . Main mass in possession of
24	finder.
25	
26	
27	Longhu 007 38°24'52 48"NI 03°47'56 08"E
28	O: 1 : C1:
29	Qingnai, China
30	Find: 2019 Sept 11
31	Classification: Ordinary chondrite (L~6)
32	History (Zivao Wang) Discovered by Yonglu Ma near Lenghu Town (Oinghai) on 2019
33	Sent 11
34	Develoal abaractoristics: (Zives Wang) Creve brown stone of 605 a without fusion error
35	Physical characteristics. (Ziyao wang) Gray-brown stone of 605 g without fusion crust
36	Petrography : (R. Bartoschewitz, <i>Bart</i>) gray-brown matrix with indistinct chondrules up to 1
37	mm, cracks with evaporation minerals
38	Geochemistry : Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) $\log \chi$ (× 10 ⁻⁹ m ³ /kg) = 4.87
39	Classification. Ordinary chondrite (L~6 W4)
40	Snacimans: 22.1 g on denosit at Kiel Zivao Wang holds the main mass and 57 g with Bart
40	specificitis. 22.1 g on deposit at Kiel, Ziyao wang noids the main mass, and 57 g with buri.
42	
43	
45	Limón Verde 008 22°30.07'S, 68°51.74'W
45	Antofagasta, Chile
45 46	Find: 20 Oct 2019
40	Classification: Carbonaceous abandrite (CK5)
47	Classification. Carbonaceous chonume (CKS)
40	History: The meteorite was found by Mr. M. Nepomiluev during a visual search for
49	meteorites in the Atacama desert.
50	Physical characteristics : Single stone with pebble-like shape has fractured black fusion
51 52	crust. Total mass of the stone is 3 g.
5Z	Petrography : (C. A. Lorenz, <i>Vernad</i>). The meteorite is composed of recrystallized grapular
53	matrix joining the abandrulas abandrula fragments and large mineral grains. The contacts of
54	main x joining the chondrules, chondrule magnetics and large milleral grains. The contacts of
55	cnondrules and matrix are poorly delineated. The meteorite contains olivine, pyroxene,
50	plagioclase, magnetite, spinel, ilmenite, pentlandite and pyrrhotite. Olivine has weak
5/	undulatory optical extinction, irregular and minor planar fractures; magnetite contains fine
58	exsolution lamellae and inclusions of spinel and ilmenite.
59	
60	

> **Geochemistry**: Mineral composition and geochemistry: (T. Kryachko, Technograd, Moscow) Olivine Fa_{30.9±0.26} (N=17), Ni in olivine is 0.36 ± 0.08 wt%; clinopyroxene En_{8.16-23.6}Wo_{6.02-45.6}; rare low-Ca pyroxene En_{25.3}Wo_{0.77}; magnetite (wt%): Cr 6.38±1.35; Ti 0.40±0.18; Al 2.5±0.27 (N=12).

Classification: CK chondrite of type 5 (CK5), shock stage is S2, weathering index is wi-1. **Specimens**: Type specimen of 1.23 g and thin polished section are on deposit in *Vernad*. Mr. M. Nepomiluev holds the main mass of the meteorite.

Liuyuan 001 41°59'28.11"N, 95° 6'59.35"E

Xinjiang, China

Find: 1 May 2019

Classification: Ordinary chondrite (L~5)

History: (Ziyao Wang) Discovered by the geologist Jianming Wang (Hami/Xinjiang) during field work about 160 km SE of Hami on May 1, 2019

Physical characteristics: (Ziyao Wang) broken 51 g individual with fresh thick (~1 mm) fusion crust

Petrography: (R. Bartoschewitz, *Bart*) yellowish brown stained recrystallized matrix with poorly developed chondrules (0.3-2 mm, av. 0.8 mm), metal and sulfide.

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 4.68 **Classification**: Ordinary chondrite (L~5, W1)

Specimens: 10.26 g on deposit at Kiel, Ziyao Wang holds the main mass, and 6 g with Bart.

Los Vientos 355 (LoV 355) 24°39'04.5''S, 069°55'34.2''W

Antofagasta, Chile

Find: 2017 Feb 20

Classification: Ordinary chondrite (H6)

History: Found on granodiorite pediment surface by a six-person team.

Petrography: (J. Gattacceca, *CEREGE*) Highly recrystallized chondrite. Euhedral plagioclase with typical size 100 µm. No relict chondrule was observed in the studied section. Opaque are metal and troilite.

Los Vientos 360 (LoV 360) 24°36.28'S, 69°51.37'W Antofagasta, Chile

Find: 2018 Jan 25

Classification: Ordinary chondrite (LL4-6)

History: Marc Jost found two large pieces and several smaller fragments within 1 m2 area while hunting for meteorites on the desert pavement in the Atacama Desert. The total known weight of the samples collected is 277.5 g.

Physical characteristics: Fragments have rounded, irregularly shaped exteriors showing dark brown contraction-cracked fusion crust. Some fragments contain an orange coating of caliche. The cut face of the type specimen shows the sample has a light-colored, brecciated texture composed of a few chondrules, fragments and angular clasts.

Petrography: Description and classification (A. Love, *App*) Sample is a breccia composed of mm-sized, angular-sub-rounded clasts set within a host of poorly equilibrated chondrules and related mineral debris. Clasts show show a range of petrologic types from 4-6 in addition to a vitrophyric impact melt clast. Chondrules within the type 4 clast contain clinoenstatite and

3 4	some show sulfide rims. Secondary plagioclase in recrystallized clasts has an average grainsize of 77 μ m n=14
5	Geochemistry : (A.Love- <i>App</i>): Olivine (Fa _{27.7\pm0.8} , Fe/Mn=54.0 \pm 0.8 n=8); low Ca pyroxene
7	$Fs_{16,1+7,4}Wo_{0,9+0,6}(Fs_{7,2,24,8}Wo_{0,5-1,5}, n=8).$
2 8	Classification : Ordinary chondrite (LL4-6, C-S3 W1), LL chondrite based on olivine and
0	pyrovene compositions chondrule diameter and magnetic suscentibility. Clasts of type A
10	based on nearly aquilibrated compositions of nursy and type 6 based on recruitallized
10	based on poorly equilibrated compositions of pyroxenes and type 6 based on recrystallized
17	textures and size of secondary plagioclase.
12	Specimens: Marc Jost (SJS) holds the main masses. Several fragments and an end cut
13	weighing 25.57 g and a polished thin section are on deposit at <i>App</i> .
14	
15	
10	$L_{0.0}$ Wigneton 262 (LoV 262) $24029.65025.60052.2212W$
17	Los vientos 303 (Lov 303) 24 38.039 5, 09 52.231 W
10	Antofogasta, Chile
19	Find: 4 Nov 2019
20	Classification: Ordinary chondrite (L5)
21	History : One fragment of meteorite (14 g) was found 4 November 2019 by the KFU
22	meteorite expedition-2019 in Chile (Nurgaliev D Kuzina D Kuzin D Pastukhovich A)
23	Dhysical characteristics: Total mass is 14.0 g. The metaorite has roughly rounded shape
24	Thysical characteristics . Total mass is 14.0 g. The incloud has foughly founded shape.
25	Exterior of the stone is desert polished. The surface and interior of the meteorite is light to
20	dark brown in color due to Fe-hydroxides. No fusion crust was observed.
27	Petrography : (Kseniya Dugushkina, <i>RAS-UB</i>) The meteorite has a dark-brown color. The
20	meteorite consists mainly of a fine-grained, inequigranular, recrystallized matrix; chondrules
29	make up 20% of the volume. Predominant porphyritic olivine (PO) and porphyritic olivine-
21	pyroxene (POP) chondrules Chondrules have vague houndaries Chromite-plagioclase
37	assemblages are found in recrystallized matrix. The assemblages range in size from 10.450
32	assemblages are found in recrystantized matrix. The assemblages range in size from 10-450
34	µm and consist of 0.2-30-µm rounded and eunedral chromite grains surrounded by
35	plagioclase. Heavy oxidation of metal and troilite, 60-95% being replaced (W3). Shock stage
36	is S1.
37	Geochemistry: EDX analyses by Kseniya Dugushkina, <i>RAS-UB</i> . The chondrite paragenesis
38	includes olivine Fa _{25,2+0.8} (N=27), orthopyroxene En _{77,8+0.3} Fs _{20,6+0.3} Wo _{1,6+0.3} (N=22).
30	clinonvroxene En _{47,411} 2Ese $_{0,11}$ Work $_{1,1}$ (N=9) nlagioclase An _{27,010} (N=16) chromite
40	anatite trailite tanite (Ni 27.0.25.0%) and kamacite (Ni 6.2.6.4%). The average
40	apartic, itoline, identic $(14727.3-35.376)$ and Kanache $(1410.3-0.476)$. The average
47	composition of chromite $(N-5)$: Cr ₂ O ₃ 50.0±0.9 wt%, FeO 30.1±1.1 wt%, MgO 2.7±0.4 wt%,
43	$AI_2O_3 6.7 \pm 0.4 \text{ wt\%}, I1O_2 2.5 \pm 0.5 \text{ wt\%}, MnO 0.7 \pm 0.1 \text{ wt\%}, S1O_2 0.5 \pm 0.2 \text{ wt\%}.$
44	Classification: Ordinary chondrite, L5.
45	Specimens : 12.39g 1 sample and 1.61 g cut-off and thin section <i>UrFU</i>
46	
47	
48	Los Vientos 364 (LoV 364) 24º40 108'S 69º53 504'W
49	Antofogosta Chila
50	
51	Find: 2019 Feb 1
52	Classification: HED achondrite (Eucrite)
53	History : Marc Jost found the 180 g sample on February 1, 2019, while he was hunting for
54	meteorites on the desert pavement in Los Vientos dense collection area of the Atacama Desert
55	in Chile.
56	Physical characteristics . Sample is a broken stone ~50% covered by a wind ablated
57	brownish fusion crust. The fusion crust, where present is still shiny and shows some relief
58	flow lines and a faint roll over lin from flight orientation. The subface shows the interview in
59	now miles and a faint fon-over np from hight orientation. The cut face shows the interior is a
60	

breccia dominated by granular material with a couple of fine-grained clasts and a larger clast with a recrystallized texture.

Petrography: Description and classification (A. Love, *App*) Sample is a recrystallized breccia composed of coarse-grained ($\sim 1000 \mu m$), subophitic gabbro and finer-grained ($\sim 500 \mu m$) basaltic clasts set within a recrystallized matrix of related mineral debris. Pyroxenes are exsolved and share 120° grain boundaries with adjacent grains. Additional minerals are: plagioclase, a SiO₂ polymorph, ilmenite and chromite.

Geochemistry: (A. Love, App) Pigeonite (Fs_{58.7±0.2}Wo_{6.2±0.6}, Fe/Mn=30.7±0.3, Mg#37.3±0.2, n=8); high Ca pyroxene (Fs_{29.7±0.4}Wo_{41.7±0.4}, Fe/Mn=31.6±0.7, n=8); plagioclase $(An_{91.3\pm0.3}Or_{0.3\pm0.0}, n=6).$

Classification: HED Achondrite (recrystallized basaltic and gabbroic eucrite breccia). Based on mineral compositions, Fe/Mn ratios and Mg#'s, this sample is composed of equilibrated basaltic eucrite clasts. Textures and grainsizes indicate this is a recrystallized breccia. Low weathering, low shock.

Specimens: Marc Jost (SJS) holds the main mass. A fusion-crusted endcut and partial slice weighing 20.88g and a polished thin section are on deposit at App.

Los Vientos 368 (LoV 368)

24°36.427'S, 69°51.355'W

Antofagasta, Chile

Find: 2018 Jan 5

Classification: Ordinary chondrite (LL4-6)

History: Marc Jost found the sample on January 5, 2018, during a meteorite hunt in the Los Vientos dense collection area of the Atacama Desert in Chile.

Physical characteristics: The sample is a complete stone ~50% covered by a dull black, contraction-cracked, flow-lined fusion crust. The surface of the sample has experienced significant wind damage while in residence on the desert payement. The cut face shows the interior has a brecciated texture composed of chondrules, fresh metal grains and angular clasts.

Petrography: Description and classification (A. Love, *App*) Sample is a breccia composed of chondrules, fragments and sparse recrystallized lithic clasts set within a clastic host. Chondrules average diameter of 754 µm (n=20). Secondary plagioclase has an average length of 50 µm (n=53). Clinoenstatite is present. Type 4 lithic clasts show distinct chondrules and twinned clinoenstatite in a recrystallized matrix. Type 6 clasts are thoroughly recrystallized and lack chondrules. Additional minerals are: phosphates, ilmenite, chromite, high Ca pyroxene, troilite.

Geochemistry: (A.Love-App) Olivine (Fa_{28.0±0.5}, Fe/Mn=52.5±2.1 n=10); low Ca pyroxene (Fs_{18.1±5.0}Wo_{0.9±-0.8} (Fs_{7.6-24.7}Wo_{0.2-2.3}), Fe/Mn32.8, n=11).

Classification: Ordinary Chondrite (LL4-6, C-S3, W2). Based on chondrule size, magnetic susceptibility and compositions of olivine and pyroxene, sample is an LL chondrite. Equilibrated olivine and unequilibrated pyroxenes in host and one clast indicate type 4. Recrystallized texture and grainsize of secondary plagioclase in lithic clasts indicate type 6. May be paired with LV360 (found 450 m away).

Specimens: Marc Jost (SJS) holds the main mass. 2 sliced fragments weighing a total of 23.54 g and a polished mount and thin section are on deposit at App.

Los Vientos 369 (LoV 369)

Meteoritics & Planetary Science

Antofagasta, Chile Find: 21 Feb 2017

24°39'22.1''S, 069°53'09.1''W

58

59

60

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17 18

19

20

21 22 23

24 25

26

27

28

29

30

31 32

33

34

35

36

37

38

-	\$1X-
Los Vientos 370 (LoV 370) 24°36'48.8"S, 69°51'51.1"W Antofagasta, Chile Find: 2019 Nov 12	
Classification: Ordinary chondrite (H5) Petrography : (J. Gattacceca, <i>CEREGE</i>) High porosity (18% by point counting, N=2 under the form of interchondrule pores with tyical size 100-200 μ m, similar to what observed in, e.g., Baszkowka [Krzesinska and Almeida, MAPS 54:54-71].	240) is
Los Vientos 376 (LoV 376) 24°36'41.0"S, 69°51'57.7"W Antofagasta, Chile Find: 2019 Nov 12	
Classification: Ordinary chondrite (L6)	
Petrography : (J. Gattacceca, <i>CEREGE</i>) Shock-darkened ordinary chondrite with pe Fe,Ni metal and troilite veinlets and fizzed grains. Eutectic assemblages of metal and	rvasi 1 troi
Classification : Ordinary chondrite (L6), shock-darkened.	
Los Vientos 379 (LoV 379) 24.703192°S, 69.865290°W Antofagasta, Chile Find: 2006 Sep 28 Classification: Ordinary chondrite (H4)	
Petrography : (J. Gattacceca, <i>CEREGE</i>) Chondrite with packed chondrules with ave apparent diameter $340\pm200 \ \mu m \ (n=50)$. Opaque are metal and sulfides. Some fine-gi silicate clasts are present with typical grain size 50 μm .	rage rainec
Specimens: Type specimen at CEREGE. Main mass with Eric Christensen.	
Los Vientos 383 (LoV 383) 24°41'S, 69°46'W	
Antofagasta, Chile Find: 2019 Nov 11	
Classification: HED achondrite (Howardite)	u fina
grained light-gray interior.	v IIIIC
Petrography : (J. Gattacceca, <i>CEREGE</i>) Brecciated igneous rock with grain size ~40 Main minerals are pyroxene (exsloved) and plagioclase (not maskelynite). This rock both eucrite material with subophitic texture, and diogenite material (more than 10 v Accessory minerals; sulfide chromite ilmenite kamacite silica polymorph)0 μn cont ol%)
Geochemistry : Diogenitic low-Ca pyroxene $Fs_{25.1\pm0.8}Wo_{3.0\pm0.5}$ (n=4). Eucritic low-Ca pyroxene $Fs_{35.7}Wo_{5.5}$ (n=2), $Fs_{59.2\pm1.2}Wo_{5.3\pm1.5}$ (n=3). Ca-pyroxene $Fs_{31.1}Wo_{39.0}$ (n=1). overall FeO/MnO 31.4±2.1 (n=10). Plagioclase $An_{91.0}Ab_{8.8}Or_{0.3}$ (n=2). Olivine $Fa_{58.4}$	a Pyro
Classification : Achondrite (howardite). Likely paired with Los Vientos 383 that was within 100 m.	s four

Los Vientos 384 (LoV 384) 24°41'S, 69°46'W

Antofagasta, Chile Find: 2019 Nov 12

Classification: HED achondrite (Howardite)

Physical characteristics: Single light-gray stone with fusion crust. Cut surface show fine-grained light-gray interior.

Petrography: (J. Gattacceca, *CEREGE*) Brecciated igneous rock with grain size ~400 μ m. Main minerals are pyroxene (exsolved) and plagioclase (not maskelynite). This rock contains both eucrite material with subophitic texture, and diogenite material (more than 10 vol%). Accessory minerals: sulfide, chromite, ilmenite, kamacite, silica polymorph.

Geochemistry: Diogenitic low-Ca pyroxene $Fs_{25.9}Wo_{3.1}$ (n=2). Eucritic low-Ca pyroxene $Fs_{34.8}Wo_{3.1}$ (n=1), $Fs_{57.1\pm1.1}Wo_{7.9\pm2.0}$ (n=3). Ca-pyroxene $Fs_{30.1}Wo_{39.4}$ (n=2). Pyroxene overall FeO/MnO 29.8±1.1 (n=8). Plagioclase $An_{90.5}Ab_{9.3}Or_{0.1}$ (n=2). Chromite Cr# = 0.82 **Classification**: Achondrite (howardite). Likely paired with Los Vientos 383 that was found within 100 m.

Los Vientos 385 (LoV 385)

24°41'S, 69°46'W

Antofagasta, Chile Find: 2020 Apr 04 Classification: Ureilite

Physical characteristics: Dark brown stone.

Petrography: (J. Gattacceca, *CEREGE*) Blocky assemblage of olivine with reduced rims. Grain size ~1.5 mm. Carbon material is present at grain rims. Metal is present along grain rims and as small aligned or isolated μ m-size blebs within olivine. Troilite is present. **Geochemistry**: Olivine Fa_{18.5±0.2}, FeO/MnO = 43.6±2.9, CaO 0.33±0.02 wt%, Cr₂O₃ 0.69±0.03 wt% (n=3). Olivine rim Fa_{11.2} (n=1).

Los Vientos 386 (LoV 386) 24°41'S, 69°46'W

Antofagasta, Chile

Find: 2020 Apr 16

Classification: HED achondrite (Eucrite)

Physical characteristics: Crusted stone. Cut surface shows coarse, gray interior. **Petrography**: (J. Gattacceca, *CEREGE*) Brecciated igneous rock displaying a variety of textures (subophitic, granulitic, etc.). The main lithology has subophitic texture with typical grain size 400 μ m. Main minerals are low-Ca pyroxene (exsolved) and plagioclase. Other minerals: silica polymorph (to 250 μ m), ilmenite, chromite, rare metal, troilite. **Geochemistry**: Pyroxene: low-Ca pyroxene Fs_{60.0±2.3}Wo_{3.6±1.8}, (n=5), augite exsolution Fs_{28.0}Wo_{42.7} (n=2), FeO/MnO = 29.8±2.6 (n=7). Plagioclase An_{88.3}Ab_{11.2}Or_{0.6} (n=3).

Los Vientos 387 (LoV 387) 24°42'21.9''S, 069°54'06.8''W Antofagasta, Chile Find: 2017 Feb 19 Classification: Ordinary chondrite (H4) History: Found on gravel surface by a six-person team.

2	
3	Batuaguanhy: (I. Cattagagag, CEDECE) Chandrite with well delineated should with
4	retrography. (J. Gattacceca, CEREGE) Chondrite with wen-defineated chondrities with
5	average apparent diameter $430\pm210 \ \mu m$ ($n=32$). Opaque minerais are metal and trollite.
6	
7	
8	Loulan Yizhi 028 ~40°26'N, ~89°54'E
9	Xinijang, China
10	Find: 2019
11	Classification: Ordinary chandrite (I.6)
12	Classification. Ordinary chonditic (Lo)
13	History: (Ziyao Wang) Purchased by Ziyao Wang Irom Jianming Wang in Hami/Xinjiang in
14	2019. This meteorite was discovered in the Loulanyizhi dense collection area in 2019.
15	Physical characteristics: (Ziyao Wang) Black-brown stone of 59 g with fusion crust
16	Petrography: (R. Bartoschewitz, Bart) chondrule margins (PP, PO, BO) are difficult to
17	discern in the strongly recrystallized matrix: metal and sulfide mainly show irregular
18	inclusions
19	Coochemistry: (P. Bartoschewitz Bart P. Annel and B. Mader Kigh Olivine
20	Geoenemistry . (R. Dartoschewitz, <i>Dart</i> , 1. Apper and D. Madel, <i>Kiel</i>) Onvine $\Gamma_{2} = (n-10)$, measure $\Gamma_{2} = (n-12)$. We see following An One character CDAL9(
21	$Fa_{24.6\pm0.5}$ (n=19); pyroxene $Fs_{20.4\pm0.3}$ (n=12), wo _{1.5\pm0.3} ; reidspar An ₁₁ Or ₆ ; cnromite CKAL86,
22	FFM88; troilite. Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m ³ /kg) = 4.58.
23	Classification: Ordinary chondrite (L6, S3, W3)
24	Specimens: 12.4 g on deposit at <i>Kiel</i> , Ziyao Wang holds the main mass, and 14 g with <i>Bart</i> .
25	
26	
27	Loulan Vizhi 034 ~40°09'N ~89°39'E
28	Vinijang China
29	Find: 29 Man 2010
30	Find: 28 Mar 2019
31	Classification: Ureilite
32	History: (Ziyao Wang) Purchased by Ziyao Wang from Aikeranmu Jiapaer (Shanshan
33	County, Xinjiang) in Shanshan/Xinjiang in Jul 2019. This meteorite was discovered by
34	Aikeranmu Jiapaer on 28 Mar 2019
35	Physical characteristics : (Zivao Wang) Two brown individuals of 6.2 kg and 850 g without
36	fusion crust
3/	Potrography: (R. Bartoschewitz <i>Bart</i>) silicate grains up to 3 mm in length with triple
38	iunctions, surrounded by graphite
39	Junctions, surrounded by graphite.
40	Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine
41	$Fa_{21.6\pm0.7}$ (n=22); pigeonite $En_{73}Fs_{18}Wo_9$ (n=11). Ni-poor kamacite Ni=0.7, Co=0.3 (n=3).
42	Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) $\log \chi$ (× 10 ⁻⁹ m ³ /kg) = 4.45
43	Classification: Ureilite
44	Specimens : 20.2 g at <i>Kiel</i> . Zivao Wang, Yifeng Duan and Shuming Wang hold the main mass
45	and 166 g with <i>Bart</i>
40	
47	
40	
50	Louian Yizni 035 $\sim 40^{\circ}37$ N, $\sim 89^{\circ}52$ E
51	Xinjiang, China
52	Find: 2018
53	Classification: Ordinary chondrite (H5)
54	History: (Ziyao Wang) Purchased by Ziyao Wang from Wentao Yang in Urumai/Xiniiang in
55	2019 This meteorite was discovered in the Loulanvizhi dense collection area in 2018
56	Physical characteristics : (Zivao Wang) Grav-black stone of 4.7 kg, without fusion grupt
57	Datagraphy (D. Datagahawitz, <i>Daut</i>) well developed abor dealer (0.2.1 mm, ex. 0.5 mm) of
58	retrography. (K. Bartoschewitz, <i>Bart</i>) wen developed chondrules (0.2-1 min, av. 0.5 mm) of
59	various types, chondrule and many mineral tragments set in a brown stained matrix.

Fa_{18,3±0,3} (n=42); pyroxene Fs_{16,1±0,3}Wo_{1,1±0,2} (n=20); chromite CRAL=70-84, FFM=80-89.

Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine

Kamacite Ni=6.8, Co=0.6 (n=2); pyrrhotite Ni=1.4-5.2 (n=11 (all wt%)). Magnetic

susceptibility (R. Bartoschewitz, *Bart*) log χ (× 10⁻⁹ m³/kg) = 4.98 Classification: Ordinary chondrite (L5, S3, W4) Specimens: 20.2 g on deposit at Kiel, Ziyao Wang holds the main mass, and 117 g with Bart. ~40°09'N, ~89°39'E Loulan Yizhi 040 Xinjiang, China Find: 2019 Classification: Ordinary chondrite (LL~6) History: (Ziyao Wang) Purchased by Ziyao Wang from Aikeranmu Jiapaer in Turpan/Xinjiang in 2019, who discovered it in 2019. Physical characteristics: (Ziyao Wang) Brown individual of 515 g without fusion crust Petrography: (R. Bartoschewitz, Bart) light to dark gray-brown recrystallized matrix with indistinct chondrules, metal and sulfide. **Geochemistry**: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 3.23 **Classification**: Ordinary chondrite (LL~6, W2) Specimens: 6 g on deposit at *Kiel*, Jiachang Yu and Ziyao Wang holds the main mass, and 46 g with Bart. Loulan Yizhi 041 ~40°30'N, ~89°40'E Xiniiang. China Find: 2019 Classification: Ordinary chondrite (L~4) History: (Ziyao Wang) Ai Li Kayiti discovered this stone close to Loulan Yizhi in 2019 while he was searching for archaeological objects, and sold it on the Shanshan market to Ziyao Wang and donated it to R. Bartoschewitz. Physical characteristics: Brown stone of 63.1 g. Petrography: (R. Bartoschewitz, Bart) brown recrystallized matrix with distinct chondrules (0.5-1 mm, av. 0.8 mm), vugs filled with evaporation minerals Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) log χ (× 10⁻⁹ m³/kg) = 4.55 **Classification**: Ordinary chondrite (L~4, W4) Specimens: 12.65 g on deposit at *Kiel*, main mass with *Bart*. Loulan Yizhi 044 ~40°30'N, ~89°40'E Xinjiang, China Find: 2019 Classification: Ordinary chondrite (H~4) History: (Ziyao Wang) Ai Li Kayiti discovered this stone close to Loulan Yizhi in 2019 while he was searching for archaeological objects, and sold it on the Shanshan market to Ziyao Wang and donated it to R. Bartoschewitz. **Physical characteristics**: Brown stone of 11.2 g Petrography: (R. Bartoschewitz, Bart) dark gray-brown matrix with distinct chondrules (0.1-0.8 mm, av. 0.4 mm), metal and sulfide Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 5.02 **Classification**: Ordinary chondrite (H~4, W2)

Meteoritics & Planetary Science

59

Loulan Yizhi	046 40°24'16	.59"N, 89°54'51.01'	Έ	
Xinjiang, C	hina	,		
Find: 2019	Jun 28			
Classificati	on: Ordinary chone	lrite (L5, melt brecc	ia)	
Petrography:	The rock is a brec	cia and mainly comp	posed of olivine, low	-Ca pyroxene,
secondary play	gioclase, Fe-Ni me	tal, and troilite. Cho	ndrules are present in	1 the clasts, with
poorly defined	I rims. The clasts a	re surrounded by lig	nter-colored quenche	a melt and igne
50 µm The n	rovene nhenocryst	s in the melt domain	plagiociase ill clasis	us compositiona
zoning Most	of the metal are su	rounded by coating	s of troilite Troilite i	s single crystal o
polvervstallin	e.	rounded by couning.		s single el j stal (
Geochemistry	y: Olivine Fa _{24 3-26}	, N=6; Low-Ca pyre	oxene Fs _{20 4-20} 5Wo _{1 4}	7-1 91, N=5 (EPM
	24.5 20.0		20.7 20.5 1.7	(1.91)
Loulan Yizhi	047 40°0'39.9	3" N, 89°5'57.71"E		
Xinjiang, C	'hina			
Find: 2019	Aug 20	1:000		
Classificati	on: Ordinary chone	$\frac{1}{1}$	wana Ea Wa	N-5 (EDM
Geochemistry	7. Onvine Fa _{24.7-25.2}	, N=5, Low-Ca pyro	0.43	8-1.85, $N-3$ (EP N
Mahadeva	26°28'56.28''N,	86°35'53.17"'E		
Bihar, India	1			
Confirmed	fall: 2019 Jul 22	1. (115)		
Classificati	on: Ordinary chone	$\frac{1}{15} \frac{1}{12} \frac{1}{10} \frac$	0 IST 1.1. 22 2010	in a water lada
HIStory: A SII	igie stone weigning	$2 \sim 15$ kg lell at 14.5	J 151, July 22, 2019, Laukahi Police stati	In a water-lade
district Rihar	state India Farme	rs witnessed a fireh:	all-like object and he	ard a loud sound
with emanatio	ons of smoke from t	the site after the fall	The meteorite was r	ecovered by the
farmers from a	a 1.5 m deep impac	t pit.	The meteorite was r	
Physical char	acteristics: The fu	sion crust is relative	ly smooth, dull brow	n, with regmag
(simple to con	npound). Flow line	s are absent. A few	oroken surfaces of th	e sample expose
interior, with a	abundant grains of	metal/sulfide set in a	a grayish white silica	te matrix.
Petrography:	EPMA and SEM	vere used to examin	e a polished thick see	etion. Most
chondrules are	e in the 250-600 µn	n size range, and are	barred, porphyritic,	and
cryptocrystalli	ne varieties. Moda	l abundances are 40	% olivine, 35% low-	Ca pyroxene, 7
teldspar (make	elynite/ plagioclase	glass), 4% high-Ca	pyroxene, 8% metal	, 4% troilite, 2%
accessories lik	tion is common E	Infinite. The matrix 1	s coarsely crystalline	, and chondrule
an interstitial	non is common. Fo	rules	e common in maurx,	, some occurring
	v. The olivine com	nosition of chondrul	e and matrix are alm	ost indistinguish
(<i>leochemistry</i>	Fa _{10.3} and Fa _{10.23}	mean Fa204 respect	ively) The feldspar i	n matrix is fairl
(Fa _{17,21} mean	1 a 9 3, and 1 a 9-23,	1110 an 1 a _{20.4} , 105peee	Low Common and	nd high Convers
Geochemistry (Fa ₁₇₋₂₁ , mean uniform in con	nposition of Ab _{80 3}	$+1$ $_{0}An_{17}$ $_{1+2}$ $_{4}Or_{2}$ $_{6+0.8}$	Low-Ca pyroxene a	na men-Ca dvic
(Fa ₁₇₋₂₁ , mean uniform in con composition ra	nposition of Ab _{80.3} anges are Fs _{17 6-19 3}	± 1.9 An _{17.1± 2.4} Or _{2.6± 0.8} Wo _{1.6-3.2} and Fs _{6.8} Wo	$D_{46.6}$, respectively. Bu	ilk chemical
(Fa ₁₇₋₂₁ , mean uniform in con composition ra composition S	mposition of $Ab_{80.3}$ anges are $Fs_{17.6-19.3}$ iO ₂ (33.9%), FeO	± 1.9 An _{17.1± 2.4} Or _{2.6± 0.8} Wo _{1.6-3.2} and Fs _{6.8} Wo (35.7%), Al ₂ O ₃ (2.35	$D_{46.6}$, respectively. Bu %), CaO (1.76%), M	Id high-Ca pyrc ilk chemical IgO (22.4%), Na
Geochemistry (Fa ₁₇₋₂₁ , mean uniform in con composition ra composition S (0.97%) and k	mposition of $Ab_{80.3}$ anges are $Fs_{17.6-19.3}$ iO ₂ (33.9%), FeO L_2O (0.10%).	± 1.9 An _{17.1± 2.4} Or _{2.6± 0.8} Wo _{1.6-3.2} and Fs _{6.8} Wo (35.7%), Al ₂ O ₃ (2.35	$D_{46.6}$, respectively. Bu %), CaO (1.76%), M	Id figh-Ca pyrc ilk chemical IgO (22.4%), N

Specimens: 100 g at PRL. Main Mass at Bihar Museum, Patna.

Matarka 33°15'N, 02°45'W

Eastern, Morocco

Confirmed fall: 2018 Jan 5

Classification: Ordinary chondrite (L6)

History: In the evening of January 5, 2018, between 21:00 and 22:00 local time, a bright fireball was witnessed by people in the communities Tendrara, Anoual and Bouarfa in northeastern Morocco. The event was described as of several seconds duration, and with a green color. At least one fragmentation was described by one observer. No sound phenomena were reported. Eyewitness accounts were collected in May and June 2018 by Abdelaziz Mouadine from two eyewitnesses, Ali Atewi (Matarka) and Keser Haron (Talsint). On February 5, one month after the event, a single meteorite was found near Matarka, and subsequently offered to Moroccan meteorite dealers. Eventually it was purchased by Aid Mohamed, and on April 27, 2018, it was sold to M. Jost in Foum Zgouid, near Zagora, Morocco.

Physical characteristics: Single stone with dimensions $7.5 \times 6.5 \times 6.5$ cm and a mass of 538 g. Angular shape with smoothly rounded edges, indicating significant ablation and extended atmospheric flight as individual. The mass displays a fresh appearance and, apart from a small $(1 \times 3 \text{ cm})$ area, is completely covered in fresh fusion crust. One area is rough and shows melting lips along the edge, probably the result of a fragmentation at high altitude. The matrix shows a bright ash-colored appearance. Neither the exterior nor the interior shows oxidation of metal.

Petrography: (B. Hofmann, *NMBE*, J. Pape, *UBE/NMBE*): Strongly recrystallized, chondrules only present as relicts. Mineral grains (except Fe metal) show strong irregular fracturing. Mean size of plagioclase grains is 80-150 μ m. Very minor rust staining around metal grains. Rare small (to 10 μ m) native Cu at troilite-iron boundaries. Troilite shows lamellar twinning and contains inclusions of pentlandite to 20 μ m. Below fusion crust cracks filled with remobilized troilite.

Geochemistry: Electron microprobe analysis (J. Pape, *UBE/NMBE*): olivine Fa_{24,3±0.3} (range Fa_{23,8-24,7}; n=17), pyroxene Fs_{20,5±0.2}Wo_{1.5±0.2} (range Fs_{20,1-20,5}Wo_{1.1-1.7}; n=17), plagioclase An_{10,4±0.3}Or_{5,9±1.1} (range An_{9,9-10.9}Or_{3,9-7,9}; n=13). Cosmogenic radionuclides: (Å. Rosén, Germanium Material and Meteorite Screening Experiment): Gamma-spectroscopy performed in November 2018 showed the presence of the following short-lived radionuclides (dpm/kg as of 5 January 2018): ⁴⁶Sc 5.0±1.5/-1.3, ⁵⁴Mn 44.5±4.7/-3.3, ⁵⁷Co 4.7±0.8/-0.3, ²²Na 71.8±6.0/-5.2, ²⁶Al 34.4±1.7/-3.9 and ⁶⁰Co 0.36±0.07/-0.09. The ²²Na/²⁶Al activity ratio of 2.16(+0.09,-0.08) and activities of ⁵⁴Mn and ⁴⁶Sc are in the range of recent falls. The activity ratio of ⁵⁴Mn/⁴⁶Sc is 8.9. Activity ratios of fresh OC falls are 8.1-17.2 (mean 11.1±2.8, median 10.0, based on 27 analyses in Evans et al. (1982). Assuming the lowest reported initial ratio of 8.1 at the time of fall, the actual fall date would have been just ~16 days before January 5, 2018. The fall must thus very likely have occurred after December 20, 2017, even with this unlikely assumption. Low ²⁶Al and ⁶⁰Co indicate a small pre-atmospheric size. **Classification**: Ordinary chondrite (L6), shock stage S3, no weathering (W0). **Specimens**: 22.2 g and one polished thin sections at *NMBE*. Main mass with Beat Booz.

Mederdra 16.8539806, -15.9293383

Trarza, Mauritania Find: 2019 July 17

55

56 57

58

59

60

1	
2	
3	Classification: Rumuruti chondrite (R4-5)
4	History . The meteorite was found during a search for meteorites
5	Physical characteristics : Complete piece. It has primary fusion crust over 70% of the
6	surface secondary crust over 20%. The fusion crust is brown dark thick well preserved and
7	surface, secondary clust over 20%. The fusion clust is brown dark, thick, wen preserved, and
8	has contraction cracks. The fock measures $12 \times 9.5 \times 7.5$ cm. It weighs 1552 g.
9	Petrography: Breccia containing chondrules and chondrule tragments embedded in a fine-
10	grained yellow-brown matrix. Opaque phases are chromite and FeNi-sulfides. Metallic FeNi
11	has not been found. Low-Ca pyroxene has not been found.
12	Geochemistry : Olivine, Fa _{39,2±0.8} (Fa _{38,1-42,2} ; n=20) Fe/Mn=82±1.5; pyroxene,
13	$F_{s_{11}} = W_{0,45,0+1,1}$ ($F_{s_{10,2-12,7}}W_{0,43,7-46,6}$; n=15): Plagioclase: An _{9,7-11,1} (n=4).
14	Classification: R4-5 S2 W3
15	Specimens: 20 g type specimen in UPC : 20 g L L lorca. The remaining mass in MCM
10	specificitis. 20 g type specificit in 07 C, 20 g J. Elorea. The remaining mass in <i>mem</i> .
17	
10	
20	Meridiani Planum 002 1.951°S, 5.512°W
20	Mars
22	Find: 27 May 2004
23	Classification: Stony iron
24	History : The Mars Exploration Rover Opportunity observed a pebble on sol 121 at the rim of
25	Endurance crater informally named Barberton
26	Physical characteristics : The nebble is angular, with flat facets intersecting at sharp angles
27	and has an indistinct surface texture without visible levering or crustels at the Microscopie
28	Imager goals (Weitz et al. 2010). Longest dimension is 2 em
29	Innager scale (weitz et al., 2010). Longest dimension is 5 cm.
30	Geochemistry: In Pancam, Meridiani Planum 002 exhibits some spectral variation but not
31	enough to adequately determine mineralogy (Weitz et al., 2010). The iron-bearing mineralogy
32	determined with the rover's Mössbauer spectrometer is dominated by ferrous iron in olivine
33	and pyroxene with smaller amounts of metallic iron in the form of kamacite; minor ferric iron
34	is likely a result of alteration on Mars (Schröder et al., 2010; Schröder et al., 2008). The
35	chemical composition determined by the Alpha Particle X-ray Spectrometer (APXS) is rich in
36	Mg and Ni and poor in Al and Ca compared to other material on the plains of Meridiani
3/	Planum and excavated by craters in the area Meridiani Planum 002 has similar Mg/Si Ca/Si
38	and Al/Si ratios to HED meteorites, but is enriched in S/Si. Ee/Si and Ni and depleted in O
<i>4</i> 0	(Sabröder et al. 2010: Sabröder et al. 2008)
40	(<u>Schröder et al., 2010</u> , <u>Schröder et al., 2006</u>).
42	Classification: The HED-like silicate composition with additional metal and sulfide
43	composition links Meridiani Planum 002 with the HED or potentially the mesosiderite group.
44	Meridiani Planum 002 is likely paired with <u>Meridiani Planum 003</u> , <u>004</u> , and <u>005</u> .
45	
46	
47	Meridiani Planum 003 2.049°S, 5.504°W
48	Mars
49	Find: 21 Dec 2006
50	Classification: Stony-iron
51	Unisonication. Stony-non Listony: A field of apphlas was discovered by the Mars Evaluration Dever Opportunity on
52	the Cabe Anonime memory of the rim of Vistoria Creter, A solution Kover Opportunity on
53	the Cabo Anonimo promontory at the rim of victoria Crater. A cobble informally named
54	Santa Catarina (henceforth Meridiani Planum 003) was selected for detailed investigation

between sols 1034 and 1055.

Physical characteristics: Meridiani Planum 003 is a brecciated rock with several subangular clasts clearly visible in images obtained with the rover's Microscopic Imager. Semi-circular cavities and subplanar protrusions with highly irregular edges result in an angular appearance. The rock is ~14 cm in its longest dimension and ~11 cm across.

Geochemistry: The clasts in the rock are spectrally distinct from the rock matrix, with the clasts having a distinct pyroxene absorption in Pancam (Weitz et al., 2010). The iron-bearing mineralogy determined with the rover's Mössbauer spectrometer is dominated by ferrous iron in olivine and pyroxene, with smaller amounts in troilite; minor amounts of ferric iron is likely a result of alteration on Mars (Fleischer et al., 2010b; Schröder et al., 2010). The chemical composition determined with the rover's Alpha Particle X-ray Spectrometer (APXS) is rich in Ni, Mg, and Cr and poor in Al, K, and Ti, compared with other material on the plains of Meridiani Planum and excavated by craters in the area.

Classification: Meridiani Planum 003 has Mg/Si, Ca/Si and Al/Si ratios similar to HED meteorites, but enriched in S/Si, Fe/Si and Ni and depleted in O. Meridiani Planum 003 may thus belong to the HED or mesosiderite group, having HED-like silicate composition with additional metal and sulfide. Several other rocks in the cobble field associated with Meridiani Planum 003 have similar characteristics as shown with Pancam (the rocks informally named Ibirama, Florianopolis, and Lajes; (Schröder et al., 2008) and MiniTES spectra (the rocks informally named Jaocaba, Mafra, and Paloma; (Ashley et al., 2009). The cobble field may represent an accumulation of paired meteorite fragments or a strewn field suggested to be part of the impactor that created Victoria Crater (Schröder et al., 2010; Squyres et al., 2009).

Meridiani Planum 004

2.076°S, 5.512°W

Mars

Find: 18 Nov 2008

Classification: Stony-iron

History: A small rock informally named Santorini (henceforth Meridiani Planum 004) was discovered ~800 m south of Victoria crater, along the Mars Exploration Rover Opportunity's traverse from Victoria crater to Endeavour crater.

Physical characteristics: The angular, cobble-sized rock was investigated between sols 1713 and 1749. The cobble has a massive lithology, with angles and facets at both the cm-scale and in MI images (Weitz et al., 2010). Portions of its surface appear lustrous in MI images. Numerous pits with angular edges are also visible, typically 300-400 um in diameter. Dimensions: approx. 8 × 6 cm.

Geochemistry: The iron-bearing mineralogy determined with the rover's Mössbauer spectrometer is dominated by ferrous iron in olivine and pyroxene, with smaller amounts in troilite; minor ferric iron is likely a result of alteration on Mars (Fleischer et al., 2010b; Schröder et al., 2010). The chemical composition of Meridiani Planum 004 is rich in Ni, Mg, and Cr and poor in Al, K, and Ti compared to other material on the plains of Meridiani Planum and excavated by craters in the area.

Classification: Meridiani Planum 004 has similar Mg/Si, Ca/Si and Al/Si ratios to HED meteorites, but is enriched in S/Si, Fe/Si and Ni and depleted in O (Fleischer et al., 2010b; Schröder et al., 2010). The HED-like silicate composition with additional metal and sulfide composition links Meridiani Planum 004 with the HED or potentially the mesosiderite group. Meridiani Planum 004 is likely paired with Meridiani Planum 002, 003, and 005.

Meridiani Planum 005 2.106°S, 5.520°W

Mars Find: 12 May 2009 Classification: Stony-iron

History: The Mars Exploration Opportunity discovered a cobble on the plains of Merdiani Planum ~3 km south of Victoria crater. The cobble, informally named Kasos (henceforth Meridiani Planum 005), was investigated between sols 1884 and 1890.

Physical characteristics: In MI images, the rock has a glassy, lustrous appearance with few visible grains or clasts, and Pancam color variations are subtle, apparently caused by variations in dust abundance on the surface of the cobble (Weitz et al., 2010). Dimensions: 7×6 cm.

Geochemistry: The iron-bearing mineralogy determined with the rover's Mössbauer spectrometer is dominated by ferrous iron in olivine and pyroxene, with smaller amounts in troilite. Small amounts of metallic iron in the form of kamacite are also present; ferric iron is likely a result of alteration on Mars (Fleischer et al., 2010b; Schröder et al., 2010). The chemical composition is rich in Ni, Mg, and Cr and poor in Al, K, and Ti compared to other material on the plains of Meridiani Planum and excavated by craters in the area.

Classification: Kasos is similar in Mg/Si, Ca/Si and Al/Si ratios to howardites and diogenites, but enriched in S/Si, Fe/Si and Ni and depleted in O (Fleischer et al., 2010b; Schröder et al., 2010). The HED-like silicate composition with additional metal and sulfide composition links Meridiani Planum 005 with the HED or potentially the mesosiderite group. Meridiani Planum 005 is likely paired with Meridiani Planum 002, 003, and 004.

Meridiani Planum 006 2.120°S, 5.521°W

Mars

Find: 31 Jul 2009

Classification: Iron meteorite (IAB complex)

History: Meridiani Planum 006 (informally named Block Island) is an angular boulder discovered as the Mars Exploration Rover Opportunity traversed to Endeavour crater. **Physical characteristics**: Although much of the surface is dust-covered, Pancam images show Meridiani Planum 006 has a metallic surface texture, with numerous hollows and caverns, giving it a pitted appearance. Microscopic Imager (MI) images of smooth areas show slightly raised (resistant) linear features indicative of a Widmanstätten pattern exposed through aeolian scouring (Weitz et al., 2010). Pancam color images reveal spectral heterogeneities across the surface probably representing weathering rinds (Ashley et al., 2011; Weitz et al., 2010); similar ferric oxide coatings are seen in spectra of Meridiani Planum 001 (Heat Shield Rock) (Schröder et al., 2008). Dimensions: $60 \times 40 \times 25$ cm. **Geochemistry**: Mössbauer analyses showed the dominance of metallic iron-nickel phases, with resolvable kamacite and taenite; ferric oxides, cohenite, and schreibersite were also detected by Mossbauer in the coating areas (Fleischer et al. 2010a).

Classification: Iron, Ni, Ge, and Ga abundances abundances measured using the Alpha Particle X-Ray Spectrometer (APXS) are consistent with an origin in the IAB Complex, followed by post-fall water-related oxidation and acidic corrosion (Ashley et al., 2011).

Meridiani Planum 007 2.121°S, 5.532°W

Mars

Find: 1 Oct 2009

Classification: Iron meteorite (IAB complex)

History: The Mars Exploration Rover Opportunity encountered a pitted boulder on sol 2022 along the rover's traverse to Endeavour crater.

Physical characteristics: The rock appears to be extensively weathered, some parts appearing deeply pitted with large spires whereas smooth areas on the surface show an eroded

Widmanstätten pattern (Ashley et al., 2011). Dimensions: $50 \times 24 \times 20$ cm. It would have an approximate mass of ~245 kg if it were a hemisphere, but it is more likely closer to half this mass (Chappelow and Golombek, 2010).

Geochemistry: Mössbauer analyses showed the dominance of metallic iron-nickel phases, with resolvable kamacite and taenite (Fleischer et al. 2010a).

Classification: Iron, Ni, Ge, and Ga abundances measured using the Alpha Particle X-Ray Spectrometer (APXS) are consistent with an iron meteorite in the IAB Complex (Fleischer et al. 2010a; Ashley et al. 2011). Pancam color imaging and APXS composition shows the presence of a dark surficial coating similar in hue, composition, and occurrence to that found on Meridiani Planum 001 (Heat Shield Rock) (Johnson et al., 2009; Fleischer et al., 2010a).

Meridiani Planum 008 2.120°S, 5.533°W

Mars

Find: 14 Oct 2009

Classification: Iron meteorite

History: The Mars Exploration Rover Opportunity encountered a pitted boulder on sol 2034 along the rover's traverse to Endeavor crater.

Physical characteristics: The rock exhibits severe erosion: portions of Mackinac Island are smooth with rounded hollows, but the rock has an excavated interior, with a metal lacework all that remains in some regions.

Classification: Pancam 13-filter images show that Mackinac Island has similar VIS-NIR spectral patterns and morphologies as Block Island and Shelter island, found nearby, suggesting it is an iron meteorite (Ashley et al. 2011). The rover compositional instruments were not used on this rock so the grouping cannot be further defined.

Montes Claros de Goias

15°45'46.53"S, 51°31'1.75"W

Goias, Brazil Find: 2018 Sept

Classification: Ordinary chondrite (H5)

History: (Andre L R Moutinho, Carlo Bottelli) In September 2018, Dione Pantaleão, a manager of the Corrego Mestre farm located ~30 km northwest of Montes Claros de Goias city, Goias State, noticed a large stone in an area without any other rocks. In May 2019, the large and unusually heavy specimen was shown to the farm's owner, Eduardo F. de Melo, who then contacted the meteorite collector Carlo Bottelli to seek assistance in identifying the possible meteorite. In July 2019, Bottelli and Eduardo took the meteorite to an astronomy meeting (5° Encontro Paulista de Astronomia - Sertaozinho, São Paulo), where its authenticity was confirmed by Andre L R Moutinho and Maria Elizabeth Zucolotto.

Physical characteristics: Single stone with a mass of 14.915 kg measuring approximately $31.5 \times 21 \times 16$ cm and showing few regmaglypts. Bulk density 3.589 g/cm3 **Petrography** (M. E. Zucolotto, MN/UFRJ): Two thin sections were analyzed. Chondrules are not well defined. Chondrules, with apparent diameter ranging from 0.5 to 1.5 mm (mean 0.7 mm) set in medium grained matrix consisting of orthopyroxene, olivine, plagioclase and minor clinopyroxene. The major pyroxene crystals in the whole section are orthopyroxenes. Olivine show undulatory extinction, planar fractures and mosaicism. The meteorite shows thin melt veins, some of them with small melt pockets and presence of melted metal and troilite flakes. Opaque phases are represented by Fe,Ni alloys (alpha and gamma) and sulphides both in chondrules and in the matrix. Neumann lines can be seen on many large kamacite crystals and around 20 to 30% of the metal has already been oxidized. This

Running Head

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
75 76	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

generates an orange to brown staining on the silicate phase also many fractures filled with oxide. The presence of feldsphatic, chromite and phosphate grains up to 100 μ m in size. **Geochemistry**: Electron microprobe analysis yielded (A. Tosi, IGEO/UFRJ): olivine Fa_{18.6±0.6} (18), low-Ca pyroxene Fs_{16.7±0.6}En_{82.2±0.7}Wo_{1.1±0.5} (17), high-Ca pyroxene Fs_{12.9±2.8}En_{65.1±0.7}Wo_{22.0±8.1} (5); plagioclase Ab_{80.4±2.1}An_{12.2±1.2}Or_{7.5±1.2} (10), Co in kamacite 0.46±0.02 (30).

Classification: H5, weathering (W2) and moderately shocked (S4) ordinary chondrite. **Specimens**: Main mass with finder; two polished thin sections and 25 g at *MNRJ*; *AMoutinho*: (2 pcs) 110 g; Carlo Bottelli: (4 pcs) 104 g; Rodrigo Guerra (1 pc) 4.8 g

Mount Marion 31°5'53"S, 121°28'42"E

Western Australia, Australia

Find: 2010 Sept

Classification: Ordinary chondrite (H5)

History: A single stone of 38.3 g was found at a depth of 12" in an alluvial wash by a person with a metal detector.

Physical characteristics: Physical characterisitics: A completely crusted stone.

Petrography: (A. W. R. Bevan, *WAM*) Discernable chondrules are set in a moderately crystalline matrix. Chondrule mesostases are devitrified to microcrystalline. Olivine shows undulose extinction to mosaicism and abundant planar fractures. The fabric of the meteorite is pervaded by black shock veins with melted troilite and metal droplets.

Geochemistry: Mineral compositions and geochemistry: (P. Downes, *WAM*) Mineral compositions as determined by EMP: olivine Fa_{19.1}; orthopyroxene Fs_{16.8}Wo_{1.12}; chromite #Cr 86.0; kamacite (average n=7) Ni 6.85%, Co 0.46%. Petrographically and mineralogically similar to <u>Lake Gwynne</u> found 63.8 km away.

Classification: (H5); S4: W1.

Specimens: Type specimen 12.65 g, cut slices 11.45 and 10.86 g, and thin section at WAM.

Mundrabilla 022 30°46'17.99"S, 127°44'32.16"E

Western Australia, Australia

Find: 2013

Classification: Ordinary chondrite (H5)

History: A completely crusted stone weighing 66.53 g was found on open plain by G. Kelahar (Alex Bevan, *WAM*).

Physical characteristics: Physical Characteristics: Elongated, completely crusted stone weighing 66.53 g measuring $5.5 \times 3.5 \times 2.5$ cm (A. Bevan, *WAM*)

Petrography: (L. Daly, L. V. Forman, Curtin). Specimen has readily defined chondrules within a heavily stained dark red matrix. The chondrules include types RP, PO, POP, C and BO, and chondrule mesostases are devitrified. Sizes range from 0.46-2.1 mm with a mean of 1.1 mm (n=13). Mineralogy consists of olivine, pyroxene, chromite, feldspar, as well as some metal and sulphide and Ca-rich phosphate. Olivine and pyroxene have undulose extinction and planar fractures. Some grains exhibit a weak mosaicism. Feldspars are <50 μ m. The metal and sulfide present in the sample have been approximately 20-30% replaced with iron oxide. The sample also contains shock veins with some melt pockets.

Geochemistry: Mineral Compositions and Geochemistry: (L. Daly, L. V Forman, Curtin) EDS, Olivine: $Fa_{20,2\pm2,1}$ (n=12) with some rare fayalitic grains $Fa_{79.6}$. Low Ca pyroxene: $Fs_{17.8\pm0.9}Wo_{1.3\pm0.3}$ (n=8) there are also rare augite $Fs_{16.1}Wo_{20.8}$. Feldspar Ab_{85.1\pm2.1}. **Classification**: Ordinary Chondrite H5, S4, W2 **Specimens**: The *WAM* holds the main mass now 64.32 g and one thin section. Narashino 35°41'26"N, 140°01'51"E Kanto, Japan Confirmed fall: 2020 Jul 2 Classification: Ordinary chondrite (H5) History: At 2:32 am JST on July 2, 2020, a bright fireball was observed over the Kanto region, Japan (see IAU CBET No. 4810 for trajectory and orbital information). At the same time, a detonating sound was heard at an apartment in Narashino city, Chiba prefecture, Japan and in the morning at that day, a 63 g fragment was found in the corridor at the second floor of the apartment (35°41'26"N, 140°01'51"E). On July 4, another 70 g fragment was found in the garden of the apartment (35°42'01"N, 140°02'34"E). Both fragments fit together, thus they were originally one mass (No. 1) and were fragmented on impact. The meteorite was reported to the local museum and then brought to NMNS on July 5, where cosmogenic ⁵²Mn, ⁴⁸V, ⁵⁴Mn, ²²Na and ²⁶Al gamma rays were detected by the pure Ge detector. Several small fragments, 22 g in total were found on a terrace at the fifth floor of the apartment on July 18, thus the total weight of the mass No. 1 is more than 156 g. On July 22, another mass (No. 2) was found in Funabashi city, Chiba about 1 km northeast of the No. 1 site. A roofing tile of an apartment was broken and 2 large fragments, 95 g and 73 g, and 8 small fragments of the meteorite, 184 g in total were found on the ground with roofing tile fragments. Later, 3 small fragments, 10 g in total, were reported, thus the total weight of the mass No. 2 is more than 194 g. Physical characteristics: Two large fragments of mass No. 1 make a rounded cube shape, half covered by the fusion crust. The first fragment is fresh but second one is slightly rusted due to the rainy weather where it was in the garden for 2 days. Two large fragments of mass No. 2 make a heart-shaped, relatively flat mass half covered by fusion crust. The surface without fusion crust of No. 2 is heavily rusted due to the weather outside for 20 days. The cut surface has no apparent rust, however. **Petrography**: Polished thick and thin sections were made from the 70 g fragment of No. 1 and the 73 g fragment of No. 2 at NIPR. Olivine compositions of No. 1 and No. 2 are Fa_{17.0-} _{18.1} (mean=Fa_{17.7}, N=27) and Fa_{16.9-18.0} (mean Fa_{17.6}, N=25), and low-Ca pyroxene compositions are Fs_{15,4-16.5} (mean=Fs_{15.8}, N=13) and Fs_{15,5-16.2} (mean=Fs_{15.8}, N=19), respectively. No presence of plagioclase >50um indicates that the petrologic type is 5. Geochemistry: Using small fragments from the 63 g No. 1 fragment and the 73 g No. 2 fragment, rare gas analyses were made at KyuU. The K-Ar gas retension age is about 4.5 Ga (assuming the K content of 780 ppm). Classification: H5 **Specimens**: *NMNS*: 63g for Type specimen; *NIPR*: 2 polished thick and thin sections

North Edwards 35.055° N, 117.811° W

California, United States

Find: 1976

Classification: Ordinary chondrite (L6)

History: The meteorite was found by Mike Brady in 1976 close (within about 50 m east) to Claymine Road, about 4 km NNE of the community of North Edwards, Kern County, California. The discovery location is no longer known to better than a distance of ± 200 m; the location is within an unnamed cluster of small volcanic domes.

Meteoritics & Planetary Science

53

54

55 56

57

58

Physical characteristics: The mass as received at *UCLA* was 2438 g. Two medium-size pieces had previously been removed thus the original mass was about 3 kg. **Petrography**: The meteorite is highly recrystallized; plagioclase grains are 40-100 μ m in size. Ca-pyroxene has a composition of Fs_{7.9±0.7} Wo_{44.7±0.8} (n=4).

Northeast Africa 009 (formerly Northwest Africa 13243) (NEA 009)

Libya

Purchased: 2020 Jan

Classification: Martian meteorite (Shergottite)

History: A group of 20 similar-appearing stones found together in Libya was purchased by Mbark Arjdal in January 2020 from a Libyan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Relatively fine grained (mean grainsize 0.5 mm) aphyric assemblage of predominantly zoned clinopyroxene and maskelynite with accessory merrillite, ilmenite, ulvöspinel, pyrrhotite, alkali feldspar and rare silica polymorph. Sparse pockets of vesicular shock glass are present; in thin section these appear pale brown with a swirly texture and contain opaque inclusions.

Geochemistry: Subcalcic augite (Fs_{20.6-25.7}Wo_{35.9-27.9}, FeO/MnO = 28-30, N = 4), pigeonite (Fs_{35.9-27.9}Wo_{12.8-17.3}, FeO/MnO = 35-38, N = 6), maskelynite (An_{56.8-60.6}Or_{1.7-1.1}, N = 4). **Classification**: Shergottite (aphyric).

Specimens: 22.7 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northeast Africa 010 (NEA 010)

Libya

Purchased: 2019 Jan

Classification: Rumuruti chondrite (R3-5)

History: Purchased by Mbark Arjdal in November 2019 from a Libyan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Relatively small separated, wellformed, relatively unequilibrated chondrules (apparent diameter $650\pm330 \mu m$, N = 24), plus some equilibrated type 4 and 5 clasts and olivine mineral fragments, are set in a finer grained matrix (orange in thin section) containing Ti-Al chromite and stained pentlandite. Metal is apparently absent.

Geochemistry: Olivine in chondrules (Fa_{32.1±11.5}, range Fa_{10.1-39.6}, N = 10), low-Ca pyroxene (Fs_{18.8±9.9}Wo_{1.2±0.5}, range Fs_{8.0-29.9}Wo_{0.5-1.7}, N = 5), subcalcic augite (Fs_{7.4}Wo_{31.3}), augite (Fs_{10.6}Wo_{45.6}), olivine in Type 4 clast (Fa_{39.4±0.4}, range Fa_{39.1-39.7}, N = 2).

Classification: R chondrite (Type 3-5 breccia).

Specimens: 43.4 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northeast Africa 011 (NEA 011)

Libya

Purchased: 2020 Jan

Classification: Martian meteorite (Shergottite)

History: Purchased by Mbark Arjdal in January 2020 from a Libyan dealer.

Physical characteristics: Two nearly identical regmaglypted stones (total weight 161.2 g) completely coated by black fusion crust. The fresh interiors are overall gray in color, and

exhibit elongate, light-gray pyroxene grains, glassy maskelynite and sparse black, glassy shock pockets.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) This aphyric specimen is notable for the large differences in grainsize among the constituent minerals. The major components are zoned clinopyroxene (as elongate prismatic grains up to 1.8 mm long) interspersed with thin lath-like maskelynite grains (up to 0.5 mm long), together with much finer grained accessory merrillite, ilmenite, titanomagnetite, pyrrhotite and interstitial K-rich alkali feldspar.

Geochemistry: Pigeonite (Fs_{28.4-31.8}Wo_{10.4-12.1}, FeO/MnO = 28, N = 2), subcalcic augite (Fs_{21.7-25.5}Wo_{35.3-28.7}, FeO/MnO = 27-30, N = 2), ferroan pigeonite rims (Fs_{53.5-69.1}Wo_{22.3-14.3}, FeO/MnO = 37-42, N = 4), maskelynite (An_{44.0-47.0}Or_{1.9-3.2}, N = 3), alkali feldspar (Or_{68.5}Ab_{26.4}An_{5.2}).

Classification: Shergottite (aphyric).

Specimens: 21.1 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northeast Africa 012 (NEA 012)

Libya

Purchased: 2019 Aug

Classification: Ordinary chondrite (L3)

History: Purchased by Mbark Arjdal in August 2019 from a Libyan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Closely-packed, well-formed chondrules (apparent diameter $800\pm660 \mu m$, N = 23) are set in a sparse matrix containing altered kamacite, taenite, chromite, troilite and chlorapatite.

Geochemistry: Olivine (Fa_{19.6±11.4}, range Fa_{4.0-29.4}, N = 4; Cr₂O₃ in ferroan examples 0.03-0.10 wt.%, mean 0.05±0.02 wt.%, N = 10), low-Ca pyroxene (Fs_{12.5±6.6}Wo_{1.1±1.2}, range Fs_{3.8-21.7}Wo_{0.2-3.1}, N = 5), pigeonite (Fs_{16.7±1.7}Wo_{6.1±0.8}, range Fs_{15.5-17.9}Wo_{5.5-6.7}, N = 2), augite (Fs_{1.8}Wo_{49.2}; Fs_{5.5}Wo_{39.3}; Fs_{12.1}Wo_{34.9}, N = 3). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.63.

Classification: Ordinary chondrite (L3).

Specimens: 21.7 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northeast Africa 013 (NEA 013)

Northeast Africa Purchased: 2020 May

Classification: Diogenite-melt rock

History: Purportedly found in Libya, purchased by Rachid Chaoui in May 2020 from a Libyan dealer, and acquired in July 2020 by Terry *Boudreaux*.

Physical characteristics: A single pale greenish stone (3250 g) partially coated by patchy black fusion crust. The fresh interior appears uniform and very fine grained with sparse small vesicles and tiny grains of shiny metal.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Very fresh igneous-textured specimen with sporadic small spherical vesicles (up to 0.8 mm in diameter). Composed predominantly of plumose arrays of thin laths of zoned pyroxene (up to 1.9 mm long) intergrown with calcic plagioclase. Subhedral grains of unzoned olivine (containing sparse melt inclusions) and chromite are associated with pyroxene, which exhibits compositional zoning from orthopyroxene cores to pigeonite rims. Accessory phases are silica polymorph, FeNi metal (kamacite, taenite) and troilite.

Geochemistry: Orthopyroxene cores ($Fs_{17.6-18.5}Wo_{0.9-1.1}$, FeO/MnO = 27-31, N = 3), pigeonite rims ($Fs_{36.7-38.5}Wo_{8.4-11.1}$, FeO/MnO = 31-32, N = 3), olivine ($Fa_{33.9-39.3}$, FeO/MNO = 47-50, N = 4), plagioclase ($An_{87.6-94.2}Or_{0.7-0.2}$, N = 4).

Classification: Diogenite (melt rock, olivine-plagioclase-bearing, vesicular).

Specimens: 30.8 g including one polished endcut and one polished thin section at *UWB*; main mass with Mr. T. *Boudreaux*.

Northeast Africa 014 (NEA 014)

Libya

Purchased: 2020 Aug

Classification: Lunar meteorite (feldspathic breccia)

History: Purchased by Aziz Habibi in August 2020 from a Libyan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of mineral clasts of anorthite, relatively abundant exsolved pigeonite and subordinate olivine set in a very fine grained matrix (sparsely vesicular) containing ilmenite, aluminous chromite, troilite and taenite. Pyroxene grains consist of augite lamellae within orthopyroxene or pigeonite hosts. **Geochemistry**: Orthopyroxene host (Fs_{28.4-31.0}Wo_{3.1-3.3}, FeO/MnO = 54-61, N = 3), pigeonite host (Fs_{36.7}Wo_{9.3}, FeO/MnO = 65), pigeonite lamella (Fs_{27.2}Wo_{21.5}, FeO/MnO = 67), augite lamellae (Fs_{13.1-19.1}Wo_{40.1-40.9}, FeO/MnO = 50, N = 2), olivine (Fa_{21.0-23.5}, FeO/MnO = 81-103, N = 3), anorthite (An_{95.6-97.1}Or_{0.1}, N = 3).

Classification: Lunar (feldspathic breccia, olivine-poor).

Specimens: 20.5 g including one polished mount at UWB; remainder with Mr. A. Habibi.

Northeast Africa 015 (NEA 015)

Libya

Purchased: 2020 Dec

Classification: Martian meteorite (Shergottite)

History: Purportedly found in Libya, purchased by Mohammed *Hmani* in November 2020 from a Mauritanian dealer, and subsequently acquired by Edwin Thompson.

Physical characteristics: An elongate stone (610 g) with flat sides and rounded edges, partially covered by small patches of black fusion crust. Exterior surfaces exhibit dark brown grains set in a fine grained, pale brown groundmass. The fresh interior exhibits larger brown grains within a pale greenish-gray groundmass containing obvious glassy maskelynite.
Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Fresh porphyritic igneous rock containing phenocrysts of olivine (up to 2.2 mm) in a groundmass of zoned subcalcic augite and maskelynite plus accessory chromite (with variable Ti content), merrillite, chlorapatite, pyrrhotite and pentlandite. Secondary calcite, gypsum and halite are present in microfractures, some of which cut the fusion crust.

Geochemistry: Olivine (Fa_{30.9-38.7}, FeO/MnO = 50-55, N = 6), subcalcic augite (Fs_{7.4-12.4}Wo_{24.6-30.7}, FeO/MnO = 29-32, N = 6), maskelynite (An_{62.2-63.1}Or_{0.5}, N = 2). **Classification**: Shergottite (olivine-phyric).

Specimens: 24.1 g including one polished thin section and one polished thick section at *UWB*; remainder with Paul Stahura, Sammamish, WA.

Northwest Africa 1281 (NWA 1281)

(Northwest Africa) Purchased: 2002 Classification: HED achondrite (Diogenite, polymict)

History: Purchased by Adam and Greg *Hupe* in 2002 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Very fresh breccia composed predominantly of angular mineral clasts of diogenitic orthopyroxene (of several different compositions with widely different Mg/Fe ratios), olivine, calcic plagioclase, chromite, silica polymorph, pigeonite and subcalcic augite, plus sparse lithic clasts of quench-textured eucrite, set in a fine grained matrix containing ilmenite and Ni-poor metal. Eucritic clasts consist of acicular skeletal grains of pigeonite and very fine grained, indeterminate opaque mesostasis. **Geochemistry**: Diogenitic orthopyroxene (Fs_{15.2-18.4}Wo_{1.2-1.4}, N = 6; Fs_{22.1-23.4}Wo_{2.4-3.0}, N = 2; Fs_{28.0}Wo_{3.4}; FeO/MnO = 27-31), pigeonite (Fs_{48.9}Wo_{7.7}; Fs_{56.2}Wo_{9.5}; FeO/MnO = 27-29), subcalcic augite (Fs_{44.4-47.3}Wo_{25.5-29.8}, N = 2; Fs_{61.8}Wo_{25.9}; FeO/MnO = 29-34), olivine (Fa_{32.8-40.4}, FeO/MnO = 54-64, N = 4), plagioclase (An_{80.8-94.1}Or_{0.4-0.1}, N = 6). **Classification**: Diogenite (polymore)

Classification: Diogenite (polymict breccia).

Specimens: 22.8 g at *UCLA*; 0.95 g including one polished thin section at *PSF*; remainder with A. and G. *Hupe*.

Northwest Africa 1286 (NWA 1286)

(Northwest Africa)

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17 18

19

20 21 22

23

24 25

26

27

28

29

30

31 32

33

34

35

36 37 38

39 40

41

42

43

44

45

46

47 48

49

50

51

52

57

58

59

60

Purchased: 2002

Classification: Ordinary chondrite (L4)

History: Purchased by Adam and Greg *Hupe* in 2002 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and apatite. **Geochemistry**: Olivine (Fa_{24,5±0,1}, range Fa_{24,3-24,7}, N = 6), low-Ca pyroxene

 $(Fs_{21,0\pm0,2}Wo_{1,2\pm0,1}, range Fs_{20,6-21,2}Wo_{1,1-1,2}, N = 5).$

Classification: Ordinary chondrite (L4).

Specimens: 21 g at *UCLA*; 1.7 g including one polished thin section at *PSF*; remainder with A. & G. *Hupe*.

Northwest Africa 1458 (NWA 1458)

(Northwest Africa)

Purchased: 2002

Classification: Ordinary chondrite (H4)

History: Purchased by Adam and Greg *Hupe* in 2002 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, Brown U) Well-formed, relatively small chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and apatite.

Geochemistry: Olivine (Fa_{19.6±0.8}, range Fa_{19.3-21.1}, N = 5), low-Ca pyroxene

 $(Fs_{17.3\pm0.9}Wo_{1.5\pm0.1}, range Fs_{16.3-17.3}Wo_{1.2-1.6}, N = 5).$

Classification: Ordinary chondrite (H4).

Specimens: 20 g at *UCLA*; 1.7 g including one polished thin section at *PSF*; remainder with A. & G. *Hupe*.

Northwest Africa 2628 (NWA 2628)

(Northwest Africa)

Purchased: 2004

Classification: Carbonaceous chondrite (CK3)

History: Purchased by Mike Farmer in 2004 from a dealer in Erfoud, Morocco.
Petrography: (A. Irving and S. Kuehner, UWS; T. Bunch and J. Wittke, NAU; P. Carpenter, WUSL) Separated well-formed, granular unequilibrated chondrules (apparent diameter 980±280 µm, N = 20) containing more magnesian cores are set in a fresh matrix containing Cr-magnetite.
Geochemistry: Olivine (Fa_{20.3±13.3}, range Fa_{0.3-33.2}, N = 11), orthopyroxene

 $(Fs_{13.8\pm11.4}Wo_{1.0\pm0.1}, range Fs_{0.9-22.5}Wo_{1.0-0.9}, N = 3)$, subcalcic augite $(Fs_{1.0}Wo_{33.9})$, diopside $(Fs_{1.0}Wo_{49.8})$, augite $(Fs_{13.9}Wo_{41.5})$, magnetite $(0.6-2.9 \text{ wt.}\% \text{ Cr}_2\text{O}_3, N = 3)$, plagioclase $(An_{21.7}\text{Or}_{3.1})$.

Classification: Carbonaceous chondrite (CK3).

Specimens: 26.2 g including one polished thin section at *PSF*; remainder with Mr. M. Farmer.

Northwest Africa 2682 (NWA 2682)

(Northwest Africa)

Purchased: 2004

Classification: Ordinary chondrite (L3-6)

History: Purchased by Nelson Oakes in 2004 from a dealer in Erfoud, Morocco.

Petrography: (A. Irving and S. Kuehner, UWS; T. Bunch and J. Wittke, NAU; P.

Carpenter, WUSL) Closely-packed, well-formed chondrules (apparent diameter 820±300 µm, N = 20) plus some angular clasts (Type 6, equilibrated with rare remnant chondrules) are set in a finer grained matrix containing stained metal.

Geochemistry: Olivine (Fa_{27,9±9.3}, range Fa_{8,7-36.9}, N = 8; Cr₂O₃ in ferroan examples 0.05-0.69 wt.%, mean 0.21±0.25 wt.%, N = 7), orthopyroxene (Fs_{10.1±10.3}Wo_{0.7±0.5}, range Fs_{3.4-21.9}Wo_{0.4-1.2}, N = 3), clinopyroxene (Fs_{10.7}Wo_{37.5}; Fs_{7.9}Wo_{46.3}; N = 2), olivine in Type 6 lithic clast (Fa_{26.1±0.1}, range Fa_{26.0-26.2}, N = 2).

Classification: Ordinary chondrite (L3-6). Affinity to L chondrites is established from olivine composition in equilibrated lithic clasts.

Specimens: 47.4 g including one polished thin section at *PSF*; remainder with Mr. N. Oakes.

Northwest Africa 2696 (NWA 2696)

Northwest Africa

Purchased: 2004

Classification: HED achondrite (Eucrite, brecciated)

History: Purchased by Greg Hupé in 2004 from several Moroccan dealers.

Petrography: (A. Irving, *UWS* and J. Boesenberg, Brown U) Breccia containing some fineto medium-grained eucrite clasts plus abundant related angular crystalline debris. Minerals are exsolved pigeonite, calcic plagioclase, unexsolved pigeonite, subcalcic augite, ilmenite, silica, chromite, altered Ni-free metal and troilite. No olivine or diogenitic orthopyroxene was found in the studied thin section.

Geochemistry: Low-Ca pyroxene host (Fs_{55.9-57.8}Wo_{2.6-4.6}, FeO/MnO = 27-29, N = 7), augite exsolution lamellae (Fs_{26.5-29.2}Wo_{38.2-41.2}, FeO/MnO = 26-28, N = 2), pigeonite (Fs_{44.6-}

 $_{48.8}$ Wo_{19.5-14.7}; Fs_{54.0}Wo_{7.6}; FeO/MnO = 25-29, N = 6), subcalcic augite (Fs_{39.7-42.0}Wo_{27.0-24.0},

FeO/MnO = 25-29, N = 2), plagioclase (An_{76.8-93.1}Or_{1.9-0.5}, N = 5).

Classification: Eucrite (breccia).

Specimens: 28 g including one polished thin section at *PSF*; remainder with Mr. G. Hupé.

Northwest Africa 3144 (NWA 3144) Northwest Africa Purchased: 2004 Aug

Classification: Carbonaceous chondrite (CV3)

History: Purchased by Greg Hupé in August 2004 from a dealer in Rissani, Morocco. **Physical characteristics**: Very fresh subspherical stone (1053 g) with complete black fusion crust. Relatively large chondrules and white to pale pink CAI are present in a very fine grained dark matrix.

Petrography: (A. Irving and S. Kuehner, *UWS*; J. Boesenberg, Brown U) Well-formed chondrules (mostly granular but also some BO, apparent diameter $880 \pm 330 \,\mu\text{m}$, N = 25), relatively abundant amoeboid to irregularly-shaped, very fine grained CAI and sparse olivine-rich aggregates are set in a fine grained matrix (~20 vol.%, sepia brown in thin section). Olivine-rich chondrules and olivine-rich aggregates consist mainly of forsterite with minor enstatite, taenite, Cr-bearing magnetite (commonly associated with metal), troilite, pentlandite and rare copper metal (containing Mo and Sn). One barred olivine chondrule is surrounded by an olivine aggregate rim with embedded chondrule fragments. Several large CAI appear to be fluffy type A with cores composed of Mg-Al spinel (with variable Fe contents), grossular garnet, perovskite, fassaitic clinopyroxene, anorthite, sodalite (some Ca-bearing), and minor anorthoclase, ilmenite and Ni-Zn metal. Wark-Lovering rims on CAI consist of gehlenite, anorthite, spinel, olivine (~Fa₆₀), andradite garnet, hedenbergite, diopside, kirchsteinite(?) and awaruite (with measurable Pt and Rh).

Geochemistry: (J. Boesenberg, Brown U) Olivine (Fa_{22.9±19.3}, range Fa_{0.5-45.7}, N = 8), enstatite (Fs_{2.3±2.0}Wo_{2.6±1.4}, rangeFs_{1.1-4.6}Wo_{1.0-3.4}, N = 3), subcalcic augite (Fs_{4.5}Wo_{30.7}), plagioclase (An_{87.8-93.8}Or_{0.0}, N = 4).

Classification: Carbonaceous chondrite (CV3).

Specimens: 20 g at *AMNH*; 1.6 g at *PSF* converted to a polished thin section; one polished thin section at *UWB*; remainder with Mr. G. Hupé.

Northwest Africa 4295 (NWA 4295)

Morocco

Purchased: 2006 Mar

Classification: Enstatite chondrite (EL melt rock)

History: Purchased by Adam *Hupe* in March 2006 from a dealer in Erfoud, Morocco. A small specimen was sold to *PSF* in 2007.

Physical characteristics: Five similar stones (total weight 312 g) consisting of aggregates of small whitish grains crosscut by distinctive thin compression fractures filled with terrestrial limonite.

Petrography: (A. Irving, *UWS* & J. Boesenberg, *BrownU*) All five stones were examined petrographically. They are fine grained aggregates of predominantly enstatite (mostly as prismatic grains) with accessory sodic plagioclase, iron hydroxides (after primary metal), troilite, daubreelite and schreibersite. No fresh metal was found in the studied thin sections. Rare but clearly defined, spherical RP chondrules are present, and there are subparallel veinlets of secondary iron hydroxides and some calcite.

Geochemistry: Enstatite (Fs_{0.5±0.2}Wo_{1.4±0.0} (range Fs_{0.3-0.8}Wo_{1.4}, N = 6), plagioclase (Ab_{80.5-81.8}An_{15.6-14.2}Or_{4.0-3.4}, N = 5).

Classification: EL3-melt rock. Paired with <u>Al Haggounia 001</u> and related material.
Specimens: 20.5 g including one polished thin section at *UWB*; 9.04 g at *PSF*; remainder with *AHupé*.

2	
3 ₄	
4 E	
с С	Northwest Africa 4454 (NWA 4454)
7	(Northwest Africa)
0	Purchased: 2006 Feb
0	Classification: Ordinary chandrite (146)
9 10	Utassification. Ordinary chondrifte (110)
10	History : Purchased by Nelson <i>Oakes</i> in February 2006 from a dealer in Erroud, Morocco.
17	Petrography : (A. Irving, UWS and J. Boesenberg, BrownU) The specimen is almost entirely
12	recrystallized with rare chondrule remnants. One very large, well-formed BO chondrule
13	(apparent diameter 3.5 mm) is present in the studied thin section. Accessory phases are
15	stained metal, chlorapatite, chromite and troilite.
15	Geochemistry . Olivine (Falo 410.1) range Falo 2.105 $N = 7$) low-Ca pyroxene
10	(Figure 6. Work on range Figure 1. Work of $N = 8$)
18	$(1 S_{16.9\pm0.2} \times O_{1.3\pm0.2}, 1 ang C 1 S_{16.7-17.4} \times O_{0.9-1.5}, 1 = 0).$
10	Classification: Ordinary chondrite (Ho).
20	Specimens : 22 g including one polished thin section at <i>PSF</i> ; remainder with Mr. N. <i>Oakes</i> .
21	
22	
23	Northwest Africa 4837 (NWA 4837)
24	(Northwest Africa)
25	Purchased: 2006
26	Classification: Carbonacious abondrita (CV2)
27	Uniterry Denshared her Mansin Cimela in 2006 from a dealer in Enford Montered
28	History : Purchased by Marcin Cimata in 2006 from a dealer in Erfoud, Morocco.
29	Petrography : (A. Irving, UWS and J. Boesenberg, BrownU; T. Bunch and J. Wittke, NAU)
30	Well-formed chondrules (apparent diameter 980 \pm 340 μ m, N = 23) and CAI (both very fine
31	grained and relatively coarse grained) are set in a fine grained matrix (~50 vol.%, deep red-
32	brown in thin section).
33	Geochemistry . Olivine (Fa _{15,2+17,2} , range Fa _{2,2,45,7} N = 9) low-Ca pyroxene (Fs _{1,0+0,2} Wo _{1,0+0,1})
34	range F_{S_0, T_1} , W_{O_0, T_1} , $N = 3$) subcalcic augite (F_{S_0} , W_{O_0, T_1}) dionside (F_{S_1} , W_{O_0, T_1})
35	Classification: Carbonacous chondrite $(CV2)$
36	Classification. Carbonaccous choncine ($(\sqrt{5})$).
37	Specimens : 20.2 g including one polished thin section at <i>PSF</i> ; remainder with Mr. M.
38	Cimała.
39	
40	
41	Northwest Africa 4839 (NWA 4839)
42	(Northwest Africa)
43	Purchased: 2006
44	Classification: Carbonacoous chondrite (CV2)
45	Classification. Carbonaceous chondrine (CVS)
46	History : Purchased by Marcin Cimała in 2006 from a dealer in Erfoud, Morocco.
47	Petrography : (A. Irving, UWS and J. Boesenberg, BrownU; T. Bunch and J. Wittke, NAU)
48	Well-formed chondrules (apparent diameter $980\pm450 \ \mu m$, N = 24) and very fine grained CAI
49	are set in a fine grained opaque matrix (~35 vol.%, black in thin section).
50	Geochemistry : Olivine (Fa _{18,7+17,3} , range Fa _{0,5-45,7} , N = 9), low-Ca pyroxene (Fs _{1,5+0,5} Wo _{0,7+0,2} ,
51	range Fs _{1,1-2,1} Wo _{0,5-0,9} , N = 3), dionside (Fs _{1,0+0,1} Wo _{44,7+2,0} , range Fs _{0,0,1,1} Wo _{42,2,46,1} , N = 2)
52 52	Classification: Carbonaceous chondrite (CV3)
53 E4	Snacimans: 6.0 g including one polished thin section at DCE: remainder with Mr. M. Cimele
54 55	Specimens. 0.0 g including one ponsiled unit section at <i>FSF</i> , remainder with MI. MI. Clillata.
55 56	
50 57	
51	Northwest Africa 5147 (NWA 5147)
50	(Northwest Africa)
5 9	Purchased: 2007

Classification: HED achondrite (Howardite)

History: Purchased by Terry Boswell in 2007 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*; T. Bunch and J. Wittke, *NAU*) Breccia composed of sparse lithic diogenite and eucrite clasts plus related angular mineral fragments in a finer grained matrix. The proportion of diogenitic material is 30-40 vol.%. Minerals include diogenitic orthopyroxene, exsolved pigeonite, unexsolved pigeonite, calcic plagioclase, ferropigeonite, silica polymorph, fayalite, chromite, troilite, ilmenite and Ni-free metal. Lithic eucrite clasts have intersertal, diabasic and microgabbroic textures. **Geochemistry**: Diogenitic orthopyroxene (Fs_{23.6-32.1}Wo_{1.9-3.6}, FeO/MnO = 25-31, N = 5), pigeonite (Fs_{39.3-50.5}Wo_{11.3-21.8}, FeO/MnO = 23-31, N = 6), orthopyroxene host (Fs_{54.8-60.1}Wo_{1.5-}

 $_{4,1}$, FeO/MnO = 29-31, N = 8), clinopyroxene exsolution lamellae (Fs_{24,6-24,9}Wo_{42,0-43,8},

FeO/MnO = 29-30, N = 2), ferroan orthopyroxene ($Fs_{37.5}Wo_{2.1}$, FeO/MnO = 30),

ferropigeonite (Fs_{76.3}Wo_{17.5}, FeO/MnO = 33), fayalite (Fa_{75.8}, FeO/MnO = 39), plagioclase (An_{87,7-94.4}Or_{0.4-0.1}, N = 8).

Classification: Howardite.

 Specimens: 20.9 g including one polished thin section at *PSF*; remainder with Mr. T. Boswell.

Northwest Africa 5150 (NWA 5150)

(Northwest Africa)

Purchased: 2007

Classification: Ordinary chondrite (H7)

History: Purchased by Terry Boswell in 2007 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*; T. Bunch and J. Wittke, *NAU*) The specimen has a triple grain junction texture and is completely devoid of chondrules. Accessory phases include abundant altered kamacite, troilite and rare chromite. Thin cross-cutting veinlets of secondary goethite are present.

Geochemistry: Olivine (Fa_{18.7 \pm 0.4}, range Fa_{18.4-19.1}, N = 9), low-Ca pyroxene

 $(Fs_{16.4\pm0.2}Wo_{3.7\pm0.4}, range Fs_{16.2-16.7}Wo_{3.2-4.0}, N = 4).$

Classification: Ordinary chondrite (H7).

Specimens: 26.3 g including one polished thin section at *PSF*; remainder with Mr. T. Boswell.

Northwest Africa 5335 (NWA 5335)

(Northwest Africa)

Purchased: 2008

Classification: Mesosiderite

History: The meteorite was purchased from a meteorite dealer in Besancon, France. **Physical characteristics**: Many brownish fragments without fusion crust.

Petrography: The meteorite is composed of about 60% silicates and 40% FeNi metal. The metallic lithology consists of kamacite and taenite, the silicate fraction is dominated by up to 1 mm sized and compositionally zoned low-Ca pyroxene, less abundant olivine, and calcic plagioclase. Minor phases include silica, chromite, troilite, and merrillite.

Geochemistry: olivine: Fa_{30.3±0.2} (Fa_{29.8-30.8}, n=12, FeO/MnO=27±3); low-Ca pyroxene: Fs_{29.6±5.2}Wo_{4.6±2.4} (Fs_{22.3-44.9}Wo_{1.5-10.2}, n=13, FeO/MnO=27±4); calcic plagioclase: An_{93.1±1.3} (An_{91.6-96.0}, n=14)

Northwest Africa 5471 (NWA 5471) (Northwest Africa)

Purchased: 2008

Classification: Primitive achondrite (Brachinite)

History: The meteorite was purchased from a local meteorite dealer in Erfoud, Morocco. **Physical characteristics**: Twenty-one brownish fragments without fusion crust.

Petrography: The meteorite shows an equilibrated texture (120° triple junctions) and is predominantly composed of olivine (>90 vol.%) and Ca-pyroxene. Grains sizes of the silicates vary between 200 and 1000 µm. Accessories include FeS and FeNi metal. Feldspar and low-Ca pyroxene were not detected in the section studied. Metal is often replaced by alteration products decorating the grain boundaries and cracks are filled with terrestrial clacite.

Geochemistry: olivine: Fa_{28.3±0.1} (Fa_{28.0-28.5}, FeO/MnO=57±2, n=14); Ca-pyroxene: Fs_{9.5±0.3}Wo_{43.6±0.3} (Fs_{8.9-9.8}Wo_{43.4-44.3}, n=16)

Northwest Africa 5596 (NWA 5596)

(Northwest Africa)

Purchased: 2007

Classification: Carbonaceous chondrite (CO3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Brownish rock without fusion crust.

Petrography: The meteorite shows a dark brownish interior and is predominantly composed of abundant chondrules (mean diameter about 180 μ m), CAIs, and mineral fragments set into a fine-grained matrix. Chondrules are highly unequilibrated and sometimes surrounded by fine-grained dust rims. Sulfides and FeNi metal are present in matrix and chondrules.

Northwest Africa 5597 (NWA 5597)

(Northwest Africa)

Purchased: 2007

Classification: HED achondrite (Diogenite)

History: The meteorite was purchased in Outat el Hadj, Morocco.

Physical characteristics: Two greyish-greenish fragments largely covered by shiny fusion crust.

Petrography: The meteorite is a monomict breccia predominantly composed of blocky up to 3 mm sized orthoproxene grains and fine-grained cataclastic regions. Minor phases include olivine, plagioclase, chromite, and FeS. No metallic iron has been detected.

Geochemistry: low-Ca pyroxene: $Fs_{25.4\pm0.2}Wo_{2.7\pm0.5}$ ($Fs_{24.8-25.6}Wo_{1.8-3.2}$, n=11, FeO/MnO=24-26); olivine: $Fa_{30.0\pm0.2}$ ($Fa_{29.8-30.2}$, n=7, FeO/MnO=41-50); calcic plagioclase: $An_{87.1\pm0.7}$ ($An_{86.3-87.4}$, n=10)

Northwest Africa 5888 (NWA 5888)

(Northwest Africa) Purchased: 2008

Classification: Pallasite

History: The meteorite was purchased from a meteorite dealer on a mineral fair in St. Marie aux Mines, France.

Physical characteristics: Small brownish fragment without fusion crust.

Petrography: The meteorite is composed of about 6 mm sized subrounded olivine grains surrounded and also crosscut by abundant brownish iron oxides or hydroxides. Only minor amounts of pristine FeNi-metal and troilite are present. **Geochemistry**: Olivine: FeO/MnO= 36 ± 3 , n=11

Northwest Africa 5889 (NWA 5889)

(Northwest Africa)

Purchased: 2008

Classification: Primitive achondrite (Winonaite)

History: The meteorite was purchased from a meteorite dealer in Besancon, France. **Physical characteristics**: Three small brownish fragments without fusion crust. **Petrography**: The meteorite displays an equilibrated texture with abundant 120° triple junctions. Low-Ca pyroxene is the most abundant phase with forsteritic olivine, augite, and feldspar grains being subordinate. Grain sizes are typically 100 to 200 μm. Minor phases include kamacite, schreibersite, and troilite. Contains veinlets of metal or Fe-oxide

throughout. No chondrules were observed.

Geochemistry: olivine: Fa_{4.6±0.1} (Fa_{4.4-4.8}, FeO/MnO=27±3, n=12); low-Ca pyroxene: Fs_{6.8±0.2}Wo_{1.8±0.1} (Fs_{6.3-7.1}Wo_{1.6-2.0}, FeO/MnO=29±6, n=12); Ca-pyroxene: Fs_{2.6±0.2}Wo_{45.6±0.3} (Fs_{2.4-2.9}Wo_{45.2-46.2}, n=7); feldspar: An_{12.4±1.2}Ab_{84.9±1.0}Or_{2.7±0.3}, n=9

Northwest Africa 5890 (NWA 5890)

(Northwest Africa)

Purchased: 2009

Classification: Primitive achondrite (Winonaite)

History: The meteorite was purchased from a local meteorite dealer in Erfoud, Morocco. **Physical characteristics**: Thirty-six up to 1 cm sized brownish fragments without fusion crust.

Petrography: Sawn surfaces of the fragments show that the meteorite is composed of larger metal-dominated and less abundant silicate-rich regions. Silicate regions display a recrystallized texture dominantly composed of typically 100 to 200 µm sized enstatite, forsteritic olivine, augite, and feldspar grains, with enstatite being the most abundant mineral phase. 120 degree triple junctions are abundant. Metal is kamacite and taenite and has been partly altered to reddish-brownish iron oxides and hydroxides; contains some troilite. Chondrules were not observed.

Geochemistry: olivine: Fa_{4.0±0.1} (Fa_{3.8-4.0}, FeO/MnO=23±2, n=4); low-Ca pyroxene: Fs_{6.0±0.2}Wo_{1.7±0.1} (Fs_{5.7-6.2}Wo_{1.6-1.7}, FeO/MnO=27±4, n=4); Ca-pyroxene: Fs_{2.2±0.2}Wo_{46.4±0.3} (Fs_{1.9-2.4}Wo_{46.1-46.7}, n=5); feldspar: An_{10.5±1.0}Ab_{87.4±0.9}Or_{2.2±0.2}, n=3 **Classification**: Winonaite (metal rich)

Northwest Africa 5891 (NWA 5891)

(Northwest Africa)

Purchased: 2005

Classification: Pallasite

History: The meteorite was purchased from a local meteorite dealer in Midelt, Morocco. **Physical characteristics**: Brownish fragment without fusion crust.

Petrography: The meteorite is composed of up to 1 cm sized subrounded and partly fragmented olivine grains surrounded by a matrix of brownish iron oxides which are also

present along the olivine grain boundaries and cracks. Contains some Cr-bearing troilite; no pristine FeNi-metal was detected.

Geochemistry: olivine: Fa_{7.5±0.1} (Fa_{4.4-4.8}, FeO/MnO=37±3, n=11)

Northwest Africa 6027 (NWA 6027)

(Northwest Africa)

Purchased: 2009

Classification: Carbonaceous chondrite (CK3)

History: The meteorite was purchased from a local meteorite dealer in Erfoud, Morocco. **Physical characteristics**: Dark grayish to greenish rock partly covered with fusion crust. **Petrography**: The meteorite displays a dark greenish interior and is composed of well separated and sharply defined chondrules (apparent mean diameter about 600 μ m) set into abundant matrix dominated by Fe-rich olivine, intermediate plagioclase, and Cr-rich magnetite. Minor phases include Ca-pyroxene and FeNi-sulfide; no metal was detected. **Geochemistry**: Fe-rich matrix olivine: Fa_{31.1±0.3}, FeO/MnO=107±9, n=11; unequilibrated olivine: Fa_{21.1±7.9} (Fa_{9.9-30.4}, n=18); low-Ca pyroxene: Fs_{7.9±6.6}Wo_{1.4±0.5} (Fs_{1.0-20.5}Wo_{0.9-2.8}, n=14); Ca-pyroxene: Fs_{1.2±0.1}Wo_{42.3±0.6}, n=5

Northwest Africa 6431 (NWA 6431)

(Northwest Africa)

Purchased: 2009 Feb

Classification: Ordinary chondrite (LL(L)3)

History: Purchased by Blaine *Reed* in February 2009 from a Moroccan dealer at the Tucson Gem and Mineral Show.

Petrography: (A. Irving and S. Kuehner, *UWS*; P. Carpenter, *WUSL*) Closely packed, well-formed chondrules (apparent diameter 910±550 μ m, N = 23) are set in a sparse matrix (opaque in thin section) containing chromite, stained kamacite and troilite.

Geochemistry: Olivine (Fa_{20.4±15.6}, range Fa_{0.9-44.8}, N = 6; Cr₂O₃ in ferroan olivine = 0.02-0.52 wt.%, mean 0.12±0.14 wt.%, N = 11), orthopyroxene (Fs_{14.9±8.6}Wo_{1.4±0.6}, range Fs_{1.8-21.6}Wo_{0.6-2.0}, N = 5), subcalcic augite (Fs_{26.4}Wo_{30.5}), augite (Fs_{19.9±2.5}Wo_{39.3±0.4}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.47.

Classification: Ordinary chondrite (LL(L)3).

Specimens: 22.7 g plus one polished thin section at PSF; main mass with Mr. B. Reed.

Northwest Africa 6445 (NWA 6445)

(Northwest Africa)

Purchased: 2010

Classification: Carbonaceous chondrite (CO3)

History: Purchased by Fabien Kuntz in 2010 from a dealer in Erfoud, Morocco.

Petrography: (A. Irving and S. Kuehner, *UWS*; P. Carpenter, *WUSL*; T. Bunch and J. Wittke, *NAU*) Granular chondrules (apparent diameter 390±280 µm, N = 23), sparse, rimmed, amoeboid inclusions and angular mineral fragments are set in a finer grained matrix (~ 20 vol.%, orange in thin section). The amoeboid inclusions are composed of very fine grained hercynite, Al-Ti-diopside, calcite and ilmenite, and are rimmed by a chlorite-like phase. **Geochemistry**: Olivine (Fa_{15.4±20.3}, range Fa_{0.2-40.3}, N = 5; Cr₂O₃ in ferroan examples 0.02-0.06 wt.%, mean 0.04±0.02 wt.%, N = 7), low-Ca pyroxene (Fs_{6.8±5.1}Wo_{2.8±1.9}, range Fs_{1.2}-

 $_{14.6}Wo_{0.9-5.5}$, N = 7), clinopyroxene (Fs_{3.5±2.2}Wo_{44.9±3.6}, range Fs_{1.0-5.4}Wo_{41.3-48.4}, N = 3), plagioclase (An_{74.7}Or_{0.8}).

Classification: Carbonaceous chondrite (CO3). The mean size of chondrules in this specimen is somewhat larger than in most CO chondrites. Typical CAI appear to be absent; the phyllosilicate-rimmed amoeboid inclusions are very unusual and are mineralogically unlike typical CAI.

Specimens: 21.0 g plus one polished thin section at PSF; main mass with Kuntz.

Northwest Africa 7051 (NWA 7051)

Morocco Purchased: 2011

Classification: HED achondrite (Eucrite)

History: Purchased from A. *Aaronson* in 2011 at the Tucson Gem and Mineral Show, who provided origin of sample as being from Morocco. Catalogued in the Royal Ontario Museum collection as LM55991

Physical characteristics: The meteorite has a weathered, fractured fusion crust on two surfaces, with cracks and an exposed interior faces covered with caliche. Interior of the sample largely light-grey in colour with larger black clasts visible. No shock veins observed. **Petrography**: Monomict breccia composed of clasts with a gabbroic texture. In most areas of the thin section the clasts are tightly abutting however there is clear offset between them. The few areas where the clasts are separated are filled with a finely comminuted matrix. Mineral grains show mosaicism.

Geochemistry: Mineral composition and geochemistry: Plagioclase composition:

An $_{89.31\pm1.72}$ Or $_{0.42\pm0.12}$ (n=20). Low Ca-pyroxene composition: Fs $_{60.07\pm1.71}$ Wo $_{3.13\pm2.24}$ and FeO/MnO = 31.81±0.84 (n =19). High Ca-pyroxene composition: Fs $_{27.30\pm1.44}$ Wo $_{42.08\pm0.2.50}$ and FeO/MnO = 30.36±1.47 (n=4).

Classification: (K. Tait, *ROM*). Texture and composition suggest the sample is a monomict breccia.

Northwest Africa 7145 (NWA 7145)

(Northwest Africa)

Purchased: 2011

Classification: Carbonaceous chondrite (CK4)

History: Purchased in Temara, Morocco by Adam *Aaronson* in 2011.

Petrography: (A. Irving and S. Kuehner, UWS; T. Bunch and J. Wittke, NAU; P.

Carpenter, *WUSL*) Separated well-formed, granular, equilibrated chondrules containing Crmagnetite are set in a finer grained groundmass (pale orange in thin section) containing stained Cr-magnetite.

Geochemistry: Olivine (Fa_{31.4±0.2}, range Fa_{31.2-31.6}, N = 7), orthopyroxene (Fs_{26.0±0.1}Wo_{1.0±0.1}, range Fs_{26.0-26.2}Wo_{0.8-1.1}, N = 4), clinopyroxene (Fs_{6.8}Wo_{49.3}; Fs_{13.3}Wo_{38.4}; N = 2), magnetite (4.0-4.4 wt.% Cr₂O₃, N = 3), plagioclase (An_{47.8}Or_{1.8}).

Classification: Carbonaceous chondrite (CK4).

Specimens: 15.4 g including one polished thin section at *PSF*; remainder with Mr. A. *Aaronson*.

Northwest Africa 7167 (NWA 7167) (Northwest Africa)

Running Head

60

Purchased: 2011 Classification: Carbonaceous chondrite (CK4) **History**: Purchased by Marcin Cimała in 2011 from a dealer in Erfoud, Morocco. Petrography: (A. Irving and S. Kuehner, UWS; P. Carpenter, WUSL) Separated well-formed, equilibrated chondrules containing Cr-magnetite occur in a finer grained matrix (pale orange in thin section) containing intermediate plagioclase, stained Cr-magnetite, ferropseudobrookite and chlorapatite. **Geochemistry**: Olivine (Fa_{33,4±0,3}, range Fa_{32,9-33,7}, N = 7), orthopyroxene (Fs_{27,3±0,3}Wo_{1,4±0,1}, range $Fs_{27,1-27,6}Wo_{1,5-1,4}$, N = 3), clinopyroxene ($Fs_{8,6}Wo_{47,4}$; $Fs_{10,1}Wo_{46,4}$; N = 2), magnetite $(5.1-5.3 \text{ wt.}\% \text{ Cr}_2\text{O}_3, \text{N} = 3)$, plagioclase $(\text{An}_{28,3}\text{Or}_{5,3}; \text{An}_{43,2}\text{Or}_{2,8}; \text{An}_{58,1}\text{Or}_{1,5}; \text{N} = 3)$. Classification: Carbonaceous chondrite (CK4). **Specimens**: 21.4 g including one polished thin section at *PSF*; main mass with Mr. M. Cimała. Northwest Africa 7357 (NWA 7357) Morocco Purchased: 2019 Classification: HED achondrite (Eucrite, cumulate) Physical characteristics: The stone's surface is half covered by fusion crust, which manifests streaming of melt. In places the surface shows significant tan-orange weathering and caliche staining. On interior broken surfaces, light mineral clasts fluoresce orange under 365 nm UV light. **Petrography**: This highly shocked breccia consists dominantly of pyroxene and plagioclase (now partly maskelynite). Vaguely discernible vestiges of an original texture, and macroscopic observations, suggest grains were typically much coarser than 1 mm, but most of the material has been either granulated to much finer than 1 mm or shock-melted. A distinctive aspect of the texture is that a component of inferred likely shock-melt origin is dominantly neither glassy nor in the form of veins: Many large areas, constituting about 30% of the rock, show a crystalline but incongruously fine-grained (<20 µm) and subophitic texture, of suspected in situ, or near-in situ, impact-melt origin. This mode of origin is inferred from the sharp textural disparity with, and yet close geochemical similarity to, the surrounding coarser groundmass (which is of distinctively magnesian-cumulate composition; see below). Accessory phases include Cr-spinel, Fe-metal, troilite, and a glassy shock-melt vein. Within a few relatively ungranulated pyroxene grains, exsolved augite lamellae are seen to be typically about 4-7 µm wide. Classification as a cumulate eucrite is based on geochemistry (see below), not the severely impact-modified texture. **Geochemistry**: Low-Ca pyroxene (32 analyses) clusters near Fs₃₄ ₄Wo_{2.5} High-Ca pyroxene

blebs and lamellae (4 analyses) cluster near $Fs_{14.8}Wo_{43.6}$. As a subset, pyroxenes in the finegrained/subophitic enclaves (18 analyses) are not compositionally distinctive, apart from showing mostly intermediate Ca (Wo, 3.2-17.4 mol%), as their low-Ca and high-Ca components are not resolved by EPMA. Pyroxene FeO/MnO (wt; 36 analyses) averages 28.3. Plagioclase (8 analyses) is $An_{92.2-93.7}$, average $An_{92.6\pm0.5}$; which includes a subset of 3 analyses, averaging $An_{93.1}$, from the fine-grained/subophitic domains. The fine-grained/subophitic domains are thus geochemically fully as cumulate-like as the less shocked, coarser balance of the rock. Classification as a cumulate eucrite is based on geochemistry (consistently magnesian mafic silicates, Na-poor plagiolcase, far more Cr-spinel than ilmenite), not texture. Analyses (6) of a long glassy shock-melt vein average 19.3 ± 1.3 wt% Al₂O₃ with FeO/MgO (wt) = 1.05.

Classification: Eucrite, cumulate, brecciated.

Specimens: 24 g at UCLA; main mass (5 kg) with Gessler. Northwest Africa 7359 (NWA 7359) Morocco Purchased: 2019 Classification: HED achondrite (Diogenite) Physical characteristics: The stone's surface is 98% covered by a thin fusion crust. Some tan-orange weathering and caliche staining is visible on broken surfaces. Cut surface is orange/tan with scattered areas of dark green. **Petrography**: The rock is a monomict and almost completely monominerallic breccia. Surviving pyroxene grain fragments (equant, with optical continuity) are up to 9 mm across. A trace of opaque oxide, probably Cr-spinel, is also present. Geochemistry: Low-Ca pyroxene compositions (6 analyses) cluster very tightly near $Fs_{24.9}Wo_{3.5}$, with 1.3 wt% Al₂O₃, 0.70 wt% Cr₂O₃, and FeO/MnO (wt) = 30.8. **Classification**: Diogenite **Specimens**: 22 g at UCLA; main mass (5 kg) with Gessler. Northwest Africa 7363 (NWA 7363) Morocco Purchased: 2019 Classification: HED achondrite (Eucrite, polymict) **Physical characteristics**: The material is friable. Largest intact individuals are 315, 140, 71 and 36 g, some showing black fusion crust, and/or scattered orange-tan weathering and caliche staining. Numerous clasts up to 2 cm consist of conspicuously coarse, black-and-white shaded grains, in contrast with the stone's finer grained, gray matrix. **Petrography**: The rock is a polymict breccia with a finely granulated groundmass. Lithic clast textures range from aphanitic (but sprinkled with relict coarse grains) to gabbroic. A 1.5cm clast, conspicuously leucocratic compared to the groundmass, is a eucrite uncommonly rich in fayalite. The fayalite is largely in the form of veins within coarse first-generation pyroxenes; the veins are nearly monomineralic but include traces of plagioclase and Crspinel, and are consistently surrounded by reaction zones of low-Mg/Fe pyroxene (cf. NWA 5073). Geochemistry: Low-Ca pyroxene (34 analyses) ranges from Fs_{30.7}Wo_{5.4} to Fs_{59.8}Wo_{6.6} High-Ca pyroxene (4 analyses) clusters near Fs₂₇Wo₄₂. Pyroxene FeO/MnO (wt; 40 analyses) averages 31.2. Olivine (6 analyses, all from the aforementioned veins in the large eucrite clast) is Fa_{62.7-66.3}, average Fa_{65.0+}/-1.1. Plagioclase in the veins is anomalously Na-poor, An_{96,8-98,7} (11 analyses). Elsewhere, plagioclase (31 analyses) is An_{75,6-98,8}, average An_{92,5±3,7}. Classification: Although the texture indicates a polymict breccia, no diogenite component was found (so it is not a howardite). The meteorite is a polymict eucrite. **Specimens**: 35 g at UCLA; main mass (5 kg) with Gessler.

Northwest Africa 7540 (NWA 7540)

(Northwest Africa)

Purchased: 2011 Oct 26

Classification: Ordinary chondrite (LL3)

History: Purchased from a Moroccan mineral dealer at the mineral show in Hamburg, Germany

59

Running Head

Petrography: (K. Metzler, *IfP*) Shock-darkened ordinary chondrite of very low petrologic type, consisting of closely packed chondrules (up to 2.9 mm), chondrule fragments, troilite, and very low amounts of Fe-Ni metal. Small amounts of fine-grained interchondrule matrix. The mean apparent chondrule size is 570 μ m (n=45).The mean value of Cr₂O₃ (wt.%) in ferroan olivine and the 1-sigma standard deviation is is 0.23±0.08 (n=13), similar to <u>Y-791558</u>.

Geochemistry: Mineral compositions and geochemistry: The mean olivine composition is $Fa_{15.9\pm8.5}$ ($Fa_{2.3-31.5}$; n=21); the mean low-Ca pyroxene composition is $Fs_{7.9\pm6.7}Wo_{0.8\pm0.7}$ ($Fs_{1.9-17.8}Wo_{0.1-2.2}$; n=7).

Classification: LL chondrite, based on mean chondrule size and very low metal content. Estimated petrologic subtype 3.15 based on the mean value and standard deviation of Cr_2O_3 in ferroan olivine (Grossman and Brearley, 2005).

Northwest Africa 8580 (NWA 8580)

(Northwest Africa)

Purchased: 2014 Jun 25

Classification: Ordinary chondrite (L3.15)

History: Purchased from a Moroccan mineral dealer at the mineral show in Sainte-Marie-aux-Mines, France

Petrography: (K. Metzler, *IfP*) Ordinary chondrite of low petrologic type consisting of closely packed chondrules with very low amounts of interchondrule matrix. The mean apparent chondrule size is 490 μ m (140-1970 μ m; n=223). Accessory phases are Fe,Ni metal and troilite, mostly residing outside of chondrules.

Geochemistry: Mineral compositions and geochemistry: The mean olivine composition is $Fa_{17.8\pm12.7}$ (0.5-47.9; n=36); the mean low-Ca pyroxene composition is $Fs_{7.7\pm6.9}$ Wo_{0.9\pm1.1} (Fs_{0.7-27.5} Wo_{0.1-5.2}; n=28). The ferroan olivine mean value of Cr₂O₃ and 1-sigma standard deviation is 0.19±0.13 (n=44), similar to <u>Y-791324</u> (LL3.15; <u>Grossman and Brearley, 2005</u>).

Classification: L chondrite, based on the mean chondrule size. Petrologic type 3.15 based on 1-sigma standard deviation of Fa and Fs, and on the ferroan olivine mean value of Cr_2O_3 and 1-sigma standard deviation.

Northwest Africa 10189 (NWA 10189)

Morocco Find: 2014

Classification: Carbonaceous chondrite (CR2)

History: Aziz Habibi purchased the stone from a meteorite hunter traveling from southern Morocco. The stone was purchased from Aziz Habibi by *UCLA*.

Physical characteristics: The meteorite consisted of a flattened, irregular stone. It exhibits ~50% weathered fusion crust; the rest of the surface is desert-varnished and very irregular. **Petrography**: (J. Utas, *UCLA*) Spherical metal blebs are abundant in both matrix and chondrules, measuring up to 1.5 mm across. Chondrules average ~1.1 mm in diameter, and are set in a fine-grained, Fe and FeS-rich matrix. Chondrules are predominantly type IA, PO, and many exhibit igneous rims. The thin-section examined exhibits two coherent ~5 mm. Fine-grained carbonaceous clasts with abundant disseminated FeS. No CAIs were observed. Large metal blebs exhibit thin oxide rims, and fine-grained metal in the matrix is heterogeneously oxidized. Some chondrules appear unweathered, while others retain no unoxidized metal. Limonite and some carbonate veins are present.

Northwest Africa 10898 (NWA 10898)

(Northwest Africa) Purchased: 2015

Classification: Ordinary chondrite (LL3.10)

History: Purchased in 2015 by Brahim Tahiri in Morocco and sent to his partner Sean Tutorow for analysis.

Physical characteristics: Weathered fusion-crusted exterior. Saw cuts reveal well defined, densely packed chondrules, up to 7 mm in diameter, most in the size range 0.5 to 2 mm. **Petrography**: (C. Agee, *UNM*) Microprobe examination of a polished mount shows numerous porphyritic chondrules, most with glass or mesostasis. Abundant fine-grained, opaque matrix.

Geochemistry: (C. Agee and M. Spilde, *UNM*) Olivine Fa_{18.4±11}, Fe/Mn=60±24, Cr₂O₃=0.27±0.16 (wt%), n=18; low-Ca pyroxene Fs_{11.0±9.1}Wo_{1.7±1.0}, Fe/Mn=13±9, n=11. Analyses of 43 ferroan olivine gives an average Cr₂O₃ content of 0.284±0.206 wt%.

Classification: Ordinary chondrite (LL3.10) subtype 3.10 based on mean values of Fa and Fs and 1-sigma standard deviation, and on the ferroan olivine mean value of Cr_2O_3 and 1-sigma standard deviation, similar to NWA 3127 (LL3.10) (Grossman and Brearley, 2005), also similar to NWA 7029 (LL3.10).

Specimens: 23.95 g including a probe mount on deposit at *UNM*, Sean Tutorow holds the main mass.

Northwest Africa 11333 (NWA 11333)

(Northwest Africa) Purchased: 2017 Mar

Classification: Ureilite

History: Purchased in Foum Zguid, Morocco by Mohamed Aid in March 2017.

Physical characteristics: Large (56 kg) specimen lacking fusion crust.

Petrography: (A. Irving and S. Kuehner, *UWS*) Protogranular assemblage of olivine (~65 vol.%, with reduced metal-bearing rims) and twinned pigeonite (~35 vol.%). No carbon phases were detected.

Geochemistry: Olivine (cores $Fa_{14,4-14,5}$; rim $Fa_{9,1}$; N = 3), pigeonite ($Fs_{12,2-12,3}Wo_{8,1-8,0}$, N = 2). Mafic silicate compositions are unusually magnesian in comparison to the majority of ureilite specimens.

Classification: Ureilite.

Specimens: 25.2 g including one polished thin section at UWB; remainder with M. Aid.

Northwest Africa 11333 (NWA 11333)

(Northwest Africa)

Purchased: 2017 Mar Classification: Ureilite

History: Purchased in Foum Zguid, Morocco, by Mohamed Aid in March 2017.

Physical characteristics: Large (56 kg) specimen lacking fusion crust.

Petrography: (A. Irving and S. Kuehner, *UWS*) Protogranular assemblage of olivine (~65 vol.%, with reduced metal-bearing rims) and twinned pigeonite (~35 vol.%). No carbon phases were detected.
Running Head

Geochemistry: Olivine (cores Fa_{14.4-14.5}; rim Fa_{9.1}; N = 3), pigeonite (Fs_{12.2-12.3}Wo_{8.1-8.0}, N = 2). Mafic silicate compositions are unusually magnesian in comparison to the majority of ureilite specimens.
Classification: Ureilite.
Specimens: 25.2 g including one polished thin section at *UWB*; remainder with M. Aid.

Northwest Africa 11867 (NWA 11867)

(Northwest Africa)

Purchased: 2005

Classification: Ordinary chondrite (L3-7)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving and S. Kuehner, *UWS*; P. Carpenter, *WUSL*) Breccia containing multiple components in a sparse matrix containing stained metal. Isolated well-formed, unequilibrated chondrules (apparent diameter $800\pm340 \ \mu m$, N = 21)are present, together with equilibrated Type 4 clasts, Type 5 clasts and rare Type 7 clasts (with poikiloblastic textures devoid of remnant chondrules).

Geochemistry: Olivine (Fa_{22.6±9.1}, range Fa_{6.9-33.1}, N = 7; Cr₂O₃ in all ferroan examples <0.03 wt.%), orthopyroxene (Fs_{5.1±3.8}Wo_{0.4±0.2}, range Fs_{0.8-8.0}Wo_{0.5-0.6}, N = 3), clinopyroxene (Fs_{2.0}Wo_{41.9}; Fs_{7.4}Wo_{44.4}; N = 2), olivine in Type 5 lithic clast (Fa_{24.9±0.1}, range Fa_{24.8-25.1}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.73.

Classification: Ordinary chondrite (L3-7 breccia). Affinity to L chondrites is established from olivine composition in equilibrated lithic clasts and bulk magnetic susceptibility. **Specimens**: The entire specimen including one polished thin section is at *PSF*.

Northwest Africa 11983 (NWA 11983)

(Northwest Africa)

Purchased: 2005

Classification: Ordinary chondrite (L3-6)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving and S. Kuehner, *UWS*; P. Carpenter, *WUSL*) Breccia composed of multiple components in a sparse matrix containing stained metal, chlorapatite and merrillite. Isolated well-formed, unequilibrated chondrules (apparent diameter $860\pm520 \mu m$, N = 22) are present, together with some much more recrystallized Type 5 and Type 6 clasts, set in a sparse matrix containing chlorapatite and merrillite.

Geochemistry: Olivine (Fa_{24.2±7.5}, range Fa_{9.3-34.6}, N = 7; Cr₂O₃ in ferroan examples 0.02-0.07 wt.%, mean 0.04±0.02 wt.%, N = 6), orthopyroxene (Fs_{11.7±13.0}Wo_{1.0±1.0}, range Fs_{2.5-20.9}Wo_{0.3-1.7}, N = 2), clinopyroxene (Fs_{7.2}Wo_{45.9}; Fs_{8.1}Wo_{44.5}; N = 2), olivine in Type 6 lithic clast (Fa_{25.0±0.1}, range Fa_{24.9-25.0}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.73. **Classification**: Ordinary chondrite (L3-6 breccia). Affinity to L chondrites is established from olivine composition in equilibrated lithic clasts and bulk magnetic susceptibility. **Specimens**: The entire specimen including one polished thin section is at *PSF*.

Northwest Africa 11988 (NWA 11988)

(Northwest Africa) Purchased: 2005

Classification: Ordinary chondrite (L3-6)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving and S. Kuehner, *UWS*; P. Carpenter, *WUSL*) Breccia composed of some discrete, well-formed chondrules (apparent diameter $660\pm220 \mu m$, N = 20), together with some more recrystallized Type 5 clasts, in a matrix containing altered metal, chlorapatite and merrillite.

Geochemistry: Olivine (Fa_{27.8±3.9}, range Fa_{23.1-34.2}, N = 7; Cr₂O₃ in ferroan examples 0.06-0.14 wt.%, mean 0.08±0.03 wt.%, N = 7), orthopyroxene (Fs_{20.6±0.3}Wo_{1.6±1.0}, range Fs_{20.4-} $_{20.8}Wo_{0.9-2.3}$, N = 3), clinopyroxene (Fs_{8.4}Wo_{44.7}; Fs_{10.2}Wo_{43.6}; N = 2), olivine in Type 5 lithic clast (Fa_{24.9±0.2}, range Fa_{24.7-25.1}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.65. **Classification**: Ordinary chondrite (L3-5 breccia). Affinity to L chondrites is established from olivine composition in equilibrated lithic clasts and bulk magnetic susceptibility. **Specimens**: The entire specimen including one polished thin section is at *PSF*.

Northwest Africa 11989 (NWA 11989)

(Northwest Africa)

Purchased: 2005

Classification: Ordinary chondrite (L3-6)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving and S. Kuehner, *UWS*; P. Carpenter, *WUSL*) Breccia composed of sparse discrete, well-formed chondrules (apparent diameter 0.8-1.2 mm, N = 5), together with some more recrystallized Type 5 and Type 6 clasts, in a matrix containing altered metal, chlorapatite and merrillite.

Geochemistry: Olivine (Fa_{28.9±5.0}, range Fa_{24.9-35.2}, N = 7; Cr₂O₃ in all <0.04 wt.%),

orthopyroxene ($Fs_{21.4\pm0.8}Wo_{1.9\pm0.1}$, range $Fs_{20.8-21.9}Wo_{1.9-1.8}$, N = 2), clinopyroxene

(Fs_{6.7}WO46.6; Fs_{16.7}Wo_{40.4}; N = 2), olivine in Type 6 lithic clast (Fa_{24.5±0.1}, range Fa_{24.3-24.6}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.53.

Classification: Ordinary chondrite (L3-6 breccia). Affinity to L chondrites is established from olivine composition in equilibrated lithic clasts and bulk magnetic susceptibility. **Specimens**: The entire specimen including one polished thin section is at *PSF*.

Northwest Africa 12266 (NWA 12266)

(Northwest Africa)

Purchased: 2018 Jun

Classification: Ordinary chondrite (L3)

History: Purchased by Ben Hoefnagels in June 2018 from a Moroccan dealer.

Petrography: (A. Irving and S. Kuehner, *UWS*) Closely-packed, well-formed chondrules (apparent diameter $510\pm290 \ \mu m$, N = 22) are set in a sparse, brown-stained matrix containing very little fresh metal (kamacite with taenite).

Geochemistry: Olivine (Fa_{19.1±14.2}, range Fa_{0.9-37.2}, N = 5; Cr₂O₃ in ferroan examples 0.02-0.08 wt.%, mean 0.05±0.02 wt.%, N = 6), orthopyroxene (Fs_{8.3±9.0}Wo_{0.7±0.8}, range Fs_{0.6-21.0}Wo_{0.2-1.9}, N = 4), pigeonite (Fs_{5.8}Wo_{12.1}), augite (Fs_{16.5}Wo_{35.9}), diopside (Fs_{1.6}Wo_{43.6}). Oxygen isotopes (K. Ziegler, *UNM*): analyses of acid-washed subsamples by laser fluorination gave, respectively, δ^{17} O 3.283, 3.116, 3.446; δ^{18} O 4.842, 4.425, 5.206; Δ^{17} O 0.726, 0.780, 0.697 per mil. Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.57. **Classification**: Ordinary chondrite (L3).

Running Head

3 4 5 6	Specimens : 35.7 g including one polished thin section at <i>UWB</i> ; remainder with Mr. B. Hoefnagels.
7 8 9	Northwest Africa 12302 (NWA 12302) Morocco
10	Purchased: 2017
11	Classification: Carbonaceous chondrite (CV3)
12 13 14	History : (Ziyao Wang) Purchased by Ziyao Wang from Adnane Sami during the China (Hunan) Mineral & Gem Show in Chenzhou City in May 2017.
14	Physical characteristics : (Zivao Wang) Dark gray-yellow flat stone of 50 g without fusion
16	crust
17	Petrography : (R Bartoschewitz <i>Bart</i>) well defined chondrules (0.3-1.8 mm av. 1 mm) of
18	various types ($PO POP PP BO GO$) chondrule fragments and $AOAs$ are set in dark brown
19	anogue metrix (150/)
20	opaque matrix (~15%).
21	Geochemistry: (R. Bartoschewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine Fa _{18.4} (Fa _{0.2-}
22	$_{36.5}$; Fe/Mn=54; Fe/Mg=0.25; n=15); pyroxene Fs _{9.4±6.7} Wo _{0.6±0.5} (Fe/Mn=20; Fe/Mg=0.1;
23	n=11); Ca pyroxene $En_{32}Fs_5Wo_{63}$ (n=1); $An_{74}Or_1$ (n=1). Kamacite Ni=6.8, Co=1.7 (n=1);
24	taenite Ni=36.9, Co=0,5 (n=2) (all wt%). Magnetic susceptibility (R. Bartoschewitz, Bart) log
25	$\gamma (\times 10^{-9} \text{ m}^3/\text{kg}) = 3.43$
26	Classification : carbonaceous chondrite (CV3, S2)
27	Specimens: 10.2 g on denosit at <i>Kiel</i> . Zivao Wang holds the main mass, and 5.5 g with <i>Bart</i>
28	Specificitis. 10.2 g on deposit at <i>Kiei</i> , Ziyao wang noids the main mass, and 5.5 g with <i>Dari</i> .
29	
30	
31	Northwest Africa 12313 (NWA 12313)
32	Morocco
33	Purchased: 2018
34	Classification: Ordinary chondrite (H4)
35	History : (Zivao Wang) Purchased by Zivao Wang from Simo Mezgouri in Agadir Oct. 2018.
36	Physical characteristics : (Zivao Wang) Reddish brown 439 g stone with very flat bottom no
3/	fusion crust
38	Detrography: (D. Derteschewitz Part) yery well defined chendryles (0.2.1.9 mm. ev. 0.7
39	retrography. (K. Bartoschewitz, <i>Burt</i>) very wen defined chondrules (0.5-1.6 min, av. 0.7
40	mm) of various types (PP, BO, POP) and chondrule fragments are set in dark matrix (about 15
41	vol% matrix). Chondrules mainly surrounded by metal-rich rims.
42	Geochemistry: (R. Bartoschewitz, <i>Bart</i> , P. Appel and B. Mader, <i>Kiel</i>) Olivine
44	$Fa_{16.0\pm1.2}$ (n=13); pyroxene $Fs_{14.8\pm2.8}Wo_{0.8\pm0.7}$ (n=13); silicates: Fe/Mn=25 Fe/Mg=0.22.
45	Chromite CRAL90, FFM79 (n=2); spinel CRAL21, FFM39 (n=2). Kamacite in chondrules
46	Ni=1.7, Co=0.4 (n=4). Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log γ (× 10 ⁻⁹ m ³ /kg) =
47	4 99
48	Classification : Ordinary chondrite (H4, S2, W4)
49	Specimens: 14.8 g at Kiel and 5.0 g at Münster. Zivao Wang holds the main mass, and 28 g
50	specimens. 14.6 g at <i>Kiel</i> and 5.9 g at Munster, Ziyao wang noids the main mass, and 26 g
51	with <i>bari</i> . Polished thin sections <i>bari</i> and <i>IJP</i>
52	
53	
54	Northwest Africa 12386 (NWA 12386)
55	(Northwest Africa)
56	Purchased: 2018 Mar
57	Classification: Ordinary chondrite (L5)
58	History: A meteorite, broken into two pieces, was purchased at Ouarzazate. Morocco in May
59	2018 The smaller one 289.1 σ has a broken surface with the remaining surface covered with
60	

fusion crust. The cut surface of the smaller meteorite indicates the sample has an achondritic texture. The larger stone, 1192.5 g, is composed of two parts: the chondritic main body and an igneous clast. The larger stone also has a broken surface, with other surfaces covered by fusion crust.

Physical characteristics: The meteorite is composed of two lithologies: an ordinary chondrite and an igneous clast.

Petrography: The igneous clast is composed mainly of olivine (70 vol%), feldspar (15 vol%), high-Ca pyroxene, and minor minerals (including phospate, troilite and Fe-Ni metal). Almost no low-Ca pyroxene was found. The abundance of Fe-Ni metal is about 1 vol%. Olivine occurs as phenocrysts, with a particle size of 200-300 µm. The feldspar occurs as interstitial grains filled with skeletal crystals of high-Ca pyroxene.

Geochemistry: For the L5 ordinary lithology: Olivine Fa_{23.1±2.7} (N=23), CaO 0.04±0.03 wt% MnO 0.42±0.05 wt%; low-Ca pyroxene Fs_{21.7±2.7}Wo_{2.1±0.2} (N=6). For the igneous clast: Olivine Fa_{22.1±3.3} N=34), CaO 0.07±0.06 wt% MnO 0.41±0.05 wt%. Oxygen isotopes (Huiming Bao, LSU): Analyses of three acid-washed whole rock of the clast lithology by CO₂ laser fluorination: $\delta^{18}O = 4.803$, 4.825, 4.795; $\delta^{17}O = 3.568$, 3.552, 3.543; $\Delta^{17}O = 1.020$, 0.992, 0.999 (all permil).

Northwest Africa 12445 (NWA 12445)

(Northwest Africa)

 Purchased: 2018 Aug

Classification: HED achondrite (Eucrite, anomalous)

History: A total of 21 similar stones (total 797 g) were recovered ~70 m apart at a location in Algeria, and were purchased by Mbark Arjdal in August 2018 from an Algerian dealer. **Petrography**: (A. Irving and S. Kuehner, *UWS*) Breccia composed of some lithic eucrite clasts plus a lot of related, angular crystalline debris in a finer grained matrix. Lithic clasts have microgabbroic to subophitic textures. Minerals are exsolved pigeonite (pale orange in thin section), anorthite (exhibiting undulose extinction), silica polymorph, fayalite, ilmenite, troilite and minor Ni-free metal.

Geochemistry: Low-Ca pyroxene host ($Fs_{67.7\pm1.6}Wo_{3.1\pm1.3}$, range $Fs_{66.0-70.6}Wo_{1.7-5.3}$, FeO/MnO = 29-31, N = 6; $Fs_{59.7}Wo_{2.4}$, FeO/MnO = 28), high-Ca pyroxene exsolution lamellae ($Fs_{32.1\pm2.0}Wo_{42.8\pm0.7}$, range 29.2-34.4 $Wo_{42.0-43.7}$, FeO/MnO = 30-33, N = 6; $Fs_{24.7-25.9}Wo_{44.5-42.9}$, FeO/MnO = 29-30, N = 2), fayalitic olivine ($Fa_{73.8\pm6.5}$, range $Fa_{69.3-78.4}$, FeO/MnO = 46, N = 2), anorthite ($An_{91.9-93.3}Or_{0.6-0.3}$, N = 2).

Classification: Eucrite (breccia, anomalous). The predominance of highly ferroan low-Ca and high-Ca pyroxenes in this specimen is an anomalous feature; these now-exsolved highly ferroan pigeonites are reminiscent of similar pyroxenes in anomalous ferroan eucrite <u>NWA</u> <u>11729</u>.

Specimens: 38.2 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 12458 (NWA 12458)

(Northwest Africa)

Purchased: 2005

Classification: Ordinary chondrite (L3-6)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving and S. Kuehner, *UWS*; P. Carpenter, *WUSL*) Breccia composed of well-formed chondrules (apparent diameter $810\pm410 \mu m$, N = 20) plus some angular Type 5 and Type 6 clasts in a finer grained matrix containing stained metal, merrillite and chlorapatite.

Geochemistry: Olivine (Fa_{19.7±8.0}, range Fa_{6.3-27.1}, N = 7; Cr₂O₃ in ferroan examples 0.02-0.08 wt.%, mean 0.04±0.03 wt.%, N = 3), orthopyroxene (Fs_{12.9±8.7}Wo_{0.9±1.1}, range 3.4-20.5Wo_{0.3-2.1}, N = 3), clinopyroxene (Fs_{4.1-9.4}Wo_{36.7-43.2}, N = 2), olivine in Type 6 lithic clast (Fa_{25.0±0.0}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.67.

Classification: Ordinary chondrite (L3-6 breccia). Affinity to L chondrites is established from olivine composition in equilibrated lithic clasts and bulk magnetic susceptibility.

Specimens: The entire specimen including one polished thin section is at *PSF*.

Northwest Africa 12493 (NWA 12493)

(Northwest Africa)

Purchased: 2018

Classification: Ordinary chondrite (H3-5)

History: Purchased at Hamburg Mineral Show Dec. 2018.

Physical characteristics: 701.5 g black-brown stone fragment, partly covered by black fusion crust with one 1 cm metal inclusion. Cut face shows gray host with lighter and darker gray xenoliths.

Petrography: (R. Bartoschewitz, *Bart*) dark lithology: well defined chondrules (0.1-1.5 mm, av. ~0.4 mm) of various types and irregular metallic inclusions up to 10 mm (some with eutectic metal/troilite intergrowth) in a black opaque matrix. Light lithology: strongly recrystallized matrix with indistinct chondrules and metal.

Geochemistry: Dark H3: olivine Fa_{18.6±3.3} (range 13.1-30.7; n=34); low Ca pyroxene Fs_{16.3±2.5}Wo_{1.1±0.6} (n=33); Ca pyroxene En₆₉Fs₁₇Wo₁₄ (n=2); chromite CRAL=91, FFM=87 (n=2); kamacite Ni=6.7-7.9 wt%, Co=0.6 wt% (n=5). Light H5: olivine Fa_{18.5±0.8} (n=10), low Ca pyroxene Fs_{16.4±0.3}Wo_{1.5±0.4} (n=4); Ca pyroxene En₇₉Fs₁₆Wo₅ (n=1); chromite CRAL=83, FFM=85 (n=2); kamacite Ni=3.6-5.7 wt%, Co=0.6-0.7 wt% (n=3). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 5.55, ρ=3.69 g/cm3

Classification: Ordinary chondrite (H3-5, S2, W0)

Specimens: 26.1 g on deposit at *Kiel*, *Bart* holds the main mass.

Northwest Africa 12497 (NWA 12497)

(Northwest Africa)

Purchased: 2018

Classification: Ordinary chondrite (H4)

History: Purchased at Hamburg Mineral Show Dec. 2018.

Physical characteristics: 99.8 g black stone with metallic specks on the surface

Petrography: (R. Bartoschewitz, Bart) fractured matrix with indistinct chondrule relicts.

Metal and sulfide penetration into cracks blacken the meteorite.

Geochemistry: (R. Bartoschewitz, *Bart*, P. Appel and B. Mader, *Kiel*) Olivine Fa_{18.5±0.6} (range Fa_{17.9-20.1}; n=16); pyroxene Fs_{15.8±0.2}Wo_{1.7±0.2} (n=5); feldspar An₁₄Or₆ (n=1); merrillite.

Kamacite Ni=7.7-8.5 wt%, Co=0.6 wt%. Magnetic susceptibility (R. Bartoschewitz, *Bart*) log χ (× 10⁻⁹ m³/kg) = 5.44

Classification: Ordinary chondrite (H4, S4, W0)

Specimens: 23.9 g on deposit at *Kiel*, *Bart* holds the main mass.

Northwest Africa 12505 (NWA 12505)

Mauritania

 Purchased: 2017

Classification: Rumuruti chondrite (R3)

History: (Ziyao Wang) Purchased by Ziyao Wang from Aziz Habibi in Erfoud, Morocco 2017.

Physical characteristics: (Ziyao Wang) Dark brown stone of 81 g with visible chondrules its smooth, wind-eroded surface.

Petrography: (R. Bartoschewitz, *Bart*) Well-developed chondrules (0.1-1 mm, av. 0.3 mm) and rare CAIs set in a dark-gray matrix (~40 vol%).

Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine

Fa_{37.5±10.6} (Fa_{8.2-49.2}; n=47); pyroxene Fs_{14.2±10.6}Wo_{0.1.8±4.0} (n=14); Ca pyroxene En₄₀₋₆₁Fs₁₇₋₂₇Wo₁₂₋₄₄ (n=2); Cr-spinel CRAL=73-86, FFM=92-95, 1.8-4.2 wt% TiO₂ (n=3). Pentlandite: Ni=29, Co=1 (n=3); pyrrhotite Ni?0.3, Co=0.1 (n=2); smythite Ni=28, Co=1.5 (n=1) (all wt-

%). Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 3.52 Classification: R3

Specimens: 16.3 g on deposit at Kiel, Ziyao Wang holds the main mass, and 14 g with Bart.

Northwest Africa 12512 (NWA 12512)

(Northwest Africa)

Purchased: 2005

Classification: Ordinary chondrite (L3-6)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving and S. Kuehner, *UWS*; P. Carpenter, *WUSL*) Well-formed chondrules (apparent diameter $820\pm420 \mu m$, N = 22) together with angular Type 6 clasts (largely recrystallized with rare chondrule remnants) are set in a finer matrix containing stained metal, merrillite and chlorapatite.

Geochemistry: Olivine (Fa_{25.4±7.3}, range Fa_{13.1-38.0}, N = 7; Cr₂O₃ in ferroan examples 0.04-0.18 wt.%, mean 0.08±0.06 wt.%, N = 6), orthopyroxene (Fs_{10.1±9.9}Wo_{1.0±0.6}, rangeFs_{2.5-21.2}Wo_{0.6-1.6}, N = 3), subcalcic augite (Fs_{12.5}Wo_{28.4}), augite (Fs_{7.9}Wo_{44.7}), olivine in Type 6 lithic clast (Fa_{23.9±0.1}, range Fa_{23.7-24.0}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.70.

Classification: Ordinary chondrite (L3-6 breccia). Affinity to L chondrites is established from olivine composition in equilibrated lithic clasts and bulk magnetic susceptibility. **Specimens**: The entire specimen including one polished thin section is at *PSF*.

Northwest Africa 12518 (NWA 12518)

(Northwest Africa)

Purchased: 2018 Aug

Classification: Ordinary chondrite (LL3)

History: Purchased by John Higgins in August 2018 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving and S. Kuehner, *UWS*) Well-formed chondrules (apparent diameter $850\pm370 \mu m$, N = 23) are set in a finer matrix containing altered metal.

3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
22	
25	
25	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Geochemistry: Olivine (Fa_{7.8-39.1}, Cr₂O₃ in ferroan examples 0.03-0.32 wt.%, mean 0.14±0.10 wt.%, N = 8), orthopyroxene (Fs_{1.8-20.7}Wo_{0.3-3.9}, N = 3), subcalcic augite (Fs_{10.3-24.3}Wo_{34.2-29.7}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 3.95.

Classification: Ordinary chondrite (LL3)

Specimens: 55 g including one polished thin section at UWB; remainder with Mr. J. Higgins.

Northwest Africa 12520 (NWA 12520)

(Northwest Africa)

Purchased: 2018 Nov

Classification: Ordinary chondrite (LL6, melt breccia)

History: Purchased by Aziz Habibi in November 2018 from a Mauritanian dealer. **Petrography**: (A. Irving and S. Kuehner, *UWS*) Relatively fresh, shock-modified breccia consisting of clasts of petrographic type 6 and shock stage S1 (largely recrystallized with rare

chondrule remnants and stained metal) in a very fine grained to glassy matrix (black to cinnamon-brown in thin section).

Geochemistry: Olivine (Fa_{30.8-31.2}, N = 3), orthopyroxene (Fs_{25.1-25.5}Wo_{2.2-1.6}, N = 3), clinopyroxene (Fs_{10.5-10.6}Wo_{42.9-42.7}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 3.95.

Classification: Ordinary chondrite (LL6 melt breccia).

Specimens: 83.5 g including one polished thin section at *UWB*; remainder with Mr. A. Habibi.

Northwest Africa 12523 (NWA 12523)

(Northwest Africa)

Purchased: 2017

Classification: Carbonaceous chondrite (CVred3)

History: The meteorite was found in the Sahara and purchased in Agadir

Petrography: Chondrite with mm-sized chondrules and CAIs set in abundant fine-grained matrix. Opaques are metal and sulfides. Chondrules show flatenning and preferential orientation.

Geochemistry: Olivine Fa_{13.5 \pm 8.3}, PMD 54%, range 0.9-27.0 (N=7). Orthopyroxene Fs_{1.7}Wo_{1.3} (N=1)

Classification: Carbonaceous chondrite (CV3). Reduced sub-group.

Specimens: Type specimen at CEREGE. Main mass with Labenne.

Northwest Africa 12524 (NWA 12524)

(Northwest Africa)

Purchased: 2018 Apr

Classification: Carbonaceous chondrite (CK5)

History: The meteorite was found in the Sahara and purchased in Agadir

Physical characteristics: Crusted stone. Cut surface reveals dark-gray interior.

Petrography: Chondrite with recrystallized texture. Matrix is abundant. Opaque are mostly Cr-bearing magnetite and sulfides. Ca-phosphate is present. Rare metal. No CAI was observed over the 2 cm2 studied section.

Geochemistry: Olivine Fa_{32.0±0.2}, NiO 0.52±0.08 wt% (n=4). Plagioclase

 $An_{60.8}Ab_{38.3}Or_{0.9}$ (n=1). Magnetite Cr_2O_3 3.98 wt%.

Classification: Carbonaceous chondrite (CK5).

Specimens: 22 g and a polished section at *CEREGE*. Main mass with *Labenne*. Northwest Africa 12688 (NWA 12688) (Northwest Africa) Purchased: 20 Apr 2017 Classification: Ureilite History: The meteorite was purchased from Mr. Aziz Habibi in Agadir (Morocco) in April 20, 2017. Physical characteristics: Single stone of 140 g total weight has angular shape and dark brownish surface. Fusion crust is not preserved. Petrography: (Lorenz C. A., Vernad) The rock has coarse grained (0.5-1 cm) metamorphic texture with triple junctions of mineral grains and composes of clino and orthopyroxene and olivine. Clinopyroxene contains rare large inclusions of olivine, orthopyroxene and glass. Accessory metal Fe and sulfide form thin linear veinlets along the silicate grains borders and are mostly replaced by Fe-hydroxides. Rare rounded inclusions of intergrown metal Fe, troilite and shreibersite occur within the silicate grains. Olivine has undulatory optical extinction, irregular and planar fractures. Some olivine grains are rich in fine-grained vermicular aggregates of troilite associated with the veinlets. Graphite was not found. Geochemistry: Mineral compositions and geochemistry: (N. N. Kononkova, EMP, Vernad) Pyroxene: $Fs_{10.6\pm0.2}Wo_{4.7\pm0.3}$ (in wt%: $Al_2O_3 = 1.23\pm0.19$; $Cr_2O_3 = 1.09\pm0.07$; Fe/Mn = 12.0±1.6; N = 18); Ca-pyroxene $F_{s_{6.4\pm0.3}}Wo_{38.5\pm2.1}$ (in wt%: Al₂O₃ = 2.59±1.66; Cr₂O₃ = 1.29 ± 0.17 ; TiO₂ = 0.4 ± 0.2; Fe/Mn = 12.0±1.6; N = 7); Glass, in wt%: SiO₂ = 60.0; Al₂O₃ = 23.5; $Na_2O = 4.81$; CaO = 8.78; FeO = 2.41; MgO = 2.13; metal Fe (in wt%): Ni = 1.7; P =1.2; Si < 0.04; Ni/Co=7.7; troilite Cr = 2.0 wt%. Mineral norms from bulk analysis (T. G. Kuzmina, XRF, Vernad), in wt% Ol 54.2; Hyp 23.3; Di 18.9; Fsp 3.4; Oxygen isotopes (I. A. Franchi, OU, laser fluorination): $\delta^{17}O = 3.13 \ \delta^{18}O = 7.78 \ \Delta^{17}O = -0.916$; $\delta^{17}O = 3.095 \ \delta^{18}O =$ 7.791 Δ^{17} O = -0.956. Classification: Based on a texture, mineral chemistry and oxygen isotopic composition the meteorite is classified as ureilite. Specimens: Cutted piece and three sub-samples of 27.7 g in total, and thin polished section are on deposit in Vernad. Northwest Africa 12727 (NWA 12727) Morocco Purchased: 2018 Classification: Ordinary chondrite (LL3) History: Collected by nomads in Western Sahara and purchased by Giorgio Tomelleri at the Erfoud market in 2018 from a Moroccan dealer. **Physical characteristics**: A single piece weighing 4560 g with a black fusion crust. The cut surface appears weakly weathered and displays scattered CAIs. Petrography: (V. Moggi Cecchi, G. Pratesi, S. Caporali, UniFi); The thin section displays a chondritic texture, with PO and POP chondrules ranging from 800 to 1200 µm in a fine grained matrix. PO chondrules display zoned olivine crystals. POP chondrules display olivine grains and elongated pyroxene grains. Olivine is markedly inhomogenesous and Mg-rich in

chondrules, while Fe-rich in the matrix. Orthopyroxene in chondrules is inhomogeneous, with a core-rim variability. Plagioclase is Na and K-rich. Opaque phases are consisting of iron oxides, Fe-Ni alloys and troilite as individual grains scattered in the matrix or rimming chondrules.

51

52

53

54

55 56

57

58 59 60

2	
3	Geochemistry [•] EMP (V Moggi Cecchi G Pratesi S Caporali <i>UniFi</i>) [•] Olivine in
4	chondrules (Falls of Force of Fe/Mn = 63.0, n=33.): Olivine in matrix
5	(Frame Frame Eq. $(Mn = 62.0, n=10)$): Orthonyroyana in chondrulas
б	$(1 a_{34,3\pm1,4} + 1 b_{65,6\pm1,7} + 1 c_7)$ $(1 a_{34,3\pm1,4} + 1 c_{65,6\pm1,7} + 1 c_7)$ $(1 a_{34,3\pm1,4} + 1 c_$
7	$(FS_{11.1\pm7.0}En_{88.2\pm6.8}W O_{0.7\pm0.1}, Fe/Min - 25.2, n-15);$ Orthopyroxene in matrix
8	$(Fs_{25.4\pm1.5}En_{72.7\pm1.3}Wo_{1.9\pm0.1}, Fe/Mn = 34.3, n=6); plagioclase (An_{40.1}Or_{46.7}); Oxygen isotopes$
9	(I. Franchi, R.Greenwood, OU): $\delta^{17}O = 3.99$, $\delta^{18}O = 5.79$, $\Delta^{17}O = 0.973$, all permil.
10	Classification: Ordinary Chondrite (LL3); S2; W2. Estimated subtype LL3.3.
11	Specimens: A total of 21.7 g specimen is on deposit at MSN-FI, Inv.#3456-I). Tomelleri
12	holds the main mass.
13	
14	
15	Northword Africa 17725 (NIVIA 12725)
16	Northwest Africa 12755 (NWA 12755)
17	(Northwest Africa)
18	Purchased: 2018
19	Classification: LL6-anom
20	History: Bought in Morocco in 2018
21	Physical characteristics : Brown stone. Cut face reveals dark grav interior.
22	Petrography : (I. Gattacceca <i>CEREGE</i>) Recrystallized chondrite with olivine dominant over
23	nyroxene Plagioclase average size above 50 µm. Onaque are sulfides (indlouding pentlandite)
25	and magnetite. No metal was observed
26	C_{aa} characterized $NiO = NiO =$
27	Geochemistry : Onvine $\operatorname{Fa}_{33.6\pm0.2}$, NIO 0.10±0.04 wt% (n=4). Orthopyroxene
28	$F_{s_{27,1\pm0.1}}Wo_{1.9\pm0.2}$ (n=3). Plagioclase An _{10.0} Ab _{84.8} Or _{5.3} (n=2). Oxygen isotopic composition (J.
29	Gattacceca, C. Sonzogni, <i>CEREGE</i>) from analysis of one acid-washed 1.5 mg aliquot of a
30	powdered 270 mg bulk sample is $\delta^{17}O=4.01\%$, $\delta^{18}O=5.14\%$, $\Delta^{17}O=1.31\%$ (linearized, slope
31	0.5247, analytical uncertainties 0.08‰, 0.12‰, 0.03‰ respectively).
32	Classification: Ordinary chondrite (LL6-anomalous). The anomalous designation is based on
33	the Fa content of olivine, magnetic susceptibility, and the opaque mineralogy. The Fa content
34	of olivine is higher than for typical LL chondrite: only 3 out of about 1800 LL chondrites
35	have a higher Fa content (NWA 10462 NWA 11776 and NWA 12334 all classified as $II.6$ -
36	anomalous) Magnetic suscentibility is also lower than in other moderaltaly weathered LL
37	anomalous). Magnetic susceptionity is also lower than in other model afterly weathered LL
38	chondrites. The opaque mineralogy, featuring magnetite and pentiandite, is also unusual for a
39	LL chondrite.
40	Specimens: Type specimen at CEREGE. Main mass with Labenne.
41	
42	
43	Northwest Africa 12736 (NWA 12736)
44	(Northwest Africa)
45	Purchased: 2015
40 47	Classification: Achondrite ung
+/ /8	Detwore were being (L. Cettersone CEDECE) Die der einer sind sind auf die sind auf
- 1 0 //0	retrography: (J. Gattacceca, CEREGE) Blocky aggreagte of olivine and pyroxene with grain
50	size $600 \ \mu\text{m}$. Metal and trollite are present as veinlets, along silicate rims and as small aligned
~ ~	

size 600 µm. Metal and troilite are present as veinlets, along silicate rims and as small aligned crystals within silicates. No graphite was observed; and no silicate zoning was observed. **Geochemistry**: Olivine Fa_{12.2±0.6}, FeO/MnO 23.4±4.5, CaO 0.26±0.04 wt%, Cr₂O₃ 0.50±0.04 wt% (n=6). Pyroxene: low-Ca pyroxene Fs_{10.9±0.2}Wo_{4.7±0.1} (n=5), high-Ca pyroxene Fs_{6.6±0.1}Wo_{37.8±0.3} (n=5), FeO/MnO 12.8±2.7 (n=10). Oxygen isotopic composition (J. Gattacceca, C. Sonzogni, *CEREGE*) from analysis of one acid-washed 1.5 mg aliquot of a powdered 118 mg bulk sample is $\delta^{17}O=0.05\%$, $\delta^{18}O=1.65\%$, $\Delta^{17}O=-0.81\%$ (linearized, slope 0.5247, analytical uncertainties 0.08‰, 0.12‰, 0.03‰ respectively).

Meteoritics & Planetary Science

Classification: Achondrite-ungrouped. The mineralogy is reminiscent of ureilites but significant differences are the absence of carbon material (graphite, diamond) and the absence of reduced rim in silicates. Oxygen isotopic composition is also distinct from that of ureilites.

Northwest Africa 12780 (NWA 12780)

Morocco

Purchased: 2019

Classification: Ordinary chondrite (LL7)

History: (Ziyao Wang) Purchased by Ziyao Wang from Said Yousfi in Errachidia, Morocco, in Oct. 2019.

Physical characteristics: (Ziyao Wang) brown stone 8.5 g, without fusion crust

Petrography: (R. Bartoschewitz, *Bart*) highly recrystallized granular texture with grain sizes up to 0.6 mm (av. 0.1 mm), no relict chondrules, and abundant feldspar >100 µm.

Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine

Fa_{31.1±0.4} (n=16); pyroxene Fs_{25.8±1.2}Wo_{3.5±0.9} (n=3); Ca pyroxene En₄₅₋₄₈Fs₁₀₋₁₃Wo₃₉₋₄₃ (n=3); feldspar An₄₋₁₄Or₃ (n=3); chromite CRAL87, FFM92 (n=3). Tetrataenite Co=2.2 wt% (n=3);

troilite. Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 3.31.

Classification: Ordinary chondrite (LL7), based on texture, Wo content of pyroxenes, plagioclase size, and absence of chondrules

Specimens: 1.73 g at Kiel on deposit, Ziyao Wang holds the main mass and 1 g with Bart.

Northwest Africa 12781 (NWA 12781)

Morocco

Purchased: 2019

Classification: Carbonaceous chondrite (CV3)

History: (Ziyao Wang) Purchased by Ziyao Wang from Craig Zlimen in the US, 2019. Zlimen had bought it from a Moroccan dealer.

Physical characteristics: (Ziyao Wang) dark-yellow flat stone 34 g, without fusion crust **Petrography**: (R. Bartoschewitz, *Bart*) well-defined chondrules (~70 vol%, 0.4-3 mm, av. 0.7 mm) of various types and AOAs set in a opaque brown matrix.

Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine Fa14.2 (1.1-

22.6; n=27); pyroxene Fs_{6.7}Wo_{0.9} (Fs_{2.2-18.6}Wo_{0.2-3.5}, n=11); Cr-spinel. Kamacite Ni=4.2,

Co=1.4 (n=1); taenite Ni=21-40, Co=0.3-1.0 (n=2) (all wt%); troilite; pyrrhotite. Magnetic

susceptibility (R. Bartoschewitz, *Bart*) log χ (× 10⁻⁹ m³/kg) = 3.83

Classification: Carbonaceous chondrite (CV3)

Specimens: 6.9 g at Kiel on deposit, Ziyao Wang holds the main mass and 6 g with Bart.

Northwest Africa 12782 (NWA 12782)

Morocco

Purchased: 2018

Classification: Carbonaceous chondrite (CV3)

History: (Ziyao Wang) Purchased by Ziyao Wang from Fayssal Mezgouri in Agadir, Morocco, Nov 2018.

Physical characteristics: (Ziyao Wang) dark brown stone 92.5 g, without fusion crust. Many chondrules are visible on the surface

)	
3	Petrography : (R. Bartoschewitz <i>Bart</i>) well defined chondrules (~60 vol% 0.4-2 mm av 0.6
4	mm) of various types (PO PP RP) and CAIs/AOAs set in a brown opaque matrix. Metal
5	accurs as small dronlets inside the chondrules
6	Caachemistry (D. Dartagehavitz, Davt D. Annal and D. Madar, Viel) Oliving Eq. (0.8
7	Geochemistry. (K. Dartoschewitz, <i>Buri</i> , F. Appel and B. Madel, <i>Kiel</i>) On vine $Fa_{10,2}(0.6-1)$
8	16.2; $n=16$); pyroxene FS _{12.1} WO _{1.4} (FS _{1.5-25.7} WO _{0.3-4.4} , $n=15$); cnromite CRAL=86-96, FFM=89-
9	93 (n=3). Kamacite Ni= $3.5-4.5$, Co= $0.7-1.8$ (n=3); taenite Ni= $20-40$, Co= $0.5-1.0$ (n=6) (all
10	wt%); troilite. Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) $\log \chi$ (× 10 ⁻⁹ m ³ /kg) = 3.40
11	Classification: Carbonaceous chondrite (CV3)
12	Specimens: 20.0 g at <i>Kiel</i> on deposit, Ziyao Wang holds the main mass and 9 g with <i>Bart</i> .
13	
15	
16	Northwest Africa 12786 (NWA 12786)
17	Morocco
18	Purchased: 2018
19	Classification: Ordinary chondrite (I.4. melt breccia)
20	History: (Zivao Wang) Durchasod by Zivao Wang from Eavesal Mozgouri in Agadir
21	Maragaa Nay 2019
22	Morocco, Nov 2018.
23	Physical characteristics: (Ziyao wang) one 422 g gray, flat stone
24	Petrography : (R. Bartoschewitz, <i>Bart</i>) meteorite show two lithologies: a) recrystallized
25	matrix with chondrules of 0.2-1.5 mm (POP, PP, RP), metal and sulfide grains; and b)
26	recrystallized fine grained (~50 μ m) melt.
2/	Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine
20	Fa _{24,2±0.9} (n=13); pyroxene Fs _{20,2±6,2} Wo _{1,5±0,2} (n=7); chromite CRAL87, FFM88; Cl-apatite and
30	merrillite. Kamacite Ni=3.6-6.4, Co=0.8-1.0 (n=3); taenite Ni=30-33, Co=0.3 (n=4) (all
31	wt%); troilite. Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log γ (× 10 ⁻⁹ m ³ /kg) = 4.57.
32	Classification : Ordinary chondrite (I.4-melt breccia W2)
33	Specimens: 21.9 g at <i>Kiel</i> on deposit. Zivao Wang holds the main mass and 53 g with <i>Bart</i>
34	specimens. 21.5 g ut nitet on deposit, 21juo 4 dig nords the main mass and 55 g 4 th Dave.
35	
36	Northwest Africa 12787 (NWA 12787)
37	Moreage
38	Molocco
39	Purchased: 2019
40	Classification: Ordinary chondrite (H3)
41	History : (Ziyao Wang) Purchased by Wei Jiang from Sbai Mohamed at the mineral show
42	in <i>Beijing</i> in Nov. 2018
44	Physical characteristics: (Ziyao Wang) 196 g brown stone with spherical appearance.
45	Weathering is very significant, the appearance is broken, without fusion crust
46	Petrography: (R. Bartoschewitz, Bart) well-defined chondrules (0.1-1.5 mm, av. 0.5 mm) of
47	various types (PO, PP, RP) and mineral fragments in a brown stained matrix, metal and
48	sulfides are nearly complete oxidized.
49	Geochemistry (R Bartoschewitz <i>Bart</i> P Appel and B Mader <i>Kiel</i>) Olivine
50	$Fa_{1}(2) \neq 0$ (n=25): pyroxene $Fs_{1}(2) \neq 0$ $W_{0}(2) \neq 0$ (n=13): chromite CRAL91 FFM98 Kamacite
51	$N_{10.5\pm4.9}$ (ii 25), pyroxene r $S_{18.8\pm5.0}$ (ii 00.9±0.8 (ii 15), emonate Cr(12) 1, 11 1190. Remainder
52	(R Bartoschewitz <i>Bart</i>) log χ (χ 10-9 m ³ /kg) = 5.06
53	(N. Dartoschewitz, $Darti rog_{\lambda} (\sim 10^{-1017} \text{ Mg}) = 5.00$
54	Classification : Ordinary chondrifie ($H3$, 52 , $W3$)
55	Specimens: 22.3 g at <i>Kiel</i> on deposit, wei Jiang holds the main mass, Ziyao Wang 18 g, and
57 57	65 g with Bart.
58	
59	
60	Northwest Africa 12793 (NWA 12793)

(Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (L6)

History: (Ziyao Wang) Purchased by Ziyao Wang from Fayssal Mezgouri at the mineral show in Chenzhou in May 2019

Physical characteristics: Flat brown stone of 50 g with recognizable tiny metallic spots on its surface

Petrography: (R. Bartoschewitz, *Bart*) Light-brown stained fractured recrystallized matrix with indistinct chondrules. Fractures are filled with hydroxides of the nearly complete oxidized metal and sulfide; beginning alteration of mafic silicates.

Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine

Fa_{23.4±0.4} (n=15); pyroxene Fs_{19.5±0.3}Wo_{1.1±0.2} (n=6); mellillite. Magnetic susceptibility (R.

Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 3.54

Classification: Ordinary chondrite (L6,W5)

Specimens: 12.3 g at Kiel on deposit, main mass with Bart.

Northwest Africa 12794 (NWA 12794)

Sahara

Purchased: 2004

Classification: Ordinary chondrite (L5, melt breccia)

History: A single stone weighing 7 g was bought from a dealer from Morocco **Petrography**: The rock mainly consists of fine-grained material embedding a large clast of L5 chondrite. The fine-grained portion has a melt texture with olivine and pyroxene embedded in a feldspathic matrix. The melt portion also contains metal-sulfide assemblages as typical for other melt rocks.

Geochemistry: Random analyses of the rock revealed mean olivine and pyproxene

composition of Fa_{24.0±1.9} (n=15) and Fs_{18.4±1.7} (n=18), respectively.

Classification: Ordinary chondrite (L5-melt breccia)

Specimens: *IfP*: 2.1 g and 1 thin section

Northwest Africa 12868 (NWA 12868)

Morocco Purchased: 2013 Classification: Ureilite

History: Purchased by D. Gregory in Tuscon, Arizona, from from Said Haddany in 2013. S. Haddany accredits the source of the material to Morocco. Type specimen is catalogued at *ROM* as M58158.

Physical characteristics: The sample is covered by a weakly weathered, dark fusion crust. **Petrography**: The sample exhibits medium to coarse-grained cumulate texture, with major olivine approximately 60%, low-Ca pyroxene 34%, and carbon 4%. Olivine grains exhibit planar fracturing, undulatory extinction, and minor reduction rims. Low-Ca pyroxene exhibits twinning and undulatory extinction. Raman analysis confirms graphite is the carbon phase. **Geochemistry**: Mineral compositions and geochemistry: Olivine cores: Fa_{13.8±2.5} (n=12), 0.01±0.00 wt% CaO, 0.02±0.00 wt% Cr₂O₃, and 0.01±0.00 wt% MnO. Pyroxene cores: Fs_{12.6±0.2}Wo_{9.9±0.1} (n=10), 0.19±0.00 wt% CaO, 0.03±0.00 wt% Cr₂O₃, and 0.01±0.00 wt% MnO.

Classification: Achondrite (ureilite). Low shock, moderate weathering. **Specimens**: The 23.84 g sample and one thin section are held at the *ROM*.

1	
2	
3	
4	
5	Northwest Africa 12004 (NWA 12004)
6	Northwest Africa 12894 (NWA 12894)
7	Morocco
8	Purchased: 2019
9	Classification: Ordinary chondrite (L3)
10	History : (Zivao Wang) Purchased by Haichuan Tang from a Moroccan dealer at the mineral
11	show in Chanzbou in May 2010
12	Show in Chenzhou in Way. 2017 \mathbf{D} : \mathbf{L} : \mathbf{L} : \mathbf{L} : \mathbf{C} : \mathbf{M} : \mathbf{D} : \mathbf{L} : \mathbf{L} : \mathbf{C} : \mathbf{C}
13	Physical characteristics : (Ziyao Wang) Dark yellow stone of 202 g without fusion crust,
14	weathering is very serious
15	Petrography : (R. Bartoschewitz, <i>Bart</i>) well defined, fractured chondrules (0.3-2 mm, av. 0.7
16	mm) set in a brown-stained matrix: cracks and vugs are filled with Fe-hydroxides.
17	Geochemistry: (R Bartoschewitz Rart P Appel and B Mader Kiel) Olivine
18	Eq. $(n=16)$: nurovono Eq. W_0 $(n=0)$ Toonito: trailito (Ni=0.2.0.9 yut0/)
19	$ra_{23.6\pm 2.3}$ (II-10), pyloxene $rs_{13.5\pm 8.6}$ w $0_{0.7\pm 0.5}$ (II-9). Taeline, trouble (INI-0.2-0.6 wt/6).
20	Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m ³ /kg) = 4.43
21	Classification: Ordinary chondrite (L3, S2, W4)
22	Specimens: 32.1 g at <i>Kiel</i> on deposit, Haichuan Tang and Ziyao Wang hold the main mass
22	and 75 g with <i>Bart</i> .
23	
25	
26	N (1 (A.C. 12000 (AUVA 12000)
20	Northwest Africa 12899 (NWA 12899)
27	Northwest Africa
20	Purchased: 2017
30	Classification: HED achondrite (Eucrite)
31	History : A single stone weighing 77 g was found by an anonymous finder in Western Sahara
37	and purchased in October 2017 at the Munich Fair for the collections of the Museo di Storia
32	Naturala SMA University of Elemence Italy
34	Naturale - SMA, University of Florence, Italy.
35	Physical characteristics : The main mass is partially covered by a black, shiny fusion crust
36	with several cracks.
37	Petrography : (V. Moggi Cecchi, G. Pratesi, S. Caporali, <i>UniFi</i>): The thin section analyzed
38	displays a basaltic texture Orthopyroxene crystals ranging in width from 80 to 160 um are
30	common with minor clinonyroxene and anorthitic plagioclase Low-Ca pyroxene crystals
<i>1</i> 0	with fine (2.5 µm) nigeonite eventuation lemelles are diffuse. Minor phases are EoNi metal and
40	with fine (2-5 µm) pigeonite exsolution famenae are unfuse. Withou phases are retvi metal and
41	troilite, with rare ilmenite and chromite grains.
42	Geochemistry: EMP (V.Moggi Cecchi, G.Pratesi, S.Caporali UniFi); Host: low-Ca pyroxene
45	$(Fs_{62,1\pm0.3}En_{35,1\pm0.7}Wo_{2.8\pm0.3}; n=7; Fe/Mn = 34.0\pm0.2);$ Diopside exsolution lamellae in
44	orthopyroxene (Fs _{27,5+0.2} En _{28,7+0.3} Wo _{44,0+0.2} : n=8: Fe/Mn = 30.0 ± 0.3): Calcic plagioclase
45	An $a \in a \cap a$ $c \in a$ $c \in a$ $r = 9$.
40	Classification: Everite with madium degree of sheek and madium degree of weathering
47	Classification. Euclide with medium degree of shock and medium degree of weathering.
40	Specimens: The main mass, weighing 55 g, the type specimen, weighing 24 g, and one thin
49	section are on deposit at MSN-FI (Inventory N G-75062).
50	
51	
52	Northwest Africa 12907 (NWA 12907)
55	(Northwest A frice)
54 55	Dymbogod, 2010
55	Purchased: 2019
50	Classification: Primitive achondrite
5/	History: Two single, identically appearing complete stones of 134 and 590 g were purchased
58	from Moroccan dealers in April 2019.
59	1
60	

Physical characteristics: Single stone, sand blasted brownish exterior lacking fusion crust. Broken surface reveals poly-phase aggregate of yellow and gray crystals. Many small vugs or vesicles are visible. Very dark patches appear to be shock melt.

Petrography: (C. Agee, *UNM*; X. Gu, *CSU*-China) Microprobe examination of a polished mount shows an ultramafic rock with approximately 60% olivine, 30% pyroxene, and 10% alkali-rich glass. Pyroxenes often mantle olivine phenocrysts and are zoned with low calcium pyroxene cores and subcalcic augite rims. Some olivines are euhedral with grain size ~500 μ m. Glass of approximately trachytic composition is evenly distributed throughout, primarily in pockets ~100 μ m. Troilite is ubiquitous as small (~20 μ m) spherical blebs observed mostly in glass, although one large bleb ~1 mm was observed. Trace amounts of kamacite are present.

Geochemistry: (C. Agee, *UNM*; X. Gu, *CSU*-China) Olivine Fa_{20.0±2.6}, Fe/Mn=48±4, n=12; low-Ca pyroxene Fs_{21.6±0.5}Wo_{3.0±0.2}, Fe/Mn=29±1, n=4; subcalcic augite Fs_{22.6±0.2}Wo_{24.1±1.7}, Fe/Mn=25±1, n=2; glass SiO₂=64.8±0.7, TiO₂=0.63±0.7, Al₂O₃=17.4±0.5, Cr₂O₃=0.01±0.01, MgO=0.7±0.4, MnO=0.04±0.03, FeO=2.9±1.2, CaO=2.9±0.5, Na₂O=8.8±0.3, K₂O=1.1±0.5 (wt%), n=6. Oxygen isotopes (K. Ziegler, *UNM*): 3 acid-washed fragments analyzed by laser fluorination gave δ^{18} O= 4.950, 4.899, 5.195; δ^{17} O= 3.672, 3.652, 3.848; Δ^{17} O=1.058, 1.066, 1.105 (linearized, all per mil, TFL slope=0.528).

Classification: Primitive achondrite. Oxygen isotope values overlap with the L-LL chondrite field. Possibly related to <u>NWA 11042</u>, but not likely paired as it possesses no maskelynite, but does have glassy melt pockets and similar olivine and pyroxene compositions.

Specimens: 20.4 g including a probe mount on deposit at *UNM*, Zuokai Ke holds the main mass.

Northwest Africa 12940 (NWA 12940)

Morocco

Purchased: 2012

Classification: HED achondrite (Eucrite)

History: Purchased from A. *Aaronson* in 2012 at the Tucson Gem and Mineral Show, who provided origin of sample as being from Morocco. Catalogued in the Royal Ontario Museum as sample LM58201

Physical characteristics: The meteorite has a well-preserved, black fusion crust with little signs of weathering. Cracks in the fusion crust are not filled with caliche. Interior of the sample fresh light grey, intact, uniform with no obvious signs of shock or weathering.

Petrography: Monomict breccia of basaltic clasts. Most pyroxene grains show mosaicism. **Geochemistry**: Mineral composition and geochemistry: Plagioclase $An_{90,21\pm1,24}$ (n=23).

Pyroxene composition: Fs_{40.68±13.81}Wo_{1.35±0.42} and Mg#54.06 (n=29).

Classification: (K. Tait, *ROM*). Texture and composition suggest the sample is a monomict breccia.

Northwest Africa 12941 (NWA 12941)

Morocco

Purchased: 2012

Classification: HED achondrite (Eucrite)

History: Purchased from A. *Aaronson* in 2012 at the Tucson Gem and Mineral Show, who provided origin of sample as being from Morocco. Catalogued at the Royal Ontario Museum collection as sample LM58149

Running Head

 Physical characteristics: The meteorite has a weathered, fractured fusion crust on two surfaces, with cracks and an exposed interior faces covered with caliche. Interior of the sample largely light-grey in colour with larger black clasts visible. No shock veins observed.
Petrography: Breccia composed of clasts set in a matrix dominated by large crystal fragments. The majority of the clasts are composed of previously brecciated material. They contain crystal fragments and small gabbroic textured clasts set in a finely comminuted matrix. Mineral grains in both matrix and clasts show undulatory extinction.

Geochemistry: Mineral composition and geochemistry: Plagioclase composition: An_{90.01±2.34} (n=27) Low Ca-pyroxene composition: $Fs_{43.66\pm14.83}Wo_{4.90\pm3.19}$ and FeO/MnO = 30.06 ± 1.98 (n=24).

Classification: (K. Tait, *ROM*) Texture and compositions suggest the sample is a polymict eucrite breccia. Lack of clear Opx-dominated composition excludes the possibility of this meteorite being a howardite.

Northwest Africa 12942 (NWA 12942)

Morocco

Purchased: 2014

Classification: HED achondrite (Eucrite)

History: Purchased from A. *Aaronson* in 2014 at the Tucson Gem and Mineral Show, who provided origin of sample as being from Morocco. Catalogued in the Royal Ontario Museum collection as LM58152

Physical characteristics: The meteorite has a well-preserved, dark fusion crust, with very minor weathering. Interior of the meteorite intact, uniform and pale gray, with visible thin, black veins and very fine-grained texture.

Petrography: Breccia composed almost entirely of crystal fragments set in a finely comminuted matrix. Crystal fragments range from 60 by 70 μ m to 1200 by 600 μ m. One gabrroic textured clast, measuring 0.5 by 0.4 cm, is present. Shock state is high as evidenced by strong mosaicism and fracturing of mineral grains.

Geochemistry: Mineral composition and geochemistry: Plagioclase composition:

An_{88.38±3.21}Or_{0.09±0.03} (n=11). Low Ca-pyroxene composition: $Fs_{42.98\pm14.37}Wo_{6.39\pm4.74}$ and FeO/MnO = 30.92±1.10 (n =20). High Ca-pyroxene composition: $Fs_{31.81\pm1.48}Wo_{28.47\pm9.97}$ and FeO/MnO = 30.97±0.71 (n=3).

Classification: (K. Tait, *ROM*) Texture and compositions suggest the sample is a polymict eucrite breccia.

Northwest Africa 12943 (NWA 12943)

Morocco Purchased: 2011

Classification: HED achondrite (Eucrite)

History: Purchased from A. *Aaronson* in 2011 at the Tucson Gem and Mineral Show, who provided origin of sample as being from Morocco. Catalogued in the Royal Ontario Museum as sample LM55992

Physical characteristics: Visible fusion crust showing low to moderate weathering, evident by a light beige coloring. Cracks in the fusion crust filled in with caliche. Interior of the sample is intact, uniform and pale grey with a fine-grained texture.

Petrography: Breccia composed of gabbroic clasts set in a comminuted matrix of coarsely grained crystal fragments. Crystal fragments range from 80-900 µm. The largest clast is 1.2

by 1.0 cm. Variable shock state. Some grains, mostly in clasts, go into extinction while others show mosaicism.

Geochemistry: Mineral composition and geochemistry: Plagioclase composition:

An_{91,52±0.83}Or_{0.05±0.01} (n=23). Low Ca-pyroxene composition: $Fs_{41,03\pm0.20}Wo_{3,40\pm1.29}$ and FeO/MnO = 28.89±0.58 (n =17). High Ca-pyroxene composition: $Fs_{34,05\pm1.10}Wo_{38,21\pm6.41}$ and FeO/MnO = 29.45±0.84 (n=7).

Classification: (K. Tait, *ROM*) Texture and compositions suggest the sample is a polymict eucrite breccia.

Northwest Africa 12944 (NWA 12944)

Morocco

Purchased: 2006

Classification: HED achondrite (Eucrite)

History: Purchased from A. Habibi in 2006 at the Tucson Gem and Mineral Show, who provided origin of sample as being from Morocco. Catalogued at the Royal Ontario Museum collection as sample LM59807

Physical characteristics: Visible fusion crust exhibiting low to moderate weathering, evident by a light beige coloring. Cracks in the fusion crust filled in with caliche. Interior of the sample is intact, uniform and pale grey with a fine-grained texture.

Petrography: The thin section of this small specimen, largest dimensions are 1.5 by 1.0 cm, is dominated by 4 clasts with a gabbroic texture. The pyroxenes are mostly lath-shaped although a few more equant grains are present. Plagioclase is difficult to observe and appears to have been maskelynized. The clasts are separated by a very fine grained to glassy comminuted matrix with some isolated crystal fragments. The entire specimen, clasts and matrix, are shock darkened and the pyroxene lathes show radial extinction.

Geochemistry: Mineral composition and geochemistry: Plagioclase composition: An_{82.2±5.06}Or_{0.24±0.15} (n=19). Low Ca-pyroxene composition: Fs_{33.68±0.64}Wo_{8.39±2.85} and FeO/MnO = 32.72±0.57 (n =7). High Ca-pyroxene composition: Fs_{30.43±1.15}Wo_{30.60±7.63} and FeO/MnO = 32.71±1.08 (n=16).

Classification: (K. Tait, *ROM*) Texture and compositions suggest the sample is a polymict eucrite breccia.

Northwest Africa 12957 (NWA 12957)

(Northwest Africa)

Purchased: 2018

Classification: Carbonaceous chondrite (C3.00, ungrouped)

History: Purchased in Morocco in 2018.

Physical characteristics: Black irregular fragments. Cut face reveals a dark interior with small light chondrules.

Petrography: (J. Gattacceca, *CEREGE*) Chondrules with average apparent diameter 300 ± 200 µm (n=25) set in a abundant iron-rich fine-grained matrix. Most chondrules have fine-grained rims. Opaques are metal, sulfides and magnetite. No phyllosilicates were observed. Raman spectra of the fine-grained matrix reveal the presence of polyaromatic carbonaceous matter characterized by a structural order comparable to type 2 chondrites, thus reflecting a peak metamorphic temperature lower than in the least metamorphosed type 3 chondrites (e.g., Semarkona).

Geochemistry: Olivine Fa_{24,3±20.8}, range Fa1.0-Fa_{58.7}, Fa PMD 79% (n=21), Cr₂O₃ in ferroan olivine 0.32±0.10 (n=16). Low-Ca pyroxene Fs_{8.8±12.7}Wo_{1.5±0.8} (n=10). Matrix microprobe

over an area of $30 \times 30 \ \mu\text{m2}$: total 84.4%, FeO 36.1 wt% (n=2). Oxygen isotopic composition (J. Gattacceca, C. Sonzogni, *CEREGE*) from analysis of one acid-washed 1.5 mg aliquot of a powdered 148 mg bulk sample is $\delta^{17}\text{O}=-3.82\%$, $\delta^{18}\text{O}=1.45\%$, $\Delta^{17}\text{O}=-4.59\%$ (linearized, slope 0.5247, analytical uncertainties 0.08‰, 0.12‰, 0.03‰ respectively **Classification**: Carbonaceous chondrite (C3.00-ungrouped). The type 3 derives from the unequilibrated nature, the absence of phyllosilicates and abundance of metal. The subtype 3.00 derives from Raman spectroscopy. The ungrouped designation derives from petrography. Possibly paired with <u>Chwichiya 002</u> despite having distinct oxygen isotopic composition. **Specimens**: Type specimen at *CEREGE*. Main mass with Isabelle Pothier.

Northwest Africa 12969 (NWA 12969)

(Northwest Africa)

Purchased: 2019 May

Classification: Ungrouped achondrite

History: Purchased by Habib Naji in May 2019 from a dealer in Nouakchott, Mauritania. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Composed predominantly of subequal proportions of forsterite (as coarse grained, polygranular agregates up to 4 mm across) and enstatite (also as polygranular aggregates, in part exhibiting polysynthetic twinning). Some enstatite is recrystallized into much finer subgrains, and all is lightly stained by secondary iron hydroxides. Accessory phases include altered Si-bearing kamacite and schreibersite, but no sulfides were observed despite a careful search. Minor secondary barite and calcite are also present.

Geochemistry: Forsterite (Fa_{1.0±0.0}, N = 3), enstatite (Fs_{0.4-0.7}Wo_{0.9-1.1}, N = 3), diopside (Fs_{0.3}Wo_{38.0}), kamacite (Ni 4.8 wt.%, Si 1.7 wt.%). Oxygen isotopes (K. Ziegler, *UNM*): analyses of acid-washed subsamples by laser fluorination gave, respectively, $\delta^{17}O = 1.501$, 1.727, 1.354; $\delta^{18}O = 6.280$, 6.762, 6.064; $\Delta^{17}O = -1.815$, -1.844, -1.847 per mil. **Classification**: Ungrouped achondrite (enstatite-forsterite-rich). This specimen is very unusual in being so olivine-rich, so iron-poor and magnesium-rich, and in evidently containing no sulfides, as well as having an extreme sub-TFL oxygen isotopic composition. **Specimens**: 22.5 g including one polished thin section at *UWB*; remainder with Mr. H. Naji.

Northwest Africa 12984 (NWA 12984)

Mauritania Find: 2017

Classification: Iron meteorite (ungrouped)

History: Purchased online in 2017 by George Penneff from a seller in Mauritania.

Physical characteristics: Single stone with dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) Coarse-grained octahedrite having a well-developed Widmanstätten pattern with 1.9-2. 8mm kamacite bands, taenite, and plessite. Troilite nodules present as well.

Geochemistry: (INAA, ActLabs) Ni=70.2 mg/g (DL=0.01 mg/g), Co=4.54 mg/g (DL=0.01 mg/g), Cr=353 μ g/g (DL=1 μ g/g), Cu=95 μ g/g (DL=1 μ g/g), Ga=37 μ g/g (DL=1 μ g/g), Ge=100 μ g/g (DL=10 μ g/g), As=11.2 μ g/g (DL=0.5 μ g/g), Re=0.23 μ g/g (DL=0.01 μ g/g), Ir=2.46 μ g/g (DL=0.001 μ g/g), Au=1.08 μ g/g (DL=0.01 μ g/g). Precision at detection limit to be ±100%, at ten times detection limit ±10-20% and at 100 times detection limit ±5%. **Classification**: Iron, Ungrouped. Although Ni (70.2 mg/g) and Co (4.54 mg/g) as similar to IAB-MG, Au (1.08 ppm) is lower than that of IAB irons, and so this sample is ungrouped. **Specimens**: 28.4 g at *UCLA*; main mass with Penneff.

Northwest Africa 13002 (NWA 13002) Algeria Purchased: 2019 Classification: HED achondrite (Eucrite, brecciated) History: Purchased in November 2019 by Matthew Stream from Mostafa Hnini. **Physical characteristics**: Single stone with weathered fusion crust. Petrography: (D. Sheikh, FSU) Sample is a breccia composed of basaltic clasts and isolated mineral fragments present in a fine-grained matrix. Minerals present include orthopyroxene, pigeonite, augite, calcic plagioclase, troilite, SiO₂ rich glass, chromite, and ilmenite. **Geochemistry**: Low-Ca Pyroxene ($Fs_{53.7\pm2.8}Wo_{5.4\pm0.4}$, range $Fs_{49.5-59.5}Wo_{4.7-5.9}$, FeO/MnO= 30±3, n=15); pigeonite (Fs_{51,4±3,2}Wo_{8,7±2.9}, range Fs_{44,1-58,0}Wo_{6,0-17,7}, FeO/MnO= 31±3, n=50); high-Ca pyroxene ($Fs_{29.7\pm3.7}Wo_{36.8\pm4.3}$, range $Fs_{25.3-37.1}Wo_{30.9-43.4}$, FeO/MnO= 30±4, n=15); calcic plagioclase (An_{88 8±3 0}, range An_{80 4-92 9}, n=20). Classification: HED achondrite (Eucrite, brecciated) Specimens: 26 grams at UCLA; main mass with Matthew Stream. Northwest Africa 13019 (NWA 13019) (Northwest Africa) Purchased: 2016 Classification: Carbonaceous chondrite (CK6) **History**: The meteorite was purchased from a meteorite dealer in Erfoud, Morocco. Physical characteristics: Brownish rock without fusion crust. Petrography: The meteorite predominantly consists of fine-grained recrystallized matrix mainly composed of ferroan olivine. Chondrules are sparse and only weakly defined. Minor phases include intermediate plagioclase (grain size about 80 µm), low-Ca pyroxene, Capyroxene, and troilite. Cr-rich magnetite is abundant; metal is virtually absent. **Geochemistry**: olivine: $Fa_{30.0\pm0.1}$, FeO/MnO= 120±13, n=11; low-Ca pyroxene: $Fs_{25,4\pm0.4}Wo_{0,7\pm0.1}$, FeO/MnO= 72±8, n=14, Ca-pyroxene: $Fs_{13,1\pm0.6}Wo_{44,6\pm1.9}$, n=11; Cr₂O₃ in magnetite is about 3.0 wt%. Northwest Africa 13021 (NWA 13021) (Northwest Africa) Purchased: 2014 **Classification:** Pallasite History: The meteorite was purchased from a meteorite dealer in Morocco. Physical characteristics: Eighteen dark brownish fragments some of which partly covered with fusion crust. **Petrography**: The meteorite is composed of about 6 mm sized subrounded olivine grains surrounded by a matrix of brownish iron oxides or hydroxides. Only few small pristine FeNimetal grains have been found in the fragment studied. Geochemistry: Olivine: FeO/MnO=42±3, n=14; taenite: 24.9 wt% Ni, n=3 Northwest Africa 13025 (NWA 13025) (Northwest Africa) Purchased: 2016

60

2	
3	Classification: Pallasite
4	History : The meteorite was nurchased from a meteorite dealer in Zagora Morocco
5	Deviced abaractoristics: Thirty two dark brownish frogments without fusion erust
6	Physical characteristics. Thirty two dark brownish fragments without fusion crust.
7	Petrography : The meteorite is composed of up to 1 cm sized subrounded olivine grains
8	surrounded by a matrix of partly layered brownish iron oxides or hydroxides. Alteration
9	products are also present along the olivine grain boundaries. Contains some Cr-bearing troilite
10	but no pristine FeNi-metal was detected.
11	Geochemistry: Olivine: $FeO/MnO=42+4$ n=13
12	Geoenemistry . On which is convine 42 ± 4 , if 15
13	
14	
15	Northwest Africa 13026 (NWA 13026)
16	(Northwest Africa)
17	Purchased: 2019
18	Classification: Ureilite
19	History: The metaorite was nurshased from a metaorite dealer in Erfoud Marcase
20	History . The incleoffice was purchased from a meteorite dealer in Effoud, worocco.
21	Physical characteristics: Dark brownish rock without fusion crust.
22	Petrography : The meteorite shows a cumulate texture composed of up to 1 mm sized olivine
23	and pigeonite grains. Olivine displays characteristic reduced rims and the meteorite contains
24	flaky graphite.
25	Geochemistry : reduced rims in olivine: Fa _{4,1,7,6} ; olivine contains 0.48 ± 0.04 wt% Cr ₂ O ₃ and
26	0.50+0.02 wt% CaO
27	0.50±0.02 wt/0 edo
28	
29	
30	Northwest Africa 13027 (NWA 13027)
31	(Northwest Africa)
32	Purchased: 2019
33	Classification: HED achondrite (Eucrite)
34	History : The meteorite was nurchased from a meteorite dealer in Erfoud Morocco
35	Devision a horizonte was purchased nonli a meteorite dealer in Erioda, worocco.
36	Physical characteristics. Dark greyish rock with some fusion crust.
37	Petrography: Coarse-grained monomict basaltic breccia predominantly composed of
38	exsolved pyroxene and calcic plagioclase with average grains sizes of about 300 µm (up to
39	700 μm). Minor phases include ilmenite, chromite, and barite; no metallic iron has been
40	detected. The meteorite contains shock melt veins.
41	Geochemistry: low-Ca pyroxene: $F_{559,7+1,2}W_{0,4,2+1,9}$ (Fs56.2.61, W022.9.0, FeO/MnO=29-32
42	n=1/1): Ca-nyrovene: Escale w Wow and (Escale w Wow and FeO/MnO=27-32, n=16): calcie
43	$n = 147$, Cd-pytokene. 1527.0 ± 1.9 w 042.4 ± 2.0 ($1525.1-32.0$ w $037.0-44.4$, 1007.11107 , $27-52$, $n = 107$, calcie
44	pragrocrase. Ang _{2.0±1.0} (Ang _{0.3-93.0} , $n-13$)
45	
46	
47	Northwest Africa 13028 (NWA 13028)
48	(Northwest Africa)
49	Purchased: 2019
50	Classification: Carbonaceous chondrite (CV3)
51	History : The metaorite was nurchased from a metaorite dealer in Morocco
52	Devision a property of the second s
53	r nysical characteristics. Dark greyish rock without tusion crust.
54	Petrography: Carbonaceous chondrite composed of chondrules (mean diameter about 1 mm;
55	up to 3 mm sized), CAIs (up to 2 mm sized), and olivine amoeboids all set into a fine-grained
56	brownish matrix. Contains both, type I and type II chondrules.
57	
58	
59	Northwest Africa 13029 (NWA 13029)
60	1101 (III)

Running Head

(Northwest Africa) Purchased: 2019 Classification: Carbonaceous chondrite (CO3)
History: The meteorite was purchased from a meteorite dealer in Morocco.
Physical characteristics: Dark brownish rock without fusion crust.
Petrography: Carbonaceous chondrite exhibiting a chondritic texture of abundant small and well defined chondrules, CAIs, and mineral fragments set into a fine-grained almost black matrix. Chondrules are dominantly porphyritic type I and typically 0.1-0.2 mm in diameter. Contains sulfides and FeNi metal in matrix and chondrules.

Northwest Africa 13030 (NWA 13030)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (CV3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Many dark brownish fragments without fusion crust.

Petrography: The meteorite displays a brownish to slighly greenish interior and is composed of well defined chondrules (mean diameter about 0.9 mm; up to 3.5 mm sized), CAIs (up to 3.5 mm sized), and olivine amoeboids all set into a fine-grained matrix. Type I and Type II chondrules are present.

Northwest Africa 13031 (NWA 13031)

(Northwest Africa)

Purchased: 2018 Mar

Classification: Martian meteorite (Shergottite)

History: A group of four stones were found together at an unspecified location and purchased in Agadir, Morocco, by Aziz Habibi in March 2019.

Physical characteristics: The four stones (total weight 211 g) all have a distinctive lightgreen color. Fresh interiors exhibit sparse larger, lighter-colored macrocrysts in a predominant darker, finer-grained groundmass.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Composed predominantly of a relatively fine grained assemblage (mean grainsize 0.3 mm) of polysynthetically-twinned, prismatic clinopyroxene and maskelynite with accessory Ti-free chromite, Ti-chromite, ilmenite, ulvöspinel, pyrrhotite, merrillite and silica polymorph. Very sparse macrocrysts (up to 2 mm) of orthopyroxene and pigeonite (with included olivine) are present, as well as rare very thin secondary calcite veinlets.

Geochemistry: Orthopyroxene macrocryst core ($Fs_{20.5}Wo_{3.2}$, FeO/MnO = 30), pigeonite cores ($Fs_{24.7-28.6}Wo_{8.5-10.4}$, FeO/MnO = 29-31, N = 2), high-Ca pyroxene rims ($Fs_{47.3-58.7}Wo_{14.1-19.3}$, FeO/MnO = 36-39, N = 3), olivine in pigeonite macrocryst ($Fa_{34.5-35.8}$, FeO/MnO = 50-56, N = 4), maskelynite ($An_{58.9-59.5}Or_{0.5-0.3}$, N = 2).

Classification: Shergottite (aphyric, pigeonite-rich with sparse macrocrysts). **Specimens**: 20.1 g including one polished thin section at *UWB*; remainder with A. Habibi.

Northwest Africa 13032 (NWA 13032)

Algeria Find: 2019 Jun Classification: HED achondrite (Diogenite, polymict)

History: Found by prospectors in the vicinity of Adrar, Algeria, in June 2019. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of diogenite clasts and related crystalline debris. The predominant mineral phase is othopyroxene (exhibiting undulose extinction and a wide range of compositions); accessory minerals are clinopyroxene, calcic plagioclase, stained troilite and Ti-V-bearing chromite. **Geochemistry**: Orthopyroxene (Fs_{18.3}Wo_{2.0}; Fs_{24.3-25.1}Wo_{1.5-2.5}; Fs_{30.2}Wo_{1.7}; FeO/MnO = 29-31; N = 6), clinopyroxene (Fs_{8.0}Wo_{46.2}, FeO/MnO = 20), plagioclase (An_{87.6}Or_{0.1}). **Classification**: Diogenite (polymict breccia). The polymict designation reflects the very wide range in orthopyroxene compositions derived from at least three distinct diogenite lithologies. **Specimens**: 26 g including one polished thin section and one polished mount at *UWB*; remainder with anonymous finders.

Northwest Africa 13034 (NWA 13034)

(Northwest Africa)

Find: 2018 Aug

Classification: HED achondrite (Eucrite, brecciated)

History: Found by prospectors in the border region between Mauritania and Algeria in August 2018.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of fairly closelypacked eucrite clasts (of varied texture and grainsize) in a sparse matrix of related crystalline debris. Clast textures range from fine-intersertal to diabasic to gabbroic, but all have similar mineralogy, being composed predominantly of exsolved pigeonite (pale orange in thin section) and calcic plagioclase (exhibiting undulose extinction or polycrystalline) with accessory silica polymorph, ilmenite, aluminous Ti-chromite and minor secondary calcite. **Geochemistry**: Orthopyroxene host (Fs_{60.7-63.6}, FeO/MnO = 31-33, N = 5), clinopyroxene exsolution lamellae (Fs_{25.8-28.6}Wo_{43.2-44.0}, FeO/MnO = 31-34, N = 6), plagioclase (An_{86.8-88.0}Or_{0.3-0.5}, N = 3).

Classification: Eucrite (breccia, moderately shocked).

Specimens: 27 g including one polished thin section at *UWB*; remainder with anonymous finders.

Northwest Africa 13035 (NWA 13035)

Algeria

Find: 2019 May

Classification: Carbonaceous chondrite (CK4)

History: Found by prospectors in the vicinity of Adrar, Algeria, in May 2019.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Relatively closely-packed wellformed, equilibrated chondrules (mostly granular but also PO and BO) are set in a sparse finer grained matrix (~15 vol.%). Both chondrules and matrix contain Cr-magnetite, some of which has minor light orange staining.

Geochemistry: Olivine (Fa_{31.8±0.2} (range Fa_{31.6-31.9}, N = 7), orthopyroxene

 $(Fs_{26,2\pm0.2}Wo_{0.8\pm0.1} (range 26.0-26.4Wo_{0.7-0.9}, N = 5), augite (Fs_{13.8}Wo_{39.9}; Fs_{8.2-9.7}Wo_{46.7-47.1}; N = 3), plagioclase (An_{35.0}Or_{3.8}), magnetite (Cr_2O_3 4.1-4.2 wt.%, N = 2).$

Classification: Carbonaceous chondrite (CK4).

Specimens: 21 g including one polished thin section at *UWB*; remainder with anonymous finders.

Northwest Africa 13036 (NWA 13036)

Morocco

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33 34 35

36

37

38

39

40 41

42

43

44

45

46

47 48

49

50

51

52

53

54

55 56

57

58

Purchased: 2020 Sep

Classification: Lunar (feldsp. melt breccia)

History: A group of stones found together about 30 km north of Tichia, southern Morocco at 24.502°N, 13.767°W (within the Talhat Lihoudi dense collection area) was initially offered by the finders for purchase jointly by Adam Aaronson and Ahmad Bouragaa in December 2019. Although a sample was provided for analysis, the owners and potential buyers of the stones could not reach an agreement. Subsequently in September 2020 Rachid Chaoui and Jaouad Chaoui purchased the entire batch of stones from the finders, and provided the additional type material and GPS coordinates of the find site.

Physical characteristics: The stones (total weight 1815 g) lack fusion crust but have a dark external weathering patina. Interiors are light gray and very fine grained with visible tiny rounded vesicles.

Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Very fine grained specimen dominated by microvesicular, melt-textured crystalline material surrounding sparse small feldspathic lithic clasts. Minerals are anorthite, olivine, orthopyroxene, subcalcic augite, chromite, troilite and secondary barite.

Geochemistry: Olivine (Fa_{26.9-36.8}, FeO/MnO = 73-93, N = 10), low-Ca pyroxene (Fs_{17.4-} $_{184}Wo_{34-51}$, FeO/MnO = 50-58, N = 2), subcalcic augite (Fs_{23.0}Wo_{20.3}, FeO/MnO = 42), anorthite (An_{95,9-97,5}Or_{0,1}, N = 4).

Classification: Lunar (feldspathic melt breccia). Although these stones were found in the same general region as lunar meteorite stone Talhat Lihoudi, they are distinct from it in both texture and mineral compositions.

Specimens: 21.6 g including a polished endcut at UWB; remainder with R. Chaoui and J. Chaoui.

Northwest Africa 13038 (NWA 13038)

(Northwest Africa)

Purchased: 2019 Nov

Classification: Martian meteorite (Shergottite)

History: Purchased by Mbark Arjdal from a dealer in Zouerat, Mauritania in November 2019. Physical characteristics: A single stone (587 g) partly covered with black fusion crust and with several broken surfaces revealing the fresh light gray interior.

Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Relatively fine grained (mean grainsize 0.4 mm) and composed predominantly of polysynthetically-twinned, zoned clinopyroxene and maskelynite with accessory ilmenite, ulvöspinel (both Cr-bearing and Crfree), chromite (with Ti-rich lamellae and rims), pyrrhotite, merrillite, chlorapatite and silica polymorph. One large orthopyroxene grain (2.5 mm across) with a pigeonite rim was found in the studied thin section. Sparse patches of pale glassy, vesicular impact melt and a thin darker veinlet of similar material were observed, as well as minor secondary calcite (as thin veinlets and vesicle linings).

Geochemistry: Pigeonite ($Fs_{26,1-28,3}Wo_{6,7-11,9}$, FeO/MnO = 29-30, N = 3), subcalcic augite $(F_{s_{20}4-214}W_{o_{34}1-315}, FeO/MnO = 26-28, N = 2)$, ferropigeonite rims $(F_{s_{48}7-573}W_{o_{13}1-181}, FeO/MnO = 26-28, N = 2)$ FeO/MnO = 37-38, N = 4), large orthopyroxene grain ($Fs_{20.0}Wo_{2.8}$, FeO/MnO = 29), pigeonite rim on large orthopyroxene grain ($Fs_{31.5-39.2}Wo_{12.6-19.2}$, FeO/MnO = 30-37, N = 2), maskelynite (An_{57,8-61,4}Or_{1,7-1,3}, N = 2).

Classification: Shergottite (aphyric, intersertal).

Running Head

1	
2	
3	Specimens : 25.3 g including one polished thin section at <i>UWB</i> ; remainder with Mr. M.
4	Aridal
5	r njuur.
6	
7	
8	Northwest Africa 13040 (NWA 13040)
9	(Northwest Africa)
10	Purchased: 2019
11	Classification: Ordinary chondrite (LL \sim 3)
12	Histomy: (Zivas Wang) Durshagad by Wai Jiang from a Maragaan daalar (Daahid Adnana) at
13	History . (Ziyao wang) Furchased by well shang from a Moroccan dealer (Kacind Adnane) at
14	the mineral show in Chenzhou in May 2019
15	Physical characteristics : (Ziyao Wang) More than 30 individuals and fragments between 1 kg
16	and 20 g. The total discovered mass exceeds 15 kg.
17	Petrography : (R. Bartoschewitz, <i>Bart</i>) light brown cut face with close-fit texture of
18	interlocking deformed and undeformed chondrules (0.3-3 mm) chondrule interchondrule
19	metric about 0:1. Weathered surface with Ni bearing evenerates
20	$C = 1 \text{if } M = (1 - 1)^2 \text{if } M = ($
21	Geochemistry : Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) $\log \chi$ (× 10 ⁻⁹ m ⁻⁷ kg) = 4.06
22	Classification: Ordinary chondrite (LL~3, W4)
23	Specimens: 21.4 g on deposit at <i>Kiel</i> , Wei Jiang holds the main mass, and 275 g with <i>Bart</i> .
24	
25	
26	Northwost Africa 13012 (NWA 13012)
27	Marrier
28	Morocco
29	Purchased: 2019
30	Classification: Ordinary chondrite (LL~4)
31	History : (Ziyao Wang) Purchased by Ziyao Wang from a Moroccan dealer at the mineral
32	show in Chenzhou in May 2019
33	Physical characteristics: (Zivao Wang) Three brown fragments of totally 372 g without
34	fusion arust
35	$\mathbf{D} \leftarrow \mathbf{L} (\mathbf{D} \mathbf{D} \leftarrow 1 (\mathbf{L} \mathbf{D} \leftarrow 1 $
36	Petrography: (R. Bartoschewitz, Bart) gray to brown stained matrix with well developed
37	chondrules (0.3-2 mm, av. 1 mm), metal and sulfide
38	Geochemistry : Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) log χ (× 10 ⁻⁹ m ³ /kg) = 4.45
39	Classification: Ordinary chondrite (LL~4, W2)
40	Specimens : 22.9 g on deposit at <i>Kiel</i> . Zivao Wang holds the main mass, and 66 g with <i>Bart</i> .
41	
42	
43	
44	Northwest Africa 13049 (NWA 13049)
45	(Northwest Africa)
46	Purchased: 2019
47	Classification: Ordinary chondrite (L~6)
48	History. (Ziyao Wang) Purchased by Ziyao Wang from a Moroccan dealer at the China
49	Mineral & Gem Show in <i>Raijing</i> City in Nov. 2019
50	Devisional advantage of the set
51	Physical characteristics . (R. Bartoschewitz) 54 g black-gray edged stolle, the cut face dark
52	gray
53	Petrography : (R. Bartoschewitz) strong recrystallized matrix with indistinct chondrules (0.5-
54	1.5 mm) and irregular metal and sulfide patches up to 2 mm
55	Geochemistry : Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) $\log \gamma$ (× 10 ⁻⁹ m ³ /kg) = 4.98
56	Classification: Ordinary chondrite (L~6 W1)
57	Specimens: 10.8 g on denosit at <i>Kiel</i> . Wang Ziyao holds the main mass, and 7 g with <i>Rart</i>
58	specimens. 10.0 5 on deposit at ixiei, wang Ziyao nords the main mass, and / g with Duri.
59	
60	

2
1
4
5
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40
42
43
45
45 46
40
47 70
40 70
49 50
50 51
51
52 52
53
54
55
56
57
58
59
60

Northwest Africa 13051 (NWA 13051) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (L~6)
History : (Zivao Wang) Purchased by Zivao Wang from a Moroccan dealer at the China
Mineral & Gem Show in <i>Beijing</i> City in Nov. 2019
Physical characteristics : 150 g light gray brown broken individual with some fusion crust
Petrography: (R. Bartoschewitz, Bart) light gray, partly brown stained recrystallized matrix
with chondrules (0.3-2 mm, av. 0.8 mm), metal and sulfide inclusions.
Geochemistry : Magnetic susceptibility (R. Bartoschewitz, <i>Bart</i>) $\log \chi$ (× 10 ⁻⁹ m ³ /kg) = 4.81
Classification: Ordinary chondrite (L~6, W2)
Specimens: 20.5 g at <i>Kiel</i> on deposit, main mass with <i>Bart</i> .
Northwest Africa 13052 (NWA 13052)
(Northwest Africa)
Purchased: 2019
Classification: Ordinary chondrite (H~4)
History: (Ziyao Wang) Purchased by Ziyao Wang from a Moroccan dealer at the China
Mineral & Gem Show in Beijing City in Nov. 2019
Physical characteristics: 6.0 g dark gray fragment wigh surface-recognizable chondrules and
metal specks
Petrography: (R. Bartoschewitz, <i>Bart</i>) dark gray, porous matrix with chondrules (0.2-0.8
mm, av. 0.4 mm) and metal inclusions.
Geochemistry: Magnetic susceptibility (R. Bartoschewitz, Bart) $\log \chi$ (× 10 ⁻⁹ m ³ /kg) = 5.17
Classification: Ordinary chondrite (H~4, W1)
Specimens . 1.5 g at <i>Kiei</i> on deposit, main mass with <i>Bari</i> .
Northwest Africa 13054 (NWA 13054)
(Northwest Africa)
Purchased: 2019
Classification: Carbonaceous chondrite (CV3)
History: The meteorite was purchased from a meteorite dealer in Morocco.
Physical characteristics: Dark brownish rock without fusion crust.
Petrography: Carbonaceous chondrite composed of up well-defined chondrules (mean
diameter about 900 μ m), CAIs (up to 5 mm), and olivine amoeboids all set into a fine-grained

almost black matrix. Type II chondrules are absent. Some chondrules show reddish staining due to terrestrial weathering.

Northwest Africa 13055 (NWA 13055)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (LL3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Brownish rock lacking any fusion crust.

Petrography: The meteorite shows a chondritic texture with mostly flattened and partly packed chondrules (mean diameter about 0.9 mm) in a fine-grained, strongly altered matrix that contains only few pristine FeNi metal grains.

Nowthy	wast A fuice 12059 (NWA 12059)
Northv (Noi	thwest Africa)
Purc Clas	nased: 2019 sification: Carbonaceous chondrite (CO3)
Histor	y: The meteorite was purchased from a meteorite dealer in Morocco.
Physic	al characteristics: Dark brownish rock with some fusion crust.
Petrog (mean browni terrestr	raphy : Carbonaceous chondrite composed of abundant, well-defined small chondr diameter about 180 μ m), CAIs, and olivine amoeboids all set into a fine-grained da sh matrix. Type II chondrules are rare. Some chondrules show reddish staining due ial weathering. Opaque are metal and sulfide.
Northy	vest Africa 13059 (NWA 13059)
(Noi	thwest Africa)
Purc	hased: 2019
Clas	sification: Carbonaceous chondrite (CO3)
Histor	y: The meteorite was purchased from a meteorite dealer in Morocco.
Physic	al characteristics: Dark brownish rock without jusion crust.
small c	hondrules CAIs and mineral fragments set into a fine-grained matrix that contains
sulfide	s and FeNi metal. Chondrules have a mean diameter of about 0.2 mm: several region
show b	rownish staining due to terrestrial weathering.
Northy	vest Africa 13060 (NWA 13060)
(Noi	thwest Africa)
Purc	hased: 2019
Clas	sification: Rumuruti chondrite (R3)
Histor	y: The meteorite was purchased from a meteorite dealer in Morocco.
Physic	al characteristics: Brownish rock with some fusion crust.
sparse compos minera	up to 1 mm sized angular type 3 clasts and matrix. Olivine and low-Ca pyroxene ar sitionally unequilibrated in clasts and matrix; Fe-rich olivine is the most dominant phase in the matrix. Chondrules have an average diameter of about 400 μm. More
minor p	phases include low-Ca pyroxene, rare Ca-pyroxene, sodic plagioclase, sulfides, and
bearing	chromite; no metal has been detected.
Geoch	emistry: Olivine: $Fa_{24.9\pm16.7}$ (Fa _{2.6-47.7} , n=27); low-Ca pyroxene:
FS _{16.7±1}	$0.6 W O_{0.7\pm0.6} (FS_{4.4-34.8} W O_{0.2-2.5}, n=2.3)$
North	wast A fries 13061 (NWA 12061)
	thwest Africa)
Purc	hased: 2019
Clas	sification: Ureilite
Histor	y: The meteorite was purchased from a meteorite dealer in Morocco.
Physic	al characteristics: Dark brownish rock with some fusion crust.
	Motopritics & Planatary Science

Petrography: The meteorite shows a cumulate texture composed of up to 1.5 mm sized olivine and pigeonite grains. Olivine displays characteristic reduced rims and the meteorite contains flaky graphite.

Geochemistry: reduced rims in olivine: $Fa_{1.4-3.7}$; olivine contains 0.62 ± 0.03 wt% Cr_2O_3 and 0.30 ± 0.01 wt% CaO

Northwest Africa 13063 (NWA 13063)

(Northwest Africa)

 Purchased: 2019

Classification: Carbonaceous chondrite (CO3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Many dark-brownish fragments without fusion crust.

Petrography: The meteorite exhibits a chondritic texture of abundant, well defined, small chondrules, CAIs, and mineral fragments set into a fine-grained matrix. Chondrules are dominantly porphyritic type I and typically 0.1-0.2 mm in diameter. Contains sulfides and FeNi metal in matrix and chondrules. Some regions show orange staining due to terrestrial alteration.

Northwest Africa 13064 (NWA 13064)

(Northwest Africa) Purchased: 2019

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Many greyish fragments without fusion crust.

Petrography: The meteorite is a fragmental breccia composed of larger exsolved pyroxene (up to 400 μ m) and calcic plagioclase (up to 500 μ m) grains set into a more fine-grained clastic matrix. Minor phases include silica, chromite, FeS, and ilmenite. No metallic iron has been detected. The meteorite contains shock melt veins.

Geochemistry: low-Ca pyroxene: $Fs_{57.4\pm0.5}Wo_{2.7\pm0.2}$ ($Fs_{57.0-58.8}Wo_{2.2-3.1}$, FeO/MnO=26-28, n=12); Ca-pyroxene: $Fs_{25.2\pm0.7}Wo_{43.3\pm0.7}$ ($Fs_{24.4-27.3}Wo_{41.1-44.0}$, FeO/MnO=24-28, n=15); calcic plagioclase: $An_{90.9\pm0.4}$ ($An_{90.2-91.6}$, n=14)

Northwest Africa 13065 (NWA 13065)

(Northwest Africa)

Purchased: 2019 Classification: HED ach

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Small brownish rock without fusion crust.

Petrography: The meteorite is an unbrecciated fine-grained basalt predominantly composed of exsolved pyroxene and often laths-shaped calcic plagioclase with average grain sizes of about 300 µm. Pyroxene appears brownish in plane polarized light. Minor phases include silica, chromite, troilite, zircon, and metallic iron.

Geochemistry: low-Ca pyroxene: $Fs_{57.7\pm0.7}Wo_{2.7\pm0.7}$ (Fs_{56.5-58.7}Wo_{1.8-4.5}, FeO/MnO=31-34, n=11); Ca-pyroxene: $Fs_{25.6\pm0.8}Wo_{43.0\pm0.7}$ (Fs_{24.6-26.9}Wo_{41.9-43.9}, FeO/MnO=28-34, n=12); calcic plagioclase: An_{85.7\pm0.8} (An_{84.7-87.8}, n=11)

Northwest Africa 13066 (NWA 13066) (Northwest Africa) Purchased: 2019 Classification: Carbonaceous chondrite (CO3)
History: The meteorite was purchased from a meteorite dealer in Morocco.
Physical characteristics: Dark brownish rock without fusion crust.
Petrography: The meteorite shows a dark brownish interior and is composed of abundant small chondrules, CAIs (up to 500 μm), and mineral fragments some of which surrounded by fine-grained dust rims set into a fine-grained black matrix. Chondrules have a mean diameter of about 0.2 mm; few regions show brownish staining due to terrestrial weathering. Opaque minerals are sulfide and Fe,Ni metal.

Northwest Africa 13067 (NWA 13067)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Greyish rock with some fusion crust.

Petrography: The meteorite is a fragmental breccia composed of up to 3 mm sized basaltic and sparse up to 2 mm sized black impact melt clasts set into a clastic matrix. Mineral phases are predominantly up to 300 μ m sized pyroxene and up to 700 μ m sized calcic plagioclase grains. Pyroxene is compositionally zoned indicating a low degree of thermal metamorphism. Minor phases include silica, chromite, and troilite. No metallic iron has been detected. **Geochemistry**: low-Ca pyroxene: Fs_{37.5±7.9}Wo_{7.6±1.2} (Fs_{31.7-53.1}Wo_{6.4-9.6}, FeO/MnO=24-29, n=15); Ca-pyroxene: Fs_{48.4±4.0}Wo_{23.4±0.6} (Fs_{45.5-58.0}Wo_{22.9-25.2}, FeO/MnO=25-31, n=13); calcic plagioclase: An_{87.7±5.8} (An_{82.0-94.6}, n=13)

Northwest Africa 13068 (NWA 13068)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (CO3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Dark brownish rock without fusion crust.

Petrography: Carbonaceous chondrite composed of abundant small chondrules, CAIs, and their fragments set in a fine-grained, almost black matrix. Chondrules are dominantly porphyritic type I and about 180 µm in mean diameter. Sulfides and FeNi metal are present in matrix and chondrules.

Northwest Africa 13069 (NWA 13069)

(Northwest Africa)

Purchased: 2016

Classification: Ordinary chondrite (LL4)

History: The meteorite was purchased from a meteorite dealer in Zagora, Morocco.

Physical characteristics: Grayish rock partly covered with fusion crust.

Petrography: The meteorite displays a grayish interior and shows a chondritic texture

composed of mostly rounded chondrules (mean diameter about 800 μ m) that are only loosely

packed. The matrix appears brecciated and contains sulfides and rare FeNi metal. Olivine is compositionally equilibrated while low-Ca pyroxene shows zoning.

Northwest Africa 13070 (NWA 13070)

(Northwest Africa)

Purchased: 2015

Classification: Ordinary chondrite (L3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Two grayish fragments without fusion crust.

Petrography: The meteorite shows a chondritic texture with well packed and partly flattened chondrules (apparent mean diameter about 0.7 mm). The fine-grained matrix contains sulfides and FeNi metal.

Northwest Africa 13071 (NWA 13071)

(Northwest Africa)

Purchased: 2015

Classification: Carbonaceous chondrite (CO3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Dark brownish rock without fusion crust.

Petrography: The meteorite shows a dark brownish interior and is composed of abundant small chondrules, CAIs, and mineral fragments set into a fine-grained matrix. Chondrules are dominantly porphyritic type I and have an apparent mean diameter of about 0.2 mm. Some chondrules are surrounded by accretionary dust rims. Sulfides and FeNi metal are present in matrix and chondrules.

Northwest Africa 13072 (NWA 13072)

(Northwest Africa)

Purchased: 2018

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a meteorite dealer in Zagora, Morocco. **Physical characteristics**: Gravish rock partly covered with fusion crust.

Petrography: The meteorite is a fragmental breccia composed of basaltic clasts and abundant black impact melt clasts set into a fine-grained clastic matrix. Basaltic clasts and matrix are dominantly composed of exsolved pyroxene and plagioclase grains up to 2 mm in size. Minor phases include chromite, FeS, and silica. No metallic iron has been detected.

Geochemistry: large low-Ca pyroxene grains: $Fs_{40.5\pm0.3}Wo_{2.7\pm0.1}$ ($Fs_{40.2-40.9}Wo_{2.6-2.8}$,

FeO/MnO=23-26, n=11); low-Ca pyroxene host to augite exsolution lamellae:

 $\begin{array}{l} Fs_{54,3\pm0.6}Wo_{2.8\pm1.0} \left(Fs_{53,2-55,2}Wo_{1.7-4.7}, FeO/MnO=29-31, n=11\right); \ Ca-pyroxene \ exsolution \\ lamellae: \ Fs_{28,4\pm1.1}Wo_{37.7\pm1.4} \left(Fs_{26,4-31,1}Wo_{34,1-39.9}, FeO/MnO=24-31, n=12\right); \ calcic \ plagioclase: \ An_{93,9\pm0.4} \left(An_{93,1-94.5}, n=12\right) \end{array}$

Northwest Africa 13073 (NWA 13073)

(Northwest Africa) Purchased: 2015 Classification: Ordinary chondrite (L3) **History**: The meteorite was purchased online from a

History: The meteorite was purchased online from a Moroccan meteorite dealer.

Physical characteristics: Dark greyish rock without fusion crust.

Petrography: The meteorite displays a chondritic texture with partly flattened separated chondrules (mean diameter about 0.6 mm) in a fine-grained dark matrix that contains sulfides and FeNi metal.

Northwest Africa 13074 (NWA 13074)

(Northwest Africa)

Purchased: 2016

Classification: Carbonaceous chondrite (CK6)

History: The meteorite was purchased from a meteorite dealer in Zagora, Morocco.

Physical characteristics: Brownish to dark greenish rock partly covered with fusion crust. **Petrography**: The meteorite displays a dark greenish interior and is largely composed of finegrained recrystallized matrix dominated by Fe-rich olivine. Chondrules are only rarely encountered. Minor phases include intermediate plagioclase, low-Ca pyroxene, Ca-pyroxene and FeS. Cr-rich magnetite is abundant; metal was not detected.

Geochemistry: olivine: $Fa_{28.9\pm0.2}$, FeO/MnO= 92±8, n=14; low-Ca pyroxene:

 $Fs_{24.7\pm0.3}Wo_{1.2\pm0.7}$, FeO/MnO= 62±5, n=13, Ca-pyroxene: $Fs_{8.7\pm0.6}Wo_{46.4\pm0.7}$, n=5; Cr₂O₃ in magnetite is about 2.7 wt%.

Northwest Africa 13077 (NWA 13077)

Morocco

Purchased: 2016

Classification: Rumuruti chondrite (R3-5)

History: Purchased by Said Yufsi in 2016 from a moroccan dealer in Dakhla city. Later acquired by Roberto Vargas.

Physical characteristics: Single stone with dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) This sample is a breccia composed of well-formed chondrules (Av. diameter \sim 500 µm) and an assortment of equilibrated angular clasts (up to 4 mm) set in a fine-grained matrix. Minerals present include olivine, orthopyroxene, augite, sodic plagioclase, pentlandite, troilite, and Ti-rich chromite.

Geochemistry: Olivine in equilibrated clasts (Fa_{38.7±0.7}, n=70), olivine in unequilibrated chondrules (Fa_{23.3±16.8}, range Fa_{3.7-44.5}, n=20) orthopyroxene in equilibrated clasts

 $(Fs_{29.6\pm0.3} Wo_{1.5\pm0.4}, n=10)$ orthopyroxene in unequilibrated chondrules $(Fa_{21.3\pm12.7} Wo_{1.2\pm0.6}, range Fs_{1.4-29.9} Wo_{0.1-1.9}, n=10)$, augite $(Fs_{11.8\pm1.5} Wo_{44.1\pm1.1}, n=30)$, sodic plagioclase $(An_{11.6\pm4.7}, range An_{6.6-22.3}, n=20)$.

Classification: Rumuruti chondrite (R3-5). This sample is classified as an R3-5 due to the fact that it contains both type 3 unequilibrated chondrules and type 5 equilibrated clasts with recrystallized plagioclase grain size at $\sim 20 \ \mu m$.

Specimens: 14.2 grams at UCLA; main mass with Roberto Vargas.

Northwest Africa 13087 (NWA 13087)

(Northwest Africa)

Purchased: March 2018

Classification: HED achondrite (Eucrite, polymict)

History: The main mass was purchased in March 2018 in Arfoud, Morocco, from the Bouhayek brothers by Société Astronomique de France (SAF) member Pascal Maugein, who was given the type specimen in November 2018.

Physical characteristics: Main mass fully covered by black, regmaglypted fusion crust **Petrography**: (E. Jacquet, B. Doisneau, *MNHNP*). Breccia with ophitic/subophitic and more blocky textured pyroxene/plagioclase clasts, along with mineral clasts of same. Pyroxene is frequently zoned in the former, and otherwise often presents augite lamellae, sometimes folded. The clasts may also contain silica and ilmenite-troilite-silica-pyroxene symplectites. Opaque clasts, whether with cryptocrystalline (plagioclase-pyroxene, <10 μ m) or glassy (eucritic major element composition) groundmasses, are likely impact melts (with olivine a common minor mineral). Ferroan hedenbergite-fayalite-silica (or K-feldspar) clasts such as those described by Barrat et al. (2012) in howardites occur. One curious 0.6 mm anorthite clast with round <60 μ m nodules of equant <10 μ m euhedral pyroxene, silica, plagioclase crystals.

Geochemistry: Mineral compositions and geochemistry: Pyroxene Fe/Mn=34±4. Plagioclase is An_{85.2±6.6}Ab_{13.4±6.0}Or_{1±0.9} (An_{72.2-97.5}Ab_{1.1-19.2}Or_{0.1-2.5}, N=19). One coarse chromite (Al₂O₃ = 17-21 wt%, Cr₂O₃ = 43-46 wt%; N=3). Olivine Fa_{79.6±20.4} (Fa_{51.9-90.0}, N=4).

Classification: Eucrite (polymict). Clasts correspond to eucrite mineralogy but are variable in texture, mineral chemistry and metamorphism, hence the polymict nature of the breccia. Pyroxene Fe/Mn is consistent with HED.

Specimens: 320 g (main mass, plus one thin section, with P. Maugein); 30 g (type specimen, plus one thin section)

Northwest Africa 13088 (NWA 13088)

Morocco

Purchased: 2017

Classification: Ordinary chondrite (L3.1)

History: Purchased in Morocco by Brahim Tahiri in late 2017 and brought to Sean Tutorow in late December 2017. Tutorow donated 94.40 g to *Cascadia* for classification. **Physical characteristics**: *Cascadia* received two thin slices completely covered in a coating which darkens the sample and causes it to appear wet. Overall, the slices are dark orangebrown in color and show abundant chondrules. Some areas have chondrules set in an orangebrown background, while in other areas the background is dark brown to black. Boundaries

between the two are generally indistinct, although there is one example of a sharp contact between a large (4×3 cm, truncated along the edge of the slice), angular, orange-brown colored clast and the rest of the slice, indicating that this sample is brecciated.

Petrography: (M. Hutson and A. Ruzicka, *Cascadia*): The section is crossed by numerous weathering veins composed of calcite and iron-rich hydroxides. One edge of the section is less weathered and shows abundant discolored and partially-replaced troilite, much of it as rims around chondrules. Chondrules are distinct, and have an apparent mean diameter of 756±366 microns (N= 113). Two subtly different lithologies with indistinct boundaries are visible in thin section in optical and BSE imaging. One lithology (lithology A) has a somewhat higher proportion of forsteritic olivine grains than the other (lithology B); the overall lithology A clast appears slightly darker in BSE imaging. Chondrule mesostases in lithology A contain fewer crystallites than those of lithology B.

Geochemistry: Mineral compositions and geochemistry: Olivine and pyroxene grains are highly unequilibrated: $Fa_{17.7\pm10.7}N=161$; $Fs_{11.5\pm10.1}Wo_{1.0\pm1.1}$, N=82. There is no significant difference in Fa or Fs contents between the two lithologies. However, Cr_2O_3 in olivine suggests a slightly different petrographic subtype: Cr_2O_3 in olivine (lithology A) = 0.42\pm0.19 wt%, consistent with a subtype of 3.10, N=72; Cr_2O_3 in olivine (lithology B) = 0.19\pm0.21 wt%, consistent with a subtype of 3.15, N=84.

Classification: Ordinary chondrite (L3.1) based on olivine fayalite content, overall Cr_2O_3 in olivine, and mean chondrule diameter.

Specimens: *Cascadia* holds 90.3 g in six pieces, in addition to a polished thin section and a mounted butt. The main mass is held by Sean Tutorow, Arizona.

Northwest Africa 13089 (NWA 13089)

Morocco

Purchased: 2019 Mar 27

Classification: Ordinary chondrite (LL5)

History: Purchased in Morocco by a friend of Mr. Jason Phillips, who sent a half of the stone to Mr. James *Tobin*, who sent pieces to the *Cascadia* for classification.

Physical characteristics: *Cascadia* received two slices; an abraded, bumpy exterior is visible along the slices' edges. Cut faces show readily distinguished, mainly dark-colored chondrules and flecks of metal and sulfide set in an orange-brown background.

Petrography: (M. Hutson and A. Ruzicka, *Cascadia*): Chondrules are readily distinguished, and many are surrounded by partial rims of mainly sulfide. Albitic feldspar grains up to 20 microns across are present. In addition to single grains, chromite-plagioclase-rich mesostases were observed in several chondrules.

Geochemistry: Mineral compositions and geochemistry: Olivine and pyroxene grains are equilibrated: $Fa_{29.0\pm0.2}$, N=36; $Fs_{23.7\pm0.3}Wo_{1.4\pm0.4}$, N=26. Limited data were collected on feldspars in two areas: $Ab_{85.2\pm3.0}An_{10.3\pm1.7}Or_{4.5\pm1.8}$, N=5.

Classification: Ordinary chondrite (LL5) based on olivine fayalite and pyroxene ferrosilite contents, and feldspar grain size.

Specimens: *Cascadia* holds 24.3 g in two pieces, in addition to a polished thin section and a mounted butt. The main mass was divided in half: Jason Phillips holds 219.1 g; James *Tobin* holds 218.6 g.

Northwest Africa 13090 (NWA 13090)

Morocco

Purchased: 2019 Mar 27

Classification: Ordinary chondrite (LL3)

History: Purchased in Morocco by a friend of Mr. Jason Phillips, who sent a half of the stone to Mr. James *Tobin*, who sent pieces to the *Cascadia* for classification.

Physical characteristics: *Cascadia* received an end cut and a small corner piece; exterior surfaces of both are abraded, dark gray, and bumpy, with lighter-colored chondrules visible. The cut face shows well-defined, oblate, and aligned chondrules set against a medium-gray background. Sulfide and metal are visible, mainly rimming chondrules. Two perpendicular faces are visible on the corner piece; chondrules are oblate and aligned on only one face. **Petrography**: (M. Hutson and A. Ruzicka, *Cascadia*): Chondrules are distinct, and have an apparent mean diameter of 0.99±0.46 mm (N= 36). Many chondrules are surrounded by rims of mainly sulfide. Fe-Ni metal comprises 2.1% of the thin section. Native copper is present. Visible in thin section are brown glass, low-Calcium clinopyroxene, and zoned olivine grains, as well as "bleached" rims on some chondrules. BSE imaging shows many examples of forsteritic olivine cut by linear bands of Fe-rich olivine that appear to represent pre-terrestrial alteration along fractures.

Geochemistry: Mineral compositions and geochemistry: Olivine and pyroxene grains are unequilibrated: $Fa_{25,3\pm9.0}N=157$; $Fs_{12.8\pm9.5}Wo_{0.9\pm0.8}$, N=33.

Classification: Ordinary chondrite (LL3) based on olivine fayalite content, metal abundance, and mean chondrule diameter.

Specimens: *Cascadia* holds 33.0 g in two pieces, in addition to a polished thin section and a mounted butt. The main mass was divided in half: Jason Phillips holds 571.2 g; James *Tobin* holds 540.8 g.

Northwest Africa 13091 (NWA 13091)

Morocco

Purchased: 2014 Feb

Classification: Ordinary chondrite (L6)

History: Purchased from a Moroccan dealer in 2013

Physical characteristics: Single stone, Rusty exterior with small patches of fusion crust covering <5%. Saw cut reveals vague outlines of chondrules, some shock melt veins, small flakes of metal and troilite

Petrography: (T. Swindle, *UAz*) Microprobe examination of a polished mount shows some largely re-crystalized chondrules up to 2 mm in size, in a recrystalized matrix. Plagioclase grains in matrix up to 70 μ m in size. Incipient oxidation of troilite, approximately 50% of kamacite weathered. Sample cut by many small iron-oxide weathering veins, and occasional melt veins a few tens of μ m in width. Minor chromite present. Some areas with abundant metal blebs.

Geochemistry: Mineral composition and geochemistry (T. Swindle, *UAz*): Olivine Fa_{25.3±0.7}, Fe/Mn = 46.8±3.3, n=8; low-Ca pyroxene Fs_{21.1±0.2}Wo_{1.6±0.2}, Fe/Mn=27.6±0.7, n=8 **Classification**: Ordinary Chondrite (L6), Weathering grade W2, weakly shocked (S3) **Specimens**: 43.7 g and epoxy mount deposit at *UAz*. Fredric Stephan holds the main mass.

Northwest Africa 13092 (NWA 13092)

Morocco

Purchased: 2014 Feb

Classification: Ordinary chondrite (H6)

History: Purchased from a Moroccan dealer in 2014

Physical characteristics: Physical Characteristics: Covered with black fusion crust. Saw cut reveals abundant metal and sulfides.

Petrography: (AS Djakaria and IJ Ong, *UAz*) Microprobe examination of a polished mount shows chondrules of 500-1500 μ m. Plagioclase grains 100-200 μ m observed. Large, moderately oxidized, kamacite and taenite grains are common and are connected by a widespread set of complex, convoluted, small metal veins incorporating numerous small silicate inclusions. Troilite, chromite, merrillite, and chlorapatite are also present. **Geochemistry**: Mineral compositions and geochemistry: (AS Djakaria and IJ Ong, *UAz*) Olivine Fa_{18.9±0.2}, Fe/Mn=36.9±1.7, n=10; low-Ca pyroxene Fs_{16.8±0.4}Wo_{1.7±0.1}, Fe/Mn=22.9±1.5, n=10; Kamacite Fe=91.51±0.82, Ni=6.93±0.21, Co=0.51±0.03, n=3. **Classification**: Ordinary Chondrite (H6), Weathering grade W2. **Specimens**: 22.4 g and epoxy mount deposit at *UAz*. Fredric Stephan holds the main mass.

Northwest Africa 13093 (NWA 13093)

Morocco Purchased: 2014 Feb Classification: Ordinary chondrite (L6)

2	
3	History: Purchased from a Moroccan dealer in 2014
4	Dhysical characteristics: Dhysical Characteristics: Almost completely covered by block
5	Thysical characteristics. Filysical Characteristics. Annost completely covered by black
6	rusion crust. Interior snows moderate amount of metallic and sulfide flakes. Dark parallel
7	bands run along the length of the interior.
8	Petrography : (S. Chapin and K. Kingsbury, <i>UAz</i>) Microprobe examination of a polished
9	mount shows a few barely distinguishable nartly recrystallized chondrules some up to 500-
10	000 une in size Discipalized and in the second statistical and the second statistical sec
10	900 μm in size. Plagiociase grains are large (70-200 μm). Minor oxidization seen along rims
11	of kamacite and troillite. A few small shock veins several mm long are observed. Troilite,
12	merrillite, and chromite are also present.
13	Geochemistry: Mineral compositions and geochemistry. (S. Chapin and K. Kingsbury, UAz)
14	Olivine East $n=10$: low-Ca pyroxene Essa 0.0 Wo, 0.0 $n=10$: Kamacite Ee=91.93+0.94
15	Ni-6.22 \downarrow 0.22 \square 0.24 \square 0.64 \square 11 wt9/ m=2
16	$NI=0.23\pm0.23$, $CO=0.90\pm0.11$ W1%, $II=5$.
17	Classification: Ordinary Chondrite (L6), weathering grade W2.
18	Specimens: 31 g and an epoxy probe mount on deposit at UAz. Fredric Stephan holds the
19	main mass.
20	
21	
22	
23	Northwest Africa 13094 (NWA 13094)
24	Morocco
25	Purchased [•] 2014 Feb
26	Classification: Ordinary chandrite (H5)
27	Unterne Developed from a Manager destar in 2014
28	History: Purchased from a Moroccan dealer in 2014
29	Physical characteristics : Complete fusion crust surrounds the meteorite exterior while a saw
30	cut reveals some chondrules. Scattered flakes of troilite and metal were observed.
31	Petrography : Microprobe examination of an epoxy probe mount reveals many
32	distinguishable chondrules ranging between 100-500 um in size. Limited amount of
33	nlogicalage graing are present within the matrix months between 10.50 um in gize. There is
34	plagiociase grains are present within the matrix, mostly between 10-50 µm in size. There is
35	moderate oxidation of kamacite and troilite with about 30% oxidation of metal in total.
36	Sample is cut by several iron-oxide weathering veins. Small disseminated metal in some areas
37	suggests the meteorite to be very weakly shocked. The presence of small amounts of
20	merrillite was observed
20	Coochemistry: Oliving Eq. c_{2} , Eq/Mn= 35.3+2.1, n=10: low Ca pyroyang
39	Geoenemistry . Onvine $ra_{18,7\pm0.2}$, re/ivine 33.5 ± 2.1 , in=10, iow-ca pyroxene Eq. (Wa = 21.2 ± 1.5 , $m=11$, Kausasita Es=02.0\pm1.0, Ni= $(.7\pm0.1)$
40	$Fs_{16.5\pm0.2} W O_{0.99\pm0.11}$, Fe/ NIN=21.3±1.5, n=11; Kamacite Fe=92.0±1.0, NI=6.7±0.1,
41	Co=0.52±0.02 wt%, n=3.
42	Classification : Ordinary Chondrite (H5), Weathering grade W3.
43	Specimens : 41.6 g and an epoxy probe mount on deposit at <i>UAz</i> Fredric Stephan holds the
44	main mass
45	inani mass.
46	
47	
48	Northwest Africa 13095 (NWA 13095)
49	Morocco
50	Purchased: 2014 Feb
51	Classification: Ordinary abandrite (I 6)
52	Classification. Ordinary chondrife (LO)
53	History: Purchased from a Moroccan dealer in 2015
54	Physical characteristics : 328g single piece that has a brownish red fusion crust. The fusion
55	crust is broken suggesting weathering of the piece. A saw cut reveals a moderate amount of
56	bright speckled metal and sulfieds. There is a large dark area lacking metals and sulfides
57	Patrography: (T Burd and F Ratliff 114z) There are plagings aroing to 110 migrons
58	Extension respects the table place with 11 to the table of tabl
59	Extensive recrystallization has taken place with indistinct chondrules present. Chromite,
60	

taenite, and apatite present. Troilite and kamacite also observed in a partially oxidized state. Sample cut by many iron-oxide weathering veins.

Geochemistry: Mineral compostions and geochemistry: Olivine Fa_{25.2±1.0}, Fe/Mn=48.7±3.9, n=10; low-Ca pyroxene Fs_{21.1±0.6}Wo_{1.6±0.3}, Fe/Mn=29.1±2.2, n=10; Kamacite Fe=92.9±0.4, Ni=6.4±0.3, Co0.65±0.04 wt%, n=3

Classification: Ordinary Chondrite (L6), Weathering Grade W3.

Specimens: 27.4 g and an epoxy probe mount on deposit at *UAz*. Fredric Stephan holds the main mass.

Northwest Africa 13096 (NWA 13096)

Morocco

Purchased: 2014 Feb

Classification: Ordinary chondrite (H6)

History: Purchased from a Moroccan dealer in 2014

Physical characteristics: Nearly complete fusion crust, cut by deep cracks. Saw cut reveals a grayish-green interior with a number of small chondrules visible and relatively few bright metal and sulfide grains.

Petrography: Numerous moderately distinct to poorly delineated chondrules are observed, approximately 200-800 µm in size. Plagioclase grains are 50-200 µm. Large kamacite and taenite grains are abundant and highly oxidized. Cut by numerous terrestrial Fe-oxide beins. Minor chromite is also observed.

Geochemistry: Olivine Fa_{19.1±0.3}, Fe/Mn= 36.4±2.4 n=10; low-Ca Pyroxene

 $Fs_{16.7\pm0.2}$ Wow1.74±0.06, Fe/Mn= 22.1±0.9 n=10; Taenite Fe= 92.0±0.3, Ni= 6.4±0.3, Co=0.51±0.04 wt%, n=3.

Classification: Ordinary chondrite (H6), weathering W3

Specimens: 31.6 g and an epoxy probe mount on deposit at *UAz*. Fredric Stephan holds the main mass.

Northwest Africa 13097 (NWA 13097)

Morocco

Purchased: 2014 Feb

Classification: Ordinary chondrite (L6)

History: Purchased from a Moroccan dealer in 2014

Physical characteristics: Single rough stone, completely covered with fusion crust. Saw cut reveals sparse amount of metal and sulfide flakes

Petrography: Microprobe examination of a polished mount shows a few indistinct

chondrules present, set in a highly recrystallized matrix. Plagioclase grains range up to 200 μ m in size. Kamacite, taenite, and troilite are not abundant, and are highly oxidized. Sample is cut by several terrestrial iron-oxide veins. Minor chromite is also present.

Geochemistry: Olivine Fa_{24,9±0.3}, Fe/Mn= 46.8±2.6 n=10; low-Ca pyroxene Fs_{20.9±0.5}Wo= 1.6±0.3, Fe/Mn= 27.7±1.3 n=10; Taenite Fe= 70.4±1.8, Ni= 28.2±1.7, Co=0.27±0.09 wt%, n=10.

Classification: Ordinary Chondrite (L6), weathering grade (W3)

Specimens: 20.8 g and an epoxy probe mount on deposit at *UAz*. Fredric Stephan holds the main mass.

Northwest Africa 13098 (NWA 13098)

2	
3	Morocco
4	Purchased: 2014 Feb
5	Classification: Ordinary chondrite (H5)
6	History: Durchased from a Marcasen dealer in 2014
7	History . Pulchased from a Moroccan dealer in 2014
8	Physical characteristics : Physical Charateristics: Single rough stone, has a black fusion
9	crust. Saw cut reveals a red and brown interior with abundant specks of metals and sulfides.
10	Petrography : (K. Van Atta, T. Elliott, M. Trinh) Microprobe examination of a polished
11	mount shows a few portions recrystallized high amounts of metal and sulfides. Numerous
12	nlagioclase graints 20.70 um in the matrix Large oxidized kamacite and taenite grains are
13	plagiociase grannes, 20-70 µm, in the matrix. Large, oxidized, kanache and tacine granis are
14	common and are connected by a widespread set of complex, convoluted, small metal veins
15	incoporating numerous small silicate inclusions. A few larger pools of plagioclase
16	composition are also observed, which contain densely concentrated small crystals of chromite
17	and metal. Kamacite is highly oxidized and troilite is also partly altered. Large chromite and
18	merrillite, and some chlorapatite, also present.
19	Geochemistry: Mineral compositions and geochemistry: (K. Van Atta, T. Elliott, M. Trinh)
20	Obvine Fe $Mn=261 \pm 1.6$ $n=10$; leve Ce purevene Fe $Me = 16/Mn=22.6$
21	Onvine $ra_{19,1\pm0.3}$, $re/min-30.1\pm1.0$, $n-10$, low-Ca pyroxene $rs_{16,9\pm0.3}$ w $o_{1,8\pm0.05}$, $re/min-22.0$
22	± 1.3 , n=10; Kamacite Fe=91.86 ± 0.13 , Ni=6.75 ± 0.20 , Co=0.49 ± 0.05 wt%, n=10.
23	Classification: Ordinary Chondrite (H5), weathering grade (W3)
24	Specimens: 32.6 g and an epoxy probe mount on deposit at UAz. Fredric Stephan holds the
25	main mass.
26	
27	
28	N. (1. (A.C.) 12000 (NUVA 12000)
29	Northwest Africa 13099 (NWA 13099)
30	Morocco
31	Purchased: 2014 Feb
32	Classification: Ordinary chondrite (H5)
33	History: Purchased from a Moroccan dealer in 2014
34	Physical characteristics: Physical Characteristics: Fusion crust covers most of the specimen
35	Thysical characteristics. Thysical Characteristics. Tusion crust covers most of the specificity,
36	with some weathered patches. Saw cut reveals weathered interior with abundant reflective
37	patches of metal and sulfide.
38	Petrography (D. Cantillo, M. James, S. Morin, <i>UAz</i>): Microprobe examination shows
39	chondrules 500-1000 um in size. The boundaries of these chondrules are relatively well-
40	defined with some partial re-crystallization. The areas of the matrix that were metal were
41	surrounded by rust, composing about 50% of the sample. Plagioclass grains <70 µm in size
42	surrounded by rust, composing about 5076 of the sample. I fagiociase grains <70 μm in size.
43	Large tronne, chronne, and mentine grains are also present.
44	Geochemistry: Mineral composition and geochemistry (D. Cantillo, M. James, S.
45	Morin, UAz): Olivine Fa _{18.1±0.2} , Fe/Mn 33.49±2.06, n=10. Low-Ca Pyroxene
46	Fs _{15,4±0.6} Wo _{0.5±0.3} , Fe/Mn 22.15±1.95, n=10. Kamacite Fe 92.30±0.28%, Ni 6.36±0.30%, Co
47	$0.463\pm0.04\%$ n=3
48	Classification: Ordinary Chondrite (H5), weathering grade W2
49	Snasimong: 22.1 g and anoun mount dengait at U/2. Eradrig Stanhan halds the main mass
50	Specimens . 52.1 g and epoxy mount deposit at <i>OAZ</i> . Fredric Stephan holds the main mass.
51	
52	
53	Northwest Africa 13100 (NWA 13100)
54	(Northwest Africa)
55	Purchased: 2019
56	Classification: Ordinary abandrita (IIG)
57	Classification. Ordinary chondrifle (LLO) \mathbf{H}^{*} $(\mathbf{L} = \mathbf{L}^{*})$ $(\mathbf{L} = \mathbf{L}^{*})$ $(\mathbf{L} = \mathbf{L}^{*})$ $(\mathbf{L} = \mathbf{L}^{*})$
58	History: Purchased in 2019 by Luc Labenne from a dealer in Erfoud, Morocco.
59	
~ ~ ~	

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of fairly closely packed angular clasts, which are extensively recrystallized but contain rare relict chondrules and some altered metal.

Geochemistry: Olivine (Fa_{30.3±0.5} (range Fa_{29.9-31.2}, N = 5), low-Ca pyroxene

 $(Fs_{26.6\pm0.3}Wo_{2.3\pm0.4}$ (range $Fs_{25.4-26.0}Wo_{1.9-2.9}$, N = 5), high-Ca pyroxene

 $(Fs_{11.4\pm1.0}Wo_{42.2\pm1.4} (range Fs_{10.3-11.5}Wo_{43.6-40.9}, N = 3).$

Classification: Ordinary chondrite (LL6 breccia).

Specimens: 22.3 g including one polished thin section at *UWB*; remainder with Mr. L. *Labenne*.

Northwest Africa 13101 (NWA 13101)

(Northwest Africa)

Find: 2017 Jan

Classification: Lunar meteorite (feldspathic breccia)

History: A batch of specimens (total weight 68.796 kg), including two large intact stones (28.498 and 24.292 kg) was recovered in January 2017 in Western Sahara or the Western Sahara/Algeria border region, and purchased by *DPitt* in February 2017 from a Mauritanian dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of angular mineral clasts of anorthite, olivine, orthopyroxene, pigeonite, subcalcic augite, chromite and ilmenite set in a sparsely vesicular, parly vitreous matrix containing minor troilite, kamacite and taenite.

Geochemistry: Olivine (Fa_{18.5-20.9}, FeO/MnO = 88-97, N = 4), orthopyroxene (Fs_{16.3-17.1}Wo_{2.4-4.0}, FeO/MnO = 47-54, N = 2), pigeonite (Fs_{18.3}Wo_{5.6}; Fs_{37.3-47.1}Wo_{4.4-9.0}; FeO/MnO = 53-62; N = 3), subcalcic augite (Fs_{49.2}Wo_{25.4}, FeO/MnO = 63), plagioclase (An_{96.2-96.6}Or_{0.1}, N = 2). **Classification**: Lunar (feldspathic breccia).

Specimens: 24.9 g including one polished endcut at UWB; remainder with DPitt.

Northwest Africa 13102 (NWA 13102)

(Northwest Africa)

Purchased: 2019 Aug

Classification: Mesosiderite

History: Purchased from a dealer in Zagora, Morocco in August 2019 by Juan Avilés Poblador on behalf of *UAlic*.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Recrystallized breccia composed of a variety of mineral clasts, some of which are rimmed by apparent reaction assemblages. Predominant component minerals are orthopyroxene (of several distinct compositions, with rare augite inclusions), olivine (of several distinct compositions) and anorthite, together with accessory kamacite (with taenite rims), silica (as acicular grains associated with anorthite), merrillite, chromite and troilite. Some orthopyroxene grains are rimmed by more ferroan orthopyroxene and some olivine grains are rimmed by orthopyroxene.

Geochemistry: Orthopyroxene cores (Fs_{17.6}Wo_{0.9}; Fs_{25.2}Wo_{2.4}; Fs_{33.7}Wo_{2.3}; FeO/MnO = 27-29, N = 3), orthopyroxene rims (Fs_{31.8-37.5}Wo_{2.6-3.5}, FeO/MnO = 25-26, N = 3), pigeonite rim on large orthopyroxene grain (Fs_{33.4}Wo_{9.4}, FeO/MnO = 26), olivine (Fa_{16.6-16.8}; Fa_{34.4}; FeO/MnO = 40-45, N = 3), orthopyroxene rim on magnesian olivine (Fs_{21.9}Wo_{1.9}, FeO/MnO = 25), augite inclusion in orthopyroxene (Fs_{16.9}Wo_{42.0}, FeO/MnO = 21), anorthite (An_{90.4-95.8}Or_{0.3-0.1}, N = 3).

Classification: Mesosiderite.
1	
2	
3	Specimens: 21.2 g including one polished endcut at <i>UWB</i> ; remainder in the collection <i>UAlic</i> .
4	
5	
6 7	Northwest Africa 13103 (NWA 13103)
/	(Northwest A frica)
0	Durahagad: 2018 Mar
9 10	Fulchaseu. 2010 Mai
10	Classification: Ordinary chondrife (L6, melt breccia)
12	History: Purchased in Agadir, Morocco by Aziz Habibi in March 2018.
12	Petrography : (A. Irving, UWS and P. Carpenter, WUSL) Sparse Type 6 clasts containing rare
14	chondrule remnants occur within a dominant very fine grained lithology composed of melt-
15	textured material containing clusters of rounded opaque minerals. The specimen is crosscut
16	by subparallel veinlets of iron hydroxides from terrestrial weathering of primary metal.
17	Geochemistry : Type 6 clast: Olivine (Fa _{24.7}), low-Ca pyroxene (Fs _{20.6} Wo _{1.4}). Melt matrix:
18	Olivine (Fara 2002) (range Fara 1045 N = 3) low-Ca pyroxene (Fsra 002 Wol 4002) (range Fsra 2
19	$V_{24,3\pm0.2}$ (range 1 $u_{24,3\pm0.2}$ (range 1 u_{2
20	20.8 WOLL-L., W T).
21	Classification. Ordinary chondrife (Lo-ineft Directa).
22	Specimens : 221 g including one poilsned thin section at <i>UWB</i> ; remainder with Mr. A. Habiol.
23	
24	
25	Northwest Africa 13104 (NWA 13104)
26	(Northwest Africa)
27	Purchased: 2019 Apr
28	Classification: HED achondrite (Eucrite, monomict)
29	History: Purchased in Rissani Morocco by Adam <i>Agronson</i> in April 2019
30 31	Petrography: (A Irving <i>LIWS</i> and P. Carpenter <i>WLISL</i>) Monomict breccia composed of
37	alosaly nacked yory fine grained granulitic quarite elests in a sparse matrix. Minorals are
33	closely-packed very line graned granulitic edenic clasts in a sparse matrix. Winerals are
34	exsorved pigeonne, carcic pragrociase, sinca polymorph, 11-A1-bearing chromite, tronne,
35	limenite and rare zircon.
36	Geochemistry: Orthopyroxene host ($Fs_{60.7-62.0}Wo_{3.4-1.9}$, FeO/MnO = 31-32, N = 5),
37	clinopyroxene exsolution lamellae (Fs _{26.4-27.4} Wo _{44.2-43.3} , FeO/MnO = 31-34, N = 5),
38	plagioclase (An _{88.0-90.0} Or _{0.4} , N = 4).
39	Classification: Eucrite (monomict breccia, fine grained, recrystallized).
40	Specimens: 20.2 g including one polished thin section at UWB; remainder with Aaronson.
41	
42	
43	Northwest Africa 13105 (NWA 13105)
44	(Northwest Africa)
45	Durchagad: 2018 Mar
46	$Cl = \begin{bmatrix} Cl & Cl & Cl \\ Cl & Cl & Cl \\ Cl & Cl &$
4/	Classification: Ordinary chondrite (L/)
48	History: Purchased in Agadir, Morocco, by Aziz Habibi in March 2018.
49 50	Petrography : (A. Irving, UWS and P. Carpenter, WUSL) Some portions of this specimen
51	exhibit an equigranular, triple grain junction texture whereas other portions have poikiloblastc
52	texture (consisting of olivine chadacrysts within orthopyroxene oikocrysts). No chondrules
53	were observed.
54	Geochemistry : Olivine (Fa _{22,9+0.2} (range Fa _{22,7-23,1} , N = 4). low-Ca pyroxene
55	$(F_{S_{10},S_{10},1}W_{02,7+0,7})$ (range $F_{S_{10,4,10,6}}W_{02,6,4,2}$ N = 4) high-Ca pyroxene
56	$(F_{S_0,1,0,0}W_{0,42,0,0,2})$ (range $F_{S_0,4,0,7}W_{0,42,5,40,4}$, N = 2)
57	Classification: Ordinary chondrite (I 7)
58	Chassification. Ordinary choments $(L/)$.
59	Specimens . 26.2 g including one poilsned thin section at OWB ; remainder with Mr. A.
60	Hadidi.

1 2

59 60 Northwest Africa 13106 (NWA 13106)

(Northwest Africa)

Purchased: 2019 May

Classification: Martian meteorite (Shergottite)

History: Purchased in Agadir, Morocco, by Aziz Habibi in May 2019.

Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Intersertal texture with a prominent lattice preferred orientation of maskelynite laths and prismatic clinopyroxene (strongly compositionally zoned). Accessory phases include merrillite, silica polymorph, pyrrhotite, ilmenite (with hematite exsolution lamellae), titanomagnetite (with ulvöspinel exsolution lamellae), baddeleyite, fayalite (in melt inclusions) and anorthoclase (in mesostasis). Geochemistry: Pigeonite cores ($Fs_{33.0-33.4}Wo_{15.0-14.2}$, FeO/MnO = 28-29, N = 2), subcalcic augite cores (Fs_{24,7-29,1}Wo_{24,1-30,0}, FeO/MnO = 27-29, N = 3), ferropigeonite rims (Fs_{70,2-} $_{78.3}$ Wo_{13.4-19.9}, FeO/MnO = 39-40, N = 4), subcalcic ferroan augite rim (Fs_{58.7}Wo_{25.3}, FeO/MnO = 38), maskelynite (An_{55,2-56,1}Or_{1,1-1,7}, N = 3), ferropigeonite in mesostasis $(Fs_{84.3}Wo_{10.4}, FeO/MnO = 41)$, anorthoclase in mesostasis $(Ab_{41.4}An_{35.3}Or_{23.3})$. Classification: Shergottite (intersertal).

Specimens: 20.5g including one polished thin section at UWB; remainder with Mr. A. Habibi.

Northwest Africa 13107 (NWA 13107)

(Northwest Africa)

Purchased: 2018 Mar

Classification: Ordinary chondrite (LL7)

History: Purchased in Rissani, Morocco, by Adam *Aaronson* in March 2018.

Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Triple grain junction texture with no chondrules. Major minerals are olivine, orthopyroxene, rare high-Ca pyroxene and sodic plagioclase, together with accessory altered kamacite, chromite and chlorapatite.

Geochemistry: Olivine (Fa_{27,7±0.4} (range Fa_{27,1-28,1}, N = 5), low-Ca pyroxene

 $(Fs_{22.8\pm0.1}Wo_{2.1\pm0.0} (range Fs_{22.7-22.9}Wo_{2.1-2.2}, N = 5), high-Ca pyroxene$

 $(Fs_{9.4\pm0.0}Wo_{44,2\pm0.0} (range Fs_{9.3-9.4}Wo_{44,2}, N = 2), plagioclase (An_{38.6\pm0.0}Or_{0.5\pm0.0} (rangeAn_{38.5-1}))$ $_{38.6}Or_{0.5-0.6}$, N = 3).

Classification: Ordinary chondrite (LL7).

Specimens: 20.6 g including one polished thin section at UWB; remainder with Aaronson.

Northwest Africa 13108 (NWA 13108)

(Northwest Africa)

Purchased: 2019 Mar

Classification: Enstatite chondrite (EL6)

History: Purchased in Zagora, Morocco, by Jaouad Achouri in March 2019.

Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Mostly recrystallized aggregate of enstatite, sodic plagioclase and partially altered opaque phases (brown in thin section). Rare recrystallized RP chondrules were observed. Careful analysis of accessory phases identified daubreelite (partially altered to jarosite), altered troilite, Cu-bearing violarite, Ni-free Fe silicide (possibly naquite) and rare oldhamite. Most of the relatively sparse primary metal has been completely replaced by iron hydroxides, but a few grains of taenite and Si-poor kamacite were observed.

Geochemistry: Enstatite (Fs_{0.1±0.0}Wo_{1.4±0.0}, N = 2), plagioclase (Ab_{78.6±0.5}An_{16.8±0.1}Or_{4.6±0.3}, N = 2), kamacite (Si = 1.3±0.7 wt.%, Ni = 4.2±1.6 wt.%, N = 4).
Classification: Enstatite chondrite (EL6).
Specimens: 23.6 g including one polished thin section at *UWB*; remainder with Mr. J. Achouri.
Northwest Africa 13109 (NWA 13109) (Northwest Africa) Purchased: 2005 Classification: Ordinary chondrite (L4)
History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving, *UWS* & J. Boesenberg, *BrownU*) Well-formed chondrules occur in a recrystallized matrix containing altered metal. Opaque veinlets of secondary goethite are also present in this fairly weathered specimen.

Geochemistry: Olivine (Fa_{25.1±1.3} (range Fa_{24.2-27.5}, N = 7), low-Ca pyroxene

 $(Fs_{20.9\pm0.4}Wo_{2.3\pm0.4} (range Fs_{20.6-21.4}Wo_{1.8-1.4}, N = 4).$

Classification: Ordinary chondrite (L4).

Specimens: The entire specimen including one polished thin section is at PSF.

Northwest Africa 13110 (NWA 13110)

(Northwest Africa)

Purchased: 2019 Aug

Classification: HED achondrite (Diogenite, polymict)

History: Purchased from a dealer in Zagora, Morocco, in August 2019 by Juan Avilés Poblador on behalf of *UAlic*.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed predominantly of angular mineral grains derived from several different diogenite lithologies together with ~2 vol.% of lithic eucrite clasts (exhibiting fine-intersertal, granulitic, vitrophyric and microgabbroic textures). Minerals are diogenitic orthopyroxene (of several distinct compositions), calcic plagioclase, olivine (one grain with an orthopyroxene rim), exsolved pigeonite, ferroan orthopyroxenes, silica polymorph, kamacite, Ni-free Fe metal, aluminous low-Ti chromite, ilmenite and troilite.

Geochemistry: Diogenitic orthopyroxenes (Fs_{18.4}Wo_{0.8}; Fs_{22.9}Wo_{2.1}; Fs_{24.4}-24.6Fs_{1.6-2.6}; FeO/MnO = 27-31; N = 4), olivine (Fa_{51.7-56.2}, FeO/MnO = 47-51, N = 3), orthopyroxene rim on olivine (Fs_{41.5}Wo_{1.8}, FeO/MnO = 32), ferroan orthopyroxenes (Fs_{59.3}Wo_{4.1}; Fs_{47.5}Wo_{2.1}; FeO/MnO = 25-31; N = 2), ferroan pigeonite host (Fs_{50.1}Wo_{6.5}, FeO/MnO = 30), augite exsolution lamellae (Fs_{18.9}Wo_{43.2}; Fs_{26.4-28.2}Wo_{37.9-41.4}; FeO/MnO = 24-31; N = 3), plagioclase (An_{83.8-90.9}Or_{0.7-0.3}, N = 3).

Classification: Diogenite (polymict breccia).

Specimens: 9.8 g including one polished thin section at *UWB*; remainder in the collection of *UAlic*.

Northwest Africa 13111 (NWA 13111)

(Northwest Africa)

Purchased: 2005

Classification: Ordinary chondrite (H4/5)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to PSF. **Petrography**: (A. Irving, UWS & J. Boesenberg, BrownU) Some well-formed chondrules occur in a recrystallized matrix containing altered metal. **Geochemistry**: Olivine (Fa_{18,8±0,3} (range Fa_{18,4-19,1}, N = 5), low-Ca pyroxene $(Fs_{16,7\pm0.2}Wo_{1,4\pm0.1} (range Fs_{16,5-16,8}Wo_{1,1,3-1,5}, N = 4), high-Ca pyroxene (Fs_{5,9}Wo_{45,1}).$ Classification: Ordinary chondrite (H4/5). Specimens: The entire specimen including one polished thin section is at *PSF*. Northwest Africa 13112 (NWA 13112) (Northwest Africa) Purchased: 2019 Jun Classification: Lunar meteorite (feldspathic breccia) History: Purchased by Luc Labenne in June 2019 from a Moroccan dealer at the Ensisheim Show, and subsequently acquired by Theatrum Mundi. **Petrography**: (A. Irving, UWS and P. Carpenter, WUSL) Breccia composed of angular mineral grains of anorthite, orthopyroxene, pigeonite and augite plus some glass beads set in a finer grained matrix containing ilmenite, Ti chromite, troilite, pentlandite, kamacite and taenite. Geochemistry: Olivine (Fa_{37.8-49.1}, FeO/MnO = 81-98, N = 5), orthopyroxene (Fs_{33.8-37.2}Wo_{2.5-} 1.8, FeO/MnO = 52-61, N = 3), pigeonite (Fs_{41.5}Wo_{6.1}, FeO/MnO = 63), augite (Fs_{25.0}Wo_{35.4}; $Fs_{18,4}Wo_{40,8}$; $Fs_{12,5-16,3}Wo_{45,7-42,7}$; FeO/MnO = 43-54; N = 5), anorthite (An_{94,7-96,6}Or_{0,1}, N = 3). Classification: Lunar (feldspathic breccia). Specimens: 20.5 g including one polished piece at UWB; main mass with Theatrum Mundi (Via Cesalpino 20, 52100 Arezzo, Italy). Northwest Africa 13113 (NWA 13113) Mali Purchased: 2019 Aug Classification: Ordinary chondrite (L4) History: Purchased by Mbark Arjdal in August 2019 from a dealer in Timbuktu, Mali. **Petrography**: (A. Irving, UWS & J. Boesenberg, BrownU) Well-formed chondrules (some with devitrified glass) occur in a recrystallized matrix containing stained metal, troilite, ilmenite, chromite and chlorapatite. **Geochemistry**: Olivine (Fa_{23,4±0,3} (range Fa_{22,8-23,7}, N = 6), low-Ca pyroxene $(Fs_{19,8\pm0.4}Wo_{1.7\pm1.2} (range Fs_{19,5-20,3}Wo_{1.0-3,8}, N = 5).$ Classification: Ordinary chondrite (L4). Specimens: 64.5 g including one polished thin section at UWB; main mass with Mr. M. Aridal.

Northwest Africa 13114 (NWA 13114)

Algeria

Purchased: 2019 Apr

Classification: Carbonaceous chondrite (CV3)

History: Purchased by Mbark Arjdal in April 2019 from an Algerian dealer.

Petrography: (A. Irving, *UWS*, and J. Boesenberg, *BrownU*) Well-formed granular, PO and BO chondrules (apparent diameter $1040\pm480 \ \mu m$, N = 24; some glass-bearing) together with

2			
3	amoeboid very fine grained CAL occur in a highly oxidized matrix (~30 vol % red-brown in		
4	this section) Cr bearing magnetite is present in sheadrules. A second rules and rules		
5	thin section). Ci-bearing magnetite is present in chondrules. Accessory phases in the matrix		
6	include pentlandite, troilite and chromite; metal is absent.		
7	Geochemistry : Olivine (Fa _{22,9+16,6} (range Fa _{1,1-43,2} , N = 12), low-Ca pyroxene		
/ 0	(Fso 1×1 Woo 2×1 (range Fso 1×2 Woo 2×2 N = 5) high-Ca pyroxene (Fso 2×1 Woo 2×2 (range		
8	$(130.5\pm0.1, 000.7\pm0.1, (130.3\pm0.0, 000.6\pm0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$		
9	$Fs_{0.2-0.5}Wo_{16.6-21.1}$, N = 5), magnetite in chondrules ($Cr_2O_3 = 1.3-2.3$ wt.%, NiO = 0.06 wt.%).		
10	N = 3).		
11	Classification : Carbonaceous chondrite (CV3 oxidized subclass)		
12	Superimones (6 g including one poliched this section at UWD; moin mag with Mr. M. Aridal		
13	Specimens . oo g including one poished thin section at <i>UWD</i> , main mass with ML. M. Afjual.		
14			
15			
16	Northwest Africa 13115 (NWA 13115)		
10	(1, 1) = (
17	(Northwest Africa)		
18	Purchased: 2019 Nov		
19	Classification: Martian meteorite (Shergottite)		
20	Histomy: The stone was acquired in 2010 in Tempre Marcago, by Adam Agrangen and in		
21	History . The stone was acquired in 2019 in Temara, Morocco, by Adam <i>Adronson</i> and in		
22	November 2019 sold to ArtAncient, London.		
23	Petrography : (A. Irving, UWS and P. Carpenter, WUSL) Diabasic texture with some lattice		
23	preferred orientation of elongate prismatic zoned clinopyrovene and lath-like maskelynite		
24			
25	grains. Accessory phases include limenite, ulvospinel, merrillite, baddeleyite, pyrrhotite		
26	(some with secondary Fe hydroxide staining), silica polymorph and rare favalite (as		
27	inclusions in ulvösninel and as rim on ilmenite)		
28	Coochomistry: Pigeonite cores (Fausser, Workson, FeO/MnO = 31.35, N = 4), subcalcic		
29	Geothemistry . Figeointe cores $(1^{a_{32,0-34,4}} w 0_{11,3-12,0}, 1^{c_{0}}, 1^{c_{0}})$, $(1^{c_{0}}, 1^{c_{0}}, 1^{c_{0}})$, $(1^{c_{0}}, 1^{c_{0}}, 1^{c_{0}})$, $(1^{c_{0}}, 1^{c_{0}}, 1^{c_{0}})$, $(1^{c_{0}}, 1^{c_{0}$		
30	augite cores ($Fs_{24.6-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8-24.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8}Wo_{32.3-31.3}$; FeO/MnO = 28-30, N = 2), ferroan pigeonite rims ($Fs_{45.8}Wo_{32.3-31.8}Wo_{32.3-31.8}Wo_{32.3-31.8}Wo_{32.3-31.8}Wo_{33.8$		
31	$_{64,2}Wo_{12,5-19,3}$, FeO/MnO = 33-37, N = 6), fayalite (Fa _{87,5-88,8} , FeO/MnO = 52-55, N = 2),		
32	maskelvnite (An _{52.0.56} Or _{1.2.0.0} N = 3) maskelvnite in mesostasis (An _{40.0} Or _{4.2})		
32	$maskerymie (An_{52,0-56,5} \cup 1_{1,3-0,9}, N-5), maskerymie in mesostasis (An_{49,0} \cup 1_{4,2}).$		
24	Classification: Shergottile (diabasic).		
24 25	Specimens : 21.0 g including one polished thin section at <i>UWB</i> ; main mass with ArtAncient		
35	(Chelsea Creek, London, UK).		
36			
37			
38			
39	Northwest Africa 13116 (NWA 13116)		
40	Mali		
41	Durchased: 2010 Aug		
42	ruicilaseu. 2019 Aug		
43	Classification: Ordinary chondrite (H6)		
45	History : Purchased by Mbark Arjdal in August 2019 from a dealer in Timbuktu, Mali.		
44	Petrography : (A Irving UWS & I Boesenberg BrownU) Mostly recrystallized with rare		
45	about the second state and a second		
46	chondrule remnants, stamed metal, source praglociase, tronne, chromite and chiorapatite. The		
47	specimen is crosscut by some thin veinlets of secondary goethite and calcite.		
48	Geochemistry : Olivine (Fa _{19,7+0,2} (range Fa _{19,2-19,9} , N = 6), low-Ca pyroxene		
49	(Fs_1,2,,2,Wo_1,,2) (range Fs_1,2,1,2,Wo_1,2,1,4,N=5) subcalcic augite (Fs_1,2,Wo_2,2) augite		
50	$(\Gamma_{317.5\pm0.5}, 0.04\pm0.2)$ (10160 $\Gamma_{310.9-17.5}, 0.01.2-1.6, 1.0 = 37, 300 careford augment (1.513.7, 0.020.37, augment)$		
51	$(\Gamma S_{6,2} W O_{45,0}).$		
52	Classification: Ordinary chondrite (H6).		
52	Specimens : 199 g including one polished thin section at <i>UWB</i> : main mass with Mr M		
55	$\Delta ridal$		
54	mjuui.		
55			
56			
57	Northwest Africa 13117 (NWA 13117)		
58	(Northwest A frica)		
59	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
60	Purchased: 2019 Aug		

Classification:	HED achondrite (Eucrite, monomict)
History: Purchase	ed from a dealer in Zagora, Morocco, in August 2019 by Juan Avilés
Poblador on beha	If of the Earth Sciences Department at the University of Alicante, Spain.
Petrography: (A	Irving, UWS and P. Carpenter, WUSL) Monomict breccia composed of
subophitic eucrite	clasts within a matrix of related crystalline debris. Minerals are exsolved
pigeonite calcic r	plagioclase silica polymorph ilmenite troilite chromite and Ni-free metal
Geochemistry [.]	with on vrox ene host ($F_{5:0,0,C1,0}W_{0,1,7,2,0}$, $FeO/MnO = 32-33$, $N = 4$)
clinonyroyene ex	solution lamellae (Fs ₂ (n 20.2 Wo ₁ , 7.4.4 FeO/MnO = 30-32 N = 4)
nlagioclase (Anot	$\int O(r_1 \circ o_1 \circ A_1) = 0$
Classification: Fi	$4-88.9011.0-0.4$, 10^{-9} .
Snecimens: 20.4	g including one polished thin section at <i>LIWB</i> : remainder in the collection
of UAlic	g including one poinshed thin section at 0 % b, remainder in the concerton
of Onne.	
Northwest Africa	a 13118 (NWA 13118)
(Northwest Afr	rica)
Purchased: 200	15
Classification:	Ordinary chondrite (L6)
History: Purchase	ed by an anonymous collector from a dealer at the Munich Show in 2005,
subsequently acqu	aired by the Hollis Collection and then donated to <i>PSF</i> .
Petrography: (A	Irving, UWS, and J. Boesenberg, BrownU) Breccia composed of closely-
packed, angular c	lasts that are largely recrystallized with rare remnant chondrules and stained
metal.	
Geochemistry: O	Vivine (Fa _{25.1±0.4} (range Fa _{24.7-25.8} , N = 6), low-Ca pyroxene
$(Fs_{21.5\pm0.9}Wo_{2.1\pm0.1})$	(range $Fs_{20.8-22.9}Wo_{2.0-2.2}$, N = 5).
Classification : O	rdinary chondrite (L6 breccia).
Specimens: The e	entire specimen including one polished thin section is at <i>PSF</i> .
Northwest Africa	a 13119 (NWA 13119)
Mauritania	
Purchased: 201	9
Classification:	Lunar meteorite (feldspathic breccia)
History: Purchase	ed from a Mauritanian meteorite dealer by Edwin <i>Thompson</i> and Phillip
Todd in August o	f 2019.
Physical charact	eristics: Three pieces that fit together. No fusion crust. Saw cuts reveal a
fragmental brecci	a with numerous angular shaped, cm-sized, white feldspathic clasts set in a
predominantly lig	ht gray groundmass. There are also a few scattered brown-green lithic clasts
present.	
Petrography: (C	Agee, UNM) SEM images show fragmental breccia of differing grain-size
scales. The groun	dmass is extremely fine-grained with cataclastic domains. and a variety of
micro-basaltic lith	ologies and single-phase fragments of olivine, pyroxene, and plagioclase.
Ubiquitous shock	melt veins and vesicles are present throughout.
Geochemistry: ((C. Agee, UNM) Olivine $Fa_{25,6+10,7}$, range $Fa_{8,1,41,2}$, Fe/Mn=114±26, n=7:
pigeonite Fs _{24 4+8}	$Wo_{10,1+2,0}$, Fe/Mn=48±2, n=2; augite Fs _{16,8+1,0} Wo _{31,7+10,1} , Fe/Mn=58±8, n=3:
plagioclase Anos 4	$_{\pm 0.8}$, n=4; shock melt (proxy for bulk composition) SiO ₂ =45.0, TiO ₂ =0.37.
Al ₂ O ₃ =29.7. MgC	=6.2, FeO=2.3, MnO=0.07, CaO=15.7, Na ₂ O=0.45 (wt%).
Classification : Li	unar, feldspathic breccia
Specimens: 28.7	g on deposit at UNM, Phillip Todd holds the main mass.

1	
2	
3	
4	
5	Northwest Africa 12170 (NWA 12120)
6	Northwest Africa 15120 (NWA 15120)
7	Southern Provinces, Morocco
8	Find: 2015
9	Classification: Lunar meteorite (feldspathic breccia)
10	History : The meteorite was purchased in Tucson by Zhouping Guo
11	Physical characteristics: A single bulk specimen lacks fusion crust. The sample specimen
12	has abaited by the statistics and uncertained the statistics and the statistics of the statistics of the statistics and the statistics and the statistics and the statistics are statistics and the statistics are statistics and the statistics are s
13	has obvious breccia characteristics and presents two different color regions: the dark color
14	region with a polished external appearance; the light color region with a large amount of fine-
15	grained terrestrial mineral fragment on the surface.
16	Petrography : Petrology (Z.Xia, B.Miao, <i>GUT</i>): The polished section was cut from the light
17	color region of the specimen. The observation of petrology of this meteorite is based on this
18	policibility of the specific shows trained brassis structure and large gree malt. All the
19	polished section. The meteorite shows typical directia structure and large-area ment. An the
20	lithological clast are melt-rock, except a basalt clast ($80 \times 160 \mu\text{m}$). The matrix is dominated
20	by glass with lot of vesicles, as well as few very-fine particles ($<10 \mu m$). The chemical
27	composition of the glass is similar with that of anorthite. The main mineral is plagioclase,
22	with a small amount of oliving pyroxene ilmenite and troilite Pyroxenes show chemical
23	zoning in hasalt clast. The abundance of the vesicles reaches 4 vol%
24	Case homistry (7 Via D Miao CUT): Discipalação An $Cr = (n-40)$: Olivino: Ea
25	Geochemistry (Z.Aia, B.Wiao, GOT). Plagloclase. $An_{92,1-96,4}On_{0.03-0,71}$ (in-48), Onvine. Pa_{27-1}
20	$_{35}$, Fe/Mn=/8-101 in melt-rock clast. Pyroxene in basalt: Fs _{15,11-69,72} Wo _{22,36-46,14} , Fe/Mn=3/-
27	73; Glass: SiO ₂ 42.9 wt%, Al ₂ O ₃ 35.93 wt%, CaO 19.9 wt%, FeO 0.47 wt%, Na ₂ O 0.49 wt%,
20	MgO 0.18 wt%, K ₂ O 0.01 wt%.
29	Classification: Lunar (felspathic breccia)
30	Specimens: Two polished sections and about 20 g sample are stored in the Institution of
31	Specification in the distribution of the store of the distribution of the store of the distribution of the
32	Meteorites and Planetary Materials Research of GUI , the main mass is exhibited in the
33	Geological Museum of Guilin.
34	
35	
36	Northwest Africa 13126 (NWA 13126)
37	Morocco
38	WOIDECO
39	Dynahogodi 2012
40	Purchased: 2012
41	Purchased: 2012 Classification: Ordinary chondrite (L4)
	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued
42	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144
42 43	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined matrix has begun coarsening but ultimately
42 43 44	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cruptocrystalline. Minor undulose extinction indicates a very weak shock
42 43 44 45	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock.
42 43 44 45 46	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized.
42 43 44 45 46 47	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized.
42 43 44 45 46 47 48	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized.
42 43 44 45 46 47 48 49	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127)
42 43 44 45 46 47 48 49 50	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco
42 43 44 45 46 47 48 49 50 51	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012
42 43 44 45 46 47 48 49 50 51 52	 Purchased: 2012 Classification: Ordinary chondrite (L4) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography: Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012 Classification: Ordinary chandrite (LL6)
42 43 44 45 46 47 48 49 50 51 52 53	 Purchased: 2012 Classification: Ordinary chondrite (L4) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography: Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012 Classification: Ordinary chondrite (LL6)
42 43 44 45 46 47 48 49 50 51 52 53 54	 Purchased: 2012 Classification: Ordinary chondrite (L4) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography: Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012 Classification: Ordinary chondrite (LL6) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued
42 43 44 45 46 47 48 49 50 51 52 53 53 54 55	 Purchased: 2012 Classification: Ordinary chondrite (L4) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography: Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012 Classification: Ordinary chondrite (LL6) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at <i>ROM</i> as LM58143.
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	 Purchased: 2012 Classification: Ordinary chondrite (L4) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography: Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012 Classification: Ordinary chondrite (LL6) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at <i>ROM</i> as LM58143. Petrography: Chondrules are very poorly defined. Extensive recrystallization of matrix and
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	 Purchased: 2012 Classification: Ordinary chondrite (L4) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography: Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012 Classification: Ordinary chondrite (LL6) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at <i>ROM</i> as LM58143. Petrography: Chondrules are very poorly defined. Extensive recrystallization of matrix and coarse grain sizes indicate high levels of thermal metamorphism. Irregular, and planar of
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	 Purchased: 2012 Classification: Ordinary chondrite (L4) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography: Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012 Classification: Ordinary chondrite (LL6) History: Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at <i>ROM</i> as LM58143. Petrography: Chondrules are very poorly defined. Extensive recrystallization of matrix and coarse grain sizes indicate high levels of thermal metamorphism. Irregular, and planar of fractures of oliving indicate a weakly shocked sample, undulose avtinction is avident in
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	Purchased: 2012 Classification: Ordinary chondrite (L4) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at the <i>ROM</i> as LM58144 Petrography : Chondrules are well defined, matrix has begun coarsening but ultimately remains cryptocrystalline. Minor undulose extinction indicates a very weak shock. Moderately weathered, approximately 20-30% of metal and sulfides have been oxidized. Northwest Africa 13127 (NWA 13127) Morocco Purchased: 2012 Classification: Ordinary chondrite (LL6) History : Purchased from Said Hadnany who acquired it from Morocco. Sample is catalogued at <i>ROM</i> as LM58143. Petrography : Chondrules are very poorly defined. Extensive recrystallization of matrix and coarse grain sizes indicate high levels of thermal metamorphism. Irregular, and planar of fractures of olivine indicate a weakly shocked sample, undulose extinction is evident in

certain grains. This sample has been moderately weathered with about 20-30% of metal/sulfides being replaced. Large conglomerates of sulfides and metal occur together.

Northwest Africa 13129 (NWA 13129)

Morocco

Purchased: Feb 2015

Classification: Ordinary chondrite (L5)

History: Purchased from Adam *Aaronson* who purchased it from Morocco. Catalogued at *ROM* as M58186

Petrography: Sample has a highly recrystallized coarse grained matrix bearing chondrules which are readily delineated. Unulatory extinction is visible in olivine grains, however no shock veins are present. Minor oxide rims are visible around metal and sulfides.

Northwest Africa 13130 (NWA 13130)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (CV3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Dark brownish rock with some fusion crust.

Petrography: Carbonaceous chondrite composed of chondrules (mean diameter about 1 mm; up to 2 mm sized), CAIs (up to 3 mm sized), and olivine amoeboids all set into a fine-grained brownish to almost black matrix. Type II chondrules are absent. Some chondrules show reddish staining due to terrestrial alteration.

Northwest Africa 13131 (NWA 13131)

(Northwest Africa)

Purchased: 2019 Classification: Ordinary chondrite (H5)

History: Purchased by Wei Jiang in 2019 from Morocco.

Physical characteristics: Most specimens are covered by dark fusion crust. The partial fusion crust surface is cemented by brownish red material. The masses of specimens are in a range 50 to 200 g. The total mass is ~20 kg.

Petrography: (J. Ji, S. Hu and Y. Lin, *IGGCAS*) The meteorite is minaly composed of olivine, pyroxene, plagioclase, Fe-Ni metal and troilite, with minor chromite and phosphates. Several relict chondrules in nonimpact region are identified, ranging up to ~2 mm in diameter. Some shock induced melt pockets and veinlets are found across the section.

Geochemistry: Mineral compositions and geochemistry: (J. Ji, S. Hu and Y. Lin, *IGGCAS*) The olivine and pyroxene are homogeneous in chemical compositions. Olivine:

Fa_{18.4±0.4} (n=43), orthopyroxene: $Fs_{16.1\pm0.4}Wo_{1.4\pm0.3}$ (n=25)

Classification: (J. Ji, S. Hu and Y. Lin, *IGGCAS*) H5

Specimens: The main mass is held by Wei Jiang.

Northwest Africa 13132 (NWA 13132)

Niger Purchased: 2017 Classification: Ordinary chondrite (L5/6)

2	
3	History: Purchased by Wei Jiang in 2017 from Morocco
4	History I utenased by well sharp in 2017 from Wordeed.
5	Physical characteristics : Most fragments are covered by black fusion crust. The masses of
5 C	fragments are in a range 50 to 500 g. The total mass is ~ 180 kg.
0	Petrography: (1 Ji S Hu and Y Lin $IGGCAS$) The meteorite is mainly consisting of
/	
8	olivine, pyroxene, plagloclase, Fe-N1 metal, and trollite, with minor chromite andphosphates.
9	Several relict chondrules in nonimpact region, ranging up to ~ 2.5 mm in diameter. Few shock
10	melt veins are observed
11	Constructions and constructions and constructions (LES) the and V Lin LCCC (S)
12	Geochemistry: Mineral compositions and geochemistry. (J. JI, S. Hu and Y. Lin, <i>IGGCAS</i>)
12	The olivine and pyroxene are homogeneous in chemical compositions. Olivine:
15	$F_{a_{25}4+0.4}$ (n=27) Orthopyroxene: $F_{S_{21}5+0.5}$ Wo _{1.5+0.2} (n=17) Clinopyroxene: $F_{S_{10}5}$ Wo _{2.5.4} (n=1)
14	Classification: (L.I.S. Hu and V. Lin, $ICC(AS)$ L.5/6
15	Classification (J. J., S. Hu and T. Elli, TOCAS) ES/0
16	Specimens: The main mass is held by Wei Jiang.
17	
18	
19	N_{-1}
20	Northwest Africa 15155 (NWA 15155)
21	(Northwest Africa)
21	Find: unknown
22	Classification: Enstatite chondrite (EL6)
23	D = 1 + 11 + 11 + 12 = 0010 G + 14
24	History : Purchased by Wei Jiang in 2018 from Morocco.
25	Physical characteristics : Many fragments are severly weathered. The masses of the
26	individual fragments are in a range of 20 to 300 g. The total mass is \sim 90 kg
27	Detrography: (L Ii S. Hu and V. Lin ICCC(1S) One reliet chandrule was found
28	i et ogi aphy . $(5, 5), 5$. The and 1 . Lin, $100CAS$) One renet chondrule was found, ~ 5 min m
29	diameter. The meteorite is mainly composed of enstatite, with minor albite, daubreelite, silica,
30	troilite, and kamacite. Most metal grains are oxidized. Some kamacite grains less than 10 mm
31	are found in enstatite
27	Coordination Characteristics and according strue (I Ji S Hu and V Jin ICCC 18)
32	Geochemistry. Mineral compositions and geochemistry. (J. J., S. Hu and T. Lin, 100CAS)
33	Enstatite $F_{s_{0.5\pm0.2}En_{98.1\pm0.3}Wo_{1.4\pm0.1}}$ (n=23), Plagioclase $An_{15.3\pm0.6}Ab_{80.7\pm0.7}$ (n=5), kamacite
34	contains ~1 wt% silicon
35	Classification : (I_Ii_S_Hu and Y_Lin_ <i>IGGCAS</i>) Enstatite chondrite (EL6)
36	Snasimans: The main mass is held by Wei Jiang
37	specimens. The main mass is neid by well flang.
38	
39	
40	Northwest Africa 13134 (NWA 13134)
10 //1	$\frac{1}{101} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
42	(Northwest Africa)
42	Find: 2012
43	Classification: Martian meteorite (Shergottite)
44	History: purchased in 2012 by M. Morgan in Marcase
45	History . purchased in 2015 by Wi. Worgan in Wordcoo
46	Physical characteristics : Physical: several pieces, some with fresh fusion crust
47	Petrography : (Y. Liu, JPL) Medium-grained (up to ~3 mm in length) sub-ophitic assemblage
48	of maskelynite and pyroxenes with accessory ulvösninel ilmenite merrillite and anatite
49	Ulvägning sontoing Si nich aloga K nich magagtagig is shundant
50	Olvospinei contains SI-rich glass. K-rich mesostasis is abundant.
50	Geochemistry : Minerology: Pigeonite ($Fs_{41\pm10}Wo_{13\pm2}$, FeO/MnO=32±3, n=17), Augite
51	$(F_{s_{26+8}}W_{0_{33+2}}, FeO/MnO=30\pm3, n = 4)$, maskelynite $(An_{49+3}Or_{2+1}, n = 10)$. Oxygen isotopes
52	(F Young UCLA): 2 acid-washed fragments analyzed by laser fluorination gave $\delta^{18}O=$
53	(2. Found, 0.0217). 2 and master fragments analyzed by faser fragmentiation gave 0^{-1}
54	$4.303, 4.030, 0.00 - 2.099, 2.770, \Delta^{10}U = 0.318, 0.318.$
55	Classification: Martian (basaltic shergottite)
56	Specimens : 3 g at UCLA. The remainder is held by M. Morgan at Mile High Meteorites.
57	
58	
59	
60	Northwest Africa 13135 (NWA 13135)

Morocco Purchased: 2018 Apr Classification: Ureilite

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25 26

27

28

29

30

31 32

33

34 35 36

37

38

39

40 41

42

43

44

45

46

47 48

49 50 51

52

53

54 55

56

57

History: One piece with a weight of 58.3 g was purchased by Sergey Vasiliev from a Moroccan meteorite dealer in Zagora in 2018.

Physical characteristics: Dark-brown individual with well preserved fusion crust. The interior of the meteorite is grayish, with granular texture.

Petrography: (P. Yu. Plechov, *FMMR*). Petrographic observation of a polished section shows that the meteorite is composed of coarse-grained olivine (up to 2 mm) and fine pigeonite (size up to 400 µm). Olivine grains are Fo_{80.5} and elevated CaO (0.38±0.05 wt.%, n=13) and Cr_2O_3 (0.78±0.06 wt.%, n=13) abundances. No high-Ca pyroxene or orthopyroxene were observed. Pigeonite has 5.5-6.0 wt.% CaO. Saw-tooth, carbon-rich veins cross the meteorite. Veins or vein fragments with thicknesses of about 50 µm are composed by graphite (without diamond). Thinner veins of about 20 µm thickness contain kamacite with schreibersite rims and troilite-daubreelite intergrowths. Narrower veins, up to 10 μ m in thickness, are mostly filled with iron hydroxides. Olivines have reduced rims with very tiny ($\leq 1 \mu m$) drops of iron (without Ni) and more magnesium than the cores (up to $Fo_{87,8}$). These features are typical for olivine-pigeonite, main group ureilites (monomict ureilites). Irregularly shaped cracks and the absence of other features of impact indicate the sample has a very weak shock stage. Kamacite is partially replaced by iron hydroxides, whereas sulfides and silicates are fresh. Geochemistry: Mineral composition and Geochemistry: EDS-WDS analyses (P. Yu. Plechov, FMMR). Ureilite consists of olivine Fa_{19.5±0.13}, CaO 0.38±0.05 wt.% and $Cr_2O_3 0.78 \pm 0.06$ wt.% (N=13), pigeonite $Fs_{16,10\pm0.27}Wo_{11.58\pm0.26}$ (N=13), kamacite (in wt.%): Fe-94.22, Ni-4.57, troilite, daubreelite (in wt.%): Fe-52.54, S-32.66, Cr-7.96, schreibersite or

nickelphosphide, graphite, iron and hydroxides.

Classification: (P. Yu. Plechov, FMMR). Ureilite.

Specimens: Sergey Vasiliev holds main mass 44.7 g. 13.6 g FMMR.

Northwest Africa 13136 (NWA 13136)

Algeria

Find: 2017

Classification: Ordinary chondrite (L3)

History: Purchased in 2018 by Matthew Stream from Didi Baidari in Algeria.

Physical characteristics: Single stone with dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) Abundant chondrules ($750\pm100 \mu m$) and some clasts set in a fine-grained matrix containing accessory troilite, Fe oxides, and Fe-Ni metal.

Geochemistry: Olivine (Fa_{12.0-43.5}, n=30), Low-Ca Pyroxene (Fs_{1.3-34.0} Wo_{0.2-2.1}, n=60).

Classification: Ordinary Chondrite (L3) due to chondrule size and magnetic susceptibility. **Specimens**: 21.78 grams at *UCLA*; main mass with Matthew Stream.

Northwest Africa 13137 (NWA 13137)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (H5, melt breccia)

History: Purchased in 2019 by Geologist Juan Aviles Poblador from a nomadic dealer in Morocco.

Physical characteristics: Two stones with dark-brown fusion crust.

2	
3	Petrography : (D. Sheikh, <i>FSU</i>) Chondrules absent. Sample is a breccia composed of angular
4	clasts (up to 3 cm) set in a melt rock matrix containing FeNi metal troilite and chromite
5	Recrystallized plagioclase (~10 µm) present
6	Coochemistry Oliving (Eq. $n=40$) Levy Co Dyrayong (Eq. Wo $n=40$)
7	Geochemistry. Onvine ($ra_{18.0\pm0.6}$, $n=40$), LOw-Ca Pyroxene ($rs_{16.4\pm0.6} \le 0.1$, $n=40$).
8	Classification: Ordinary Chondrite (H5, melt breccia).
9	Specimens : 58.72 g at UCLA; main mass with Juan Aviles Poblador.
10	
11	
12	Northwest Africa 13138 (NWA 13138)
13	(Northwest A frica)
14	(Normwest Annea)
15	Purchased: 2019
16	Classification: Lunar meteorite (feldspathic breccia)
17	Physical characteristics : Grey irregular fragments. Cut face show a dark-gray interior with
18	mm-sized white angular clasts.
19	Petrography : (J. Gattacceca, <i>CEREGE</i>) Sparse mineral clasts (anorthite, olivine, pyroxene,
20	to 300 µm) in a feldspathic melt rock matrix. Melt rock has numerous vesicles with typical
21	sizes 30 um Chromite troilite and rare metal are present
22	Sizes 50 µm. Chromite, from the and rate metal are present. Casabamistry: Anorthita An Ab Or $(n-2)$ Augita Eq. Wa 7 Eq. (MnO-52)
23	Geochemistry. Anothine All _{97.1} AO _{3.0} OI _{0.0} (II-2). Aughe $Fs_{21.1\pm14.8} \le 0.36.5\pm8,7, FeO/MIIO-33$
24	(n=3). Olivine Fa _{26.9±4.2} , FeO/MinO=110 $(n=2)$.
25	Classification: Lunar (feldspathic melt breccia).
26	Specimens: Type specimen at CEREGE. Main mass with Jérémy Bassemon.
27	
28	
29	Northwest Africa 13141 (NWA 13141)
30	Moracco
31	
3Z	Find: 2018
27	Classification: Mesosiderite
25	Petrography : (J. Gattacceca, <i>CEREGE</i>) The meteorite is composed approximately of 50%
36	Fe,Ni large metal grains and 50% of pyroxene (mostly Ca-pyroxene) and plagioclase. Other
37	minerals: chromite, silica polymorph, troilite.
38	Geochemistry : Pyroxenes: low-Ca pyroxene $F_{3225}W_{038}$ (n=1). Ca-pyroxene
30	$F_{S_{1,C}}W_{O_{2,0,T}}(n=2)$ FeO/MnO=22.9 (n=3) Plagioclase Ano2 Abc-Oro1 (n=3) Chromite
40	$C_{r\#-0.80}$
40	Ci#=0.00.
42	Specimens: Type specimen at CEREGE. Main mass with George Pennett
43	
44	
45	Northwest Africa 13143 (NWA 13143)
46	Morocco
47	Find: 2018
48	Classification: HED achondrite (Howardite)
49	Develoal characteristics: Crusted stope. Cut surface reveals a light grow interior with
50	Thysical characteristics . Clusted stolle. Cut surface reveals a light-gray interior with
51	subrounded whitish clasts with size up to 1 cm, and more angular chondritic black clasts up to
52	l cm.
53	Petrography : (J. Gattacceca, <i>CEREGE</i>) Mineral clasts (to 500 µm) set in a clastic matrix.
54	Main minerals are plagioclase and pyroxene (some exsolved). Pyroxene of diogenitic and
55	eucritic composition are found approximately in equal proportions. Other minerals: ilmenite.
56	chromite (to 200 μ m) silica polymorph (to 200 μ m) troilite metal Contains a 5 mm × 5 mm
57	chondritic clast with small chondriles set in an abundant fine_grained iron_rich
58	nbullogilionta rich matrix contains sulfide and magnetite
59	phynosineaic-nen mainx containg sunnue and magnetite.
60	

Geochemistry : Diogenitic low-Ca pyroxene $Fs_{29,4\pm2.13}Wo_{2.7\pm1.0}$ (n=4). Eucritic low-Ca pyroxene $Fs_{54.6\pm7.0}Wo_{2.0\pm0.3}$ (n=3). Ca-pyroxene $Fs_{30.2\pm5.8}Wo_{28.0\pm9.4}$ (n=3). Overall pyroxene FeO/MnO=31.5±2.4. Two Mg-rich pyroxene were analyzed with $Fs_{13.8}Wo_{1.0}$ and $Fs_{14.2}Wo_{1.0}$, FeO/MnO=25.8. Plagioclase $An_{92.3\pm1.3}Ab_{7.4\pm1.3}Or_{0.3\pm0.1}$ (n=5). Chondritic clast: Olivine $Fa_{21.7\pm12.2}$ (range $Fa_{2.1-32.2}$), Cr_2O_3 0.45±0.03 wt% (n=4), low-Ca pyroxene $Fs_{1.6\pm0.4}Wo_{1.1\pm0.2}$ (n=3). Analyses of a 50 µm × 50 µm matrix area in the chondritic clast gives an analytical total of 80.3 wt%, and FeO 28.6 wt%. Classification : Achondrite (howardite). Contains a cm-sized CM2-like clast. Specimens : Type specimen at <i>CEREGE</i> . Main mass with George Penneff
Northwest Africa 13145 (NWA 13145) (Northwest Africa) Purchased: 2019 May Classification: Ordinary chondrite (LL3) Petrography: (J. Gattacceca, <i>CEREGE</i>) Chondrite with packed chondrules with average apparent diameter 1090±600 μ m (n=33). Opaque are metal and sulfides. Geochemistry: Olivine Fa _{24.8±9.6} , Fa PMD=30% (n=5). Low-Ca pyroxene Fs _{13.2±8.4} Wo _{1.6±1.1} (n=4). Classification: LL3. LL group based on chondrule size. Specimens: Type specimen at <i>CEREGE</i> , main mass with <i>Kuntz</i>
 Northwest Africa 13146 (NWA 13146) (Northwest Africa) Purchased: 2019 Sep Classification: HED achondrite (Eucrite) Physical characteristics: Single stone, about 60% covered by fusion crust with flowlines. Petrography: (J. Gattacceca, <i>CEREGE</i>) Fragmental breccia with lithic clasts (ophitic texture) set in a clastic matrix. Main minerals are Ca-pyroxene and plagioclase. Other minerals include ilmenite, troilite, metal. Geochemistry: Ca-pyroxene Fs_{57.8±3.4}Wo_{14.3±4.5}, FeO/MnO=32.0±1.5 (n=5). Plagioclase An_{88.4}Ab_{11.1}Or_{0.5} (n=2). Specimens: Type specimen at <i>CEREGE</i>, main mass with <i>Kuntz</i>
 Northwest Africa 13147 (NWA 13147) (Northwest Africa) Purchased: 2019 Sep Classification: Ordinary chondrite (L4) Physical characteristics: Single stone, no fusion crust Petrography: (J. Gattacceca, <i>CEREGE</i>) Chondrite with well-delineated packed chondrules (average apparent diameter 640±280 µm, n=19). Opaques are Fe,Ni metal and troilite. Geochemistry: Olivine Fa_{24.6±1.1}, Fa PMD 3.2% (n=17). Low-Ca pyroxene Fs_{17.6±4.4}Wo_{1.6±1.2}, range Fs_{12.4-24.3} (n=5) Classification: Ordinary chondrite (L4). Specimens: Type specimen at <i>CEREGE</i>, main mass with <i>Kuntz</i>

Northwest Africa 13148 (NWA 13148)

Running Head

(Northwest Africa)	
Classification: HED achondrite (Eucrite)	
Physical characteristics: One fusion crusted stone	
Petrography : (J. Gattacceca, <i>CEREGE</i>) Igneous rock with ophitic texture. Minerals include dominant pyroxene and plagioclase (fractured, grain size about 1 mm), chromite, troilite, silica polymorph. Fo Ni matel	
Geochemistry : Low Ca-pyroxene $Fs_{61.0\pm1.8}Wo_{3.7\pm1.8}$, FeO/MnO=32.2±1.2 (n=6). Plagioclase An _{80.2} Ab _{10.2} Or _{0.5} (n=2)	
Specimens: Type specimen at <i>CEREGE</i> , main mass with <i>Kuntz</i>	
Northwest Africa 13149 (NWA 13149)	
(Northwest Africa)	
Purchased: 2019 Sep	
Classification: HED achondrite (Eucrite)	
Petrography : (J. Gattacceca, <i>CEREGE</i>) Igneous rock with ophitic texture. Minerals include dominant exsolved pyroxene and plagioclase (grain size about 700 μm), chromite, troilite,	
silica polymorph, Fe,Ni metal.	
Geochemistry : Pyroxenes: row Ca-pyroxene $F_{62,2\pm0.8} \le 0_{3,3\pm1.0} (n-3)$, Ca-pyroxene $F_{52,0,0} \le 0_{1,0} \le$	
Specimens: Type specimen at $CFREGE$ main mass with $Kuntz$	
Specificity. Type specificit at CEREOE, main mass with Ranz	
Northwest Africa 13150 (NWA 13150) (Northwest Africa) Purchased: 2019 Sep Classification: Carbonaceous chondrite (CM2)	
Physical characteristics : Several black fragments from few milligrams to 0.18 g	
Petrography : (J. Gattacceca, <i>CEREGE</i>) Small chondrules (average apparent diameter $300\pm150 \ \mu\text{m}, n=19$) and minerals fragments set in an abundant fine-grained, Fe-rich,	
phyllosilicate-rich matrix. Many chondrules have fine-grained dust rim. Opaque minerals are)
mostly magnetite and sulfides, with rare metal as small grains enclosed within silicates.	
Ca pyroxene Fs _{1.9} Wo _{1.0} (n=2) Microprobe analytical total over a 50×50 um2 matrix area is	/-
75.6 wt%.	
Specimens: Type specimen at CEREGE, main mass with Kuntz	
Northwest Africa 13151 (NWA 13151)	
(Northwest Africa) Purchased: 2019 Sep Classification: Ordinary chondrite (LL7)	
Physical characteristics : Single stone. Approximately 75% covered by thick fusion crust	
Petrography : (J. Gattacceca, <i>CEREGE</i>) Strongly recrystallized chondrite. Opaque minerals are metal and troilite. No visible chondrule in the studied section. Plagioclase to 200 μ m. Geochemistry : Olivine Fa _{30.6} (n=1). Orthopyroxene Fs _{25.7} Wo _{2.5} (n=2)	
Specimens: Type specimen at CEREGE, main mass with Kuntz	

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
11	
1-	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
20	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
44	
45	
46	
47	
т/ ЛО	
40	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	

1

Northwest Africa 13152 (NWA 13152) (Northwest Africa) Purchased: 2019 Sep Classification: Ordinary chondrite (LL3) Physical characteristics: Single stone lacking fusion crust **Petrography**: (J. Gattacceca, *CEREGE*) Chondrite with well-delineated packed chondrules (average apparent diameter 1050±280 μm, n=18). Opaques are Fe,Ni metal and troilite. Geochemistry: Olivine Fa_{19.0±8.2}, Fa PMD 40%, Cr₂O₃ 0.08±0.04 wt% (n=10). Low-Ca pyroxene $Fs_{14,5\pm7,7}Wo_{0.6\pm0.4}$ (n=7). Classification: Ordinary chondrite (LL3). LL group based on magnetic susceptibility and chondrule size. **Specimens**: Type specimen at *CEREGE*, main mass with *Kuntz* Northwest Africa 13153 (NWA 13153) Morocco Purchased: 2014 May Classification: Ordinary chondrite (LL7) History: Bought from a Moroccan dealer. **Petrography:** (J. Gattacceca, *CEREGE*) Highly recrystallized chondrite with almost granoblastic texture. Opaques are rare metal and troilite. Ca-phosphate to 200 µm, chromite to 50 µm. **Geochemistry**: Olivine Fa_{30.6} (n=2). Orthopyroxene Fs_{24.7±0.2}Wo_{2.5±0.1} (n=4), Ca-pyroxene $Fs_{10,8\pm0,2}Wo_{43,5\pm0,1}$ (n=3). Plagiocalse $An_{10,8}Ab_{85,5}Or_{3,8}$ **Classification**: LL7 Specimens: Type specimen at *CEREGE*, main mass with Lucian Cojocaru Northwest Africa 13155 (NWA 13155) (Northwest Africa) Purchased: 2019 Sept Classification: Ureilite Petrography: (J. Gattacceca, CEREGE) Blocky aggregate of mm-sized olivine grains. Fe,Ni metal present at grain junctions, and as trails of µm-sized blebs in silicates. Abundant carbon material at grain junction as pockets up to 500 μ m \times 100 μ m. Geochemistry: Olivine Fa_{21.5±0.1}, CaO=0.40 wt%; Cr₂O₃=0.70 wt% (n=3). Olivine rims Fa_{13.3-16.4.} Classification: Ureilite Specimens: Type specimen at CEREGE, main mass with Labenne Northwest Africa 13156 (NWA 13156) (Northwest Africa) Purchased: 2019 Sept Classification: Carbonaceous chondrite (CK6) Petrography: (J. Gattacceca, CEREGE) Recrystallized chondrite with abundant Crmagnetite, accessory sulfides. Plagioclase average size is $>50 \mu m$.

2
з
1
4
5
6
7
8
0
9
10
11
12
12
1.4
14
15
16
17
18
10
19
20
21
22
23
21
24 25
25
26
27
28
20
29
30
31
32
33
21
54 25
35
36
37
38
20
29
40
41
42
43
44
47
45
46
47
48
49
50
50
51
52
53
54
54
22
56
57
58
59
60
OU

Geochemistry: Olivine Fa_{32.9±1.0}, NiO=0.68 wt% (n=3). Low-Ca pyroxene Fs_{25.9}Wo_{2.9} (n=2). Plagioclase An_{30.7}Ab_{66.6}Or_{2.7}. Magnetite has 3.9 wt% Cr₂O₃. **Classification**: Carbonaceous chondrite (CK6) **Specimens**: Type specimen at *CEREGE*, main mass with *Labenne*

Northwest Africa 13158 (NWA 13158)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (H3)

History: The meteorite was purchased from a meteorite dealer in Zagora, Morocco. **Physical characteristics**: Dark brownish rock without fusion crust.

Petrography: The meteorite shows a chondritic texture with well separated rounded chondrules (apparent mean diameter about 0.4 mm). FeNi metal and sulfides and are almost completey altered to Fe-hydroxides.

Northwest Africa 13159 (NWA 13159)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (L6, melt breccia)

History: The meteorite was purchased from a Morrocan dealer at the mineral show in Munich, Germany.

Physical characteristics: Many small dark brownish individuals lacking any fusion crust. **Petrography**: The meteorite dominantly consists of partly recrystallized melt rock regions with characteristic FeNi metal and sufide spherules. Few unmelted regions are of L6 type with plagioclase grains about 80 µm in size; no metal or sulfide veins are observed.

Northwest Africa 13160 (NWA 13160)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a Morrocan dealer at the mineral show in Munich, Germany.

Physical characteristics: Greyish rock with some fusion crust.

Petrography: The meteorite is a fine-grained fragmental breccia composed of basaltic clasts and black melt rock clasts up to 2 mm in size set into a clastic matrix. Basaltic clasts and matrix are dominantly composed of exsolved pyroxene and plagioclase grains up to 900 μ m in size. Some pyroxenes show compositional zoning indicating a low degree of thermal metamorphism. Minor phases include silica, FeS, chromite, ilmenite, and metallic iron. **Geochemistry**: low-Ca pyroxene: Fs_{41.0±9.1}Wo_{5.8±1.2} (Fs_{28.8-53.7}Wo_{3.5-8.1}, FeO/MnO=24-30, n=17); Ca-pyroxene: Fs_{34.4±9.4}Wo_{36.7±6.2} (Fs_{24.5-48.4}Wo_{26.4-43.5}, FeO/MnO=25-29, n=22); calcic plagioclase: An_{91.6±0.4} (An_{90.7-92.0}, n=12)

Northwest Africa 13161 (NWA 13161)

(Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (L3) **History**: The meteorite was purchased from a Morrocan dealer at the mineral show in Munich, Germany.

Physical characteristics: Dark-grayish rock without fusion crust.

Petrography: The meteorite displays a grayish interior and shows a chondritic texture composed of slightly flattened chondrules (mean diameter about 700 μ m) that are only loosely packed. The matrix contains sulfides and FeNi metal.

Northwest Africa 13162 (NWA 13162)

(Northwest Africa)

Purchased: 2019

Classification: Rumuruti chondrite (R3-6)

History: The meteorite was purchased from a local meteorite dealer in Nouakchott, Mauritania.

Physical characteristics: Dark brownish rock partly covered with fusion crust.

Petrography: The meteorite displays a light brownish to orange interior and is composed of up to 1.5 cm sized angular type 6 clasts and type 3 matrix. Olivine and low-Ca pyroxene are compositionally unequilibrated in the matrix. Fe-rich olivine is the most dominant mineral phase in the clasts. Chondrules have an average diameter of about 400 µm. More minor phases include low-Ca pyroxene, Ca-pyroxene, sodic plagioclase, sulfides, and Ti-bearing chromite; no metal has been detected.

Geochemistry: type 3 lithology: olivine: $Fa_{23.5\pm15.5}$ ($Fa_{1.9-48.1}$, n =16); low-Ca pyroxene: $Fs_{11.8\pm6.0}Wo_{1.3\pm1.2}$ ($Fs_{2.6-19.6}Wo_{0.4-3.5}$, n = 11); type 6 lithology: olivine: $Fa_{36.6\pm0.2}$ (FeO/MnO=71±5, n=11); Ca-pyroxene: $Fs_{10.7\pm0.5}Wo_{43.6\pm0.3}$, n=11

Northwest Africa 13163 (NWA 13163)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Diogenite)

History: The meteorite was purchased from a local meteorite dealer in Nouadhibou, Mauritania.

Physical characteristics: Greyish to slightly greenish rock with some patches of fusion crust. **Petrography**: The meteorite displays a light-greenish interior and is a monomict breccia predominantly composed of blocky up to 3 mm sized orthoproxene grains and more fine-grained cataclastic regions. Minor phases include plagioclase, silica, chromite, FeS, and metallic iron; no olivine has been found in the section studied.

Geochemistry: low-Ca pyroxene: $Fs_{24,9\pm0.2}Wo_{2.9\pm0.1}$ ($Fs_{24.6-25.2}Wo_{2.8-3.2}$, n=11, FeO/MnO=26-30); calcic plagioclase: $An_{92,9\pm0.8}$ ($An_{91,6-93.8}$, n=11)

Northwest Africa 13164 (NWA 13164)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a meteorite dealer in Erfoud, Morocco.

Physical characteristics: Grayish rock partly covered with fusion crust.

Petrography: The meteorite is a coarse-grained monomict breccia composed of of exsolved pyroxene and plagioclase grains up to 4 mm in size. Minor phases include silica, ilmenite, and FeS. No metallic iron has been detected.

Running Head

Geochemistry: low-Ca pyroxene: Fs_{57.6±1.1}Wo_{2.5±0.6} (Fs_{55.6-59.5}Wo_{1.9-3.9}, FeO/MnO=24-29, n=12); Ca-pyroxene: Fs_{24.9±0.5}Wo_{44.2±0.8} (Fs_{24.2-26.5}Wo_{42.0-45.2}, FeO/MnO=25-29, n=16); calcic plagioclase: An_{88.9±1.6} (An_{86.5-90.5}, n=13)

Northwest Africa 13166 (NWA 13166)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Eucrite, melt breccia)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Dark-grayish rock with some fusion crust.

Petrography: The meteorite is a eucrite-melt breccia composed of up to 1.5 cm sized basaltic clasts set into black melt rock matrix. Basaltic clasts consist of exsolved pyroxenes and often lath shaped calcic plagioclase up to 1.5 mm in size. The fine-grained melt rock is mostly recrystallized and mineral grains in contact with the melt are partly resorbed; some regions show flow textures. Minor phases include silica, chromite, ilmenite, FeS, and barite. No metallic iron has been detected.

Geochemistry: low-Ca pyroxene: $Fs_{59,2\pm0.5}Wo_{2,2\pm0.1}$ ($Fs_{58,4-59,8}Wo_{2,0-2,4}$, FeO/MnO=25-28, n=14); Ca-pyroxene: $Fs_{25,7\pm0.9}Wo_{43,8\pm0.8}$ ($Fs_{24,4-27,7}Wo_{41,9-43,8}$, FeO/MnO=25-34, n=13); calcic plagioclase: An_{90,3±1.1} (An_{88,9-92,1}, n=13)

Northwest Africa 13167 (NWA 13167)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (C2, ungrouped)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Five black individuals partly covered with fusion crust. **Petrography**: The meteorite a brecciated matrix-dominated carbonaceous chondrite with chondrules (mean diameter about 300 µm), mineral fragments, and few CAIs. Most of the components are surrounded by fine-grained dust rims. The matrix is highly porous and composed of Ca-carbonates, phyllosilicates with fibrous and flaky appearance, and Fe-sulfides. Some FeNi metal grains are present mostly as inclusions in forsteritic olivine. **Geochemistry**: Mean values of defocused matrix analyses (beam diameter 10 µm; all wt%; N=25): SiO₂: 24.1, TiO₂: 0.03, Na₂O: 0.46, Cr₂O₃: 0.29, MgO: 13.9, MnO: 0.16, FeO: 31.2, Al₂O₃: 2.50, NiO: 2.10, P₂O₅: 0.34, S: 4.6, Total: 79.69; Oxygen isotopes (K. Ziegler, *UNM*): 6 acid-washed fragments analyzed by laser fluorination gave: $\delta^{18}O$ =-6.769, -2.952, -1.991, 1.322, -2.345, -3.978; $\delta^{17}O$ =-10.566, -7.481, -6.795, -4.079, -6.747, -8.036; $\Delta^{17}O$ = -6.992, -5.922, -5.744, -4.777, -5.509, -5.936 (all per mil)

Classification: C2 due to petrography and presence of phyllosilicates and carbonates. Ungrouped according to oxygen isotopic composition which is incompatible with CM.

Northwest Africa 13170 (NWA 13170)

(Northwest Africa)

Purchased: May 2015

Classification: Ungrouped achondrite

History: Bought in Erfoud, Morocco, in May 2015.

Physical characteristics: A dark-brown stone. Cut surface reveals a homogeneous dark interior.

Petrography: (J. Gattacceca, *CEREGE*) Equilibrated equigranular texture with triple junctions. Main mineral are olivine and pyroxene (grain size 200 µm), plagioclase (grain size 100 µm, 17 vol%), FeS (8 vol%, well preserved, grain size 100 µm). Accessory metal (mostly replaced by weathering products), chromite. No chondrule visible in the 1 cm2 section. **Geochemistry**: Olivine Fa_{30.8±0.3}, CaO 0.08±0.01 wt%, FeO/MnO=81.4±8.9 (N=7). Capyroxene Fs_{10.4±0.8}Wo_{44.3±1.4} (N=5). No low-Ca pyroxene was found in the section. Plagioclase An_{30.4±0.8}Ab_{66.7±0.8}Or_{2.9±0.1} (N=4). Chromite Cr/(Cr+Al) = 0.76 (N=1). Oxygen isotopic composition (J. Gattacceca, C. Sonzogni, *CEREGE*) from analysis of one acid-washed 1.5 mg aliquot of a powdered 185 mg bulk sample is δ^{17} O=-2.28‰, δ^{18} O=0.97‰, Δ^{17} O=-2.79‰ (linearized, slope 0.5247, analytical uncertainties 0.08‰, 0.12‰, 0.03‰ respectively). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 3.68.

Classification: Achondrite-ungrouped. The oxygen isotopic composition is far removed from other achondrite groups. The mineralogy and mineral composition are similar to NWA 10503, but oxygen isotopic composition is different.

Specimens: 15 g and a polished section at *CEREGE*. Main mass with Luc *Labenne*.

Northwest Africa 13171 (NWA 13171)

Morocco

Purchased: 2017 Jun 18

Classification: Ordinary chondrite (L3)

History: The meteorite was purchased by Bing'an Miao at the China Mineral and Gem Show (CMGS), Chenzhou, China, in 2018.

Physical characteristics: The sample, without fusion crust, has a dark-gray interior with a light-brown surface. The chondrules are clearly visible on the surface, with sizes generally from 1 mm to 3 mm, a few up to 5 mm. It is relative fresh, without visible iron rust on the surface.

Petrography: Under microscopy, the chondrules are well-defined, and they generally range from 0.1 to 3 mm, with an average of 0.74 mm, a few up to 5 mm. The chondrule types include POP, PO, PP, RP, and BO et al. Mesostasis glass is present in porphyritic chondrules. The matrix between the chondrules (12.5 vol%) is opaque and black, without any obvious recrystallization. The Fe-Ni metal, about 3.5 vol%, is dispersed in matrix as fine particles, partially surrounding chondrules. The mineral assemblage is olivine, orthopyroxene, clinopyroxene, kamacite, taenite and troilite.

Geochemistry: Mineral chemistry and geochemistry: Olivine is $Fa_{21,9\pm6,2}$, n=13, low-Ca pyroxene is $Fs_{19,3\pm7,8}Wo_{3\pm0.5}$, n=15. Kamacite is Fe 95.4±0.8, Ni4.9±0.9, Co 0.72±0.1, N=11; Taenite is Fe 52.2±4.3, Ni 47.2±3.8, Co 0.2±0.1, N=10; Troilite is Fe 63±0.7, Ni 0.06±0.01, Co 0.11±0.01, N=22.

Classification: ordinary chondrite (L3)

Specimens: About 100 g sample and 1 polished thin section are deposited in the Institution of Meteorites and Planetary Materials Research of *GUT*. The main mass is held by Bing-an Miao.

Northwest Africa 13172 (NWA 13172)

Bechar, Algeria

Find: 2018

Classification: Ordinary chondrite (L5)

History: The 86.81 g fragment was found near Bechar, Algeria, by a truck driver in 2018. Dave Lehman and partner acquired the sample from this individual.

Physical characteristics: Sample is irregular-ovoid in shape and has a dark brown, windablated exterior. The interior of the stone shows chondrules and fragments set within a recrystallized matrix.

Petrography: Classification and Description (A. Love, *App*): Sample shows recrystallized chondritic texture, composed of closely packed chondrules with an avg. apparent diameter 784 μ m (n=24). Secondary plagioclase has an average size of 43 μ m (n=7). Additional minerals are: troilite, apatite, chromite, weathered FeNi.

Geochemistry: (A. Love, *App*): Olivine (Fa_{25.6±0.2}, Fe/Mn=43.3±1.1, n=3), low-Ca pyroxene (Fs_{21.4±0.2}Wo_{1.4±0.7}, n=3).

Classification: Ordinary chondrite (L5, C-S3, W3). L5 based on mineral compositions and size of secondary plagioclase.

Specimens: Dave Lehman and a partner hold the main mass. Two slices totaling 17.5 g and a polished mount are on deposit at *App*.

Northwest Africa 13173 (NWA 13173)

(Northwest Africa) Γ^{-1}_{12} 2017

Find: 2017

Classification: Ordinary chondrite (H5)

History: The 47.44 g fragment was found by a border security agent on near the border between Morocco and Western Sahara in 2017. Dave Lehman and a partner acquired the stone from the finder.

Physical characteristics: Sample is irregular-ovoid in shape and has a dark brown, windablated exterior. The interior of the stone shows chondrules and fragments set within a recrystallized matrix.

Petrography: Classification and Description (A. Love, *App*): Sample shows recrystallized chondritic texture composed of closely packed chondrules with an avg. apparent diameter 377 μ m (n=9). Secondary plagioclase has an average size of 39 μ m (n=9). Additional minerals are: albitic plagioclase, troilite, apatite, taenite and kamacite, chromite.

Geochemistry: (A. Love, *App*): Olivine (Fa_{19.1±0.4}, Fe/Mn=35.5±0.8, n=3), low-Ca pyroxene (Fs_{16.7±0.4}Wo_{2.5±1.9}, n=3)

Classification: Ordinary chondrite (H5, C-S3, W2) Based on mineral compositions, chondrule diameters and size of secondary plagioclase, this sample is H5.

Specimens: Dave Lehman and his partner hold the main mass. A polished thin section and endcut weighing 4.1g are on deposit at *App*.

Northwest Africa 13174 (NWA 13174)

Mauritania Find: 2016

Classification: Ordinary chondrite (LL5)

History: The 82.47 g fragment was found by a Bedouin guide in Mauritania in 2016. Dave Lehman and his partner acquired the sample in 2019.

Physical characteristics: Sample is ovoid in shape and has a dark brown, wind-ablated fusion crust covering approximately 60% of stone. The lower portion of the stone is covered in a thin layer of orange-colored caliche. The interior of the stone shows abundant chondrules and fragments set within a finer-grained yellowish matrix.

Petrography: Classification and Description (A. Love, *App*): Sample is a breccia composed of chondrules, fragments and fine-grained clasts set within a recrystallized matrix of olivine, pyroxene and secondary plagioclase crystals with an avg. length of 26 µm (n=9). Chondrules

have an avg. apparent diameter 1019 μ m (n=8). Additional minerals are chromite, apatite, troilite, FeNi, secondary calcite.

Geochemistry: (A. Love, *App*):Olivine (Fa_{29.1±0.0}, Fe/Mn=53.4±0.1, n=3), low-Ca pyroxene (Fs_{23.9±0.2}Wo_{1.5±0.1}, n=3).

Classification: Ordinary chondrite (LL5, CS-3, W1) Textures, mineral compositions and size of secondary plagioclase grains indicate this sample is an LL5.

Specimens: Dave Lehman and his partner hold the main mass. Two slices totaling 16.6 g and a polished thin section are on deposit at *App*.

Northwest Africa 13175 (NWA 13175)

Algeria

Find: 2018

Classification: Ordinary chondrite (H5)

History: The 280.66g sample was found by a meteorite prospector near Tindouf, Algeria, in October, 2018. Dave Lehman and his partner acquired the sample from the finder.

Physical characteristics: Sample is irregular in shape and has a dark brown, wind-ablated exterior. The interior of the stone shows chondrules and fragments set within a recrystallized matrix.

Petrography: Classification and Description (A. Love, *App*): Sample shows recrystallized chondritic texture composed of closely packed chondrules with an avg. apparent diameter 407 μ m (n=15). Secondary albitic plagioclase has an average size of 37 μ m (n=9). Additional minerals are: troilite, apatite, chromite, weathered FeNi.

Geochemistry: (A. Love, *App*): Olivine (Fa_{19.1±0.1}, Fe/Mn=34.6±0.5, n=3), low-Ca pyroxene (Fs_{17.0±0.1}Wo_{1.2±0.1}, n=3).

Classification: Ordinary chondrite (H5, C-S3, W3) Based on mineral compositions,

chondrule diameter and size of secondary plagioclase, this sample is an H5.

Specimens: Dave Lehman and his partner hold the main mass. Two slices totaling 20 g and a polished mount are on deposit at *App*.

Northwest Africa 13176 (NWA 13176)

Algeria

Find: 2019

Classification: HED achondrite (Diogenite)

History: Three samples weighing (91.79, 56.39, 74.3 7g) were found in the desert near Tindouf, Algeria, in March 2019. Dave Lehman and a partner acquired the samples from the collector.

Physical characteristics: Samples are irregularly shaped and are partially covered with a black, wind-ablated fusion crust. One sample shows flight orientation with weak flow lines and frothy fusion crust covering the crusted portions of the sample. The uncrusted portions with fractured surfaces are light greenish colored.

Petrography: Description and classification (A. Love, *App*) Sample is a cataclastic breccia composed of dominant lath-shaped orthopyroxene up to ~9 mm and augite. Additional minerals are (~3 vol%) twinned plagioclase (with an average length of 529 μ m), chromite, troilite, a silica polymorph and rare K-feldspar (Or₉₈An_{1.8}).

Geochemistry: (A. Love, *App*): Low Ca pyroxene ($Fs_{24.1\pm0.2}Wo_{2.0\pm0.5}$, Fe/Mn=27.6±0.3, Mg#75.4±0.2, n=10); high Ca pyroxene ($Fs_{7.8\pm0.3}Wo_{45.8\pm0.4}$, Fe/Mn=21.7±1.8, n=5); plagioclase ($An_{83.8\pm2.1}Or_{0.2\pm0.1}$, n=3).

4

5

6

11

12

13

14

15

16

17 18

19

20

21

22

23

24 25

Running Head

Classification: HED achondrite (Diogenite). Textures, mineralogy and Fe/Mn ratios of pyroxenes suggest this sample is a diogenite breccia. Weathering grade is low. Specimens: Dave Lehman and a partner hold the main masses. An endcut and 2 slices weighing 20.97 g and a polished thin section are on deposit at App. Northwest Africa 13177 (NWA 13177) Morocco Find: 2019 Classification: Ordinary chondrite (L3-6) **History**: Fabien *Kuntz* purchased 28 stones (ranging 4.8-338 g) in Guelmin, Morocco, in 2019. **Physical characteristics**: Sample has an irregular ovoid shape and is dark brown in color. Chondrules and brecciated texture are visible on the surface. Petrography: Description and classification: (A. Love, App): Sample is a breccia composed of light-colored, mm-sized chondritic clasts set within dark-colored, host of unequilibrated and equilibrated chondrules and fragments. Type 4, type 6 and carbonaceous (CM-like) lithologies are present. Chondrules within host are poorly equilibrated and have an average apparent diameter of $523 \mu m$ (n=56). Additional minerals are albitic plagioclase, chromite, phosphate, FeNi metal and troilite. Geochemistry: (A.Love, App) Host: Olivine (Fa_{22.67±3.4}, (Fa_{15.64-27.19}), Fe/Mn=46.8±3.5 n=11); low Ca pyroxene ($Fs_{14.8\pm7.0}Wo_{1.4\pm2.0}$ ($Fs_{6.9-22.9}Wo_{0.1-4.9}$), n=5); Equilibrated clasts: Olivine (Fa_{24,7±0.7}, Fe/Mn=47.8±4.4, n=7); low Ca pyroxene (Type 4 Fs_{18,1±7.2}Wo_{2,7±4.4}, n=5; Type 6 Fs_{21,4±0.6}Wo_{1,7±0.2}, n=5) Xenolithic clast: Olivine (Fa_{2.8±2.2}, Fe/Mn=16.2±16.4, n=3); low Ca-pyroxene (Fs_{2.7}Wo_{2.0}, n=1). **Classification**: Ordinary chondrite (L3-6 xenolithic breccia, C-S3, W1). Based on the textures, mineral compositions, magnetic susceptibility and chondrule diameters, this is an L3-6 chondrite breccia. The xenolith has textures and compositions similar to CM2 carbonaceous chondrites. Specimens: The main masses are held by Fabien Kuntz. An endcut and slice weighing 28.75 g and a polished thin section are on deposit at *App*. Northwest Africa 13178 (NWA 13178) Mali Purchased: 2019 Aug Classification: Carbonaceous chondrite (CO3) History: Purchased by Mbark Arjdal in August 2019 from a dealer in Nouakchott, Mauritania. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Fairly closely packed, small wellformed chondrules (apparent diameter 220 ± 130 µm, N = 23), very fine-grained CAI and mineral fragments are set in a fine-grained matrix (~15 vol.%, orange-brown in thin section). Geochemistry: Olivine (Fa_{30.5±16.1}, range Fa_{1.2-56.8}, N = 14; Cr₂O₃ in ferroan examples 0.03-0.61 wt.%, mean 0.13±0.16 wt.%, N = 11), low-Ca pyroxene (Fs_{2.0±1.8}Wo_{2.5±1.5}, range Fs_{0.8-} $_{5.0}$ Wo_{0.9-4.1}, N = 5), pigeonite (Fs_{10.7}Wo_{4.5}), diopside (Fs_{1.1}Wo_{43.8}). Classification: Carbonaceous chondrite (CO3). **Specimens**: 27.6 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13179 (NWA 13179)

Algeria

Purchased: 2019 Aug

Classification: Martian meteorite

History: Purchased by Ben Hoefnagels in July 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Medium grained (mean grainsize ~0.7 mm) assemblage of predominantly pyroxenes with subordinate subhedral, compositionally-zoned olivine (~15 vol.%) and minor (~5 vol.%) interstitial maskelynite (as bundles of thin laths). Accessory phases include chromite, Ti-chromite, pyrrhotite, pentlandite, ilmenite, silica polymorph and merrillite. Pyroxene grains have prominent orthopyroxene cores mantled by pigeonite and subcalcic augite.

Geochemistry: Olivine (cores Fa_{17.7-21.6}, rims Fa_{25.5-30.3}, FeO/MnO = 44-50, N = 4), orthopyroxene cores (Fs_{14.7-14.9}Wo_{1.2-1.4}, FeO/MnO = 28-30, N = 3), pigeonite rims (Fs_{20.5-44.2}Wo_{4.0-12.6}, FeO/MnO = 29-36, N = 4), subcalcic augite (Fs_{34.9}Wo_{28.4}, FeO/MnO = 35), maskelynite (An_{65.9-69.6}Or_{0.3-0.2}, N = 2). O isotopes measured by K. Ziegler at *UNM* on two acid-washed aliquots of sample: δ^{17} O 2.799, 2.801; δ^{18} O 4.719, 4.690; Δ^{17} O 0.308, 0.325 per mil.

Classification: Martian (ultramafic, olivine microwebsterite). This specimen is ultramafic based on the paucity of plagioclase (maskelynite), a micropyroxenite based on its mean grainsize, and an olivine websterite based on the proportions of olivine, orthopyroxene and clinopyroxene.

Specimens: 20.4 g including one polished thin section at *UWB*; remainder with Mr. B. Hoefnagels.

Northwest Africa 13180 (NWA 13180)

Algeria

Purchased: 2019 Jun

Classification: Ordinary chondrite (L4)

History: Purchased by Mbark Arjdal in June 2019 from an Algerian dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed chondrules are set in a recrystallized matrix containing altered kamacite, taenite, chromite and troilite.

Geochemistry: Olivine (Fa_{24.7 \pm 0.1}, range Fa_{24.6-24.9}, N = 7), low-Ca pyroxene

 $(Fs_{20.8\pm0.2}Wo_{1.6\pm0.2}, range Fs_{20.6-21.0}Wo_{1.4-1.9}, N = 5), augite (Fs_{8.2\pm1.2}Wo_{44.7\pm1.0}, range Fs_{7.1-1})$

 $_{9.5}$ Wo_{45.8-44.1}, N = 3).

Classification: Ordinary chondrite (L4).

Specimens: 47.8 g including two polished thin sections at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13181 (NWA 13181)

(Northwest Africa)

Purchased: 2019 Jun

Classification: HED achondrite (Eucrite, brecciated)

History: Purchased by Laurent Combaud in June 2019 from a dealer in Tagounite, Morocco on behalf of a jewelry store in Nice, France.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of equigranular clasts in a finer grained matrix. The clasts are composed predominantly of exsolved pigeonite and calcic plagioclase together with accessory silica polymorph, Ti chromite, ilmenite,

troilite, zircon and merrillite. Although the majority of the plagioclase is very calcic (bytownite), more sodic and potassic plagioclase is present in one region of the studied stone. **Geochemistry**: Low-Ca pyroxene host ($Fs_{52.9-57.1}Wo_{2.4-3.8}$, FeO/MnO = 34-38, N = 6), high-Ca pyroxene exsolution lamellae ($Fs_{26.9-29.3}Wo_{38.6-42.1}$, FeO/MnO = 32-37, N = 4), subcalcic augite grain ($Fs_{34.3}Wo_{32.6}$, FeO/MnO = 34), augite in matrix ($Fs_{20.0}Wo_{45.8}$, FeO/MnO = 32), pigeonite in matrix ($Fs_{54.8}Wo_{7.7}$, FeO/MnO = 33), calcic plagioclase ($An_{78.4-86.0}Or_{1.5-0.7}$, N = 3), more sodic and potassic plagioclase ($An_{73.6}Or_{9.4}$).

Classification: Eucrite (breccia).

Specimens: 6.2 g including a polished mount at *UWB*; remainder with Akuadra Bijoux et Météorites, Nice, France.

Northwest Africa 13182 (NWA 13182)

Mali

Purchased: 2019 Aug

Classification: Ordinary chondrite (LL3)

History: Purchased by Mbark Arjdal in August 2019 from a dealer in Timbuktu, Mali. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed, closely-packed chondrules (apparent diameter $930 \pm 510 \mu m$, N = 23) are set in a medium-grained matrix containing stained kamacite, taenite, low-Ti chromite, troilite and pentlandite.

Geochemistry: Olivine (Fa_{23.6±13.7}, range Fa_{0.7-45.6}, N = 9; Cr₂O₃ in ferroan examples 0.01-0.52 wt.%, mean0.11 wt.%, sd 0.17 wt.%, N = 13), low-Ca pyroxene (Fs_{15.8±7.1}Wo_{0.8±1.1}, range Fs_{5.4-23.9}Wo_{0.1-3.0}, N = 6), pigeonite (Fs_{27.0}Wo_{21.9}), subcalcic augite (Fs_{1.7}Wo_{32.4}), diopside (Fs_{0.9}Wo_{44.8}). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.11.

Classification: Ordinary chondrite (LL3).

Specimens: 16.7 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13183 (NWA 13183)

(Northwest Africa)

Purchased: 2005

Classification: Ordinary chondrite (H5)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Sparse chondrules are set in a recrystallized matrix containing stained metal.

Geochemistry: Olivine (Fa_{18.1±0.2}, range Fa_{18.0-18.4}, N = 6), low-Ca pyroxene

 $(Fs_{16,4\pm0.4}Wo_{1,1\pm0.4}, range Fs_{16,0-16,9}Wo_{0,9-1,8}, N = 5).$

Classification: Ordinary chondrite (H5).

Specimens: The entire specimen including one polished thin section is at *PSF*.

Northwest Africa 13184 (NWA 13184)

(Northwest Africa)

Purchased: 2005

Classification: Ordinary chondrite (L4/5)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Some well-formed chondrules are set in a recrystallized matrix containing stained metal. **Geochemistry**: Olivine (Fa_{24,4±0.5}, range Fa_{23,7-24.9}, N = 5), low-Ca pyroxene $(Fs_{19,8\pm2,2}Wo_{1,7\pm0,3}, range Fs_{16,0-21,0}Wo_{1,3-2,1}, N = 5).$ Classification: Ordinary chondrite (L4/5). Specimens: The entire specimen including one polished thin section is at PSF. Northwest Africa 13185 (NWA 13185) (Northwest Africa) Purchased: 2019 Mar Classification: Lunar meteorite (feldspathic breccia) **History**: Purchased in Agadir, Morocco by Aziz Habibi in March 2019. Physical characteristics: The dark brown stones exhibit diffuse small clasts in a very fine grained matrix. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Breccia composed of small mineral clasts plus sparse lithic clasts (including microgabbro and some quench-textured glassy beads) set in a fine grained, partly glassy and microvesicular matrix. Minerals include anorthite, olivine, orthopyroxene, pigeonite, ferropigeonite and augite together with accessory Ti chromite, ilmenite, zircon, kamacite and secondary barite. Geochemistry: Olivine (Fa_{28,2-45,8}, FeO/MnO = 97-125, N = 5), orthopyroxene (Fs_{41,0-} $_{43.0}$ Wo_{2.4-2.9}, FeO/MnO = 57-66, N = 2), pigeonite (Fs_{46.5}Wo_{5.4}; Fs_{27.6}Wo_{8.5}; Fs_{28.0-28.7}Wo_{11.0-} $_{10.4}$; Fs_{44.2}Wo_{16.9}; FeO/MnO = 53-61, N = 5), ferropigeonite (Fs_{60.7}Wo_{18.7}, FeO/MnO = 74), augite (Fs_{22,3}Wo_{40,1}, FeO/MnO = 50; Fs_{46,9}Wo_{38,9}, FeO/MnO = 68; N = 2), anorthite (An_{95,8-} $_{97.1}Or_{0.3-0.1}, N = 3).$ Classification: Lunar (feldspathic breccia). Specimens: 20.3 g including one polished piece at UWB; 100 g with Mr. M. Stream; remainder with A. Habibi. Northwest Africa 13186 (NWA 13186) (Northwest Africa) Purchased: 2005 Classification: Ordinary chondrite (L4) History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a recrystallized matrix containing altered metal. **Geochemistry**: Olivine (Fa_{25.0±0.3}, range Fa_{24.7-25.3}, N = 5), low-Ca pyroxene $(Fs_{20.6\pm0.2}Wo_{1.7\pm0.1}, range Fs_{20.5-20.9}Wo_{1.6-1.8}, N = 5).$ **Classification**: Ordinary chondrite (L4). Specimens: The entire specimen including one polished thin section is at PSF. Northwest Africa 13187 (NWA 13187) (Northwest Africa) Purchased: 2019 Sep Classification: Martian meteorite (Shergottite) History: Purchased by Mark Lyon in September 2019 from a Moroccan dealer. Some of this material was subsequently sold to Mike Fleeman and Roberto Vargas.

2	
3	Poterson by (A Invine LIWC and D Components WUCL) Disbasis touture Composed
4	Petrography. (A. Irving, UWS and P. Carpenter, WUSL) Diabasic texture. Composed
5	predominantly of zoned clinopyroxene and maskelynite with accessory ulvöspinel (some Cr-
5	bearing), ilmenite, silica polymorph, merrillite, pyrrhotite and minor secondary calcite.
0	Geochemistry: Subcalcic augite cores (Fs _{20,2,22,2} Wo _{26,2,22,0} FeO/MnO = 28-29 N = 4)
/	ferroan nigeonite rime (Eg.,, Wo,, $E_{0}O/MnO = 36.30$, $N = 4$) maskelynite (An.,
8	$(1352.4-59.2 \times 014.2-19.7, 100/1100 - 30-37, 10 - 4), \text{ maskerymic (Anso.5-10.100)}$
9	$_{57,2}\text{Or}_{1.9-0.7}, \text{N} = 3$).
10	Classification: Shergottite (diabasic).
11	Specimens : 20.1 g including one polished thin section at <i>UWB</i> ; remainder held by Mr. M.
12	Lyon Mr M Fleeman (550 g) and Mr R Vargas (50 g)
13	$= \int g(x) f(x) + \int g(x) f(x) $
14	
15	
16	Northwest Africa 13188 (NWA 13188)
17	(Northwest Africa)
18	Purchased: 2018 Jun
19	Classification: Unground achondrite
20	Classification. Ungrouped actionance
21	Physical characteristics: Partially crusted stone
22	Petrography : (J. Gattacceca, <i>CEREGE</i>) Igneous rock with overall subopthitic texture. Main
23	minerals are pyroxene (300 µm) and plagioclase (to 400 µm). Abundant vesicles 250 µm in
24	diameter FeTi oxides (~0.5 vol%) as blebs adjacent to vesicles or acicular and dendritic
25	within the fine grained intergrowths of plagioclase and pyroyane that are found around
26	within the fine-grained intergrowins of plagiociase and pyroxene that are round around
20	plagioclase crystals. No metal was found. Modal abundances from point counting (vol%):
27	plagioclase 49%, pyroxene 26%, vesicles 8%, fine-grained intergrowth of plagioclase and
20	pyroxene 18%.
29	Geochemistry : Low-Ca pyroxene $F_{s_{25},4+6}$ (Wos 2+0.7) FeO/MnO=42 2±4 3 (n=5) Ca pyroxene
3U 21	Estate Works as $EeO/MnO=60.3+11.7$ (n=3) Plagoolase An-a $(n-3)$ beau $(n-3)$ (n=5)
21	The bully complete a baseline composition with 52 20/wt $SiO = 8.00/wt MaO = 10.1.0/wt$
32	The bulk sample has a basallic composition with 52.3% wt SiO ₂ , 8.0% wt MgO, 10.1% wt
33	FeO; 10.5%wt CaO; 14.1 %wt Al ₂ O ₃ (ICP-OES, V. Debaille, ULB), and is enriched in
34	incompatible trace elements: (La/Sm)N=2, (La/Lu)N=3.5 (ICP-MS, V. Debaille, ULB).
35	Oxygen isotopic composition (J. Gattacceca, C. Sonzogni, <i>CEREGE</i>) from two analyses of
36	acid-washed 1.5 mg aliquots of a nowdered 128 mg bulk sample is δ^{17} O=3.885.4.410
37	$S^{18}O = 7.552, 9.516, A^{17}O = 0.042, 0.0180/ (globa 0.52) analytical uncertainties 0.080/$
38	$0^{-3}O = 7.552, 8.510, \Delta^{-3}O = -0.042, -0.018\%$ (slope 0.52, analytical uncertainties 0.08\%,
39	0.12‰, 0.03‰ respectively).
40	Classification: Achondrite-ung. The oxygen isotopic composition and mineral chemistry
41	(basaltic composition enriched in incompatible elements) set this rock apart from other
42	achondrites
43	Specimens: Type specimen at CEREGE Main mass with A Jambon
44	specificitis. Type specificit at CEREOE. Main mass with A. Jamoon.
45	
46	
47	Northwest Africa 13189 (NWA 13189)
48	Morocco
49	Purchased: 2017 Mar
50	Classification Massaiderite
51	Classification. Mesosiderite
52	Physical characteristics: Brown irregular fragments.
53	Petrography: (J. Gattacceca, CEREGE) This rock is composed of approximately 70 vol%
54	silicates and 30 vol% metal (and associated terrestrial weathering products). The silicate
55	fraction is composed mostly of pyrovene and plagioclase, with minor silica polymorph. Metal
56	is found mostly of grains with smooth shopes and trained size 1 mm. Most metal is real and
57	is round mostly as grains with smooth snapes and typical size 1 mm. Most metal is replaced
59	by terrestrial weathering products. Metal and troilite are also found as μm size grains within
50	silicates. Abundant veins filled with weathering products.
59	
00	

Geochemistry: Pyroxene $Fs_{36.8\pm1.7}Wo_{7.1\pm3.0}$, FeO/MnO=27.2±1.8 (n=3). Plagioclase An_{91.2±1.5}Ab_{8.7±1.5}Or_{0.1±0.1} (n=4). Chromite Cr# 0.78. **Classification**: Mesosiderite **Specimens**: Type specimen at *CEREGE*, main mass with Lucian Cojocaru

Northwest Africa 13190 (NWA 13190)

Algeria

Find: 2019

Classification: Martian meteorite (Shergottite)

History: Purchased in 2019 by Miguel Angel Contreras Gomez from a meteorite dealer in Algeria.

Physical characteristics: This sample has a weathered fusion crust exterior, however the interior remains fresh.

Petrography: (D. Sheikh, *FSU*) Sample is a diabase having a predominantly subophitic texture composed of complexly zoned, tabular and prismatic (sometimes twinned) chadacrysts of subcalcic augite and pigeonite (Av. $330\pm50 \ \mu\text{m}$, up to 1mm, 60 vol%) contained within larger oikocrysts of maskelynite (Av. $800\pm100 \ \mu\text{m}$, up to 2 mm, 40 vol%). Accessory phases include titanomagnetite (some Cr rich), ilmenite, silica, Si-Al-K-Na rich glass, merrillite, and pyrrhotite.

Geochemistry: Subcalcic augite (Fs_{32.3±6.6} Wo_{30.7±2.3}, range Fs_{21.7-47.7} Wo_{25.4-35.2},

FeO/MnO=34 \pm 6, n=37) pigeonite (Fs_{52.7 \pm 8.5} Wo_{14.4 \pm 2.3}, range Fs_{30.6-72.3} Wo_{10.0-19.3},

FeO/MnO= 36 ± 4 , n=54) maskelynite (An_{48,9±5.1} Or_{1.9±1.0}, range An_{41,4-55.7} Or_{0.3-3.8}, n=43). **Classification**: Martian (shergottite, diabasic) Silicate chemistry, the presence of maskelynite, FeO/MnO ratios of pyroxenes, and magnetic susceptibility provide support for classification as shergottite. Average grain sizes of pyroxenes and maskelynite larger than that of basaltic shergottites, but smaller than gabbroic shergottites, hence diabasic.

Specimens: 10.02 grams at UCLA; main mass with Miguel Angel Contreras Gomez.

Northwest Africa 13191 (NWA 13191)

Southern Provinces, Morocco

Find: 2015

Classification: Lunar meteorite (feldspathic breccia)

History: The meteorite was purchased by Guilin Geological Museum from Bing-an Miao, the owner of Huizhou Caiyuan Meteorite Technology Co., Ltd, Guandong, China.
Physical characteristics: It is a single specimen without fusion crust and has a typical breccia structure that consists of dark gray matrix and white clasts with size of a few mm, up to 5 mm. There are some fractures inside the sample.

Petrography: Petrology (H. Chen, Z. Xia, B. Miao, *GUT*): The meteorite is a feldspathic breccia composed of lithic clasts, mineral clasts, and vitric clast, set in a fine-grained, vesicular and partly vitreous matrix. The lithic clasts consist of anorthosite, gabbro, peridotitic anorthosite, gabbro anorthosite, and troctolite. Mineral clasts are mainly anorthite, orthopyroxene, clinopyroxene, pyroxene with exsolution lamella, olivine, and ilmenite.

Geochemistry (Z.Xia, *GUT*): Plagioclase (maskelynite): An_{91.2}-99.9Or_{0-2.73}(n=29); Olivine: Fo_{51.8}-68.9, Fe/Mn=85.7-97.6 (n=8); Pyroxene: Fs_{14.6}-66.0En_{10.8}-78.8Wo_{3.0}-43.0, Fe/Mn=42.2-78.7 (n=26); silica: SiO₂: 97.3-97.9, TiO₂:0.30-0.38, Al₂O₃:1.13-1.41, CaO: 0.43-0.52; Na₂O:0.32-0.39 (n=3).

Classification: Lunar (felspathic breccia)

Running Head

Specimens: A polished thin section and about 20 g sample are stored in the Institution of Meteorites and Planetary Materials Research of *GUT*, the main mass is exhibited in the Guilin Geological Museum.

Northwest Africa 13192 (NWA 13192)

Kem Kem, Morocco

Find: August 1999

Classification: Ordinary chondrite (L5)

History: Iffat Jabeen is the owner of this meteorite, who bought it from Michael I. *Casper*, Meteorites, Inc. in March 2000.

Physical characteristics: A 59 g fragment. It has a smooth, thin, dark-brown fusion crust present on two faces and other four uneven faces are also slightly fused. There are no contraction cracks present on this chondrite. The sample is attracted by a magnet. **Petrography** (S. Nasir, *SQU*): Porphyritic olivine pyroxene (POP) and radial pyroxene (RP) chondrules are readily defined. Heavy oxidization is observed throughout the thin section. **Geochemistry**: (N. K. Kim, C. Park and J. I. Lee, *KOPRI*) Duplicate oxygen isotope analysis of untreated bulk materials (grains) by laser-assisted fluorination provided, respectively, $\delta^{17}O$ a 861 a 005; $\delta^{18}O$ 5 178 5 270; $\Lambda^{17}O$ 1 127 d 118 per mill

3.861, 3.905; δ^{18} O 5.178, 5.279; Δ^{17} O 1.127, 1.118 per mil. **Classification**: Classification: Ordinary chondrite (L5), W3.

Northwest Africa 13193 (NWA 13193)

(Northwest Africa)

Find: 1998

Classification: Ordinary chondrite (L5)

History: Iffat Jabeen is the owner of this meteorite who bought it from Michael I. *Casper*, Meteorites, Inc. in March 2000

Physical characteristics: A 9 g polished slice. It has a smooth, thin, dark-brown fusion crust present on the edges of the slice. The polished surfaces show several bright spots of metal that make the sample strongly magnetic.

Petrography (S. Nasir, *SQU*): Porphyritic olivine pyroxene (POP), radial pyroxene (RP) and barred olivine (BO) chondrules are readily defined. Moderate oxidization of metal is observed.

Geochemistry: (N. K. Kim, C. Park and J. I. Lee, *KOPRI*) Duplicate oxygen isotope analysis of untreated bulk materials (grains) by laser-assisted fluorination provided, respectively, δ^{17} O 3.625, 3.659; δ^{18} O 4.787, 4.778; Δ^{17} O 1.098, 1.136 per mil.

Classification: Ordinary chondrite (L5), W2.

Northwest Africa 13194 (NWA 13194)

(Northwest Africa) Find: 1999

Classification: Ordinary chondrite (L6)

History: Iffat Jabeen is the owner of this meteorite who bought it from Michael I. *Casper*, Meteorites, Inc. in March 2000

Physical characteristics: A 52.2 g piece. It has a damaged fusion crust that varies in thickness at different places on the surface. The sample is magnetic.

Petrography (S. Nasir, *SQU*): Porphyritic olivine (PO) and few barred olivine (BO) chondrules are poorly defined. Heavy oxidization is observed throughout the thin section causing an overall orange hue.

Geochemistry: (N. K. Kim, C. Park and J. I. Lee, *KOPRI*) Duplicate oxygen isotope analysis of untreated bulk materials (grains) by laser-assisted fluorination provided, respectively, δ^{17} O 3.619, 3.717; δ^{18} O 4.871, 5.089; Δ^{17} O 1.047, 1.030 per mil.

Classification: Ordinary chondrite (L6), W2.

Northwest Africa 13195 (NWA 13195)

(Northwest Africa)

Find: 1999

Classification: Ordinary chondrite (L6)

History: Iffat Jabeen is the owner of this meteorite who bought it from Michael I. *Casper*, Meteorites, Inc. in March 2000

Physical characteristics: A 45.3 g piece. It has mostly damaged/lost fusion crust. The sample is magnetic.

Petrography (S. Nasir, *SQU*): Porphyritic olivine pyroxene (POP), Porphyritic olivine (PO) and porphyritic pyroxene (PP) chondrules are poorly defined. Oxidization is prevalent throughout the thin section causing an overall orange hue.

Geochemistry: (N. K. Kim, C. Park and J. I. Lee, *KOPRI*) Duplicate oxygen isotope analysis of untreated bulk materials (grains) by laser-assisted fluorination provided, respectively, δ^{17} O 3.603, 3.621; δ^{18} O 4.819, 4.872; Δ^{17} O 1.058, 1.049 per mil.

Classification: Ordinary chondrite (L6), W2.

Northwest Africa 13196 (NWA 13196)

(Northwest Africa)

Find: 1999

Classification: Ordinary chondrite (L6)

History: Iffat Jabeen is the owner of this meteorite who bought it from Michael I. *Casper*, Meteorites, Inc. in March 2000

Physical characteristics: A 57.3 g piece. It has a altered fusion crust on one side and remaglypts on the other. Generally, the fusion crust is thin and dark to light brown in color. The sample is magnetic.

Petrography (S. Nasir, *SQU*): Porphyritic olivine pyroxene (POP) and barred olivine (BO) chondrules are poorly defined. Oxidization is prevalent throughout the thin section causing an overall orange hue.

Geochemistry: N. K. Kim, C. Park and J. I. Lee, *KOPRI*) Duplicate oxygen isotope analysis of untreated bulk materials (grains) by laser-assisted fluorination provided, respectively, $\delta^{17}O$ 3.740, 3.916; $\delta^{18}O$ 5.059, 5.338; $\Delta^{17}O$ 1.069, 1.098 per mil.

Classification: Ordinary chondrite (L6), W2.

Northwest Africa 13197 (NWA 13197)

(Northwest Africa) Purchased: 2019 Mar Classification: Ordinary chondrite (H5) **History**: Purchased from a dealer in Morocco in March 2019.

Running Head

Petrography: (N. Ma, UBT) Individual chondrules vary from 0.1 to 2 mm but most chondrules are 0.3-0.7 mm in diameter. Various groups of chondrules (75 area%) are present with PO, GOP and C types as the most abundant. The shape of chondrules remains for most of them sharp against the matrix. Matrix is recrystalized to few-micrometer sized crystals with dispersed oxidized metallic veins under reflected light and in BSE images. Metal (~5%) is only oxidized around the rims, but oxidized veins from terrestrial weathering are found penetrating into the matrix and chondrules.

Geochemistry: Mineral compositions and geochemistry: Olivine (Fa_{18.0±0.2}; Fe/Mn35±4; n=31), Orthopyroxene (Fs_{15±1}Wo_{4±1}, n=3).

Classification: Ordinary Chondrite (H5, W2, S2).

Specimens: 64.3 g including a thin section on deposit at *UBayr*, S. Tutorow holds the main mass.

Northwest Africa 13198 (NWA 13198)

(Northwest Africa)

Purchased: 2019 Mar

Classification: Ordinary chondrite (LL6)

History: Purchased from a dealer in Morocco in March 2019.

Physical characteristics: Single stone with a dark brown fusion crust. Shock veins are visible in a dark main mass, with no distinction between chondrules and matrix.

Petrography: Minerals present include olivine and pyroxene, present in equal amounts, and minor plagioclase. Olivine and pyroxene grains show planar and irregular fractures. Olivine grains show some weak mosaicism. Accessory phases include metal/opaques (modal abundance: about 2.0%). Mineral grains have a maximum size of about 0.4 mm. Porphyritic (olivine, olivine-pyroxene, pyroxene) and non-porphyritic (granular olivine-pyroxene) chondrules have been recrystallized and do not show any boundaries with the surrounding matrix. Average chondrule diameter found is 0.8 ± 0.4 mm (N=15). Thin (<0.2 mm) veins are present filled with carbonates.

Geochemistry: Mineral compositions and geochemistry: Pyroxene:

Fs_{23.6±4.5}En_{70.7±8.1}Wo_{5.7±12.6}, Fe/Mn=33.0±4.0, N=11; Olivine: Fa_{31.4±1.2}Fo_{68.6±1.2},

Fe/Mn=60.9±7.0, N=15; Plagioclase: An_{10.6±0.01}Ab_{84.1±0.5}Or_{5.3±0.5}, N=3.

Classification: Ordinary chondrite (LL6, S4, W2)

Specimens: 21.9 g at Ubayr including a thin scetion. Main mass owned by S. Tutorow.

Northwest Africa 13199 (NWA 13199)

(Northwest Africa)

Purchased: 2019 Mar

Classification: Ordinary chondrite (H4)

History: Purchased from a dealer in Morocco in March 2019.

Physical characteristics: The meteorite has are a brown to redish colour with dark fractures and a thin fusion crust (< 1 mm). In hand specimen only very few chondrules are visible by eye.

Petrography: (Alena Krupp, Ubayr) Chondrule sizes vary between 0.2 mm up to 1 mm, with the smaller ones more abundant. The following types of chondrules were observed: PO, POP,

PP, GOP, RP, BO and C, dominating types are GOP and POP, BO and C are rare. Only some have clear boundaries (e.g. BO), but most are less sharp, and some are indistinct in the matrix under polarized light. Irregular as well as planar fractures are clearly visible in olivines and pyroxenes. Metal and sulfides are present.

Geochemistry: Mineral compositions: Olivine Fa_{18.2±0.4} (N=14). Mean Cr₂O₃ = 0.0007, sigma Cr₂O₃ = 0.0011. FeO/MnO = 38±3. Low Ca pyroxenes Fs_{15.9±0.4}Wo_{1.2±0.4} (N=15). High-Ca pyroxenes Fs_{6.3±0.7}Wo_{43.9±2.2} (N=6).

Classification: Ordinary chondrite (H4), S3, W1.

Specimens: 49.8g at *UBayr* including a thin section and polished mount. S. Tutorow holds the main mass.

Northwest Africa 13200 (NWA 13200)

(Northwest Africa)

Purchased: 2019 Mar

Classification: Ordinary chondrite (L3)

History: Purchased from a dealer in Morocco in March 2019.

Physical characteristics: The fusion crust has a dark color.

Petrography: (D. Souza , *UBayr*). Chondrules have an apparent diameter of around 500 μ m (N = 30) making up ~80% in vol. of the meteorite. Chondrules are principally porphyritic pyroxene (PP), olivine (PO) and granular olivine-pyroxene (GOP). Radial pyroxene and are also present in smaller amounts. The matrix is composed mainly of olivine which presents undulatory extinction and pyroxenes. Metal and troilite have oxidized rims. Metal content in thin section is ~8% in volume.

Geochemistry: Mineral compositions and Geochemistry: Olivine (Fa_{25.1±3.2}; Cr₂O₃ in ferroan examples 0.1±0.07 wt.%; Fe/Mn = 54±9 ; N=13). Orthopyroxene (Fs_{17.8±3.6}; Fe/Mn = 28±11; N = 12).

Classification: Ordinary chondrite (L3, S2, W2).

Specimens: 27.7g at UBayr including a thin section. S. Tutorow holds the main mass.

Northwest Africa 13201 (NWA 13201)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (L4/5)

History: Purchased by Darryl Pitt in October 2019 from a dealer in Erfoud, Morocco. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Some well-formed chondrules are set in a relatively coarse-grained, recrystallized matrix containing altered kamacite, taenite, troilite, merrillite and chlorapatite.

Geochemistry: Olivine (Fa_{24.7±0.2}, range Fa_{24.4-25.0}, N = 5), low-Ca pyroxene

 $(Fs_{20.7\pm0.2}Wo_{1.6\pm0.3}, range Fs_{20.5-20.9}Wo_{1.1-2.0}, N = 5), augite (Fs_{7.8\pm0.9}Wo_{44.8\pm1.0}, range Fs_{6.8-1})$

 $_{8.4}$ Wo_{46.0-44.2}, N = 3), plagioclase (Ab_{83.2}An_{11.5}Or_{5.2}).

Classification: Ordinary chondrite (L4/5).

Specimens: 35.5 g including one polished thin section at UWB; remainder with DPitt.

Northwest Africa 13202 (NWA 13202)

(Northwest Africa)

Purchased: 2020 Jan

Classification: Ungrouped chondrite

History: A very dense, metal-rich specimen, found as two naturally-broken pieces which fit together, was purchased in January 2020 by Mark Lyon from a dealer in Zagora, Morocco. **Physical characteristics**: The broken surfaces on both pieces are coated by rusty terrestrial weathering products. Polished interior surfaces exhibit dominant fresh metal (with minimal staining) and subordinate interspersed silicate-rich regions.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) The specimen consists of two distinct interspersed components with overall proportions of ~75% metal and ~25% silicate-rich material. Metal-rich regions (up to 0.5 mm) are composed of 95% kamacite with 5% taenite, and contain fine grained metal plates ranging from 100 to 500 μ m in diameter. Silicate-rich regions (up to 0.5 mm) contain a variety of chondrules (with apparent diameters ranging from ~100 to 1500 μ m). Most chondrules are glass-bearing (PP, PO, POP and barred pyroxene types) but some are cryptocrystalline. Accessory phases in silicate-rich regions include kamacite, taenite, chromite, troilite, merrillite and chlorapatite.

Geochemistry: Olivine (Fa_{24.6±3.9}, range Fa_{15.5-28.0}, N = 16), low-Ca pyroxene (Fs_{15.8±1.4}Wo_{1.5±0.9}, range Fs_{14.6-19.6}Wo_{0.6-3.5}, N = 11), pigeonite (Fs_{14.8-15.1}Wo_{8.3-9.1}, N = 2), kamacite (Ni = 4.8-7.0 wt.%, N = 7), taenite (Ni = 16.5-21.3 wt.%, N = 3).

Classification: Chondrite (ungrouped, metal-rich). Paired with <u>NWA 12273</u> and <u>NWA 12379</u>.

Specimens: 20.0 g including one polished slice at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13203 (NWA 13203)

(Northwest Africa)

Purchased: 2020 Jan

Classification: Ordinary chondrite (L4)

History: Purchased by Darryl Pitt in January 2020 from a Moroccan dealer living in Spain. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed chondrules are set in a relatively coarse-grained, recrystallized matrix containing altered kamacite, taenite, troilite, Ti-chromite, merrillite and chlorapatite.

Geochemistry: Olivine (Fa_{24.6±0.2}, range Fa_{24.4-24.8}, N = 5), low-Ca pyroxene

 $(Fs_{20.6\pm0.2}Wo_{1.7\pm0.3}, range Fs_{20.3-20.9}Wo_{1.5-1.8}, N = 5), augite (Fs_{7.5\pm0.6}Wo_{45.2\pm1.0}, range Fs_{6.9-1})$

 $_{8.0}$ Wo_{46.3-44.5}, N = 3), plagioclase (Ab_{83.6}An_{10.3}Or_{6.1}).

Classification: Ordinary chondrite (L4).

Specimens: 26.4 g including one polished thin section at UWB; remainder with DPitt.

Northwest Africa 13204 (NWA 13204)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Martian meteorite (Shergottite)

History: Purportedly found in Morocco and purchased by Luc *Labenne* in October 2019 from a dealer in Agadir, Morocco.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Diabasic texture (mean grainsize 0.8 mm). Composed predominantly of zoned clinopyroxene and maskelynite with accessory alkali feldspar, silica polymorph, merrillite (Na-Mg-Fe bearing), pyrrhotite, ilmenite, Cr-ulvöspinel and rare baddeleyite. There are melt pockets consisting of vesicular, heterogeneous glassy material (sepia brown to pale yellow in thin section with streaky and swirly textures). **Geochemistry**: Pigeonite cores (Fa_{33.3-37.5}Wo_{9.3-12.2}, FeO/MnO = 29-34, N = 4), subcalcic augite cores (Fs_{24.8-25.4}Wo_{33.1-33.4}, FeO/MnO = 29-30, N = 2), ferroan pigeonite rims (Fs_{44.6-}

 $_{59.0}$ Wo_{12.8-16.6}, FeO/MnO = 34-37, N = 5), maskelynite (An_{50.3-52.2}Or_{1.4-2.0}, N = 3), alkali feldspar in mesostasis (Or_{57.3}Ab_{32.9}An_{9.8}). **Classification**: Shergottite (diabasic). **Specimens**: 15.4 g including one polished thin section at *UWB*; remainder with L. *Labenne*.

Northwest Africa 13205 (NWA 13205)

(Northwest Africa)

Purchased: 2019 May

Classification: Ordinary chondrite (H4/5)

History: Purchased by Darryl Pitt in May 2019 from a dealer in Agadir, Morocco. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Some well-formed, relatively small chondrules are set in a relatively coarse-grained, recrystallized matrix containing altered

kamacite, taenite, troilite, Ti-poor chromite, merrillite and chlorapatite.

Geochemistry: Olivine (Fa_{17.5±0.4}, range Fa_{17.0-17.9}, N = 5), low-Ca pyroxene

 $(Fs_{15.5\pm0.3}Wo_{1.1\pm0.1}, range Fs_{15.2-16.1}Wo_{1.0-1.2}, N = 5)$, augite $(Fs_{5.7\pm0.5}Wo_{45.3\pm1.2}, range Fs_{5.3-10})$

 $_{6.2}$ Wo_{46.0-43.9}, N = 3), plagioclase (Ab_{81.2}An_{14.7}Or_{4.1}).

Classification: Ordinary chondrite (H4/5).

Specimens: 27.4 g including one polished thin section at UWB; remainder with DPitt.

Northwest Africa 13206 (NWA 13206)

(Northwest Africa)

Purchased: 2019 Dec

Classification: HED achondrite (Howardite)

History: Purchased by Terry *Boudreaux* in December 2019 from a dealer in Zagora, Morocco.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of sparse lithic eucrite clasts (with microgabbroic, subophitic and granulitic textures), related mineral debris and abundant diogenitic orthopyroxene clasts (overall ~65 vol.%, exhibiting undulose extinction) within a finer grained matrix. Other minerals are exsolved pigeonite, calcic plagioclase, olivine, unexsolved pigeonite, silica polymorph, fayalite, chromite, ilmenite, troilite and Ni-poor metal.

Geochemistry: Diogenitic orthopyroxene (Fs_{23.6-26.5}Wo_{1.8-2.7}, FeO/MnO = 27-30, N = 3), olivine (Fa_{24.0}, FeO/MnO = 43), low-Ca pyroxene host (Fs_{58.4-62.0}Wo_{6.8-4.9}, FeO/MnO = 30-34, N = 3), clinopyroxene exsolution lamellae (Fs_{30.5-31.4}Wo_{39.5-40.6}, FeO/MnO = 32-34, N = 2), pigeonite (Fs_{31.6-34.2}Wo_{4.8-7.5}, FeO/MnO = 28-29, N =3), fayalite (Fa_{75.8}, FeO/MnO = 47), plagioclase (An_{89.8-93.7}Or_{0.4-0.2}, N = 4).

Classification: Howardite.

Specimens: 20.4 g including one polished thin section at *UWB*; remainder with Mr. T. *Boudreaux*.

Northwest Africa 13207 (NWA 13207)

(Northwest Africa) Purchased: 2019

Purchased. 2019

Classification: Ordinary chondrite (H5-6)

History: The meteorite was purchased from a Morrocan dealer at the mineral show in Hamburg, Germany.

Physical characteristics: Brownish rock without fusion crust.

Petrography: The meteorite a chondritic breccia composed of up to 2 cm sized H5-type fragments (plagioclase grain size is about 30 μ m) set into H6-type matrix (plagioclase grain size is about 60 μ m).

Northwest Africa 13208 (NWA 13208)

(Northwest Africa) Purchased: 2019

Classification: Ureilite

History: The meteorite was purchased from a Morrocan dealer at the mineral show in Munich, Germany.

Physical characteristics: Three dark brownish rocks without fusion crust.

Petrography: The meteorite shows a characteristic cumulate texture of typically 1.5 and up to 2 mm sized olivine and pigeonite grains. Olivine and pigeonite are enriched in Cr_2O_3 and display both typical reduced rims. The meteorite contains graphite.

Geochemistry: reduced rims in olivine: $Fa_{1.7-2.0}$; olivine contains 0.52 ± 0.02 wt% Cr_2O_3 and 0.36 ± 0.01 wt% CaO; reduced rims in pyroxene: $Fs_{10.9-15.0}Wo_{4.4-10.1}$; pigeonite contains 0.87 ± 0.02 wt% Cr_2O_3 and 0.68 ± 0.02 wt% Al_2O_3

Northwest Africa 13210 (NWA 13210)

(Northwest Africa) Purchased: 2019

Classification: Enstatite chondrite (EL melt rock)

History: The meteorite was purchased from a Morrocan dealer at the mineral show in Munich, Germany.

Physical characteristics: Ten grayish to light brownish individuals without fusion crust. **Petrography**: Strongly recrystallized enstatite chondrite predominantly composed of 100-150 µm sized enstatite and less abundant plagioclase grains. Opaque phases are troilite, daubréelite, and metallic iron. Contains some silica, abundant vesicles, and brownish alteration products. No relict chondrules were observed.

Geochemistry: feldspar: $An_{16,3\pm0.4}Ab_{83,7\pm0.4}$ ($An_{15,5-16,9}Ab_{83,1-84,5}$, n=10) **Classification**: Enstatite-melt rock (EL melt rock). Likely paired with <u>Al Haggounia</u> <u>001</u> and <u>NWA 12962</u>.

Northwest Africa 13211 (NWA 13211)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a Morrocan dealer at the mineral show in Hamburg, Germany.

Physical characteristics: Twelve dark-grayish fragments, some of which partly covered with fusion crust.

Petrography: The meteorite is a medium-grained monomict breccia composed of exsolved pyroxene and plagioclase grains up to 0.8 mm in size. Minor phases include silica, ilmenite, chromite, FeS, and metallic iron. Contains several shock melt veins and pockets.

Geochemistry: low-Ca pyroxene: $Fs_{58,5\pm0.4}Wo_{2.5\pm0.5}$ ($Fs_{57,6-59,1}Wo_{1,9-3,6}$, FeO/MnO=27-28, n=13); Ca-pyroxene: $Fs_{25,8\pm0.7}Wo_{43,0\pm0.8}$ ($Fs_{24,7-27,3}Wo_{41,8-44,1}$, FeO/MnO=25-32, n=13); calcic plagioclase: $An_{90,2\pm0.5}$ ($An_{89,5-90.9}$, n=14)

60

1

Northwest Africa 13212 (NWA 13212)

(Northwest Africa) Purchased: 2019

Classification: Carbonaceous chondrite (CK6)

History: The meteorite was purchased from a Morrocan dealer at the mineral show in Hamburg, Germany.

Physical characteristics: Dark grayish to greenish individual with some fusion crust. **Petrography**: The meteorite displays a greyish to dark greenish interior and is predominantly composed of recrystallized Fe-rich olivine dominated matrix with some scattered well defined chondrules. Cr-rich magnetite is abundant. More minor phases include intermediate plagioclase, low-Ca pyroxene, Ca-pyroxene, and troilite; metal was not found. **Geochemistry**: olivine: Fa_{28.5±0.2} (FeO/MnO=94±11, n=12); low-Ca pyroxene: Fs_{25.3±0.2}Wo_{0.7±0.1}, n=6; Ca-pyroxene: Fs_{9.4±0.5}Wo_{44.5±0.9}, n=15

Northwest Africa 13213 (NWA 13213)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (L3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Dark-grayish rock with some fusion crust.

Petrography: The meteorite shows a chondritic texture with well-packed and partly flattened chondrules (apparent mean diameter about 0.7 mm). The fine-grained matrix contains sulfides and FeNi metal.

Northwest Africa 13214 (NWA 13214)

(Northwest Africa)

Purchased: 2019

Classification: Ungrouped achondrite

History: The meteorite was purchased from a meteorite dealer in Laayoune, Morocco. **Physical characteristics**: Small brownish fragment without fusion crust.

Petrography: The meteorite shows a cumulate texture of up to 1 mm sized high-Ca pyroxene, calcic plagioclase, and less abundant forsteritic olivine often poikilitically enclosed by plagioclase. Pyroxene appears slightly greenish due to its high Cr-content and typically shows reaction textures with adjacent plagioclase. Plagioclase displays a mottled texture but has not been converted into maskelynite. Minor phases include Cr-bearing iron sulfide, taenite and kamacite. Some brownish alteration products are present in the thin section studied. **Geochemistry**: olivine: Fa_{3.3±0.1} (Fa_{3.2-3.4}, FeO/MnO=29±3, n=10), contains 0.26±0.02 wt% Cr₂O₃ and 0.35±0.03 wt% CaO; Ca-pyroxene: Fs_{1.3±0.1}Wo_{45.1±0.2} (Fs_{1.2-1.4}Wo_{44.7-45.5}, FeO/MnO=16±11, n=13), contains 0.68±0.03 wt% Cr₂O₃ and 2.68±0.11 wt% Al₂O₃; calcic plagioclase: An_{89.1±0.9}Ab_{10.9±0.9} (An_{87.2-90.2}Ab_{9.8-12.8}, n=15) **Classification**: Achondrite (ungrouped). Likely paired with NWA 7325.

Northwest Africa 13215 (NWA 13215)

(Northwest Africa) Purchased: 2019

Running Head

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 01	
י∠ רר	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
22	
56	
57	
58	
59	
60	

Classification: Martian meteorite (Shergottite) **History**: The meteorite was purchased from a meteorite dealer in Laayoune, Morocco. **Physical characteristics**: Dark-grayish rock largely covered with fusion crust. **Petrography**: The meteorite displays a fresh grayish interior with a coarse-grained basaltic texture predominantly composed of up to 3 mm sized pyroxene and plagioclase grains. Pyroxene is intensely fractured pigeonite and augite showing patchy compositional zoning. Minor phases are merrillite, ilmenite, pyrrhotite, and some Si-rich mesostasis. The meteorite is highly shocked, i.e., plagioclase is completely transformed into maskelynite and black shock melt pockets and shock veins are abundant.

Geochemistry: pigeonite: $Fs_{54.7\pm16.3}Wo_{16.8\pm1.1}$ ($Fs_{31.2-69.3}Wo_{15.2-18.2}$, n=6, FeO/MnO=26-35); augite: $Fs_{45.4\pm13.7}Wo_{25.4\pm4.2}$ ($Fs_{27.3-68.9}Wo_{20.3-34.1}$, n=12, FeO/MnO=26-36); maskelynite: An_{56.0\pm1.9}Ab_{43.9\pm1.9}Or_{0.1\pm0.0}, n=17

Northwest Africa 13216 (NWA 13216)

Northwest Africa Purchased: 2019

Classification: Lunar meteorite (feldspathic breccia)

History: Purchased from Morocco October 2019.

Physical characteristics: Eighteen identical appearing pieces. No fusion crust, desert weathered exteriors.

Petrography: (C. Agee, *UNM*) EPMA images show fragmental breccia of differing grainsize scales. The groundmass is extremely fine-grained with multiple lithologies and singlephase fragments of olivine, pyroxene, and plagioclase. Chromite, spinel, silica, and shock melt were observed.

Geochemistry: (C. Agee, *UNM*) Olivine $Fa_{31.5\pm8.8}$, Fe/Mn=95±12, n=12; pigeonite $Fs_{36.0\pm13.7}Wo_{11.9\pm9.6}$, Fe/Mn=63±13, n=12; plagioclase An_{96.2±1.2}, n=6; shock melt (proxy for bulk composition) SiO₂=43.6, TiO₂=0.38, Al₂O₃=28.5, MgO=6.4, FeO=4.6, MnO=0.07, CaO=15.6, Na₂O=0.09 (wt%).

Classification: Lunar, feldspathic breccia

Specimens: 20.4 g on deposit at UNM, Larry Atkins holds the main mass.

Northwest Africa 13217 (NWA 13217)

Northwest Africa Purchased: 2019

Classification: Martian meteorite (Shergottite)

History: Purchased from Morocco May 2019.

Physical characteristics: Five identical appearing pieces. No fusion crust, desert weathered exteriors. Saw cuts reveal fine-grained pyroxene grains and shiny maskelynite. Numerous black shock melt pockets present.

Petrography: (C. Agee, *UNM*) EPMA images show ~60% igneous-zoned pyroxene and 35% maskelynite. Ubiquitous Ti-magnetite, ilmenite, sulfide, and shock melt observed.

Geochemistry: (C. Agee, *UNM*) Pigeonite $Fs_{57.7\pm2.8}Wo_{15.1\pm3.2}$, Fe/Mn=37±1, n=6; augite $Fs_{27.8\pm9.8}Wo_{33.0\pm2.5}$, Fe/Mn=30±3, n=6; plagioclase An_{49.3±3.5}, Ab_{49.3±3.1}, Or _{1.5\pm0.5}, n=6; shock melt (proxy for bulk composition) SiO₂=48.4, TiO₂=1.3, Al₂O₃=7.2, MgO=7.0, FeO=21.0, MnO=0.55, CaO=9.9, Na₂O=1.4, K₂O=0.17 (wt%), n=4.

Classification: Martian basaltic shergottite.

Specimens: 11 g on deposit at UNM, Larry Atkins holds the main mass.

Northwest Africa 13218 (NWA 13218) Northwest Africa Purchased: 2014 Classification: Ordinary chondrite (LL3.2) History: Purchased from Morocco November 2014. **Physical characteristics**: Seven matching stones, dark brown weathered exterior, no fusion crust, sawn surface reveals densely packed chondrules of variable size. Petrography: (C. Agee, UNM) Microprobe examination of a polished mount shows numerous unequilibrated chondrules, many are porphyritic, apparent mean diameter 625±330 µm n=24. Abundant opaque matrix, most chondrules with glass or mesostasis. Aluminous augite, Fe, Ni-metal, and sulfide present. Geochemistry: (C. Agee, UNM) Chondrule olivine Fa_{17,2±9,2}, Fe/Mn=52±19, Cr₂O₃=0.13±0.13 wt%, range Cr₂O₃=0.02-0.70 wt%, CaO=0.08±0.07 wt%, n=31; low-Ca pyroxene $Fs_{9,7\pm8,7}Wo_{0,6\pm0,4}$, Fe/Mn=20±19, n=6. **Classification**: Ordinary chondrite (LL3.2), transitional between type 3.2 and 3.15 based on ferroan olivine mean Cr₂O₃ content and sigma from Grossman and Brearley (2005). Specimens: 20.6 g on deposit at UNM, Larry Atkins holds the main mass. Northwest Africa 13219 (NWA 13219) Niger Purchased: 2019 August Classification: HED achondrite (Eucrite, cumulate) History: Purchased over the Internet from anonymous finder; said to be from Niger; shipped from Mauritania.

Physical characteristics: A nearly-whole, oriented individual stone covered 90% in a darkbrown and spotted fusion-crust which has flow-lines and over-lipping. The fusion crust has a distinctive, locally translucent appearance, with "spots" where the fusion crust is clear (dependent upon the minerals in the underlying stone).

Petrography: This highly shocked breccia consists dominantly of pyroxene and plagioclase (now partly maskelynite). Vaguely discernible vestiges of the original texture suggest grains up to 3.5 mm (plagioclase) but conceivably even coarser; most of the material has been granulated to <<1 mm. Accessory phases include Cr-spinel, Fe-metal, troilite, and a glassy shock-melt vein. Within a few relatively ungranulated pyroxene grains, exsolved augite lamellae are seen to be about 5-8 μ m wide. Classification as a cumulate eucrite is based on geochemistry (see below), not the severely impact-modified texture.

Geochemistry: Low-Ca pyroxene (10 analyses) clusters near Fs_{36.4}Wo_{4.3}. High-Ca pyroxene blebs and lamellae (3 analyses) cluster near Fs_{18.6}Wo_{37.9}. Pyroxene FeO/MnO (wt; 14 analyses) averages 28.2. Plagioclase (8 analyses) is An_{92 3-95 3}, average

An_{93.9±1.0} Classification as a cumulate eucrite is based on geochemistry (magnesian mafic silicates, Na-poor plagiolcase, little if any ilmenite), not texture. Analyses (2) of a glassy shock-melt vein average 18.0 wt% Al₂O₃ with FeO/MgO (wt) = 1.09.

Classification: Eucrite, cumulate, brecciated.

Specimens: 24 grams at UCLA; main mass with Verish.

Northwest Africa 13220 (NWA 13220)

(Northwest Africa)
Purchased: 2019 Oct Classification: Ordinary chondrite (H3) **History**: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography:** (A. Irving, UWS and J. Boesenberg, BrownU) Relatively small, unequilibrated glass-bearing chondrules (apparent diameter $370 \pm 200 \ \mu m$, N = 20) are set in a finer grained matrix containing abundant fresh metal, troilite, chromite, Cl-free apatite and chlorapatite. **Geochemistry**: Olivine (Fa_{18.7±3.5}, range Fa_{14.0-27.6}, N = 9; Cr₂O₃ in ferroan examples < 0.06wt.%, N = 5), low-Ca pyroxene (Fs_{15.9±0.4}Wo_{0.9±0.7}, range Fs_{15.5-16.4}Wo_{0.3-1.8}, N = 4; Fs_{5.1}Wo_{0.4}). Classification: Ordinary chondrite (H3). Likely paired with "HC8" and "HC11". Specimens: 44.5 g including one polished thin section at PSF; remainder in the Harkness Collection.

Northwest Africa 13221 (NWA 13221)

Mali

Purchased: 2019 Sep

Classification: Ordinary chondrite (L4)

History: Purchased by Mbark Arjdal in September 2019 from an Algerian dealer.

Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Well-formed chondrules are set in a recrystallized matrix containing merrillite, chlorapatite, taenite, chromite, troilite, stained kamacite and pentlandite.

Geochemistry: Olivine (Fa_{24.9±0.1}, range Fa_{24.8-25.1}, N = 6), low-Ca pyroxene $(Fs_{20.3\pm0.3}Wo_{2.2\pm0.7}, range Fs_{19.8-20.5}Wo_{1.7-3.7}, N = 6)$, augite $(Fs_{8.8\pm0.9}Wo_{43.5\pm1.5}, range Fs_{7.8-1})$

 $_{9.6}$ Wo_{45.1-42.2}, N = 3).

Classification: Ordinary chondrite (L4).

Specimens: 66.9 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13222 (NWA 13222)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (H3)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, UWS and J. Boesenberg, BrownU) Relatively small, unequilibrated glass-bearing chondrules (apparent diameter $530\pm270 \mu m$, N = 22) are set in a finer-grained matrix containing abundant fresh metal, troilite, chromite and Cl-free apatite. **Geochemistry**: Olivine (Fa_{21,4±6.2}, range Fa_{17,3-37,3}, N = 8; Cr₂O₃ in ferroan examples < 0.09

wt.%, N = 5), low-Ca pyroxene (Fs_{15,4±2.9}Wo_{1.0±0.3}, range Fs_{10,3-17.5}Wo_{0.5-1.3}, N = 5), augite $(Fs_{5,1}Wo_{45,9}).$

Classification: Ordinary chondrite (H3), NWA 13220, NWA 13222, NWA 13226, and NWA 13228, which were obtained from the same source at the same time, are probably paired. Specimens: 27.4 g including one polished thin section at *PSF*; remainder in the Harkness Collection.

Northwest Africa 13223 (NWA 13223)

(Northwest Africa)

Purchased: 2019 Nov

Classification: HED achondrite (Eucrite, monomict)

History: Purchased by Aziz Habibi in November 2019 from a Malian dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Monomict breccia composed of large diabasic eucrite clasts (mean grainsize 0.5 mm) with sparse regions of polygranular matrix and cross-cutting granulated zones. Major minerals are zoned pyroxenes (consisting of low-Ca pyroxene cores and rims of pigeonite with patchy, dark pyroxferroite) and lath-like calcic plagioclase (converted completely to maskelynite), together with accessory silica polymorph, ilmenite, troilite, Ni-free metal, and baddeleyite. Minor thin veinlets of secondary calcite and small grains of barite are present.

Geochemistry: Low-Ca pyroxene cores (Fs_{35.7-47.1}Wo_{7.5-11.8}, FeO/MnO = 27-28, N = 4), pigeonite rims (Fs_{44.0-66.6}Wo_{18.6-21.7}, FeO/MnO = 28-36, N = 4), subcalcic augite (Fs_{46.6-56.7}Wo_{29.6-25.6}, FeO/MnO = 32-36, N = 2), pyroxferroite (Fs_{77.6}Wo_{15.7}, FeO/MnO = 19), fayalite (Fa_{92.6-96.2}, FeO/MnO = 43-46, N = 2), maskelynite (An_{87.6-89.0}Or_{0.4-0.5}, N = 3). **Classification**: Eucrite (monomict breccia, diabasic, highly shocked, maskelynite-bearing). **Specimens**: 20.0 g including one polished thin section at *UWB*; remainder with Mr. A. Habibi.

Northwest Africa 13224 (NWA 13224)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (LL6)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Breccia composed of angular clasts in a finer grained matrix. The clasts are mostly recrystallized but contain some remnant chondrules and partial chondrules along with accessory sodic plagioclase, troilite, chromite and minor stained metal.

Geochemistry: Olivine (Fa_{29.5±0.5}, range Fa_{29.1-30.2}, N = 5), low-Ca pyroxene

 $(Fs_{24,2\pm0.4}Wo_{1.8\pm0.0}, range Fs_{23.6-24.6}Wo_{1.8-1.9}, N = 5).$

Classification: Ordinary chondrite (LL6 breccia).

Specimens: 56.6 g including one polished thin section at *PSF*; remainder in the Harkness Collection.

Northwest Africa 13225 (NWA 13225)

(Northwest Africa)

Purchased: 2015

Classification: Lunar meteorite (feldspathic breccia)

History: Purchased by Mohammed *Hmani* in 2015 from a dealer in Erfoud, Morocco. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of mineral clasts of calcic plagioclase (including anorthite), orthopyroxene, pigeonite, subcalcic augite and rare olivine (< 2 vol.%) set in a finer grained matrix containing the same minerals plus kamacite, ilmenite and troilite. Rare olivine-free diabasic lithic clasts and glass fragments are present. **Geochemistry**: Anorthite (An_{95.4-97.8}Or_{0.1}, N = 3), plagioclase (An_{87.0}Or_{0.1}), orthopyroxene (Fs_{17.6-23.3}Wo_{2.9-3.1}, FeO/MnO = 47-55, N = 2), pigeonite (Fs_{25.3}Wo_{8.9}, FeO/MnO = 47), subcalcic augite (Fs_{12.1-27.0}Wo_{34.2-34.4}, FeO/MnO = 40-57, N = 2), olivine (Fa_{37.1}; Fa_{58.2}; FeO/MnO = 94-99; N = 2).

Classification: Lunar (feldspathic breccia).

Specimens: 20.4 g including one polished mount at UWB; remainder with Mr. M. Hmani.

Northwest Africa 13226 (NWA 13226) (Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (H3-4)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Part of this specimen consists of relatively small, unequilibrated glass-bearing chondrules (apparent diameter $380\pm230 \mu m$, N = 23) set in a finer grained matrix containing abundant fresh metal, troilite, chromite, Cl-free apatite and chlorapatite. Also present in the studied thin section are several large (up to 2.5 cm across), angular H4 chondrite clasts. These lithic clasts are more recrystallized and more equilibrated than the majority of the specimen, and contain well-formed chondrules set in a relatively coarse grained matrix containing abundant relatively fresh metal.

Geochemistry: Olivine (Fa_{17.9±8.4}, range Fa_{2.9-31.3}, N = 6; Cr₂O₃ in ferroan examples <0.08 wt.%, N = 5), low-Ca pyroxene (Fs_{15.0±2.3}Wo_{0.5±0.2}, range Fs_{13.4-16.6}Wo_{0.3-0.6}, N = 2). H4 clast: olivine (Fa_{17.8±0.1}, range Fa_{17.6-17.9}, N = 6), low-Ca pyroxene (Fs_{17.5±2.9}Wo_{1.2±0.1}, range Fs_{16.0-21.9}Wo_{1.0-1.3}, N = 4), augite (Fs_{5.2}Wo_{45.9}).

Classification: Ordinary chondrite (H3-4 breccia). <u>NWA 13220</u>, <u>NWA 13222</u>, NWA 13226, and <u>NWA 13228</u>, which were obtained from the same source at the same time, are probably paired.

Specimens: 28.0 g including one polished thin section at *PSF*; remainder in the Harkness Collection.

Northwest Africa 13227 (NWA 13227)

(Northwest Africa)

Purchased: 2019 Nov

Classification: Martian meteorite (Shergottite)

History: Purchased by Mark Lyon in November 2019 from a Moroccan dealer. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Coarse grained (gabbroic) assemblage of zoned clinopyroxene (up to 3.5 mm), olivine (some as inclusions in clinopyroxene) and curvilinear, lath-like maskelynite (~15 vol.%), together with accessory Mg-ilmenite, Cr-ulvöspinel, pyrrhotite, baddeleyite, merrillite and chlorapatite. Minor veinlets of secondary calcite are present.

Geochemistry: Olivine (Fa_{35.5-51.6}, FeO/MnO = 50-55, N = 11), pigeonite cores (Fs_{25.6-28.2}Wo_{5.2-9.3}, FeO/MnO = 28-33, N = 6), subcalcic augite rims (Fs_{21.5-21.6}Wo_{31.3-31.8}; Fs_{28.0}Wo_{26.9}; FeO/MnO = 27-30, N = 3), pigeonite rims (Fs_{34.6-36.6}Wo_{12.3-15.7}, FeO/MnO = 30-33, N = 3), maskelynite (An_{51.7-57.1}Or_{1.8-2.8}, N = 4).

Classification: Shergottite (olivine gabbroic).

Specimens: 21.6 g including one polished thin section at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13228 (NWA 13228)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (H3)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Relatively small, unequilibrated glass-bearing chondrules (apparent diameter $430 \pm 290 \mu m$, N = 22) are set in a finer grained matrix containing abundant fresh metal, troilite, chromite, Cl-free apatite and chlorapatite. **Geochemistry**: Olivine (Fa_{19.4±3.2}, range Fa_{17.3-34.7}, N = 9; Cr₂O₃ in ferroan examples <0.08 wt.%, N = 6), low-Ca pyroxene (Fs_{15.5±0.3}Wo_{0.8±0.5}, range Fs_{15.2-15.8}Wo_{0.3-1.6}, N = 6). **Classification**: Ordinary chondrite (H3). Likely paired with "HC7" and "HC8". **Specimens**: 21.5 g including one polished thin section at *PSF*; remainder in the Harkness Collection.

Northwest Africa 13229 (NWA 13229)

(Northwest Africa)

Purchased: 2019

Classification: Martian meteorite (Shergottite)

History: The meteorite was purchased from a meteorite dealer in Laayoune, Morocco. **Physical characteristics**: Grayish to light brownish fragment without fusion crust. **Petrography**: Medium-grained basalt composed of up to 1 mm sized calcic pyroxenes that show complex irregular patchy compositional zoning and equally sized maskelynite grains. Minor phases include ilmenite, merrillite, FeS, and some Si-rich mesostasis. Pyroxene displays very fine exsolution lamellae. The meteorite is highly shocked and contains abundant shock melt pockets up to 1 mm in diameter. Cracks are often filled with terrestrial carbonates. **Geochemistry**: pigeonite: $Fs_{56.4\pm7.0}Wo_{15.8\pm1.2}$ ($Fs_{47.2-65.0}Wo_{14.4-17.7}$, n=8, FeO/MnO=30-33); augite: $Fs_{27.4\pm8.4}Wo_{34.7\pm2.5}$ ($Fs_{18.2-38.2}Wo_{29.1-38.6}$, n=12, FeO/MnO=22-33); maskelynite: $An_{58.1\pm1.0}Ab_{41.9\pm1.0}$, n=14

Classification: Martian (shergottite)

Northwest Africa 13230 (NWA 13230)

(Northwest Africa) Purchased: 2019

Classification: Ureilite

History: The meteorite was purchased from a meteorite dealer in Erfoud, Morocco. **Physical characteristics**: Brownish rock without fusion crust.

Petrography: The meteorite shows a cumulate texture of about 1 mm sized equigranular sized olivine grains displaying typical reduced rims. Pyroxene appears to be recrystallized from a melt and shows patchy compositional zoning. Some melt regions contain abundant vesicles. Olivine and pyroxene are enriched in Cr_2O_3 and the meteorite contains graphite; calcite filled cracks attest to intense terrestrial weathering.

Geochemistry: olivine: Fa_{18.6±0.1} (Fa_{18.4-18.7}, n=11), contains 0.52 ± 0.07 wt% Cr₂O₃ and 0.37 ± 0.02 wt% CaO; reduced rims in olivine: Fa_{4.2-8.6}; pyroxene: Fs_{11.6±2.7}Wo_{11.0±6.7} (Fs_{6.9-16.0}Wo_{4.1-24.8}, n=14), contains 0.91 ± 0.09 wt% Cr₂O₃ and 0.44 ± 0.25 wt% Al₂O₃

Classification: Ureilite melt rock. The melt rock designation is from the recrystallized texture of pyroxene, with patchy compositional zoning, and the abundant vesicles (similar to <u>NWA</u> <u>10870</u>).

Northwest Africa 13231 (NWA 13231)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (H4)

History: The meteorite was purchased from a meteorite dealer in Errachidia, Morocco.

Physical characteristics: Brownish rock with some fusion crust.

Petrography: The meteorite shows a chondritic texture with well separated and mostly rounded chondrules (apparent mean diameter about 0.4 mm). The fine-grained matrix contains abundant sulfides and partly altered FeNi metal.

Northwest Africa 13233 (NWA 13233)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Eucrite, melt breccia)

History: The meteorite was reportedly found near Dakhla city and purchased by the main mass holder from a meteorite dealer in Morocco.

Physical characteristics: Dark grayish rock without fusion crust.

Petrography: The meteorite is a melt breccia predominantly composed of large up to 600 mm sized pyroxene grains set into a feldspar-dominated matrix. Pyroxenes are completely recrystallized and display mottled compositional zoning. Feldspar often show fibrous textures indicative for crystallization from a melt. No lithic clasts have been encountered. Minor phases include silica, chromite, and ilmenite. No metallic iron has been found.

Geochemistry: pyroxene: $Fs_{52,8\pm3.7}Wo_{10.0\pm3.9}$ ($Fs_{47.1-57.0}Wo_{4.9-18.5}$, n=14, FeO/MnO=26-31); calcic plagioclase: $An_{90.7\pm1.1}$ ($An_{89.5-92.9}$, n=11)

Northwest Africa 13234 (NWA 13234)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (LL7)

History: The meteorite was purchased from a meteorite dealer in Mauritania.

Physical characteristics: Five dark-brownish rocks without fusion crust. Exhibits dark grayish cut face.

Petrography: The meteorite displays a recrystallized texture of abundant olivine and less abundant low-Ca pyroxene and feldspar. Feldspar grain size is about 60 μ m; some poorly defined relict chondrules are present. Opaque phases are minor magnetite and abundant sulfides, the latter often finely dispersed in the silicates. No metal is present in the thin section studied.

Geochemistry: Feldspar: An_{8.9}Ab_{84.3}Or_{6.8} (n=3)

Classification: LL7. The opaque mineralogy is unusual, as is the low magnetic susceptibility.

Northwest Africa 13235 (NWA 13235)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Howardite)

History: The meteorite was found by Muhhamad Imam in Mali and sebsequently purchased by Marcin Cimała.

Physical characteristics: Light to dark grayish rock with some larger cavities and few patches of fusion crust.

Petrography: The meteorite is an achondritic melt breccia consisting of large black-white speckled to completely black melt regions showing pronounced flow structures and whitish less intensely or entirely unmelted clasts. Melt regions are composed of exsolved pyroxene, recrystallized pyroxene displaying mottled compositional zoning, and calcic plagioclase fragments set into a recrystallized matrix of pyroxene and often fibrous feldspar. Vesicles are abundant in the matrix and the mineral fragments frequently show resorbtion features at their contact to the melt. Unmelted regions show an overall eucritic mineral assemblage with exsolved pyroxene and plagioclase fragments set into a clastic matrix. Minor phases are silica, chromite, FeS, and rare metallic iron. The meteorite contains large up to 4 mm sized diogenetic low-Ca pyroxenes some of which have olivine, augite, and/or feldspar inclusions. Due to the heterogeneity of the material it is not possible to determine the percentage of diogenetic material precisely, i.e., more or less than 10 vol.%. The unmelted precursor was, thus, either a polymict eucrite or a howardite.

Geochemistry: diogenetic pyroxene: Fs_{34,3±0.2}Wo_{2.0±0.4} (Fs_{33.9-34.7}Wo_{1.7-3.2}, n=12, FeO/MnO=27-30); olivine: Fs_{49.0±0.5} (Fs_{48.4-49.7}, n=11, FeO/MnO=46±1); eucritic low-Ca pyroxene: Fs_{59.8±0.3}Wo_{1.8±0.1} (Fs_{59.2-60.2}Wo_{1.7-1.9}, n=11, FeO/MnO=28-32); eucritic Capyroxene: Fs_{24.5±1.7}Wo_{44.0±0.4} (Fs_{21.5-25.9}Wo_{43.1-44.7}, n=14, FeO/MnO=26-32); calcic plagioclase:

 $An_{92,7\pm0.6}(An_{91,6-93,6}, n=12)$

Classification: Howardite-melt breccia due to presence of eucritic and diogenetic material embedded in a melt rock matrix.

Northwest Africa 13236 (NWA 13236)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (LL6, melt breccia)

History: The meteorite was purchased from a meteorite dealer in Algeria.

Physical characteristics: Dark brownish to black rock with some fusion crust.

Petrography: The meteorite is a melt breccia composed of large black completely molten and recrystallized regions and some few unmelted chondritic clasts. Chondritic clasts are of LL6 type (plagioclase grain size about 70 μ m) and contain rare poorly defined relict chondrules. Melt regions contain characteristic FeNi metal and sufide spherules and frequently carry mineral fragments of the host rock.

Northwest Africa 13237 (NWA 13237)

(Northwest Africa) Purchased: 2014

Classification: Martian meteorite (Shergottite)

History: Purchased by John Humphries at the Sainte-Marie-aux-Mines Mineral Show in France, July 2014.

Physical characteristics: Black fusion crust exterior. Saw cuts reveal a light-gray color, with medium-grained pyroxene grains, many of which are lath shaped. Scattered shiny maskelynite patches and dark oxide grains are visible. A few thin, dark, shock melt veins are present. **Petrography**: (C. Agee, *UNM*) EPMA images show ~70% igneous-zoned pyroxene and ~20% maskelynite. Ubiquitous Ti-magnetite, ilmenite, Fe-sulfide, silica and apatite observed. **Geochemistry**: (C. Agee, *UNM*) Pigeonite $Fs_{51.6\pm6.6}Wo_{14.0\pm2.0}$, Fe/Mn=36±1, n=13; augite $Fs_{38.1\pm4.2}Wo_{32.7\pm3.9}$, Fe/Mn=37±1, n=2; maskelynite An_{39.9±1.0}, Ab_{57.4±1.3}, Or _{2.7±0.6}, n=2. **Classification**: Martian basaltic shergottite

Specimens: 7.36 g on deposit at UNM, John Humphries holds the main mass.

Northwest Africa 13238 (NWA 13238)

(Northwest Africa) Purchased: 2019 Jun

1	
2	
3	Classification: Ordinary chondrite (LL4)
4	History: Purchased in June 2019 by two anonymous collectors from a Moroccan dealer at the
5	Ensisheim Show.
6	Petrography : (A Irving UWS and P Carpenter WUSL) Well-formed relatively large
/	equilibrated chondrules are set in a recrystallized matrix containing sodic plagioclase
8	relatively abundant sulfides (trailite and nontlandite). Ti abromite ilmonite and minor
9	leave site (as altered heller leaf altered areing) and to exite One areas all alterests with
10	kamacite (as altered nolly-leaf-snaped grains) and taenite. One unusual chromite-rich
17	chondrule is composed predominantly of chromite with subordinate ilmenite, intermediate
12	plagioclase (labradorite) and pentlandite.
14	Geochemistry : Olivine (Fa _{32.6\pm0.1} , range Fa _{32.4-32.8} , N = 6), low-Ca pyroxene
14	$(F_{s_{25}}, 9+0, 3W_{01}, 6+0, 2)$, range $F_{s_{25}}, 5, 26, 2W_{01}, 2, 1, 7$, N = 6), plagioclase in chondrule (An ₈₅ , 9Or _{0.2}).
15	chromite in chondrule (Mg = 0.403 Cr = 0.221) Magnetic susceptibility log γ (× 10 ⁻⁹ m ³ /kg)
17	= 3.38 Oxygen isotones (K. Ziegler, UNM): analyses of acid-washed subsamples by laser
18	fluoringtion gave, respectively, $8170.4740.4522 \cdot 8180.6518.6151 \cdot 1070.1208.1275$ per
19	$\frac{1}{10000000000000000000000000000000000$
20	
21	Classification : Ordinary chondrite (LL4). This LL chondrite has some anomalous features,
22	including the presence of calcic plagioclase in chondrules, almost complete absence of metal,
23	unusually high abundance of sulfides, elevated δ^{18} O relative to literature values for 43 LL
24	chondrite specimens.
25	Specimens : 20.4 g including one polished thin section at <i>UWB</i> remainder with anonymous
26	owners
27	owners.
28	
29	
30	Northwest Africa 13239 (NWA 13239)
31	(Northwest Africa)
32	Purchased: 2019 Aug
33	Classification: Ureilite
34	History : Purchased by Mbark Aridal in August 2019 from a dealer in Timbuktu Mali
35	Petrography : (A Irving <i>UWS</i> and P Carpenter <i>WUSI</i>) Aggregate (mean grainsize 1.2 mm)
36	of oliving with thick ongoue reduced magnesian rime (~75 vol %) nigeonite (~25 vol %) and
37	of on vine with the opaque, reduced magnesian rins (~75 vol. /0), pigeonite (~25 vol. /0) and
38	accessory bladed grains of graphite.
39	Geochemistry: Olivine (cores $Fa_{21,3-21,7}$, N = 3; rims $Fa_{3,0-3,2}$, N = 2), pigeonite ($Fs_{10,5}$.
40	$_{18.1}$ Wo _{6.5-14.0} , N = 4).
41	Classification: Ureilite.
42	Specimens : 25.0 g including one polished thin section at <i>UWB</i> ; remainder with Mr. M.
43	Aridal
44	,
45	
46	Northwest Africa 12240 (NIWA 12240)
4/	$\frac{1}{2} \frac{1}{2} \frac{1}$
48	(Northwest Africa)
49	Purchased: 2019 Dec
50	Classification: Carbonaceous chondrite (CV3)
51	History: Purchased in Laayoune, Morocco, by Rachid and Jaouad Chaoui in December 2019.
52	Petrography : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Well-formed chondrules (apparent
54	diameter 1000±530 μ m N = 22) and irregularly shaped CAI (mostly very fine grained but
55 55	some coarser grained) are set in a fine grained matrix (~ 40 vol % deen senia brown in thin
56	section)
57	$C_{aaahomistwy} Oliving (E_a range E_a M - 7) law C_a avalance (E_a W)$
58	Geochemistry. Onvine ($ra_{14.6\pm15.7}$, range $ra_{0.7-47.8}$, $N - 7$), low-Ca pyroxene ($rs_{0.9\pm0.8}$ Wo _{2.2±1.5} ,
59	range $Fs_{0.3-1.4}Wo_{1.1-3.2}$, N = 2), augite ($Fs_{1.0\pm0.4}Wo_{38.5\pm1.0}$, range $Fs_{0.7-1.2}Wo_{37.8-39.2}$, N = 2),
60	
	Martine filter 0 Direction Cont

plagioclase (An_{82.3}Or_{0.1}), ferroan olivine in matrix (cores Fa_{56.5-66.7}, N = 2; rims Fa_{76.6-93.3}, N = 2).

Classification: Carbonaceous chondrite (CV3).

Specimens: 30.2 g including one polished thin section at *UWB*; remainder with Mr. R. Chaoui and Mr. J. Chaoui.

Northwest Africa 13241 (NWA 13241)

(Northwest Africa)

Purchased: 2019 Nov

Classification: Primitive achondrite (Lodranite)

History: Purchased by Darryl Pitt in November 2019 from a dealer in Smara, Morocco. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Protogranular aggregate (mean grainsize 0.9 mm) composed of olivine, orthopyroxene and clinopyroxene together with accessory kamacite (partially altered to iron hydoxides), troilite and schreibersite. Silicates are stained by terrestrial iron hydroxides. Minor secondary Ca sulfate is present as well as some cross-cutting veinlets of goethite.

Geochemistry: Olivine (6.4-6.5, FeO/MnO = 13-15, N = 5), orthopyroxene (Fs_{2.3-4.1}Wo_{1.3-2.4}, FeO/MnO = 3-5, N = 5), clinopyroxene (Fs_{1.9-2.6}Wo_{46.4-43.5}, FeO/MnO = 5, N = 3). **Classification**: Lodranite.

Specimens: 20.2 g including one polished thin section at UWB; remainder with DPitt.

Northwest Africa 13242 (NWA 13242)

(Northwest Africa)

Purchased: 2019 Jun

Classification: Ordinary chondrite (L4)

History: Purchased by Mbark Arjdal in June 2019 from a Libyan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Fairly closely-packed, well-formed chondrules (apparent diameter $800\pm320 \ \mu m$, N = 22) are set in a sparse matrix containing altered kamacite, pentlandite and ilmenite. A single CAI-like object (0.4 mm across) was observed; it is partially rimmed by kamacite and is composed predominantly of compositionally zoned Cr-pleonaste spinel with minor merrillite, Fe-Ni-bearing phosphate and rare baddeleyite.

Geochemistry: Olivine (Fa_{23.1±0.9}, range Fa_{22.4-24.6}, N = 5), low-Ca pyroxene (Fs_{22.6±4.6}Wo_{2.2±2.1}, range Fs_{18.6-29.6}Wo_{0.7-2.1}, N = 5), pigeonite (Fs_{21.4±3.0}Wo_{5.1±0.1}, range Fs_{19.3-23.5}Wo_{5.0-5.2}, N = 2; Fs_{18.9}Wo_{14.0}), subcalcic augite (Fs_{11.8±2.3}Wo_{33.8±4.3}, range Fs_{8.7-14.1}Wo_{30.5-}

 $_{39.9}$, N = 4).

Classification: Ordinary chondrite (L4).

Specimens: 51 g including one polished thin section at UWB; remainder with Mr. M. Arjdal.

Northwest Africa 13244 (NWA 13244)

(Northwest Africa)

Purchased: 2016 Mar

Classification: Carbonaceous chondrite (CV3)

History: Purchased in Khatari, Morocco by Aziz Habibi in March 2016.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed PO and BO chondrules (apparent diameter 1070 \pm 610 µm, N = 24) plus irregularly shaped, very fine-grained CAI and

60

mineral grains (mostly olivine) are set in a fine grained matrix (~30 vol.%, light gray-brown in thin section) containing sparse chlorapatite and stained grains of metal. **Geochemistry**: Olivine (Fa_{27,2±16,6}, range Fa_{0,3-47,5}, N = 18), low-Ca pyroxene $(Fs_{3,3\pm3,7}Wo_{2,2\pm2,1}, range Fs_{0,9-7,6}Wo_{1,0-4,6}, N = 3)$, augite $(Fs_{1,0\pm0,6}Wo_{42,8\pm5,4}, range Fs_{0,7-1})$ $_{1.5}$ Wo_{46.6-39.0}, N = 2). Classification: Carbonaceous chondrite (CV3). **Specimens**: 20.5 g including one polished thin section at *UWB*; remainder with Mr. A. Habibi. Northwest Africa 13245 (NWA 13245) (Northwest Africa) Purchased: 2019 Mar Classification: HED achondrite (Eucrite, melt breccia) History: Purchased in Agadir, Morocco by Aziz Habibi **Petrography**: (A. Irving, UWS and P. Carpenter, WUSL) Breccia composed of lithic clasts (gabbroic to microgabbroic with poikilitic to equigranular textures) and related crystalline debris set within a finer grained, vesicular melt-textured matrix. Minerals in clasts are exsolved pigeonite, calcic plagioclase, silica polymorph, ilmenite, chromite (with variable Al and Ti contents) and troilite. The matrix contains strongly zoned pyroxenes (with ferroan rims of almost pyroxferroite composition) and acicular to plumose plagioclase. Geochemistry: Gabbroic clasts: Low-Ca pyroxene host $(Fs_{60.9-62.6}Wo_{2.4-4.6}, FeO/MnO = 29-$ 33, N = 5), augite exsolution lamellae ($F_{27.6-28.3}Wo_{43.1-44.1}$, FeO/MnO = 30-32, N = 5), plagioclase (An_{88,2-89,7}Or_{0,2-0,5}, N = 4). Matrix pyroxene: augite core (Fs_{26,4}Wo_{44,2}, Fe/MnO = 29), low-Ca pyroxene (Fs_{60.1}Wo_{2.5}, FeO/MnO = 31), ferroan pigeonite rim (Fs_{81.4}Wo_{15.5}, FeO/MnO = 38). **Classification**: Eucrite (melt-matrix breccia). **Specimens**: 23.3 g in the form of a polished endcut at *UWB*; remainder with Mr. A. Habibi. Northwest Africa 13246 (NWA 13246) (Northwest Africa) Purchased: 2019 Nov Classification: Carbonaceous chondrite (CK3) History: Purchased by Fabien Kuntz in November 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, UWS and P. Carpenter, WUSL) Separated, well-formed chondrules (apparent diameter $650\pm290 \,\mu\text{m}$, N = 23) and CAIs are set in a fine-grained matrix (~80 vol.%) containing abundant Cr-magnetite (stained orange by secondary alteration). **Geochemistry**: Olivine (Fa_{26.6±11.0}, range Fa_{4.8-36.5}, N = 12), low-Ca pyroxene $(Fs_{19.5\pm8.4}Wo_{1.2\pm0.5}, range Fs_{1.8-25.1}Wo_{0.9-2.2}, N = 7)$, augite $(Fs_{16.3\pm2.2}Wo_{48.4\pm1.6}, range Fs_{14.7-1})$ $_{18.8}$ Wo_{46.7-49.9}, N = 3), magnetite (Cr₂O₃ = 3.4 wt.%). Classification: Carbonaceous chondrite (CK3). Specimens: 20.9 g including one polished thin section at UWB; remainder with Kuntz.

Northwest Africa 13247 (NWA 13247) (Northwest Africa) Purchased: 2019 Nov Classification: Primitive achondrite (Winonaite) History: Purchased by Darryl Pitt in November 2019 from a dealer in Smara, Morocco. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Protogranular aggregate (mean grainsize 0.9 mm) composed predominantly of forsteritic olivine and polysynthetically twinned enstatitic orthopyroxene together with accessory kamacite, Cr-Mn-bearing troilite, schreibersite and graphite.

Geochemistry: Olivine (Fa_{0.4-2.0}, FeO/MnO = 2-8, N = 9), orthopyroxene (Fs_{3.3-5.0}Wo_{0.7-1.9}, FeO/MnO = 1-3, N = 7).

Classification: Winonaite.

Specimens: 22.4 g including one polished thin section at UWB; remainder with DPitt.

Northwest Africa 13248 (NWA 13248)

Niger

Purchased: 2018 Mar

Classification: Ordinary chondrite (H5, melt breccia)

History: Found with many other similar stones in the vicinity of Akokan, Niger, and purchased by Aziz Habibi in March 2018 from a dealer in Niger.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) The specimen consists of H5 lithic clasts within a much finer grained matrix (composed of fine, lath-like silicate grains and spherical opaques). Lithic clasts are composed of sparse, relatively small equilibrated chondrules in recrystallized matrices containing relatively abundant metal. Minerals are equilibrated olivine, low-Ca pyroxene, sodic plagioclase, kamacite, taenite, low-Ti chromite and troilite. Clasts have shock stage S2.

Geochemistry: Olivine (Fa_{18.5±0.1} (range Fa_{18.4-18.6}, N = 4), low-Ca pyroxene (Fs_{16.1±0.4}Wo_{1.9±0.2} (range Fs_{15.5-16.4}Wo_{2.1-1.6}, N = 4).

Classification: Ordinary chondrite (H5-melt breccia). Paired with <u>Tassédet 004</u>, <u>NWA</u> <u>12923</u>, <u>NWA 12924</u> and other material from the same strewnfield.

Specimens: 38.7 g including one polished thin section at *UWB*; remainder with Mr. A. Habibi.

Northwest Africa 13249 (NWA 13249)

Libya

Purchased: March 2019

Classification: Carbonaceous chondrite (C2, ungrouped)

History: Reportedly found 400 km south of Gadamis in the Libya-Algeria border region. Purchased at the market in Gadamis in 2019.

Physical characteristics: Thirty matching stones, fresh fusion crust covers the exterior. Contraction cracks on the surface filled with desert soil are present. Saw cuts reveal numerous small chondrules set in a very dark colored abundant matrix. Friable. Scattered CAIs observed thoughout.

Petrography: (C. Agee, *UNM*) Microprobe examination shows scattered chondrules, many of which are irregular in shape. There are approximately equal numbers of type I and type II chondrules. Apparent mean chondrule diameter 230±230 µm, n=33. Fine-grained matrix makes up about 70% of this meteorite. Cronstedtite was detected in the matrix. Aluminous diopside and Cr-rich spinel present. Fusion crust is approximately 200 µm thick.

Geochemistry: (C. Agee, UNM) All chondrule olivine $Fa_{24,4\pm21,6}$, Fe/Mn=63±44,

 $Cr_2O_3=0.33\pm0.15$ wt%, n=20; ferroan chondrule olivine Fa_{40.1±11.5}, Fe/Mn=97±12,

Cr₂O₃=0.32±0.11 wt%, n=12; low-Ca pyroxene Fs_{12.0±13.7}Wo_{1.6±1.0}, n=5. Oxygen isotopes (K.

Ziegler, UNM): 3 acid-washed fragments analyzed by laser fluorination gave $\delta^{18}O = -4.759$, -

6.292, -1.716; $\delta^{17}O$ = -8.654, -10.479, -5.673; $\Delta^{17}O$ = -6.141, -7.157, -4.767 (linearized, all per mil, TFL slope=0.528).

Classification: Carbonaceous chondrite C2 ungrouped. Type 2 based on the presence of cronstedtite in the matrix. Ungrouped based on the oxygen isotopes plotting near the CO3 field with small chondrules, but the meteorite is petrologic type 2 with abundant matrix. This is not a CM2 or CO3, possibly similar to <u>NWA 5958</u>.

Specimens: 20.1 g on deposit at UNM, DPitt holds the main mass.

Northwest Africa 13250 (NWA 13250)

Mauritania

Purchased: 2019 Dec

Classification: Martian meteorite (Shergottite)

History: Purchased from a Mauritanian meteorite (and desert truffle) hunter.

Physical characteristics: Single stone; saw cut reveals an ultramafic cumulate rock with ophitic to poikilitic textures with mm-size pale yellow and dark gray grains.

Petrography: (C. Agee, *UNM*) Microprobe examination shows approximately 50% olivine, 40% pyroxene, and 5-10% maskelynite. Two distinct pyroxene trends are present 1) Mg-rich low calcium pyroxene trending to slightly more Fe-rich pigeonite, 2) Mg-rich augite trending to diopsidic. Three distinct Cr-Fe spinel phases were detected throughout the sample, one with high TiO₂ (~14 wt%), one with intermediate TiO₂ (~7.5 wt%), and one with very low TiO₂ concentrations. Ilmenite and Fe-sulfide are minor ubiquitous phases.

Geochemistry: (C. Agee, *UNM*) Olivine Fa_{34,3±2,4}, Fe/Mn=50±3, n=7; low Ca-pyroxene Fs_{24.6±2.8}Wo_{7.3±2,1}, Fe/Mn=30±1, n=11; augite Fs_{15.8±1,1}Wo_{38.5±5,6}, Fe/Mn=25±1, n=5. **Classification**: Martian peridotitic shergottite. Macroscopic textural appearance similar to NWA 1950 and ALHA77005.

Specimens: 22.7 g on deposit at UNM, DPitt holds the main mass.

Northwest Africa 13251 (NWA 13251)

Western Sahara

Purchased: 2008

Classification: Ordinary chondrite (L, melt rock)

History: Purchased in 2008 from a Moroccan meteorite and mineral dealer in Erfoud for *JTESM*, then sold to an anonymous owner. Meteorite is reportedly from Western Sahara. **Physical characteristics**: The exterior has a dark brown to black appearance with lighter-colored red-tan areas. Interior slices reveal mm-scale blebs of metal and sulfide in a very fine-grained, dark-gray matrix.

Petrography: (C. Herd, *UAb*) Optical and microprobe examination of a polished thin section shows Fe-Ni metal and sulfide blebs as well as irregular to subrounded olivine or olivine+low-Ca pyroxene intergrowths up to 600 μ m across containing μ m-scale inclusions of troilite. These reside in a groundmass consisting of 10-50 μ m scale crystallites of olivine and low-Ca pyroxene with interstitial glass of plagioclase composition. Shock effects include weak mosaicism and planar fractures in olivine.

Geochemistry: (C. Herd, *UAb*) Data obtained by EMP examination of carbon-coated thin section: Olivine Fa_{24.4±0.9} (n=63); Low-Ca Pyroxene $Fs_{19.2\pm1.3}Wo_{2.7\pm1.0}$ (n=42). No difference in composition between olivine and low-Ca pyroxene in intergrowths and olivine and low-Ca pyroxene in the groundmass was observed.

Classification: L, melt rock

Specimens: Type specimen of 20.8 g, including one thin section, is at *UAb*. Main mass with an anonymous owner.

Northwest Africa 13251 (NWA 13251)

Western Sahara

Purchased: 2008

Classification: Ordinary chondrite (L, melt rock)

History: Purchased in 2008 from a Moroccan meteorite and mineral dealer in Erfoud for *JTESM*, then sold to an anonymous owner. Meteorite is reportedly from Western Sahara. **Physical characteristics**: The exterior has a dark brown to black appearance with lighter-colored red-tan areas. Interior slices reveal mm-scale blebs of metal and sulfide in a very fine-grained, dark-gray matrix.

Petrography: (C. Herd, *UAb*) Optical and microprobe examination of a polished thin section shows Fe-Ni metal and sulfide blebs as well as irregular to subrounded olivine or olivine+low-Ca pyroxene intergrowths up to 600 μ m across containing μ m-scale inclusions of troilite. These reside in a groundmass consisting of 10-50 μ m scale crystallites of olivine and low-Ca pyroxene with interstitial glass of plagioclase composition. Shock effects include weak mosaicism and planar fractures in olivine.

Geochemistry: (C. Herd, *UAb*) Data obtained by EMP examination of carbon-coated thin section: Olivine Fa_{24,4±0.9} (n=63); Low-Ca Pyroxene Fs_{19,2±1.3}Wo_{2,7±1.0} (n=42). No difference in composition between olivine and low-Ca pyroxene in intergrowths and olivine and low-Ca pyroxene in the groundmass was observed.

Classification: L, melt rock

Specimens: Type specimen of 20.8 g, including one thin section, is at *UAb*. Main mass with an anonymous owner.

Northwest Africa 13252 (NWA 13252)

Morocco

Purchased: 2019

Classification: Ordinary chondrite (L6, melt breccia)

History: Sergey Vasiliev purchased the 99.3 g sample while at the Munich mineral show in 2019.

Physical characteristics: Sample has a rounded irregular shape, and is dark brown on the exterior with a dark-brown weathered fusion crust. The cut face of the interior is dark brown and shows a brecciated texture composed of clasts surrounded by dark veins.

Petrography: Description and classification (A. Love, *App*) Sample has a brecciated texture composed of cm-sized, sub-rounded clasts and mineral fragments surrounded by

interconnected shock melt veins. Clasts shows recrystallized chondritic texture composed of indistinct chondrules (with an average apparent diameter of 829 μ m, n=11) set within a recrystallized matrix. Secondary plagioclase has an average grain size of 63 μ m (n=51). Additional minerals are troilite, phosphates and chromite.

Geochemistry: (A. Love, *App*) Olivine (Fa_{24.8±1.4}, Fe/Mn=57.0±24.4, n=8), low-Ca pyroxene (Fs_{21.4±0.4}Wo_{1.6±0.2}, n=8).

Classification: Ordinary chondrite (L6 shock melt breccia C-S5/6 W4). Based on textures, olivine compositions and grainsize of secondary plagioclase, this sample is an L6. Presence shock melt veining, pervasive maskelynite, mosaic extinction and staining of olivine this sample has been shocked to C-S5/6 (Stoffler et al. 2018).

4

5 6 7

8 9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24 25

26

27

28

29

34

35

36

37

38

39

40 41

42

43

44

45

46

47 48

49

50

51

52

53

54

55 56

57

58

59

60

Specimens: Sergey Vasiliev holds the main mass. A 20 g type specimen and a polished thin section and mount are on deposit at *App*.

Northwest Africa 13253 (NWA 13253) Morocco Purchased: 2019 Classification: Ordinary chondrite (H5) History: Marc Jost (SJS) purchased the sample from Mohamed Hmani at the St. Marie aux Mines show in June 2019. **Physical characteristics**: The 210. 6g stone is dark-brown in color, irregular in shape and lacks fusion crust. Small chondrules are visible on the surface. The cut face is pock marked and shows abundant chondrules surrounded by gray veinlets and troilite grains. **Petrography**: Description and classification (A. Love, *App*) Sample has a recrystallized chondritic texture composed of distinct, densely packed chondrules and fragments surrounded by abundant weathered FeNi metal and FeS. Chondrules have an average apparent diameter of 504 µm (n=44) and show recrystallized mesostasis. Additional minerals are chromite, apatite, troilite, pentlandite and secondary plagioclase. Geochemistry: (A. Love, App) Olivine (Fa_{17.5±0.1}, Fe/Mn=35.2±0.8, n=8), low-Ca pyroxene $(Fs_{16,2\pm0.1}Wo_{1,1\pm0.1}, n=8).$ Classification: Ordinary chondrite (H5, C-S2, W3). Based on mineral compositions and textures this is an H5. **Specimens**: Marc Jost (SJS) holds the main mass. An endcut weighing 20.59 and a polished thinsection and epoxy mount are on deposit at App. Northwest Africa 13254 (NWA 13254) Morocco Purchased: 2019 Classification: Ordinary chondrite (LL3) History: Marc Jost (SJS) purchased the sample from a Moroccan dealer at the Ensisheim show in June 2019. Physical characteristics: Sample is rounded to irregular in shape and has a dark-brown, wind ablated surface. The cut face shows the sample is composed of numerous, closely packed, dark and light colored chondrules surrounded by sulfide rims. **Petrography**: Description and classification (A. Love, *App*) Sample displays chondritic texture composed of closely packed, well defined, chemically zoned chondrules (with an average apparent diameter of 775 μ m, n=80), surrounded by fine-grained, opaque rims. Chondrules with devitrified mesostasis are more abundant than those with clear isotropic glass. Geochemistry: (A. Love, App) Olivine, Fa_{16,2±11,6} (Fa_{0,3-38,6}), Fe/Mn=45.9±21.4, n=25. Cr_2O_3 in type II chondrules has an average of 0.1 wt% with a standard deviation of 0.0, n=23); low-Ca pyroxene, $Fs_{12.6\pm8.1}Wo_{1.0\pm0.7}$ ($Fs_{1.7-3.0}Wo_{0.3-2.7}$), n=12. Classification: Ordinary chondrite (LL3, C-S2, W1) Based on chondrule size and magnetic susceptibility this sample is an LL chondrite. Estimated subtype for this sample is 3.5 based on unequilibrated compositions, presence of isotropic glass mesostasis (3.4-3.5), lack of yellow CL in chondrule mesostasis (>3.4) and presence of red luminescence in chondrule olivine (>3.1, <3.6).

Specimens: Marc Jost (*SJS*) holds the main mass. A 24.6 g endcut and a polished thin section are on deposit at *App*.

Northwest	Africa 13255 (NWA 13255)	
Morocco)	
Find: 20	19	
Classific	ation: HED achondrite (Diog	enite)
History: Pu	urchased in August 2019 by Ju	uan Aviles Poblador from a meteorite dealer in
Morocco. L	Later acquired by Daniel Sheil	
Physical ci Petrograpi and tabular composed of plagioclase	hy: (D. Sheikh, <i>FSU</i>) This sar grains of orthopyroxene (Av. of smaller orthopyroxene grains , augite, sulfides, and Fe-oxid	nple is a breccia composed almost entirely of angular . 1 mm, up to 3 mm) set in a fine-grained matrix ns. Accessory phases include Al-bearing chromite, les.
Geochemis	stry: Orthopyroxene (Fs _{28,2±0,4}	$_{4}Wo_{4.0\pm0.3}$, range Fs _{27.5-29.0} Wo _{3.0-4.5} , FeO/MnO=28±3,
n=30), Aug	gite ($Fs_{14.0\pm 1.3}Wo_{41.9\pm 0.5}$, range	Fs _{13.1-14.9} Wo _{41.6-42.3} , FeO/MnO=25±3, n=2),
Plagioclase	$(An_{92.2\pm0.3}Or_{0.2\pm0.1}, range An_9)$	$p_{1.9-92.5}Or_{0.1-0.4}, n=4$).
Classificat	ion: Diogenite (monomict bre	eccia)
Specimens	: 65.2 grams at UCLA; main r	mass with UCLA.
Northwest	Africa 13256 (NWA 13256)	
Western	Sahara	
Find: 20	19	
Classific	cation: Lunar meteorite (felds	pathic breccia)
History: Pu	urchased in 2019 by Matthew	Stream from a meteorite dealer in Western Sahara.
Physical cl	naracteristics: Minor fusion c	crust exterior; interior contains a few visible
weathering	veins.	
Petrograpl sub-angular Anorthitic J low-ca pyro	hy: (D. Sheikh, <i>FSU</i>) This sar r clasts and isolated mineral g plagioclase is the dominant pr oxene, maskelynite, olivine, a	nple is a feldspathic fragmental breccia containing rains (up to 4 mm) set in a fine-grained matrix. hase, with minor phases including pigeonite, augite, nd ilmenite.
Geochemis	stry: Olivine (Fa _{36.3.2±0.2} , range	e Fa _{36,2-36,5} , FeO/MnO=90±3, n=2), Low-Ca
Pyroxene (1	$Fs_{20,3\pm3,7}Wo_{3,0\pm1.8}$, range $Fs_{16,3}$.	_{-25.3} Wo _{0.4.4.4} , FeO/MnO=49±7, n=4), Pigeonite
$(Fs_{33.2\pm 5.6}W)$	$V_{0_{11.5\pm3.2}}$, range Fs _{24.9-38.6} Wo _{7.5}	_{5-16.7} , FeO/MnO=48±7, n=7), Augite
$(Fs_{37.3\pm11.7}V)$	Vo _{36.6±1.6} , range Fs _{20.2-45.0} Wo ₃₄	4.3-37.8, FeO/MnO=48±3, n=7), Plagioclase
$(An_{95.3\pm1.4}O)$	$r_{0.2\pm0.1}$, range An _{92.1-97.5} Or _{0.1-0.}	.6, n=77).
Classificat	ion: Lunar (feldspathic fragm	iental breccia).
Specimens	: 20.3 grams at UCLA; main r	nass with Matthew Stream.
Northwest (Northw Purchase	Africa 13257 (NWA 13257) est Africa) ed: 2018	
Classific	ation: Martian meteorite (She	ergottite)
History: Pu Physical at	archased in 2018 by Daoud W	abich from a meteorite dealer in Algeria.
i ilysical Cl Petrograpi	har acter isues. Multiple stone hv: (D. Sheikh <i>ESLA</i> Sample	is a diabase having a predominantly subophitic
texture com	my. (D. Sheikii, 150) Sample	orismatic (sometimes twinned) chadacrysts of
subcalcic a	ugite and pigeonite (Av. 600±	=50 µm, up to 1 mm, 58 vol%) contained within
larger oiko	crysts of maskelynite (Av. 80)	0±50μm, up to 2mm, 42 vol%). Accessory phases
-		• • • • • • • • • • •

2	
3	include titanomagnetite (some Cr rich), silica, Si-Al-K-Na rich glass, merrillite, chlorapatite.
4	and surrhatite Sample contains minor carbonate weathering voing
5	and pyrmotite. Sample contains minor carbonate weathering vents.
6	Geochemistry : Subcalcic augite $(Fs_{34,2\pm8,7} Wo_{30,9\pm2,1}, range Fs_{20,4-46,2} Wo_{26,5-35,7},$
7	FeO/MnO= 34 ± 5 n=30) nigeonite (Escience 7Wors or 2 th range Fs204 61 0Word 22 %
/	$F_{20}/M_{10} = 5.14$ (1) product $(551,352,7)$ (15)($551,352,7)$
8	FeO/MIO -33 ± 4 , $n-30$) maskelynne (An _{47,4\pm6.9} Of _{2.4\pm1.2} , range An _{34.7-58.7} Of _{0.5-4.8} , $n-20$).
9	Classification : Martian (shergottite, diabasic) Silicate chemistry, the presence of maskelynite,
10	FeO/MnO ratios of pyroxenes, and magnetic susceptibility provide support for classification
11	as the matrix A versus are in sizes of the way and matrix berries that that of headling
12	as snergoune. Average grain sizes of pyroxenes and maskeryme larger than that of basance
12	shergottites, but smaller than gabbroic shergottites, hence diabasic.
15	Specimens: 21.3 grams at UCLA: main mass with Daoud Wabich.
14	
15	
16	
17	Northwest Africa 13258 (NWA 13258)
18	Morocco
19	
20	Find: 2019
20	Classification: Carbonaceous chondrite (CV3)
21	History: Durchased in November 2010 by Juan Aviles Pohlador from Said Vousfii in
22	The set of
23	Morocco.
24	Physical characteristics : Multiple stones with dark-brown fusion crust.
25	Petrography: (D. Sheikh, <i>FSU</i>) Sample contains abundant chondrules (Ay, 1mm, up to
26	A subject of the second s
20	4mm), CAIS (AV. 2 mm, up to 4 mm), and Isolated mineral fragments set in a line-grained
27	opaque matrix. Accesory phases include magnetite (some containing Cr), sodalite, and
20	pentlandite.
29	Coochemistry: Oliving (Eq
30	Ocoelemistry . Onvine $(1 a_{19,1\pm 22.5}, 1 a_{19,2} a_{13,2} a_{15,7}, 1 a_{15,7})$, Low-Carrytoxene
31	$(Fs_{1.8\pm0.7}Wo_{2.4\pm1.5}, range Fs_{0.7-3.1}Wo_{0.8-4.5}, n=20).$
32	Classification : Carbonaceous chondrite (CV3-Ox). Strong Mg-Fe zonation in chondrule
33	olivine (the majority of chondrule olivines being Mg rich) the lack of FeNi metal and the
34	process of magnetic northerability arms isolated forgality arming and solatist throughout the
35	presence of magnetice, pentiandite, some isolated rayante grains, and sodante throughout the
36	matrix point to the oxidized subgroup.
20	Specimens: 20.07 grams at UCLA: main mass with Juan Aviles Poblador.
3/	
38	
39	
40	Northwest Africa 13259 (NWA 13259)
41	(Northwest Africa)
42	Providence 4 2(10.2018
43	Purchased: 26.10.2018
10	Classification: Lunar meteorite (feldspathic breccia)
45	History The sample was purchased October 26, 2018 in Munich as a single piece of 24.4 g
45	Dhysical characteristics: The piece has a dark appearance with white elects and no fusion
46	Thysical characteristics. The piece has a dark appearance with white clasts and no fusion
47	crust. Saw cuts reveal a breccia with numerous angular shaped, mm-sized, white feldspathic
48	clasts set in a predominantly dark gray to black groundmass. Some brownish clasts are also
49	visible. The clasts are smaller than most other lunar breecies, which typically contain on
50	visition. The clusts are smaller than most other runar breechas, which typically contain clif-
51	sized fragments.
52	Petrography : (A. Bischoff and K. Klemm, <i>IfP</i>). SEM images show that it is a breccia of
52	different clasts embedded in a fine-grained matrix. The groundmass is partly a melt matrix
55	with abundant noras (vasialas). The lithic clasts primarily consist of highland clasts
54	with abundant pores (vesteres). The function of the primarity consist of highland clasts
55	dominated by anorthositic lithologies, but also fragments with abundant matic mineral
56	(olivine, pyroxenes) are frequently observed. Typical melt clasts and melt spherules are also
57	present. The plagioclase has been partially transformed into maskelynite. Mineral fragments
58	of aliving removing alogicaloge (and moglealize to) ilinearity or 1 or 0:0 where the

of olivine, pyroxene, plagioclase (and maskelynite), ilmenite and an SiO₂ phase were found.

Ubiquitous melt veins and vesicles are present throughout the groundmass. Locally, the rock can be defined as a melt breccia. Geochemistry: (A. Bischoff and K. Klemm, *IfP*) Mineral compositions: Olivine Fa_{38.4±6.6}, range Fa₂₉₋₅₆, Fe/Mn=113, n=15; low-Ca pyroxene Fs_{40.7±19.6}Wo_{16.9±7.4} Fe/Mn=73, n=11; Capyroxene Fs_{38.0±15.6}Wo_{38.3±3.0}, Fe/Mn=74, n=13; plagioclase: An_{95.8±0.8}, n=4, one grain with An₅₉ was also found. Classification: Lunar, less feldspathic, regolith to melt breccia Specimens: Type specimen: 4.9 g *IfP* Northwest Africa 13260 (NWA 13260) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (H6) History: Purchased from a Moroccan meteorite dealer (and hotelier) in Agadir. **Physical characteristics**: Single stone, multiple faces are covered with highly articulated regmaglypts further embellished with a desert varnish gloss. Saw cut reveals faint chondrules set in a light-brown groundmass. Abundant metal grains are present throughout. **Petrography**: (C. Agee, UNM) Microprobe examination shows texturally equilibrated, recrystallized chondrules. Plagioclase grain size up to 150 µm in diameter. Geochemistry: (C. Agee, UNM) Olivine Fa_{17.6±0.4}, Fe/Mn=39±3, n=12; low-Ca pyroxene Fs_{15.8}Wo_{1.5}, n=1. Classification: Ordinary chondrite (H6) Specimens: 24.5 g on deposit at UNM, Darryl Pitt holds the main mass. Northwest Africa 13261 (NWA 13261) Northwest Africa Purchased: 2019 Classification: Carbonaceous chondrite (CK5) History: Purchased from a Moroccan meteorite dealer and hotelier in Agadir. Physical characteristics: The single dense mass has a finely reticulated ash-hued outer surface sheathed in a desert varnish. Chondrules and CAIs protrude from the surface. The cut face reveals a greige matrix with numerous chondrules along with CAIs more than a centimeter in diameter and somewhat larger dark inclusions. **Petrography**: (C. Agee, UNM) Microprobe examination shows texturally equilibrated, recrystallized chondrules and matrix, fine-grained Cr-magnetite is present throughout and abundant. No metal was observed. Geochemistry: (C. Agee, UNM) Olivine Fa_{32,3±1.0}, Fe/Mn=123±17, NiO=0.39±0.04(wt%), n=12; high-Ca pyroxene Fs_{8.2±1.1}Wo_{49.5±0.8}, Fe/Mn=77±2, n=2. Classification: Carbonaceous chondrite (CK5) Specimens: 21.9 g on deposit at UNM, DPitt holds the main mass. Northwest Africa 13262 (NWA 13262) (Northwest Africa) Purchased: 2016 Classification: Ordinary chondrite (L3) Petrography: (I. Kerraouch; A. Bischoff, IfP) Chondrules, chondrule fragments, and alteration products (mainly of metal and sulfides) are embedded in a fine-grained brownish

heavily weathered (W3/4).

Running Head

matrix, which has an abundance of about 10-15 vol%. The majority of chondrules are

Geochemistry: (K. Klemm; A. Bischoff, *IfP*) Mineral compositions and geochemistry:

porphyritic in texture and the mean apparent chondrule size is about 500 µm. The sample is

8	Random measurements of olivine grains revealed Fa _{16.3±10.4} (Fa _{1.1-33.0}); n=21. Random
9	measurements of low-Ca pyroxene grains revealed $Fs_{7.9\pm7.4}Wo_{0.5\pm0.4}(Fs_{1.1-25.4}Wo_{0.1-1.7})$; n=17.
10	Classification : L3 chondrite based on the chondrule size, chondrule-matrix ratio, texture, and
11	unequilibrated mineral chemistry
12	Snacimans: 23.7 g. IfP: 6 g. M. Zolensky ISC
13	Specificits. 23.7 g, 1/1, 0 g, 141. Zotensky, 35C
14	
15	
16	Northwest Africa 13263 (NWA 13263)
17	(Northwest Africa)
18	Purchased: 2019
19	Classification: HED achondrite (Howardite)
20	History: The metaorite was purchased from a metaorite dealer in Levoure. Western Schere
21	History . The meteorite was purchased from a meteorite dealer in Layoune, western Sanara.
22	Physical characteristics: Brownish rock partly covered with fusion crust.
23	Petrography : The meteorite is a polymict breccia with fine- and coarse-grained basaltic
24	clasts, black impact melt clasts, and up to 4 mm sized diogenitic low-Ca pyroxene set into a
25	clastic matrix predominantly composed of exsolved pyroxene, compositionally zoned low-Ca
26	pyroxene and calcic plagioclase of variable grain sizes. Contains about 15-20% diogenetic
27	components Minor phases include silica chromite FeS and ilmenite No metallic iron has
28	been detected. One chandrule like object composed of herred cliving and purevene crustels
29	been delected. One chondrule-like object composed of barred onvine and pyroxene crystals
30	has been found. The meteorite is highly shocked, i.e., plagloclase is partly transformed to
31	maskelynite and shock melt veins and pockets are present.
32	Geochemistry : diogenetic pyroxene: Fs _{22.7±0.2} Wo _{2.0±0.1} (Fs _{22.3-22.9} Wo _{1.9-2.0} , FeO/MnO=25-30,
33	n=11); zoned low-Ca pyroxene: $F_{277+34}W_{027+10}(F_{242-325}W_{022-57}, FeO/MnO=25-29)$
34	$n=10$): low-Ca pyroxene host to augite exsolution lamellae: $Fs_{4,0,1,2}Wo_{7,0,1,0}(Fs_{4,0,6,5,2}Wo_{5,0,1,0})$
35	FeO/MnO=25-27 n=10): Ca-nyrovene exsolution lamellae: $Feo.ex.Workerset (Feo.ex.Workerset)$
36	$x_{8,6}$, $r_{CO/MinO=25-27}$, n_{1-10} , c_{4} -pytoxene exsolution famenae. $r_{336,0\pm1.4}$ ($x_{939,1\pm1.3}$ ($r_{335,1-10}$)
37	$40.2 \times 0_{35.5-40.2}$, FeO/MINO-23-29, n-11), calcic plaglociase. An _{86.4±4.3} (An _{81.5-92.3} , n-12)
38	
39	
40	Northwest Africa 13265 (NWA 13265)
41	(Northwest Africa)
42	Purchased: 2019
43	Classification: Carbonaceous chondrite (CV3)
44	History: The meteorite was purchased from a meteorite dealer in Levoure. Western Schere
45	History . The meteorite was purchased from a meteorite dealer in Layoune, western Sanara.
46	Physical characteristics: Many several cm sized individuals some of which completely
47	covered by fusion crust.
48	Petrography : Carbonaceous chondrite composed of chondrules (mean diameter about 1 mm;
49	up to 2 mm sized), CAIs (up to 3 mm sized), and olivine amoeboids all set into a fine-grained
50	dark brownish to almost black matrix Several chondrules show brownish staining due to
51	terrestrial alteration
52	
53	
54	
55	Northwest Africa 13266 (NWA 13266)
56	(Northwest Africa)
57	Purchased: 2018
58	Classification: Enstatite achondrite
59	History . The meteorite was purchased from a local meteorite dealer in Niger
60	ristory. The meteorite was parenased from a focal meteorite dealer in 10501.

Physical characteristics: Dark brownish rock without fusion crust.

Petrography: The meteorite is an enstatite achondrite predominantly composed of 50-1000 μ m sized enstatite and less abundant sodic feldspar grains. Some regions appear to be recrystallized exhibiting triple junctions. Albitic and Si-rich glass is present throughout the meteorite. Opaque phases include nodules composed of niningerite and Cr-rich troilte, Si-rich kamacite, and rare Zn-bearing daubréelite. Metal grains are often spherical. No relict chondrules have been observed.

Geochemistry: enstatite: $Fs_{0.3\pm0.2}Wo_{0.3\pm1.3}$ ($Fs_{0.1-0.6}Wo_{0.2-0.3}$, n=12); feldspar: An_{19.2±1.9}Ab_{79.1±1.9}Or_{1.7±0.2} (An_{81.5-92.3}Ab_{-75.9-83.2}Or_{1.4-2.0}, n=18); kamacite: Ni=7.04±0.18, Si=2.99±0.01, Co=0.24±0.01, P=0.58±0.39 (wt%), n=3

Classification: Enstatite achondrite.

Northwest Africa 13267 (NWA 13267)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (L6, melt breccia)

History: The meteorite was purchased from a local meteorite dealer in Algeria.

Physical characteristics: Brownish rock without fusion crust.

Petrography: The meteorite is a melt breccia and largely consists of partly recrystallized melt regions with characteristic FeNi metal and sulfide spherules. Unmelted chondritic regions are of type L6 (plagioclase grain size about 70 μ m) and contain few relict chondrules; no metal or sulfide veins are observed.

Northwest Africa 13268 (NWA 13268)

Algeria

Find: 2013

Classification: Ordinary chondrite (H4/5)

History: The meteorite has been found by nomads in Algeria in 2013. Later a Hungarian IMCA member, Zsolt Kereszty purchased this specimen from a Moroccan dealer. In the end Hungarian scientific journalist and meteorite collector Nandor Rezsabek bought it for his private meteorite collection in 21 June 2017.

Physical characteristics: A single angular dark brown stone (333.2 g) with weathered fusion crust on its two sides. Elongated regmaglypts with faint remnants of flowlines on one of the crusted sides are observable. Where the brownish black fusion crust is absent several shiny metal grains are visible and chondrules bulge out from the matrix. Cut surface reveals porous inner material. Broken surfaces show significant amount of brown alteration products. **Petrography**: (D. Rezes, *CSFK*) The stone has chondritic texture with mostly well-defined chondrules. However, some chondrules show transition to less delineated state. Chondrules are relatively small, although some of them reach 2 mm in diameter. Igneous glass in chondrules is not observable. The texture is porous with pores up to 0.5 mm in diameter. FeNi metal and troilite show heavy oxidation without the alteration of mafic silicates. Olivine shows irregular fractures, the optical extinction is weakly undulatory. Shock veins are absent. Cl-apatite as accessory mineral is identified.

Geochemistry: (D. Rezes and M. Szabo, *CSFK*) Mineral chemistry: Olivine Fa_{16.81±0.45}, Fe/Mn=23.6±3.3, N=21; Low-Ca pyroxene $Fs_{14.90\pm0.61}Wo_{1.34\pm0.20}$, Fe/Mn=13.6±1.7, N=21; Feldspar Ab_{80.51±1.43}, N=11

Classification: Ordinary chondrite (H4/5), shock stage S2, weathering W3.

Specimens: 20 g on deposit at *CSFK*, N. Rezsabek holds the main mass including one polished thin section.

Northwest Africa 13269 (NWA 13269)

Mauritania

Purchased: 2019

Classification: HED achondrite (Eucrite, unbrecciated)

History: Purchased in December 2019 by Didi Baidari from a Mauritanian meteorite dealer. **Physical characteristics**: Two matching stones. Fusion crust typical of eucrites, black and shiny with swirls. Broken surface showing scattered phenocrysts of pyroxene up to 4mm in size all embedded in a grey matrix. The stone is unbrecciated.

Petrography: (T. Shisseh, *FSAC*) Fusion crust is 30-100 µm thick and penetrates the interior up to 1.5mm in some areas. Porphyritic texture with pyroxene phenocrysts up to 2-4 mm embedded in a matrix dominated by equilibrated pyroxene showing exsolution lamella with remnant-Ca zoning in rims plus variolitic and blocky plagioclase. Minor phases are silica, chromite, ilmenite and troilite. Pyroxene phenocrysts show rare tiny (~1um) chromite and high-Ca exsolution lamella with often plagioclase veinlets associated with chromite. Clouding is frequently observed in pyroxene and plagioclase located in the matrix. Pyroxenes have minute inclusions of plagioclase, troilite and chromite. Plagioclase clouding is mostly dominated by pyroxene inclusions. Mesostasis is present commonly located between plagioclase laths.

Geochemistry: (T. Shisseh, *FSAC* and C. Agee, *UNM*) Pyroxene phenocrysts $F_{s_{51\pm1.6}}W_{0_{2,4\pm0.7}}$, Fe/Mn=31±1, Mg#=47±1.7 (n=15); high-Ca pyroxene in matrix:

 $Fs_{25\pm7.5}$ Wo_{38±9.3} Fe/Mn=28±1.5, Mg#=58±5 (n=8); low-Ca pyroxene in matrix:

Fs_{48±5.2} Wo_{11.5±6}. Fe/Mn=30±0.8, #Mg=45±2 (n=3); plagioclase in matrix

An_{82±3.2}Ab_{15±2.8}Or_{2±2.5} (n=15); plagioclase veinlets in pyroxene phenocrysts An_{97±0.2}Ab_{2.7±0.18}Or_{0.07±0.07} (n=3). Chromite associated with plagioclase veinlets Chr67.8±1.7 Uvp7±1.5 Spl23±2.7 (n=3).

Classification: Unbrecciated eucrite

Specimens: 58.4 g including a probe mount on deposit at *UNM*, Didi Baidari and Habib Naji hold the main mass.

Northwest Africa 13270 (NWA 13270)

Algeria

Find: 2019 Feb 7

Classification: Ordinary chondrite (LL3.5)

History: Found by nomads in Algeria on 7 Feb 2019, purchased by Stephen Amara from Mustapha Hnini in Tindouf on 10 Oct 2019.

Physical characteristics: Single stone with dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*; A. Love, *App*) Sample is a chondrite composed of welldefined chondrules (Av. 815±50 μm, range 250-1802 μm, n=37) and a few dark, fine-grained inclusions (<5mm) set in an opaque matrix. Devitrified mesostasis is present in most chondrules while isotropic glassy mesostasis is relatively rare. Many chondrules are armored with sulfides and contain rounded globules of FeNi metal. (A. Love, *App*) Optical CL: Sample exhibits bright and distinct CL. Sample is dominated by chondrules with olivine displaying dull red luminescence (A5) and blue to blue-purple mesostasis (B2, B3), however the sample does contain 5% A2 chondrules. Chondrules with bright red luminescence lack the

prominant CL zoning seen in lower petrologic types. Chondrule rims and matrix show dim, dark red and blue CL (>type 3.4, <type 4).

Geochemistry: (D. Sheikh, *FSU*) Olivine (Fa_{18.2±11.1}, range Fa_{1.6-45.0}, CaO wt% =0.11±0.07, n=42), Cr₂O₃ in ferroan olivine (0.06±0.04 wt%, range 0.01-0.26, n=32), Low-Ca Pyroxene (Fs_{9.6±6.2} Wo_{0.5±0.4}, range Fs_{1.0-23.4} Wo_{0.2-1.5}, n=21).

Classification: Ordinary Chondrite (LL3.5) LL group is due to average chondrule diameter and magnetic susceptibility. Subtype 3.5 is due to numerous reasons: 1) While devitrified mesostasis may be more dominant in the chondrules, there is still primary isotropic glassy mesostasis contained within some chondrules as evident by the 5% of A2 chondrules (Dehart et al. 1992). 2) The Cr_2O_3 values and standard deviations for ferroan chondrule olivines plot in the 3.2 field for UOCs. 2) The measured fayalite and CaO values for chondrule olivines indicate a petrologic type <3.8 (Huss et al. 2006). Overall, the presence of primary glassy mesostasis and ferroan olivine containing low subtype Cr_2O_3 values in a small percentage of chondrules (5%) indicates that the peak metamorphic temperature or duration during thermal metamorphism of the sample was not enough to fully devitrify the primary glassy chondrule mesostasis throughout all of the chondrules, one of the observed features for subtype 3.6 (Dehart et al. 1992). Therefore, this sample is estimated to have a subtype of 3.5. **Specimens**: 7.65 grams at *UCLA*; main mass with Stephen Amara.

Northwest Africa 13271 (NWA 13271)

Northwest Africa

 Purchased: 2019 Aug

Classification: Ordinary chondrite (LL3.15)

History: Purchased in August 2019 by Fabien *Kuntz* from a meteorite dealer in Zagora. **Physical characteristics**: Single stone with dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) Sample is a chondrite composed of well-defined chondrules (Av. $800\pm50 \mu m$) and a few dark, fine-grained inclusions (<4mm) set in a completely opaque matrix. Most chondrules preserve their primary isotropic glassy mesostasis, although some contain devitrified mesostasis.

Geochemistry: Olivine (Fa_{17.1±8.3}, range Fa_{0.4-30.0}, CaO wt% =0.17±0.12, n=44), Cr₂O₃ in ferroan olivine (0.21±0.11 wt%, range 0.06-0.39, n=30), Low-Ca Pyroxene (Fsum and Wommer Party N_{0} and n=17)

 $(Fs_{11.5\pm6.1} Wo_{0.8\pm0.6}, range Fs_{2.5-21.0} Wo_{0.1-2.0}, n=17).$

Classification: Ordinary Chondrite (LL3.15) LL group is due to average chondrule diameter and magnetic susceptibility. Subtype 3.15 is based on 1) mean Cr_2O_3 value and standard deviation from ferroan olivines (Grossman and Brearley, 2005), similar to Y58, 2) The presence of a completely opaque matrix and primary isotropic glassy mesostasis in most chondrules, 3) The large observed range in Fa, Fs, and in CaO content of olivines (Huss et al., 2006).

Specimens: 4.25 grams at UCLA; main mass with Fabien Kuntz.

Northwest Africa 13272 (NWA 13272)

(Northwest Africa)

Purchased: 2019 Dec

Classification: Ungrouped achondrite

History: Found in Mauritania and purchased by Rachid and Jaouad Chaoui in December 2019 from a dealer in Zouerat, Mauritania.

Running Head

 Physical characteristics: The specimen lacks fusion crust and is coated by a shiny brown desert patina. Polished interior surfaces reveal the presence of rare tiny specks of partially altered metal.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) The specimen has a fine grained, poikilitic igneous texture. Composed predominantly of polysynthetically-twinned, compositionally-zoned pyroxene oikocrysts (with domains of orthopyroxene, pigeonite and subcalcic augite) enclosing chadacrysts of olivine, together with interstitial devitrified silicic glass (pale pink in thin section) plus accessory troilite (some Cr-bearing), Ti-poor chromite and very rare kamacite (some altered to Fe hydroxides). Olivine is preferentially stained pale orange in thin section, and there are some cross-cutting dilation veins filled with comminuted olivine and orthopyroxene. Minor secondary calcite and anhydrite are present.

Geochemistry: Olivine (Fa_{24.0-29.5}, N = 8), orthopyroxene (Fs_{17.9-19.0}Wo_{2.0-3.8}, N = 5), pigeonite (Fs_{18.9-19.0}Wo_{7.2-9.0}, N = 2), subcalcic augite (Fs_{12.2-12.6}Wo_{33.7-37.1}, N = 4). Oxygen isotopes (K. Ziegler, *UNM*): analyses of acid-washed bulk subsamples by laser fluorination gave, respectively, $\delta^{17}O$ 4.120, 4.159, 4.045; $\delta^{18}O$ 5.908, 6.096, 5.717; $\Delta^{17}O$ 1.001, 0.940, 1.026 per mil.

Classification: Achondrite (ungrouped, igneous, with oxygen isotopic affinity to L chondrites).

Specimens: 22.1 g including one polished thin section at *UWB*; remainder held by Mr. R. Chaoui and Mr. J. Chaoui.

Northwest Africa 13273 (NWA 13273)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (L6)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco, and later sold to Patrick Brown.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Extensively recrystallized specimen with rare remnant partial chondrules and altered metal grains.

Geochemistry: Olivine (Fa_{24.8±0.3}, range Fa_{24.5-25.3}, N = 5), low-Ca pyroxene

 $(Fs_{20.8\pm0.2}Wo_{1.3\pm0.3}, range Fs_{20.6-21.1}Wo_{1.0-1.7}, N = 5)$, augite $(Fs_{7.8\pm0.8}Wo_{44.5\pm0.8}, range Fs_{6.9-8.3}Wo_{43.5-45.1}, N = 3)$.

Classification: Ordinary chondrite (L6).

Specimens: 53.95 g including one polished thin section at *PSF*; main mass plus one polished thin section with Mr. P. Brown.

Northwest Africa 13274 (NWA 13274)

(Northwest Africa)

Purchased: 2019

Classification: Ungrouped achondrite

History: Purchased by Mark Lyon in December 2019 and January 2020 from two separate Moroccan dealers.

Physical characteristics: A total of eight similar-appearing brown stones (combined weight 255.5 g).

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Analysis of two different stones shows this material to be composed predominantly of larger grains (mean size ~0.6 mm) of finely-exsolved low-Ca and high-Ca pyroxenes plus polygranular calcic plagioclase, together

with accessory silica polymoprh, ferroan olivine, merrillite, chromite, ilmenite, Cr ulvöspinel, troilite and pentlandite (stained).

Geochemistry: Low-Ca pyroxene (Fs_{62.2-63.6}Wo_{6.3-6.8}, FeO/MnO = 60-65, N = 6), high-Ca pyroxene (Fs_{34.8-35.9}Wo_{38.1-39.1}, FeO/MnO = 60-69, N = 5), olivine (Fa_{72.1-82.0}, FeO/MnO = 90-100, N = 4), plagioclase (An_{84.8-88.2}Or_{0.3}, N = 3).

Classification: Achondrite (ungrouped). Paired with <u>NWA 011</u>, <u>NWA 2400</u>, <u>NWA 2976</u>, <u>NWA 4587</u>, <u>NWA 4901</u> and <u>NWA 8545</u>.

Specimens: 20.7 g including one polished thin section at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13275 (NWA 13275)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (L6)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco, and later sold to Patrick Brown.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Extensively recrystallized specimen with rare remnant partial chondrules and stained metal grains.

Geochemistry: Olivine (Fa_{24.9 \pm 0.6}, range Fa_{24.0-25.6}, N = 7), low-Ca pyroxene

(Fs_{20.7±0.2}Wo_{1.5±0.2}, range Fs_{20.4-21.0}Wo_{1.1-1.8}, N = 5), augite (Fs_{8.6±0.9}Wo_{43.8±0.9}, range Fs_{7.7-9.5}Wo_{43.0-44.8}, N = 3).

Classification: Ordinary chondrite (L6).

Specimens: 53.95 g including one polished thin section at *PSF*; main mass plus one polished thin section with Mr. P. Brown.

Northwest Africa 13276 (NWA 13276)

(Northwest Africa)

Purchased: 2019 Dec

Classification: Martian meteorite (Shergottite)

History: Four separate but identical-appearing stones were purchased in December 2019 independently by Aziz Habibi (2200 g, 772 g) and Rachid Chaoui (390g, 290 g) from dealers in Mali and Mauritania. Subsequently the 2200 g and 772 g stones were acquired by Darryl Pitt, and the 290 g stone was acquired by Dr. David Gregory.

Physical characteristics: The specimens lack fusion crust. Fresh interiors are relatively coarse grained and exhibit deep brown olivine grains accompanied by pale green pyroxene and sparkling interstitial maskelynite.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Poikilitic texture (mean grainsize 0.7 mm). Composed predominantly of compositionally-zoned pyroxene oikocrysts (with domains of pigeonite and subcalcic augite) enclosing chadacrysts of shock-darkened olivine (with limited compositional zoning), accompanied by lath-like maskelynite and accessory Tipoor chromite, Ti-chromite, ilmenite, merrillite, pyrrhotite, pentlandite and baddeleyite. Melt inclusions are present within olivine grains. Small shock melt pockets are present and minor secondary barite was observed.

Geochemistry: Olivine (Fa_{33.1-37.1}, FeO/MnO = 46-53, N = 14), zoned olivine (core Fa_{40.4}, rim Fa_{35.2}, FeO/MnO = 51-53), pigeonite cores (Fs_{21.5-22.8}Wo_{3.4-7.6}, FeO/MnO = 27-32, N = 7), subcalcic augite cores (Fs_{15.5-18.5}Wo_{27.6-33.1}, FeO/MnO = 25-27, N = 4), pigeonite rims (Fs_{23.0-30.0}Wo_{8.6-14.0}, FeO/MnO = 27-30, N = 7), subcalcic augite rims (Fs_{15.6-16.4}Wo_{32.5-36.7}, FeO/MnO = 23-26, N = 3), maskelynite (An_{57.5-59.5}Or_{1.6-0.9}, N = 6). **Classification**: Shergottite (poikilitic).

Specimens: 21.5 g including one polished thin section at *UWB*; remainder with Mr. A. Habibi, Mr. R. Chaoui and Dr. D. Gregory.

Northwest Africa 13277 (NWA 13277)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (L, melt rock)

History: Purchased by Mark Lyon in December 2019 and January 2020 from a single Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) The specimen has an igneous texture and is moderately vesicular. Composed predominantly of compositionally-zoned olivine and polysynthetically-twinned low-Ca pyroxene with subordinate higher-Ca pyroxenes, sodic plagioclase, troilite, minor chromite and interstitial quenched glassy mesostasis. Much of the olivine is poikiliticially enclosed in pyroxene. Metal is almost completely absent except for one occurrence of kamacite in a large troilite grain. Minor secondary barite was observed.

Geochemistry: Olivine (Fa_{25.4±3.0}, range Fa_{22.1-30.3}, N = 9), low-Ca pyroxene (Fs_{22.2±0.2}Wo_{3.2±0.4}, range Fs_{22.02.9-3.6-22.4}Wo, N = 3), subcalcic augite (Fs_{17.4-23.0}Wo_{30.3-33.3}; Fs_{39.7}Wo_{36.2};N = 3), augite (Fs_{34.3}Wo_{44.9}), fayalite in matrix (Fa_{87.5}), plagioclase (Ab_{77.3-84.3}An_{15.3-6.0}Or_{7.4-9.8}, N = 2).

Classification: Ordinary chondrite (L-melt rock, vesicular, metal-poor). This material has some similarities to <u>NWA 11253</u>, although the metal content is much lower.

Specimens: 20.1 g including one polished thin section at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13278 (NWA 13278)

(Northwest Africa)

Purchased: 2019 Nov

Classification: Enstatite achondrite (Aubrite)

History: Purchased by Zaid Sbitti in November 2019 from a dealer in Ouargla, Algeria. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of large clasts of enstatite (with diopside exsolution lamellae) and subordinate forsterite set within a finer grained matrix composed of enstatite, sodic plagioclase, Cr-troilite, niningerite and Si-bearing kamacite.

Geochemistry: Enstatite (Fs_{0.0-0.1}Wo_{0.9-1.1}, N = 2), diopside (Fs_{0.0-0.1}Wo_{44.4-45.8}, N = 2), forsterite (Fa_{0.0±0.0}, N = 2), plagioclase (Ab_{86.1}An_{0.5}Or_{13.4}), kamacite (Ni = 3.0 wt.%, Si = 3.1 wt.%), troilite (Cr = 2.8 wt.%).

Classification: Aubrite.

Specimens: 24.7 g in the form of a polished endcut at *UWB*; remainder held by Mr. L. Ouabicha and Mr. Z. Sbitti.

Northwest Africa 13279 (NWA 13279)

(Northwest Africa) Purchased: 2019 Apr Classification: Carbonaceous chondrite (CV3) **History**: Purchased by Mark Lyon in April 2019 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed PO and BO chondrules (apparent diameter $890 \pm 400 \ \mu m$, N = 24) and irregularly-shaped, very fine grained CAI are set in fine grained matrix (~20 vol.%, deep reddish sepia brown in thin section).

Geochemistry: Olivine in chondrules (Fa_{11.8±14.2}, range Fa_{0.4-38.2}, N = 7), low-Ca pyroxene (Fs_{7.7±6.0}Wo_{2.2±1.3}, range Fs_{0.8-12.2}Wo_{1.0-3.6}, N = 3), olivine in matrix (Fa_{49.8-53.6}, N = 2), diopside (Fs_{0.5}Wo_{43.8}; Fs_{0.5}Wo_{49.0}; N = 2), plagioclase (An_{81.6-88.0}Or_{0.0}, N = 2).

Classification: Carbonaceous chondrite (CV3).

Specimens: 20.9 g including one polished thin section at *UWB*; 1418 g main mass with Mr. C. Shipbaugh; remainder with Mr. M. Lyon.

Northwest Africa 13280 (NWA 13280)

(Northwest Africa)

Purchased: 2019 Jun

Classification: HED achondrite (Eucrite, polymict)

History: Purchased by Mbark Arjdal in June 2019 from an Algerian dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Complex breccia composed of crystalline debris from several different types of eucrite together with minor (< 10 vol.%) diogenitic orthopyroxene. Major minerals are exsolved and unexsolved low-Ca, predominantly pigeonitic pyroxenes (some more magnesian, others more ferroan) and calcic plagioclase with accessory augite, silica polymorph, ilmenite, Ti chromite and troilite. **Geochemistry**: Diogenitic orthopyroxene (Fs_{24.3}Wo_{2.7}; Fs_{27.8}Wo_{4.1}; FeO/MnO = 25-29, N = 2), more magnesian low-Ca pyroxene (Fs_{34.7-39.4}Wo_{4.5-8.4}, FeO/MnO = 27-33, N = 3), more ferroan low-Ca pyroxene (Fs_{47.9-55.4}Wo_{16.4-4.6}, FeO/MnO = 29-33, N = 4), augite (Fs_{18.4}Wo_{44.3},

FeO/MnO = 25), fayalite (Fa_{75.3}, FeO/MnO = 44), plagioclase (An_{89.4-92.0}Or_{0.5-0.3}, N = 3). **Classification**: Eucrite (polymict breccia).

Specimens: 27.2 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13281 (NWA 13281)

Niger

Find: 2019

Classification: Ordinary chondrite (L5)

History: Found by nomads in Niger in 2019. Later purchased by Jesper Gronne from a Moroccan dealer in October 2019.

Physical characteristics: Sample contains a dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) Sample is an equilibrated ordinary chondrite with blurred chondrule boundaries (Av. 750 \pm 50 μ m, n=7) and contains olivine, orthopyroxene, kamacite, taenite, troilite, chromite, merrillite, chlorapatite, iron oxides, and secondary recrystallized plagioclase (20 \pm 10 μ m).

Geochemistry: Olivine (Fa_{22.8±0.3}, range Fa_{22.2-23.2}, n=30), Orthopyroxene (Fs_{19.5±0.3}Wo_{1.3±0.2}, range Fs_{19.1-20.1}Wo_{1.0-1.6}, n=30).

Classification: Ordinary Chondrite (L5) based on Fa and Fs homogeneity, secondary recrystallized plagioclase grain size, and magnetic susceptibility.

Specimens: 55.73 grams at UCLA; main mass with Jesper Gronne.

Northwest Africa 13282 (NWA 13282)

Western Sahara

Find: 2018

Classification: Ordinary chondrite (L3)

History: Found in Western Sahara in late 2018. Purchased on January 11, 2019, by John Higgins from a meteorite dealer in Morocco.

Physical characteristics: Single stone with dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) Sample is a chondrite composed of well-defined chondrules (Av. 750±50 μm) set in a dark, fine-grained matrix containing silicates, Fe-Ni metal, troilite, and chromite. Most chondrules contain devitrified mesostasis.

Geochemistry: Olivine (Fa_{22.1±5.7}, range Fa_{3.1-28.7}, n=26), Low-Ca Pyroxene

 $(Fs_{14.0\pm 5.8}Wo_{0.8\pm 0.5}, range Fs_{2.2-20.4}Wo_{0.2-2.2}, n=16).$

Classification: Ordinary Chondrite (L3) due to chondrule size, Fa,Fs heterogeneity, and magnetic susceptibility.

Specimens: 22.25 grams at UCLA; main mass with John Higgins.

Northwest Africa 13283 (NWA 13283)

(Northwest Africa)

Purchased: 2019

Classification: Lunar meteorite

History: In July 2019, Marc Jost purchased 8 fragments totaling 200.6 g from Aziz Mouadine in Rissani, Morocco.

Physical characteristics: Samples are angular in shape and are coated with a yellowish orange layer of caliche that covers the exterior. The samples have a dark-colored exterior with white-grey, angular clasts. The interior shows light colored brecciated clasts in a dark-colored, micro-vesicular matrix.

Petrography: Sample is a clast-supported breccia composed of: mm-cm-sized, angular micro-gabbroic and rare basaltic lithic fragments; mineral clasts of olivine, exsolved pigeonite, orthopyroxene and anorthite; impact melt breccias; quenched glassy fragments; and schlieren-textured, micro-vesicular glassy breccias (agglutinates) set within a fine-grained matrix. Additional minerals include: ilmenite, chromite, FeNi fragments and troilite.
Geochemistry: (A. Love, *App*) Olivine (Fa_{9.5-53.6}, Fe/Mn=72.4-89.2, n=12), low-Ca pyroxene (Fs_{26.4-54.2}Wo_{2.0-4.7}, Fe/Mn=53.0-60.3 n=8), pigeonite (Fs_{30.5-39.7}Wo_{7.6-18.0}), high-Ca pyroxene exsolution lamellae (Fs_{12.9-27.9}Wo_{36.9-41.4}, n=9), plagioclase (An_{96.4-98.3}Or_{0.0}, n=10).
Classification: Lunar (anorthosite regolith breccia). Fe/Mn ratios in and pyroxene and anorthite compositions suggest this is a lunar sample. Textures and mineralogy suggest

sample is an anorthositic regolith breccia. **Specimens**: Marc Jost (*SJS*) holds the main masses. A polished thin section and mount and fragment weighing 20.1 g are on deposit at *App*.

Northwest Africa 13286 (NWA 13286)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Howardite)

History: A 1050 g sample was found in Morocco. Thierry Simard purchased the sample at a market in Agadir, Morocco in October 2019.

Physical characteristics: Sample is light-brown in color and has an irregular shape.

Approximately 30% of the sample is covered by a dark-brown, wind-ablated fusion crust. The cut face shows the interior is a breccia composed of a heterogeneous mixture of lithic clasts and fragmental mineral debris.

Petrography: Description and classification (A. Love, *App*): Sample is a polymict breccia composed of 0.5-2 cm rounded-angular, unequilibrated (pyroxenes show zonation) and equilibrated lithic and mineral clasts. Sample contains a heterogeneous mixture of dominant (77 vol %) equilibrated basaltic and cumulate lithologies, subordinate (23 vol%) heterogeneous diogenites, impact melt clasts and symplectites. Eucritic clasts and mineral fragments contain exsolved pyroxenes and some contain fayalitic veins. Additional minerals

are olivine, ilmenite, chromite, Si-polymorphs, troilite, apatite, ferroan pigeonite.

Geochemistry: (A. Love, *App*): Diogenite clasts: low Ca pyroxene (Fs_{27.7±4.4}Wo_{2.5±0.9}(Fs_{22.3-32.8}Wo_{1.2-3.8}), Mg# 71.6±4.6, Fe/Mn=30.0±2.1, n=6); eucrites: low Ca pyroxene (Fs_{49.8±10.9}Wo_{3.6±0.0} (Fs_{38.9-62.8}Wo_{1.6-7.0}), Fe/Mn=30.1±1.9, n=7); high Ca pyroxene exsolution lamellae (Fs_{36.8±10.1}Wo_{33.7±9.5} (Fs_{27.9-49.8}Wo_{22.1-42.8}), Fe/Mn=30.3±2.8, n=6); plagioclase (An_{91.2±2.4} Or_{0.6±0.2}), n=6.

Classification: HED achondrite (Howardite). Textures, mineral compositions and modal estimates of clastic debris (Fe/Mn ratios) indicate this sample is a howardite.

Specimens: Thierry Simard holds the main mass. A polished thin section and a 20.3 g type specimen are on deposit at *App*.

Northwest Africa 13287 (NWA 13287)

(Northwest Africa)

Purchased: 2017

 Classification: HED achondrite (Eucrite)

History: Marc Jost (*SJS*) purchased the 705.4 g sample from Aziz Mouadine August 17, 2017, in Brügg, Switzerland.

Physical characteristics: The sample has a tabular shape and is ~45% coavered by a darkcolored glossy fusion crust. The leading edge is decorated with radial flow lines. The cut face of the sample is light grey in color, unbrecciated, shows flakes of metal and has an interlocking crystalline texture.

Petrography: Description and Classification (A. Love, *App*) Sample has a fine-grained (avg. grain size 0.5 mm) granoblastic texture with anhedral crystals of: exsolved pyroxene (49 vol%); twinned plagioclase (43 vol%); Si polymorph (6 vol%); ilmenite (1 vol%) and Fe metal (1 vol%). Accessory minerals are: chromite and troilite and rare phosphates.

Geochemistry: (A. Love, *App*): Low-Ca pyroxene ($Fs_{60.3\pm0.4}Wo_{2.7\pm0.5}$, Fe/Mn=27.2±0.3, Mg#38.8±0.6, n=6); high-Ca pyroxene ($Fs_{27.7\pm0.3}Wo_{42.4\pm0.2}$, Fe/Mn=27.2±0.5, n=6); plagioclase (An_{92.8\pm0.2}Or_{0.2±0.0}, n=5).

Classification: HED Achondrite (Eucrite). Based on recrystallized texture, equilibrated compositions, Fe/Mn and Mg# of orthopyroxenes, this sample is an unbrecciated, equilibrated basaltic eucrite M-S2 (Stoffler et al., 2018), low weathering.

Specimens: Marc Jost (*SJS*) holds the main mass. A 26.2 g type specimen and a polished thin section are on deposit at *App*.

Northwest Africa 13288 (NWA 13288)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Eucrite)

History: Marc Jost (*SJS*) purchased the 633 g sample in June 2019 from Aziz Mouadine at the St. Marie aux Mines show, France.

Physical characteristics: Approximately 40% of this irregular-shaped stone is coated by a dark-brown, weathered fusion crust. The cut face shows the sample is a breccia composed of light- to dark-gray, cm-sized igneous-textured clasts.

Petrography: Description and classification (A. Love, *App*) Sample is a breccia composed of irregularly shaped, up to 3 cm, porphyritic (32 vol%) to basaltic (13 vol%) textured eucrite clasts, diogenite clasts (5 vol%) and vitrophyric shock-melted clasts (10 vol%) surrounded by a comminuted matrix of similar materials. Porphyritic eucrites display quenched textures composed of subequal amounts of up to 1 mm to 1 cm long, prismatic, hollow weakly-zoned, low-Ca pyroxene ("soda straw" texture) phenocrysts set within variolitic textured groundmass of 0.5 mm euhedral plagioclase laths. Basaltic clasts display intersertal texture composed of similar pyroxene morphologies and larger (1 mm avg. long dimension) skeletal - lath-shaped plagioclase that occur in a radial arrangement around pyroxenes. Diogenite occurs as unbrecciated, mosaicized crystalline fragments and a brecciated olivine and plagioclase-bearing lithology. Accessory minerals are a silica polymorph, ilmenite, chromite, troilite and phosphates.

Geochemistry: (A. Love, *App*): Diogenite: low Ca-pyroxene (Fs_{34.2±4.1}Wo_{3.4±0.6}, Mg#64.5±4.4, Fe/Mn=31.3±0.8, n=6); olivine (Fa_{43.0}, Fe/Mn=45.9, n=1). Basaltic clast: pigeonite (Fs_{40.1±3.1}Wo_{16.3±5.0}, Mg#52.5±1.7, Fe/Mn=28.1±0.1, n=3); plagioclase (An_{93.4±1.4}Or_{0.1±0.1}, n=2). Quenched clasts: pigeonite (Fs_{43.8±2.4}Wo_{8.2±2.2}, Mg#52.2±3.0, Fe/Mn=27.8±0.8, n=6); augite (Fs_{24.1}Wo_{40.2}, Fe/Mn=25.7, n=1); plagioclase (An_{81.4±2.8}Or_{1.2±0.4}, n=8).

Classification: HED achondrite (polymict eucrite breccia). Based on textures and Fe/Mn ratios within pyroxenes, this sample is an HED breccia. Clast lithologies suggest this is a polymict eucrite breccia, low weathering level, MS-2 (Stöffler et al., 2018).

Specimens: Marc Jost (*SJS*) holds the main mass. A single slice weighing 21.88 g and a polished thin section and mount are on deposit at *App*.

Northwest Africa 13289 (NWA 13289)

(Northwest Africa)

Purchased: 2019

Classification: Martian meteorite (Shergottite)

History: Marc Jost (*SJS*) purchased the 387.4g sample from Aziz Mouadine in Rissani, Morocco, in July, 2019.

Physical characteristics: Sample is irregular in shape and has a dark-brown, wind ablated surface. One portion of the stone contains a coating of orange caliche. The cut face shows an igneous texture composed of light greenish-gray colored interlocking crystals.

Petrography: Description and Classification (A. Love, *App*) Sample has an diabasic texture composed of 62 vol% chaotically-zoned, prismatic pyroxenes (568 μm avg. length), 34 vol% lath-shaped maskelynite (781 μm in length), Fe-Ti oxides with ilmenite lamellae, 2 vol% merrillite, mesostasis, pyrrhotite. Some pyroxenes show ~1um exsolution lamellae.

Maskelynite is zoned with K-bearing rims (An₄₅Or₄) and more calcic cores (An₄₉Or₂). **Geochemistry**: (A.Love, *App*) Pyroxenes show two compositional trends: pigeonite (Fs_{35.7}- 59.1Wo_{9.9-20.8}, average Fs_{48.2±7.9}Wo_{15.2±3.6}, Fe/Mn=35.2±2.6, n=21) and augite (Fs_{20.0-46.7}Wo_{36.5-28.5}, average Fs_{48.2±6.8}Wo_{32.3±2.0}, Fe/Mn=30.3±3.0, n=26). Ferropigeonite (Fs_{67.7±2.9}Wo_{17.1±0.1}, Fe/Mn=36.8±1.8, n=2). Maskelynite (An_{47.5±5.2}Or_{2.7±1.7}, n=18).

Classification: Martian (basaltic shergottite). Based on chaotic patchy zonation, distinctive compositions and Fe/Mn ratios of pyroxenes and compositions of maskelynite, this sample is a martian meteorite. Mineralogy and textures suggest this is a basaltic shergottite, M-S4 (Stöffler et al., 2018) low weathering grade.

3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
28
29
20
21
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
45 46
40
47
48
49
50
51
52
52
55
54
55
56
57
58
50
55

1 2

Specimens: Marc Jost (*SJS*) holds the main mass. A polished thin section, an endcut, a slice and few fragments weighing 21.87 g are on deposit at *App*.

Northwest Af Algeria	rica 13290 (NWA 13290)
Find: 2019	Apr
Classification	n: Ordinary chondrite (H6)
History: Purcl	ased in June 2019 by Juan Aviles Poblador from a meteorite dealer in Algeria
Physical char	acteristics: Sample has a slightly weathered fusion crust.
Petrography :	(D. Sheikh, FSU) Sample is an equilibrated chondrite containing blurred
chondrules (0.	2-1.1mm, n=5), secondary recrystallized albitic feldspar (Av. 62±5 μm),
troilite, kamac	te, Fe oxides, chlorapatite, and chromite.
Geochemistry	: Olivine (Fa _{18.8±0.3} , range Fa _{18.3-19.2} , n=23), Low-Ca Pyroxene
$(Fs_{16.3\pm0.2}Wo_{1.2})$	± 0.2 , range Fs _{16.2-16.5} Wo _{0.8-1.4} , n=8).
Classification	Ordinary Chondrite (H6)
Specimens: 20	.62 grams at UCLA; main mass with Juan Aviles Poblador.
Northwest Af	rica 13291 (NWA 13291)
(Northwest	Africa)
Purchased:	April 2019
	n: Ordinary chondrite (H5)
History: Purci	ased by Juan Avries Poblador in April 2019 from a meleorite dealer in
Physical char	atoristics: Single stone with dark brown fusion crust
Potrography:	(D. Sheikh, ESU) Sample is an equilibrated chondrite containing blurred
chondrules (0	(D. Sherkii, FSO) sample is an equinorated chondrice containing burned (1.1 mm, n=6), secondary recrystallized albitic feldsnar (Ay, 15+5 µm)
troilite kamac	te Fe-oxides and chromite
Geochemistry	: Olivine (Falable), range Falze $n=27$) Low-Ca Pyroxene
$(F_{S_{15}}, 0, 0, 2W_{01})$	102 range Fs ₁₅ (10.1W000.1.2, n=5)
Classification	Ordinary Chondrite (H5)
Specimens: 38	.3 g at UCLA; main mass with Juan Aviles Poblador.
1	
Northwest Af	rica 13292 (NWA 13292)
Algeria	
Find: 2019	
Classification	on: Ordinary chondrite (H3)
History: Acqu	ired by Juan Aviles Poblador in 2019 from Brahim Tahiri in Morocco.
Physical char	acteristics: Two stones with dark-brown fusion crust.
Petrography:	(D. Sheikh, <i>FSU</i>) Sample is a chondrite containing abundant chondrules (Av.
450±50 μm), t	oilite, kamacite, Fe-oxides, and chromite in an opaque matrix.
Geochemistry	: Olivine (Fa _{17.2\pm3.6} , range Fa _{2.8-21.1} , n=30), Low-Ca Pyroxene
$(Fs_{13.9\pm 3.9}Wo_{1.1})$	$\pm_{0.5}$, range Fs _{4.5-18.6} Wo _{0.3-2.5} , n=33).
Classification	Ordinary Chondrite (H3)
C	

Northwest Africa 13293 (NWA 13293)

Running Head

2	
3	Algeria
4	Find: 2010
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	Classification: Ordinary chondrite (LL3)
7	History : Purchased by Stephen Amara from Mustapha Hnini on 11/5/2019.
, 8	Physical characteristics : Single stone with dark-brown fusion crust
0	Detrography: (D. Shaikh, ESL) Sampla is a abandrita containing abundant abandrulas (Ay
9	retrography. (D. Sheikh, FSO) Sample is a chondrife containing abundant chondrules (Av.
10	$750\pm50 \mu\text{m}$), troilite, Fe-oxides, and chromite in an opaque matrix.
11	Geochemistry: Olivine (Fa _{18.3±10.8} , range Fa _{0.8-39.2} , n=50), Low-Ca Pyroxene
12	$(F_{S_{19},5+6,5}W_{01,2+0,7}, range F_{S_{2},5,28,7}W_{00,2,2,6}, n=1.5)$
13	Classification: Ordinary Chondrite (II 3)
14	Classification: Ordinary Chondric (LLS)
15	Specimens : 20.98 g at UCLA; main mass with Stephen Amara.
16	
17	
18	Northwest Africa 13294 (NWA 13294)
19	(1) (1)
20	(Northwest Africa)
21	Purchased: 2018
27	Classification: HED achondrite (Eucrite)
22	History: Purchased by Shawn Kashay in 2018 from Mustapha Hnini in Algeria
23	Dhysical abaractoristics: Single stone with miner fusion crust
24	r nysical characteristics. Single stone with minor fusion crust.
25	Petrography : (D. Sheikh, FSU) Sample is a fine-grained eucrite containing low-calcium
26	pyroxene, pigeonite, augite, calcic plagioclase, silica glass, Si-Al-Ca rich glass, and ilmenite.
27	Minor secondary calcite weathering veins present
28	Coochemistry: Low-Canvroyene (Escara a Work and range Escara a Work a da
29	Geoenemistry . Low-Ca pyroxene ($15_{60,7\pm1.9}$ w $0_{2,6\pm0.8}$, range $15_{58,1-64,6}$ w $0_{1,3-4,1}$,
30	FeO/MnO= 30 ± 2 , n=16); pigeonite (Fs _{53.2±3.1} Wo _{12.1±3.0} , range Fs _{48.1-56.7} Wo _{7.6-17.2} ,
31	FeO/MnO=31 \pm 4, n=9); augite (Fs _{28.7\pm4.6} Wo _{38.7\pm3.7} , range Fs _{23.3-34.9} Wo _{31.4-42.2} , FeO/MnO=30 \pm 3,
32	n=8); calcic plagioclase (An _{89 8+2 4} , range An _{85 8-96 7} , n=26).
33	Classification: HED achondrite (Eucrite)
34	Snaaimana: 5.25 grams at LICL 4: main mass with Shawn Kashay
35	Specimens. 5.55 grains at OCLA, main mass with Shawn Kashay.
36	
37	
38	Northwest Africa 13295 (NWA 13295)
20	Algeria
39	F: 1 2010
40	Find: 2019
41	Classification: Carbonaceous chondrite (CV3)
42	History : Purchased by Stephen Amara from Mustapha Hnini in Algeria on 26 Dec 2019.
43	Physical characteristics: Single stone with dark-brown fusion crust
44	Detrography: (D. Shaikh, ESL) Sample is a shandrite containing shundant shandrulas (Ay
45	Petrography . (D. Sheikh, FSO) Sample is a chondrife containing abundant chondrules (Av.
46	1.2 ± 0.1 mm), CAIs (Av. 1.4 ± 0.1 mm), and Fe-oxides in an opaque matrix.
47	Geochemistry: Olivine (Fa _{30.0±21.2} , range Fa _{5.7-63.4} , n=44), Low-Ca Pyroxene
48	$(F_{S_{4,2+1},5}W_{O_{2,4+0,0}}, range F_{S_{2,0,6,4}}W_{O_{1,6,2,5}}, n=8)$
49	Classification: Carbonacoous Chondrite (CV2, CVOx A subgroup) Lack of Eq. Ni motal
50	Classification. Carbonaccous Chondrife (CV3, CVOXA subgroup). Lack of re-INI metal
51	points to the oxidized subgroup. Magnetic susceptibility points to CVOXA subgroup (Bonal et
52	<u>al., 2020</u>).
53	Specimens: 27.27 grams at UCLA; main mass with Stephen Amara.
55	, , , , , , , , , , , , , , , , , , ,
54 55	
55	
50	Northwest Africa 13296 (NWA 13296)
5/	Algeria
58	Find: 2019
59	

Classification: HED achondrite (Eucrite, brecciated)

History: Purchased by Matthew Stream in 2019 from a meteorite dealer in Algeria. **Physical characteristics**: Single stone with minor fusion crust.

Petrography: (D. Sheikh, FSU) Sample is a brecciated eucrite containing low-calcium pyroxene, pigeonite, augite, calcic plagioclase, ilmenite, SiO₂ glass, troilite, fayalite, zircon, chromite (some with Ti), and baddeleyite.

Geochemistry: Low-Ca pyroxene (Fs_{60.5±1.1}Wo_{2.1±0.5}, range Fs_{57.2-62.7}Wo_{1.5-4.2},

FeO/MnO=32±3, n=60); pigeonite (Fs_{54.6±3.5}Wo_{10.8±4.1}, range Fs_{46.4-58.1}Wo_{6.5-18.3},

FeO/MnO=33±3, n=10); augite (Fs_{26.7±2.3}Wo_{42.5±2.8}, range Fs_{25.2-32.5}Wo_{35.8-45.4},

FeO/MnO=32±3, n=12); calcic plagioclase (An_{85.1±3.0}, range An_{79.1-92.7}, n=50), Ilmenite

(Fe/(Fe+Mg)=97.8±0.3, n=4); fayalite (Fa_{80.1}, n=1).

Classification: HED achondrite (Eucrite, brecciated)

Specimens: 22.51 grams at UCLA; main mass with Matthew Stream.

Northwest Africa 13297 (NWA 13297)

Algeria

Purchased: 2020

Classification: Ordinary chondrite (LL3)

History: A sample comprised of many weathered pieces weighing 1973 g were found by meteorite prospectors in Algeria and sold to Mohamed Elguirah in Laayoune, Morocco. John Higgins and Carlos Muñecas Muñoz purchased the samples in 2020.

Physical characteristics: Most samples are tabular in shape. One sample has an irregular ovoid shape with a dark brown weathered exterior. The cut face of the irregular sample shows a fresh, unweathered interior composed of abundant chondrules surrounded by fine-grained sulfide rims. FeNi grains occur within the interiors of chondrules. The unweathered interior is surrounded by a well-developed weathering rind with concentric cracks that surround unweathered interior. Material in the weathering rind is identical to tabular samples. **Petrography**: Description and classification (A. Love, *App*) Sample has a chondritic texture composed of distinct, close-packed chondrules with an average apparent diameter of 763 μ m (n=77) set within an opaque fine-grained, clastic matrix. Chondrules are surrounded by fine-grained rims of sulfide and have mesostasis commonly composed of isotropic glass and devitrified glass (dominant). Additional minerals are troilite, apatite and secondary calcite. **Geochemistry**: (A. Love, *App*) Olivine (Fa_{16.7±10.2} (Fa_{0.6-30.1}), Fe/Mn=36.6±11.8, n=12. Cr₂O₃ in type II chondrules has an average of 0.22±0.10, n=10); low Ca-pyroxene (Fs_{12.9±10.1}Wo_{0.9±0.6} (Fs_{1.7-34.5}Wo_{0.2-2.5}), n=10).

Classification: Ordinary chondrite (LL3, C-S3, W1-3) Based on chondrule size and magnetic susceptibility this sample is an LL chondrite. Estimated subtype for this sample is between 3.15 and 3.2 based on unequilibrated compositions, presence of isotropic glass mesostasis (<3.3), yellow CL in chondrule mesostasis (3.1-3.2) and presence of red luminescence in chondrule olivine <3.5) and low CL of matrix (>3.1).

Specimens: John Higgins holds 1213 g including the 250 g main mass and Carlos Muñoz holds and additional 760 g of tabular fragments. Many spalled tabular fragments and an endcut weighing a total of 130 g are and a polished thin section are on deposit at *App*.

Northwest Africa 13298 (NWA 13298)

Morocco Purchased: 2020 Classification: Ordinary chondrite (LL3)

History: Fabien *Kuntz* purchased the 730 g sample in Errachidia, Morocco, from a meteorite prospector in 2020.

Physical characteristics: Sample is brownish-yellow in color, has a rounded, irregular shape and displays a heavily sand-blasted interior which shows chondrules up to cm in size.

Abundant chondrules and clasts are visible on the cut face showing the interior of the sample. **Petrography**: Description and classification (A. Love, *App*) Sample is a breccia composed of unequilibrated type 3 clasts in a host type 3 material. Host is composed of distinct, closepacked 805µm (avg. dia.) chondrules in opaque matrix. Chondrules with isotropic glass are present, but devitrified mesostasis is dominant. Clasts contain unequilibrated chondrules set in a transparent and brecciated matrix.

Geochemistry: (A. Love, *App*) Host: Olivine (Fa_{16.8±11.9} (Fa_{0.7-38.7}), Fe/Mn=50.3±22.2, n=11. Mean Cr₂O₃ in type II 0.08 Wt% and sigma of 0.05, n=9); low Ca-pyroxene (Fs_{16.2±13.6}Wo_{1.0±0.6} (Fs_{2.1-28.9}Wo_{0.3-2.0}), n=10). Clast A: olivine (Fa_{14.5±5.2}, n=4); low Ca

pyroxene (Fs_{15.2}Wo_{1.3}, n=1). Clast B: Olivine (Fa_{10.8±4.9}, n=2); low Ca pyroxene (Fs_{17.9±0.7}Wo_{0.5+}/-0.1, n=2).

Classification: Ordinary chondrite (LL3, C-S3, W2) Based on texture, chondrule size and magnetic susceptibility this sample is an LL chondrite breccia. Estimated subtype for this sample is 3.5 based on unequilibrated compositions, presence of isotropic glass mesostasis (3.4-3.5), lack of yellow CL in chondrule mesostasis (>3.4) and presence of red luminescence in chondrule olivine >3.5). Clasts A & B are type 3 (>3.5) based on unequilibrated olivine compositions and CL signatures.

Specimens: Fabien *Kuntz* holds the main mass. A thick slice and several smaller slices and fragments comprise the 36.43g type specimen. A polished thin section and mount are on deposit at *App*.

Northwest Africa 13299 (NWA 13299)

Algeria

Purchased: 2020

Classification: Enstatite chondrite (EH3)

History: Fabien *Kuntz* purchased the 298.8 g sample from a nomad in Tindouf, Algeria, in 2020.

Physical characteristics: Sample has a brown weathered exterior, is irregular in shape, and has a distinctive odor of sulfur during cutting, grinding and polishing operations. The interior of the sample is metal-rich. Abundant small light-gray chondrules are visible on the cut face. **Petrography**: Description and classification (A. Love, *App*): Sample shows a chondritic texture composed of ovoid chondrules and fragments with an average apparent diameter 299 μ m (n=66) set within a fine-grained clastic matrix composed of opaques and silicates. Sample contains poikilitic chondrules with olivine chadacrysts and porphyritic chondrules contain clear isotropic mesostasis. Additional minerals are: daubréelite, niningerite, schreibersite, djerfisherite, rudashevskyite, troilite (2wt% Cr), perryite, Si polymorph, albitic plagioclase. Si-bearing kamacite has an average of 2.41 wt% Si.

Geochemistry: (A. Love, *App*) Low-Ca pyroxene, $Fs_{4.1\pm4.3}Wo_{0.6\pm0.5}$ ($Fs_{0.6-16.9}Wo_{0.2-2.4}$, n=18); olivine, $Fa_{0.6\pm0.2}$, $Cr_2O_3=0.3\pm0.1$ ($Fa_{0.4-0.9}$, n=7).

Classification: Enstatite chondrite (EH3, C-S3, W2). Textures, mineralogy, mineral chemistry, cathodoluminescence, chondrule diameters and magnetic susceptibility indicate this sample is an unequilibrated EH chondrite.

Specimens: Fabien *Kuntz* holds the main mass. A 31.27 g slice and polished thin section are on deposit at *App*.

Northwest Africa 13300 (NWA 13300)

Ouargla, Algeria Purchased: 2019

6

7

8

9 10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25 26

27

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47 48

49

50

51

52

53

54 55

56

57

58

Classification: Ordinary chondrite (L5)

History: The 20.5 g fragment was found by a Bedouin named Bobakar in Ouargla, Algeria, in February of 2018. Dave Lehman and his partner acquired the sample in 2019.

Physical characteristics: Sample is ovoid in shape and has a dark-brown, wind-ablated surface. The interior of the stone is crystalline and shows sparse weakly discernible chondrules and fragments.

Petrography: Classification and Description (A. Love, *App*): Sample has a recrystallized chondritic texture composed of indistinct chondrules and secondary plagioclase with an avg. crystal length of $39\mu m$ (n=18). Chondrules have an avg. apparent diameter $1028\mu m$ (n=12). Additional minerals are chromite, apatite, secondary calcite.

Geochemistry: (A. Love, App) Olivine (Fa_{25.2±1.3}, Fe/Mn=46.4±2.4, n=3), low-Ca pyroxene $(Fs_{21,6\pm0.3}Wo_{1,4\pm0.1}, n=3).$

Classification: Ordinary chondrite (L5 C-S2 W3) Based on compositions of ferromagnesian minerals, sample is an L chondrite. Based on grainsize of secondary plagioclase this is an L5. Specimens: Dave Lehman and his partner hold the main mass. A 4.37 g slice and polished mount are on deposit at App.

Northwest Africa 13302 (NWA 13302)

Purchased: 2020

Classification: Mesosiderite- A3

History: The 402.8 g sample was found in Morocco. Fabien *Kuntz* purchased the sample in Zagora, Morocco, in February 2020.

Physical characteristics: Sample is irregular in shape and has a reddish-brown exterior with visible flakes of metal protruding through the surface. The cut face shows a metal-rich interior with angular clasts of pyroxene.

Petrography: Sample is a breccia composed of: 0.5-10 mm clasts of normally zoned, anhedral orthopyroxene (Fs₁₈₋₃₂Wo_{0.9-2.4}) and 8 vol% unzoned, anhedral olivine (Fa_{34.72-37.49}) set within a matrix of: 523 µm (avg. grain size) poikiloblastic, exsolved Opx

 $(Fs_{34,5\pm1.4}Wo_{2,4\pm0.23})$ (all pyx 47 vol%); 257 µm anhedral plagioclase (22 vol%), and 18 vol% cm-sized rounded nuggets and irregularly shaped intergrowths of FeNi metal. Matrix pyroxenes show lamellar to blebby exsolution. Olivine shows reaction coronas.

Orthopyroxene makes up 63% of silicates and plagioclase makes up 31% of silicates. Additional minerals are: kamacite, taenite, lath-shaped Si polymorph (5 vol%), apatite, troilite, FeNi metal, chromite, trace ilmenite.

Geochemistry: (A. Love, App) Olivine, Fa_{36.1±1.4} (Fa_{34.7-37.5}), Fe/Mn=36.8-36.8, n=2); low-Ca pyroxene, Fs_{30.6±4.5}Wo_{2.0±0.5} (Fs_{23.0-35.6}Wo_{1.4-2.7},Fe/Mn=25.3±2.6, n=8); high-Ca pyroxene (Fs_{17.2}Wo_{38.8}, n=1); plagioclase (An_{93.0±1.0}Or_{0.1±0.0}, n=8).

Classification: Mesosiderite (class A3) Sample is type A based on modal abundance of plagioclase and orthopyroxene. Sample is type 3 based on poikioblastic texture with interlocking grain boundaries and inverted, exsolved pyroxenes.

Specimens: Fabien Kuntz holds the main mass. An endcut and part slice weighing 33.9 0g and a polished mount are on deposit at *App*.

Northwest Africa 13303 (NWA 13303)

(Northwest Africa) Purchased: 2019 Classification: Ureilite

History: Dustin Dickens was given a single stone for analysis in village of Ait Youb by a dealer named Zaid from southern Morocco.

Physical characteristics: Exterior with desert weathering; saw cut surface reveals a mosaic of brown and green grains.

Petrography: (C. Agee, UNM) This meteorite consists primarily of olivine and pigeonite grains, many greater than 1 mm in size. Very fine-grained metal occupies silicate grain boundaries. Some elongate domains are plucked by grinding and polishing and are likely to be void casts of a once present carbon phase. Olivine is Cr-bearing. No plagioclase observed.
Geochemistry: (C. Agee, UNM) Olivine Fa_{21.1±0.1}, Fe/Mn=46±2, Cr₂O₃=0.60±0.02 (wt%), n=6; pigeonite Fs_{17.7±0.4}Wo_{3.8±0.0}, Fe/Mn=29±2, n=6.

Classification: Ureilite

Specimens: 9 g including a probe mount on deposit at *UNM*, Dustin Dickens holds the main mass.

Northwest Africa 13304 (NWA 13304)

Northwest Africa

Purchased: 2019

Classification: Enstatite achondrite (Aubrite)

History: Two fragments of ~23 g purchased by Dustin Dickens October of 2019 in Morocco from Mohamed Amouri. Dustin later received an additional ~24 0g stone from Hammi in February of 2020 at the Tucson gem and mineral show.

Physical characteristics: Exterior has dark colored fusion crust patches. Saw cuts and broken surfaces reveal a breccia of fragmented white pyroxene grains, some up to several mm in size, set in a fine-grained matrix. Scattered brown-orange colored, oxidized metal grains are visible throughout.

Petrography: (C. Agee, *UNM*) This meteorite consists primarily of larger fragmental enstatite and diopside grains nested in a fine-grained, cataclastic matrix of enstatite and diopside. Kamacite, troilite, alabandite, and daubreelite were detected. Olivine and plagioclase were not detected.

Geochemistry: (C. Agee, *UNM*) Enstatite $Fa_{0.1\pm0.1}Wo_{1.3\pm0.3}$, n=5; diopside $Fs_{0.0\pm0.0}Wo_{42.1\pm4.7}$, n=2. Oxygen isotopes (K. Ziegler, *UNM*): 3 acid-washed fragments analyzed by laser fluorination gave $\delta^{18}O$ = 5.511, 5.608, 5.742; $\delta^{17}O$ = 2.868, 2.924, 3.004; $\Delta^{17}O$ = -0.042, -0.037, -0.028 (linearized, all per mil, TFL slope=0.528).

Classification: Aubrite

Specimens: 20.1 g including a probe mount on deposit at *UNM*, Dustin Dickens holds the main mass.

Northwest Africa 13305 (NWA 13305)

(Northwest Africa) Purchased: 2018 Mar

Classification: Ordinary chondrite (H7)

Petrography: (K. Metzler, *IfP*) Ordinary chondrite with distinct recrystallization texture. Large secondary feldspar grains (many with sizes >100 μ m) which frequently poikilitically enclose olivine and pyroxene grains. Some mm-sized roundish inclusions, consisting of distinctly larger olivine and pyroxene grains with interstitial plagioclase may represent chondrule relicts.

Geochemistry: Mineral compositions and geochemistry: The mean olivine composition is $Fa_{17,4\pm0.2}$ ($Fa_{17,2-17,7}$; n=14). The mean low-Ca pyroxene composition is

 $Fs_{15.3\pm0.3}Wo_{2.9\pm0.7}$ ($Fs_{14.8-17.7}Wo_{1.3-4.0}$; n=15); Mean CaO concentration in low-Ca pyroxene: 1.5±0.4 (0.7-2.1) wt%.

Classification: H chondrite based on mineral chemistry. Petrologic type 7 based on the equilibrated state of olivine and pyroxene, and large grain size of secondary plagioclase. **Specimens**: 60 g: José Antonio Sánchez Santana, Malaga, Spain

Northwest Africa 13306 (NWA 13306)

(Northwest Africa)

Purchased: January 2020

Classification: Lunar meteorite (feldspathic breccia)

History: Purchased by Carlos Muñecas in January 2020 from a dealer in Guelmin, Morocco. **Physical characteristics**: Abundant feldspathic clasts set in a dark gray groundmass with lesser amounts of fragmental pyroxene and olivine.

Petrography: Abundant feldspathic clasts set in a dark-gray groundmass with lesser amounts of fragmental pyroxene and olivine.

Geochemistry: Mineral compositions and geochemistry: Olivine: Fa $_{20.2\pm0.9}$, Fe/Mn = 89±1 (n=4); Low-Ca pyroxene: Fs $_{25.3\pm0.8}$ Wo $_{5.6\pm0.5}$, Fe/Mn = 58±6 (n=4); High-Ca pyroxene: Fs $_{26.6\pm1}$ Wo $_{36.5\pm0.6}$, Fe/Mn = 58±1 (n=2); Plagioclase: An $_{97.5\pm0.8}$ Or $_{0.2\pm0.1}$ (n=6). Classification: Lunar feldspathic breccia

Northwest Africa 13307 (NWA 13307)

(Northwest Africa)

Purchased: 2020 Apr

Classification: Ungrouped achondrite

History: Found in Mauritania, purchased by Rachid and Jaouad Chaoui in March 2020 from a Mauritanian dealer ans subsequently sold to Luc *Labenne*.

Physical characteristics: A single stone (467 g) partly coated by black fusion crust. The fresh interior is a friable aggregate of colorless to pale gray, equant grains.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Protogranular aggregate (mean grainsize ~1.2 mm) composed predominantly of subequal amounts of diopside and enstatite with minor accessory daubreelite, ferroan alabandite and Ti-Cr-bearing troilite. Both pyroxenes exhibit fine, blebby and irrational exsolution of the other pyroxene phase, and also contain patchy, compositionally different domains. No metal or olivine was observed despite a diligent search.

Geochemistry: Enstatite (Fs_{0.2±0.0}Wo_{1.7-4.5}, FeO/MnO = 0.3, N = 3), diopside (Fs_{0.1±0.0}Wo_{39.7-40.5}, FeO/MnO = 0.2, N = 2), homogeneous low-Ca pyroxene domain within diopside (Fs_{0.2}Wo_{8.3}, FeO/MnO = 0.3).

Classification: Achondrite (ungrouped, magnesian websterite, reduced).

Specimens: 22.2 g including two polished thin sections at *UWB*; remainder held jointly by Mr. R. Chaoui and Mr. J. Chaoui.

1	
2	
3	
4	
5	
5	Northwest Africa 13308 (NWA 13308)
6	(Northwest Δ frica)
7	$\frac{1}{10000000000000000000000000000000000$
8	Purchased: 2019 Dec
9	Classification: HED achondrite (Eucrite, unbrecciated)
10	History: Purchased by John Divelbiss in December 2019 from Mike Miller, who had
11	acquired the store form a Marson dealer in 2017
12	acquired the stone from a Moroccan dealer in 2017.
12	Petrography : (A. Irving, UWS and P. Carpenter, WUSL) The specimen has a microgabbroic
14	texture and is crosscut by multiple quenched shock melt veins enclosing crystal debris derived
14	from the clasts. Minerals are exsolved nigeonite and calcic plagioclase with accessory silica
15	nolime endsts. Wither dis die exserved pigeonite and earlier pidgioendse with decessory since
16	polymorph, rayante, 11-AI chronnite, innennte (some more CI-rich), merrinne, baddeleyne,
17	zircon and troilite.
18	Geochemistry : Low-Ca pyroxene ($F_{557,8.60,0}W_{02,5.4,8}$, FeO/MnO = 30-33, N = 6), high-Ca
19	nvroxene (Escara Worzawa EeO/MnO = 29-32 N = 6) favalite (Escara EeO/MnO = 45-
20	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
21	51, $N = 2$), plagloclase (An _{89,2-90.5} Or _{0.4-0.5} , $N = 4$).
22	Classification: Eucrite (unbrecciated, microgabbroic, shock melt-veined).
23	Specimens : 20.3 g including one polished thin section at <i>UWB</i> : remainder with Mr. J.
23	Develbics
24	
25	
26	
27	Northwest Africa 13309 (NWA 13309)
28	(Northwest A frica)
29	(Noturwest Arriva)
30	Purchased: 2019 Sep
31	Classification: Ordinary chondrite (LL3.15)
32	History . Purchased by Mbark Aridal in September 2019 from a dealer in Timbuktu Mali
33	Potrography: (A Irving UWS and P Carpenter WUSL) Well formed fairly closely packed
34	1 ct og aphy. (A. Inving, O'r's and T. Carpenter, "OSL) wen-formed, fairly closely packed,
35	relatively unequilibrated, glass-bearing chondrules (apparent diameter 900 \pm 560 μ m, N = 23)
36	plus some isolated mineral clasts are set in a sparse opaque matrix rich in kamacite, taenite
50 77	and troilite.
3/	Coochemistry: Oliving (Eq.(a) or range Eq.(a) $N = 0$: Cro0, in ferrous olivings 0.07.0.55
38	$\frac{1}{100} = \frac{1}{100} = \frac{1}$
39	wt.%, mean 0.25±0.16 wt.%, N = 33), low-Ca pyroxene (Fs _{14.4±5.0} Wo _{1.5±1.8} , range Fs _{7.4} .
40	$_{21.5}Wo_{0.3-4.7}$, N = 5), subcalcic augite (Fs _{19.2} Wo _{31.1}), diopside (Fs _{1.2} Wo _{44.5}). Magnetic
41	susceptibility log γ (× 10 ⁻⁹ m ³ /kg) = 4.51
42	Classification: Ordinary chondrite (II 3 15) Chondrule sizes and magnetic suscentibility
43	Classification. Ordinary chondrice (LLS.15). Chondrule sizes and magnetic susceptionity
44	support an LL rather than L class. Subtype based on Cr_2O_3 contents of terroan olivines per
45	Figure 15 of <u>Grossman and Brearley (2005)</u> .
46	Specimens : 38.2 g including one polished thin section at <i>UWB</i> : remainder with Mr. M.
40	Aridal
47	Aljual.
40	
49	
50	Northwest Africa 13310 (NWA 13310)
51	(Northwost A frice)
52	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
53	Purchased: 2020 Jan
54	Classification: HED achondrite (Eucrite, brecciated)
55	History: Purchased by Darryl Pitt in January 2020 from a dealer in Marrakech, Morocco
56	Potrography: (A Irving LIWS and D Corportar WISC) Process composed of mostly
57	i cu ogi apiny. (A. ii ving, Orro and F. Carpenter, rr OSL) Dieceta composed of mostly
58	gabbroic eucrite clasts plus some clasts with fine grained, intersertal texture within a matrix of
50	related crystalline debris. Minerals are exsolved pigeonite (pale orange in thin section) and
59	calcic plagioclase (exhibiting undulose extinction to polycrystalline structure) together with
60	rubiceriuse (connecting underesse extinction to porjerystumme structure) together with

accessory silica polymorph, ilmenite, Ti-Al-chromite, troilite and zircon, plus secondary calcite, barite and iron hydroxides.

Geochemistry: Low-Ca pyroxene ($Fs_{59,4-61,8}Wo_{4,7-1,7}$, FeO/MnO = 30-33, N = 5), high-Ca pyroxene ($Fs_{26.5-27.8}Wo_{43.0-43.9}$, FeO/MnO = 30-32, N = 5), olivine grain ($Fa_{66.1-66.5}$, FeO/MnO = 46, N = 2), plagioclase (An_{88.0-91.8}Or_{0.4-0.3}, N = 4).

Classification: Eucrite (breccia). Possibly paired with <u>NWA 13314</u>.

Specimens: 27.0 g including one polished thin section at UWB; remainder with DPitt.

Northwest Africa 13311 (NWA 13311)

(Northwest Africa)

Purchased: 2019 Sep

Classification: Carbonaceous chondrite (CK3)

History: Purchased by Mbark Aridal in April 2019 from a dealer in Timbuktu, Mali. **Petrography**: (A. Irving, UWS and P. Carpenter, WUSL) Well-formed, relatively unequilibrated, granular, glass-bearing and Cr-magnetite-bearing chondrules (apparent diameter 920 \pm 380 µm, N = 23) plus amoeboid, very fine grained CAI are set in a fine grained matrix (~30 vol.%, sepia brown in thin section) containing pentlandite and troilite. CAI contain gehlenite, aluminous diopside, pentlandite, albitic plagioclase and hedenbergite. Geochemistry: Olivine (Fa_{31,4±14,3}, range Fa_{5,3-46,3}, N = 8), low-Ca pyroxene (Fs_{0,9±0,3}Wo_{0,9±0,2}, range $Fs_{0.6-1.1}Wo_{0.8-1.1}$, N = 3), augite ($Fs_{1.7}Wo_{37.0}$; $Fs_{0.5}Wo_{1.6}$; $Fs_{23.3}Wo_{42.6}$; $Al_2O_3 = 1.5-4.3$ wt.%, N = 3), plagioclase (An_{84.6}Or_{0.0}).

Classification: Carbonaceous chondrite (CK3).

Specimens: 39.3 g including one polished thin section at UWB; remainder with Mr. M. NE Arjdal.

Northwest Africa 13312 (NWA 13312)

(Northwest Africa)

Purchased: 2019 Sep

Classification: Ungrouped achondrite

History: Purchased by Mbark Arjdal in September 2019 from a dealer in Timbuktu, Mali. **Petrography**: (A. Irving, UWS and P. Carpenter, WUSL) Fresh specimen with a complex igneous poikilitic texture and variable grainsize composed predominantly of coarser grained zoned pyroxene oikocrysts (0.5-2 mm) enclosing subordinate olivine chadacrysts (0.1-0.3 mm), plus finer grained interstitial regions. Accessory phases are chromite, troilite, and very rare small grains of taenite and slightly stained kamacite; no phosphates were observed. Pyroxenes are zoned from orthopyroxene cores (exhibiting prominent polysynthetic twinning) to more ferroan pigeonite and subcalcic augite rims. Sporadic very large homogeneous macrocrysts (up to 0.6 cm across) of both olivine and orthopyroxene are also present. Interstitial regions consist of subparallel intergrowths of acicular calcic plagioclase, high-Ca pyroxene and silica polymorph accompanied by minor ilmenite, Ni-bearing pyrrhotite and pentlandite.

Geochemistry: Olivine (Fa_{20,4-35,1}, FeO/MnO = 47-51, N = 10), orthopyroxene cores (Fs_{11,8-} $_{14.2}Wo_{0.2-0.3}$, FeO/MnO = 31-34, N = 4), low-Ca pyroxene rims (Fs_{23.7-35.2}Wo_{2.0-4.9}, FeO/MnO = 28-32, N = 6), subcalcic augite (Fs_{32.0-40.8}Wo_{33.7-24.0}, FeO/MnO = 25-27, N = 5), pigeonite $(Fs_{29,4}Wo_{14,7}; Fs_{45,1-47,0}Wo_{7,1-9,7}; FeO/MnO = 26-30; N = 3)$, plagioclase $(An_{68,2-86,4}Or_{2,3-0,7}, N = 3)$ = 3). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 3.07.

Classification: Achondrite (ungrouped, igneous, poikilitic, metal-poor).

Specimens: 9.7 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

1 2 3

4

5

6

7

8

9 10

11 12 13

14

15

16

17 18

19

20
1	
2	
3	
4	
5	Northwest Africa 12212 (NWA 12212)
6	Northwest Africa 15515 (NWA 15515)
7	Malı
8	Purchased: 2019 Apr
9	Classification: Ordinary chondrite (L3-6)
10	History : Purchased by Mbark Aridal in April 2019 from dealer in Timbuktu Mali
11	Detrography: (A Irving UWS and D Corportar WUSL) Wall formed fairly algority needed
12	retrography. (A. Irving, OWS and F. Carpenter, WOSL) wen-formed, fairly closely packed,
13	relatively unequilibrated chondrules (apparent diameter $830\pm450 \ \mu\text{m}$, N = 23), plus some
14	equilibrated Type 6 clasts containing sparse chondrules, are set in a finer grained matrix
15	containing kamacite, taenite, Ti-chromite, chlorapatite, merrillite and troilite. A large fine
16	grained igneous-textured clast (1.9 cm across) is composed of reversely zoned olivine
17	micronhanocrysts nlus extremely fine grained interstitial quench products (with Ca pyroyane
18	like hells a sure sitien)
10	like bulk composition).
20	Geochemistry : Olivine in chondrules (Fa _{25.6±5.6} , range Fa _{22.7-36.9} , Cr ₂ O ₃ < 0.03 wt.%, N = 6),
20	low-Ca pyroxene (Fs _{21,6±3,1} Wo _{1,3±0,1} , range Fs _{19,9-26,2} Wo _{1,2-1,4} , N = 4), subcalcic augite
21	$(F_{56,0}W_{036,3})$, augite $(F_{56,9+0,1}W_{045,8+0,5})$, range $F_{56,8,7,0}W_{046,1,45,4}$, N = 2), oliving in Type 5 clast
22	(Fa _{25,1}) oliving in fine grained igneous clast (core Fa _{22,0} rims 11 1-16 6: $N = 3$) Magnetic
25	$(1 u_{25.1})$, on the infine graned ignorous clust (core i $u_{23.0}$, this if if i 10.0, it = 3). With field $u_{25.0}$
24	susceptionity log χ (10 m ⁻ /kg) = 4.79.
25	Classification: Ordinary chondrite (L3-6 breccia).
26	Specimens : 29.2 g including one polished thin section at <i>UWB</i> ; remainder with Mr. M.
27	Arjdal.
28	
29	
30	N 4 4.6: 12214 (NIVIA 12214)
31	Northwest Africa 13314 (NWA 13314)
32	(Northwest Africa)
33	Purchased: 2020 Jan
34	Classification: HED achondrite (Eucrite, brecciated)
35	History: Purchased by Darryl Pitt in January 2020 from a dealer in Marrakech Morocco
36	Detrography: (A Irving UWS and D Corportar WUSL) Pression composed of
37	retrography. (A. Irving, Ows and P. Carpenter, WOSL) Breccia composed of
38	microgabbroic, diabasic and some finer grained subophitic eucrite clasts within a matrix of
39	related crystalline debris. Minerals are exsolved pigeonite (pale orange in thin section) and
40	calcic plagioclase (exhibiting undulose extinction to polycrystalline structure) together with
41	accessory silica polymorph ilmenite Ti-Al-chromite and troilite
42	Geochemistry: Low-Capyroyene (Escara Wood and FeO/MnO = $30-33$, N = 5) high-Ca
43	Geotetetetetetetetetetetetetetetetetetet
44	pyroxene ($Fs_{25.9-26.4} W 0_{43.2-43.9}$, $FeO/MINO - 29-55$, $N - 5$), plagloclase ($An_{89.6-90.7}Or_{0.3-0.5}$, $N - 5$)
45	4).
46	Classification : Eucrite (breccia). Possibly paired with <u>NWA 13310</u> .
47	Specimens : 50.6 g including one polished thin section at <i>UWB</i> ; remainder with <i>DPitt</i> .
48	
49	
50	Northwest Africa 12217 (NWA 12217)
51	Northwest Africa 1551/ (NWA 1551/)
52	Algeria
53	Find: May 2019
54	Classification: Ordinary chondrite (L3-5)
55	Petrography : Rock having with different lithologies. The bulk rock has Factor and
56	$E_{1} = E_{2}$ The type 5 clasts have equilibrated aliving and low Conversion with Eq. and Eq.
57	$r_{517,0\pm6.7}$ The type 5 clasts have equilibrated on the and low-Ca pyroxelle with ~ r_{224} and r_{521} ,
58	respectively.
59	
60	
00	

Northwest Africa 13321 (NWA 13321)

Morocco Find: 2018 Mar Classification: Carbonaceous chondrite (CV3)

Petrography: Chondrite with large chondrules (~mm), AOAs, and CAIs set in an abundant fine-grained Fe-rich matrix. Opaque minerals include sulfides and metals. Metals are often included within the chondrules. Opaque areas between the chondrules contain abundant terrestrial alteration products.

Geochemistry: Most olivine in chondrules and AOAs is Fo-rich. The average composition of these olivines is $Fa_{3.7\pm4.6}$ (range: $Fa_{0.23}$; N=22). Low-Ca pyroxene is $Fs_{1.6\pm0.7}$ (range $Fs_{0.4}$; n=12).

Classification: Carbonaceous chondrite (CV3)

Northwest Africa 13322 (NWA 13322)

Morocco

Find: October 2019

Classification: Carbonaceous chondrite (CV3)

Petrography: Chondrite with large chondrules (~1 mm), AOAs, and CAIs set in abundant fine-grained Fe-rich matrix. Main silicates include olivine, low-Ca, and Ca-pyroxene. Opaque areas are basically made of terrestrial alteration products, although some sulfides are still visible.

Geochemistry: Most olivine in chondrules and AOAs is Fo-rich. The average composition of these olivines is $Fa_{3.7\pm2.7}$ (range: Fa_{0-12} ; N=23). Low-Ca pyroxene is $Fs_{2.0\pm1.4}$ (range Fs_{0-6} ; n=12).

Classification: Carbonaceous chondrite (CV3)

Northwest Africa 13323 (NWA 13323)

(Northwest Africa)

Purchased: 2020 Feb

Classification: Carbonaceous chondrite (CK3)

History: Purchased by Mbark Arjdal in February 2020 from a dealer in Timbuktu, Mali. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed granular and some BO chondrules (apparent diameter 950 ± 460 μ m, N = 23) plus sparse very fine grained, irregularly-shaped CAI are set in a fine grained matrix (~25 vol.%, deep brown in thin section) containing troilite, altered Cr-magnetite and rare taenite. Chondrules contain rounded grains of Cr-magnetite, some of which has been altered to red-brown iron hydroxides. **Geochemistry**: Olivine (Fa_{17.9±18.4}, range Fa_{0.3-44.1}, N = 6), low-Ca pyroxene (Fs_{3.6±5.0}Wo_{2.0±2.4}, range Fs_{0.6-9.4}Wo_{0.5-4.8}, N = 3), pigeonite (Fs_{1.1}Wo_{11.5}), subcalcic augite (Fs_{1.4}Wo_{29.2}; Fs_{1.1}Wo_{35.8}; N = 2), diopside (Fs_{0.8}Wo_{40.3}), magnetite (Cr₂O₃ = 0.2-7.0 wt.%, N = 2). **Classification**: Carbonaceous chondrite (CK3). **Specimens**: 20.2 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13324 (NWA 13324)

(Northwest Africa)

Purchased: 2020 Jan

Classification: Ordinary chondrite (LL3.15)

History: Purchased by Adam *Aaronson* in Temara, Morocco in January 2020. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Closely-packed, well-formed, unequilibrated glass-bearing chondrules (apparent diameter $800\pm330 \ \mu\text{m}$, N = 24) are set in a sparse opaque matrix containing altered kamacite, taenite and troilite. **Geochemistry**: Olivine (Fa_{14.2±9.1}, range Fa_{1.2-38.4}, N = 9; Cr₂O₃ in ferroan olivine 0.06-0.61 wt.%, mean 0.27±0.13 wt.%, N = 31), low-Ca pyroxene (Fs_{16.4±6.7}Wo_{1.3±1.4}, range Fs_{4.7}. 25.0Wo_{0.4-3.9}, N = 7), pigeonite (Fs_{20.2}Wo_{8.0}), subcalcic augite (Fs_{20.2±8.4}Wo_{27.0±2.6}, rangeFa_{10.8}. 27.0Wo_{29.9-24.7}, N = 3), augite (Fs_{4.3}Wo_{40.4}). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.01. **Classification**: Ordinary chondrite (LL3.15). Subtype based on Cr₂O₃ contents of ferroan olivines per Figure 15 of <u>Grossman and Brearley (2005)</u>.

Specimens: 33.5 g including one polished thin section at UWB; remainder with Aaronson.

Northwest Africa 13325 (NWA 13325)

(Northwest Africa)

Purchased: 2019 Nov

Classification: HED achondrite (Eucrite, brecciated)

History: Purchased by Mark Lyon in November 2019 from a Moroccan dealer. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of texturally diverse eucrite clasts (up to 2.8 cm across) exhibiting gabbroic, diabasic, granulitic and partially recrystallized textures set within a fragmental matrix of related crystalline debris. Major minerals are low-Ca pyroxene, augite and calcic plagioclase, together with accessory silica polymorph, Ti-Al-bearing chromite, ilmenite, troilite and Ni-free iron metal. In coarser grained gabbroic and diabasic clasts low-Ca and high-Ca pyroxenes are in exsolution relationship and represent former pigeonite, but in granulitic and recrystallized clasts both pyroxenes are present as discrete grains. In partially recrystallized clasts pyroxene is finely polygranular but plagioclase is not.

Geochemistry: Low-Ca pyroxene (Fs_{56.8-58.3}Wo_{4.8-7.0}, FeO/MnO = 29-31, N = 5), augite (Fs_{28.9-30.2}Wo_{40.1-41.0}, FeO/MnO = 31-34, N = 5), plagioclase (An_{88.4-90.0}Or_{0.8-0.5}, N = 5). **Classification**: Eucrite (genomict breccia).

Specimens: 212 g including one large polished thin section at *UWB*; remainder with Mr. M. Lyon.

Northwest Africa 13326 (NWA 13326)

(Northwest Africa)

Purchased: 2019 Nov

Classification: Ordinary chondrite (LL3)

History: Purchased by Mbark Arjdal in November 2019 from a dealer in Timbuktu, Mali. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Closely packed, well-formed chondrules (apparent diameter 970±530 μ m, N = 25) are set within a sparse, relatively unaltered fine grained matrix containing accessory kamacite, taenite, chromite and troilite. A 1.1 cm long olivine-phyric igneous clast containing subhedral to euhedral olivine phenocrysts in a very fine grained groundmass is present in the studied thin section.

Geochemistry: Olivine (Fa_{27.0±11.3}, range Fa_{3.1-38.2}, N = 11; Cr₂O₃ in ferroan rims 0.03-0.06 wt.%, N = 4), low-Ca pyroxene (Fs_{16.5±8.1}Wo_{1.2±0.9}, range Fs_{1.4-23.6}Wo_{0.3-2.4}, N = 7), pigeonite (Fs_{40.7}Wo_{5.3}; Fs_{44.7}Wo_{10.5}; N = 2), augite (Fs_{9.9}Wo_{36.3}). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.39.

Classification: Ordinary chondrite (LL3).

Specimens: 39.6 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13327 (NWA 13327)

(Northwest Africa)

Purchased: 2020 Feb

Classification: Martian meteorite (Shergottite)

History: Purchased by Eric *Twelker* in February 2020 from a Moroccan dealer at the Tucson Gem and Mineral Show.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Diabasic texture (mean grainsize ~0.8 mm). Composed predominantly of prismatic grains of zoned clinopyroxene and lath-like maskelynite together with accessory silica polymorph, merrillite, chlorapatite, Cr-Mn-bearing ulvöspinel, ilmenite, pyrrhotite and baddeleyite. Minor secondary calcite is present.

Geochemistry: Subcalcic augite ($Fs_{20.1-27.3}Wo_{29.1-35.4}$, FeO/MnO = 19-34 , N = 5), ferroan subcalcic augite rim ($Fs_{45.1}Wo_{30.7}$, FeO/MnO = 36), ferroan pigeonite rims ($Fs_{53.9-61.3}Wo_{13.4-15.7}$, FeO/MnO = 36-37, N = 3), maskelynite ($An_{53.4-55.7}Or_{1.4-0.9}$, N = 4).

Classification: Shergottite (diabasic).

Specimens: 20.5 g plus one polished thin section at UWB; remainder with Mr. E. Twelker.

Northwest Africa 13328 (NWA 13328)

(Northwest Africa)

Purchased: 2020 Jan

Classification: LL4-5 melt breccia

History: Purchased by Mark Lyon in January 2020 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of equilibrated lithic clasts (type 4 and type 5) containing relatively sparse but well-formed chondrules set within an opaque matrix containing indistinct chondrule remnants, chromite, chlorapatite and dispersed very fine grained, blebby metal (kamacite+taenite) and troilite.

Geochemistry: Olivine (Fa_{29,2±0.8}, range Fa_{28,4-30.6}, N = 6), low-Ca pyroxene

 $(Fs_{23.8\pm0.8}Wo_{1.6\pm0.4}, range Fs_{23.0-25.2}Wo_{1.2-2.1}, N = 5), augite (Fs_{10.5}Wo_{40.7}).$

Classification: Ordinary chondrite (LL4-5-melt breccia).

Specimens: 34.1 g including one polished thin section at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13329 (NWA 13329)

(Northwest Africa)

Purchased: 2020 Jan

Classification: Carbonaceous chondrite (CO3)

History: Purchased by Mark Lyon in January 2020 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Relatively small, well-formed chondrules (apparent diameter $300 \pm 220 \ \mu\text{m}$, N = 24) plus sparse mineral fragments and very fine grained AOA are set in a fine grained matrix (~25 vol.%, red-brown in thin section) containing accessory altered kamacite and troilite. No CAI were observed.

Geochemistry: Olivine (Fa_{34,5±30.8}, range Fa_{1,6-78.3}, N = 8; Cr₂O₃ in ferroan rims 0.04-0.40

wt.%, N = 5), low-Ca pyroxene ($Fs_{0.7}Wo_{0.8}$; $Fs_{25.6}Wo_{1.7}$; N = 2), pigeonite ($Fs_{1.5}Wo_{5.1}$;

13.4Wo_{5.4}; Fs_{5.8}Wo_{12.4}; N = 3), subcalcic augite (Fs_{1.2±0.7}Wo_{37.3±1.6}, range Fs_{0.7-1.7}Wo_{36.2-38.4}, N = 2), plagioclase (An_{95.9}Or_{0.1}).

Classification: Carbonaceous chondrite (CO3).

2	
3	
4	
5	
с С	
0	
7	
8	
q	
1	~
I	0
1	1
1	2
1	2
1	ر ۲
1	4
1	5
1	6
1	7
I	/
1	8
1	9
2	0
2	1
2	1
2	2
2	3
2	1
2	4
2	5
2	6
2	7
2	, 0
2	ð
2	9
3	0
З	1
2	1
3	2
3	3
3	4
2	5
5	5
3	6
3	7
3	8
2	0
3	7
4	0
4	1
۵	2
+	<u>~</u>
4	3
4	4
4	5
1	6
4	-
4	/
4	8
4	9
	<u>^</u>
C	0
5	1
5	2
5	z
ر -	ر ۸
5	4
5	5
5	6
5	7
2	<i>'</i>
5	8
5	9

60

Specimens: 24.5 g including one polished thin section at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13330 (NWA 13330)

(Northwest Africa)

Purchased: 2019 Nov

Classification: HED achondrite (Eucrite, brecciated)

History: Purchased by Shawn Kashay in November 2019 from Moroccan dealer Mostapha Hnini.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Highly shocked breccia composed of microgabbroic eucrite clasts plus related crystalline debris within a quench-textured, partly vesicular matrix (exhibiting some variations in grainsize in different parts of the studied thin section). The major constituents are unexsolved pigeonite (pale orange in thin section) and calcic plagioclase, both of which have been recrystallized into aggregates of extremely small subgrains; accessory phases include silica polymorph, subcalcic augite, Ti-Al-bearing chromite, Cr-bearing ulvöspinel, ilmenite, rare troilite, and secondary calcite and Ca sulfate. Subgrains within recrystallized pigeonite exhibit normal core to rim compositional zoning. **Geochemistry**: Microgabbroic lithic clast: pigeonite (cores $Fs_{47.6-49.3}Wo_{9.4-10.4}, FeO/MnO = 30-31, N = 3$; rims $Fs_{52.8-53.6}Wo_{11.2-13.6}, FeO/MnO = 31-33, N = 3$), plagioclase (An_{89.4-90.1}Or_{0.4-0.6}, N = 4). Melt matrix: pigeonite (cores $Fs_{43.9-45.9}Wo_{9.7-10.8}, FeO/MnO = 29-30, N = 2$; rims $Fs_{51.5-53.9}Wo_{15.2-15.4}, FeO/MnO = 32-34, N = 2$), subcalcic augite (Fs_{55.5}Wo_{31.4}, FeO/MnO = 34), plagioclase (An_{88.1}Or_{0.2}).

Classification: Eucrite (melt-matrix breccia, microgabbroic, highly shocked). **Specimens**: 33.3 g including one polished thin section at *PSF*; remainder with Mr. S. Kashay.

Northwest Africa 13331 (NWA 13331)

(Northwest Africa)

Purchased: 2020 Jan

Classification: Ordinary chondrite (H7)

History: Purchased by Rachid Chaoui in January 2020 from a Mauritanian dealer. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) The specimen exhibits triple grain junction texture completely lacking any evidence of former chondrules, and is composed predominantly of olivine and low-Ca pyroxene with accessory augite, sodic plagioclase, altered kamacite, merrillite, taenite, troilite and chromite.

Geochemistry: Olivine (Fa_{16,3±0,1}, range Fa_{16,2-16,5}, N = 11), low-Ca pyroxene (Fs_{14,4±0,2}Wo_{2,3±0,8}, range Fs_{14,2-14,7}Wo_{1,2-3,7}, N = 11), augite (Fs_{5,5±0,3}Wo_{45,3±0,4}, range Fs_{5,0-}

 $_{5.7}$ Wo_{44.9-45.9}, N = 6). Magnetic susceptibility log χ = 5.20.

Classification: Ordinary chondrite (H7).

Specimens: 27 g including one polished thin section at *UWB*; remainder with Z. Wang.

Northwest Africa 13332 (NWA 13332)

(Northwest Africa)

Purchased: 2005

Classification: Carbonaceous chondrite (CK3)

History: Purchased by an anonymous collector from a dealer at the Munich Show in 2005, subsequently acquired by the Hollis Collection and then donated to *PSF*.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) This small stone has experienced considerable desert weathering resulting in pervasive staining by iron hydroxides. Well-

formed granular chondrules (apparent diameter $1080\pm570 \ \mu m$, N = 21) containing rounded grains of altered Cr-magnetite plus sparse very fine grained CAI are set in a fine grained matrix (~25 vol.%, deep red-brown in thin section) containing altered Cr-magnetite, kamacite and troilite. CAI are composed of mainly of gehlenite together with diopside, spinel, taenite, hercynite and pentlandite.

Geochemistry: Olivine (Fa_{36.2 \pm 20.2}, range Fa_{0.3-59.2}, N = 6), low-Ca pyroxene

 $(Fs_{27.2\pm17.6}Wo_{0.6\pm0.1}, range Fs_{6.9-39.0}Wo_{0.5-0.6}, N = 3)$, subcalcic augite $(Fs_{47.4}Wo_{20.7})$, diopside $(Fs_{3.0}Wo_{40.0})$, plagioclase $(An_{94.3}Or_{0.0})$, magnetite $(Cr_2O_3 = 1.6 \text{ wt.}\%)$.

Classification: Carbonaceous chondrite (CK3).

Specimens: The entire specimen including one polished thin section is at PSF.

Northwest Africa 13333 (NWA 13333)

Morocco

 Purchased: 2019

Classification: Ordinary chondrite (LL3)

History: Thierry Simard purchased the 957g sample from a meteorite dealer in Erfoud, Morocco, in 2019.

Physical characteristics: Sample is brownish-yellow in color, has a rounded, irregular shape and displays a heavily sand-blasted exterior with visible chondrules on the outer surface.
Abundant chondrules and clasts are visible on the cut face showing the interior of the sample.
Petrography: Description and classification (A. Love and J. Serensics, *App*) Sample is a

breccia composed of poorly equilibrated, elongated chondrules (average aspect ratio of 1.54, n=27) that share preferred orientation (average apparent diameter 586 μ m, n=90) set within a clastic host containing containing mineral and chondrule fragments and ~1 vol% FeNi metal. Clinoenstatite is present.

Geochemistry: (J. Serensics, *App*) Olivine Fa_{22.5±6.6} (range Fa_{9.8-29.8}), Fe/Mn=51.6±9.8, n=14. Cr₂O₃ in type II chondrules has an average of 0.1 ± 0.1 wt%, n=14); low Ca-pyroxene Fs_{14.3±8.3}Wo_{1.7±2.8} (range Fs_{2.2-24.4}Wo_{0.2-2.2}), n=14.

Classification: Ordinary chondrite (LL3, C-S5 W2) Based on texture, metal abundance, chondrule diameter and magnetic susceptibility this sample is an LL chondrite breccia. Maskelynite, yellow stained olivine melt pockets and shock veins indicate shock level of C-S5.

Specimens: Thierry Simard holds the main mass. An end cut, several smaller slices and fragments that comprise the 20.05 g type specimen and a polished thin section are on deposit at *App*.

Northwest Africa 13334 (NWA 13334)

Northwest Africa Purchased: 2009 Classification: Ureilite

Physical characteristics: Found as 109 small stones; coarse-grained, dark, with weathered, vein-like, interstitial materials.

Petrography: A somewhat coarse-grained but otherwise typical ureilite texture and mode, mostly olivine but roughly 1/4 pigeonite. Granular yet curvy-bounded silicate grains are up to 6 mm across, but 2 mm is more typical. Tiny metals are present in reduced rims within olivine. Minor vein-like interstitial matter is weathered, largely opaque (carbon-rich, probably).

Running Head

1 2	
3	Coochomistry [.]
4	analyses) but rin
5	0.62 ± 0.06 wt%
6	0.02 ± 0.00 W1% C
7	pigeonite, $FS_{16.3}$ v
8	analyses. Minor
9	and 0.41 ± 0.06 W
10	Classification: U
11	Specimens : a typ
13	Tutorow (Tutoro
14	mexmeteor@hot
15	
16	
17	Northwest Afric
18	Morocco
19	Find: July 201
20	Classification
21	Petrography : Th
22	(perhaps related t
23	include chromite
25	Geochemistry [.] I
26	nyrovene is Esoci
27	Plagioclase Anon
28	Classification: E
29	
30	
31	
32	Northwest Afric
34	(Northwest At
35	Purchased: 20
36	Classification
37	History: The me
38	Physical charac
39	Petrography: Th
40	slightly flattened
41	40% almost blac
42	highly unequilibi
45 11	metal-decorated
45	Geochemistry: o
46	pyroxene: Fs _{2.8±0}
47	Matrix analyses
48	suggesting the pr
49	
50	
51	Northwest Afric
52	(Northwest At
53 54	Purchased 20
54 55	Classification
56	Uistow: The me
57	Dhysical share
58	r nysicai charac
59	retrography: Th

Mineral compositions and geochemistry: The olivine cores are $Fa_{18,8\pm0.1}$ (6) ns are as Fe-poor as Fa_{2.1}. Minor elements in the olivine cores average Cr_2O_3 , 0.36±0.08 wt% MnO, and 0.31±0.05 wt% CaO. The pyroxene is a $Wo_{6,3}$, with no analytically significant range for major elements among 6 elements in the pigeonite average 1.14 ± 0.02 wt% Cr₂O₃, 0.90 ± 0.03 Al₂O₃, t% MnO.

Ireilite

pe specimen, 24.1 g, is at UCLA; also 24.9 g is at UBayr. Main mass: Sean ow's web site: www.eegooblago.com; Tutorow's email: tmail.com).

ca 13335 (NWA 13335)

9

: HED achondrite (Eucrite)

he stone is a brecciated rock with igneous clasts and a melt rock lithology to impact). Main minerals are pyroxenes and plagioclase. Accessory minerals , silica, and metal.

Low-Ca pyroxene is $Fs_{59,8\pm1.5}Wo_{2,3\pm1.7}$ (Fs_{49,9-61,4}Wo_{1,3-14,5}, N=69), and Ca- $_{8\pm2.9}$ Wo_{41.8±3.8} (N=14),). The Fe/Mn ratio of the pyroxenes is 34.5 (n = 84). _{8±6.3} (N=7).

Eucrite (brecciated)

ca 13336 (NWA 13336)

frica)

)20

: Carbonaceous chondrite (CR2)

teorite was purchased from a meteorite dealer in Morocco.

teristics: Light-brownish rock with some fusion crust.

he meteorite is a carbonaceous chondrite composed of abundant, often chondrules with an apparent mean diameter of about 800 µm and about 30k matrix. Chondrules are mostly of type I but two type II chondrules with rated olivine were observed in the section studied. Some chondrules are typical of CR.

olivine in type I chondrules: Fa_{1.3±0.4}, Cr₂O₃: 0.49±0.05 wt%, n=13; low-Ca $_{3}Wo_{0.5\pm0.6}$, n=16; olivine in type II chondrules: Fa_{28.3±9.0} (Fa_{17.0-46.1}, n=9). yield an average total of 88.1±1.2 wt% (5 µm defocused beam, N=10) resence of hydrous minerals.

ca 13337 (NWA 13337)

frica)

19

60

: Mesosiderite

teorite was purchased from a meteorite dealer in Morocco.

teristics: Dark gravish rock without fusion crust.

he meteorite displays a grayish interior and is composed of silicate (about 50 vol%) and metallic (about 50 vol%) portions. The silicate fraction is predominantly composed of exsolved pyroxene, up to 2.5 mm sized compositionally zoned low-Ca pyroxene, and calcic plagioclase. Minor phases are silica, ilmenite, Ti-chromite, FeS, and merrillite. The metallic lithology consists of most abundant kamacite and some taenite. No olivine has been detected in the section studied.

Geochemistry: compositionally zoned low-Ca pyroxene: $Fs_{24.0\pm7.2}Wo_{1.4\pm0.7}$ ($Fs_{17.5-37.8}Wo_{0.9-2.9}$, n=12, FeO/MnO=23-32); low-Ca pyroxene host to exsolutions: $Fs_{39.3\pm0.9}Wo_{3.1\pm0.4}$ ($Fs_{38.2-40.9}Wo_{2.5-3.7}$, n=13, FeO/MnO=20-23); Ca-pyroxene exsolutions: $Fs_{17.6\pm0.6}Wo_{42.9\pm0.6}$ ($Fs_{15.9-18.1}Wo_{42.1-44.7}$, n=12, FeO/MnO=16-18); calcic plagioclase: $An_{91.3\pm2.2}$ ($An_{86.1-93.6}$, n=14)

Northwest Africa 13339 (NWA 13339)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (LL3)

History: The meteorite was purchased from a meteorite dealer in Layoune, West Sahara. **Physical characteristics**: Dark brownish rock without fusion crust.

Petrography: The meteorite shows a chondritic texture with well defined, mostly flattened and closely packed chondrules (mean diameter about 0.9 mm) in a more fine-grained brownish matrix that contains sulfides and rare FeNi metal.

Northwest Africa 13343 (NWA 13343)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Eucrite, monomict)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Many greyish fragments some of which partly covered with fusion crust.

Petrography: The meteorite is a coarse-grained basaltic breccia predominantly composed of exsolved pyroxene and often lath-shaped calcic plagioclase up to 1.5 mm in size. Minor phases include silica, chromite, FeS, and ilmenite. No metallic iron has been detected. The meteorite is heavily fractured.

Geochemistry: low-Ca pyroxene: $Fs_{63,2\pm0.4}Wo_{2,3\pm0.4}$ ($Fs_{62,5-63,8}Wo_{1,8-3,2}$, n=13, FeO/MnO=27-30); Ca-pyroxene: $Fs_{27.6\pm0.7}Wo_{44,1\pm0.5}$ ($Fs_{25,3-28,3}Wo_{43,6-45,8}$, n=16, FeO/MnO=25-31); calcic plagioclase: $An_{89,2\pm0.9}$ ($An_{87.6-90,3}$, n=14)

Northwest Africa 13344 (NWA 13344)

(Northwest Africa) Purchased: 2020

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Light brownish fragment without fusion crust.

Petrography: The meteorite is an unbrecciated basalt predominantly composed of

equigranular exsolved pyroxene and calcic plagioclase with average grains sizes of about 600 μ m. Silica grains up to 400 μ m in size are abundant. Minor phases include ilmenite, chromite, FeS, and metallic iron.

Geochemistry: low-Ca pyroxene: Fs_{59.9±0.5}Wo_{2.9±0.5} (Fs_{59.3-60.6}Wo_{2.2-3.6}, n=12, FeO/MnO=26-29); Ca-pyroxene: Fs_{28.5±0.3}Wo_{41.6±0.8} (Fs_{28.1-29.0}Wo_{39.9-42.4}, n=15, FeO/MnO=25-28); calcic plagioclase: An_{90.7±0.5} (An_{89.6-91.5}, n=13)

1	
2	
3	
4	
5	Northwest Africa 12245 (NWVA 12245)
6	Northwest Airica 15345 (NWA 13345)
7	(Northwest Africa)
8	Purchased: 2020
9	Classification: HED achondrite (Howardite)
10	History : The meteorite was nurchased from a meteorite dealer in Mauritania
11	District a lange stariet and a line to a substance of the start and the
12	Physical characteristics: Individual almost completely covered by sniny fusion crust.
13	Petrography : The meteorite is a polymict breccia composed of a large diversity of mostly
14	angular mineral fragments and basaltic clasts set into a fine-grained clastic mineral matrix.
14	Dominant minerals are diogenetic low-Ca pyroxene (about 60 yol%). Fe-rich low-Ca
15	nyroxenes with augite exsolution lamellae Fe-rich low-Ca pyroxene magmatically zoned
10	low Conversional and calcia plagicaless all with highly variable grain gizes. Minor phases
17	low-Ca pyroxenes, and carcic plaglociase an with highly variable grain sizes. Winor phases
10	include silica, chromite, ilmenite, and metallic iron. The meteorite contains cm-sized coarse-
19	grained basaltic clasts.
20	Geochemistry : eucritic low-Ca pyroxene: $Fs_{58,3+0,2}Wo_{5,4+0,1}$ ($Fs_{58,0-58,7}Wo_{5,3-5,5}$, n=10,
21	$FeO/MnO=28-31$): augite exsolution lamellae: $F_{222} = 0.02002 (F_{220} = 0.0200) (F_{$
22	$FeO/MnO=20.23$); diagonatic low C2 pyrovana; $Fe_{2,3\pm0,2} = W_{0,3\pm0,2} = (Fe_{2,3\pm0,2}, W_{0,3\pm0,2}, m^{-1})$
23	$\Gamma = O(M = O(24.24))$ the Grand and $\Gamma = O(M = O(24.24))$ the Grand and $\Gamma = O(M = O(24.24))$ the Grand and $\Gamma = O(24.24)$ the Gran
24	FeO/MnO=24-34); Iow-Ca-pyroxene: $FS_{40.1\pm0.3} W O_{2.6\pm0.1} (FS_{39.5-40.4} W O_{2.5-2.7}, n=7)$
25	FeO/MnO=26-28); zoned low-Ca-pyroxene: $Fs_{39.9\pm8.0}Wo_{5.2\pm0.3}$ ($Fs_{31.4-49.7}Wo_{4.9-5.7}$, n=6,
26	FeO/MnO=25-31); calcic plagioclase: $An_{93,4\pm0,7}(An_{92,7-94,5}, n=10)$
27	
28	
29	Northwest Africa 12246 (NUVA 12246)
30	Northwest Africa 13340 (NWA 13340)
31	(Northwest Africa)
32	Purchased: 2020 May
33	Classification: Lunar meteorite (feldspathic breccia)
34	History : Purchased in May 2020 by Craig Zlimen from Mark Lyon, who in turn had bought
35	the stone from a Maragaan dealar
36	$\mathbf{D} \leftarrow \mathbf{D} \leftarrow $
37	Petrography : (A. Irving, UWS and P. Carpenter, WUSL) Breccia composed of mineral clasts
38	of anorthite, olivine, orthopyroxene, pigeonite and subcalcic augite, plus some basalt and
39	gabbroic anorthositic lithic clasts and glass spherules, set in a finer grained matrix containing
40	kamacite, taenite, favalite, troilite and ilmenite. One feldspathic clast contains accessory Cr-
41	nleonaste rimmed by Ti-chromite
42	Coordinate rimined by Tremonine. $F_{20}/M_{P}O = 86 \ 104 \ N = 5$ low Conversion
43	Geochemistry. On the $(Fa_{22,2-45,3}, FeO/MinO = 80-104, N = 3)$, low-Ca pyroxene
44	$(Fs_{29.2}Wo_{3.9}, FeO/MnO = 66), pigeonite (Fs_{32.6-60.8}Wo_{17.2-23.0}, FeO/MnO = 53-77, N = 4),$
45	subcalcic augite ($Fs_{55.3}Wo_{33.0}$, $FeO/MnO = 65$), anorthite ($An_{95.5-96.3}Or_{0.5-0.6}$, $N = 2$), fayalite
46	$(Fa_{92.3}, FeO/MnO = 76)$, kamacite (Ni = 5.5 wt.%), taenite (Ni = 13.6 wt.%).
47	Classification : Lunar (feldspathic regolith breccia).
48	Specimens: 10.0 g in the form of a polished endout at UWB : remainder with Mr. C. Zlimen
49	Specimens. 10.0 5 in the form of a ponsiled endedt at O n D, femander with fvir. C. Zillien.
50	
51	
52	Northwest Africa 13347 (NWA 13347)
53	(Northwest Africa)
54	Purchased: 2019 Dec
55	Classification: HED achondrite (Diogenite)
55	History Dynahaad by Dashid Charris in Describer 2010 f
57	nistory: Furchased by Kachid Chaoui in December 2019 from a Mauritanian dealer.
57	Physical characteristics: A single partially crusted, pale yellowish-green stone (348 g).
50	
ענ	Petrography : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Aggregate of predominantly
60	Petrography : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Aggregate of predominantly orthopyroxene with very minor chromite. troilite and Ni-poor metal.
60	Petrography : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Aggregate of predominantly orthopyroxene with very minor chromite, troilite and Ni-poor metal.
60	Petrography : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Aggregate of predominantly orthopyroxene with very minor chromite, troilite and Ni-poor metal.
60	Petrography : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Aggregate of predominantly orthopyroxene with very minor chromite, troilite and Ni-poor metal.

Geochemistry: Orthopyroxene ($Fs_{23.4-24.3}Wo_{2.8-1.3}$, FeO/MnO = 27-31, N = 5). **Classification**: Diogenite. **Specimens**: 21.5 g including one polished thin section at *UWB*; remainder with Mr. R. Chaoui.

Northwest Africa 13348 (NWA 13348)

(Northwest Africa)

Purchased: 2020 Apr

Classification: Carbonaceous chondrite (CH3)

History: Purchased by Mark Lyon in April 2020 from a Moroccan dealer.

Physical characteristics: A single small (69 g), dark and fairly dense stone. A polished interior surface exhibits abundant fine grained metal.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Very small chondrules, chondrule fragments and silicate mineral clasts (apparent diameter $45\pm19 \mu m$, N = 25) accompanied by relatively abundant grains of metal (~25 vol.%) are set within an even finer grained matrix. Metal is predominantly kamacite with inclusions of taenite and Cr-troilite.

Geochemistry: Olivine (Fa_{17,5±15.5}, range Fa_{2.0-41.1}, N = 7), low-Ca pyroxene (Fs_{9,4±9.7}Wo_{2.9±2.0}, range Fs_{1.8-25.1}Wo_{0.0-4.6}, N = 6), pigeonite (Fs_{1.9}Wo_{7.9}), subcalcic augite (Fs_{2.4}Wo_{29.1}), augite (Fs_{10.0}Wo_{43.1}), aluminous diopside (Fs_{0.5}Wo_{58.7}, Al₂O₃ = 15.9 wt.%), plagioclase (An_{86.4}Or_{0.1}), kamacite (Ni 4.9 wt.%), Si-bearing kamacite (Ni 6.6 wt.%, Cr 0.7 wt.5, Si 6.0 wt.%). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 5.34.

Classification: Carbonaceous chondrite (CH3).

Specimens: 14.1 g including one polished endcut at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13349 (NWA 13349)

(Northwest Africa)

Purchased: 2019 Jul

Classification: HED achondrite (Eucrite, monomict)

History: Purchased by Habib Naji in July 2019 from a dealer in Zouerat, Mauritania. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Monomict breccia composed of highly shocked gabbroic eucrite clasts and related crystalline debris set within a sparse fluidal, melt-textured matrix. Minerals are unexsolved pigeonite and anorthite together with accessory silica polymorph, Ti-chromite (with quite variable Ti and Al) and troilite (as fine inclusions within chromite). Pigeonite grains consist of myriad very small subgrains zoned from more magnesian cores to more ferroan rims. Plagioclase is birefringent but exhibits a variety of textures from undulose to polycrystalline to finely quenched.

Geochemistry: Pigeonite (Fs_{40.1-45.2}Wo_{4.0-11.5}, FeO/MnO = 29-32, N = 3; Fs_{33.4}Wo_{21.4}, FeO/MnO = 29), ferroan low-Ca pyroxene (Fs_{56.3-57.5}Wo_{3.9-4.9}, FeO/MnO = 32-34, N = 2), augite (Fs_{17.0}Wo_{45.2}, FeO/MnO = 24), anorthite (An_{91.4-92.3}Or_{0.2-0.3}, N = 2).

Classification: Eucrite (monomict breccia, gabbroic, highly shocked and partially melted). The prevalence of compositionally zoned, unexsolved and highly recrystallized pyroxenes in this specimen is an anomalous feature.

Specimens: 36.8 g including one polished thin section at UWB; remainder with Mr. H. Naji.

Northwest Africa 13350 (NWA 13350)

(Northwest Africa) Purchased: 2019 Oct

Running Head

1	
2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10 10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
31	
24	
35	
36	
37	
38	
39	
40	
41	
42	
<u>/</u> 2	
ر ب	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
60	

Classification: Ordinary chondrite (L4)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed chondrules (relatively small, except for one very large 3.6 mm diameter PO chondrule in the studied thin section) are set in a relatively coarse grained matrix containing stained kamacite, troilite, chromite, merrillite and taenite.

Geochemistry: Olivine (Fa_{25.6±0.2}, range Fa_{25.3-25.8}, N = 6), low-Ca pyroxene

 $(Fs_{21,3\pm0.3}Wo_{1,3\pm0.4}, range Fs_{20,9-21.6}Wo_{0,9-1.7}, N = 5)$, augite $(Fs_{7.3\pm0.4}Wo_{45,5\pm0.5}, range Fs_{7.0-10,10})$

 $_{7.7}$ Wo_{45.0-46.0}, N = 3). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.74.

Classification: Ordinary chondrite (L4).

Specimens: 26.2 g including one polished thin section at *PSF*; remainder in the Harkness Collection.

Northwest Africa 13351 (NWA 13351)

(Northwest Africa)

Purchased: 2020 May

Classification: Ungrouped achondrite

History: A batch of 31 identical appearing stones collected at the same location as the NWA 13272 stone was purchased from the same Mauritanian dealer by Rachid and Jaouad Chaoui im May 2020.

Physical characteristics: Like the NWA 13272 stone, these dark brown stones (total weight 4870 g) have a distinctive "knobby" exterior surface with shiny desert patina. Cut and polished interior surfaces exhibit only rare tiny grains of metal.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Fine grained with a poikilitic igneous texture. Composed predominantly of compositionally zoned pyroxene oikocrysts (with domains of orthopyroxene, pigeonite and subcalcic augite) enclosing chadacrysts of olivine, together with interstitial devitrified silicic glass plus accessory troilite, pyrrhotite, chromite, very rare kamacite (extensively altered to Fe hydroxides) and secondary barite. **Geochemistry**: Olivine (Fa_{23.9-26.7}, N = 5), orthopyroxene (Fs_{17.3-18.0}Wo_{1.2-2.3}, N = 3), pigeonite (Fs_{18.1-19.7}Wo_{13.8-8.5}, N = 2), subcalcic augite (Fs_{12.8-15.5}Wo_{32.1-36.2}, N = 3), interstitial glass (SiO₂ 69.7 wt.%, Al₂O₃ 20.1 wt.%, Na₂O 1.0 wt.%, K₂O 0.57 wt.%, P₂O₅ 0.54 wt.%).

Classification: Achondrite (ungrouped, igneous). Paired with <u>NWA 13272</u>.

Specimens: 25.5 g in the form of a polished endcut at *UWB*; remainder held jointly by Mr. R. Chaoui and Mr. J. Chaoui.

Northwest Africa 13352 (NWA 13352)

Algeria

Purchased: 2018 Dec

Classification: HED achondrite (Eucrite, monomict)

History: Purchased by Mbark Arjdal in December 2018 from an Algerian dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Monomict breccia composed of gabbroic eucrite clasts plus related crystalline debris. Minerals are exsolved pigeonite and calcic plagioclase together with accessory silica polymorph, ilmenite, Ti-Al chromite, troilite and stained Ni-free metal. Some thin, dark shock veinlets and minor secondary calcite are also present.

Geochemistry: Low-Ca pyroxene (Fs_{58.9-60.1}Wo_{2.4-3.0}, FeO/MnO = 29-30, N = 5), augite (Fs_{25.2-26.4}Wo_{43.0-43.6}, FeO/MnO = 29-31, N = 5), plagioclase (An_{89.1-90.1}Or_{0.3-0.2}, N = 3). **Classification**: Eucrite (monomict breccia).

Specimens: 42.2 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13353 (NWA 13353)

Algeria

Purchased: 2020 Mar

Classification: Carbonaceous chondrite (CO3)

History: Purchased by John Higgins in March 2020 from an Algerian dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Small well-formed chondrules (apparent diameter $240 \pm 140 \mu m$, N = 22) together with some angular, zoned olivine grains and sparse very fine grained CAI are set in a fine grained matrix (~25 vol.%, brown in thin section) containing calcic plagioclase, kamacite and troilite plus minor secondary calcite and jarosite.

Geochemistry: Olivine (Fa_{19.9±15.0}, range Fa_{0.8-38.2}, N = 5; Cr₂O₃ in ferroan olivine = 0.02-0.09 wt.%), orthopyroxene (Fs_{4.3±3.2}Wo_{2.1±1.8}, range Fs_{1.2-8.3}Wo_{0.3-4.2}, N = 4), augite (Fs_{4.3±3.2}Wo_{2.1±1.8}, range Fs_{1.2-8.3}Wo_{0.3-4.2}, N = 4), augite

 $(Fs_{4.0\pm 3.9}Wo_{41.7\pm 0.0}, N = 2).$

Classification: Carbonaceous chondrite (CO3).

Specimens: 20.4 g including one polished thin section at *UWB*; remainder with Mr. J. Higgins.

Northwest Africa 13354 (NWA 13354)

(Northwest Africa)

Purchased: 2020 Jan

Classification: Primitive achondrite (Lodranite)

History: Purchased by Mark Lyon in January 2020 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Protogranular texture with a mean grainsize of ~400 μ m. Composed mainly of relatively magnesian orthopyroxene, forsteritic olivine and diopside together with accessory stained kamacite, oligoclase, chromite, troilite and chlorapatite.

Geochemistry: Orthopyroxene (Fs_{10.5-10.7}Wo_{2.9-3.2}, FeO/MnO = 14-17, N = 5), olivine (Fa_{6.6-8.0}, FeO/MnO = 12-13, N = 5), diopside (Fs_{5.1-5.4}Wo_{40.8-42.0}, FeO/MnO = 8-9, N = 5),

plagioclase (An_{20.9}Or_{1.4}). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 5.55.

Classification: Lodranite. This specimen is best regarded as a medium-grainsize member of the acapulcoite-lodranite clan.

Specimens: 25.2 g including one polished thin section at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13355 (NWA 13355)

(Northwest Africa)

Purchased: 2020 May

Classification: HED achondrite (Eucrite, anomalous)

History: Purchased by Rachid Chaoui in May 2020 from a Mauritanian dealer.

Physical characteristics: A very dark ellipsoidal specimen (672 g) partly coated by a shiny patina and with one broken side (slightly weathered). The fresh interior is dark gray with some larger dark crystals barely visible.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) This specimen has an unbrecciated igneous texure, but is unique among eucrites in containing relatively large (up to 4 mm) subhedral phenocrysts of exsolved pigeonite with abundant thin exsolution lamellae of

Running Head

1 2	
3 4	C
5 6	t t
7 8	e
9 10	8 S
11 12	4 e
13 14	(t
15 16 17	C
17 18 19	r F
20 21	
22 23	ľ
24 25	
26 27	I
28 29	I
30 31 22	g
32 33 34	(
35 36	9
37 38	S A
39 40	
41 42	Γ
43 44 45	
45 46 47	I
48 49	Ċ
50 51	L C
52 53	v (
54 55	7 P
56 57	ບ (
58 59	S
00	

chromite. The prismatic phenocrysts are set in a groundmass of parallel-intergrown pigeonite and calcic plagioclase with accessory silica polymorph, Ti-chromite, ilmenite, troilite and baddeleyite.

Geochemistry: Low-Ca pyroxene host (Fs_{49.6-53.2}Wo_{1.8-3.0}, FeO/MnO = 31-32, N = 4), augite exsolution lamellae (Fs_{23.1-25.0}Wo_{39.6-42.7}, FeO/MnO = 29-31, N = 2), plagioclase (An_{79.2-85.5}Or_{6.5-0.6}, N = 4). Oxygen isotopes (K. Ziegler, *UNM*): analyses of acid-washed bulk subsamples by laser fluorination gave, respectively, δ^{17} O 1.665, 1.895, 1.871; δ^{18} O 3.693, 4.157, 4.105; Δ^{17} O -0.285, -0.300, -0.296 per mil. These results plot beyond the main field for eucrites to more negative Δ^{17} O values.

Classification: Eucrite (unbrecciated, pyroxene-phyric, anomalous). The porphyritic igneous texture, prominent chromite exsolution in pyroxenes and atypical oxygen isotopic composition are anomalous features. Chromite exsolution from pyroxene has been documented in ungrouped achondrite <u>GRA 06129</u> and some <u>Luna 24</u> specimens, but not previously in eucrites.

Specimens: 23 g including one polished thin section at UWB; remainder with Mr. R. Chaoui.

Northwest Africa 13356 (NWA 13356)

(Northwest Africa)

Purchased: 2019 Aug

Classification: Ordinary chondrite (LL4)

History: Purchased by Mbark Arjdal in August 2019 from a dealer in Timbuktu, Mali. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed chondrules with a wide range in size (apparent diameter 0.1-3.5 mm) are set in a finer grained matrix containing goethite (after kamacite), chromite and troilite.

Geochemistry: Olivine (Fa_{28.6±0.3}, range Fa_{28.3-28.9}, N = 5), low-Ca pyroxene

 $(Fs_{23,2\pm0.5}Wo_{2.5\pm0.2}, range Fs_{22,3-23.7}Wo_{1.5-4.5}, N = 6)$, augite $(Fs_{8.8\pm0.5}Wo_{46,4\pm0.1}, range Fs_{8.4-1})$

 $_{9.1}$ Wo_{46.3-46.5}, N = 2). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 3.24.

Classification: Ordinary chondrite (LL4).

Specimens: 28.6 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13357 (NWA 13357)

Algeria

Purchased: 2020 Mar

Classification: Carbonaceous chondrite (CK3-6)

History: Purchased by John Higgins in March 2020 from an Algerian dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Very fresh specimen composed of discrete unequilibrated, granular, magnetite-bearing chondrules (apparent diameter 1040 \pm 680 µm, N = 22) plus some equilibrated Type 6 clasts and set in a finer grained matrix containing calcic plagioclase and Cr-magnetite. Type 6 clasts consist of sparse remnant chondrules within a recrystallized magnetite-bearing matrix.

Geochemistry: Olivine in Type 6 clasts (Fa_{34,4±2,1}, range Fa_{32,0-38,9}, NiO = 0.5-0.7 wt.%, N = 7), low-Ca pyroxene (Fs_{27,3±0,1}Wo_{0.9±0,0}, range Fs_{27,2-27,3}Wo_{0,9}, N = 2), augite (Fs_{9,5}Wo_{48,8}), plagioclase (An_{82,1}Or_{0,4}; An_{54,7}Or_{2,4}; N = 2), magnetite (Cr₂O₃ = 5.8 wt.%), olivine in unequilibrated chondrule (Fa_{15,6±6,7}, range Fa_{6,8-22,7}, N = 5).

Classification: Carbonaceous chondrite (CK3-6 breccia).

Specimens: 8.3 g including one polished thin section at *UWB*; remainder with Mr. J. Higgins.

Northwest Africa 13358 (NWA 13358)

(Northwest Africa) Purchased: 2019 May

Classification: Ordinary chondrite (L5)

History: Purchased by Mbark Arjdal in May 2019 from a dealer in Timbuktu, Mali. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Sparse, indistinct chondrules are present within a recrystallized matrix (stained orange-brown in thin section) containing chromite, troilite, pyrrhotite, merrillite. Secondary terrestrial weathering products include goethite (replacing primary metal), patchy Fe-Ni-Mn-bearing phosphate (?arupite) within merrillite, and a Ca sulfate phase.

Geochemistry: Olivine (Fa_{24.9±0.2}, range Fa_{24.6-25.2}, N = 5), low-Ca pyroxene

(Fs_{20.8±0.1}Wo_{1.5±0.2}, range Fs_{20.7-20.9}Wo_{1.2-1.7}, N = 5), augite (Fs_{7.9±0.4}Wo_{44.8±0.4}, range Fs_{7.6-8,3}Wo_{44.5-45.2}, N = 3). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.16.

Classification: Ordinary chondrite (L5).

Specimens: 51.5 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13359 (NWA 13359)

(Northwest Africa)

Purchased: 2020 Mar

Classification: HED achondrite (Eucrite, polymict)

History: Purchased by John Divelbiss in March 2020 from Matthew Stream, who bought the stone from a Moroccan dealer at the 2020 Tucson Gem and Mineral Show.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Complex breccia composed of angular mineral clasts of both exsolved and unexsolved pigeonite, augite and anorthite together with <10 vol.% diogenitic orthopyroxene (exhibiting undulose extinction) plus minor olivine, silica polymorph and more ferroan orthopyroxene set in a finer grained matrix containing chromite, ilmenite, Ni-free metal, kamacite, calcite and barite. Sparse lithic clasts of gabbroic eucrite and genomict breccia clasts are also present in the studied thin section. Most grains of anorthite and pigeonite exhibit recrystallization into very fine grained, polygranular aggregates.

Geochemistry: Pigeonite host (Fs_{51.6-55.8}Wo_{5.1-8.7}, FeO/MnO = 30-31, N = 4), augite exsolution lamellae (Fs_{28.4-29.8}Wo_{39.0-40.2}, FeO/MnO = 30, N = 2), orthopyroxene (Fs_{40.4}Wo_{2.5}, FeO/MnO = 29), pigeonite (core Fs_{39.2}Wo_{7.7}; rim Fs_{41.2}Wo_{15.5}; FeO/MnO = 30-31; N = 2), augite Fs_{29.8}Wo_{39.0}, FeO/MnO = 30), anorthite (An_{92.2-94.8}Or_{0.1-0.3}, N = 3), diogenitic orthopyroxene (Fs_{26.5-29.9}Wo_{1.8-3.5}; rim Fs_{33.6}Wo_{3.8}; FeO/MnO = 27-32, N = 4), olivine (Fa_{27.1-34.5}, FeO/MnO = 48-51, N = 4).

Classification: Eucrite (polymict breccia).

Specimens: 20.6 g including one polished thin section and one polished slice at *UWB*; remainder with Mr. J. Divelbiss.

Northwest Africa 13360 (NWA 13360) Northwest Africa Purchased: 2020 Jan Classification: Martian meteorite (Shergottite) History: Purchased in January 2020 by Noreddine Azelmat from a moroccan dealer.

1	
2	
3	Physical characteristics : Single stone lacking fusion crust. A slice of the interior reveals a
4	relatively coarse-grained rock containing brown olivines and gray-green pyroxenes
5	Detrography: (Daniel Sheilth ESU) Sample ayhibits a predominantly polyilitie tayture (grain
6	retrography. (Damer Sheikh, FSO) Sample exhibits a predominantry polkinde texture (gram
7	size Av. $750\pm100 \mu\text{m}$, up to 2.5 mm) composed of compositionally zoned low-Ca pyroxene
8	oikocrysts enclosing sub-angular olivine chadacrysts. Also present include compositionally
9	zoned, tabular, irregular grains of pigeonite and augite, as well as laths of maskelynite.
10	Accessory phases include chromite (some Ti-rich) ilmenite pyrrhotite merrillite pentlandite
11	and Si Al rich glass Sample contains minor carbonate weathering veins
12	and SI-AI-field glass. Sample contains minor carbonate weathering vents.
13	Geochemistry: Olivine (Fa _{35.0\pm1.8} , range Fa _{30.4-39.4} , FeO/MinO=48 \pm 5, n=/5), low-Ca pyroxene
14	$(Fs_{21.3\pm0.4}Wo_{4.1\pm0.6}, range Fs_{20.5-22.5}Wo_{3.5-5.2}, FeO/MnO=30\pm3, n=30), pigeonite$
15	$(Fs_{25.5\pm3.2}Wo_{9.2\pm2.8}, range Fs_{21.8-30.1}Wo_{6.1-15.4}, FeO/MnO=30\pm3, n=31)$, subcalcic augite
16	$(Fs_{16,4+0,8}Wo_{31,9+2,1}, range Fs_{15,2-17,7}Wo_{27,9-34,9}, FeO/MnO=22\pm 2, n=20), maskelynite$
17	$(An_{54,2+1,4}Or_{1,4+0,2}, range An_{51,2,56,2}Or_{1,1,1,7}, n=20)$
18	Classification: Shergottite (noikilitic). Silicate chemistry, the presence of maskelynite, and
19	E_{a} E_{a
20	reo/wino ratios of pyroxenes provide support for classification as shergoutie. Fredominant
21	polkilitic texture argues for classification as polkilitic shergottite.
22	Specimens : 20.05 g at UCLA; main mass with Noreddine Azelmat.
23	
24	
25	Northwest Africa 13362 (NWA 13362)
26	(Northwest A frica)
27	Dynahogodi January 2020
28	Purchased. January 2020
29	Classification: Martian meteorite (Shergottite)
30	History : Purchased in January 2020 by Jasper Spencer from a moroccan dealer.
31	Physical characteristics: One stone covered by a dull, dark-colored fusion crust.
32	Petrography : (Daniel Sheikh, FSU) Sample is predominantly composed of slightly oriented
33	maskelynite laths (Av 900 \pm 50 µm µp to 3 mm 65 vol%) and complexly zoned tabular
34	rounded and irregularly-shaped grains (some twinned) of ferronigeonite and subcalcic augite
35	$(\Delta x_{1}, 250 \pm 50 \text{ µm})$ up to $1 \text{ mm}, 25 \text{ yo} 10(2)$. A conserve phases include titenemegnetite
36	(Av. 350 ± 50 µm, up to mmin, 55 vol ⁷ 6). Accessory phases include thanomagnetice,
37	ulvospinel, SI-AI-K-Na rich glass, merrillite, chlorapatite, and pyrrhotite. Sample contains
38	minor carbonate weathering veins.
39	Geochemistry: Ferropigeonite ($Fs_{66.4\pm12.6}Wo_{16.4\pm3.2}$, range $Fs_{42.3-85.2}Wo_{9.2-21.9}$,
40	FeO/MnO=38 \pm 5, n=41), subcalcic augite (Fs ₄₁ 1+10 1 Wo ₃₀ 1+30, range Fs ₂₄ 0.54 0 Wo ₂₆ 4.366,
41	FeO/MnO=34+5 n=14) maskelvnite (An ₄₇ 04 4 Or 2010 0 range An ₂₀ (52 5 Or 10.42 n=28)
42	Classification: Martian (sharaottita) Silicata chemistry, the presence of maskelynite and
43	Classification . Matual (shergottic) sincate chemistry, the presence of maskery inte, and $\sum O/M_{\rm H}O$ action of non-second supervised supervised for all or first time of a shore efficient to the second state of the second
44	FeO/MnO ratios of pyroxenes provide support for classification as snergottite.
45	Specimens: 1 gram at <i>App</i> ; main mass with Jasper Spencer.
46	
47	
48	Northwest Africa 13363 (NWA 13363)
49	Algeria
50	Find: 2020 Jan
51	
52	Classification: Angrite
53	History: Found in January 2020 by Ali Muftah in Algeria. Later purchased from Ali Muftah
54	in March 2020 by Youssef Bennani.
55	Physical characteristics : Sample is a single stone covered with a relatively fresh dark-grav
56	fusion crust containing visible vesicles
57	Petrography: (D Sheikh ESU) This sample exhibits a fine-grained subonhitic texture (grain
58	aire un to 200 um. Av. 100 um) composed princerily of trained exertists letter A1 Timist
59	size up to 200µm, AV. 100µm) composed primarily of twinned anorthite latins, AI-11-rich
60	augite, and Ca-rich olivine (some are polycrystalline). Al-11-rich augite and Ca-rich olivine

grains often display strong compositional zoning; in the case of Ca-rich olivine, several grains are rimmed by kirschsteinite. Accessory mineral phases include Al-bearing titanomagnetite and troilite. Vesicles are visible throughout the thin section.

Geochemistry: Olivine (Fa_{50.6±15.1} Ln_{4.4±5.4}, range Fa_{32.2-79.7} Ln_{1.2-20.3}, FeO/MnO = 79±12, n=38), Kirschsteinite (Fa_{61.2±1.4}Ln_{33.7±1.4}, range Fa_{60.3-62.8}Ln_{32.3-34.9}, FeO/MnO = 70±12, n=3), Al-Ti-rich augite (Fs_{30.9±12.1}Wo_{51.1±0.9}, range Fs_{19.1-49.0}Wo_{49.3-52.7}, Al₂O₃wt% = 7.0±1.0, TiO₂ wt% = 2.6±1.4, FeO/MnO = 101±13, n=17), Anorthite (An_{99.6±0.2}, range An_{99.4-99.8}, n=20).

Classification: Angrite. The Fe/Mn ratio and presence of anorthite, Ca-rich olivine, kirschsteinite, Al-Ti-rich augite, and vesicles in the sample point to the Angrite meteorite group.

Specimens: 11.2 grams at UCLA; main mass with Youssef Bennani.

Northwest Africa 13364 (NWA 13364)

Morocco

Purchased: 2019

Classification: Carbonaceous chondrite (CV3)

History: The 227 g sample was purchased from Aziz Mouadine at the St. Marie aux Mines show in June, 2019.

Physical characteristics: Sample is dark-brown in color and has a blocky irregular shape. The exterior is devoid of fusion crust and chondrules are visible on the weathered exterior. The interior of the sample has a matrix that is a mixture of mottled gray and dark-red with lighter-colored chondrules and CAIs.

Petrography: Description and classification (A. Love, *App*) Sample has a chondritic texture composed of chondrules and CAIs and abundant AOA's set within an opaque matrix (~52 vol%). Chondrules have an average apparent diameter of 658 μ m (n=56). Some pyroxenes contain ferroan olivine veins (Fa₂₃₋₄₁). Additional minerals are: anorthitic plagioclase, hedenbergite, diopside, chromite, rare troilite, Ca-phosphate, and secondary calcite.

Geochemistry: (A. Love, *App*) Olivine (Fa_{6.0±5.7}, Fe/Mn=12.5-116.7, n=16); low Ca pyroxene (Fs_{1.1±0.2}Wo_{0.9±-0.2}, n=6).

Classification: Carbonaceous Chondrite (CV3) Sample is an unequilibrated CV carbonaceous chondrite based on modal abundance of matrix, mineral compositions, chondrule diameter and magnetic susceptibility.

Specimens: Marc Jost (*SJS*) holds the main mass. An encut and part slice weighing 31.57 g and a polished thin section are on deposit at *App*.

Northwest Africa 13365 (NWA 13365)

Morocco

Purchased: 2019

Classification: HED achondrite (Diogenite)

History: 5 stones weighing 230.2 g were found in Morocco prior to 2019. Marc Jost (*SJS*) purchased these samples from a meteorite dealer while at the 2019 Ensisheim Meteorite Show.

Physical characteristics: The samples are irregularly shaped, lack fusion crust and have a yellowish-brown exterior. The type specimen has a yellowish-orange interior that is brecciated and friable. The cut face shows angular-sub-rounded clasts up to 1.5 cm in long dimension.

Running Head

Petrography: Description and classification (A. Love, *App*): Sample is an aggregate of fractured, 250-1024 µm orthopyroxene grains which share 120° grain boundaries. Sparse areas with fine-grained brecciated texture were observed. Orthopyroxenes contain exsolved Cpx inclusions. Additional minerals are: chromite, silica polymorphs, FeS and rare Ni-free iron metal.

Geochemistry: Diogenite clasts: low-Ca pyroxene ($Fs_{27.5\pm0.2}Wo_{3.4\pm0.5}$, Fe/Mn=26.4±0.4, Mg#71.3-71.6, n=8); high-Ca pyroxene exsolution lamellae ($Fs_{10.7\pm0.5}Wo_{45.2\pm1.0}$, Fe/Mn=19.6±1.2, N=6).

Classification: HED (monomict diogenite breccia). Textures, FeO/MnO and Fs compositions of pyroxenes indicate this sample is a brecciated diogenite.

Specimens: Marc Jost (*SJS*) holds the main masses. 2 slices weighing 28.13 g and a polished mount are on deposit at *App*.

Northwest Africa 13366 (NWA 13366)

Algeria

Purchased: 2019

Classification: Martian meteorite (Shergottite)

History: Purchased from a nomad in Algeria in 2019 and sent to Dustin Dickens at the Tucson Gem and Mineral Show, February 2020.

Physical characteristics: Single stone, saw cut reveals an ultramafic cumulate rock with ophitic to poikilitic textures with mm-size pale yellow and dark gray grains.

Petrography: (C. Agee, *UNM*) Microprobe examination shows approximately 60% olivine, 35% pyroxene, and 5% maskelynite. Two distinct pyroxene trends are present 1) Mg-rich low calcium pyroxene trending to slightly more Fe-rich pigeonite, 2) Mg-rich augite trending to more Ca-rich augite. Ilmenite, Fe-sulfide, and merrillite are minor ubiquitous phases. **Geochemistry**: (C. Agee, *UNM*) Olivine Fa_{34.5±2.6}, Fe/Mn=50±3, n=15; low Ca-pyroxene Fs_{24.4±4.6}Wo_{5.9±3.8}, Fe/Mn=30±2, n=9; augite Fs_{16.0±1.2}Wo_{35.0±3.1}, Fe/Mn=24±1, n=4;

maskelynite $An_{53,7\pm1,1}Ab_{44,9\pm1,2}Or_{1,4\pm0,1}$, n=6.

Classification: Martian peridotitic shergottite. Macroscopic textural appearance similar to <u>NWA 1950</u> and <u>ALHA77005</u>. Paired with <u>NWA 13250</u>.

Specimens: 20 g on deposit at UNM, Dustin Dickens holds the main mass.

Northwest Africa 13367 (NWA 13367)

Algeria

Purchased: 2020

Classification: Martian meteorite (Shergottite)

History: Purchased from a Moroccan dealer in April 2020.

Physical characteristics: Single stone, fusion crust, saw cuts reveals an ultramafic cumulate rock with ophitic to poikilitic textures with mm-size pale yellow and dark gray grains.
Petrography: (C. Agee, UNM) Microprobe examination shows approximately 50% olivine, 40% pyroxene, and 10-5% maskelynite. Two distinct pyroxene trends are present 1) Mg-rich low calcium pyroxene trending to slightly more Fe-rich pigeonite, 2) Mg-rich augite trending to more Ca-rich augite. Ilmenite, spinel, Fe-sulfide, and merrillite are minor ubiquitous phases.

Geochemistry: (C. Agee, *UNM*) Olivine Fa_{34.6±2.0}, Fe/Mn=49±2, n=10; low Ca-pyroxene Fs_{22.5±0.5}Wo_{4.7±0.7}, Fe/Mn=29±2, n=6; augite Fs_{17.2±0.9}Wo_{32.4±2.8}, Fe/Mn=24±1, n=4; maskelynite An_{52.9±2.3}Ab_{46.0±2.2}Or_{1.1±0.2}, n=4, fusion crust SiO₂=46.5±0.6, TiO₂=0.9±0.1,

 $Al_2O_3=8.6\pm3.5$, $Cr_2O_3=0.7\pm0.1$, $MgO=18.0\pm3.5$, $FeO=15.3\pm0.5$, $MnO=0.4\pm0.1$,

Na₂O=1.4±0.5 (all wt%), n=2.

Classification: Martian peridotitic shergottite. Macroscopic textural appearance similar to <u>NWA 1950</u> and <u>ALHA77005</u>. Paired with <u>NWA 13250</u>.

Specimens: 20 g on deposit at UNM, Marcin Cimala holds the main mass.

Northwest Africa 13368 (NWA 13368)

Mauritania

Purchased: 2020 Jul

Classification: Martian meteorite (Nakhlite)

History: Purportedly found in Mauritania, purchased by Rachid Chaoui in July 2020 from a dealer in Nouakchott, Mauritania, and subsequently acquired by Ben Hoefnagels. **Physical characteristics**: A single, rounded pyramidal stone (1105 g) partially coated by degraded black fusion crust. The fresh interior is deep olive green in color and somewhat friable.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) The specimen is composed predominantly of euhedral, prismatic cumulus grains of augite (up to 1.3 mm) with thin, more ferroan rims plus subordinate (~4 vol.%) larger grains of olivine (up to 8 mm, with thin, more ferroan rims) and sparse blocky grains of titanomagnetite (up to 0.7 mm) accompanied by a fine grained intercumulus assemblage of cruciform titanomagnetite, fayalite, hedenbergite, silica polymorph, pyrrhotite and alkali feldspathic glass. "Iddingsitic" material occurs in thin veinlets within cumulus olivine grains, and melt inclusions within augite grains contain daughter crystals of chloramphibole (potassic hastingsite).

Geochemistry: Augite (cores $Fs_{22.9-23.0}Wo_{39.2-39.7}$, FeO/MnO = 30-31, N = 3; rims $Fs_{47.7-50.2}Wo_{33.2-37.9}$, FeO/MnO = 35-41, N = 2), olivine (cores $Fa_{61.5-62.7}$, FeO/MnO = 48-49, N = 4; rims $Fa_{79.6-88.3}$, FeO/MnO = 37-44, N = 4), intercumulus hedenbergite ($Fs_{50.6-53.5}Wo_{41.2-40.6}$, FeO/MnO = 39-40, N = 2), intercumulus fayalite ($Fa_{92.6-92.7}$, FeO/MnO = 36-37, N = 2), intercumulus alkali feldspathic glass (approximately $Ab_{60.1}An_{19.4}Or_{20.4}$).

Classification: Nakhlite. This specimen is very similar in many respects to <u>MIL 03346</u> and paired specimens from Miller Range, Antarctica. However, it differs in containing sporadic, relatively large grains of titanomagnetite.

Specimens: 29 g including one polished mount at UWB; main mass with Mr. B. Hoefnagels.

Northwest Africa 13369 (NWA 13369)

Adrar, Algeria

Purchased: 2020

Classification: Martian meteorite (Shergottite)

History: The 24.7 g sample was found near Adrar and subsequently purchased in Tindouf. Fabien *Kuntz* purchased the sample in January of 2020.

Physical characteristics: The 24.7g sample is dark greenish-gray, crystalline and lacks fusion crust. The cut face shows the interior is composed of interlocking green crystals of pyroxene poikilitically enclosing black olivines (shock-darkened).

Petrography: Description and Classification: (A. Love, *App*) Sample has a poikilitic igneous texture composed of (vol%): 2.23 mm (avg. l.d., n=3) oikocrysts of pyroxene (~21.4) with 317 μ m (avg. l.d., n=22) rounded chadacrysts of olivine. Oikocrysts are surrounded by 748 μ m (avg. l.d., n=20) euhedral prisms of olivine (~42.7); 913 μ m (avg. l.d., n=23); prismatic, twinned pyroxene (~45.7); and 488 μ m (avg. l.d., n=23) lath-shaped maskelynite (~5.3).

Z	
3	Additional minerals are merrillite a Cl-apatite chromite ilmenite titanomagnetite pyrrhotite
4	and secondary calcite
5	Coordinate calculation UTV Oliving (Eq. Ma#67.1+2.2) Eq.(Mn=40.2+2.0) n=06):
6	Geochemistry. (A. ratchen-01K) Onvine $(ra_{33.0\pm3.3}, mg\#0/.1\pm5.5, re/mn=49.2\pm2.0, n=90),$
7	low-Ca pyroxene (Fs _{21.3±1.0} W $o_{3.3\pm0.8}$, Fe/Mn=30./±1.2 n=32); pigeonite (Fs _{27.9±2.7} W $o_{10.2\pm2.7}$,
8	Fe/Mn=28.8 \pm 3.4 n=131); subcalcic augite (Fs _{18.3\pm0.9} Wo _{28.8\pm1.1, Fe/Mn=25.2\pm1.1, n=8) augite}
9	$(Fs_{16.6\pm1.2}Wo_{34.1\pm2.3}, Fe/Mn=25.4\pm1.4 n=51); plagioclase (An_{52.0\pm4.6}Or_{1.6\pm0.5}, n=16).$
10	Classification : Martian (poikilitic shergottite). Based on mineral compositions (Fs, Wo, Mg#
11	and Fe/Mn) and textures this sample is a highly shocked (U-S5) poikilitic shergottite
12	Specimens: <i>Kuntz</i> holds the main mass. A polished thin section and a sliced fragment
13	specificity. <i>Kuniz</i> holds the main mass. A poinshed thin section and a sneed magnetic weighing 5.71 g are on deposit at Arr
14	weigning 5.71 g are on deposit at App.
15	
16	
17	Northwest Africa 13370 (NWA 13370)
18	Morocco
19	Purchased: 2020
20	Classification: HED achondrite (Howardite)
21	History: In Eabruary of 2020, Eabien <i>Kuntz</i> nurchased two stones with a total weight of 311.8
22	a from a motocrite prograeter in Cualmim Marcago
23	g nom a meteorite prospector in Ouennini, Morocco.
24	Physical characteristics: A sample from each stone was submitted for classification. Both
25	stones have a dark-brown, wind-ablated exterior. Clasts are visible on the exterior. The cut
26	face shows sample is a breccia with visible orthopyroxene clasts, lithic clasts up to 2 mm and
27	flecks of Fe metal.
28	Petrography : Description and Classification (A. Love, <i>App</i>) Sample is composed of (vol %):
29	angular to rounded lithic clasts of eucrite (70) and diogenite (30) and similar mineral
50 21	fragments set within a comminuted matrix of these materials. Lithic clasts are: cumulate and
ו כ כי	aquilibrated baseltie querite: diagonite (including a neikilitie diagonite) and a highly
22	equinorated basance eache, diogenite (including a pointitic diogenite) and a nighty
31	magnesian onvine-orthopyroxene inthology (Fa ₅ -Fs ₁₃ $wo_{0,3}$); and several shock-melted clasts
35	(melt breccia - total melt). Eucritic pyroxenes are exsolved. Additional minerals are olivine
36	chromite, ilmenite, troilite, plagioclase, Fe metal grains and a silica polymorph.
37	Geochemistry : (A. Love, <i>App</i>) Diogenite: orthopyroxene (Fs _{26.0±5.1} Wo _{1.7±1.1} ,
38	Fe/Mn=32.2±4.1, n=12); Olivine, Fa _{25.2±14.8} (Fa _{5.6-47.7} , Fe/Mn=40.6±6.8, n=9). Eucrite: low-Ca
39	pyroxene (Fs _{52 7+10 0} Wo _{3 2+1 2} , Fe/Mn=29.4 \pm 1.4, n=5); pigeonite (Fs _{42 7-49 7} Wo _{8 9-12 1} , N=2);
40	high-Ca pyroxene (27.5 \pm 7.0Wo _{40.9\pm2.2, n=5). plagioclase (An_{02.1\pm2.4}Or_{0.2\pm0.1, n=6)}}
41	Classification : HED achondrite (howardite) Based on texture modal abundances
42	unaguilibrated minaral compositions. Fo/Mn and Mg# of orthonyroyonos and olivinos, this
43	anoquinorated initial compositions, 1 c/will and wig# of of thopytoxelies and offvilles, tills
44	sample is a nowardite with a snock stage corresponding to M-S2 and low weathering grade.
45	Specimens : <i>Kuntz</i> holds the main masses. Two slices weighing 29.78 g and a polished thin
46	section are on Deposit at App.
47	
48	
49	Northwest Africa 12271 (NWA 12271)

Northwest Africa 13371 (NWA 13371)

Chwichiya, Morocco

Purchased: 2018

Classification: Carbonaceous chondrite (CM2)

History: Sergey Vasiliev purchased 5 individuals under the name Oued Haouza (CM2) at the Munich mineral show in 2018.

Physical characteristics: Samples are rounded to irregularly shaped and are partially coated in black, flow-lined and bubbled fusion crust. The interior of the samples is black with small, light-gray chondrules.

Petrography: Description and Classification (A. Love, *App*) Sample has a brecciated chondritic texture composed of lithologies that show varying levels of alteration. The sample is composed of (vol %): chondrules (12) with average apparent diameter of 161 μ m (n=146); CAI's (8); chondrule fragments and mineral grains (3) set within a fine-grained, FeO-rich, opaque matrix (77). Dust mantles are present on a portion of chondrules. Phyllosilicates are present within chondrule mesostasis and mixed with tochilinite in portions of the matrix. FeNi metal occurs as rounded inclusions within silicates only. Additional minerals are: troilite, chromite and magnetite.

Geochemistry: (A. Love, *App*) Olivine, $Fa_{25.4\pm17.2}$ ($Fa_{0.3-48.9}$), Cr_2O_3 in ferroan olivines 0.4±0.1, n=17; low-Ca pyroxene, $Fs_{5.8\pm9.5}Wo_{1.2\pm0.7}$ ($Fs_{0.8-36.1}Wo_{0.7-3.0}$, n=12).

Classification: Carbonaceous chondrite (CM2) Textures, mineralogy and matrix abundance suggest this is a CM2. Presence of altered mesostasis and tochilinite-phyllosilicate intergrowths suggests CM2.

Specimens: Sergey Vasiliev holds the main masses. 2 whole stones totaling 5g and a polished thin section are on deposit at *App*.

Northwest Africa 13372 (NWA 13372)

Morocco

Purchased: 2019

Classification: Ordinary chondrite (H3-6)

History: Purchased by S.Crivello and I.Pardini at the 2019 Genoa Mineral Show from a Moroccan dealer. Reportedly from the Dakhla region.

Physical characteristics: Consists of four irregularly shaped masses, 2.45 kg, 3.15 kg, 1.136 kg and 518 g, found within meters of each other. All four masses are coated in red-brown desert varnish, at least in part. The largest mass also has light tan caliche and weathered fusion crust.

Petrography: (C. Herd, *UAb*) Optical and microprobe examination of a polished thin section shows well-defined chondrules with some brecciation. A single 5 mm equilibrated (type 6) clast was observed in the thin section. Iron oxide veins and iron oxide staining are present throughout. Shock effects include undulatory extinction with $>2^{\circ}$ angular variation.

Geochemistry: (C. Herd, *UAb*) Data obtained by EMP examination of carbon-coated thin section: Olivine Fa_{20.3±2.3} (n=87); Low-Ca Pyroxene Fs_{15.1±4.5}Wo_{1.0±0.5} (n=61).

Classification: Ordinary chondrite, H3-6. Equilibrated clasts within a type 3 matrix. Matrix subtype between 3.7 and 3.9 based on standard deviation of olivine and low-Ca pyroxene analyses.

Specimens: Type specimen of 46.1 g, including one thin section, is at *UAb*. Main masses with S. Crivello and I. Pardini.

Northwest Africa 13373 (NWA 13373)

Mauritania

Find: 2018

Classification: Ordinary chondrite (H5)

History: Collected by a nomad in an undetermined place in northern Mauritania during 2018. Purchased by Geologist Juan Avilés Poblador in Spring 2019 on behalf of *UAlic* (Earth Sciences Department, Laboratory of Applied Petrology).

Physical characteristics: The single, 919.7 g irregularly shaped stone has as red-brown exterior. Veins are visible on cut surfaces.

Petrography: (C. Herd and H. Shek, *UAb*) Optical and microprobe examination of a polished thin section shows well-delineated chondrules cross-cut locally by veins. Minor iron staining is present. Olivine has sharp optical extinction with <2° angular variation. Veins do not appear to involve significant shock melting.

Geochemistry: (C. Herd and H. Shek, *UAb*) Data obtained by EMP examination of carboncoated thin section: Olivine Fa_{19.4±0.6} (n=94); Low-Ca Pyroxene $Fs_{17.6\pm1.2}Wo_{1.0\pm0.2}$ (n=81). **Classification**: Ordinary chondrite, H5

Specimens: Type specimen of 91.1 g, including one thin section, is at *UAb*. Main mass at *UAlic*.

Northwest Africa 13374 (NWA 13374)

Mauritania

Find: 2018

Classification: Ordinary chondrite (L6)

History: Collected by a nomad in an undetermined place in northern Mauritania during 2018. Purchased by Geologist Juan Avilés Poblador in Spring 2019 on behalf of the *UAlic* (Earth Sciences Department, Laboratory of Applied Petrology).

Physical characteristics: The single, 3073 g irregularly shaped stone has as dark brown exterior. Cut surfaces reveal a brecciated texture.

Petrography: (C. Herd and H. Shek, *UAb*) Optical and microprobe examination of a polished thin section shows poorly-defined chondrules and numerous dark veins. Several large and numerous small iron oxide veinlets are present throughout. Shock effects include undulatory extinction and planar fractures in olivine, veins, and shock-darkened areas.

Geochemistry: (C. Herd and H. Shek, *UAb*) Data obtained by EMP examination of carboncoated thin section: Olivine Fa_{25,1±0.9} (n=72); Low-Ca Pyroxene Fs_{21,5±1.0}Wo_{1,3±0.2} (n=50). **Classification**: Ordinary chondrite, L6

Specimens: Type specimen of 91.3 g, including one thin section, is at *UAb*. Main mass at *UAlic*.

Northwest Africa 13375 (NWA 13375)

Mauritania

Find: 2018

Classification: Ordinary chondrite (L6)

History: Collected by a nomad in an undetermined place in northern Mauritania during 2018. Purchased by Geologist Juan Avilés Poblador in Spring 2019 on behalf of the *UAlic* (Earth Sciences Department, Laboratory of Applied Petrology).

Physical characteristics: The single, 1382 g stone has a light red-brown exterior. Cut surfaces reveal a brecciated texture with sub cm-scale clasts set in a dark matrix.

Petrography: (C. Herd and H. Shek, *UAb*) Optical and microprobe examination of a polished thin section shows a brecciated texture consisting of clasts of variable size with poorly-defined chondrules, cross-cut by numerous dark veins. Iron oxide veining is pervasive. Shock effects include strong mosacism, PDFs and planar fractures in olivine, veins, and shock-darkened areas.

Geochemistry: (C. Herd and H. Shek, *UAb*) Data obtained by EMP examination of carboncoated thin section: Olivine $Fa_{25.6\pm1.0}$ (n=69); Low-Ca Pyroxene $Fs_{22.0\pm1.0}$ Wo_{1.4\pm0.2} (n=39). Compositions are consistent between clasts.

Classification: Ordinary chondrite, L6, monomict breccia.

Specimens: Type specimen of 26.7 g, including one thin section, is at *UAb*. Main mass at *UAlic*.

Northwest Africa 13376 (NWA 13376)

Morocco

Find: 2018

Classification: Ordinary chondrite (LL3)

History: Collected by a nomad in an undetermined location in southern Morocco in the fall of 2018. Purchased by Geologist Juan Avilés Poblador in Spring 2019 on behalf of

the UAlic (Earth Sciences Department, Laboratory of Applied Petrology)

Physical characteristics: The stone is broken into three pieces totaling 7 kg. Chondrules are visible through the dark brown to reddish exterior.

Petrography: (C. Herd and H. Shek, *UAb*) Optical and microprobe examination of a polished thin section shows well-defined chondrules in a clastic matrix. Several large and numerous small iron oxide veinlets are present throughout, and metal has been strongly oxidized. Shock effects include weak mosaicism and planar fractures in olivine.

Geochemistry: (C. Herd and H. Shek, *UAb*) Data obtained by EMP examination of carboncoated thin section: Olivine Fa_{23.0±10.9}, Cr₂O₃ = 0.07±0.09 (n=62); Low-Ca Pyroxene Fs_{11.5±7.2}Wo_{0.8±0.6} (n=69).

Classification: Ordinary chondrite, LL3. Estimated subtype 3.4. based on standard deviation of olivine and low-Ca pyroxene analyses, and presence of chondrule glass.

Specimens: Type specimen of 51.8 g, including one thin section, is at *UAb*. Main mass at *UAlic*.

Northwest Africa 13377 (NWA 13377)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (H5)

History: Purchased by Sean Tutorow in September 2019 via email photos from a source in Morocco and delivered during the 2020 Tucson Gem and Mineral Show.

Physical characteristics: Saw cut of a full slice reveals numerous closely packed small chondrules and abundant metal/sulfide/Fe-oxide grains set in a brown colored matrix.

Petrography: Microprobe examination of a polished mount shows numerous small equilibrated chondrules; plagioclase up to 20 μm in size, abundant Fe,Ni metal and oxidized metal.

Geochemistry: (C. Agee, *UNM*) Olivine $Fa_{18.4\pm0.3}$, Fe/Mn=38±2, n=6; low-Ca pyroxene $Fs_{16.3\pm0.3}Wo_{1.3\pm0.2}$, Fe/Mn=23±1, n=7.

Classification: Ordinary chondrite (H5)

Specimens: 20 g including a probe mount on deposit at *UNM*, Sean Tutorow holds the main mass.

Northwest Africa 13378 (NWA 13378)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (H5)

History: Purchased by Sean Tutorow in September 2019 via email photos from a source in Morocco and delivered during the 2020 Tucson Gem and Mineral Show.

Running Head

Physical characteristics: Saw cut of an end piece reveals numerous closely packed small chondrules and abundant metal/sulfide/Fe-oxide grains set in an orange-brown colored matrix.

Petrography: Microprobe examination of a polished mount shows numerous small texturally equilibrated chondrules; plagioclase up to 20 µm in size, abundant Fe,Ni metal, oxidized metal, and oxide veinlets.

Geochemistry: (C. Agee, *UNM*) Olivine $Fa_{19.1\pm0.2}$, Fe/Mn=39±2, n=12; low-Ca pyroxene $Fs_{17.6\pm2.3}Wo_{1.1\pm0.2}$, Fe/Mn=23±1, n=6.

Classification: Ordinary chondrite (H5)

Specimens: 46 g including a probe mount on deposit at *UNM*, Sean Tutorow holds the main mass.

Northwest Africa 13379 (NWA 13379)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (LL5)

History: Purchased by Sean Tutorow in September 2019 via email photos from a source in Morocco and delivered during the 2020 Tucson Gem and Mineral Show.

Physical characteristics: Saw cuts reveal many light gray chondrules set in a darker gray groundmass, scattered small opaques were observed throughout.

Petrography: Microprobe examination of a polished mount shows texturally equilibrated chondrules, many porphyritic, some greater than 1 mm in diameter; plagioclase up to 20 µm in size, minor amounts of Fe,Ni metal present.

Geochemistry: (C. Agee, *UNM*) Olivine Fa_{28.1±0.5}, Fe/Mn=56±4, n=10; low-Ca pyroxene $Fs_{23.2\pm2.3}Wo_{2.1\pm0.3}$, Fe/Mn=35±1, n=5.

Classification: Ordinary chondrite (LL5)

Specimens: 25.3g g including a probe mount on deposit at *UNM*, Sean Tutorow holds the main mass.

Northwest Africa 13380 (NWA 13380)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (H7)

History: Purchased by Sean Tutorow in September 2019 via email photos from a source in Morocco and delivered during the 2020 Tucson Gem and Mineral Show.

Physical characteristics: Saw cuts reveal gray-brown mosaic of silicate grains, many bright metal grains visible.

Petrography: Microprobe examination shows texturally equilibrated grains of olivine, pyroxene, and plagioclase with many triple junctions. Olivines show no significant

compositional variation, however pyroxenes show some variation in Fs. Grain size ranges \sim 50-300 µm. Metal makes up approximately 15% of this meteorite, numerous oxide veinlets are present, minor apatite detected. No chondrules were observed.

Geochemistry: (C. Agee, *UNM*) Olivine $Fa_{18.6\pm0.1}$, Fe/Mn=38±2, n=6; low-Ca pyroxene $Fs_{16.6\pm2.3}Wo_{2.1\pm0.3}$, Fe/Mn=23±1, n=6.

Classification: Ordinary chondrite (H7)

Specimens: 23.2 g including a probe mount on deposit at *UNM*, Sean Tutorow holds the main mass.

Northwest Africa 13381 (NWA 13381)

(Northwest Africa)

Purchased: 2020 Jun

Classification: Carbonaceous chondrite (CK3)

History: Purchased by Rachid Chaoui in June 2020 from a Mauritanian dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Separated, granular, glass-bearing unequilibrated chondrules containing Cr-magnetite plus fine grained CAI are set in a relatively abundant fine grained matrix containing Cr-magnetite, troilite and pentlandite. Hedenbergite, spinel and ilmenite are present in one CAI.

Geochemistry: Olivine (Fa_{30.2±15.1}, range Fa_{2.6-44.0}, N = 9), low-Ca pyroxene (Fs_{2.0±1.3}Wo_{2.2±2.2}, range Fs_{0.8-3.4}Wo_{4.6-0.4}, N = 5), augite (Fs_{0.5}Wo_{45.2}), magnetite (Cr₂O₃ = 1.2 wt.%, 3.1 wt.%, N = 2).

Classification: Carbonaceous chondrite (CK3).

Specimens: 22.1 g including one polished thin section at *UWB*; remainder with Mr. R. Chaoui.

Northwest Africa 13382 (NWA 13382)

(Northwest Africa)

Purchased: 2016 Feb

Classification: Ordinary chondrite (L3)

History: Purchased by Blaine *Reed* in February 2016 from a Moroccan dealer at the Tucson Gem and Mineral Show.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) This specimen consists in part of well-formed, slightly unequilibrated chondrules set in a finer grained matrix containing stained metal, troilite, chromite and apatite. Also present are some very fine grained quenched and/or recrystallized melt rock clasts consisting mainly of very small, normally-zoned olivine grains.

Geochemistry: Main Type 3 lithology: Olivine (Fa_{24.7±0.8}, range Fa_{22.9-25.6}, N = 8), low-Ca pyroxene (Fs_{20.8±1.0}Wo_{1.6±0.2}, range Fs_{19.9-22.9}Wo_{0.8-1.9}, N = 7), augite (Fs_{10.4}Wo_{43.4}). Melt rock clasts: olivine (cores Fa_{9.1}, Fa_{10.2}; rim Fa_{19.8}), low-Ca pyroxene (Fs_{6.9}Wo_{0.8}).

Classification: Ordinary chondrite (L3 with melt rock clasts).

Specimens: 47.8 g including one polished thin section at PSF; remainder with Mr. B. Reed.

Northwest Africa 13383 (NWA 13383)

(Northwest Africa) Purchased: 2019 Feb Classification: Ureilite

History: Purchased by Blaine *Reed* in February 2019 from a Moroccan dealer at the Tucson Gem and Mineral Show.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Protogranular texture of nonequant olivine and pigeonite grains showing preferred dimensional orientation. Olivine has reduced, more magnesian rims associated with very fine grained Fe metal. No carbon phases were observed in the studied thin section.

Geochemistry: Olivine (cores $Fa_{20,3-24,5}$, N = 13; rims $Fa_{9,6-18,8}$, N = 6; Cr₂O₃ in all olivine = 0.6-0.8 wt.%), pigeonite ($Fs_{11,8-19,5}Wo_{10,2-12,4}$, N = 9; $Fs_{10,9}Wo_{15,2}$; $Fs_{13,5}Wo_{6,4}$). **Classification**: Ureilite.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
25 26	
20	
27 20	
20	
29	
30	
27	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

Specimens: 20.7 g including one polished thin section at PSF; remainder with Mr. B. Reed.

Northwest Africa 13384 (NWA 13384)

(Northwest Africa)

Purchased: 2018 Sep

Classification: Ordinary chondrite (L5)

History: Purchased by Blaine *Reed* in September 2018 from a Moroccan dealer at the Denver Show.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Sparse chondrules are set in a recrystallized matrix containing altered metal, troilite, chromite and apatite.

Geochemistry: Olivine (Fa_{24.9±1.0}, range Fa_{24.1-26.8}, N = 6), low-Ca pyroxene

 $(Fs_{20.8\pm0.1}Wo_{1.4\pm0.1}, range Fs_{20.7-21.0}Wo_{1.2-1.5}, N = 5)$

Classification: Ordinary chondrite (L5).

Specimens: 29.0 g including one polished thin section at PSF; remainder with Mr. B. Reed.

Northwest Africa 13385 (NWA 13385)

Drâa-Tafilalet, Morocco Purchased: 2015

Classification: CVred3

History: Mohamed Boukbot found the samples in the desert 3.8 km NE of the town of Mezguida, Drâa-Tafilalet, Morocco. Many samples were distributed to a number of dealers and subsequently purchased by John Higgins in 2015.

Physical characteristics: Type specimens are dark-light brown and have an irregular-shaped exterior. The cut face shows the interior is composed of abundant chondrules and refractory inclusions. The color variation of the interior of some stones show regions stained by FeOH minerals indicating variable weathering.

Petrography: Description and classification (A. Love, *App*): Sample shows brecciated chondritic texture composed of distinct chondrules with an average diameter of 640 μ m (n=51), fragments, refractory inclusions (CAIs and AOAs) and a single xenolithic clast set within a fine-grained opaque oxidized matrix (~55 vol%). Some porphyritic chondrules contain rounded inclusions of FeNi metal. The 2 × 3mm lithic clast contains unequilibrated chondrules with an average diameter of 112 μ m (n=10).

Geochemistry: (A. Love, *App*) Olivine $Fa_{6.4\pm8.0}$ ($Fa_{0.3-33.0}$, n=18); low-Ca pyroxene $Fs_{1.2\pm0.4}Wo_{1.8\pm1.4}$ ($Fs_{0.7-2.2}Wo_{0.8-2.8}$, n=12); high-Ca pyroxene $Fs_{1.8}Wo_{31.1}$ (n=1). Sulfides contain 0.31±0.24 wt% Ni, n=18.

Classification: Carbonaceous chondrite (CVred3). Chondrule diameter, modal abundance of matrix, and abundant CAIs indicate sample is CV3. Presence of FeNi metal in silicates, wt% Ni in sulfides and magnetic susceptibility indicate the sample belongs to the CVred group (Bonal et al. (2020), Gattacceca et al. (2020)).

Specimens: John Higgins holds the main mass. Many slices and endcuts totaling 37.82 g and a polished thin section and mount are on deposit at *App*.

Northwest Africa 13386 (NWA 13386)

Morocco

Find: 2019

Classification: Ordinary chondrite (L5)

History: Purchased online in 2019 by Daniel Sheikh from a seller in Morocco.

Physical characteristics: Sample contains a weathered dark-brown fusion crust. **Petrography**: (D. Sheikh, *FSU*) Sample is an equilibrated ordinary chondrite with blurred chondrule boundaries (Av. 700±50 µm, n=4) and contains olivine, orthopyroxene, Fe-Ni metal, troilite, iron oxide, and secondary recrystallized plagioclase ($15\pm5 \mu m$). Geochemistry: Olivine (Fa_{22.9±0.6}, n=17), Orthopyroxene (Fs_{21.3±0.6}Wo_{1.3±0.2}, n=15). Classification: Ordinary Chondrite (L5) Based on Fa and Fs homogeneity, secondary recrystallized plagioclase grain size, and magnetic susceptibility. Specimens: 75.1 grams at UCLA; main mass with Daniel Sheikh.

Northwest Africa 13387 (NWA 13387)

Morocco

1 2 3

4

5

6

7

8

9 10

11

12 13 14

15

16

17 18

19

20

21

22

23

24 25

26

27

28

29 30 31

32 33

34

35

36

37

38

39 40

41

42

43

44

45

50

51

52

53

54 55

56

57

58

59

60

Find: 2019

Classification: Ordinary chondrite (L5)

History: Purchased online in 2019 by Daniel Sheikh from a seller in Morocco. **Physical characteristics**: Sample contains a weathered dark-brown fusion crust. **Petrography**: (D. Sheikh, FSU) Sample is an equilibrated ordinary chondrite with blurred chondrule boundaries (Av. 720±50 µm, n=5) and contains olivine, orthopyroxene, Fe-Ni metal, troilite, iron oxide, and secondary recrystallized plagioclase ($15\pm5 \mu m$). Geochemistry: Olivine (Fa_{23,7±0,7}, n=15), Orthopyroxene (Fs_{21,5±0,8}Wo_{1,3±0,1}, n=14). Classification: Ordinary Chondrite (L5) Based on Fa and Fs homogeneity, secondary recrystallized plagioclase grain size, and magnetic susceptibility. **Specimens**: 31.8 grams at UCLA; main mass with Daniel Sheikh.

Northwest Africa 13388 (NWA 13388)

Morocco

Find: 2019

Classification: Ordinary chondrite (L5)

History: Purchased online in 2019 by Daniel Sheikh from a seller in Morocco.

Physical characteristics: Sample contains a dark-brown fusion crust.

Petrography: (D. Sheikh, FSU) Sample is an equilibrated ordinary chondrite with blurred chondrule boundaries (Av. 700±50 µm, n=6) and contains olivine, orthopyroxene, Fe-Ni metal, troilite, iron oxide, and secondary recrystallized plagioclase ($12\pm4 \mu m$).

Geochemistry: Olivine (Fa_{22,8±0.5}, n=14), Orthopyroxene (Fs_{20,9±0.8}Wo_{1,2±0.3}, n=15).

Classification: Ordinary Chondrite (L5) Based on Fa and Fs homogeneity, secondary recrystallized plagioclase grain size, and magnetic susceptibility.

Specimens: 21.01 grams at UCLA; main mass with Daniel Sheikh.

Northwest Africa 13389 (NWA 13389)

Morocco

Find: 2019

Classification: Ordinary chondrite (L5)

History: Purchased online in 2019 by Daniel Sheikh from a seller in Morocco. **Physical characteristics**: Sample contains a dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) Sample is an equilibrated ordinary chondrite with blurred chondrule boundaries (Av. 650±50 µm, n=5) and contains olivine, orthopyroxene, Fe-Ni metal, troilite, iron oxide, and secondary recrystallized plagioclase (20±5 µm). Geochemistry: Olivine (Fa_{23.1 \pm 0.6}, n=18), Orthopyroxene (Fs_{21.2 \pm 0.7}Wo_{1.1 \pm 0.2}, n=16).

Sp	crystallized plagioclase grain size, and magnetic susceptibility. ecimens: 29.7 grams at UCLA; main mass with Daniel Sheikh.
No	orthwest Africa 13390 (NWA 13390)
	Mauritania Purchased: 2017 Apr 13
	Classification: Lunar meteorite (frag. breccia)
Hi	story: Purchased April 13, 2017, by Dustin Dickens from a nomad in Mauritania.
Ph fre	Tysical characteristics : A single stone with no fusion crust. Cut surface reveals a agmental breccia set in a dark-gray ground mass.
Pe	trography: (D. Dickens) This meteorite is a clast-rich polymict breccia with lithic
fra	igments embedded in a fine-grained moderately vesiculated groundmass. Fragmental c
Th	is meteorite is shocked with some impact melt textures present
G	eochemistry: (C. Agee, UNM; D. Dickens) Olivine Fa _{28.5±5.68} , Fe/Mn=98±6, n=14;
pi	geonite $F_{s_{35,8\pm11.6}}Wo_{8.0\pm5.1}$, Fe/Mn=60±6, n=10; high-Ca pyroxene $F_{s_{25.0\pm3.3}}Wo_{30.9\pm8.6}$,
Fe	$/Mn=5/\pm 8 n=3$; plagioclase An _{96.3±3.0} Ab _{4.7±2.6} Or _{0.3±0.4} , n=7; shock melt (20 µm defocu
Ca	$\mu O=15 \ 3\pm 1 \ 2 \ MgO=5 \ 6\pm 1 \ 2 \ FeO=4 \ 5\pm 0 \ 3 \ TiO_2=0 \ 39\pm 0 \ 09 \ Cr_2O_2=0 \ 11\pm 0 \ 02$
M	$nO=0.07\pm0.02$, $Na_2O=0.42\pm0.04$, $K_2O=0.17\pm0.14$ (all wt%), Fe/Mn=61±2, n=4, Mg#=
Cl	assification: Lunar Fragmental Breccia
Sp	ecimens: 20 g including a probe mount on deposit at UNM, Oliver Dickens holds the pass
No	orthwest Africa 13392 (NWA 13392)
	(Northwest Africa)
	Purchased: 2020
Hi	istory . The meteorite was purchased from a meteorite dealer in Tindouf Algeria
Ph	sical characteristics: Brownish rock partly covered with fusion crust.
Pe	trography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments
Pe (pl	trography : Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μ m) set into LL5-type matrix (plagioclase grain size is a size is about 20 μ m) set into LL5-type matrix (plagioclase grain size is a si
Pe (pl ab	etrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μ m) set into LL5-type matrix (plagioclase grain size is out 30 μ m).
Pe (pl ab	etrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μ m) set into LL5-type matrix (plagioclase grain size is out 30 μ m).
Pe (pl ab	etrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μm) set into LL5-type matrix (plagioclase grain size is out 30 μm).
Pe (pl ab	etrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μm) set into LL5-type matrix (plagioclase grain size is out 30 μm). Orthwest Africa 13394 (NWA 13394) (Northwest Africa) Purchased: 2020
Pe (pl ab	 ctrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μm) set into LL5-type matrix (plagioclase grain size is out 30 μm). brthwest Africa 13394 (NWA 13394) (Northwest Africa) Purchased: 2020 Classification: Ordinary chondrite (LL6, melt breccia)
Pe (pl ab No	 ctrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μm) set into LL5-type matrix (plagioclase grain size is out 30 μm). corthwest Africa 13394 (NWA 13394) (Northwest Africa) Purchased: 2020 Classification: Ordinary chondrite (LL6, melt breccia) istory: The meteorite was purchased from a meteorite dealer in Smara, West Sahara.
Pe (pl ab No Hi Ph	 etrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μm) set into LL5-type matrix (plagioclase grain size is out 30 μm). orthwest Africa 13394 (NWA 13394) (Northwest Africa) Purchased: 2020 Classification: Ordinary chondrite (LL6, melt breccia) istory: The meteorite was purchased from a meteorite dealer in Smara, West Sahara. typical characteristics: Eleven dark brownish fragments without fusion crust.
Pe (pl ab No Hi Ph Pe ch	 ctrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μm) set into LL5-type matrix (plagioclase grain size is out 30 μm). brthwest Africa 13394 (NWA 13394) (Northwest Africa) Purchased: 2020 Classification: Ordinary chondrite (LL6, melt breccia) istory: The meteorite was purchased from a meteorite dealer in Smara, West Sahara. Tysical characteristics: Eleven dark brownish fragments without fusion crust. ctrography: The meteorite is a breccia composed of recrystallized melt regions and few ordritic clasts with sparse relict chondrules. Predominant phase include olivine low-C
Pe (p) ab No Hi Ph Pe ch pv	 ctrography: Chondritic breccia composed of up to 1.5 cm sized LL6-type fragments lagioclase grain size is about 80 μm) set into LL5-type matrix (plagioclase grain size is out 30 μm). brthwest Africa 13394 (NWA 13394) (Northwest Africa) Purchased: 2020 Classification: Ordinary chondrite (LL6, melt breccia) istory: The meteorite was purchased from a meteorite dealer in Smara, West Sahara. bysical characteristics: Eleven dark brownish fragments without fusion crust. ctrography: The meteorite is a breccia composed of recrystallized melt regions and few ondritic clasts with sparse relict chondrules. Predominant phase include olivine, low-C roxene, Ca-pyroxene, sodic and sometimes exsolved plagioclase (grain size about 60 μ

Northwest Africa 13395 (NWA 13395)

(Northwest Africa) Purchased: 2020 Classification: HED achondrite (Eucrite, monomict)

History: The meteorite was purchased from a meteorite dealer in Tindouf, Algeria.

Physical characteristics: Many grayish fragments with the largest one weighing 34 g. Some fragments are partly covered with fusion crust.

Petrography: The meteorite is a fragmental breccia composed of exsolved pyroxene (up to 400 μ m) and calcic plagioclase (up to 500 μ m) grains set into a more fine-grained clastic matrix. Minor phases include silica, chromite, ilmenite, FeS, and metallic iron. Some veins are filled with secondary calcite. The meteorite is heavily fractured and contains shock melt veins.

Geochemistry: Low-Ca pyroxene: $Fs_{59,4\pm0.5}Wo_{2.6\pm0.4}$ (Fs_{58,3-60.0}Wo_{2.2-3.3}, n=13, FeO/MnO=26-28); Ca-pyroxene: $Fs_{26,5\pm0.4}Wo_{43,2\pm0.3}$ (Fs_{25,6-27.2}Wo_{42,7-43.8}, n=15, FeO/MnO=25-30); calcic plagioclase: An_{89.9\pm0.4} (An_{89.5-90.5}, n=14)

Northwest Africa 13397 (NWA 13397)

Morocco

Find: 2019

Classification: Ordinary chondrite (LL3)

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with well-delineated packed chondrules (average apparent diameter 940±430 μ m, n=27). Opaques are Fe,Ni metal and troilite. **Geochemistry**: Olivine Fa_{18.9±7.5}, range Fa_{3.3-25.8}, Fa PMD 35%, Cr₂O₃ 0.33±0.07 (n=10). Low-Ca pyroxene Fs_{14.4±7.9}Wo_{0.9±0.7} (n=6).

Classification: Ordinary chondrite (LL3). LL group based on chondrule size and magnetic susceptibility.

Northwest Africa 13400 (NWA 13400)

(Northwest Africa)

Purchased: 2016 Dec

Classification: Carbonaceous chondrite (C3, ungrouped)

Petrography: (K. Metzler, *IfP*) Carbonaceous chondrite, consisting of closely packed, metalbearing chondrules (apparent size up to 2.8 mm), chondrule fragments, and CAIs (apparent size up to 3.8 mm) with low amounts of interchondrule matrix (17 vol%). The mean apparent chondrule size is 480 μ m (n=512).

Geochemistry: Mineral compositions and geochemistry: The mean olivine composition is Fa_{14.7±1.3} (Fa_{10.2-16.0}, n=30); the mean low-Ca pyroxene composition is Fs_{6.6±3.7}Wo_{1.0±0.1} (Fs_{1.2-15.9}Wo_{0.8-1.2}, n=20). Oxygen isotopic composition (R. Greenwood, *OU*): δ^{17} O=-4.017‰, δ^{18} O=-0.021‰, Δ^{17} O=-4.006‰.

Classification: Carbonaceous chondrite (ungrouped). Petrologic type 3.9 based on the percentage mean deviation (PMD) of Fa values (8.8%). Classified as ungrouped due to the low mean Fa and Fs values of olivine and low amount of matrix compared to e.g., CV chondrites. Chondrule size does not fit with either CV, CK or CK chondrites that are the closest groups in terms of oxygen isotopic composition.

Northwest Africa 13401 (NWA 13401) (Northwest Africa)

Running Head

3	Purchased: January 2020
4	Classification: Martian meteorite (Shergottite)
5	History : Purchased in January 2020 by Jasper Spencer from a moroccan dealer.
6	Physical characteristics . Two stones with near absent fusion crust
7 8	Petrography : (Daniel Sheikh <i>FSU</i>) Sample is composed of maskelynite (Av. 750 \pm 100 µm
9	up to 2 mm 40 vol%) and complexly zoned tabular and irregularly-shaped grains (some
10	twinned) of subcalcic augite and nigeonite ($\Delta y 400+50 \text{ µm}$ µm to 1 mm 60 yol%)
11	Accessory phases include titenomegnetite Si Al Ne K rich glass and pyrrhotite Semple
12	Accessory phases include inanomagnetite, SI-AI-Na-K-IICH glass, and pyrhoute. Sample
13	Contains innor carbonate weathering vents.
14	Geochemistry : Subcalcic augite (Fs _{34.3±6.5} w $O_{30.7\pm1.7}$, range Fs _{22.3-46.5} w $O_{27.5-33.5}$,
15	FeO/MnO= 32 ± 5 , n= 27), pigeonite (Fs _{49,2±7.0} Wo _{13.9±2.2} , range Fs _{36.9-59.8} Wo _{10.6-19.7} ,
16	FeO/MnO=34 \pm 4, n=28), maskelynite (An _{45.5\pm4.5} Or _{2.7\pm1.1} , range An _{40.1-51.7} Or _{1.3-4.6} , n=23).
17	Classification: Martian (shergottite) Silicate chemistry, the presence of maskelynite, and
18	FeO/MnO ratios of pyroxenes provide support for classification as shergottite.
19	Specimens: 14 grams at UCLA; main mass with Jasper Spencer.
20	
27	
23	Northwest Africa 13404 (NWA 13404)
24	Laayoune, Morocco
25	Find: 2019
26	Classification: Ordinary chondrite (L6)
27	Petrography : (J. Gattacceca) highly recrystallized chondrite with triple junctions
28	
29	
30	Northwest Africa 13408 (NWA 13408)
37	Algeria
33	Find: 2018
34	Classification: Lunar mataorita (faldanathia brazzia)
35	Listowy Durchased in 2020 by Motthey Stream from Said Dashir in Algeria
36	History . Purchased in 2020 by Matthew Stream from Said Bachin in Algeria.
37	Physical characteristics : Sample contains minor fusion crust. An interior since reveals an
38	assortment of light and dark-coloured clasts.
39	Petrography : (D. Sheikh, FSU) Sample is a feldspathic breccia composed primarily of sub-
40	angular anorthitic clasts (<1 cm) set in a dark, fine-grained matrix. Other phases present
41	include pigeonite, olivine, sub-calcic augite, low-Ca pyroxene, and Si-Na-Ca-Mg-rich glass.
43	Geochemistry : Olivine (Fa _{57.4\pm16.5} , range Fa _{45.8-69.0} , FeO/MnO=95 \pm 5, n=2), Pigeonite
44	$(Fs_{32.0\pm2.4}Wo_{12.4\pm3.7}, range Fs_{28.1-34.8}Wo_{8.0-17.2}, FeO/MnO=44\pm3, n=7)$, Low-Ca Pyroxene
45	(Fs _{36.7} Wo _{4.0} , FeO/MnO=53, n=1), Sub-Calcic Augite (Fs _{23.5} Wo _{31.2} , FeO/MnO=38, n=1),
46	Anorthite (An _{96.5\pm0.7} , range An _{95.1-97.5} , n=24).
47	Classification: Lunar (feldspathic breccia).
48	Specimens: 20.81 grams at UCLA; main mass with Matthew Stream.
49	
50	
51	Northwest Africa 13410 (NWA 13410)
52 53	Tindouf. Algeria
55	Find: 2017
55	Classification: Ordinary chondrite (L6)
56	History : Two nieces that comprise the 99.22 g sample were found near Tindouf Algeria in
57	May 2017 Dave Lehman and his partner obtained the sample in 2010
58	may 2017. Dave Demnan and ins particle obtained the sample in 2017.
59	
60	

Physical characteristics: The sample was found as two pieces that fit together to comprise an irregular shaped stone with a dark brown weathered exterior with a light orangish brown interior.

Petrography: Description and classification (A. Love, *App*) Sample has a recrystallized chondritic texture. Chondrules have an average apparent diameter of 631.5 μ m, n=8. Secondary plagioclase has an average grain length of 70 μ m, n=16.

Geochemistry: (A. Love, *App*) Olivine (Fa_{24.7±0.2}, Fe/Mn=45.8±1.7, n=3), low-Ca pyroxene (Fs_{21.6±0.2}Wo_{1.9±0.2}, n=3).

Classification: Ordinary chondrite (L6, C-S3, W4) Sample is an L chondrite based on mineral compositions, and magnetic susceptibility. Based on grainsize of secondary plagioclase and equilibrated compositions, this sample is an L6.

Specimens: Dave Lehman and partner hold the main masses. A 2 0g sample and mounted piece are on deposit at *App*.

Northwest Africa 13411 (NWA 13411)

Western Sahara, Morocco

Purchased: 2018

Classification: OC5-an

History: The 190.96 and 73.03 g samples were found near Adrar, Algeria, by a meteorite prospector in 2018. Dave Lehman and his partner acquired the samples from the finder. **Physical characteristics**: Samples are irregularly shaped and brown. Interior of sample is orangish brown and contains abundant chondrules and weathered metal and sulfides. **Petrography**: Description and Classification (A. Love, *App*) Sample has a chondritic texture composed of numerous close-packed equilibrated chondrules set within a comminuted matrix of the chondritic lithology. This matrix is crosscut by ubiquitous FeNiOH veinlets. When viewed using backscattered electron imaging, the olivines and pyroxene have almost identical gray-scale colors. The sample is composed of BO, PO (dominant), PP (clinoenstatite is rare but present) and rare Al-rich chondrules with an average apparent diameter of $395\pm219 \,\mu\text{m}$ (n=131). Some pyroxenes are zoned from enstatite cores to augite rims. The sample contains secondary plagioclase with an average grainsize of $29 \,\mu\text{m}$ (n=15). Additional minerals are: chromite, K-rich feldspar, apatite, kamacite, taenite, troilite and gypsum. Despite a comprehensive search for reduced sulfide and phosphide phases commonly associated with enstatite and forsterite chondrites, none were found in this sample.

Geochemistry: (A. Love, *App*) Olivine (Fa_{8.35±0.15}, Fe/Mn=16.97±0.58, n=18), low-Ca pyroxene (Fs_{8.47±0.26}Wo_{1.09±0.32}, Fe/Mn=10.78±0.39, n=18); high-Ca pyroxene rims (Fs_{3.44±0.08}Wo_{46.93±2.71}, n=4). plagioclase of variable composition (Ab_{18.17-83.41}Or_{0.66-12.88}, n=6); FeNi metal (6.71±0.21wt% Ni and 1.09±0.02wt% Co, n=9). Oxygen Isotopes: (Karen Ziegler, *UNM*) analyses of acid-washed subsamples by laser fluorination gave (all per mill): $\delta^{17}O$ =4.199, 3.277, 3.836, 3.592, 3.666, 3.102; $\delta^{18}O$ =5.891, 5.520, 6.526, 5.464, 6.433, 5.240; $\Delta^{17}O$ =1.089, 0.362, 0.390, 0.707, 0.269, 0.335.

Classification: Ordinary chondrite (OC5-an, C-S2, W3) Based on chondritic texture and presence of weathered and unweathered metal, this sample has similarities with ordinary chondrites. Based on mineral compositions and oxygen isotopes, this is an anomalous ordinary chondrite. Equilibrated compositions and grainsize of secondary plagioclase indicate this sample corresponds to petrologic type 5. Oxygen isotope compositions plot at a distance from the slope 1 line for equilibrated ordinary chondrites. Mean $\Delta^{17}O$ composition is below the standard range for unequilibrated H chondrites and the standard deviation of the $\Delta^{17}O$ is higher than that recorded in the entire range of unequilibrated ordinary chondrites. Co

concentrations in kamacite fall between values measured in L and LL chondrites (Rubin, 1990).

Specimens: Dave Lehman and a partner hold the main mass. Two slices totaling 25.08g and a polished thin section and mount are on deposit at *App*.

Northwest Africa 13412 (NWA 13412)

(Northwest Africa)

Purchased: 2020

Classification: Carbonaceous chondrite (CV3)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Almost black individual lacking any fusion crust.

Petrography: Carbonaceous chondrite composed of chondrules (mean diameter about 0.8 mm; up to 1.5 mm sized), CAIs (up to 3 mm sized), and olivine amoeboids all set into a finegrained almost black matrix. The meteorite is relatively fresh. No chondrules showing reddish staining have been observed.

Northwest Africa 13413 (NWA 13413)

(Northwest Africa)

Purchased: 2020

Classification: HED achondrite (Howardite)

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Dark-grayish rock with some fusion crust.

Petrography: The meteorite is a polymict breccia composed of mineral and few basaltic clasts set into a fine-grained clastic matrix. Main minerals are up to 3 mm sized diogenetic orthopyroxene (about 15%), compositionally zoned low-Ca pyroxene, exsolved pyroxene and calcic plagioclase. Minor phases include silica, chromite, ilmenite, FeS, fayalitic olivine, and kamacite.

Geochemistry: Diogenetic pyroxene: $F_{s_{24,2\pm0.5}}Wo_{2.0\pm0.3}$ ($F_{s_{23,3-25,0}}Wo_{1.6-2.2}$, FeO/MnO=24-29, n=12); zoned low-Ca pyroxene: $F_{s_{25,2\pm2.8}}Wo_{2.3\pm0.2}$ ($F_{s_{22,7-29,8}}Wo_{2.1-2.8}$, FeO/MnO=25-31, n=12); eucritic low-Ca pyroxene host crystals to augite lamellae: $F_{s_{58,2\pm0.7}}Wo_{3.1\pm0.4}$ ($F_{s_{57,1-59,7}}Wo_{2.7-4.0}$, FeO/MnO=24-26, n=13); augite exsolution lamellae: $F_{s_{24,5\pm1.9}}Wo_{42.7\pm0.7}$ ($F_{s_{20,1-26,7}}Wo_{41,9-44.5}$, FeO/MnO=322-27, n=14); olivine: $Fa_{38,4\pm0.2}$ ($Fa_{38,1-38.6}$, FeO/MnO=46±1, n=5); calcic plagioclase: $An_{89,5\pm7.0}$ ($An_{71.0-94.6}$, n=14)

Northwest Africa 13414 (NWA 13414)

(Northwest Africa) Purchased: 2020

spherules.

Classification: Ordinary chondrite (L6, melt breccia)

History: The meteorite was purchased from a local meteorite dealer in Zagora, Morocco.

Physical characteristics: Almost black individual lacking any fusion crust. **Petrography**: The meteorite is a melt breccia composed of L6 chondritic regions with very few recognizable chondrules (plagioclase grain size about 80 μm) and abundant up to 1.5 cm wide recrystallized melt rock veins and pockets with characteristic FeNi metal and sufide

Northwest Africa 13415 (NWA 13415)

(Northwest Africa) Purchased: 2019 Classification: HED achondrite (Eucrite) **History**: The meteorite was purchased from a local meteorite dealer in Tindouf, Algeria. **Physical characteristics**: Dark brownish individual with minor fusion crust. **Petrography**: The meteorite is an unbrecciated fine-grained volcanic rock with some interspersed more coarse-grained regions. Dominant minerals are exsolved pyroxene and calcic plagioclase with grain sizes of 30-50 μ m in fine-grained parts and 200-500 μ m in coarse-grained regions. Minor phases include silica, chromite, FeS, ilmenite, and metallic Fe. **Geochemistry**: low-Ca pyroxene: Fs_{63.1±0.5}Wo_{6.9±0.5} (Fs_{62.3-64.0}Wo_{5.8-7.4}, n=15, FeO/MnO=29-31); Ca-pyroxene: Fs_{32.4±0.5}Wo_{42.4±0.5} (Fs_{31.6-33.2}Wo_{41.3-43.3}, n=16, FeO/MnO=32-36); calcic plagioclase: An_{89.3±1.4} (An_{87.9-91.9}, n=14)

Northwest Africa 13416 (NWA 13416)

(Northwest Africa)

Purchased: 2015 Sep

Classification: Ordinary chondrite (L5)

History: Purchased by Blaine *Reed* in September 2015 from a Moroccan dealer at the Denver Show.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Sparse chondrules are set in a recrystallized matrix containing altered metal, troilite, chromite and chlorapatite.

Geochemistry: Olivine (Fa_{24.8±0.3}, range Fa_{24.5-25.2}, N = 6), low-Ca pyroxene

 $(Fs_{20.7\pm0.2}Wo_{1.6\pm0.2}, range Fs_{20.4-20.9}Wo_{1.2-1.8}, N = 6)$

Classification: Ordinary chondrite (L5).

Specimens: 44.7 g including one polished thin section at PSF; remainder with Mr. B. Reed.

Northwest Africa 13417 (NWA 13417)

(Northwest Africa)

Purchased: 2012 Sep

Classification: Ordinary chondrite (H3-6)

History: Purchased by Blaine *Reed* in September 2012 from a Moroccan dealer at the Denver Show.

Petrography: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Most of this specimen consists of well-formed chondrules (apparent diameter $600\pm390 \ \mu m$, N = 24) set in a finer grained matrix containing altered metal, troilite, chromite and apatite. One type 6 lithic clast (1 cm across) containing rare chondrule remnants is present in the studied thin section.

Geochemistry: Olivine (Fa_{18.8±2.9}, range Fa_{16.8-23.8}, N = 5; Cr₂O₃ in ferroan olivine (Fa_{23.8-40.2}) 0.01-0.11 wt.%, mean 0.05±0.04 wt.%, N = 5), low-Ca pyroxene (Fs_{12.3±3.9}Wo_{1.2±1.3}, range Fs_{8.7-17.8}Wo_{0.3-3.0}, N = 4), pigeonite (Fs_{20.4}Wo_{10.1}), subcalcic augite (Fs_{21.1}Wo_{27.4}), augite (Fs_{13.0}Wo_{41.4}). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 5.02.

Classification: Ordinary chondrite (H3-6 breccia).

Specimens: 24.7 g including one polished thin section at PSF; remainder with Mr. B. Reed.

Northwest Africa 13418 (NWA 13418)

(Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L5)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morecco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Sparse chondrules are set in a recrystallized matrix containing stained metal, troilite, chromite and apatie. Geochemistry: Olivine (Fa ₂₃₄₀₄ , range Fa ₂₁₃₂₅ , N = 4), low-Ca pyroxene (Fs ₂₆₋₆₀ W)(<i>icele</i>), range Fs ₂₆₂₋₂₀₇ W0 ₁₄₋₁₇ , N = 4), augite (Fs ₂₆₄₋₁₀₆ , range Fs ₂₆₆ , s ₂₇ W0 ₆₅₃₋₆₄₀ W0, <i>icele</i>), range Fs ₂₆₂₋₂₀₇ W0 ₁₄₋₁₇ , N = 4), augite (Fs ₂₆₆₋₁₂₆ , V0 ₄₆₄₇₄₁₆ , range Fs ₂₆₆ , s ₂₇ W0 ₆₅₃₋₆₄₀ , N = 3). Classification: Ordinary chondrite (1.5). Specimens: 48.08 g including one polished thin section at <i>PSF</i> ; remainder in the Harkness Collection. Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam Aaronson in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, UWS and P. Carputer, WUS), Protogranular aggregate (mean grainsize -400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kanacite (-15 vol % ₀), plus accessory chomite and merillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa ₁₀₅₄₁₄ , range Fa ₆₄₊₁₂₂ , FeO/MnO = 22-24, N = 8), orthopyroxene (Fs ₁₁₊₁₁₄ W0, Iss.2), FeO/MnO = 22-24, N = 8), orthopyroxene (Fs ₁₁₊₁₁₄ W0, Iss.2), FeO/MnO = 13-14, N = 4), diopside (Fs ₁₄₊₁₂ W0, Gaussi, FeO/MnO = 8-9, N = 4), Magnetic susceptibility log $\chi (\times 10^9 m/kg) = 4.80$. Classification: Acapulcoite. S	2	
 Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Sparse chondrules are set in a recrystallized matrix containing statemed metal, trollite, chromite and apatite. Geochemistry: Olivino (Fagasad, arugo Fagasas, N = 4), low-Ca pyroxene (FSamsa) Workan; range FSamSan VWO(add rate for the set of the se	3	History : Purchased by Grant Harkness in October 2019 from a dealer in Zagora. Morocco.
 Freerystallized matrix containing stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa₂₄₃₀₆₄, range Fa₂₁₃₂₅₃, N = 4), low-Ca pyroxene (F₃₅₅₆₄₂W)₆₆₄₀, range Fs₂₀₂₂₀₇W0₁₄₋₁₇, N = 4), augite (F₃₆₆₄₁₂W0₄₄₇₈₁₀, range Fs₆₆₆₄₇W0₆₈₆₄₄₇₈₁₀, range Fs₅₀₂₂₀₇W0₁₄₋₁₇, N = 4), augite (F₃₆₆₄₁₂W0₄₄₇₈₁₀, range Fs₆₆₆₄₇W0₆₈₆₄₄₇₈₁₀, range Fs₅₀₂₂₀₇W0₁₄₋₁₇, N = 4), augite (F₃₆₆₄₁₂W0₄₄₇₈₁₀, range Fs₆₆₆₄₇W0₆₈₆₄₄₇₈₁₀, range Fs₅₀₂₂₀₇W0₁₄₋₁₇, N = 4), augite (F₃₆₆₄₁₂W0₄₄₇₈₁₀, range Fs₆₆₆₄₇W0₆₈₆₄₄₇₈₁₀, range Fs₆₆₆₄₇₇₈₀W1, augite (Fa₁₆₅₄₁₂W0₄₄₇₈₁₀, range Fs₆₆₆₄₇₈₀W1, augite (Fa₁₆₅₄₁₁₄), range Fs₆₆₆₄₈₇₈₀W1, augite (Fa₁₆₅₄₁₁₄), range Fa₃₆₄₅₂₇₈₀W1, augite (Fa₁₆₅₄₁₁₄), range Fs₆₆₆₄₈₇₈₀W1, augite (Fa₁₆₅₄₁₁₄), range Fa₃₆₄₂₇₈₀W1, augite (Fa₁₆₅₄₁₁₄), augite (Fa₁₆₅₄₁₁₄W0₁₆₄₅₅, FeO/MnO = 2008, from a dealer in Erfoud, Morocco. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Protogranular aggregate (mean grainsize – 400 µm) of predominally olivine and orthopyroxene with subordinate diopside and altered kamacite (-15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa₁₆₅₄₁₄, range Fa₈₆₄₁₂₅₅ FeO/MnO = 22-24, N = 8), orthopyroxene (Fs₁₁₊₁₁₃W0₁₆₄₅₂, FeO/MnO = 13-14, N = 4), diopside (Fs₁₅₄₁₇₀₀₄₁₆₄₅₅, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10° m/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson. Northwest Africa 13420 (NWA 13420) (Northwest Africa 13420 (NWS and J. Boesenberg, Brownt/J) Largely recrystallized with rare remant ehondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa₂₄₅₄₀₅₂, range Fa	4	Petrography (A Irving <i>UWS</i> and I Boesenberg <i>BrownU</i>) Sparse chondrules are set in a
 Geochemistry: Olivine (Fay440, a), range Fay2305, N = 4), low-Ca pyroxene (F590,502 W01, 6a), range F590,220, 7W01,417, N = 4), augite (F56,0412W0447,41.0), range F56,6- s. 7W035,64,15, N = 3). Classification: Ordinary chondrite (L5). Specimens: 48.08 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam Aaronson in June 2008 from a dcaler in Erfoud, Morocco. Petrography: (A, Trving, UWS and P. Carponter, WUSJ) Protogranular aggregate (mean grainsize -400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%), plus accessory chromite and merillit. Secondary goethile is present along grain boundaries. Geochemistry: Olivine (Fay60,14, ange Fag4,122, FcO/MnO = 22-24, N = 8), orthopyroxene (F511,111,200,16,12, FcO/MnO = 13-14, N = 4), diopside (F84,34,7W0,44,0435, FcO/MnO = 8-9, N = 4), Magnetic susceptibility log (× 10° m³/kg) = 4.80. Classification: Catagulcoite. Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dcaler in Zagora, Morocco. Petrography: (A, Irving, UWS and J, Bocsenberg, BrownU) Diargely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fay4,54,57, ange Fay4,127, N = 4), low-Ca pyroxene (F510,60,W01,602, range Fay5,510W01,11,7 N = 6). Classification: Ordinary chondrite (L6) Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Har	5	recrystallized matrix containing stained metal troilite chromite and anatite
 Grounemikty. Only (1743406, lange Paga253, N = 4), low-Ca pytokene (P550.502)W0(304, 1702) P520207W0(4-17, N = 4), augite (P56,0-12)W04472116, range F56,6- 57W0(39-440, N = 3). Classification: Ordinary chondrite (15). Specimens: 48.08 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Protogranular aggregate (mean grainsize -400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (-15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa_{10941.4}, range Fa_{8.4-12.2}, FeO/MnO = 22-24, N = 8), orthopyroxene (F511,113W01,632, FeO/MnO = 13-14, N = 4), diopside (F31,44, W0440455, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10⁻⁹ m/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (16) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, <i>Brown(I</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, trollite, chromite and apatite. Geochemistry: Olivine (F34,5402, 1708 for 10, 1000 form a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, <i>Brown(I</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered meta	6	Casehomistry: Oliving (Eq. (5.1)) $N = 4$) low Caputovana
 (Ps_{20,502} W0₁₆₀₁, faige PS_{20,207} W0₁₄₁₇, N = 4), augite (PS_{8,0412}W0₄₇₂₁₀, faige PS_{8,6}. By W0₄₅₇₄₁₀, N = 3). Classification: Ordinary chondrite (L5). Specimens: 48.08 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, UWS and P. Carpenter, WUSJ) Protogranular aggregate (mean grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%), plus accessory chromite and merrillite. Secondary goethic is present along grain boundaries. Geochemistry: Olivine (Pa_{10,9414}, Hange Fa_{8,4-1225}, FcO/MnO = 22-24, N = 8), orthopyroxene (Ps_{11,11,11}W0_{145,27}, FcO/MnO = 13-14, N = 4), diopside (Ps_{214,7}W0_{44,045,5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10⁹ m/kg) = 4.80. Classification: Acapulcoite: Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa 13420 (NWA 13420) (Northwest Africa 13420 (NWA 13420) (Northwest Africa 13421 (NWA 13421) <li< td=""><td>7</td><td>Geochemistry. Onvine ($\Gamma a_{24,9\pm0,4}$, range $\Gamma a_{24,3-25,3}$, $N = 4$), row-ca pyroxene</td></li<>	7	Geochemistry. Onvine ($\Gamma a_{24,9\pm0,4}$, range $\Gamma a_{24,3-25,3}$, $N = 4$), row-ca pyroxene
 s¹⁷Wotg-940, N = 3). Classification: Ordinary chondrite (L5). Specimens: 48.08 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Protogranular aggregate (mean grainsize -400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fayo=14, Xmg Efag=1422, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs11+11;W0;4:2;FeO/MnO = 13-14, N = 4), diopside (Fs13+4;W0;4:4:55;FeO/MnO = 8-9, N = 4). Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Bocsenberg, <i>Brown(L</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, trollite, chromite and apatite. Gochemistry: Olivine (Faya542, Xmg Efay1247, N = 4). Iow-Ca pyroxene (F511mayWoi462, 572 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) 	8	$(Fs_{20.5\pm0.2}Wo_{1.6\pm0.1}, range Fs_{20.2-20.7}Wo_{1.4-1.7}, N = 4)$, augite $(Fs_{8.0\pm1.2}Wo_{44.7\pm1.0}, range Fs_{6.6-1})$
Classification: Ordinary chondrite (L5). Specimens: 48.08 g including one polished thin section at <i>PSF</i> ; remainder in the Harkness Collection. Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam Adronson in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Protogranular aggregate (mean grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kanacite (~15 vol.%b, plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Palque, In range Fa8,+122, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs11,1-11,3W,0-632, FeO/MnO = 13-14, N = 4), diopside (Fs13,4-7W0,4-6455, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10° m ³ /kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson. Purchased: 2019 Oct Classification: Ordinary chondrite (16) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa143421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) <tr< td=""><td>9</td><td>$_{8.7}$Wo_{45.9-44.0}, N = 3).</td></tr<>	9	$_{8.7}$ Wo _{45.9-44.0} , N = 3).
Specimens: 48.08 g including one polished thin section at <i>PSF</i> ; remainder in the Harkness Collection. Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam Aaronson in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Protogranular aggregate (mean grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol %), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa109=14, fange Fa8,4+122, FeO/MnO = 22-24, N = 8), orthopyroxene (F\$11.1-13W01.6+32, FeO/MnO = 13-14, N = 4), diopside (F\$13.4-1, W04.40-455, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log $\chi (\times 10^9 \text{ m}^3/\text{kg}) = 4.80$. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson. Vorthwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stationd metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa24.54.0; range Fa24.1-22.7, N = 4), low-Ca pyroxene (F	10	Classification: Ordinary chondrite (L5).
 Collection. Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Protogranular aggregate (mean grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fatnosci, at range Fas4.122, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs11.11.13Wo1.632, FeO/MnO = 13-14, N = 4), diopside (Fs43.4.7W044.0455, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log (× 10° m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (1.6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa24.56.2, range Fa24.122.7, N = 4), low-Ca pyroxene (Fs21.66.4Wo1.56.02, range F326.52.4Wo1.1.1, N = 0. Classification: Ordinary chondrite (1.6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) 	11	Specimens : 48.08 g including one polished thin section at <i>PSF</i> ; remainder in the Harkness
 Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Protogranular aggregate (mean grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%b, plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa_{10,9-1,4}, range Fa_{8,4+12,2}, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs_{11,11,1})W0_{163,2}, FeO/MnO = 13-14, N = 4), diopside (Fs_{43,4,7}W0_{44,045,5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log q (× 10⁹ m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, trolite, chromite and apatite. Goechenistry: Olivine (Fa_{2,540,2}, range Fa_{24,1/24}, N = 4), low-Ca pyroxene (Fs_{21040,4}W0 is 40, stag. range Fs_{205,21}W0 i -1,1, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 0) Purchased: 2019 Oct Class	12	Collection.
 Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Protogranular aggregate (mean grainsize -400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (-15 vol.%), plus accessory chromite and merilite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Pa109+14, Range Fa8,4+12, FeO/MnO = 22-24, N = 8), orthopyroxene (FS111,11,1W 016,12, EeO (MnO = 13-14, N = 4), diopside (Fs4134,7W044,045,5, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (1.6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa2,650,7 nage Fa3,1-247, N = 4), low-Ca pyroxene (Fs21,040,4W01,5402, range Fs30,521,240,1-14,7, N = 6). Classification: Ordinary chondrite (1.6) Morthwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchas	13	
 Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Protogranular aggregate (mean grainsize -400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (-15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundarics. Geochemistry: Olivine (Fai_{10.941,4} range Fa_{8.4-12.2}, FeO/MnO = 22-24, N = 8), orthopyroxene (Fsi_{11.1-13}Wo_{16.32}, FeO/MnO = 13-14, N = 4), diopside (Fs_{4.34.7}Wo_{44.045.5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log $\chi (\times 10^{\circ} m_2/kg) = 4.80$. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivino (Fa_{1.54.34.74} mage Fa_{3.4.124.7}, N = 4), low-Ca pyroxene (Fs_{21.06.04.94,0.45.54,0.11-1,7, N = 6).} Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) 	14	
 Northwest Africa 13419 (NWA 13419) (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Protogranular aggregate (mean grainsize -400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa109414, range Fa8,4122, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs111413W016-32, FeO/MnO = 13-14, N = 4), diopside (Fs4134-7W0440-455, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log $\chi (\times 10^{-9} \text{ m/kg}) = 4.80$. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa24540, X nug E Fa341247, N = 4), low-Ca pyroxene (Fs21,0404W01,5402, range F394,027, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>, remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) Northwest Africa 13421 (NWA 13421) History: Purchased by Grant Harkness in October 2019 from a dealer in Z	15	
 (Northwest Africa) Purchased: 2008 Jun Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Protogranular aggregate (mean grainsize -400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (-15 vol.%), plus accessory chromite and merrillite. Secondary goethide is present along grain boundaries. Geochemistry: Olivine (Fa_{10.941,4} knge Fa_{8.4-12.2}, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs_{11.113}W0_{16.32}, FeO/MnO = 13-14, N = 4), diopside (Fs_{43.34,7}W0_{44.6-45.5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10-9 m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24.540,2}, range Fa_{24.1-24.7}, N = 4), low-Ca pyroxene (Fs_{21.06.04}W0_{1.56.22}, range Fs_{20.5-21.04}W0_{1.1-1.7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) Northwest Africa 13421 (NWA 13421) Korthwest Africa 13421 (NWA 13421)	16	Northwest Africa 13419 (NWA 13419)
18Purchased: 2008 Jun19Classification: Primitive achondrite (Acapulcoite)11History: Purchased by Adam Aaronson in June 2008 from a dealer in Erfoud, Morocco.12Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Protogranular aggregate (mean12grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside13and altered kamacite (-15 vol.%). plus accessory chromite and merrillite. Secondary goethite14is present along grain boundaries.15Goochemistry: Olivine (Fa10=14, N = 4), diopside (Fs1347, W0440-455, Fe0/MnO = 8-9,16Nito15.32, Fe0/MnO = 13-14, N = 4), diopside (Fs1347, W0440-455, Fe0/MnO = 8-9,17N = 4). Magnetic susceptibility log χ (× 10° m3/kg) = 4.80.18Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson.19Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson.19Northwest Africa 13420 (NWA 13420)10(Northwest Africa)17Purchased: 2019 Oct18Classification: Ordinary chondrite (1.6)19History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco.19Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare19remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite.19Geochemistry: Olivine (Fa245=02, 710, Fa24, N = 4), low-Ca pyroxene19(Fs10=04W01,5402, range Fs20,521,6W01,117, N = 6).19Classification: Ordinary chondrite (1.6).19Specimene	17	(Northwest Africa)
Classification: Primitive achondrite (Acapulcoite) History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Protogranular aggregate (mean grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa ₁₀ s _{41,4} , range Fa _{5,4122} , FeO/MnO = 22-24, N = 8), orthopyroxene (Fs _{11,1-11} , Wo ₁₆₃₂ , FeO/MnO = 13-14, N = 4), diopside (Fs _{43,447} Wo _{440,455} , FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10° m ³ /kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson. Northwest Africa 13420 (NWA 13420) (Northwest Africa 13420 (NWA 13420) (Northwest Africa, 13420 (NWA and J. Boesenberg, BrownU) Largely recrystallized with rare remant chondrules. Accessory phases are stained metal, troillte, chromite and apatite. Geochemistry: Olivine (Fa _{24,540,2} , range Fa _{24,124,7} , N = 4), low-Ca pyroxene (Fs _{21,40,44} Wo _{15,50,2} , range Fs _{20,521,6} WO _{11,1,7} , N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i> ; remainder in the Harkness Collection. Vorthwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) (Northwest Africa 134	18	Purchased: 2008 Jun
 History: Purchased by Adam <i>Aaronson</i> in June 2008 from a dealer in Erfoud, Morocco. Petrography: (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Protogranular aggregate (mean grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa10.9±1.4, range Fa8.4.12.2, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs11.1-13.Wo1.6.3.2, FeO/MnO = 13-14, N = 4), diopside (Fs4.3.4.7Wo.44.0.45.5, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10.9 m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Moroeco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa24.5002, range Fa20.4.12.7, N = 4), low-Ca pyroxene (Fs21.0.4.4V01.5.2, range F320.5.21.4.4V01.1.7, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) (North	19	Classification: Primitive achondrite (Acapulcoite)
 Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Protogranular aggregate (mean grainsize ~400 µm) of predominantly olivine and orthopyroxene with subordinate diopside and altered kamacite (~15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa_{10.941,4}, range Fa_{8,4-12.2}, FcO/MnO = 22-24, N = 8), orthopyroxene (Fs_{11.1113}W0₁₆₋₃₂, FeO/MnO = 13-14, N = 4), diopside (Fs_{43.4,7}W0_{44.0-45.5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson. Northwest Africa 13420 (NWA 13420) (Northwest Africa 100 grav) (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24.540.2}, range Fa_{34.124.7}, N = 4), low-Ca pyroxene (Fs_{21.00.4}W0_{1.50.2}, range Fa_{34.124.7}, N = 4). Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) Northwest Africa 13421 (NWA 13421	20	History . Purchased by Adam <i>Agronson</i> in June 2008 from a dealer in Erfoud Morocco
 Freigraph", OF Brunz, Son and T. Capchet, Son Son Son Son Son Son Son Son Son Son	21	Petrography: (A Irving UWS and P Carpenter WUSU) Protograpular aggregate (mean
 and alter 400 µm) of predominanty of the and of morpy focket with subordinate dropside and altered kamactic (~15 vol.%), plus accessory chromite and merrillite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa₁₀s_{±1,4}, range Fa_{3,4+12,2}, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs_{11,+11,3}Wo_{16-3,2}, FeO/MnO = 13-14, N = 4), diopside (Fs_{3,3,4},7Wo_{44,0-45,5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10⁹ m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,540,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,040,4}Wo_{1,540,2}, range Fs_{20,5-21,6}Wo_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	22	graingize, 400 um) of prodominantly aliving and orthonyroyong with subordinate diongide
 and altered Kamache (~15 vol. %), plus accessory chromite and merrinite. Secondary goethite is present along grain boundaries. Geochemistry: Olivine (Fa_{10.941,4}, range Fa_{8,4-12.2}, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs_{11,1-11} Wo_{1.6.3,2}, FeO/MnO = 13-14, N = 4), diopside (Fs_{43.4.7}Wo_{44.0.45.5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log (× 10-9 m³/kg) = 4.80. Classification: A capulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24.540.2}, range Fa_{24.124.7}, N = 4), low-Ca pyroxene (Fs_{21.040.4}Wo_{1.540.2}, range Fs_{20.521.6}Wo_{1.11.7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) Northwest Africa 3242 (NWA 13421) Northwest Africa 13421 (NWA 13421) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	23	granisize $\sim 400 \mu\text{m}$) of predominantly on the and of mopy toxelle with subordinate diopside
 is present along grain boundaries. Geochemistry: Olivine (Fa_{10,9±14}, range Fa_{8,4+12,2}, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs_{11,11,3}Wo_{1,63,2}, FeO/MnO = 13-14, N = 4), diopside (Fs_{43,4,7}Wo_{44,645,5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10-⁹ m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa 13420 (NWA 13420) (Northwest Africa 13420 (NWA 13420) (Northwest Africa 10 Oct) Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,50,2}, range Fa_{24,124,7}, N = 4), low-Ca pyroxene (Fs_{21,040,4}Wo_{1,540,2}, range Fs_{20,521,6}Wo_{1,117}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	24	and altered kamacite (~15 vol.%), plus accessory chromite and merrillite. Secondary goethite
 Geochemistry: Olivine (Fa109±14, range Fa84-122, FeO/MnO = 22-24, N = 8), orthopyroxene (Fs11,1+13W01,6-32, FeO/MnO = 13-14, N = 4), diopside (Fs4,3-4,7W044,0-45.5, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10° m²/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa245402, range Fa241-24.7, N = 4), low-Ca pyroxene (Fs21.00.4W01,5±02, range Fs20.5-21.6W01,1-1.7, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	25	is present along grain boundaries.
 (Fs_{11,111}3Wo_{1,6,3,2}, FeO/MnO = 13-14, N = 4), diopside (Fs_{43,4,7}Wo_{44,0,45,5}, FeO/MnO = 8-9, N = 4). Magnetic susceptibility log χ (× 10⁹ m³/kg) = 4.80. Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. (Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (1.6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,5±0,2}, range Fa_{24,1:24,7}, N = 4), low-Ca pyroxene (Fs_{21,0±0,4}Wo_{1,5±0,2}, range Fs_{20,5:21,6}Wo_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	26	Geochemistry : Olivine (Fa _{10.9±1.4} , range Fa _{8.4-12.2} , FeO/MnO = 22-24, N = 8), orthopyroxene
123N = 4). Magnetic susceptibility log χ (× 10*2 m³/kg) = 4.80.123Classification: Acapulcoite.123Specimens: 10.7 g including one polished thin section at UWB; remainder with Aaronson.123Northwest Africa 13420 (NWA 13420) (Northwest Africa)123Northwest Africa 13420 (NWA 13420) (Northwest Africa)124Purchased: 2019 Oct Classification: Ordinary chondrite (L6)125History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco.126Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite.126Geochemistry: Olivine (Fa24.540.2, range Fa24.1-24.7, N = 4), low-Ca pyroxene (F521.0e.4W01.540.2, range F30.521.6W01.1-17, N = 6).125Classification: Ordinary chondrite (L6).126Specimens: 23.57 g including one polished thin section at PSF; remainder in the Harkness Collection.126Northwest Africa 13421 (NWA 13421) (Northwest Africa 2019 Oct Classification: Ordinary chondrite (H4)126Purchased: 2019 Oct Classification: Ordinary chondrite (H4)127History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco.128Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite.	27	$(Fs_{11,1-11,3}Wo_{1,6-3,2}, FeO/MnO = 13-14, N = 4)$, diopside $(Fs_{4,3-4,7}Wo_{44,0-45,5}, FeO/MnO = 8-9)$
 Classification: Acapulcoite. Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,540,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (FS_{21,040,4}W0_{1,540,2}, range Fs_{20,5-21,6}W0_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	28	N = 4). Magnetic susceptibility $\log \gamma$ (× 10 ⁻⁹ m ³ /kg) = 4.80.
 Specimens: 10.7 g including one polished thin section at <i>UWB</i>; remainder with <i>Aaronson</i>. Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,540,2}, range Fa_{24,1-247}, N = 4), low-Ca pyroxene (Fs_{21,040,4}W0_{1,540,2}, range Fs_{20,5-21,6}W0_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite.	29	Classification Acapulcoite
 Northwest Africa 13420 (NWA 13420) (Northwest Africa 13420 (NWA 13420) (Northwest Africa 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa245402, range Fa241247, N = 4), low-Ca pyroxene (Fs210404W015402, range Fs20521.6W01.11.7, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	50 21	Specimens: 10.7 g including one polished thin section at <i>UWB</i> : remainder with <i>Agronson</i>
 Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,540,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,04,4}W0_{1,540,2}, range Fs_{20,5-21,6}W0_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at PSF; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	27	specification of by remainder with stations of the period
 Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,540,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,0±0,4}W0_{1,5±0,2}, range Fs_{20,5-21,6}W0_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at PSF; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	33	
 Northwest Africa 13420 (NWA 13420) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,5±0,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,0±0} 4Wo_{1,5±0,2}, range Fs_{20,5-21,6}Wo_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at PSF; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	34	
 (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24.5±0.2}, range Fa_{24.1-24.7}, N = 4), low-Ca pyroxene (Fs_{21.0±0.4}WO_{1.5±0.2}, range Fs_{20.5-21.6}WO_{1.1+1.7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at PSF; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	35	Northwest Africa 13420 (NWA 13420)
 Purchased: 2019 Oct Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24.5±0.2}, range Fa_{24.1-24.7}, N = 4), low-Ca pyroxene (Fs_{21.0±0.4}W0_{1.5±0.2}, range Fs_{20.5-21.6}W0_{1.1-1.7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	36	(Northwest Africa)
 Classification: Ordinary chondrite (L6) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,5±0,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,0±0,4}Wo_{1,5±0,2}, range Fs_{20,5-21,6}Wo_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	37	Purchased: 2019 Oct
 History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,5±0.2}, range Fa_{24,1-24.7}, N = 4), low-Ca pyroxene (Fs_{21,0±0.4}Wo_{1,5±0.2}, range Fs_{20,5-21,6}Wo_{1,1-1.7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at PSF; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	38	Classification: Ordinary chondrite (L6)
 Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Largely recrystallized with rare remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,5±0,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,0±0,4}Wo_{1,5±0,2}, range Fs_{20,5-21,6}Wo_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	39	History . Purchased by Grant Harkness in October 2019 from a dealer in Zagora Morocco
 retrography: (if it it it is to be set and it is be set and provided with the remnant chondrules. Accessory phases are stained metal, troilite, chromite and apatite. Geochemistry: Olivine (Fa_{24,540,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,0±0,4}Wo_{1,5±0,2}, range Fs_{20,5-21,6}Wo_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	40	Petrography : (A Irving <i>I/WS</i> and I Boesenberg <i>BrownI/</i>) I argely recrystallized with rare
 Geochemistry: Olivine (Fa_{24,5±0,2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,0±0,4}Wo_{1,5±0,2}, range Fs_{20,5-21,6}Wo_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	41	remnant chondrulos. Accessory phases are stained matal trailite chromite and apatite
 Geochemistry: Onlyine (Fa_{24,5±0.2}, range Fa_{24,1-24,7}, N = 4), low-Ca pyroxene (Fs_{21,0±0,4}Wo_{1,5±0.2}, range Fs_{20,5-21,6}Wo_{1,1-1,7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	42	C L : (C) C C C C C C C C C C C C C C C C C
 (Fs_{21.0±0.4}Wo_{1.5±0.2}, range Fs_{20.5-21.6}Wo_{1.1-1.7}, N = 6). Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	43	Geochemistry: Olivine (Fa _{24.5±0.2} , range Fa _{24.1-24.7} , $N = 4$), low-Ca pyroxene
 Classification: Ordinary chondrite (L6). Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	44	$(Fs_{21.0\pm0.4}Wo_{1.5\pm0.2}, range Fs_{20.5-21.6}Wo_{1.1-1.7}, N = 6).$
 Specimens: 23.57 g including one polished thin section at <i>PSF</i>; remainder in the Harkness Collection. Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	45	Classification: Ordinary chondrite (L6).
 47 Collection. 48 49 50 Northwest Africa 13421 (NWA 13421) 51 (Northwest Africa) 53 Purchased: 2019 Oct 54 Classification: Ordinary chondrite (H4) 55 History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. 56 Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set 57 in a relatively coarse grained matrix containing altered metal, troilite, chromite and 59 	46	Specimens : 23.57 g including one polished thin section at <i>PSF</i> ; remainder in the Harkness
 Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	47	Collection.
 Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	48	
 Northwest Africa 13421 (NWA 13421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	49	
 (Northwest Africa 15421 (NWA 15421) (Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	50	Northwest Africa 13191 (NWA 12191)
 ⁵² (Northwest Africa) ⁵³ Purchased: 2019 Oct ⁵⁴ Classification: Ordinary chondrite (H4) ⁵⁵ History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. ⁵⁶ Petrography: (A. Irving, <i>UWS</i> and J. Boesenberg, <i>BrownU</i>) Well-formed chondrules are set ⁵⁷ in a relatively coarse grained matrix containing altered metal, troilite, chromite and ⁵⁸ chlorapatite. 	51	$(N_{1}) = (N_{1}) + (N_{$
 Purchased: 2019 Oct Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	52	(Northwest Affica)
 Classification: Ordinary chondrite (H4) History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	53	Purchased: 2019 Oct
 History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	54	Classification: Ordinary chondrite (H4)
 Petrography: (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	55	History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco.
 in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite. 	56	Petrography : (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set
 chlorapatite. 	57	in a relatively coarse grained matrix containing altered metal troilite chromite and
59 chronapathe. 60	58	chloranatite
60	59	onorupunto.
	60	

Geochemistry: Olivine (Fa_{19,3±0.2}, range Fa_{19,1-19,5}, N = 5), low-Ca pyroxene (Fs_{17,2±0.5}Wo_{1.5±0.2}, range Fs_{16,7-17,9}Wo_{1.1-1.7}, N = 5). **Classification**: Ordinary chondrite (H4). **Specimens**: 60.68 g including one polished thin section at *PSF*; remainder with Jason Whitcomb.

Northwest Africa 13422 (NWA 13422)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (L5)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Sparse chondrules are set in a recrystallized matrix containing stained metal, troilite, chromite and apatite.

Geochemistry: Olivine (Fa_{24 7±0.2}, range Fa_{24 4-25.0}, N = 5), low-Ca pyroxene

 $(Fs_{20.9\pm0.6}Wo_{1.3\pm0.2}, range Fs_{20.0-21.9}Wo_{1.0-1.6}, N = 6).$

Classification: Ordinary chondrite (L5).

Specimens: 26.44 g including one polished thin section at *PSF*; remainder in the Harkness Collection.

Northwest Africa 13423 (NWA 13423)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (H4)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Well-formed chondrules are set in a relatively coarse grained matrix containing altered metal, troilite, chromite and chlorapatite.

Geochemistry: Olivine (Fa_{19.1±0.3}, range Fa_{18.7-19.4}, N = 5), low-Ca pyroxene

 $(Fs_{16.9\pm0.1}Wo_{1.3\pm0.2}, range Fs_{16.7-17.1}Wo_{1.1-1.5}, N = 5).$

Classification: Ordinary chondrite (H4).

Specimens: 36.75 g including one polished thin section at *PSF*; remainder with Jason Whitcomb.

Northwest Africa 13424 (NWA 13424)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (L4)

History: Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco. **Petrography**: (A. Irving, *UWS* and J. Boesenberg, *BrownU*) Well-formed chondrules are set in a relatively coarse grained matrix containing stained metal, troilite, chromite and apatite. **Geochemistry**: Olivine (Fa_{24.2±0.7}, range Fa_{23.4-25.1}, N = 5), low-Ca pyroxene

 $(Fs_{20.9\pm0.8}Wo_{1.4\pm0.4}, range Fs_{20.0-22.0}Wo_{1.0-2.2}, N = 6).$

Classification: Ordinary chondrite (L4).

Specimens: 22.34 g including one polished thin section at *PSF*; remainder in the Harkness Collection.

2	
3	Northwest Africa 13425 (NWA 13425)
4	(Northwest Δ frica)
5	Dyrohagad: 2010 Oct
6	
7	Classification: Ordinary chondrite (H4)
8	History : Purchased by Grant Harkness in October 2019 from a dealer in Zagora, Morocco.
9	Petrography : (A. Irving, UWS and J. Boesenberg, BrownU) Well-formed chondrules are set
10	in a relatively coarse grained matrix containing altered metal troilite chromite and
11	chloranatite
12	Childrand Children (E. $N = 5$) from Comparison
13	Geochemistry: Olivine (Fa _{19.4±0.4} , range Fa _{19.0-19.9} , N = 5), low-Ca pyroxene
14	$(Fs_{17.0\pm0.8}Wo_{1.5\pm0.2}, range Fs_{16.3-19.7}Wo_{0.6-1.0}, N = 5).$
15	Classification: Ordinary chondrite (H4).
16	Specimens : 33 42 g including one polished thin section at <i>PSF</i> remainder with Jason
17	Whiteomb
18	wincomb.
10	
20	
20	Northwest Africa 13426 (NWA 13426)
21	(Northwest Africa)
22	Purchased: 2020
23	Classification: Lunar mateorita
24	
25	History: Many stones totaling 137.3 g were found and subsequently purchased from a
20	meteorite prospector in Tindouf, Algeria, in March, 2020.
27	Physical characteristics : Samples are coated with a layer of light-orange caliche, and have a
28	dark-colored interior containing clastic crystalline debris.
29	Petrography : Description and classification (A Love <i>App</i>): Sample is a breccia composed of
30	rounded to angular 25.1.2241 um (avg. length 272 um n=145) mineral grains and lithic clasts
31	Tounded to angular 25.1-2241 μ m (avg. length 272 μ m, m=145) mineral grams and nume class
32	with polkilitic, basaltic and brecciated textures set within a melt matrix. Sample contains clear
33	glassy spheres, fragments and glassy schlieren textured objects. Additional minerals are FeNi
34	grains, a silica polymorph, chromite, ilmenite, titanomagnetite and troilite.
35	Geochemistry : (A. Love, App) Olivine Fa _{30 1+10.0} (Fa _{10 7.40.5} , Fe/Mn=80.3±6.2, n=8); low-Ca
36	nyroxene Esal α_{12} (Wo α_{12} Wo α_{12} α_{23} Wo α_{12} α_{24} Fe/Mn=48 8+1 3 n=7): nigeonite
37	$F_{21.2\pm2.5} = W_{21.2\pm2.5} = (F_{21.2\pm2.5} = W_{21.2\pm2.5} = V_{21.2\pm2.5} = V_{$
38	$F_{32,4\pm4,9} W_{011,6\pm3.9} (F_{23,0-37,7} W_{05,9-18,0}, Fe/WIII-51.9\pm2.8, II-5), IIIgII-Ca pyroxene$
39	$F_{29.1\pm7.7}W_{029.7\pm4.0}$ (FS _{21.4-38.4} W O _{21.8-32.1} , Fe/Min=54.0±5.9, n=6); plagioclase
40	$An_{96.4\pm0.9}Or_{0.2\pm0.2}$ (n=7).
41	Classification: Lunar (feldspathic breccia). Based on textures, melt matrix component and
42	mineral compositions, this sample is a feldspathic breccia.
43	Specimens : <i>Kuntz</i> holds the main masses A polished thin section and 10 fragments weighing
44	21.52 g are on deposit at <i>Ann</i>
45	21.55 g are on deposit at App.
46	
47	
48	Northwest Africa 13428 (NWA 13428)
49	(Northwest Africa)
50	Purchased: 2019
51	Classification: UED achandrita (Diagonita, nalumiat)
52	Classification. HED actionalitie (Diogenite, polyinici)
53	History: Purchased by Nicholas Gessler in 2019 from a Moroccan dealer.
54	Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Breccia composed of angular
55	mineral clasts in a very fine grained matrix. No polymineralic lithic clasts were observed in
56	the studied thin section. The most abundant components are diogenitic orthopyroxene and
57	subordinate oliving together with <10 vol % of encritic low-Ca pyroyene angula and calcic
58	nlagioglasa Accessory phases include silice nelymorph. Ti free chromite learnesite ilmonite
59	pragrouase. Accessory phases include sinca polymorph, 11-mee chroninte, kamache, ilmenite
60	and trollite.

Geochemistry: Diogenitic orthopyroxene (Fs_{23.9-25.3}Wo_{2.1-3.3}, FeO/MnO = 28-29, N = 3), olivine (Fa_{26.1-28.5}, FeO/MnO = 45-49, N = 3), eucritic low-Ca pyroxene (Fs_{57.9-58.2}Wo_{3.3-6.7}, FeO/MnO = 29-33, N = 2), eucritic augite (Fs_{27.7-30.2}Wo_{40.9-40.1}, FeO/MnO = 32-34, N = 2), plagioclase (An_{83.6-91.6}Or_{0.6-0.3}, N = 4).

Classification: Diogenite (polymict breccia).

Specimens: 21.6 g plus one polished thin section at UWB; remainder with Mr. N. Gessler.

Northwest Africa 13429 (NWA 13429)

(Northwest Africa)

Purchased: 2020 Jun

Classification: Ordinary chondrite (L7)

History: Purchased by Didi Baidari in July 2020 from a dealer in Nouakchott, Mauritania. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Metamorphic granoblastic texture. Aggregate of olivine, orthopyroxene, crystalline albitic plagioclase, augite, chromite, troilite and altered kamacite. No chondrules were observed. Some cross-cutting thin, very fine grained shock veinlets (purplish gray in thin section) are present.

Geochemistry: Olivine (Fa_{25.6±0.8}, range Fa_{24.3-26.8}, N = 6), low-Ca pyroxene

(Fs_{21.6±0.9}Wo_{3.4±1.0}, range Fs_{20.8-22.2}Wo_{2.8-5.1}, N = 5), augite (Fs_{12.5±0.6}Wo_{36.5±1.9}, range Fs_{12.1-13.2}Wo_{38.3-34.5}, N = 3).

Classification: Ordinary chondrite (L7).

Specimens: 61.6 g including one polished thin section at UWB; remainder with Z. Wang.

Northwest Africa 13430 (NWA 13430)

(Northwest Africa)

Purchased: 2019

Classification: HED achondrite (Howardite)

History: Purchased by Nicholas Gessler in 2019 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of some diabasic eucrite clasts plus abundant related crystalline debris, together with ~15 vol.% of diogenitic low-Ca pyroxene and accessory silica polymorph, fayalite, hedenbergite, ilmenite and troilite. Diogenitic low-Ca pyroxene grains are relatively ferroan and have rims against the matrix consisting of much more ferroan low-Ca pyroxene or subcalcic augite.

Geochemistry: Diogenitic low-Ca pyroxene (cores $Fs_{31,1-33,1}Wo_{5,6-6,0}$, FeO/MnO = 27-28, N = 3; rim $Fs_{61,5}Wo_{5,3}$, FeO/MnO = 34), subcalcic augite ($Fs_{50,3}Wo_{23,9}$; $Fs_{67,1}Wo_{20,2}$; FeO/MnO = 31, N = 2; rim on diogenitic pyroxene $Fs_{62,4}Wo_{22,3}$, FeO/MnO = 32), augite ($Fs_{41,3}Wo_{35,4}$, FeO/MnO = 30-39), hedenbergite ($Fs_{59,4}Wo_{36,2}$, FeO/MnO = 39), fayalitic olivine ($Fa_{70,7-85,6}$, FeO/MnO = 41-44, N = 3), plagioclase ($An_{87,1-92,3}Or_{0,5-0,2}$, N = 4). **Classification**: Howardite.

Specimens: 27.4 g plus one polished thin section at UWB; remainder with Mr. N. Gessler.

Northwest Africa 13431 (NWA 13431)

(Northwest Africa)

Purchased: 2019 Mar

Classification: Ordinary chondrite (H4)

History: Purchased by John Divelbiss in March 2019 from Sean Tutorow, who had acquired the specimen from a Moroccan dealer.
Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed chondrules are set in a relatively coarse grained, recrystallized matrix containing kamacite (altered), taenite, troilite, sodic plagioclase, low-Ti chromite, merrillite and chlorapatite.

Geochemistry: Olivine (Fa_{18.5 \pm 0.1}, range Fa_{18.4-18.6}, N = 4), low-Ca pyroxene

 $(Fs_{15.9\pm0.7}Wo_{1.0\pm0.7}, range Fs_{14.9-16.3}Wo_{0.3-1.6}, N = 4)$, augite $(Fs_{7.2}Wo_{34.1}; Fs_{5.9}Wo_{45.7}; N = 2)$.

Classification: Ordinary chondrite (H4).

Specimens: 32.5 g including one polished thin section at *UWB*; remainder with Mr. J. Divelbiss.

Northwest Africa 13432 (NWA 13432)

(Northwest Africa)

Purchased: 2020 Mar

Classification: Primitive achondrite (Winonaite)

History: Purchased by Darryl Pitt in March 2020 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Metamorphic triple grain junction texture (mean grainsize $\sim 250 \ \mu$ m). Aggregate of olivine, orthopyroxene, fluoro-edenitic amphibole (as oikocrysts enclosing other mineral grains), sodic plagioclase, diopside and kamacite plus minor fluorapatite, graphite and schreibersite.

Geochemistry: Olivine (Fa_{3.0-3.3}, FeO/MnO = 16-22, N = 5), orthopyroxene (Fs_{3.5-3.8}Wo_{1.7-1.9}, FeO/MnO = 12-14, N = 5), diopside (Fs_{1.1-1.3}Wo_{44.8-45.8}, FeO/MnO = 9-12, N = 3), plagioclase (An_{20.8}Ab_{76.5}Or_{2.6}). A total of 53 WDS analyses were obtained on the fluoro-edenite amphibole: it is very homogeneous in composition throughout the studied thin section. It has a mean formula (with (OH) by difference): (Na_{0.836}K_{0.101}) (Ca_{1.749}Na_{0.176} Fe²⁺_{0.068} Mn_{0.007}) (Mg_{4.799}Ti_{0.104}Cr_{0.04}Al_{0.036}Fe²⁺_{0.021})(Si_{6.954}Al_{1.046})O₂₂[F_{1.905}(OH)_{0.078}Cl_{0.016}]. Oxygen isotopes (K. Ziegler, *UNM*): analyses of acid-washed subsamples by laser fluorination gave, respectively, δ^{17} O 2.272, 2.016, 2.196; δ^{18} O 5.328, 4.855, 5.196; Δ^{17} O -0.541, -0.548, -0.548 per mil (all data linearized).

Classification: Winonaite. This specimen is unusual because of the presence of fluoroamphibole, as also observed in winonaite <u>Hammadah al Hamra 193</u> (Floss et al., 2007). **Specimens**: 23.8 g including one polished thin section at *UWB*; remainder with *DPitt*.

Northwest Africa 13433 (NWA 13433)

Mauritania

Purchased: 2020 Aug

Classification: HED achondrite (Eucrite, unbrecciated)

History: Two fitting stones (20840 g, 3855 g) found together at an undisclosed location in Mauritania were purchased by Rachid Chaoui in August 2020 from a Mauritanian dealer. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) The studied specimen is quite fresh with a subophitic texture (mean grainsize ~0.6 mm), and is composed predominantly of calcic plagioclase and exsolved pigeonite with accessory silica polymorph, ilmenite, low-Ti chromite and troilite.

Geochemistry: Low-Ca pyroxene host (Fs_{58,3-61,4}Wo_{2,2-4.8}, FeO/MnO = 29-31, N = 3), augite exsolution lamellae (Fs_{27,1-29,3}Wo_{40,1-42.5}, FeO/MnO = 31-34, N = 4), plagioclase (An_{87,8-89,3}Or_{0,5}=0.4, N = 3).

Classification: Eucrite (unbrecciated, diabasic).

Specimens: 22.1 g including one polished thin section at *UWB*; remainder with Mr. R. Chaoui.

Northwest Africa 13434 (NWA 13434)

(Northwest Africa)

 Purchased: 2020 February

Classification: HED achondrite (Eucrite, melt breccia)

History: The meteorite was purchased from a Morrocan dealer at the mineral show in Munich, Germany.

Physical characteristics: Dark grayish rock without fusion crust.

Petrography: The meteorite is a melt breccia predominantly composed of large up to 700 μ m sized exsolved pyroxene grains set into a feldspar-dominated matrix. Pyroxenes are partly to completely recrystallized and often display mottled compositional zoning. In recrystallized regions feldspar typically shows fibrous textures indicative for crystallization from a melt. No lithic clasts have been found. Minor phases include silica, chromite, FeS, and zircon. No metallic iron has been found. Some regions show brownish staining due to terrestrial weathering; secondary barite is present.

Geochemistry: low-Ca pyroxene: $Fs_{57.6\pm1.8}Wo_{4.1\pm1.6}$ ($Fs_{55.0-60.4}Wo_{1.9-6.6}$, n=17, FeO/MnO=27-31); Ca-pyroxene: $Fs_{25.6\pm0.6}Wo_{43.7\pm0.6}$ ($Fs_{24.9-27.2}Wo_{41.6-44.4}$, n=18, FeO/MnO=26-34); calcic plagioclase: $An_{93.0\pm0.7}$ ($An_{91.8-94.2}$, n=14)

Northwest Africa 13435 (NWA 13435)

(Northwest Africa)

Purchased: 2020 Feb

Classification: HED achondrite (Diogenite)

History: The meteorite was purchased from a local meteorite dealer in Zagora, Morocco. **Physical characteristics**: Many light brownish fragments ranging from less than one gram to

115 g lacking any fusion crust.

Petrography: The meteorite is a monomict breccia predominantly composed of blocky up to 3.5 mm sized orthoproxene grains and rare more fine-grained cataclastic regions. Minor phases include plagioclase, chromite, FeS, and symplectic chromite-silica-intergrowths. No metallic iron has been found.

Geochemistry: low-Ca pyroxene: $Fs_{27.6\pm0.1}Wo_{3.2\pm0.4}$ ($Fs_{27.2-27.8}Wo_{2.9-4.0}$, n=16, FeO/MnO=25-28); calcic plagioclase: $An_{91.8\pm1.6}$ ($An_{88.9-93.4}$, n=12)

Northwest Africa 13436 (NWA 13436)

(Northwest Africa)

Purchased: 2020 February

Classification: HED achondrite (Eucrite, polymict)

History: The meteorite was purchased from a local meteorite dealer in Marrakesh, Morocco. **Physical characteristics**: Dark grayish rock with patches of fusion crust covering about 20-30% of the surface.

Petrography: The meteorite is a polymict breccia composed of mineral, basaltic, and finegrained recrystallized clasts set into a clastic matrix. Dominant minerals are exsolved pyroxene and calcic plagioclase with grain sizes of 10-30 μ m in fine-grained clasts and 100-400 μ m in coarse-grained regions. Minor phases include silica, chromite, FeS, ilmenite, and merrillite. No metallic Fe was detected. The meteorite contains several shock melt veins.

Geochemistry: low-Ca pyroxene: $Fs_{56.4\pm0.3}Wo_{2.2\pm0.1}$ (Fs_{55.8-57.2}Wo_{2.0-2.4}, n=14, FeO/MnO=28-31); Ca-pyroxene: $Fs_{22.8\pm0.6}Wo_{45.2\pm0.5}$ (Fs_{21.7-23.9}Wo_{44.6-45.9}, n=13, FeO/MnO=25-29); calcic plagioclase: An_{90.4\pm0.9} (An_{89.2-91.6}, n=14)

Northwest Africa 13437 (NWA 13437)

(Northwest Africa)

Purchased: 2020 February

Classification: Carbonaceous chondrite (CV3)

History: The meteorite was purchased from a local meteorite dealer in Guelmin, Morocco.
Physical characteristics: Almost black egg-shaped rock without fusion crust.
Petrography: Carbonaceous chondrite composed of large chondrules (mean diameter about 0.8 mm; up to 2 mm sized), CAIs (up to 4.5 mm sized), and olivine amoeboids all set into a fine-grained almost black matrix. The meteorite is relatively fresh with only very few

chondrules showing light brownish staining.

Northwest Africa 13438 (NWA 13438)

(Northwest Africa)

Purchased: 2020 February

Classification: Carbonaceous chondrite (CO3)

History: The meteorite was purchased from a local meteorite dealer in Zagora, Morocco.

Physical characteristics: Dark brownish rock without fusion crust.

Petrography: The meteorite shows a dark brownish interior and is predominantly composed of abundant small and mostly porphyritic chondrules, CAIs, and mineral fragments set into a fine-grained matrix. Chondrules have a mean diameter of about 0.2 mm. Opaques phases are metal and troilite and their respective weathering products.

Northwest Africa 13439 (NWA 13439)

Morocco

Purchased: 2018

Classification: HED achondrite (Eucrite)

History: Thierry Simard purchased the 660 g sample in Zagora, Morocco, in November 2018.
Physical characteristics: Approximately 40% of the sample is covered in a dark brown, wind-ablated fusion crust. The remainder of the stone is light grey in color and crystalline. The cut face shows the interior of the sample is light grey and has a basaltic texture.
Petrography: (A. Love, *App*) Sample is unbrecciated, ophitic textured and transected by thin shock veins and planar dislocations. Some pyroxene grains have been recrystallized into finer-grained mosaics and both pyroxenes and plagioclase show clouding from fine-grained opaques. Pyroxenes are exsolved and inverted. Additional minerals are: Si polymorph, troilite, ilmenite, chromite, rare apatite. clouding from fine-grained opaques. Pyroxenes are exsolved and inverted. Additional minerals are: Si polymorph, troilite, ilmenite, chromite, rare apatite.

Geochemistry: (A. Love, *App*) Low Ca pyroxene ($F_{s_{62.7\pm0.3}}Wo_{1.9\pm0.1}$, Fe/Mn=30.1±0.2, Mg#36.0±0.3, n=8); high Ca pyroxene ($F_{s_{27.2\pm0.5}}Wo_{44.1\pm0.4}$, Fe/Mn=30.0±0.4, n=8); plagioclase (An_{87.9±2.7}Or_{0.5±0.3}, n=6).

Classification: HED achondrite (Eucrite) Based on textures, equilibrated compositions, Mg# and Fe/Mn ratios of pyroxenes, this sample is an equilibrated basaltic eucrite.

Specimens: T. Simard holds the main mass. Several slices, a polished thin section and mount comprise the 20.02g type specimen that is on deposit at *App*.

Northwest Africa 13440 (NWA 13440)

Algeria

Find: 2018

Classification: Martian meteorite (Shergottite)

History: 4 stones weighing a total of 309.95 g were found in an area known as Laricha by a meteorite prospector in May of 2018. Dave Lehman and a partner obtained the specimens in 2020.

Physical characteristics: Samples are crusted and uncrusted. Where preserved, fusion crusted samples show broad, shallow regmaglypts. and flow-lines. The exterior and interior of all samples have an igneous texture composed of fractured coarse-grained, dark green, lath-shaped and blocky crystals enclosing smaller patches of irregular-shaped light grey translucent crystals. This assemblage is crosscut by sporadic dark-colored, vesicular melt pockets.

Petrography: (A. Love, *App*) Sample has an ophitic texture composed of (vol%): coarsegrained (laths up to 8.5mm), euhedral laths of twinned clinopyroxene (64) enclosing lathshaped to subhedral regions of maskelynite (33), merrillite (1), mesostasis (1) and opaques (1). Pigeonite contains blebs of augite and is zoned to more ferroan rims. Pyroxene lacks the complex zoning present in other basaltic shergottites. Pyroxenes laths contain thin exsolution lamellae and show preferred orientation. Additional minerals are: elongate rods of merrillite, Ti-magnetite with μm-sized exsolution lamellae of ilmenite, chromite, pyrrhotite and rare baddeleyite.

Geochemistry: (A. Patchen, *UTenn*) Pigeonite Cores ($Fs_{38,4\pm4.3}Wo_{11.8\pm1.7}$, $Fe/Mn=31.1\pm1.9$, Mg#56.4±5.3, n=90); Augite ($Fs_{27.5\pm2.7}Wo_{32.8\pm1.9}$, $Fe/Mn=31.1\pm1.8$, Mg#59.2±1.8, n=17); Pigeonite rims ($Fs_{58.8\pm7.2}Wo_{15.2\pm4.7}$, $Fe/Mn=36.3\pm1.5$, Mg#30.8±6.7, n=68); Maskelynite (An_{50.3±5.1}Or_{2.0±01.0}, n=66).

Classification: (Martian) gabbroic shergottite. Based on coarse-grained size of sample, mineralogy, compositions and shock features, this sample is a gabbroic shergottite M-S5, low weathering.

Specimens: Dave Lehman and his partner hold the main masses. 4 slices and many small fragments totaling 21.77 g comprise the type specimen. The type specimen and 2 polished thin sections are on deposit at *App*.

Northwest Africa 13441 (NWA 13441)

Algeria Find: 2019

Classification: Martian meteorite (Shergottite)

History: The same group of camel herders, who found Rafsa 001, found 4 samples weighing a total of 84.69 g in December of 2019 near Rafsa, Oum El Assel, Algeria.

Physical characteristics: Samples are rounded to tabular in shape and range in color from dark green-to brownish dark green. The samples lack fusion crust but show a defined porphyritic igneous texture on the exterior.

Petrography: (A. Love, *App*) Sample has a porphyritic, intergranular texture composed of (vol%): (13) subhedral to euhedral olivine phenocrysts (avg. grain size 1125 μ m, n=23) set within a groundmass composed of (avg. grainsize 313 μ m) polysynthetic twinned clinopyroxene laths (64), euhedral to subhedral olivine (10), maskelynite (13) and trace

Running Head

amounts of merrillite and opaques. Sample shows a weak preferred orientation of olivine phenocrysts and clinopyroxene laths. Additional minerals are: augite (present as irregular shaped inclusions within pyroxenes, Ni-bearing pyrrhotite, ilmenite and Ti-rich and Ti-poor chromite.

Geochemistry: (A. Patchen, *UTenn*) Olivine phenocrysts (cores Fa_{27.8-33.8}, Fe/Mn=47-55, n=28; rims Fa_{31.5-41.6}, Fe/Mn=49-57, n=32); groundmass olivine (Fa_{33.3-37.5}, Fe/Mn=51.1-55.4, n=42); pigeonite (Fs_{23.0-30.9}Wo_{6.7-11.9}, Fe/Mn=27.3-32.5, n=140); maskelynite (An_{45.4-66.3}Or_{0.4-1.4}, n=53).

Classification: (Martian) Olivine-phyric shergottite. Mineral compositions, porphyritic texture and shock effects, suggest sample is an olivine-phyric shergottite. Sample shows a high level of shock (M-S5) and low level of weathering.

Specimens: D. Lehman and his partner hold the main masses. A polished thin section and several slices weighing 16.95 g are on deposit at *App*.

Northwest Africa 13442 (NWA 13442)

(Northwest Africa)

Purchased: March 2020

Classification: Carbonaceous chondrite (CO3.0)

History: Purchased in March 2020 by Fabien Kuntz in Zagora.

Physical characteristics: Multiple fragments with fusion crust.

Petrography: (D. Sheikh, *FSU*) Small chondrules (150±50 μm, ~60 vol.%), isolated mineral fragments, and CAIs set in a mostly opaque matrix (~40 vol.%).

Geochemistry: Olivine (Fa_{21.9±16.3}, range Fa_{0.4-57.3}, FeO/MnO = 68±40, n=55), Cr₂O₃ in ferroan olivine (Cr₂O₃ wt% = 0.33±0.14, n=35), Low-Ca Pyroxene (Fs_{3.6±4.9}Wo_{1.2±0.7}, range Fs_{1.0-18.4}Wo_{0.4-3.2}, n=12).

Classification: Carbonaceous chondrite (CO3.0). Cr_2O_3 content of ferroan olivines suggest a low petrologic subtype similar to <u>Y-81020</u> (CO3.0) and <u>Colony</u> (3.0) as reported in <u>Grossman</u> and Brearley (2005).

Specimens: 20.04 grams at UCLA; main mass with Kuntz.

Northwest Africa 13443 (NWA 13443)

(Northwest Africa)

Purchased: 2020 Mar

Classification: Carbonaceous chondrite (CO3.1)

History: Purchased in March 2020 by Fabien Kuntz in Zagora.

Physical characteristics: Multiple fragments with fusion crust.

Petrography: (D. Sheikh, *FSU*) Small chondrules (120±60 μm, ~60 vol.%), isolated mineral fragments, and CAIs set in a mostly opaque matrix (~40 vol.%).

Geochemistry: Olivine (Fa_{17.9±15.9}, range Fa_{0.4-40.9}, FeO/MnO = 74±36, n=27), Cr₂O₃ in ferroan olivine (Cr₂O₃ wt% = 0.25±0.08, n=17), Low-Ca Pyroxene (Fs_{4.4±5.7}Wo_{1.8±1.2}, range Fs_{0.8-17.4}Wo_{0.3-3.7}, n=8).

Classification: Carbonaceous chondrite (CO3.1). Cr_2O_3 content of ferroan olivines suggest a low petrologic subtype that is approximately midway between <u>Rainbow</u> (CO3.2) and <u>Colony</u> (CO3.0) as reported in <u>Grossman and Brearley (2005)</u>.

Specimens: 20.21 grams at UCLA; main mass with Kuntz.

Northwest Africa 13445 (NWA 13445)

(Northwest Africa) Purchased: 2019 Oct Classification: Ordinary chondrite (L4) History: Purchased by John Divelbiss in October 2019 from a Moroccan dealer. Petrography: (A. Irving, UWS and P. Carpenter, WUSL) Well-formed chondrules are set in a relatively coarse grained recrystallized matrix containing taenite, altered kamacite (in places accompanied by lawrencite), troilite, taenite, low-Ti chromite and chlorapatite. Geochemistry: Olivine (Fa_{23.6±0.2}, range Fa_{23.3-23.8}, N = 4), low-Ca pyroxene $(Fs_{20.4\pm1.0}Wo_{1.3\pm0.1}, range Fs_{19.7-22.2}Wo_{1.2-1.4}, N = 5)$, augite $(Fs_{6.4\pm0.1}Wo_{46.2\pm0.3}, range Fs_{6.3-1})$ $_{6.5}$ Wo_{46.0-46.4}, N = 2). Classification: Ordinary chondrite (L4). **Specimens:** 27.1 g including one polished thin section at UWB; remainder with Mr. J. Divelbiss. Northwest Africa 13446 (NWA 13446) Algeria Purchased: 2020 Jun Classification: Ungrouped achondrite History: Purportedly found in Algeria and purchased by Habib Naji in June 2020 from a dealer in Adrar, Algeria. **Petrography**: (A. Irving, UWS and P. Carpenter, WUSL) The specimen has an igneous cumulate texture and consists predominantly of zoned olivine (~90 vol.%) with intercumulus assemblages composed of low-Ca pyroxene (mostly pigeonite), subcalcic augite and sodic plagioclase-like glass with accessory chromite, troilite and very rare spherical grains of metal (kamacite and taenite). Geochemistry: Olivine (Fa_{19.8 \pm 3.7}, range Fa_{15.8-27.9}, FeO/MnO = 47-54, N = 11), low-Ca pyroxene (Fs_{28.8}Wo_{4.6}, FeO/MnO = 26), pigeonite (Fs_{26.6±4.4}Wo_{10.4±4.7}, range Fs_{18.3-30.6}Wo_{6.5-} $_{18.9}$, FeO/MnO = 26-30, N = 6), subcalcic augite (Fs_{34.2±6.7}Wo_{27.2±5.0}, range Fs_{27.3-43.3}Wo_{23.0-34.2}, FeO/MnO = 27-35, N = 4), plagioclase-like glass (Ab₆₅₄₋₈₆₀An₁₅₇₋₅₈Or₁₈₉₋₈₂, N = 4), kamacite (Ni = 1.6 wt.%), taenite (Ni = 36.4 wt.%). Oxygen isotopes (K. Ziegler, UNM): analyses of acid-washed subsamples by laser fluorination gave, respectively, δ^{17} O 3.638. $3.614, 3.623; \delta^{18}O 4.887, 4.859, 4.947; \Delta^{17}O 1.058, 1.049, 1.012$ per mil (all data linearized). **Classification**: Achondrite (igneous, ultramafic, ungrouped). This specimen is an almost metal-free, olivine-dominated igneous achondrite with oxygen isotope affinities to L chondrites. Olivine exhibits compositional zoning from core values typical of H chondrites to rim values more typical of L chondrites, and intercumulus pyroxene also exhibits zoning from pigeonite cores to subcalcic augite rims. **Specimens**: 54 g including one polished thin section at UWB; remainder with Mr. H. Naji.

Northwest Africa 13447 (NWA 13447)

(Northwest Africa)

Purchased: 2020 Mar

Classification: Ordinary chondrite (H3)

History: Purchased by John Divelbiss in March 2020 from Matthew Stream, who had acquired the specimen from a Moroccan dealer at the 2020 Tucson Gem and Mineral Show. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Fairly closely-packed, well-formed unequilibrated chondrules (apparent diameter 700±490 μ m, N = 23) are set in a recrystallized

2	
3	matrix containing altered kamacite taenite (some Cu-bearing) troilite silica polymorph and
4	induity containing ancred Kanache, taenne (some Cu-bearing), ironne, sinca porymorph and
5	chlorapatite.
6	Geochemistry : Olivine (Fa _{14.0±6.5} , range Fa _{0.6-18.2} , N = 8; Cr ₂ O ₃ in ferroan examples < 0.04
7	wt.%), low-Ca pyroxene (Fs _{13,2±3,6} Wo _{1,8±1,9} , range Fs _{8,7-17,3} Wo _{0,3-4,7} , N = 5), augite
2 2	$(F_{S_{4}})_{2} = W_{0,4} + 28$ range $F_{S_{4},8,8,4} = W_{0,28,1,4,2,0} = N = 2$
0	$(15_{0.0\pm 2.5}, 0.04_{0.1\pm 2.8}, 10115, 15_{4.8-8.4}, 0.03_{8.1-42.0}, 10^{-2})$
9	Classification. Ordinary chondrifle (HS).
10	Specimens : 26.8 g including one polished thin section at <i>UWB</i> ; remainder with Mr. J.
	Divelbiss.
12	
13	
14	Northword A fries 12449 (NWA 12449)
15	Northwest Africa 13448 (INWA 13448)
16	(Northwest Africa)
17	Purchased: 2017 Dec
18	Classification: Ordinary chondrite (LL3)
19	History : Purchased by Mbark Aridal from a meteorite dealer in Algeria in December 2017
20	D the second by (A) Justice JUWS and D. Comparison WUSC) Well forward an emilibrated
21	Petrography: (A. Irving, UWS and P. Carpenter, WUSL) well-formed unequilibrated
22	chondrules (apparent diameter 970 \pm 730 µm, N = 24) are set in a recrystallized matrix
23	containing altered kamacite, taenite and troilite.
24	Geochemistry . Olivine (Fa _{20,2+12,6} range Fa _{2,2,41,5} N = 8: Cr_2O_2 in ferroan examples 0.04-
25	$0.09 \text{ wt } \%$ mean $0.06\pm0.02 \text{ wt } \%$ N = 7) low-Ca pyroyene (Esual 2 Works and range Esual)
25	$1.00 \text{ wt. 70, Incar 0.00 \pm 0.02 \text{ wt. 70, IN = 7}, IOW-Ca pyroxene (1^{\circ}S_{11.0\pm7.4} \text{ wol}_{6\pm2.0}, range 1^{\circ}S_{1.6\pm7.4}$
20	$22.3 WO_{0.2-4.7}, N = 5$), augite (Fs _{9.3±0.1} WO _{40.9±1.4} , range Fs _{9.2-9.4} WO _{39.9-41.9} , N = 2).
27	Classification: Ordinary chondrite (LL3).
20	Specimens : 22.0 g including one polished thin section at <i>UWB</i> ; remainder with Mr. M.
29	Aridal
30	
31	
32	
33	Northwest Africa 13449 (NWA 13449)
34	(Northwest Africa)
35	Purchased: 2019
36	Classification: Carbonacious abondrita (CV5)
37	$\mathbf{H}^{*} = \mathbf{A} + A$
38	History: A batch of 6 identical-appearing stones was purchased by Nicholas Gessler in 2019
39	from a Moroccan dealer.
40	Petrography : (A. Irving, UWS and P. Carpenter, WUSL) Sparse separated, magnetite-bearing
41	chondrules are set in a matrix containing Cr-magnetite and calcic plagioclase
42	Coochemistry: Oliving (Eq range Eq $N = 4$) low Ca pyroyang
43	(E = W = E = W = V = V = V = V = V = V = V = V = V
44	$(Fs_{25.5\pm1.8}Wo_{3.2\pm0.6}, range Fs_{24.2-26.8}Wo_{2.6-3.7}, N = 2)$, augite $(Fs_{11.2\pm1.0}Wo_{48.8\pm1.1}, range Fs_{10.5-1})$
45	$_{11.9}$ Wo _{48.0-49.5} , N = 2), plagioclase (An _{35.0} Or _{4.4} ; An _{81.5} Or _{0.4} ; N = 2), magnetite (Cr ₂ O ₃ = 4.6
46	wt.%, 4.7 wt.%, N = 2).
47	Classification Carbonaceous chondrite (CK5)
48	Specimens: 20.4 g plus one polished thin section at LIWB: remainder with Mr. N. Cosslar
49	specificitis. 20.4 g plus one ponsiled tim section at 0 % D, remainder with Will W. W. Oessier.
50	
51	
50	Northwest Africa 13450 (NWA 13450)
52	Algeria
JJ	Purchased: 2020 Jun
54 55	Classification: I unar motocrite (folderathic brossie)
55	Classification: Lunar meteorite (reluspatinic breccia)
50	History: Purportedly found in Algeria and purchased in Tindouf, Algeria in June 2020. David
5/	Lehman is the American agent for the owners.
58	Petrography : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Breccia composed of mineral clasts
59	of anorthite oliving low-Ca pyroyene and augite plus sparse anorthositic lithic clasts in a
60	or anorance, on vine, low-ca pyrozone and augne, plus sparse anorthostice nume clasts, ill a

finer grained matrix containing ilmenite, chromite (with variable Ti content), troilite and rare metal (with kamacitic and taenitic subdomains).

Geochemistry: Olivine (Fa_{42.6-55.8}, FeO/MnO = 87-98, N = 5), low-Ca pyroxene (Fs_{36.0-52.8}Wo_{2.2-4.6}, FeO/MnO = 56-58, N = 3), augite (Fs_{14.5-25.1}Wo_{39.9-43.5}, FeO/MnO = 40-58, N = 3), anorthite (An_{96.3-97.9}Or_{0.1}, N = 3).

Classification: Lunar (feldspathic breccia).

Specimens: 24.0 g including a polished mount at UWB; remainder with Mr. D. Lehman.

Northwest Africa 13451 (NWA 13451)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (CV3)

History: A batch of 16 identical-appearing stones was purchased by Nicholas *Gessler* in 2019 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed chondrules (mostly granular; apparent diameter $980 \pm 570 \ \mu m$, N = 24) and fine grained CAI are set in a fine grained matrix (~40 vol.%, orange in thin section).

Geochemistry: Olivine (Fa_{27.8±30.2}, range Fa_{0.3-58.5}, N = 6), low-Ca pyroxene (Fs_{0.8±0.2}Wo_{2.2±1.4}, range Fs_{0.6-0.9}Wo_{1.3-3.9}, N = 3), diopside (Fs_{0.4}Wo_{41.4}), plagioclase (An_{84.8}Or_{0.0}). magnetite (Cr₂O₃ = 0.1 wt.%, 3.1 wt.%, N = 2).

Classification: Carbonaceous chondrite (CV3).

Specimens: 23.1 g plus one polished thin section at UWB; remainder with Mr. N. Gessler.

Northwest Africa 13452 (NWA 13452)

(Northwest Africa)

Purchased: 2019

Classification: Rumuruti chondrite (R4-6)

History: A batch of 26 identical-appearing stones was purchased by Nicholas *Gessler* in 2019 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Fresh specimen composed predominantly of separated, well-formed equilibrated chondrules plus sparse Type 6 lithic clasts set in a fine grained matrix (~40%, black in thin section) containing Ti chromite and pentlandite. A few chondrules in the studied thin section contain olivine with more magnesian cores and more ferroan rims. Metal is absent.

Geochemistry: Olivine in chondrules (Fa_{39.0-39.4}, range Fa_{39.3±0.2}, N = 3), olivine core in chondrule (Fa_{12.9}), olivine rim in chondrule (Fa_{42.9}), olivine in Type 6 clast (Fa_{39.3}), low-Ca pyroxene (Fs_{30.8±0.3}Wo_{1.4±0.3}, rangeFs_{30.5-31.0}Wo_{1.2-1.7}, N = 3), augite (Fs_{11.5±0.1}Wo_{45.7±0.1}, range Fs_{11.4-11.5}Wo_{45.6-45.7}, N = 2), plagioclase (An81.2An_{12.3}Or_{6.4}). **Classification**: R4-6 chondrite breccia.

Specimens: 21.8 g plus one polished thin section at UWB; remainder with Mr. N. Gessler.

Northwest Africa 13453 (NWA 13453)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (CK5)

History: Purchased by Nicholas Gessler in 2019 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Sparse separated, magnetite-bearing chondrules are set in a matrix containing stained Cr-magnetite (some with exsolved chromite and ilmenite lamellae) and calcic plagioclase. No low-Ca pyroxene was found despite a careful search.

Geochemistry: Olivine (Fa_{31.9±0.2}, range Fa_{31.7-32.1}, N = 5), augite (Fs_{9.2±0.5}Wo_{47.9±0.8}, range Fs_{8.8-9.7}Wo_{47.3-48.8}, N = 3), plagioclase (An_{46.1}Or_{2.5}; An_{87.5}Or_{0.3}; N = 2), magnetite (Cr₂O₃ = 4.9 wt.%, 5.0 wt.%, N = 2).

Classification: Carbonaceous chondrite (CK5).

Specimens: 20.8 g including one polished thin section at *UWB*; remainder with Mr. N. *Gessler*.

Northwest Africa 13454 (NWA 13454)

(Northwest Africa)

Purchased: 2019

Classification: Rumuruti chondrite (R3)

History: Two identical stones (302 g, 208 g) were purchased by Nicholas *Gessler* in 2019 from a Moroccan dealer.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Separated, well-formed chondrules (some glass-bearing; apparent diameter $550 \pm 380 \mu m$, N = 22) plus sparse R3 lithic clasts and rare very small CAI are set in a fine grained matrix containing albitic plagioclase, pentlandite and rare sperrylite. Metal is absent.

Geochemistry: Olivine (Fa_{33.8±15.1}, range Fa_{2.0-50.3}, N = 10), low-Ca pyroxene (Fs_{20.0+10}, N = 4), nigeonite (Fs_{20.0+10}, Subcalcic

 $(Fs_{21.6\pm 14.9}Wo_{2.3\pm 2.2}, range Fs_{2.3-37.0}Wo_{0.6-5.5}, N = 4)$, pigeonite $(Fs_{30.6}Wo_{9.5})$, subcalcic augite $(Fs_{10.3}Wo_{33.9})$.

Classification: R3 chondrite.

Specimens: 21.3 g plus one polished thin section at UWB; remainder with Mr. N. Gessler.

Northwest Africa 13455 (NWA 13455)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (CO3-an)

History: The meteorite was purchased from a meteorite dealer in Morocco, possibly from the same lot as <u>NWA 12957</u>.

Physical characteristics: Many small almost black fragments some of which covered by fusion crust.

Petrography: The meteorite is a brecciated carbonaceous chondrite composed of small chondrules (mean diameter about $250 \ \mu m$), mineral fragments, and rare CAIs embedded in a fine-grained Fe-rich matrix. Some objects are surrounded by accretionary dust rims. Opaque phases include metal, sulfides, and magnetite. Olivine and low-Ca pyroxene are highly unequilibrated. Phyllosilicates and carbonates appear to be absent.

Geochemistry: Cr₂O₃ in ferroan olivine: 0.30±0.09 wt%, N=8; mean values of defocused matrix analyses (beam diamter 5 µm; all wt%; N=25): SiO₂: 28.7, TiO₂: 0.05, Na₂O: 0.32, Cr₂O₃: 0.50, MgO: 14.3, MnO: 0.17, FeO: 36.4, Al₂O₃: 2.86, NiO: 2.16, P₂O₅: 0.65, S: 2.37, Total: 88.48; Oxygen isotopes (K. Ziegler, *UNM*): 3 acid-washed fragments analyzed by laser fluorination gave: $\delta^{18}O$ =-7.200, -8.292, -5.533; $\delta^{17}O$ =-8.959, -9.822, -8.533; $\Delta^{17}O$ =-5.157, -5.444, .5.612 (all per mil)

Classification: Carbonaceous chondrite (CO3-an). The type 3 due to highly unequilibrated silicates and the absence of phyllosilicates and carbonates. Anomalous designation is from the oxygen isotopic composition. Pairing with NWA 12957 seems likely.

Northwest Africa 13456 (NWA 13456)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (C2)

History: The meteorite was purchased from a meteorite dealer in Guelmin, Morocco. **Physical characteristics**: Almost black individual with some fusion crust. **Petrography**: The meteorite displays a black interior, appears to be unbrecciated and is composed of chondrules with mean apparent diameter $150\pm80 \ \mu m$ (N=48), mineral fragments, and CAIs set into an abundant fine-grained matrix. Most components are surrounded by fine-grained dust rims and many chondrules are heavily corroded. The matrix is a network of very Fe-rich phases including abundant Fe-sulfides and fibrous phyllosilicates. Carbonates are absent.

Geochemistry: Mean values of defocused matrix analyses (beam diameter 5 µm; all wt%; N=12): SiO₂: 19.4, TiO₂: 0.03, Na₂O: 0.24, Cr₂O₃: 0.20, MgO: 7.3, MnO: 0.14, CaO: 0.08, FeO: 49.7, Al₂O₃: 3.08, NiO: 1.41, P₂O₅: 0.62, S: 1.62, Total: 83.82. Oxygen isotopes (K. Ziegler, *UNM*): 3 acid-washed fragments analyzed by laser fluorination gave: δ^{18} O=0.913, 0.886, 1.678; δ^{17} O=-3.171, -4.028, -3.953; Δ^{17} O=-3.653, -4.496, -4.838 (all per mil). **Classification**: Carbonaceous chondrite (C2). Type 2 designation due to the presence of phyllosilicates. Oxygene isotopic composition is incompatible with CM.

Northwest Africa 13457 (NWA 13457)

(Northwest Africa)

Purchased: June, 2020

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a local meteorite dealer in Algeria.

Physical characteristics: Light-brownish rock without fusion crust.

Petrography: The meteorite is an unbrecciated coarse-grained achondrite of dominantly up to 1 mm sized exsolved pyroxene and calcic plagioclase grains. Low-Ca pyroxene contains both, sub-micrometer sized and up to 200 µm wide augite exsolution lamellae. Minor phases are silica, chromite, FeS, and FeNi metal.

Geochemistry: low-Ca pyroxene: $Fs_{52.0\pm0.6}Wo_{7.1\pm0.7}$ ($Fs_{51.3-53.1}Wo_{6.2-8.1}$, n=12, FeO/MnO=27-29); Ca-pyroxene: $Fs_{26.2\pm0.2}Wo_{40.8\pm0.1}$ ($Fs_{25.9-26.5}Wo_{40.6-41.0}$, n=13, FeO/MnO=24-29); calcic plagioclase: An_{92.1±0.6} (An_{91.0-93.1}, n=13); Oxygen isotopes (K. Ziegler, *UNM*): 3 acid-washed fragments analyzed by laser fluorination gave: $\delta^{18}O=3.657$, 4.125, 3.787; $\delta^{17}O=1.655$, 1.875, 1.717; $\Delta^{17}O=$ -0.276, -0.303, -0.283 (all per mil)

Classification: Achondrite (eucrite).

Northwest Africa 13458 (NWA 13458)

Dakhla, Morocco Purchased: March 2008 Classification: Ordinary chondrite (H5)

from Svend Buhl in March 2020.

1 2 3

4

5

6

60

Abdellah Afiniss in March 2008 in Agadir, Morocco. Takafumi Niihara purchased whole rock

History: The meteorite was purchased by Svend Buhl from Moroccan meteorite dealer

Physical characteristics: Total mass is 6.5 kg. 1 single stone. 80-90% of the meteorite is 7 covered with fusion crust. 8 Petrography: (T. Mikouchi and T. Niihara, UTok; H. Ono, Chiba) Chondrule size is 0.5-1.0 9 10 mm. Plagioclase is 10-50 µm. 11 Geochemistry: Mineral compositions: Electron microprobe analysis shows that olivine is 12 $Fa_{17,5-18,6}$ (N=33) and orthopyroxene is $Fs_{15,4-16,4}$ Wo_{1.0-3,5} (N=4). 13 Classification: H5 14 **Specimens**: A 24 g type specimen is on deposit at *UTok*. 15 16 17 18 Northwest Africa 13459 (NWA 13459) 19 South, Morocco 20 Find: 2017 21 Classification: Martian meteorite (Shergottite) 22 History: The meteorite was purchased in Tucson, USA, by Zhouping Guo. 23 Physical characteristics: The meteorite is irregular in shape. Most of the surface of the 24 25 meteorite is covered with black fusion crust. The interior is gravish brown with clear, glassy 26 maskelynite grains, and sporadically-distributed dark glass shock pockets. 27 **Petrography**: Petrology (Z.Xia, B.Miao, Q.Deng, GUT): The meteorite has a fine-grained 28 basaltic texture, which is mainly composed of pyroxene and maskelynite. The accessory 29 minerals are chromite, Fe-Ti oxide, troilite, vesicular glass and phosphate. Pyroxene is an 30 idiomorphic crystal in the form of prisms, which is composed of highly fractured pigeonite 31 and augite, with a particle size of 0.2-2mm, and obvious chemical zoning can be observed. 32 33 The maskelynite is relatively broken. Plagioclase is completely transformed into maskelynite. 34 Geochemistry (Z.Xia, B.Miao, Q.Deng, GUT): Pyroxenes show two compositional trends: 35 pigeonite (En_{27,5-58,7}Fs_{29,6-59,0}Wo_{9,2-13,6}, average En_{43,3}Fs_{44,6}Wo_{12,1}, FeO/MnO=35.3; 4.6, n=6) 36 and augite (En_{28.0-45.0}Fs_{22.8-55.4}Wo_{16.6-33.3}; average En_{38.7}Fs_{33.7}Wo_{27.6}; FeO/MnO=31.6-3.7, 37 n=4). Maskelynite (An_{42,3-48,0}Ab_{50,0-54,7}Or_{1,8-3,0}, average An_{46,1}Ab_{51,7}Or_{2,2}, n=5). 38 **Classification**: Martian (basaltic shergottite) 39 Specimens: A polished section and about 6.5 g sample are stored in the Institution of 40 41 Meteorites and Planetary Materials Research of GUT, the main mass is exhibited in the 42 Geological Museum of Guilin. 43 44 45 Northwest Africa 13460 (NWA 13460) 46 47 South, Morocco 48 Find: 2017 49 Classification: Martian meteorite (Shergottite) 50 History: The meteorite was purchased in Tucson, USA by Zhouping Guo. 51 Physical characteristics: The shape of the meteorite is irregular. There is black fusion crust 52 partly covering its surface. The interior is generally grey. Glassy maskelynite and a small 53 amount of black glass pockets can be observed. 54 **Petrography**: Petrology (Z.Xia, B.Miao, Q.Deng, *GUT*): The meteorite has a diabasic 55 56 structure, which is mainly composed of pigeonite(~50 vol%), augite(~15 vol%), 57 maskelynite(~25 vol%) and accessory minerals(~10 vol%). The accessory minerals are 58 mainly composed of chromite, Fe-Ti oxide, troilite, vesicular glass and phosphate. Pigeonite 59

and augite (typical size 0.1-1.6mm) are automorphic in the form of slab columns, and obvious

component zoning can be observed. The meteorite experienced a strong impact metamorphism, which caused the plagioclases to be completely transformed into maskelynites, and pyroxenes and maskelynites were relatively broken.

Geochemistry (Z.Xia, B.Miao, Q.Deng, *GUT*): Pyroxenes show two compositional trends: pigeonite ($En_{31.2-55.7}Fs_{32.2-55.8}Wo_{10.2-14.3}$, average $En_{42.9}Fs_{44.5}Wo_{12.6}$, FeO/MnO=34.2-4.4, n=9) and augite ($En_{23.6-45.8}Fs_{26.6-60.5}Wo_{15.8-31.7}$, average $En_{34.5}Fs_{40.9}Wo_{24.6}$; FeO/MnO=32.0-3.3, n=5). Maskelynite ($An_{39.8-45.8}Ab_{51.2-55.7}Or_{2.7-4.6}$, average $An_{43.2}Ab_{53.4}Or_{3.4}$, n=9).

Classification: Martian (basaltic shergottite)

Specimens: A polished section and 1.78 g sample are stored in the Institution of Meteorites and Planetary Materials Research of *GUT*.

Northwest Africa 13461 (NWA 13461)

(Northwest Africa)

Purchased: August, 2020

Classification: Ordinary chondrite (LL5-6)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Two brownish to orange fragments with patches of black fusion crust.

Petrography: The meteorite is a strongly altered chondritic breccia composed of LL6 type clasts (plagioclase grain size about 80 μ m) set into LL5 type matrix (plagioclase grain size about 40 μ m).

Northwest Africa 13462 (NWA 13462)

(Northwest Africa)

Purchased: Aug 2020

Classification: HED achondrite (Eucrite, melt breccia)

History: The meteorite was bought by the main mass holder from Mohamed Ali Loud, Spain. **Physical characteristics**: Dark-grayish rock with some fusion crust.

Petrography: The meteorite displays a fresh dark-grayish interior and is eucrite-melt breccia composed of up to 0.7 mm sized basaltic and mineral clasts set into shock melted matrix. Exsolved pyroxenes and lath shaped calcic plagioclase partly converted into maskelynite are the dominant minerals. The shock melt is mostly recrystallized and some regions show flow textures. Minor phases include silica, FeS, chromite, ilmenite and metallic iron.

Geochemistry: low-Ca pyroxene: $Fs_{67.4\pm1.1}Wo_{3.3\pm0.9}$ ($Fs_{65.5-68.7}Wo_{2.3-5.1}$, n=13, FeO/MnO=29-32); Ca-pyroxene: $Fs_{24.8\pm0.4}Wo_{41.8\pm0.3}$ ($Fs_{23.7-25.6}Wo_{42.4-41.0}$, n=13, FeO/MnO=27-31); calcic plagioclase: $An_{89.4\pm0.6}$ ($An_{87.8-90.2}$, n=15)

Northwest Africa 13463 (NWA 13463)

(Northwest Africa)

Purchased: Oct 2018 Classification: Ureilite

History: The meteorite was purchased from a Moroccan dealer at the mineral show in Munich, Germany.

Physical characteristics: Brownish rock without fusion crust.

Petrography: The meteorite shows a coarse-grained cumulate texture of olivine and pigeonite grains up to 3 mm in sizes. Both, olivine and pyroxene display characteristic reduced rims and the meteorite contains some flaky graphite.

Geochemistry: reduced rims in olivine: $Fa_{4.8-9.1}$; olivine contains 0.88 ± 0.04 wt% Cr_2O_3 and 0.38 ± 0.01 wt% CaO; reduced rims in pyroxene: $Fs_{6.2-11.3}Wo_{5.1-11.2}$; pigeonite contains 1.34 ± 0.05 wt% Cr_2O_3 and 0.58 ± 0.02 wt% Al_2O_3

Northwest Africa 13464 (NWA 13464)

(Northwest Africa)

Purchased: June 2018

Classification: Carbonaceous chondrite (CO3)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Dark brownish rock without fusion crust.

Petrography: The meteorite shows a dark brownish interior and is predominantly composed of abundant chondrules (mean diameter about 200 μ m), CAIs, and mineral fragments set into a fine-grained matrix. Chondrules are highly unequilibrated and sometimes surrounded by fine-grained dust rims. Some sulfides and FeNi metal are present in matrix and chondrules. Orange staining of chondrules and calcite filled cracks attest to severe terrestrial alteration. **Geochemistry**: Cr₂O₃ in ferroan olivine 0.24±0.09 (n=7).

Classification: Carbonaceous chondrite (CO3). Estimated subtype CO3.1 according to Cr_2O_3 content of ferroan olivines which is between <u>Rainbow</u> (CO3.2) and <u>Colony</u> (CO3.0) as reported in <u>Grossman and Brearley (2005)</u>.

Northwest Africa 13465 (NWA 13465)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (H5)

History: The meteorite was bought by the main mass holder from a staff member of the Dinosaur Museum in Aathal, Switzerland.

Physical characteristics: Many dark brownish fragments largely covered by fusion crust. **Petrography**: The plagioclase grain size is about 30 μm.

Northwest Africa 13466 (NWA 13466)

(Northwest Africa)

Purchased: 2019

Classification: Carbonaceous chondrite (CK6)

History: The meteorite was bought by the main mass holder from an Algerian meteorite dealer.

Physical characteristics: Two dark brownish rocks without fusion crust.

Petrography: The meteorite displays a brownish partly reddishly stained interior and is predominantly composed of fine-grained recrystallized matrix dominated by ferrous olivine. Only few chondrules were encountered. Minor phases include low-Ca pyroxene, Ca-pyroxene, intermediate plagioclase, and FeNi-sulfides. Cr-rich magnetite is abundant; metal is virtually absent.

Geochemistry: olivine: Fa_{31.5±0.5} (FeO/MnO=108±9, n=12); low-Ca pyroxene: $Fs_{27.0\pm0.3}Wo_{1.8\pm0.8}$, n=2; Ca-pyroxene: $Fs_{9.4\pm0.5}Wo_{46.3\pm0.2}$, n=9

Northwest Africa 13467 (NWA 13467) (Northwest Africa) Purchased: 2020

Classification: Martian meteorite (Shergottite)

History: The meteorite was bought by the main mass holder from a Moroccan meteorite dealer.

Physical characteristics: Dark brownish rock largely covered by fusion crust.

Petrography: The meteorite displays a fresh grayish to light greenish interior and has a finegrained gabbroic texture predominantly composed of up to 600 µm sized calcic pyroxene, Ferich olivine, and often lath-shaped maskelynite grains. All these silicates show strong irregular compositional zoning. Some myrmekitic breakdown assemblages consisting of low-Ca pyroxene and iron oxides as well as patches of Si-rich mesostasis are present. Minor phases include ilmenite, ulvospinel, and pyrrhotite. The meteorite is highly shocked and contains shock melt pockets.

Geochemistry: Ca-pyroxene: Fs_{42.5±7.6}Wo_{30.3±2.4} (Fs_{29.2-53.2}Wo_{27.6-35.9}, FeO/MnO=35±4, n=12); Fe-rich olivine: Fa_{78.0±9.3} (Fa_{61.9-91.7}, FeO/MnO=33±9, n=19); maskelynite:

An_{58,8±2.9}Ab_{41.0±2.8}Or_{0.2±0.1} (An_{53,6-63.3}Ab_{36,7-46.2}Or_{0.1-0.5}, n=21); Si-rich mesostasis contains up to 3.5 wt% Al₂O₃

Classification: Martian (fine-grained gabbroic shergottite)

Northwest Africa 13468 (NWA 13468)

(Northwest Africa)

Purchased: July 2020

Classification: Rumuruti chondrite (R3-6)

History: The meteorite was bought by the main mass holder from an Algerian meteorite dealer.

Physical characteristics: Dark-brownish individuals without fusion crust.

Petrography: The meteorite displays a dark-brownish interior and is composed of up to 1 cm sized darker colored type 3 clasts set into type 6 matrix; some black impact melt fragments are present. Equilibrated Fe-rich olivine dominates the matrix. Olivine and low-Ca pyroxene are compositionally unequilibrated in type 3 clasts. Chondrules have an average diameter of about 400 μ m. More minor phases include low-Ca pyroxene, Ca-pyroxene, sodic plagioclase, sulfides, and Ti-bearing chromite; no metal has been detected. The meteorite contains some shock veins.

Geochemistry: type 6 lithology: olivine: $Fa_{37.9\pm0.3}$ (FeO/MnO=76±4, n=14); low-Ca pyroxene: $Fs_{28.8\pm0.2}$ Wo_{1.2±0.3} (FeO/MnO=49±4, n=12); Ca-pyroxene:

 $\begin{array}{l} Fs_{11.9\pm0.9}Wo_{44.6\pm1.8} \mbox{(FeO/MnO=}44\pm6,\ n=10);\ type\ 3\ lithology:\ olivine:\ Fa_{32.8\pm11.6} \mbox{(Fa_{8.6-45.2}, FeO/MnO=}72\pm14,\ n=15);\ low-Ca\ pyroxene:\ Fs_{22.4\pm7.4}Wo_{1.1\pm0.7} \mbox{(Fs_{10.8-31.6}Wo_{0.5-3.2}, FeO/MnO=}54\pm10,\ n=16) \end{array}$

Northwest Africa 13469 (NWA 13469)

(Northwest Africa)

Purchased: July 2020

Classification: HED achondrite (Eucrite, melt breccia)

History: The meteorite was bought by the main mass holder from an Algerian meteorite dealer.

Physical characteristics: Dark-grayish rock with some fusion crust.

Petrography: The meteorite is a melt-supported eucritic breccia composed of up to 0.4 mm sized basaltic and mineral clasts set into abundant shock melt. Dominant minerals are exsolved pyroxene and calcic plagioclase partly converted into maskelynite. Minor phases

Running Head

2	
2	
ر ۸	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
30	
29	
40	
41	
42	
43	
<u>ر ر</u>	
44	
45	
46	
47	
48	
.0	
49	
50	
51	
52	
53	
55	
54	
55	
56	
57	
58	

59

60

include silica, FeS, chromite, ilmenite, and secondary barite. No metallic iron has been detected.

Geochemistry: low-Ca pyroxene: $Fs_{59.8\pm0.7}Wo_{2.4\pm0.4}$ ($Fs_{57.9-60.7}Wo_{2.0-3.7}$, n=14, FeO/MnO=26-30); Ca-pyroxene: $Fs_{26.0\pm0.7}Wo_{44.0\pm0.7}$ ($Fs_{25.2-28.3}Wo_{42.5-44.9}$, n=14, FeO/MnO=25-32); calcic plagioclase: $An_{90.4\pm0.6}$ ($An_{88.9-91.6}$, n=15)

Northwest Africa 13470 (NWA 13470)

(Northwest Africa)

Purchased: Sept 2020

Classification: HED achondrite (Eucrite)

History: The meteorite was bought by the main mass holder from a local meteorite dealer in Mauretania.

Physical characteristics: Light-grayish rock with minor fusion crust.

Petrography: The meteorite displays a greyish to light greenish interior and is a polymict breccia composed of up to 1 cm sized basaltic, black impact melt, and mineral clasts set into a fine-grained clastic matrix. Mineral phases are predominantly exsolved pyroxene and calcic plagioclase; some magnatically zoned low-Ca pyroxenes are present attesting to a low degree of thermal metamorphism. Minor phases include silica, ilmenite, chromite, and troilite. No metallic iron has been detected. The meteorite contains shock melt veins.

Geochemistry: zoned low-Ca pyroxene: $Fs_{40.7\pm9.4}Wo_{5.9\pm0.7}$ ($Fs_{29.2-52.9}Wo_{5.1-7.5}$, FeO/MnO=24-33, n=18); low-Ca pyroxene host to augite exsolution lamellae: $Fs_{58.8\pm0.4}Wo_{1.6\pm0.1}$ ($Fs_{57.9-1}$

 $_{59.7}Wo_{1.4-1.7}$, FeO/MnO=28-30, n=13); Ca-pyroxene exsolution lamellae:

 $Fs_{24,4\pm0.7}Wo_{42,9\pm0.7}$ (Fs_{23.7-26.0}Wo_{41.3-43.8}, FeO/MnO=25-29, n=12); calcic plagioclase:

 $An_{88.8\pm0.4}(An_{87.9-89.3}, n=13)$

Northwest Africa 13471 (NWA 13471)

(Northwest Africa)

Purchased: Sept 2020

Classification: HED achondrite (Eucrite, melt breccia)

History: The meteorite was bought by the main mass holder from a local meteorite dealer in Mauretania.

Physical characteristics: Dark-grayish rock without fusion crust.

Petrography: The meteorite is a melt breccia predominantly composed of large up to 1 cm sized basaltic and mineral clasts embedded into a recrystallized shock melt matrix. Exsolved pyroxene and calcic plagioclase are the dominant mineral phases. Minerals surrounded by melt show resorbtion features, are partly to completely recrystallized and often display mottled compositional zoning. In recrystallized regions feldspar often shows fibrous textures indicative for crystallization from a melt. Minor phases include silica, FeS, chromite, and ilmenite. No metallic iron has been found.

Geochemistry: low-Ca pyroxene: $Fs_{61.5\pm1.6}Wo_{2.7\pm0.6}$ ($Fs_{60.5-65.6}Wo_{1.9-3.7}$, n=14, FeO/MnO=26-29); Ca-pyroxene: $Fs_{25.8\pm2.5}Wo_{43.8\pm0.7}$ ($Fs_{23.4-32.6}Wo_{42.1-44.6}$, n=16, FeO/MnO=25-31); calcic plagioclase: An_{89.5\pm0.8} (An_{87.9-91.0}, n=14)

Northwest Africa 13472 (NWA 13472)

Mauritania Find[.] 2018

Classification: Ordinary chondrite (LL4-6)

History: Collected by a nomad in an undetermined place in northern Mauritania during 2018. Purchased by Geologist Juan Avilés Poblador in Spring 2019 on behalf of the University of Alicante (Earth Sciences Department, Laboratory of Applied Petrology).

Physical characteristics: The single, 814 g stone has a tan colour and is partially covered by a dark fusion crust. Cut surfaces reveal a brecciated texture, including clasts up to \sim 3 cm across.

Petrography: (C. Herd, *UAb*) Optical and microprobe examination of a polished thin section shows two ~10 mm wide equilibrated clasts in a matrix of well-delineated chondrules. Minor iron staining is present. Olivine in the matrix has sharp optical extinction with $<2^{\circ}$ angular variation (S1); in the clasts it has weak mosacism and planar fractures (S4).

Geochemistry: (C. Herd and A. Locock, *UAb*) Data obtained by EMP examination of carboncoated thin section: Olivine $Fa_{29,3\pm0.9}$ (n=144); Low-Ca Pyroxene $Fs_{24,1\pm0.8}$ Wo_{1.3\pm0.5} (n=64). **Classification**: Ordinary chondrite, LL4-6

Specimens: Type specimen of 46.9 g, including one thin section, is at *UAb*. Main mass at *UAlic*.

Northwest Africa 13473 (NWA 13473)

(Northwest Africa)

 Purchased: 2018 Dec

Classification: Ordinary chondrite (H4)

History: Purchased by Mbark Arjdal in December 2018 from a delaer in Timbuktu, Mali. **Petrography**: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Well-formed, relatively small equilibrated chondrules are set in a relatively coarse grained, recrystallized matrix containing kamacite (extensively altered to Fe hydroxides), merrillite and troilite (partially altered).

Geochemistry: Olivine (Fa_{19.0±0.2}, range Fa_{18.7-19.1}, N = 5), low-Ca pyroxene

 $(Fs_{16.6\pm0.2}Wo_{1.6\pm1.3}, range Fs_{16.4-16.6}Wo_{1.0-3.9}, N = 5)$, clinopyroxene $(Fs_{7.8\pm0.6}Wo_{37.8\pm2.6}, range Fs_{7.3-8.5}Wo_{35.2-40.3}, N = 3)$.

Classification: Ordinary chondrite (H4).

Specimens: 17.5 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Northwest Africa 13474 (NWA 13474)

Morocco

Purchased: 2020 Mar

Classification: Martian meteorite (Shergottite)

History: Purportedly found in southern Morocco and purchased in Tindouf, Algeria in March 2020. David Lehman is the American agent for the owners.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Coarse grained assemblage of predominantly twinned pyroxene (low-Ca pyroxene, pigeonite and subcalcic augite) and olivine (exhibiting very limited zoning, some grains enclosed in pyroxene) together with interstitial maskelynite (~15 vol.%, some with a curvilinear lath-like habit). Accessory phases include chromite (with variable Ti/Cr), ilmenite, merrillite, pyrrhotite, pentlandite and rare baddeleyite. Melt inclusions surrounded by subradial re-expansion cracks are common in olivine grains, and have rims of aluminous clinopyroxene enclosing assemblages of K-Narich feldspathic glass, plagioclase, chlorapatite needles, Fe-Ni sulfides and ilmenite. **Geochemistry**: Olivine (Fa_{43.0-45.6}, FeO/MnO = 51-53, N = 6), low-Ca pyroxene (Fs_{24.6-25.6}Wo_{3.5-6.4}, FeO/MnO = 28-31, N = 5), pigeonite (Fs_{27.3-35.1}Wo_{9.2-12.2}, FeO/MnO = 27-31, N =

Running Head

3 4	6), subcalcic augite (Fs _{17.4-20.3} Wo _{35.1-35.5} , FeO/MnO = 27, N = 3), maskelynite (An _{48.2-55.7} Or _{1.7-26} N = 3)
5	Classification: Shergottite (olivine gabbroic)
6	Specimens: 20.3 g including one polished thin section at LIWR: remainder with Mr. D.
7	Lahman
8	
9	
10	
11	Northwest Africa 13475 (NWA 13475)
12	(Northwest Africa)
13	Purchased: 2019 May
14	Classification: Ordinary chondrite (L5, melt breccia)
16	History : Purchased by John Higgins in May 2019 from a Mauritanian dealer
17	Petrography: (A Irving UWS and P Carpenter WUSL) Breccia consisting of equilibrated
18	Type 5 closts (largely recrystallized with sparse chondrules) set in a sparse fine grained matrix
19	(10 yel 9() nortions of which exhibit malt textures (notably time sulfide motal commonite
20	(~10 vol.%), portions of which exhibit men textures (notably tiny sunde-metal composite
21	spherules). Accessory phases include albitic plagloclase, trollite, kamacite, taenite, low-11
22	chromite and merrillite.
23	Geochemistry : Olivine (Fa _{24.7\pm0.5} , range Fa _{23.9-25.2} , N = 5), low-Ca pyroxene
24	$(Fs_{21.1\pm0.21}Wo_{1.5\pm0.3}, range Fs_{21.0-21.3}Wo_{1.0-1.7}, N = 5)$, clinopyroxene $(Fs_{8.8\pm2.3}Wo_{44.3\pm1.6}, range$
25	$Fs_{6.9-8.2}Wo_{44.5-45.8}, N = 2).$
26	Classification: Ordinary chondrite (L5 melt breccia).
27	Specimens : 164 g including one polished thin section at <i>UWB</i> ; remainder with Mr.J. Higgins.
28	~F
29	
30	Northwest Africa 13476 (NWA 12476)
31	(Northwest Africa 13470 (INWA 13470)
3Z 22	(Northwest Africa)
37	Purchased: 2020 Aug
35	Classification: Ureilite
36	History: Purchased by John Divelbiss in August 2020 from Matthew Stream, who acquired it
37	from a Moroccan dealer.
38	Petrography : (A. Irving, UWS and P. Carpenter, WUSL) Protogranular aggregate of olivine
39	(~70 vol.%) and low-Ca pyroxene (~30 vol.%). Olivine exhibits reduced, more magnesian
40	rims associated with very fine grained Fe metal (some containing small granules of
41	schreibersite) Accessory phases identified include graphite troilite and Cr-troilite. The
42	presence of microdiamond is also inferred from the extreme difficulty in cutting this specimen
43	(the owner reported that several diamond sew blades were severally demaged in attempts to
44	(the owner reported that several diamond saw blades were severely damaged in attempts to
45	remove the type material).
46	Geochemistry: Olivine (cores $Fa_{18.5\pm0.1}$, N = 4; rims $Fa_{3.1-5.7}$, N = 4), low-Ca pyroxene
47	$(Fs_{16.1\pm0.1}Wo_{4.8\pm0.1}, N = 5; Fs_{9.2}Wo_{6.2}).$
48	Classification: Ureilite.
49	Specimens: 22.4 g including one polished thin section at <i>UWB</i> ; remainder with Mr. J.
50	Divelbiss.
51	
52 53	
55	Northwest Africa 13477 (NWA 13477)
55	(Northwest A frica)
56	Durahasad: 2020 Jun
57	Classification Contanacas at = 1 + it (CO2)
58	Classification: Cardonaceous chondrite (CO3)
59	History: Purchased by John Higgins in June 2020 from an Algerian dealer.
60	

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Abundant well-formed chondrules (apparent diameter $260\pm150 \ \mu\text{m}$, N = 24) together with subordinate very fine grained CAI and mineral fragments are set in a relatively sparse fine grained matrix (~15 vol.%, orange-brown in thin section) containing troilite, kamacite and taenite.

Geochemistry: Olivine (Fa_{21.7±17.1}, range Fa_{2.8-38.8}, N = 4; Cr₂O₃ in ferroan olivine 0.03-0.46 wt.%, mean 0.12±0.15 wt.%, N = 8), low-Ca pyroxene (Fs_{16.6±0.2}Wo_{1.6±1.3}, range Fs_{16.4-16.6}Wo_{1.0-3.9}, N = 5), clinopyroxene (Fs_{7.8±0.6}Wo_{37.8±2.6}, range Fs_{7.3-8.5}Wo_{35.2-40.3}, N = 3). **Classification**: Carbonaceous chondrite (CO3).

Specimens: 22.4 g including one polished thin section at *UWB*; remainder with Mr. J. Higgins.

Northwest Africa 13478 (NWA 13478)

(Northwest Africa)

Purchased: 2020 Sep

Classification: Lunar meteorite (feldspathic breccia)

History: Purchased by Mark Lyon in September 2020 from a Mauritanian dealer.

Physical characteristics: The specimen exhibits whitish to beige, angular mineral clasts set within a dark brown matrix.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of mineral clasts of anorthite, olivine, pigeonite (with ferropigeonite rims) and exsolved pigeonite set in a dark matrix containing kamacite, taenite, troilite, ilmenite, silica polymorph and fayalite, plus minor secondary barite and calcite.

Geochemistry: Olivine (Fa_{23.1-43.4}, FeO/MnO = 86-117, N = 6), pigeonite (Fs_{19.1-21.1}Wo_{7.1-11.5}; Fs_{33.5}Wo_{18.7}; FeO/MnO = 47-56, N = 3),ferropigeonite rims (Fs_{60.8-75.7}Wo_{20.1-23.5}, FeO/MnO = 67-70, N = 2), low-Ca pyroxene host (Fs_{46.3}Wo_{3.5}, FeO/MnO = 63), augite exsolution lamella (Fs_{20.1}Wo_{43.8}, FeO/MnO = 51), augite host (Fs_{24.6}Wo_{40.4}, FeO/MnO = 63), low-Ca pyroxene exsolution lamella (Fs_{51.8}Wo_{4.5}, FeO/MnO = 74), fayalite (Fa_{97.1}, FeO/MnO = 81), anorthite (An_{95.4-97.5}Or_{0.1-0.3}, N = 4).

Classification: Lunar (feldspathic breccia).

Specimens: 13.5 g including one polished slice at UWB; remainder with Mr. M. Lyon.

Northwest Africa 13479 (NWA 13479)

(Northwest Africa)

Purchased: 2020 Aug

Classification: Carbonaceous chondrite (C2, ungrouped)

History: Purchased by Rachid Chaoui in August 2020 from a Mauritanian dealer. **Petrography**: (A. Irving, *UWS*, P. Carpenter, *WUSL*; L. Garvie, *ASU*) Small, well-formed chondrules (apparent diameter $250\pm210 \mu m$, N = 23) and sparse very fine grained, amoeboid CAI are set within a very fine grained matrix (~65 vol.%, opaque in thin section). Phases identified by EPMA include kamacite (as droplets and separated grains), Fe and Fe-Ni sulfides (typically intergrown and altered), an Fe₂O₃ oxide phase, and an apparently hydrous, Fe-rich silicate phase with bladed morphology. Powder X-ray diffraction confirms the presence of phyllosilicates, tochilinite, regularly interstratified tochilinite/cronstedtite and maghemite, plus minor calcite and dolomite.

Geochemistry: Olivine (Fa_{24.1±14.4}, range Fa_{1.0-44.7}, N = 5; Cr₂O₃ in ferroan olivine 0.27-0.53 wt.%, mean wt.%, sd wt.%, N = 7), low-Ca pyroxene (Fs_{3.2±2.8}Wo_{2.5±2.3}, range Fs_{0.8-6.2}Wo_{0.8-5.6}, N = 4). clinopyroxene (Fs_{5.1±0.1}Wo_{35.0±0.4}, range Fs_{5.0-5.1}Wo_{34.7-35.2}, N = 2). Oxygen isotopes (K. Ziegler, *UNM*): analyses of acid-washed subsamples by laser fluorination gave,

2 3	respectively, δ^{17} O -8.313, -7.758, -7.724; δ^{18} O -4.447, -2.727, -3.473; Δ^{17} O -5.966, -6.318, -			
4	5 890 per mil (all data linearized)			
5	Classification : Carbonaceous chondrite (C2 ungrouped). The presence of phyllosilicates and			
6	tochilinite establishes this specimen as a C2 chondrite, yet its ovygen isotonic composition			
7	whether from the astabilished array for CM2 share drites (to much more 1(O mich			
8	plots far from the established array for CM2 chondrites (to much more 160-rich			
9	compositions) and even further from values for CR2 chondrites. Although the oxygen isotopic			
10	composition is close to those for a few CV chondrites, an affinity to CV or CK chondrites is			
11	excluded on other grounds (notably the relatively small mean chondrule size and absence of			
12	Cr-magnetite). Chondrule sizes are within the range for CO chondrites, but oxygen isotopes			
13	plot well below the array for CO chondrites (to more negative Λ^{17} O values). The presence of			
14	maghemite is an additional anomalous feature			
15	Snasimons: 6.1 g including and nalished this section at <i>UWP</i> : remainder with Mr. P. Chaoui			
16	Specimens . 6.1 g including one poilsned thin section at <i>OWB</i> , remainder with MI. K. Chaoul.			
17				
18				
19	Northwest Africa 13480 (NWA 13480)			
20	(Northwest Africa)			
21	Purchased: 2020 Sep			
22	Classification: HED achondrite (Eucrite monomict)			
23	History: Purchased by Terry <i>Boudreaux</i> in September 2020 from a dealer in Zagora			
25	Morozoo			
26	Notocco.			
20	Petrography : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) very fresh specimen composed of			
28	gabbroic eucrite clasts with subophitic textures set within a finer grained, metamorphic-			
29	textured recrystallized matrix. The major phases are exsolved pigeonite and anorthite			
30	accompanied by accessory ilmenite (some associated with small grains of zircon), Ti-			
31	chromite, low-Ti chromite and minor olivine (as inclusions in low-Ca pyroxene). The host			
32	phase in exsolved pyroxene grains is pigeonite rather than orthopyroxene and exsolution			
33	lamellae are subcalcic augite			
34	Geochemistry : Pigeonite (Fs _{40,4,51} , Wo _{5,1,72} , FeO/MnO = 33-35, N = 6), subcalcic augite			
35	Escale Women Eq. (1548.4-51.5 $\times 05.1-7.3$, 100/11110 55 55, 11 0), subcurve ungite			
36	$1 s_{26,1-29,7} \times 0_{32,9-39,8}, 1 CO/14 \times 10^{-50-55}, 14 = 4$, 0114 × 16 (1 $a_{62,6-63,3}, 1 CO/14 \times 10^{-50-54}, 14 = 2$),			
37	anorume (An _{91.6-92.3} OI _{0.2-0.3} , N – 4).			
38	Classification: Eucrite (monomict gabbroic breccia, recrystallized).			
39	Specimens : 37.1 g including one polished thin section at <i>UWB</i> ; remainder with Mr.			
40	T. Boudreaux.			
41				
42				
43	Northwest Africa 13481 (NWA 13481)			
44	(Northwest Africa)			
45	Purchased: 2014 Jan			
40	Classification: Ordinary chandrite (H4)			
47	Uistomy Dyrehogod in Diggoni by Dierro Maria Dalá			
40	History . Purchased in Rissani by Piene-Marie Pele			
50	Petrography : (J. Gattacceca, <i>CEREGE</i>) Chondrite with packed well-delineated chondrules			
51	with average apparent diameter $640\pm260 \ \mu m(n=27)$. Opaque minerals are metal and troilite.			
52	Classification: Ordinary chondrite (H4).			
53	Specimens: Type specimen at CEREGE. Main mass with Pierre-Marie Pelé.			
54				
55				
56	Northwest Africa 13482 (NWA 13482)			
57	Algeria			
58	Find: 2019 Sen			
59	Classification: CV5.6			
60				

4

5

6

7

8

9 10

11

12

13

14

15

16

21

22

23

24 25

26

27

28

29

30

31 32

33

34

35 36 37

38

39 40

41

42

43

44

45

46

47 48

49

50

51

56

57

58

59

60

History: Found in Algeria close to Ouargla Physical characteristics: Crusted stone. Cut surface reveals two fine-grained lithologies: a black one and a gray one. Petrography: (J. Gattacceca, CEREGE) Carbonaceous with two distinct lithologies: one with a petrographic type 5, the other highly recrystallized, type 6 or possibly type 7, with no relict chondrules and triple junctions with euhedral olivine (100 µm), plagioclase (60 µm), and Crmagnetite (20 µm). Olivine is the dominant mineral. Opaque minerals are Cr-rich magnetite and sulfides. **Geochemistry**: Type 5 lithology: olivine $Fa_{34,1\pm0.5}$, NiO = 0.63±0.08 wt% (n=3), Ca-pyroxene $Fs_{165}Wo_{473}$ (n=1). Type 6 lithology: olivine $Fa_{37.5\pm0.4}$, NiO = 0.84±0.26 (n=4), magnetite $Cr_2O_3 = 6.90$ wt%. Classification: Carbonaceous chondrite (CK5-6). Specimens: Type specimen at CEREGE. Main mass with Jérémy Bassemon. Northwest Africa 13483 (NWA 13483) Algeria Find: 2019 Classification: Carbonaceous chondrite (CK5) **History**: Purchased from a dealer in Morocco Physical characteristics: Crusted stones. Cut surface reveal a dark gray interior with a lighter angular lighter clast. **Petrography**: (J. Gattacceca, *CEREGE*) Recrystallized chondrite. Opaques minerals: magnetite, sulfides. The matrix is recrystallized, with plagioclase average size below 50 µm. Geochemistry: Olivine Fa_{32,2±1,1}, NiO 0.58±0.13 wt% (n=3). Low-Ca pyroxene $F_{23,2}W_{0,3,5}$ (n=1). Magnetite Cr_2O_3 6.0 wt%. Classification: Carbonaceous chondrite (CK5). Specimens: Type specimen at *CEREGE*. Main mass with Isabelle Pothier. Northwest Africa 13484 (NWA 13484) (Northwest Africa) Find: 2017 Classification: Lunar meteorite (feldspathic breccia) Physical characteristics: Greyish fragments. Petrography: (J. Gattacceca, CEREGE) Brecciated igneous rock with fractured mineral clasts to 300 µm set in a glassy mesostasis of feldspathic composition. The mesostasis has abundant $\sim 20 \ \mu m$ vesicles. FeNi metal is present as $\sim 10 \ \mu m$ grains. **Geochemistry**: Olivine Fa_{32.9}, FeO/MnO = 144 (n=1). Pyroxene : low-Ca pyroxene $Fs_{23,7}Wo_{5,5}$ (n=2), Ca-pyroxene $Fs_{22,1}Wo_{33,8}$ (n=1), FeO/MnO = 50.3±5.7 (n=3). Mesostasis $An_{94} \circ Ab_{4} \circ Or_{02} (n=3).$ Classification: Achondrite (lunar, feldspathic breccia) Specimens: Type specimen at CEREGE. Main mass with J. Bassemon. Northwest Africa 13485 (NWA 13485) Algeria Find: 2019 Classification: HED achondrite (Eucrite, unbrecciated) History: Found in Algeria close to Ouargla

I	
2	
3	Physical characteristics : Partially crusted stones (the largest one 545 g). Interior is fine-
4	grained and gray with visible plagioclase crystals
5	Petrography : (I Gattacecca CEREGE) Fractured but unbrecciated igneous rock with
6	retrography. (J. Gattacceca, CEREGE) Hactured but unbrecenated igneous lock with
7	subophilic texture. Main minerals are zoned pyroxene (with µm scale rim enriched in iron)
8	and plagioclase.
9	Geochemistry : Pyroxene: low-Ca pyroxene $Fs_{41,1\pm8,4}Wo_{6,9\pm1,5}$ (n=5), Ca-pyroxene
10	$F_{S_{47,3}}W_{021,2}$, $F_{S_{61,0}}W_{021,4}$, overall pyroxene FeO/MnO 29.9±3.0 (n=7). Plagioclase
11	$\Delta n_{010} \Delta h_0 = O(n_0 + 1) + O(n_0 + 1) $
12	Classification: Ashandrita (quarita unbr)
13	
14	Specimens: Type specimen at CEREGE. Main mass with J. Bassemon.
15	
16	
17	Northwest Africa 13486 (NWA 13486)
18	Algoria
19	
20	Find: 2019
21	Classification: Martian meteorite (Shergottite)
22	Physical characteristics: Light grey relatively coarse crystalline rock.
22	Petrography : (J. Gattacceca, <i>CEREGE</i>) Igneous rock with doleritic texture. Main minerals
23	are zoned pyroxene and maskelynite with grain size $\sim 500 \mu m$. Other minerals: silica
25	nolumorph (100 um). Eo Ti ovidos (100 um)
25	polymorph (100 μ m), re-11 oxides (100 μ m).
20	Geochemistry: Pyroxene $Fs_{38.4\pm11.4}Wo_{19.1\pm7.3}$, FeO/MnO = 32.6±3.4 (n=6). Plagioclase
27	$An_{61,3}Ab_{38,3}Or_{0,4}$ (n=2).
20	Classification: Achondrite (shergottite).
29	Specimens : Type specimen at <i>CEREGE</i> . Main mass with J. Bassemon.
50 21	
21	
52	
22	
33	Northwest Africa 13487 (NWA 13487)
33 34 25	Northwest Africa 13487 (NWA 13487) (Northwest Africa)
33 34 35	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun
33 34 35 36	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite
33 34 35 36 37	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat
33 34 35 36 37 38	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular store
33 34 35 36 37 38 39	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone.
33 34 35 36 37 38 39 40	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of
33 34 35 36 37 38 39 40 41	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene.
33 34 35 36 37 38 39 40 41 42	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite,
33 34 35 36 37 38 39 40 41 42 43	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite. SiO₂
33 34 35 36 37 38 39 40 41 42 43 44	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO ₂ . Geochemistry: Pyroxene Essage Words and EcO/MnO = 24.1 (n=2). Plagioclase
33 34 35 36 37 38 39 40 41 42 43 44	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31.3±0.1}Wo_{2.2±0.1}, FeO/MnO = 24.1 (n=2). Plagioclase
33 34 35 36 37 38 39 40 41 42 43 44 45 46	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO ₂ . Geochemistry: Pyroxene Fs _{31.3±0.1} Wo _{2.2±0.1} , FeO/MnO = 24.1 (n=2). Plagioclase An _{91.6} Ab _{8.2} Or _{0.3} (n=2).
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO ₂ . Geochemistry: Pyroxene Fs _{31.3±0.1} Wo _{2.2±0.1} , FeO/MnO = 24.1 (n=2). Plagioclase An _{91.6} Ab _{8.2} Or _{0.3} (n=2). Classification: Mesosiderite.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31.3±0.1}Wo_{2.2±0.1}, FeO/MnO = 24.1 (n=2). Plagioclase An_{91.6}Ab_{8.2}Or_{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i>. Main mass with Jean Redelsperger.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO ₂ . Geochemistry: Pyroxene $Fs_{31.3\pm0.1}Wo_{2.2\pm0.1}$, FeO/MnO = 24.1 (n=2). Plagioclase An _{91.6} Ab _{8.2} Or _{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i> . Main mass with Jean Redelsperger.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO ₂ . Geochemistry: Pyroxene $Fs_{31,3\pm0.1}Wo_{2.2\pm0.1}$, FeO/MnO = 24.1 (n=2). Plagioclase An _{91.6} Ab _{8.2} Or _{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i> . Main mass with Jean Redelsperger.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO ₂ . Geochemistry: Pyroxene $Fs_{31,3\pm0.1}Wo_{2,2\pm0.1}$, FeO/MnO = 24.1 (n=2). Plagioclase An _{91.6} Ab _{8.2} Or _{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i> . Main mass with Jean Redelsperger.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31.3±0.1}Wo_{2.2±0.1}, FeO/MnO = 24.1 (n=2). Plagioclase An_{91.6}Ab_{8.2}Or_{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i>. Main mass with Jean Redelsperger.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31,3±0,1}Wo_{2,2±0,1}, FeO/MnO = 24.1 (n=2). Plagioclase An_{91,6}Ab_{8,2}Or_{0,3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i>. Main mass with Jean Redelsperger. Northwest Africa 13488 (NWA 13488) Tarfaya, Morocco
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31.3±0.1}Wo_{2.2±0.1}, FeO/MnO = 24.1 (n=2). Plagioclase An_{91.6}Ab_{8.2}Or_{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i>. Main mass with Jean Redelsperger. Northwest Africa 13488 (NWA 13488) Tarfaya, Morocco Purchased: 2020
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31.3±0.1}Wo_{2.2±0.1}, FeO/MnO = 24.1 (n=2). Plagioclase An_{91.6}Ab_{8.2}Or_{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i>. Main mass with Jean Redelsperger. Northwest Africa 13488 (NWA 13488) Tarfaya, Morocco Purchased: 2020 Classification: Carbonaceous chondrite (CK6)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31,3±0,1}Wo_{2,2±0,1}, FeO/MnO = 24.1 (n=2). Plagioclase An_{91,6}Ab_{8,2}Or_{0,3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i>. Main mass with Jean Redelsperger. Northwest Africa 13488 (NWA 13488) Tarfaya, Morocco Purchased: 2020 Classification: Carbonaceous chondrite (CK6) History: Bought from Abdellah Afiniss in Agadir in 2020.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO ₂ . Geochemistry: Pyroxene $Fs_{31,3\pm0.1}Wo_{2.2\pm0.1}$, FeO/MnO = 24.1 (n=2). Plagioclase An _{91.6} Ab _{8.2} Or _{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i> . Main mass with Jean Redelsperger. Northwest Africa 13488 (NWA 13488) Tarfaya, Morocco Purchased: 2020 Classification: Carbonaceous chondrite (CK6) History: Bought from Abdellah Afiniss in Agadir in 2020. Physical characteristics: Three crusted fitting pieces forming a single full crusted stone. Cut
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31,3±0,1}Wo_{2,2±0,1}, FeO/MnO = 24.1 (n=2). Plagioclase An_{91,6}Ab_{8,2}Or_{0,3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i>. Main mass with Jean Redelsperger. Northwest Africa 13488 (NWA 13488) Tarfaya, Morocco Purchased: 2020 Classification: Carbonaceous chondrite (CK6) History: Bought from Abdellah Afiniss in Agadir in 2020. Physical characteristics: Three crusted fitting pieces forming a single full crusted stone. Cut surface rayeals a dark-oray interior with large chondrular.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	 Northwest Africa 13487 (NWA 13487) (Northwest Africa) Purchased: 2019 Jun Classification: Mesosiderite History: Bought in Ensisheim in June 2019 from Norddine Azelmat. Physical characteristics: A dark brown irregular stone. Petrography: (J. Gattacceca, <i>CEREGE</i>) Brecciated rock with a silicate fraction composed of plagioclase and low-Ca pyroxene (typical size 200 m), and less abundant Ca-pyroxene. Abundan,t contorted multi-mm sized metal grains (~30 vol%). Other minerals: troilite, merrillite, SiO₂. Geochemistry: Pyroxene Fs_{31,3±0.1}Wo_{2.2±0.1}, FeO/MnO = 24.1 (n=2). Plagioclase An_{91.6}Ab_{8.2}Or_{0.3} (n=2). Classification: Mesosiderite. Specimens: Type specimen at <i>CEREGE</i>. Main mass with Jean Redelsperger. Northwest Africa 13488 (NWA 13488) Tarfaya, Moroeco Purchased: 2020 Classification: Carbonaceous chondrite (CK6) History: Bought from Abdellah Afiniss in Agadir in 2020. Physical characteristics: Three crusted fitting pieces forming a single full crusted stone. Cut surface reveals a dark-gray interior with large chondrules.

Petrography: (J. Gattacceca, *CEREGE*) Recrystallized chondrite with plagioclase average size above 50 μ m. Main opaque mineral is Cr-rich magnetite. **Geochemistry**: Olivine Fa_{29.8±0.0}, NiO 0.40 wt% (n=3). Magnetite has 3.8 wt% Cr₂O₃. **Classification**: Carbonaceous chondrite (CK6). **Specimens**: Type specimen at *CEREGE*. Main mass with Jean Redelsperger.

Northwest Africa 13489 (NWA 13489)

(Northwest Africa)

Purchased: 2019 May

Classification: Primitive achondrite (Brachinite)

Physical characteristics: Multiple fragments, some with fusion crust

Petrography: (J. Gattacceca, *CEREGE*) Granulitic texture. Main minerals are olivine (dominant, grain size 300 μ m), Ca- pyroxene (typical size 200 μ m), plagioclase (typical size 300 μ m). Other minerals: troilite (to 300 μ m), chromite (to 100 μ m, with lobate contacts in plagioclase), rare metal as μ m-sized grains within silicates. No low-Ca pyroxene was observed.

Geochemistry: Olivine Fa_{32.5±0.2}, FeO/MnO=74.4±8.7 (n=7). Ca-pyroxene Fs_{11.3±0.3}Wo_{44.0±0.2}, FeO/MnO=44.6±7.2 (n=7). Plagioclase An_{34.9}Ab_{62.2}Or_{2.9} (n=4). Chromite Cr# 0.74 (n=2). **Classification**: Achondrite (brachinite)

Specimens: Type specimen at CEREGE. Main mass with Kuntz.

Northwest Africa 13490 (NWA 13490)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Carbonaceous chondrite (CO3)

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with small chondrules (average apparent diameter ~200 µm) and small CAIs set in abundant matrix (~30 vol%). Opaque minerals are metal, troilite and magnetite.

Geochemistry: Olivine Fa_{24.9±13.9}, Fa PMD 49% (n=14). Cr₂O₃ in ferroan olivine 0.11±0.10 wt% (n=11). Low-Ca pyroxene Fs_{4.3±1.2}Wo_{1.5±0.0} (n=3).

Classification: Carbonaceous chondrite (CO3). Estimated subtype 3.2-3.5 based on Fa PMD and Cr_2O_3 content of ferroan olivine.

Specimens: Type specimen at CEREGE. Main mass with Kuntz.

Northwest Africa 13491 (NWA 13491)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Carbonaceous chondrite (CO3)

History: Bought from a dealer from northwest Africa.

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with small chondrules (average apparent diameter $180\pm80 \ \mu\text{m}$, n=21) and small CAIs set in abundant matrix (38vol% by point counting, n=105). Opaque minerals are metal, troilite and magnetite.

Geochemistry: Olivine Fa_{20.2±13.7}, Fa PMD 61% (n=8). Cr₂O₃ in ferroan olivine 0.16±0.07 wt% (n=7). Low-Ca pyroxene Fs₁₃₄Wo_{4.9} (n=1).

Northwest Africa 13492 (NWA 13492)

Running Head

(Northwest Africa)	
Purchased: 2019 Oct	
Classification: HED achondrite (Eucrite)	
History : Bought from a dealer from northwes	st Africa
Petrography: (I Gattacceca CEREGE) Brec	ciated igneous rock with mostly subonhitic
terrography. (J. Gattacccca, CEREOE) Dice	chatch igneous lock with mostry subopinite
texture. Orall size is ~ 1.5 min grain size and	
minerals are low-Ca pyroxene (exsolved) and	plagioclase. Other minerals: silica polymorph
(to 100 μ m), ilmenite, troilite, metal.	
Geochemistry : Low-Ca pyroxene Fs _{65.5±1.9} W	$o_{2.2\pm0.5}$, FeO/MnO = 31.3±0.8 (n=5). Plagioclase
$An_{87.0}Ab_{12.6}Or_{0.4}$ (n=2).	
Classification: Achondrite (eucrite). The low	-Ca pyroxene is unusually iron rich (Fs _{65.6}).
Northwest Africa 13493 (NWA 13493)	
(Northwest Africa)	
Purchased 2019 Oct	
Classification: HED achondrite (Eucrite)	
History: Bought from a dealer from northwest	at A frica
Detrography: (I Cattagagae CEDECE) Image	our roak with doloritic toxture. Crain size 500
Main minoral and loss of the contract of the c	ous fock with dolernic texture. Of all size ~500
μm. Main minerals are low-Ca pyroxene (exs	bived) and plagloclase. Other minerals: ilmenite,
metal, silica polymorph.	
Geochemistry : Low-Ca pyroxene Fs _{60.0±0.9} W	$o_{2.1\pm0.1}$, FeO/MnO = 33.1±1.4 (n=3). Plagioclase
$An_{88.3}Ab_{11.2}Or_{0.5}$ (n=2).	
Classification: Achondrite (eucrite).	
Northwest Africa 13494 (NWA 13494)	
(Northwest A frica)	
Purchasod: 2020 Jan	
Classification: UED calor drite (Everite)	
Classification. HED actionalitie (Euclide)	
Petrography: (J. Gattacceca, CEREGE) Brec	clated igneous rock with subophilic texture.
Main minerals are pyroxene (exsolved) and m	laskelynite with typical size 250 µm. Some
clasts have smaller grain size. Other minerals	: chromite, ilmenite, troilite, metal, silica
polymorph.	
Geochemistry: Low-Ca pyroxene Fs _{63.9±1.8} W	$o_{3.1\pm1.5}$, FeO/MnO = 32.5±1.5 (n=5).
Maskelynite An _{88 6} Ab _{11 3} Or _{0 2}	
Classification: Achondrite (eucrite).	
Northwest Africa 13495 (NWA 13495)	
(Northwest Africa)	
Purchased: 2020 Feb	
Classification: Carbonaceous chondrite (Co	03)
Petrography: (J. Gattacceca, CEREGE) Chor	ndrite with small chondrules (average apparent
diameter 160 ± 80 µm n=23) and CAIs (to 300) um) set in an abundant fine-grained iron-rich
matrix (42 vol% by point counting). Opaque	are metal and troilite
Ceochemistry: Olivine Factoria range Factoria	$r_{0.0}$ Fa PMD = 61% Cr.O. 0.14+0.10 wt%
(n=25) Low Conversions Eq. We	-50.0 , 1 a 1 MD = 01 /0, C12O3 0.14 \pm 0.10 W1/0
$(11-25)$. Low-Ca pyroxene $FS_{3.4\pm 1.9}WO_{2.2\pm 0.9}$ (11)	-2j.
Classification: Carbonaceous chondrite (CO3	b). Estimated subtype 3.2-3.5 based on Fa PMD
and Cr ₂ O ₃ content of ferroan olivine.	

Northwest Africa 13496 (NWA 13496)

(Northwest Africa) Purchased: 2020 Feb Classification: Mesosiderite

Petrography: (J. Gattacceca, *CEREGE*) Igneous rock with pyroxene dominant over plagioclase. Typical grain size 500 μ m. Abundant metal as mm-sized contorted grains, and μ m-sized inclusions in silicates. Other minerals: troilite to 100 μ m, silica polymorph to 50 μ m, chromite.

Geochemistry: Low-Ca pyroxene $Fs_{34.8\pm0.3}Wo_{2.9\pm0.2}$, FeO/MnO = 24.7±0.6 (n=3). Plagioclase An89.8An_{10.0}Or_{0.2} (n=2).

Classification: Mesosiderite.

Northwest Africa 13497 (NWA 13497)

(Northwest Africa)

Purchased: 2020 Feb

Classification: HED achondrite (Eucrite)

Petrography: (J. Gattacceca, CERGE) Igneous rock with subophitic texture. Typical grain size ~ 500 (up to 1.5 mm). Main minerals are pyroxene (some exsolved) and plagioclase. Other minerals: chromite, ilmenite, rare metal, troilite.

Geochemistry: Pyroxenes: low-Ca pyroxene $Fs_{41,3\pm0.8}Wo_{4.0\pm1.3}$, FeO/MnO = 28.9±2.2 (n=4). Plagioclase An_{92.7}Ab_{6.9}Or_{0.4} (n=1).

Classification: Achondrite (eucrite).

Northwest Africa 13498 (NWA 13498)

(Northwest Africa)

Purchased: 2020 Feb

Classification: Ordinary chondrite (L3)

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with large, packed, and imbricated chondrules (~700 μm). Opaque minerals are metal and troilite.

Geochemistry: Olivine Fa_{17.6 \pm 7.8}, range Fa_{4.2-36.9}, Fa PMD = 33%, Cr₂O₃ 0.12 \pm 0.17 wt%

(n=17). low-Ca pyroxene $Fs_{11,2\pm7.1}Wo_{0.9\pm0.8}$, range $Fs_{2,1-25.8}$ (n=13).

Classification: Ordinary chondrite (L3). Texture reminiscent of "cluster chondrites". L group based on magnetic susceptibility and chondrule size. Estimated subtype 3.2-3.5 based on Fa PMD and Cr_2O_3 content of ferroan olivine.

Northwest Africa 13499 (NWA 13499)

Algeria

Purchased: 2020 Jan

Classification: HED achondrite (Eucrite)

Petrography: (J. Gattacceca, *CEREGE*) Igneous rock with subopthitic texture. Main minerals are pyroxene (exsolved) and plagioclase with typical grain size 600 μ m. Other minerals: metal, troilite, chromite, ilmenite. Vesicles up to 200 μ m are present.

Geochemistry: Low-Ca pyroxene $Fs_{42.9\pm0.9}Wo_{3.7\pm0.9}$ (n=7), Ca-pyroxene $Fs_{25.0}Wo_{35.5}$ (n=2), $Fs_{16.5}Wo_{44.9}$ (n=2), $FeO/MnO = 27.8\pm2.0$ (n=11). Plagioclase $An_{92.2\pm0.5}Ab_{7.5\pm0.4}Or_{0.4\pm0.0}$ (n=4). **Classification**: Achondrite (eucrite).

Northwest Africa 13500 (NWA 13500)

(Northwest Africa)

Purchased: 2020 Jan Classification: Ordinary chondrite (L(LL)3)

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with "cluster chondrite" texture [Metzler K., 2015, MAPS 47:2193-2217]. Average apparent chondrule diameter 720±300 μ m (n=34). **Geochemistry**: Olivine Fa_{16.9±10.6}, range Fa_{4.5-36.7}, Fa PMD = 56%, Cr₂O₃ 0.09±0.13 wt% (n=14). Low-Ca pyroxene Fs_{14.8±7.7}Wo_{1.5±1.5} (n=5).

Classification: Ordinary chondrite L(LL)3. The L group is favored based on magnetic susceptibility, but neither chondrule size nor magnetic susceptibility can exclude the LL classification. Hence the L(LL) classification. Estimated subtype 3.2-3.5 based on Fa PMD and the Cr_2O_3 content of ferroan olivine.

Northwest Africa 13501 (NWA 13501)

(Northwest Africa)

Purchased: 2016 Apr

Classification: Ordinary chondrite (H3.10)

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with well-defined, packed chondrules. Chondrule average apparent diameter 400±270 µm (n=44). Olivine are zoned compositionally. Opaques are metal and troilite.

Geochemistry: Olivine Fa_{11.2±10.1}, Fa PMD = 76% (n=12), Cr₂O₃ in ferroan olivine 0.38±0.21 wt% (n=10). Low-Ca pyroxene Fs_{8.3}Wo_{1.1} (n=2).

Classification: Ordinary chondrite. H group based on magnetic susceptibility interpreted in the light of weathering grade and chondrule size. Subtype based on Cr_2O_3 content of ferroan olivine.

Specimens: Type specimen at CEREGE. Main mass with Kuntz.

Northwest Africa 13502 (NWA 13502)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Ordinary chondrite (H6)

Petrography: (J. Gattacceca, *CEREGE*) Highly recrystallized ordinary chondrite. Plagioclase up to 150 μm. Chromite to 100 μm.

Geochemistry: Plagioclase An_{12.7}Ab_{79.9}Or_{7.5} (n=1). Chromite Cr# 0.86.

Specimens: Type specimen at CEREGE. Main mass with Kuntz.

Northwest Africa 13503 (NWA 13503)

(Northwest Africa)

Purchased: 2019 Oct

Classification: Carbonaceous chondrite (CK3)

Physical characteristics: Dark brown stone. Cut surface shows a dark interior with large chondrules and CAIs set in abundant matrix.

Petrography: (J. Gattacceca, *CEREGE*) Chondrite with large well-defined chondrules (average apparent diameter \sim 750 µm) and CAIs set in abundant fine-grained iron-rich matrix. Opaque are mainly magnetite and sulfides.

Classifica Specimen	(n=1). Magnetite has 2.29 wt% Cr ₂ O ₃ (n=2). tion: Carbonaceous chondrite (CK3). s: Type specimen at <i>CEREGE</i> . Main mass with <i>Kuntz</i> .
Northwes (Northv Purchas	t Africa 13504 (NWA 13504) vest Africa) sed: 2019 Oct
History F	Rought from a dealer from northwest A frica
Physical c	characteristics: Single oriented stone.
Petrograp chondrules troilite	bhy : (J. Gattacceca, <i>CEREGE</i>) Chondrite with packed large and well-delineated s (average apparent diameter $730\pm340 \ \mu m$, n=43). Opaque minerals are metal and
Geochemi	istry: Olivine $Fa_{20,2\pm14.3}$, Fa PMD = 61% (n=15), Cr ₂ O ₃ in ferroan olivine 0.28±0.
wt% (n=14	4). Low-Ca pyroxene $Fs_{14,3\pm9.9}Wo_{2,0\pm2.1}$ (n=16).
Classifica interpretec	tion : Ordinary chondrite L3.10. Likely L group based on magnetic susceptibility I in the light of weathering grade and chondrule size. Subtype based on tent of ferroan olivine
Specimen	s: Type specimen at <i>CEREGE</i> . Main mass with <i>Kuntz</i> .
Purchas Classifi History: E Physical c chondrules Petrograp diameter 7 The main o Geochemi Plagioclas Classifica Specimen	aed: 2019 Oct cation: Carbonaceous chondrite (CK5) Bought from a dealer from northwest Africa. Characteristics : Dark brown stone. Cut surface shows a dark interior with large s set in abundant matrix. Ohy : (J. Gattacceca, <i>CEREGE</i>) Chondrite with large chondrules (average apparent '10±300, n=12) set in a recrystallized matrix with plagiocalse typical size 40 μ m. opaque phases are Cr-rich magnetite and sulfides. Rare metal. istry : Olivine Fa _{31,2±0,2} , NiO 0.48±0.08 wt% (n=6). Ca-pyroxene Fs _{10.8} Wo _{48.5} (n= e An _{43.6} Ab _{53.7} Or _{2.6} (n=2). Magnetite has 3.76 wt% Cr ₂ O ₃ (n=2). tion : Carbonaceous chondrite (CK5) s : Type specimen at <i>CEREGE</i> . Main mass with <i>Kuntz</i> .
Northwes (Northw Purchas Classifi History: P Petrograp composed in diamete recrystalliz	t Africa 13509 (NWA 13509) vest Africa) sed: 2018 Sep cation: Ordinary chondrite (LL4-6) Purchased by John Higgins in September 2018 from a Mauritanian dealer. ohy : (A. Irving, <i>UWS</i> and P. Carpenter, <i>WUSL</i>) Very fresh recrystallized breccia of Type 6 lithic clasts (containing rare remnant chondrules) plus large (up to 5 m er), well-formed, equilibrated discrete chondrules (Type 4) in a fine grained, highl zed matrix containing troilite, pentlandite, taenite and chromite.

Geochemistry : O (Fs _{25.4±0.1} Wo _{1.8±0.3} , $_{10.7}$ Wo _{43.5-44.1} , N = Classification : Or Specimens : 45 g i	ivine (31.2±0.2, range Fa _{30.9-31.5} , N = 5), low-Ca pyroxene range Fs _{25.3-25.6} Wo _{1.3-2.0} , N = 5), augite (Fs _{10.5±0.3} Wo _{43.7±0.3} , range Fs _{10.2} 3). dinary chondrite (LL4-6 breccia, highly recrystallized). ncluding one polished thin section at <i>UWB</i> ; remainder with Mr. J. Higg	gins.
Northwest Africa	13516 (NWA 13516)	
(Northwest Afr	ica) O Sen	
Classification:	J Sep HED achondrite (Eucrite, unbrecciated)	
History: Purporte	dly found in the Adrar region, Algeria. Bought from a meteorite dealer	in
Tindouf, Algeria.		
Physical character Petrography (K. texture, consisting exsolution lamella obromite, and tree	Fistics: Isometric individual without fusion crust. Metzler, <i>IfP</i>): Unbrecciated coarse-grained basalt with ophitic to subopl of about 60% pyroxene and 40% plagioclase. Pyroxene with augite e (typical width 1-4 μ m). Accessories are a silica polymorph, ilmenite,	hitic
Geochemistry: M	ineral compositions and geochemistry: Composition of low-Ca pyroxer	ne:
Fs _{55.1±0.7} Wo _{3.2±0.3}	Fs _{54,1-56,3} Wo _{2,7-3,6}); mean Fe/Mn (at.): 33.1; n=10. Composition of Ca-	rich
pyroxene (exsolut	on lamellae): $Fs_{25.8\pm1.5}Wo_{39.0\pm2.2}$ ($Fs_{24.7-29.0}Wo_{35.1-41.2}$); n=9. Composition	n of
Classification : Ur	$\pm 1.3 \text{Or}_{0.2\pm 0.3}$ (An _{86.7-90.6} Or _{0.0-0.5}); n=10.	
(Northwest Afr Purchased: 200 Classification: 1 History: Purchase France Physical characte Petrography: (K. pyroxene (grain si mm). Pyroxene sh with augitic (most Plagioclase is com pockets are presen	ica) ϑ Jun Martian meteorite (shergottite) d from a Moroccan mineral dealer at the meteorite show in Ensisheim, eristics: Subrounded meteorite fragments without fusion crust. Metzler, <i>IfP</i>) Igneous rock with gabbroic texture, consisting of about 7/2 zes up to ~1.5 mm) and 30% Plagioclase (maskelynite; grain sizes up to ows very thin exsolution lamellae (< 1 µm thickness) and patchy zoning ly pyroxene cores) and pigeonitic (mostly pyroxene rims) compositions upletely transformed to maskelynite by shock metamorphism. Shock met t, showing a swirly pattern of intermingled melts of pyroxene and	0% o ~2 g s. elt
plagioclase. Faylit apatite, merrillite, Geochemistry : M	ic olivine occurs along grain boundaries. Accessories are ilmenite, Cl- SiO ₂ , and small amounts of FeS. ineral compositions and geochemistry: Composition of augitic pyroxen	ie
areas (mostly pyrc 30.4; n=12. Comp Fs _{56.6±1.6} Wo _{13.8±0.7}	xene cores): $Fs_{22.3\pm0.8}Wo_{33.4\pm1.7}$ ($Fs_{21.0-23.7}Wo_{30.5-37.0}$); mean Fe/Mn (at.): osition of pigeonitic pyroxene areas (mostly pyroxene rims): ($Fs_{53.3-58.4}Wo_{12.8-14.9}$); mean Fe/Mn (at.): 38.2; n=12. Composition of	
olivine: $Fa_{85.4\pm0.4}$ (An _{53.9±3.1} Or _{1.0±0.5} (Classification: M	(fa _{84.6-85.9}); n=7. Composition of plagioclase (maskelynite): An _{46.6-58.2} Or _{0.3-1.9}); n=18. artian (Shergottite)	
$Fs_{56.6\pm1.6} W O_{13.8\pm0.7}$ olivine: $Fa_{85.4\pm0.4}$ ($An_{53.9\pm3.1}Or_{1.0\pm0.5}$ (Classification : Mathematical Northwest Africal	$F_{3,3,-58,4}$ w $G_{12,8-14,9}$, mean Fe/Min (at.). 58.2, n=12. Composition of $F_{3,84,6-85,9}$; n=7. Composition of plagioclase (maskelynite): An _{46,6-58,2} Or _{0,3-1,9}); n=18. artian (Shergottite) A 13518 (NWA 13518)	

(Northwest Africa) Purchased: 2020 Mar Classification: Rumuruti chondrite (R4-5)

History: Purportedly found in 2019 at the border between Algeria and Mali. Purchased by Mohamed Ali (972 g) and Miguel Angel Contreras (1662 g) from a Saharaui dealer in Mauritania in March 2020.

Physical characteristics: Many pieces between a few grams and >500 g, some with fusion crust.

Petrography: (K. Metzler, *IfP*) Chondritic genomict breccia, consisting of dark host material and light chondritic clasts up to ~2 cm. The host material is of petrologic type 4. It consists of chondrules and chondrule fragments, embedded in recrystallized interchondrule material. Relictic Mg-rich olivine cores can be occasionally observed. The light clasts are strongly metamorphosed and represent type 5 material with clearly recognizable chondrules.

Geochemistry: Mineral compositions and geochemistry: Dark host material : Mean olivine composition: $Fa_{38,7\pm0.2}$ ($Fa_{38,4-39.0}$); n=10; mean low-Ca pyroxene composition

 $Fs_{19.8\pm6.7}Wo_{1.0\pm1.0}$ ($Fs_{7.6-29.9}Wo_{0.2-2.9}$); n=8. Light clast of petrologic type 5: mean olivine composition $Fa_{38.8\pm0.3}$ ($Fa_{38.1-39.2}$); n=8; mean low-Ca pyroxene composition:

 $Fs_{29,9\pm0.4}Wo_{1,3\pm0.5}$ ($Fs_{29,1-30.6}Wo_{0.6-2.2}$); n=10. Accessories in both lithologies are troilite and pentlandite; no metal was found.

Classification: R chondrite based on mineral chemistry. Genomict breccia, consisting of clasts of petrologic type 5 (equilibrated olivine and pyroxene), embedded in host material of petrologic type 4 (equilibrated olivine and unequilibrated pyroxene).

Northwest Africa 13519 (NWA 13519)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (L3-5)

History: Purchased by Oz Backman in 2020 at the Tucson Gem and Mineral Show from Mohamed Ismali.

Physical characteristics: Single stone with dark-brown fusion crust.

Petrography: (D. Sheikh, *FSU*) Sample is an ordinary chondrite genomict breccia containing both equilibrated clasts (type 5) and unequilibrated clasts (type 3) set in a fine-grained matrix. Chondrules (Av. ~700±50 μ m); accessory phases include troilite, chromite with Ti, iron oxides, and secondary recrystallized plagioclase (25±5 μ m; only found in equilibrated clasts). **Geochemistry**: Type 3 olivine (Fa_{16.9±6.8}, range Fa_{10.0-34.3}, n=33), Type 5 olivine (Fa_{24.5±0.6}, range Fa_{23.5-25.9}, n=32), Type 5 low-Ca pyroxene (Fs_{20.9±0.7} Wo_{1.7±0.3}, range Fs_{19.4-22.5} Wo_{0.9-2.0}, n=20).

Classification: Ordinary Chondrite (L3-5) Sample is a genomict breccia based on the observation of both type 3 clasts with unequilibrated olivine grains and type 5 clasts with equilibrated olivine and low-ca pyroxene grains.

Specimens: 20.5 grams at *UCLA*; main mass with Oz Backman.

Northwest Africa 13520 (NWA 13520)

(Northwest Africa)

Purchased: 2008

Classification: Ordinary chondrite (L(H)3)

History: Purchased by Pat Brown in 2008 from an unknown NWA dealer in Tucson, Arizona. **Physical characteristics**: Single partially crusted stone; fusion crust is light brown.

chondrules (Av. $850+100 \text{ µm} \text{ n}=3$	ample is an ordinary chondrite composed of abundant (30) set in a mostly opaque, slightly fine-grained matrix
Accessory phases include troilite a	and iron oxides.
Geochemistry : Olivine (Fa _{16,9+6,4} ,	range Fa _{3,4-23,9} , n=21), Cr ₂ O ₃ in ferroan olivine (0.05 ± 0.03)
wt%, range <0.03 to 0.13, n=18) I	Low-Ca Pyroxene (Fs _{9.4±5.4} Wo _{1.1±1.2} , range Fs _{1.2-17.6} Wo _{0.1-3.8} ,
n=16). Classification: Ordinary Chondrit	$r_{\rm e}$ (I (H)3) Cr ₂ O ₂ in ferroan olivines is ~0.05 wt%
suggesting a high type 3 subtype (suggesting an L group, the majorit olivine grains above Fa_{24} were fou Fs_{17} . The observation of FeO-poor	~3.8). While a few olivine grains are centered around Fa ₂₃ , y of them are FeO-poor compared to L3 chondrites. No nd. Likewise, no low-ca pyroxene grains were found above silicates relative to L3 chondrites leads to the L(H)3
classification.	· main mass with Pat Brown
specifiens. 28.98 grains at OCLA	, main mass with Fat Blown.
Northwest Africa 13521 (NWA 1	.3521)
(Northwest Africa)	
Purchased: 2020	···- (1,5)
History: Exported from porthwest	Ite (LS) A frican source in 2019 by Juan Aviles Poblador in Spain
before being acquired by Topher S	Spinnato at the 2020 Tucson Gem and Mineral Show. Later
given to Cameron Smith.	
Physical characteristics: Single s	tone with dark-brown fusion crust.
Petrography: (D. Sheikh, FSU) S	ample is an ordinary chondrite composed of few blurred
plagioclase $(35\pm10 \text{ µm})$ Accessor	v phases include Fe-Ni metal troilite chromite and iron
oxides.	
Geochemistry: Olivine (Fa _{24.1±0.6} ,	range Fa _{22.7-25.0} , n=16), Low-Ca pyroxene
$(Fs_{20.5\pm0.5} Wo_{1.2\pm0.2}, range \ Fs_{19.9-21.1}$	Wo _{0.9-1.5} , n=10).
Classification: Ordinary Chondrit	e (L5)
Specimens : 20.2 g at UCLA; main	mass with Cameron Smith.
Northwest Africa 13522 (NWA 1	.3522)
Morocco	
Find: 2018	handrita (CV2)
Classification: Carbonaceous cl	10ndrite (CV3)
Physical characteristics Single s	tone with dark-brown fusion crust
Petrography (D Sheikh <i>ESU</i>) S	ample is a carbonaceous chondrite composed of abundant
chondrules (Av. 1 mm, up to 4 mm	n), CAIs (Av. 2 mm, up to 6 mm), and isolated mineral
fragments set in a mostly opaque,	slightly fine-grained matrix. Accessory phases include
pentlandite, and magnetite. Magne	etite has 1.0 ± 0.3 wt% Cr ₂ O ₃ .
Geochemistry: Olivine (Fa _{14.0±20.6}	, range Fa _{0.5-75.9} , n=62), Low-Ca Pyroxene
$(Fs_{1.4\pm0.5}Wo_{1.0\pm0.2}, range Fs_{0.6-2.4}Wo$	$o_{0.8-1.5}, n=15$).
Classification: Carbonaceous Cho	ondrite (CV3)
Specimens : 4 grams at UCLA; ma	in mass with Matthew Stream.
Northwest Africa 13523 (NWA 1	3523)

Classification: HED achondrite (Eucrite, brecciated) History: Purchased in 2020 by Matthew Stream from a seller in Algeria. Physical characteristics: Single stone with minor fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated eucrite composed of cumulat lasts, basaltic eucrite clasts, anorthositic clasts, and isolated mineral fragments set in grained matrix. Accessory phases include chromite (some Ti-rich), troilite, SiO ₂ -rich nd ilmenite. Geochemistry: Low-Ca Pyroxene ($Fs_{41,1+2,9} Wo_{2,2+1,0}$, range $Fs_{31,6+5,2} Wo_{1,6+1,1}$, FeO/IMIO = 30: Augite ($Fs_{20,7+2}Wo_{41,2+0,1}$, range $Fs_{18,2+2,2}Wo_{6,5+1,7,4}$, FeO/IMIO = 30: Augite ($Fs_{20,7+2}Wo_{41,2+0,1}$, range $Fs_{18,7+2,6}Wo_{41,1+1,3}$, FeO/IMIO = 26±3, n=2), Calcic Plagioclase ($An_{88,0+4,9}$, range $An_{80,1+0,5,3}$, n=18). Classification: HED Achondrite (Eucrite, brecciated) Specimens: 20.77 grams at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli Jagioclase ($55\pm5 \mu$ m). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Reochemistry: Olivine (Fa _{27,54,4} , range Fa _{26,5,28,2} , n=30), Low-Ca pyroxene Fs _{23,46,06} Wo _{1,64,4} , range Fs _{22,22,46} Wo _{1,1-25} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525) (recciated) im from a seller in Algeria. inor fusion crust. precciated eucrite composed of cumulate is, and isolated mineral fragments set in a pomite (some Ti-rich), troilite, SiO ₂ -rich g $/o_{2.2\pm1.0}$, range Fs _{31.6-45.2} Wo _{1.0-4.1} , FeO/Min ge Fs _{34.5-42.1} Wo _{6.5-17.4} , FeO/MnO = 30±3	Classification: HED achondrite (E History : Purchased in 2020 by Matth Physical characteristics : Single ston Petrography : (D. Sheikh, <i>FSU</i>) Sam clasts, basaltic eucrite clasts, anorthos grained matrix. Accessory phases inc and ilmonite
History: Purchased in 2020 by Matthew Stream from a seller in Algeria. Physical characteristics: Single stone with minor fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated eucrite composed of cumulat lasts, basaltic eucrite clasts, anorthositic clasts, and isolated mineral fragments set in rained matrix. Accessory phases include chromite (some Ti-rich), troilite, SiO ₂ -rich and ilmenite. Geochemistry: Low-Ca Pyroxene (Fs _{41,142,9} Wo _{2,241,0} , range Fs _{31,645,2} Wo _{10,44,1} , FeO/I 81±4, n=47), Pigeonite (Fs _{38,342,8} Wo _{10,443,5} , range Fs _{34,542,1} Wo _{6,517,4} , FeO/MnO = 30: Augite (Fs _{50,74,2} YWo _{41,240,1} , range Fs _{18,72,2} Wo _{41,141,3} , FeO/MnO = 26±3, n=2), Calcic Plagioclase (An _{88,044,9} , range An _{80,146,3,1} n=18). Classification: HED Achondrite (Eucrite, breeciated) Specimens: 20.77 grams at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystall plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Feochemistry: Olivine (Fa _{27,540,4} , range Fa _{26,548,2} , n=30), Low-Ca pyroxene Fs _{21,040,6} WO _{1,640,4} range Fs _{22,24,6} WO _{1,1-2,5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 13526 (NWA 13525) (Northwest Africa 13527 (NWA 13525) (Northwest Africa 13527 (NWA 13525) (Northwest Africa 13527 (NWA 13525) (Northw	Im from a seller in Algeria. Inor fusion crust. Precciated eucrite composed of cumulate is, and isolated mineral fragments set in a prite (some Ti-rich), troilite, SiO ₂ -rich g $/o_{2,2\pm1.0}$, range Fs _{31.6-45.2} Wo _{1.0-4.1} , FeO/Min 19ge Fs _{34.5-42.1} Wo _{6.5-17.4} , FeO/MnO = 30±3	History : Purchased in 2020 by Matthe Physical characteristics : Single stone Petrography : (D. Sheikh, <i>FSU</i>) Same elasts, basaltic eucrite clasts, anorthomorphisms grained matrix. Accessory phases income und ilmonite
Physical characteristics: Single stone with minor fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated cucrite composed of cumulat lasts, basaltic eucrite clasts, anorthositic clasts, and isolated mineral fragments set ir prained matrix. Accessory phases include chromite (some Ti-rich), troilite, SiO ₂ -rich and ilmenite. Geochemistry: Low-Ca Pyroxene (Fs _{41,142,9} Wo _{2,241,0} , range Fs _{31,645,2} Wo _{10,41} , FeO/I bit4, n=47), Pigeonite (Fs _{38,342,8} Wo _{10,443,5} , range Fs _{34,542,1} Wo _{6,547,4} , FeO/MnO = 30- Augite (Fs _{20,742,7} Wo _{41,240}), range Fs _{18,72,26} Wo _{41,141,3} , FeO/MnO = 26±3, n=2), Calcic Plagioclase (An _{88,0449} , range An _{80,196,3} , n=18). Classification: HED Achondrite (Eucrite, brecciated) Specimens: 20.77 grams at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,540,4} , range Fa _{26,528,25} , n=30), Low-Ca pyroxene Fs _{23,040} Wo _{1,640,4} , range Fs _{22,224,6} Wo _{1,12,5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda cerystallized plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite	tinor fusion crust. precciated eucrite composed of cumulate is, and isolated mineral fragments set in a put (some Ti-rich), troilite, SiO ₂ -rich g $/o_{2,2\pm1.0}$, range Fs _{31.6-45.2} Wo _{1.0-4.1} , FeO/Min ge Fs _{34.5-42.1} Wo _{6.5-17.4} , FeO/MnO = 30±3	Physical characteristics : Single ston Petrography : (D. Sheikh, <i>FSU</i>) Sam clasts, basaltic eucrite clasts, anorthos grained matrix. Accessory phases inc and ilmonite
Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated eucrite composed of cumulat lasts, basaltic eucrite clasts, anorthositic clasts, and isolated mineral fragments set ir grained matrix. Accessory phases include chromite (some Ti-rich), troilite, SiO ₂ -rich ind ilmenite. Geochemistry: Low-Ca Pyroxene (Fs _{41,142,9} Wo _{2,2±1,0} , range Fs _{31,6,45,2} Wo _{1,0,41} , FeO/M B1±4, n=47), Pigeonite (Fs _{38,3±2,8} Wo _{10,4±3,5} , range Fs _{34,542,1} , Wo _{6,5,17,4} , FeO/MnO = 30: Augite (Fs _{20,7±2,7} Wo _{41,2±01} , range Fs _{18,7±2,6} Wo _{41,141,3} , FeO/MnO = 26±3, n=2), Calcic Plagioclase (An _{88,0±49} , range An _{80,1±63,3} , n=18). Classification: HED Achondrite (Eucrite, brecciated) Specimens: 20.77 grams at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli Jagioclase (5±5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,5=0.4} , range Fa _{26,5=28,2} , n=30), Low-Ca pyroxene Fs _{23,0+0.6} W0 _{1.6=0.4} , range Fs _{22,2+4.6} W0 _{1.1-2,5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525)) (Northwest Africa	precciated eucrite composed of cumulate is, and isolated mineral fragments set in a prite (some Ti-rich), troilite, SiO ₂ -rich g $/o_{2.2\pm1.0}$, range Fs _{31.6-45.2} Wo _{1.0-4.1} , FeO/Min nge Fs _{34.5-42.1} Wo _{6.5-17.4} , FeO/MnO = 30±3	Petrography : (D. Sheikh, <i>FSU</i>) Sam elasts, basaltic eucrite clasts, anorthos grained matrix. Accessory phases inc
Geochemistry : Low-Ca Pyroxene ($F_{s_{41,1+2.9}} W_{0,2,2\pm1.0}$, range $F_{s_{31,6+5.2}} W_{0,1.0,4.1}$, FeO/M 81±4, n=47), Pigconite ($F_{s_{38,3+2.8}} W_{0_{10,4+3,5}}$, range $F_{s_{34,5+2.1}} W_{0_{6,5+7,4}}$, FeO/MnO = 30: Augite ($F_{s_{20,742,7}} W_{0,1,2\pm0,1}$, range $F_{s_{18,72,2}} W_{0,4_{1,1,4,1,3}}$, FeO/MnO = 26±3, n=2), Calcic Plagioclase ($A_{n_{88,04,9}}$, range $A_{n_{80,1-96,3}}$, n=18). Classification: HED Achondrite (Eucrite, brecciated) Specimens: 20.77 grams at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History : Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics : Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli plagioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry : Olivine ($F_{27,5\pm0,4}$, range $F_{22,5\pm2,5,4}$, n=30), Low-Ca pyroxene $F_{52,0\pm0,6} W_{0,16\pm0,4}$, range $F_{52,2\pm2,4} W_{0,1\pm2,5}$, n=11). Classification : Ordinary chondrite (LL6) Specimens : 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 12525 (NWA 13525) (Northwest Africa 12019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics : Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda errystallized plagioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine ($F_{a_{3,0,4,0,3}}$, range $F_{22,9,9,1,0}$, n=19), Low-Ca pyroxene $F_{52,44,0} W_{1,840,2}$, range $F_{54,2,24,5} W_{1,6-1,9}$, n=3). Classification : Ordinary Chondrite (LL	$V_{02,2\pm1.0}$, range Fs _{31.6-45.2} Wo _{1.0-4.1} , FeO/M 1ge Fs _{34,5-42} Wo _{6,5-17.4} , FeO/MnO = 30±3	
S1±4, n=47), Pigeonite (Fs _{38,3±2.8} Wo _{10,4±3.5} , range Fs _{34,5±2.1} Wo _{6,5±17.4} , FeO/MnO = 30: Augite (Fs _{20,7±2.7} Wo _{41,2±0.1} , range Fs _{18,7:22.6} Wo _{41,1±1.3} , FeO/MnO = 26±3, n=2), Calcic Plagioclase (An _{88,0±4,9} , range An _{80,1+96,3} , n=18). Classification: HED Achondrite (Eucrite, brecciated) Specimens: 20.77 grams at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl shondrules set in a fine-grained recrystallized matrix containing secondary recrystallip algioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,5±0,4} , range Fa _{26,5±28,2} , n=30), Low-Ca pyroxene Fs _{23,40,4} Wo _{1,6±0,4} , range Fs _{22,24,6} Wo _{1,1±2,5} , n=11). Classification: Ordinary chondrite (LL6) Specimens: 20.3 g at <i>UCL4</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525) (Northwest Africa 10019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing secondar ecrystallized plagioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Seochemistry: Olivine (Fa _{30,3±0,3} , range Fa _{29,9-31,0} , n=19), Low-Ca pyroxene Fs _{24,40,2} Wo _{1,8±0,2} , range Fs _{24,2±4,3} Wo _{1,6+1,9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCL4</i> ; main mass with Abdeltif Mechaguen.	$12e Fs_{34} - 1W_{06} - 174$, FeO/MnO = 30 ± 3	Geochemistry: Low-Ca Pyroxene (F
 Plagioclase (An_{88.0±4.9}, range An_{80.1-96.3}, n=18). Classification: HED Achondrite (Eucrite, brecciated) Specimens: 20.77 grans at UCL4; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa_{27.5±0.4}, range Fa_{26.5:28.2}, n=30), Low-Ca pyroxene FS_{23.0±0.6±0.4}, range FS_{22.2:46}Wo_{1.1:2.5}, n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at UCLA; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing secondareerystallized plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa_{30.3±0.3}, range Fa_{29.9-31.0}, n=19), Low-Ca pyroxene FS_{24.4±0.2}WO_{1.8±0.2}, range Fs_{24.2±0.3}WO_{1.6-1.9}, n=3). Classification: Ordinary Chondrite (LL6) Group and the feature of the second phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa_{30.3±0.3}, range Fa_{29.9-31.0}, n=19), Low-Ca pyroxene FS_{24.4±0.2}WO_{1.8±0.2}, range Fs_{24.2±0.3}WO_{1.6-1.9}, n=3). Classif	$_{41.1-41.3}$, FeO/MnO = 26±3, n=2), Calcic	$h^{1\pm4}$, n=47), Pigeonite (Fs _{38.3±2.8} Wo ₁ Augite (Fs _{20.7±2.7} Wo _{41.2±0.1} , range Fs ₁₈
 Classification: HED Achondrite (Eucrite, brecciated) Specimens: 20.77 grams at UCLA; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalliplagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa_{27,5±0.4}, range Fa_{26.5-28.2}, n=30), Low-Ca pyroxene Fs_{23.0±0.6}Wo_{1.6±0.4}, range Fs_{22.2-24.6}Wo_{1.1-2.5}, n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at UCLA; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary condrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing second ecrystallized plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa_{30.3±0.3}, range Fa_{29.9-31.0}, n=19), Low-Ca pyroxene Fs_{24.4±0.2}Wo_{1.8±0.2}, range Fs_{24.2±4.5}Wo_{1.6±0.9}, n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at UCLA; main mass with Abdeltif Mechaguen. 		Plagioclase (An _{88.0±4.9} , range An _{80.1-96}
Specimens: 20.77 grams at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Pertography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- plagioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,5±0.4} , range Fa _{26,5±8.2} , n=30), Low-Ca pyroxene Fs _{23,0±0.6} Wo _{1.6±0.4} , range Fs _{22.2±4.6} Wo _{1.1±2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525) (Northwest Africa 12019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ongular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Beochemistry: Olivine (Fa _{30,3±0.3} , range Fa _{29,9:31.0} , n=19), Low-Ca pyroxene Fs _{24,4±0.2} Wo _{1.8±0.2} , range Fs _{24.2±4.5} Wo _{1.6:1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	cciated)	Classification: HED Achondrite (Eu
Northwest Africa 13524 (NWA 13524) (Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- plagioclase (55 \pm 5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27.5±0.4} , range Fa _{26.5±8.2} , n=30), Low-Ca pyroxene Fs _{23.0±0.6} Wo _{1.6±0.4} , range Fs _{22.2±4.6} Wo _{1.1±2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525)) (Northwest Africa 12019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed angular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55 \pm 5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30,3±0.3} , range Fa _{29,931.0} , n=19), Low-Ca pyroxene Fs _{24,4±0.2} Wo _{1,8±0.2} , range Fs _{24.2±4.5} Wo _{1.61.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	with Matthew Stream.	Specimens: 20.77 grams at UCLA; m
Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- blagioclase ($55\pm5 \mu m$). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27.5±0.4} , range Fa _{26.5:28.2} , n=30), Low-Ca pyroxene Fs _{23.0±0.6} Wo _{1.6±0.4} , range Fs _{22.2:4.6} Wo _{1.1-2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525)) (Northwest Africa 12019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase ($55\pm5 \mu m$). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9.31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2±3.5} Wo _{1.6±1.9} , n=3). Classification: Ordinary Chondrite (LL6) The second is the second ordinary Chondrite (LL6) The second		
Northwest Africa 13524 (NWA 13524) (Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bi- hondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- blagioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27.5±0.4} , range Fa _{26.5-28.2} , n=30), Low-Ca pyroxene Fs _{23.0±0.6} Wo _{1.6±0.4} , range Fs _{22.2-24.6} Wo _{1.1-2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Oliwine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2±4.5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		
(Northwest Africa) Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bi chondrules set in a fine-grained recrystallized matrix containing secondary recrystall: blagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,5±0.4} , range Fa _{26,5-28,2} , n=30), Low-Ca pyroxene Fs _{23,0±0.6} Wo _{1.6±0.4} , range FS _{22,2-24.6} Wo _{1.1-2,5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing secondar ecrystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30,3±0.3} , range Fa _{29,9,31.0} , n=19), Low-Ca pyroxene Fs _{24,4±0.2} Wo _{1.8±0.2} , range Fs _{24,2±4.5} Wo _{1.6+1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		Northwest Africa 13524 (NWA 135
Find: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- blagioclase ($55\pm5 \mu$ m). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,5±0.4} , range Fa _{26.5-28.2} , n=30), Low-Ca pyroxene Fs _{23.0±0.6} Wo _{1.6±0.4} , range Fs _{22.2-24.6} Wo _{1.1-2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase ($55\pm5 \mu$ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		(Northwest Africa)
Classification: Ordinary chondrite (LL6) History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystallised plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,5±0.4} , range Fa _{26.5-28.2} , n=30), Low-Ca pyroxene Fs _{23.0±0.6} Wo _{1.6±0.4} , range Fs _{22.2-24.6} Wo _{1.1-2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		Find: 2019
History: Purchased in 2020 by Matthew Stream from a seller in Northwest Africa. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- plagioclase ($55\pm5 \mu m$). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,5±0.4} , range Fa _{26,5-28,2} , n=30), Low-Ca pyroxene Fs _{23,0±0.6} Wo _{1.6±0.4} , range Fs _{22,2+2.6} Wo _{1.1+2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing secondar cerystallized plagioclase ($55\pm5 \mu m$). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30,3±0,3} , range Fa _{29,9-31,0} , n=19), Low-Ca pyroxene Fs _{24,4±0,2} Wo _{1,8±0,2} , range Fs _{24,2+24,5} Wo _{1,6-1,9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		Classification: Ordinary chondrite
Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bl chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry: Olivine (Fa _{27,5±0.4} , range Fa _{26,5-28,2} , n=30), Low-Ca pyroxene Fs _{23,0±0.6} Wo _{1.6±0.4} , range Fs _{22,2-24.6} Wo _{1.1-2,5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCL4</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing secondar ecrystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30,3±0.3} , range Fa _{29,9-31.0} , n=19), Low-Ca pyroxene Fs _{24,4±0.2} Wo _{1.8±0.2} , range Fs _{24,2-24,5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6)	m from a seller in Northwest Africa.	History : Purchased in 2020 by Matth
Petrography: (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of few bi- chondrules set in a fine-grained recrystallized matrix containing secondary recrystalli- plagioclase ($55\pm5 \mu$ m). Accessory phases include Fe-Ni metal, troilite, chromite (son ich), and iron oxides. Geochemistry : Olivine (Fa _{27.5±0.4} , range Fa _{26.5-28.2} , n=30), Low-Ca pyroxene Fs _{23.0±0.6} Wo _{1.6±0.4} , range Fs _{22.2-24.6} Wo _{1.1-2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens : 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History : Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics : Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase ($55\pm5 \mu$ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification : Ordinary Chondrite (LL6) Specimens : 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	ark-brown fusion crust.	hysical characteristics: Single ston
The field is the formation of the factor of	matrix containing secondary recrystallize ude Fe-Ni metal, troilite, chromite (some	chondrules set in a fine-grained recry blagioclase (55 \pm 5 µm). Accessory ph
Section instry. Only the ($ra_{27.5\pm0.4}$, range F $a_{26.5-28.2}$, n=30), Low-Ca pyroxene F $s_{23.0\pm0.6}$ Wo _{1.6\pm0.4} , range F $s_{22.2-24.6}$ Wo _{1.1-2.5} , n=11). Classification: Ordinary Chondrite (LL6) Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55 ± 5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine ($Fa_{30.3\pm0.3}$, range $Fa_{29.9-31.0}$, n=19), Low-Ca pyroxene $Fs_{24.4\pm0.2}$ Wo _{1.8\pm0.2} , range $Fs_{24.2-24.5}$ Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6)	n=20) Low Conversion	ich), and iron oxides.
Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525) (Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase ($55\pm 5 \mu m$). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6)	(-28.2, II-50), Low-Ca pyroxene	Feochemistry . Onvine $(Fa_{27.5\pm0.4}, Ian Feochemistry)$
Specimens: 20.3 g at <i>UCLA</i> ; main mass with Matthew Stream. Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase ($55\pm5 \mu$ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	11).	$r_{23.0\pm0.6}$ w $O_{1.6\pm0.4}$, range $r_{22.2-24.6}$ w $O_{1.6\pm0.4}$
Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History : Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics : Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase ($55\pm5 \mu m$). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification : Ordinary Chondrite (LL6) Specimens : 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	Matthew Stream	Specimens: 20.3 α at <i>UCLA</i> : main m
Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30,3±0.3} , range Fa _{29,9-31.0} , n=19), Low-Ca pyroxene Fs _{24,4±0.2} Wo _{1.8±0.2} , range Fs _{24,2-24.5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	Watthew Stream.	
Northwest Africa 13525 (NWA 13525) (Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History: Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics: Single stone with dark-brown fusion crust. Petrography: (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase ($55\pm5 \mu m$). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry: Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		
(Northwest Africa) Purchased: 2019 Classification: Ordinary chondrite (LL6) History : Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics : Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification : Ordinary Chondrite (LL6) Specimens : 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		Northwest Africa 13525 (NWA 135
Classification: Ordinary chondrite (LL6) History : Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics : Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing secondare crystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification : Ordinary Chondrite (LL6) Specimens : 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		(Northwest Africa)
History : Purchased in 2019 by Abdeltif Mechaguen from a seller in Morocco. Physical characteristics : Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55±5 µm). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene $Fs_{24.4±0.2}Wo_{1.8±0.2}$, range $Fs_{24.2-24.5}Wo_{1.6-1.9}$, n=3). Classification : Ordinary Chondrite (LL6) Specimens : 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.		Purchased: 2019
Physical characteristics : Single stone with dark-brown fusion crust. Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda recrystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification : Ordinary Chondrite (LL6) Specimens : 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	aguan from a galler in Managaa	Classification: Ordinary chondrite
Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecciated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at UCLA; main mass with Abdeltif Mechaguen.	aguen from a seller in Morocco.	History: Purchased in 2019 by Abde.
Petrography : (D. Sheikh, <i>FSU</i>) Sample is a brecclated ordinary chondrite composed ingular clasts (1-7 mm) set in a fine-grained recrystallized matrix containing seconda ecrystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification : Ordinary Chondrite (LL6) Specimens : 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	ark-brown iusion crust.	Physical characteristics : Single ston
recrystallized plagioclase (55±5 μ m). Accessory phases include Fe-Ni metal, troilite, some Ti-rich), and iron oxides. Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene Fs _{24.4±0.2} Wo _{1.8±0.2} , range Fs _{24.2-24.5} Wo _{1.6-1.9} , n=3). Classification : Ordinary Chondrite (LL6) Specimens : 20.8 g at UCLA; main mass with Abdeltif Mechaguen.	recclated ordinary chondrifte composed of	retrography: (D. Sheikh, FSU) Sam
Geochemistry : Olivine (Fa _{30.3±0.3} , range Fa _{29.9-31.0} , n=19), Low-Ca pyroxene $Fs_{24.4±0.2}Wo_{1.8±0.2}$, range $Fs_{24.2-24.5}Wo_{1.6-1.9}$, n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at UCLA; main mass with Abdeltif Mechaguen.	ry phases include Fe-Ni metal, troilite, cl	ecrystallized plagioclase (55±5 μ m).
$Fs_{24.4\pm0.2}Wo_{1.8\pm0.2}$, range $Fs_{24.2-24.5}Wo_{1.6-1.9}$, n=3). Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at <i>UCLA</i> ; main mass with Abdeltif Mechaguen.	n = 10 I out Cantovana	Some ri-nen, and non oxides.
Classification: Ordinary Chondrite (LL6) Specimens: 20.8 g at UCLA; main mass with Abdeltif Mechaguen.	(-3). (-17) , LOW-Ca pyroxene	Example 1 and W_{0} and range Essential Wo
Specimens: 20.8 g at UCLA; main mass with Abdeltif Mechaguen.	<i>JJ</i> .	$15_{24,4\pm0,2}$ w $0_{1.8\pm0,2}$, $1a_{11gc} = 5_{24,2-24,5}$ W 0_{18}
promining. 20.0 g at COLA, mani maggi with Audonni Moonaguon.	Abdeltif Mechaguen	Snecimens: 20.8 σ at <i>UCL</i> 4: main m
		permens. 20.0 g at OCLA, main m

Running Head

2			
3	Morocco		
4	Find: 2016		
5	Classifications Desumential andrita (D5)		
6	Classification: Rumurut chondrite (RS)		
7	History : Purchased in 2020 by Matthew Stream from a seller in Morocco.		
8	Physical characteristics : Single stone with dark-brown fusion crust.		
9	Petrography : (D. Sheikh, <i>FSU</i>) Chondrite with chondrules (up to 1.5mm) set in a fine-		
10	grained brown matrix containing secondary recrystallized sodic plagioclase (25+5 µm)		
11	Δ access we related in a local secondary recrystallized source program (25±5 µm).		
12	Accessory phases include pentiandile, chromite, and iron oxides.		
13	Geochemistry: Olivine (Fa _{40.4\pm0.9} , range Fa _{37.8-42.3} , n=58), High-Ca Pyroxene		
14	$(Fs_{10.0\pm0.8}Wo_{46.0\pm0.8}, range Fs_{9.2-11.9}Wo_{45.2-47.8}, n=13).$		
15	Classification: Rumuruti Chondrite (R5)		
16	Specimens : 5.1.g at UCLA: main mass with Matthew Stream		
17	specificitis. 5.1 g ut e ella, muni muss with muthew biteum.		
17			
10			
19	Northwest Africa 13527 (NWA 13527)		
20	Algeria		
21	Find: 2019		
22	Classification: Ordinary chondrite (LL3)		
23	Uistanne Deurhand in 2020 her Sharen Kashan fram Mastafa Huini		
24	History: Purchased in 2020 by Snawn Kasnay from Mostara Hnini.		
25	Physical characteristics: Single stone with dark-brown fusion crust.		
26	Petrography : (D. Sheikh, <i>FSU</i>) Sample is an ordinary chondrite composed of abundant		
27	chondrules (Av. 1 mm, up to 3 mm) set in a fine-grained matrix. Accessory phases include		
28	Fe-Ni metal troilite carbonates and Fe-oxides		
29	Coochemistry: Oliving (Eq. $range Eq. n=40$) low Converge		
30	Geochemistry. Onvine ($Fa_{18.1\pm10.5}$, range $Fa_{0.8-42.4}$, $n=49$), low-Ca pyloxene		
31	$(Fs_{13.5\pm9.3}Wo_{1.2\pm0.4}, range Fs_{1.9-24.7}Wo_{0.6-2.0}, n=26).$		
32	Classification: Ordinary Chondrite (LL3)		
33	Specimens : 7.3 g at UCLA; main mass with Shawn Kashay.		
34			
35			
36	Northmant Africa 12529 (NUVA 12520)		
37	Northwest Airica 15528 (NWA 15528)		
38	(Northwest Africa)		
39	Purchased: 2014		
40	Classification: Carbonaceous chondrite (CK5)		
41	History : Purchased in 2014 by Jasper Spencer from a seller in Morocco		
42	Physical characteristics: Single stone with dark brown fusion crust		
43	D eter succession (D, Ω) with $\Gamma(\Omega, \Omega)$ and $\Gamma(\Omega, \Omega)$ and $\Gamma(\Omega, \Omega)$ and $\Gamma(\Omega, \Omega)$		
44	Petrography : (D. Sneikn, FSU) Sample is a carbonaceous chondrite composed of blurred		
45	chondrules (Av. ~1 mm, n=4) set in a fine-grained matrix containing secondary recrystallize		
46	intermediate plagioclase (15±5 µm). Accessory phases include pentlandite and Cr-rich		
47	magnetite.		
48	Geochemistry : Olivine (Facture 4 range Facture $n=28$) Low-Ca Pyroxene		
49	(Eq. We represe Eq. We $n=2$)		
50	$(Fs_{26.9\pm0.3}Wo_{1.3\pm0.2}, range Fs_{26.6-27.1}Wo_{1.0-1.4}, n=3).$		
51	Classification: Carbonaceous Chondrite (CK5)		
52	Specimens: 2.1 grams at UCLA; main mass with Jasper Spencer.		
53			
54			
55	Northwest Africa 13579 (NWA 13570)		
56			
57			
58	Purchased: 2018 Apr		
50	Classification: Ordinary chondrite (H4)		
59 60	History: Purchased in Morocco by Sergey Vasiliev and Marc Jost in April 2018.		
00			

Physical characteristics: Total mass 1690 g. The crust is gray and reddish-brown in weathered surface. The interior of the meteorite is dark gray with visible, abundant chondrules and metal particles.

Petrography: (P. Yu. Plechov, *FMMR*). Petrographic observation of a polished section shows that the meteorite consists of chondrules with sizes from 150 to 700 μ m in an oxidized matrix. Chondrules have sharp boundaries. PO-IIA-type prevails among chondrules (also present POP-chondrules and in fewer non porphyric chondrules). Feldspar is submicrometer size in chondrule matrix. Matrix contains a lot partially oxydized of troilite and metal blebs. These features indicate that meteorite corresponds to petrologic type 4. Olivine has no undulatory extinction, there are no shock veins or melt pockets.

Geochemistry: Mineral composition and Geochemistry: EDS analyses (P. Yu.

Plechov, *FMMR*). Olivine Fa_{17.6±0.3} (N=6), Low-Ca pyroxene Fs_{13.5±2.2}Wo_{0.47±0.12} (N=5).

Kamacite Fe 93.26 wt%, Ni 6.65 wt%, Co 0.96 wt%. Taenite (N=2) Ni 51.32 wt%, Co 0.36

wt.%. H₂O 2.8±0.7 wt%, C 0.17 wt.% (CNH elemental analyzer).

Classification: (P. Yu. Plechov, FMMR). Ordinary chondrite. H4, S1, W2.

Specimens: 31 g and thin section, *FMMR*.

Northwest Africa 13530 (NWA 13530)

Morocco

Purchased: 2018 Jul

Classification: Carbonaceous chondrite (CV3)

Petrography: The chondrite is characterized by large chondrules (mm-sized) and CAIs (to 1.5 cm).

Geochemistry: Olivine Fa_{4.92±7.11} (range: Fa_{0.56-20.2}; N=19). Low-Ca pyroxene

 $Fs_{1.66\pm0.38}Wo_{4.32\pm3.66}$ (range $Fs_{1.19-2.43}Wo_{0.66-9.44}$, n=11).

Classification: Carbonaceous chondrite (CV3)

Northwest Africa 13531 (NWA 13531)

(Northwest Africa)

Purchased: 2017 Mar

Classification: Lunar meteorite (feldspathic breccia)

History: Writeup history: History: Roger Kilchenmann obtained this meteorite in March 2017 from Noreddine Azelmat of Morocco as part of an online trade for a lot of NWA meteorites. **Physical characteristics**: Exterior covered with weathering rind and remnant fusion crust. Cut face reveals predominantly light toned interior with darker veins and pockets, with small (<=1 mm) white clasts.

Petrography: (M. Hutson, A. Ruzicka, *Cascadia*): Two lithologies are visible in thin section; both are breccias consisting of feldspathic clasts set in a finer-grained matrix dominated by pigeonite and plagioclase. The two lithologies differ in size of feldspathic clasts (up to 2 mm across in lithology 1, up to 0.7 mm across in lithology 2) and matrix texture (blocky plagioclase grains up to 0.1-0.2 mm across in lithology 1, lath-like plagioclase grains <0.1 mm long in lithology 2). An ovoid shaped patch of clast-laden brownish glass about 1 mm in length and thin glassy melt veins occur along the boundary between the two lithologies. Mineral phases present include plagioclase feldspar, pigeonite, augite, olivine, Cl-containing phosphate, ilmenite, Ti-rich spinel, chromite, troilite, and rare tiny (<= 10 μm across) FeNi metal.

Geochemistry: Mineral compositions and geochemistry: (M. Hutson, A. Ruzicka, *Cascadia*; K. Ziegler, *UNM*): Oxygen isotopes on acid treated samples in per mil, relative to V-SMOW

linearized values): δ^{17} O' = 3.083±0.031, δ^{18} O' = 5.933±.052, Δ^{17} O' = -0.050±.005 (N=3). Plagioclase compositions of clasts are variable, but the range of compositions in the two lithologies overlap. Lithology 1 clasts: An₈₇₋₉₆Or_{0.7-1.5} (N=18, 2 clasts); Lithology 2 clasts: An₈₉₋₉₅Or_{0.7-1.1} (N=21, 3 clasts). Matrix plagioclase for the two lithologies is also similar. Lithology 1 matrix: An_{91.3±2.3}Or_{0.9±0.6} (N=23); Lithology 2 matrix: An_{92.7±2.2}Or_{0.9±0.9} (N=27). Matrix pigeonite (Wo₅₋₂₀) and olivine grains are more magnesian in lithology 1 than in lithology 2. Lithology 1 matrix pigeonite: Fs_{29.9±3.1}, Mg# = 67.9±3.2 (N=17); Lithology 2 matrix pigeonite: Fs_{31.7±1.9}, Mg# = 64.2±1.1 (N=13); Lithology 1 matrix olivine: Fa_{39.8±2.2}, Mg# = 60.2±2.1 (N=11); Lithology 2 matrix olivine: Fa_{43.4±0.9}, Mg# = 56.5±0.9 (N=15). **Classification**: Lunar feldspathic breccia based on texture and mineralogy. **Specimens**: *Cascadia* holds 7.9 g in pieces, as well as a polished thin section and butt.

Northwest Africa 13532 (NWA 13532)

(Northwest Africa)

Purchased: 2017

Classification: Mesosiderite-B2/3

History: John Shea and Christopher Colvin purchased the meteorite in 2017 from Mike Miller. John Shea sent material to *Cascadia* for classification and transferred his remaining material to Christopher Colvin.

Physical characteristics: Exterior of the sample is irregular, with higher areas that are smoother and darker than the lower areas, which are rougher, pitted, and dark brown. Projecting areas show metal. Cut face shows a subequal mix of metal and silicates. **Petrography**: (M. Hutson, A. Ruzicka, *Cascadia*): In thin section, the sample consists of metal (with minor troilite along with about 10-20% weathering products) and mm- to cm-sized silicate clasts, primarily low-Ca pyroxene set in a predominantly granular matrix composed chiefly of low-Ca pyroxene, plagioclase feldspar and a silica polymorph. Matrix grades into clasts. Some orthopyroxene clasts are zoned, with more magnesian cores. At least one olivine clast is present with a moderately developed corona structure. Silica polymorph grains are equant to tabular and typically less than 100 microns across, although some laths are up to 1 mm long. Calcic pyroxene occurs as elongate patches within low-Ca pyroxene is more abundant than plagioclase feldspar.

Geochemistry: Mineral compositions and geochemistry: Low-Ca pyroxene:

 $Fs_{30.9\pm6.2}Wo_{2.2\pm0.8}, N=35; High-Ca pyroxene Fs_{15.7\pm0.9}Wo_{42.9\pm0.7}, N=12; olivine Fa_{37.2\pm0.1}, N=4; plagioclase An_{90.7\pm2.2}Or_{0.7\pm0.1}Ab_{8.6\pm2.1}, N=14.$

Classification: Type B based on observation that pyroxene is more abundant than plagioclase. Type2/3 B mesosiderite based on texture and mineralogy.

Specimens: Cascadia holds 22.5 g in two pieces, as well as a polished thin section and butt.

Northwest Africa 13533 (NWA 13533)

(Northwest Africa)

Purchased: 2018 Mar 06

Classification: Ordinary chondrite (L6)

History: Purchased in Portland, Oregon from Patrick *Thompson* as an unclassified meteorite from northwest Africa that was obtained in Tucson, Arizona.

Physical characteristics: Single flattened individual that is covered in fusion crust except for broken face that has a weathering patina. A cut face reveals metal grains and chondritic

texture with spatially variable weathering stains (more developed towards one face). Two shock veins are subparallel to the two main flat faces of the individual.

Petrography: (K. Maccini, A. Ruzicka, *Cascadia*): In thin section, chondritic texture with indistinct chondrules are visible. Chief phases include olivine and low-Ca pyroxene, opaques (chiefly metal with lesser troilite) comprising up to ~7 area%, and maskelynite. One end of the section is notably stained; the rest of the sample has limited patches of weather staining centered on metal. In the prevailing low-stained portion of the sample, weathering products compose <5 area%. Shock stages based on olivine correspond to a conventional shock stage of S4 and a weighted shock stage (Jamsja and Ruzicka, 2010) of 3.7 ± 0.6 (N=40).

Geochemistry: Mineral compositions and geochemistry: Olivine and low-Ca pyroxene grains are highly equilibrated: $Fa_{24,3\pm1.0}$ N=70; $Fs_{21,2\pm0.9}$ Wo_{1.3\pm0.4}, N=29.

Classification: Ordinary chondrite (L6) based on olivine fayalite and pyroxene ferrosilite content and overall texture.

Specimens: *Cascadia* holds 457.2 g in three pieces, including the main mass, a slice, an end cut, as well as a polished thin section and butt.

Northwest Africa 13534 (NWA 13534)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (L4)

Petrography: (K. Metzler, *IfP*) Ordinary chondrite, consisting of chondrules (up to 2.4 mm), chondrule fragments, Fe-Ni metal grains and troilite, embedded in a fine-grained matrix. The mean apparent chondrule size is 503 μ m (n=41).

Geochemistry: Mineral compositions and geochemistry: The mean olivine composition is $Fa_{23.6\pm1.1}$ ($Fa_{21.6-24.9}$; n=12); the mean low-Ca pyroxene composition is $Fs_{16.7\pm3.7}Wo_{0.5\pm0.2}$ ($Fs_{8.1-20.7}Wo_{0.2-0.9}$; n=15).

Classification: L chondrite based on metal content and apparent chondrule size. Petrologic type based on the equilibrated state of olivine and unequilibrated state of low-Ca pyroxene.

Northwest Africa 13535 (NWA 13535)

(Northwest Africa)

Purchased: 2009 Jun

Classification: Ordinary chondrite (L4)

History: Purchased from a Moroccan mineral dealer at the meteorite show in Ensisheim, France

Physical characteristics: Angular fragment with black appearence without fusion crust. **Petrography**: (K. Metzler, *IfP*) Unbrecciated shock-darkened ordinary chondrite with clearly visible chondrules of various textural types.

Geochemistry: Mineral compositions and geochemistry: The mean olivine composition is $Fa_{23,3\pm0.5}$ ($Fa_{22,5-24,1}$; n=13). The mean low-Ca pyroxene composition is

 $Fs_{19.5\pm2.9}Wo_{1.0\pm1.0}$ (Fs_{16.1-27.3}Wo_{0.1-3.7}; n=12).

Classification: L chondrite based on olivine and pyroxene chemistry. Petrologic type 4 based on the equilibrated state of olivine and unequilibrated state of low-Ca pyroxene.

Northwest Africa 13536 (NWA 13536)

(Northwest Africa) Purchased: 2019

Classification: Ordinary chondrite (H4)

History: The meteorite was purchased from a local dealer in Morocco.

Physical characteristics: Dark brownish fragment without fusion crust.

Petrography: The meteorite displays a chondritic texture with small, mostly rounded, separated chondrules (mean diameter about 0.3 mm) in a more fine-grained dark matrix that contains sulfides and abundant FeNi metal. Olivine is equilibrated; low-Ca-pyroxene is unequilibrated.

Northwest Africa 13537 (NWA 13537)

(Northwest Africa)

Purchased: 2019

Classification: Ordinary chondrite (L4)

History: The meteorite was purchased from a local dealer in Morocco.

Physical characteristics: Dark brownish fragment without fusion crust.

Petrography: The meteorite displays a chondritic texture with well defined, mostly flattened and packed chondrules (mean diameter about 0.6 mm) and dark fine-grained matrix containing sulfides and FeNi metal. Olivine is compositionally equilibrated; low-Ca pyroxene is unequilibrated.

Northwest Africa 13542 (NWA 13542)

(Northwest Africa)

Purchased: 2020

Classification: Carbonaceous chondrite (CV3)

History: The meteorite was purchased from a dealer in Algeria.

Physical characteristics: Many dark-grayish fragments without fusion crust.

Petrography: The meteorite displays a fresh almost black interior and is composed of chondrules (mean diameter about 0.9 mm; up to 1.9 mm sized), CAIs (up to 4 mm sized), and olivine amoeboids all set into a fine-grained matrix. Contains both, type I and type II chondrules. No chondrules showing reddish staining have been observed. Opaque phases are metal often occurring as blebs in chondrules, and sulfides. Both phases are sometimes altered to iron oxides.

Northwest Africa 13543 (NWA 13543)

(Northwest Africa) Purchased: 2020

Classification: Carbonaceous chondrite (CV3)

History: The meteorite was purchased from a dealer in Algeria.

Physical characteristics: Many light-grayish to greenish fragments, some of them with patches of fusion crust.

Petrography: The meteorite displays a grayish to dark-greenish interior and is composed of chondrules (mean diameter about 1 mm; up to 2.5 mm sized), large up to 1 cm sized CAIs, and olivine amoeboids embedded into a fine-grained, brownish-black matrix. Contains both, type I and type II chondrules. Several chondrules show reddish staining due to terrestrial alteration. Opaque phases are metal often occurring as blebs in chondrules, and sulfides. Both phases are sometimes altered to iron oxides.

Northwest Africa 13544 (NWA 13544)

(Northwest Africa) Purchased: 2020

Classification: Carbonaceous chondrite (CK5)

History: The meteorite was purchased from a dealer in Algeria.

Physical characteristics: Dark-grayish individual with some fusion crust.

Petrography: The meteorite displays a grayish to greenish interior and is predominantly composed of recrystallized olivine-dominated matrix with some separated and still well defined chondrules (mean diameter 0.8 mm). Cr-rich magnetite is abundant. More minor phases include intermediate plagioclase, low-Ca pyroxene, and FeS; metal was not detected. **Geochemistry**: olivine: $Fa_{30.2\pm0.2}$ (FeO/MnO=99±12, n=12); low-Ca pyroxene:

Fs_{25.7±0.2}Wo_{0.6±0.1}, n=9

Northwest Africa 13545 (NWA 13545)

(Northwest Africa) Purchased: 2020

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a dealer in Algeria.

Physical characteristics: Light brownish fragment with some fusion crust.

Petrography: The meteorite is an unbrecciated medium-grained basalt predominantly composed of exsolved pyroxene (average grain sizes of about 400 μ m) and larger, often lath-shaped calcic plagioclase (average grain sizes of about 800 μ m). Minor phases include silica, chromite, troilite ; no metallic iron has been detected.

Geochemistry: low-Ca pyroxene: $Fs_{58,4\pm0.5}Wo_{6.1\pm0.6}$ ($Fs_{57.7-59.3}Wo_{5.3-7.0}$, n=16, FeO/MnO=27-30); Ca-pyroxene: $Fs_{29.7\pm0.1}Wo_{41.2\pm0.2}$ ($Fs_{29.5-30.0}Wo_{40.9-41.5}$, n=12, FeO/MnO=29-32); calcic plagioclase: An_{89.5\pm0.4} (An_{88.9-90.5}, n=13)

Northwest Africa 13546 (NWA 13546)

(Northwest Africa)

Purchased: 2020

Classification: Lunar meteorite (feldspathic breccia)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Many small greyish fragments some of which covered with fusion crust.

Petrography: The meteorite displays a grayish interior and is a feldspathic breccia composed of mineral fragments, basaltic, gabbroic, and impact melt clasts cemented by a fine-grained partly shock-melted groundmass. Most abundant minerals are calcic plagioclase, olivine of highly variable composition, and exsolved pyroxene; less abundant are and complex zoned pyroxenes. Accessories include ilmenite, and FeNi-metal. The meteorite contains shock melt veins and pockets.

Geochemistry: olivine: Fa_{21.3±11.1} (Fa_{9.9-44.3}, FeO/MnO=79±8, n=26); fayalite: Fa_{95.5±0.2}, FeO/MnO=85±3, n=6; low-Ca host to augite exsolution lamellae: Fs_{49.2±0.6}Wo_{4.3±0.7} (Fs_{47.8-50.3}Wo_{3.5-5.7}, FeO/MnO=56±3, n=11); augite exsolution lamellae: Fs_{23.3±0.8}Wo_{41.0±0.6} (Fs_{22.4-25.1}Wo_{39.3-41.5}, FeO/MnO=53±6, n=10); complex zoned pyroxene: Fs_{38.1±10.0}Wo_{21.5±13.8} (Fs_{25.8-49.6}Wo_{5.6-39.0}, FeO/MnO=50±3, n=11); calcic plagioclase: An_{97.6±0.3} (An_{97.1-97.9}, n=14) **Classification**: Lunar meteorite (feldspathic breccia); likely paired with <u>NWA 11273</u>
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
25	
∠_) 21	
∠4 25	
25	
26	
27	
28	
29	
30	
31	
32	
32	
27	
24 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
4J 44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

Northwest Africa 13547 (NWA 13547)

(Northwest Africa)

Purchased: 2020

Classification: Carbonaceous chondrite (CM2)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Black individual with some fusion crust.

Petrography: The meteorite is a chondritic breccia composed of small (about 0.1-0.4 mm in diameter) chondrules, chondrule pseudomorphs, mineral fragments and rare CAIs most of which are surrounded by fine-grained dust rims set into an abundant fine-grained matrix. Matrix constituents include phyllosilicates with fibrous appearance, carbonates, and rare sulfides. Only few FeNi spheres were found enclosed within forsteritic olivine. No pyroxene has been detected.

Geochemistry: mean values of defocused matrix analyses (beam diameter 5 μm; all wt%; N=12): SiO₂: 28.3, TiO₂: 0.03, Na₂O: 0.18, Cr₂O₃: 0.43, MgO: 16.2, MnO: 0.10, FeO: 21.6, Al₂O₃: 2.46, NiO: 1.94, P₂O₅: 0.14, S: 2.21, Total: 73.59

Northwest Africa 13548 (NWA 13548)

(Northwest Africa)

Purchased: 2020

Classification: HED achondrite (Eucrite, melt breccia)

History: The meteorite was purchased from a dealer in Algeria.

Physical characteristics: Dark greyish fragment with some fusion crust.

Petrography: The meteorite displays a dark-grayish interior and is a melt breccia composed of up to 1.0 cm sized basaltic clasts and up to 0.5 mm sized mineral clasts set into black melt rock matrix. Predominant minerals are exsolved pyroxenes and often lath shaped calcic plagioclase. The fine-grained and mostly recrystallized shock melt shows flow structures. Mineral grains in contact with the melt are partly resorbed. Minor phases include silica, chromite, ilmenite, FeS, Zircon and metallic iron.

Geochemistry: low-Ca pyroxene: $Fs_{60.8\pm0.8}Wo_{2.6\pm0.3}$ (Fs_{58.4-62.0}Wo_{2.2-3.4}, n=15, FeO/MnO=27-30); Ca-pyroxene: $Fs_{25.5\pm0.4}Wo_{44.5\pm0.4}$ (Fs_{25.0-26.8}Wo_{43.6-45.2}, n=14, FeO/MnO=26-33); calcic plagioclase: An_{89.4\pm1.4} (An_{87.9-92.2}, n=12)

Northwest Africa 13549 (NWA 13549)

(Northwest Africa)

Purchased: 2020

Classification: HED achondrite (Eucrite)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Dark-grayish fragment with some fusion crust.

Petrography: The meteorite is an unbrecciated basalt composed of fine- and coarse-grained regions dominated by exsolved pyroxenes and often lath-shaped calcic plagioclase. Grain sizes vary from about 80 to 500 μ m for pyroxene and about 50 to 700 μ m for plagioclase. Minor phases include silica, chromite, ilmenite, and FeS; no metallic iron has been detected. **Geochemistry**: low-Ca pyroxene: Fs_{55.2±0.4}Wo_{7.9±0.5} (Fs_{54.6-56.0}Wo_{7.1-8.8}, n=11, FeO/MnO=28-30); Ca-pyroxene: Fs_{29.7±1.0}Wo_{40.1±1.4} (Fs_{27.8-31.3}Wo_{38.3-43.1}, n=11, FeO/MnO=26-29); calcic plagioclase: An_{84.5±1.4} (An_{81.5-85.7}, n=12)

Northwest Africa 13550 (NWA 13550)

Northwest Africa Purchased: 02/2018 Classification: Pallasite

History: Purchased by Giorgio Tomelleri at the Erfoud market in February 2018. Main mass purchased from Giorgio Tomelleri and held by *MSN-FI*.

Physical characteristics: A single piece of metallic appearance remarkably oxidized totaling 264 g, without fusion crust

Petrography: (V. Moggi Cecchi, G. Pratesi, S. Caporali, *UniFi*): The meteorite is composed of up to 1 cm sized subrounded and partly fragmented olivine grains surrounded by a matrix of brownish iron oxides also present along the olivine grain boundaries and cracks. Ironnickel alloys are completely weathered to Fe-hydroxides. On a polished thin section partially altered troilite spots are visible.

Geochemistry: EMP (V.Moggi Cecchi, G.Pratesi, S.Caporali, *UniFi*): Olivine Fa_{6.3±0.2} (n=9). Oxidized metal (El.Wt.%): ~57 % Fe, ~3 % Ni. Troilite (El.Wt.%): S: 43.8; Fe:50.4; O: 3.0, Cr: 2.2;

Classification: Pallasite (PMG)

Specimens: The main mass, 1 thick section and 1 thn section are on deposit at MSN-Fi

Northwest Africa 13551 (NWA 13551)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (H6)

History: The meteorite was found near Tindouf, Algeria, and purchased from the main mass holder from a Morrocan dealer.

Physical characteristics: Dark brownish fragment without fusion crust.

Petrography: The plagioclase grain size is about 60 µm.

Northwest Africa 13552 (NWA 13552)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (H5)

History: The meteorite was found near Smara, Western Sahara, and purchased from the main mass holder from a Morrocan dealer.

Physical characteristics: Dark brownish fragment with minor fusion crust. **Petrography**: The plagioclase grain size is about 30 µm.

Northwest Africa 13553 (NWA 13553)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (L5)

History: The meteorite was found near Lahmada, Western Sahara, and purchased from the main mass holder from a Morrocan dealer.

Physical characteristics: Dark brownish fragment without fusion crust.

Petrography: The plagioclase grain size is about 40 μm.

Northwest Africa 13555 (NWA 13555)

4

5

6

7

8

9 10

11 12 13

14

15

16

17 18

19

20

21

26

27

28

29

30

31 32

33

34

35

36

37

38

43

44

45

46

47 48

49

50 51 52

53

54 55

56

57

58

59 60

(Northwest Africa) Purchased: 2020 Classification: Ordinary chondrite (LL6) History: The meteorite was found near Dakhla, Western Sahara, and purchased by the main mass holder from Mr. Fattouh Alithe. Physical characteristics: Dark brownish fragment without fusion crust. **Petrography**: The plagioclase grain size is about 90 µm. Northwest Africa 13556 (NWA 13556) (Northwest Africa) Purchased: 2020 Classification: Ordinary chondrite (LL6) History: The meteorite was found near Dakhla, Western Sahara, and purchased from the main mass holder from a Morrocan dealer. Physical characteristics: Dark brownish fragment without fusion crust. **Petrography**: The plagioclase grain size is about 70 µm. Northwest Africa 13557 (NWA 13557) (Northwest Africa) Purchased: 2020 Classification: Carbonaceous chondrite (CK6) **History**: The meteorite was purchased from a dealer in Morocco. Physical characteristics: Dark-gravish fragment partly covered by fusion crust. **Petrography**: The meteorite displays a dark-grayish interior and is predominantly composed of fine-grained recrystallized matrix dominated by ferrous olivine. Chondrules are only rarely encountered. One CAI is present in the section studies. Minor phases include intermediate plagioclase, low-Ca pyroxene, Ca-pyroxene, and FeNi-sulfides. Cr-rich magnetite is abundant; no metal has been found. **Geochemistry**: olivine: $Fa_{30.0\pm0.2}$ (FeO/MnO=96±10, n=12); low-Ca pyroxene: $Fs_{25,9\pm1,0}Wo_{0,9\pm0,1}$, n=10; Ca-pyroxene: $Fs_{16,0\pm1,4}Wo_{48,7\pm0,4}$, n=10 Northwest Africa 13558 (NWA 13558) (Northwest Africa) Purchased: 2020 Classification: Ordinary chondrite (H6) **History**: The meteorite was purchased from a dealer in Morocco. Physical characteristics: Dark brownish fragment without fusion crust. **Petrography**: The plagioclase grain size is about 60 µm. Northwest Africa 13559 (NWA 13559) (Northwest Africa) Purchased: 2020 Classification: Carbonaceous chondrite (CO3) History: The meteorite was purchased from a dealer in Morocco. Physical characteristics: Dark-brownish fragment without fusion crust.

Petrography: The meteorite shows a dark brownish to almost black interior and is predominantly composed of abundant chondrules (mean diameter about 200 μ m), CAIs, and mineral fragments set into a fine-grained matrix. Olivine and low-Ca pyroxene in chondrules are highly unequilibrated; some chondrules and CAIs are surrounded by fine-grained dust rims. Some sulfides and FeNi metal are present in matrix and chondrules.

Northwest Africa 13560 (NWA 13560)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (H5)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Dark brownish fragment with some fusion crust.

Petrography: The plagioclase grain size is about 30 μm.

Northwest Africa 13561 (NWA 13561)

(Northwest Africa)

Purchased: 2020

Classification: Martian meteorite (polymict breccia)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Small black individual partly covered with fusion crust. **Petrography**: The meteorite displays a black interior and is a polymict breccia composed of basaltic, impact melt, and mineral clasts set into a very fine-grained clastic matrix. Most abundant mineral phases in clasts and matrix are pyroxene and feldspar, both of highly variable composition. In basaltic clasts, plagioclase is often lath-shaped. Minor phases include silica, ilmenite, magnetite, and Ti,Cr-magnetite.

Geochemistry: low-Ca pyroxene: Fs_{25,8±0.7}Wo_{3,8±0.4} (Fs_{24,6-26,6}Wo_{3,2-4.9}, n=11,

 $\begin{array}{l} FeO/MnO=32\pm2); \ low-Ca \ host \ to \ augite \ exsolution \ lamellae: \ Fs_{45.1\pm0.7}Wo_{5.9\pm0.6} \ (Fs_{44.3.46.3}Wo_{5.4-7.0}, n=9, \ FeO/MnO=32-35); \ augite \ exsolution \ lamellae: \ Fs_{18.0\pm0.2}Wo_{42.2\pm0.4} \ (Fs_{17.6-18.4}Wo_{41.6-42.9}, n=15, \ FeO/MnO=26-32); \ complex \ zoned \ pyroxenes: \ Fs_{32.4\pm4.2}Wo_{6.9\pm2.9} \ (Fs_{27.8-39.1}Wo_{4.8-12.5}, n=10, \ FeO/MnO=32-36); \ feldspar: \ An_{43.9\pm4.6}Ab_{54.5\pm4.4}Or_{1.6\pm0.2} \ (An_{36.7-49.4}Ab_{49.3-61.4}Or_{1.3-2.0}, n=11). \end{array}$

Classification: Martian meteorite (basaltic breccia). Likely paired with <u>NWA 7034</u> and respective clan members.

Northwest Africa 13562 (NWA 13562)

(Northwest Africa)

Purchased: 2020

Classification: Primitive achondrite (Lodranite)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Light-brownish fragment with minor fusion crust.

Petrography: The meteorite shows a coarse-grained granular texture predominantly composed of up to 4 mm sized magnesian olivine and low-Ca pyroxene grains. Some regions are brecciated. More minor phases include Ca-pyroxene, chromite, kamacite, and FeS. Ca-pyroxene is mostly presents as fine exsolution lamellae in low-Ca pyroxene. No feldspar was found in the section studied.

2	
3	
1	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
20	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
45	
46	
47	
48	
40	
49	
50	
51	
52	
52 E 7	
53	
54	
55	
56	
50	
5/	
58	
59	

60

Geochemistry: olivine: $Fa_{10.7\pm0.2}$ (FeO/MnO=32±3, n=10); low-Ca pyroxene: $Fs_{10.7\pm0.4}Wo_{2.4\pm0.3}$, (FeO/MnO=21±2, n=10); Ca-pyroxene: $Fs_{3.7\pm0.1}Wo_{45.6\pm0.4}$, (FeO/MnO=12±1, n=14)

Northwest Africa 13563 (NWA 13563)

(Northwest Africa)

Purchased: 2020

Classification: Ordinary chondrite (L6)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Dark brownish fragment almost completely covered with fusion crust.

Petrography: The plagioclase grain size is about 60 μm.

Northwest Africa 13564 (NWA 13564)

(Northwest Africa) Purchased: 2020

Classification: Pallasite

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Rusty, brownish fragment without fusion crust.

Petrography: The meteorite is composed of up to 1.5 sized subrounded olivine grains surrounded by a matrix composed of partly altered FeNi-metal and Fe-oxides.

Geochemistry: olivine: Fa_{11.4±0.1} (Fa_{11.3-11.5}, FeO/MnO=37±3, n=5)

Northwest Africa 13565 (NWA 13565)

Mauritania

Purchased: 2020

Classification: Mesosiderite

History: Carlos Muñecas (Expometeoritos) purchased the sample from a dealer in Mauritania in 2020.

Physical characteristics: The sample is dark in color, has a rounded-irregular shape, and has a metallic exterior. The cut face shows a metal-rich breccia containing dispersed silicate clasts within a host of interconnected metal grains.

Petrography: Description and Classification (A. Love, *App*): Sample is a breccia composed of (vol%): cm-sized, angular-irregular-shaped lithic and mineral clasts (~35) set within a network of irregularly shaped, mm-sized metal grains (~65). Lithic clasts have fine-grained (avg. grain size 0.5 mm), brecciated textures. Modal percentages (vol%) of silicates: orthopyroxene (69), plagioclase (25), olivine (2) and an irregular-lath-shaped silica polymorph (4). Some matrix pyroxenes are inverted and show blebby and lamellar exsolution. Olivine show thin reaction coronas. Plagioclase occurs as rounded grains and Si-polymorph occurs as angular grains. Brecciated texture is still visible and many fine-grained areas have an average grainsize <50 μ m. Grain boundaries between silicates show some sutured textures. Additional minerals are: kamacite, taenite, lath-shaped Si polymorph, apatite, troilite, chromite, trace ilmenite.

Geochemistry: (A. Love, *App*) Olivine (Fa_{24.6-31.0}, Fe/Mn=39.5-35.4, n=2), zoned low-Ca pyroxene (Fs_{31.8±7.2}Wo_{3.9±2.8}, Fe/Mn=25.5±2.6, n=7); pigeonite (Fs_{48.5}Wo_{10.5}, n=1); high-Ca pyroxene (Fs_{17.0}Wo_{41.3}, n=1). plagioclase (An_{94.3±2.5}Or_{0.6±0.1}, n=5).

Classification: Mesosiderite (estimated class A2). Mesosiderite Class A based on texture, metal abundance, magnetic susceptibility and modal silicate abundance of plagioclase and Opx. Metamorphic class 2 based on thin reaction coronas, fine-grained comminuted regions between clasts, lack of significant recrystallization textures of silicates and presence of pigeonite.

Specimens: Carlos Muñecas (Expometeoritos) holds the main mass. A slice weighing 24.5 g and a polished mount are on deposit at *App*.

Northwest Africa 13566 (NWA 13566)

Morocco Purchased: 2020

Classification: Ordinary chondrite (LL4)

History: The sample was purchased by Carlos Muñecas (Expometeoritos) in 12 July 2020 from a dealer in Ouarzazate, Morocco.

Physical characteristics: Sample has a triangular prism shape and has a dark brown, windablated exterior. The cut face of the interior is dark gray and shows dispersed metal grains in a chondritic textured host.

Petrography: Description and classification (A. Love, *App*) Chondrules (with an average apparent diameter of 640 μ m, n=59) set within a nearly opaque, recrystallized matrix containing abundant FeS veinlets. Plagioclase occurs as isolated intergrowths. Additional minerals: apatite, chromite, troilite, pentlandite, rare (<1%) FeNi metal.

Geochemistry: (A. Love, *App*) Olivine (Fa_{35.3±0.7}, Fe/Mn=66.5±0.9, n=10); low-Ca Pyroxene (Fs_{28.0±3.6}Wo_{1.2±0.5} (Fs_{17.2-30.2}Wo_{0.5-2.4}), Fe/Mn=44.6±3.8, n=11); pigeonite(Fs_{23.9}Wo_{13.5}, Fe/Mn=28.7, n=1); high-Ca pyroxene (Fs_{13.5}Wo_{31.5}, Fe/Mn=37.7, n=1).

Classification: Ordinary chondrite (Shock darkened LL4, C-S3, W1). Fa and Fs are outside the normal range for LL chondrites. Fe/Mn of olivine and pyroxene and average chondrule diameter fall just outside the range of LL ordinary chondrites. Magnetic susceptibility falls within the range for LL chondrites.

Specimens: Carlos Muñecas (Expometeoritos) holds the main mass. A slice weighing 20. 1g and a polished thin section are on deposit at *App*.

Northwest Africa 13567 (NWA 13567)

Morocco

Purchased: 2020

Classification: Ordinary chondrite (LL3.1)

History: Carlos Muñecas (Expometeoritos) purchased the sample from a dealer in Ouarzazate, Morocco on 12 July 2020.

Physical characteristics: Sample has an irregular triangular shape and is ~50% covered in a dark brown weathered fusion crust. The cut face shows the interior is composed of numerous rounded chondrules and clasts set in a fine-grained metal-bearing matrix.

Petrography: Description and Classification (A. Love, *App*) Dominant unequilibrated chondritic host containing sparse matrix lumps and rare equilibrated and xenolithic clasts. Host contains well-defined, rimmed chondrules (average apparent diameter of $863\mu m$, n=87) and fragments set within an opaque matrix with metal and sulfide. Additional minerals are: troilite, rare phosphates and anorthitic plagioclase. Common yellow mesostasis and low CL indicates sample is ?3.1.

Geochemistry: (A. Love, *App*) Olivine (Fa_{15.7±11.0} (Fa_{0.3-38.6}), Fe/Mn=38.5±18.6, CaO (type I chondrules) 0.2 ± 0.2 wt%, mean concentration of Cr₂O₃ (ferroan olivine with Fa>2) is

2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
_10 ⊿1	
יד ⊿2	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	

58

59

60

 0.3 ± 0.24 wt% (n=23); low-Ca Pyroxene (Fs_{14.6±6.3}Wo_{1.3±0.9} (Fs_{5.7-25.1}Wo_{0.4-3.4}), Fs₂(M₂₂=25.0+12.2, m=10)

Fe/Mn=25.0±12.2, n=10).

Classification: Ordinary chondrite (LL3.1 C-S2 W3). LL based on magnetic susceptibility and chondrule diameter. Based on range of Fa and mean and ? values of Cr_2O_3 contents within ferroan olivine, the sample is LL3.1 (Grossman and Brearley, 2005).

Specimens: Carlos Muñecas (Expometeoritos) holds the main mass. A slice weighing 26.18g and polished thin section are on deposit at *App*.

Northwest Africa 13568 (NWA 13568)

Tindouf, Algeria

Purchased: 2020

Classification: Lunar meteorite

History: Many samples, associated with the main mass of 625 g, (total 825 g) were found in the vicinity of Tindouf, Algeria. All material was purchased by Adrián Contreras from a meteorite dealer in the area.

Physical characteristics: Samples are dark in color with light orange patches caliche and have blocky irregular shapes. The cut face shows the interior is a breccia of lithic and mineral clasts set dark gray matrix with regions of small vesicles.

Petrography: Description and classification (A. Love, *App*) Polymict breccia dominated by angular, irregularly shaped, 1 mm to 3 cm sized mineral, lithic and vitrified clasts set within a melt matrix composed of isotropic to partially devitrified translucent glass and angular mineral fragments. Gabbroic lithic clasts are dominant, fragmental clasts set in opaque glass. Additional minerals are: troilite, FeNi metal.

Geochemistry: (A. Love, *App*) Olivine, Fa_{26.0±7.1} (Fa_{18.0-37.0}, Fe/Mn=81.5±7.1, n=11); low-Ca pyroxene, Fs_{29.4±11.8}Wo_{3.3±0.8} (Fs_{17.1-48.8}Wo_{2.4-4.8}, Fe/Mn=52.9±4.9, n=21); pigeonite,

Fs_{38.7±6.2}Wo_{13.8±3.3} (Fs_{29.1-45.3}Wo_{9.7-19.1}, Fe/Mn=55.0±3.3, n=9); high-Ca pyroxene,

 $Fs_{32.5\pm7.9}Wo_{30.1\pm4.2}(Fs_{22.3-41.0}Wo_{21.8-34.2}, Fe/Mn=54.7\pm5.1, n=6); plagioclase,$

 $An_{97.0\pm0.6}Or_{0.0\pm0.10}$ (n=9).

Classification: Lunar (feldspathic breccia M-S3, low weathering). Based on textures, melt matrix component and mineral compositions, this sample is a feldspathic breccia.

Specimens: Adrián Contreras holds the 58 2 g main mass. A polished thin section and 2 slices and several fragments weighing 31.26 g are on deposit at *App*.

Northwest Africa 13569 (NWA 13569)

Morocco

Purchased: 2020

Classification: Carbonaceous chondrite (CV3)

History: Carlos Muñecas (Expometeoritos) purchased the sample from a dealer in Guelmin, Morocco, on 20 July, 2020.

Physical characteristics: Sample is irregularly shaped and dark brown, with yellowishorange chondrules. The cut face shows the interior is composed of dispersed metal-bearing chondrules and CAIs in an opaque matrix.

Petrography: Description and classification (A. Love, *App*) Sample shows chondritic texture composed of well-formed chondrules with an average apparent diameter of 547 μ m (n=47) and CAIs set in a reddish brown matrix (~50 vol%) dominated by phyllosilicates (with low analytical totals). Metal and sulfide occurs mostly within chondrules. Glassy mesostasis is observed, but rare. Additional minerals are: calcite, troilite, chromite, phosphate. Mass magnetic susceptibility was measured using a ZH Instruments SM-30 pocket MS meter.

Quadruplicate measurements of seven samples produced log χ (× 10⁻⁹ m³/kg) = 3.94. Magnetic susceptibility falls within the range measured for CV chondrites.

Geochemistry: (A. Love, *App*) Olivine (Fa_{14.6±13.8}, range Fa_{2.1-44.5}, Fe/Mn=62.9±35.1, n=16); low-Ca Pyroxene (Fs_{17.3±0.3}Wo_{1.6±0.1}, Fe/Mn=22.3±0.5, n=10); plagioclase (An_{12.0±0.3}Or_{4.8±0.7}, n=5).

Classification: Carbonaceous chondrite (CV3, C-S2). Sample is a carbonaceous chondrite based on the abundance of matrix and CAIs. Magnetic susceptibility and presence of metal suggests the sample is CV3 reduced.

Specimens: Carlos Muñecas (Expometeoritos) holds the main mass. 3 slices weighing 4.9 g and a polished thin section are on deposit at *App*.

Northwest Africa 13570 (NWA 13570)

Morocco

Purchased: 2014

Classification: HED achondrite (Eucrite, brecciated)

History: Sergey Vasiliev and Marc Jost purchase the 23.7g specimen from a meteorite dealer while at the 2014 Ensisheim meteorite show.

Physical characteristics: Sample is an ovoid-shaped fragment with a glossy, black, flowlined fusion crust coating $\sim 60\%$ of the specimen. Areas not coated with fusion crust are light orange in color. The cut face of the sample shows a light-colored granular breccia.

Petrography: Description and classification (A. Love, *App*) Sample is a cataclastic breccia composed of (vol%): 400-1700µm mineral and lithic fragments of exsolved pyroxene (50), plagioclase (49) and opaques. Lithic fragments have cumulate textures. Sample also contains pyroxene-rimmed silica objects. Additional minerals are silica polymorph, chromite, ilmenite and apatite.

Geochemistry: (A. Love, *App*) low-Ca pyroxene ($Fs_{39.7\pm1.0}Wo_{4.9\pm1.4}$, Mg#58.3±0.6, Fe/Mn=29.0±0.8, n=8); high-Ca pyroxene ($Fs_{13.1\pm0.8}Wo_{33.5\pm2.4}$, Fe/Mn=22.1±0.6, n=5) and plagioclase ($An_{95.0\pm0.5}Or_{0.1\pm0.0}$, n=8).

Classification: (HED achondrite) monomict eucrite breccia M-S2, low weathering. Based on textures and mineral compositions, sample is a brecciated cumulate eucrite.

Specimens: Sergey Vasiliev and Marc Jost (*SJS*) hold the main mass. A 4.8g slice and polished thin section are on deposit at *App*.

Northwest Africa 13571 (NWA 13571)

Morocco

Purchased: 2013

Classification: HED achondrite (Eucrite, melt breccia)

History: Sergey Vasiliev and Marc Jost (*SJS*) purchased the 61.1 g specimen from a Mohammed Sbai in Ouzarzazate, Morocco, in April 2013.

Physical characteristics: Sample is an ovoid-shaped fragment. The exterior is partially coated with a greenish-orange rind that may be where the impact melt vein is exposed on the surface. The cut face of the sample shows a dark interior with an impact melt brecciated structure.

Petrography: Sample shows breccia in breccia structure composed of angular to rounded clasts set within an opaque melt matrix. Clasts have brecciated textures composed of basaltic textured clasts set within a comminuted matrix crosscut by 2 mm thick opaque impact melt veins. Lithic fragments have subophitic textures with exsolved pyroxenes. Additional minerals are Si polymorph, chromite, ilmenite and apatite.

Geochemistry: (A. Love, *App*) low-Ca pyroxene, $Fs_{61.5\pm0.6}Wo_{2.7\pm0.8}$ (Mg#36.7±0.4, Fe/Mn=30.0±1.1, n=25); pigeonite, $Fs_{55.9\pm4.1}Wo_{11.0\pm3.4}$ (Fe/Mn=30.2±0.3, n=2); high-Ca pyroxene, $Fs_{27.7\pm3.5}Wo_{42.3\pm4.1}$ (Fe/Mn=30.2±0.8, n=17); plagioclase, $An_{88.8\pm2.2}Or_{0.4\pm0.2}$ (n=24). **Classification**: HED achondrite (eucrite impact melt breccia). Based on textures and mineral compositions, sample is a basaltic eucrite impact melt breccia.

Specimens: Sergey Vasiliev and Marc Jost (*SJS*) hold the main mass. A type sample of composed of a slice and end cut weighing 12.23 g and a polished thin section are on deposit at *App*.

Northwest Africa 13572 (NWA 13572)

Western Sahara

Purchased: 2020

Classification: HED achondrite (Howardite)

History: A nomad found the 1650 g sample in three pieces Western Sahara. Samples were purchased by Carlos Muñecas (Expometeoritos) in Errachidia, with the help of Hmad Ait Hssain in 2020.

Physical characteristics: Samples occur as fragments from a larger, irregularly shaped mass. Exterior is coated in a layer or dark orange caliche. Dark wind ablated fusion crust coats approximately 30% of sample.

Petrography: Description and classification (A. Love, *App*) Polymict breccia composed of mm-sized, angular lithic and mineral clasts of eucrite and diogenite. Clast lithologies are: fine-grained basalts with zoned phenocrysts, recrystallized cumulate clasts, brecciated clasts, impact melt lithologies, pyroxene-rimmed Si clasts and diogenite mineral fragments and breccias. Additional minerals are: olivine, chromite, troilite, ilmenite and phosphates.

Geochemistry: (A. Love, *App*) Diogenite: Olivine, $Fa_{55,2\pm6.7}$ (Fe/Mn=50.3±1.8, Mg#=44.8±6.7, n=9); low-Ca pyroxene, $Fs_{27.8\pm3.2}Wo_{3.4\pm1.0}$ (Fe/Mn=30.3±4.5, Mg#=71.2±3.4 n=14); eucrite: low-Ca pyroxene, $Fs_{44,5\pm8.2}Wo_{3.7\pm1.1}$ (Fe/Mn=30.5±1.7, n=14); pigeonite, $Fs_{42,3\pm9.5}Wo_{12.9\pm10.1}$ (Fe/Mn=29.8±1.7, n=13); high-Ca pyroxene,

 $Fs_{26,6\pm12,0}Wo_{38,6\pm7,7}$ (Fe/Mn=27.3±3.3, n=13); plagioclase, $An_{94,1\pm1,2}Or_{0,1\pm0,1}$ (n=7).

Classification: HED achondrite (howardite M-S2, low weathering). Sample is an HED achondrite based on textures of clasts and Fe/Mn ratios in pyroxenes. Sample is a howardite based on subequal abundance of eucrite and diogenite.

Specimens: Carlos Muñecas (Expometeoritos) holds the 265 g main mass. A fragment weighing 22.24 g a mount and a polished thin section are on deposit at *App*.

Northwest Africa 13573 (NWA 13573)

Morocco Purchased: 2020 Classification: CVox3

History: Many samples weighing a total of 2880 g were found by a nomad in northwest Africa. These meteorites were purchased by Carlos Muñecas and Adrián Contreras in Errachidia, from Hmad Ait Hssain.

Physical characteristics: Samples are dark in color, irregularly shaped, and have a partial coating of wind-ablated fusion crust. Chondrules and CAIs are visible on the cut face. **Petrography**: Description and classification (A. Love, *App*): Chondrite composed of well-defined, dispersed chondrules (average apparent diameter of 696 μm, n=40) and CAIs set w/in an opaque fine-grained matrix. Chondrules contain sulfide and oxide droplets and platy ferroan olivine. Additional minerals are: Ni-sulfide, spinel, plagioclase and apatite.

Geochemistry: (A. Love, *App*) Olivine: Type I, Fa_{5.0±2.9} (Fa_{1.2-9.8}, Fe/Mn=58.4±21.1, n=11); Type II, Fa_{23.0±14.7} (Fa_{10.1-36.8}, Fe/Mn=121.6±36.0, n=4); low-Ca pyroxene,

 $Fs_{1.8\pm1.6}Wo_{1.3\pm1.2}$ (Fe/Mn=11.2±8.0, n=16); Ni content in sulfide is 12.9±11.1 wt% (n=14). **Classification**: Carbonaceous chondrite (CV3). Based on textures, and mineral compositions sample is a CV3. Based on magnetic susceptibility and Ni compositions of FeS grains sample belongs to the Ox-Allende subgroup <u>Gattacceca et al., 2020</u>.

Specimens: Adrián Contreras and Carlos Muñecas (Expometeoritos) hold the 614 g main mass. A fragment weighing 20.3 g and polished thin section are on deposit at *App*.

Northwest Africa 13574 (NWA 13574)

Morocco

Purchased: 2020

Classification: HED achondrite (Howardite)

History: A single stone weighing 1525 g was found by a nomad in Western Sahara. This meteorite was purchased in 2020 by Carlos Muñecas (Expometeoritos) in Errachidia, with the help of Hmad Ait Hssain.

Physical characteristics: Sample is irregularly shaped and shows broad regmaglypts. A black, contraction-cracked fusion crust covers approximately 70% of the sample. The interior is light gray and shows a fine-grained, brecciated texture.

Petrography: Description and classification (A. Love, *App*) Sample is a polymict breccia composed of a subequal, comminuted mixture of diogenite and eucrite mineral fragments with sparse angular lithic clasts up to 5mm. Lithic fragments are: basaltic and cumulate-textured eucrite, rare diogenite, shock-darkened and impact melt clasts. Pyroxenes are exsolved. Additional minerals are: ferroan olivine, an Si polymorph, apatite, chromite, ilmenite and troilite.

Geochemistry: (A. Love, *App*) Diogenite: Olivine (Fa_{33.5}, Fe/Mn=46.0, Mg#=66.5, n=1); low-Ca Pyroxene (Fs_{22.2±3.3}Wo_{2.6±0.7}, Fe/Mn=28.9±2.5, Mg#=77.1±3.6 n=5); eucrite: olivine (Fa_{82.2-96.6}, Fe/Mn=43.4±2.6, Mg# 3.4-17.7); low-Ca Pyroxene (Fs_{43.4±9.0}Wo_{4.8±2.0}, Fe/Mn=29.2±2.1, n=9); pigeonite (Fs_{55.2±7.0}Wo_{8.3±1.7}, Fe/Mn=29.9±1.9, n=11); high-Ca pyroxene (Fs_{38.5±13.3}Wo_{35.3±6.3}, Fe/Mn=33.7±3.9, n=12); plagioclase (An_{92.8±3.5}Or_{0.1±0.1}, n=9). **Classification**: Achondrite (howardite). Mineral compositions and textures indicate this sample is an HED achondrite. Subequal abundance of eucrite and diogenite mineral fragments indicate sample is a howardite.

Specimens: Carlos Muñecas (Expometeoritos) holds the main mass. Two fragments totaling 22.85 g and a polished thin section are on deposit at *App*.

Northwest Africa 13575 (NWA 13575)

Morocco

Purchased: 2020

Classification: Carbonaceous chondrite (CVox3)

History: Many samples of various sizes were found by a nomad in northwest Africa. These meteorites were by Adrián Contreras purchased the samples in Errachidia, Morocco, from Hmad Ait Hssain. Meteorites ranging in mass from a few grams to the main mass of 257 g. **Physical characteristics**: Samples are dark in color, irregular-shaped and devoid of fusion crust. Chondrules and CAIs are visible on the exterior.

Petrography: Description and Classification (A. Love, *App*) Sample shows chondritic texture composed of dispersed chondrules (w/ and average apparent diameter of 875 μ m, n=19) and CAI's in an opaque matrix. Additional minerals are: magnetite, Ni-rich sulfide, apatite.

low-Ca Pv	stry : (A. Love, <i>App</i>) Olivine (Fa _{8.6±10.5} , range Fa _{0.7-38.0} , Fe/Mn=61.7±46.8, n=19) roxene (Fs _{5.4+4.5} Wo _{1.8+1.0} , Fe/Mn=15.6±10.8, n=4); Ni content of sulfides=15.7±6
n=9. Classificat compositio sample bel Specimens thin section	 cion: Carbonaceous chondrite (CVox3). Based on textures, and mineral on sample is a CV3. Based on magnetic susceptibility and Ni content of sulfides ongs to the Ox-Bali subgroup (Gattacceca et al., 2020). c): Adrián Contreras holds the 257 g main mass. A 30.75 g fragment and a polishon are on deposit at <i>App</i>.
Northwest Niger Find: 20	t Africa 13579 (NWA 13579)
Classific	cation: Pallasite
History: P Niger	urchased in 2020 by Topher Spinnato and Oz Backman from a meteorite dealer :
Physical cl crust are pr Petrograp weathered	haracteristics : The stones are brown in color and angular. Small patches of fusioresent. Amber, golden, and green olivine crystals are cleanly exposed at the surfactive (D. Sheikh, <i>FSU</i>) 3-5mm fractured olivine grains set in a moderately matrix of Fe-Ni metal and Fe-oxides.
Geochemi	stry: Olivine (Fa _{10.9±0.2} , range Fa _{10.6-11.2} , n=12).
Classificat	tion: Pallasite
Specimens	3: 20.15 g at UCLA; main mass co-owned by Topher Spinnato and Oz Backman.
Northwest Algeria Purchas Classific History: A	Africa 13580 (NWA 13580) ed: 2020 cation: HED achondrite (Diogenite) single 700 g sample was found near Tindouf, Algeria, in 2019. Didi Baidari the sample from a metaorite dealer in Tindouf
Physical cl orangish-cr shows a cr	haracteristics : The exterior of the ellipsoidal sample is wind-ablated and is an ream-colored and has brownish grains protruding through the surface. The interi ystalline brecciated texture composed of cream colored and dark green crystals.
Petrograp cumulate-tr plagioclase plagioclase Mineral ph	hy: Description and Classification (A. Love, <i>App</i>) Sample is a breccia composed extured clasts composed of (vol%): 2-5 mm grains of low-Ca pyroxene (66) and e (34) set within a recrystallized host of finer-grained (avg. grain-size 55µm) e and low-Ca pyroxene. Some pyroxenes show lamellar and blebby exsolution. has within the recrystallized portion share 120° grain boundaries between adjact
minerals. A Geochemin n=16); high plagioclase	Additional minerals are high-Ca pyroxene, chromite and troilite. stry : Low-Ca Pyroxene (Fs _{31.5±0.7} Wo _{3.7±0.4} , Fe/Mn=27.4±0.9, Mg#=67.2±0.7, h-Ca pyroxene (Fs _{16.0±0.1} Wo _{39.5±0.6} , Fe/Mn=21.6±1.3, Mg#73.5±0.2, n=3); $e (An_{96.8\pm0.2}Or_{0.0}, n=10)$; chromite (Cr#=75.7±3.7, TiO ₂ =1.5±0.1wt%, 1.24, n=9)
Wg = 1 + 1	

Specimens: Didi Baidari holds the main mass. 10 fragments weighing 23.89 g and a polished thin section and mount are on deposit at *App*.

Northwest Africa 13581 (NWA 13581)

Algeria

 Purchased: Dec. 2018

Classification: Martian meteorite (shergottite)

History: Purchased by Bo Zhang in Dec. 2018 from an anonymous dealer.

Physical characteristics: A single cone-shaped stone with fresh fusion crust and flowlines. **Petrography**: The specimen is medium- to coarse-grained, exhibiting both poikilitic and non-poikilitic textures. In poikilitic regions, euhedral olivine is enclosed in coarse pyroxene (up to 3 mm). Non-poikilitic regions are composed of cumulate olivine (up to 1 mm), pyroxene and interstitial maskelynite. Other minerals include chromite, ilmenite, phosphate, troilite. Impact melt pockets are present.

Geochemistry: Olivine (Fa_{46,3-51,2}, FeO/MnO=48.8-53.7, n=24); low-Ca pyroxene (Fs_{28,8-38,6}Wo_{6,0-12,0}, FeO/MnO=31.1-38.8, n=16), Ca-rich pyroxene (Fs_{22,6-30,5}Wo_{21,2-34,9}, FeO/MnO=30.2-31.9, n=3); maskelynite (An_{42,1-48,5}Or_{1,6-2,8}, n=11).

Classification: Composition of olivine and pyroxene are more ferrous than typical lherzolitic shergottites, but the texture (including pervasive maskelynization) and chemical signatures (e.g., FeO and MnO of olivine and pyroxene, An and K₂O of maskelynite) are compatible with lherzolitic shergottites.

Northwest Africa 13582 (NWA 13582)

(Northwest Africa)

Purchased: Jun. 2019

Classification: Lunar meteorite (feldspathic breccia)

History: Purchased by Bo Zhang in Jun. 2019 from an anonymous dealer.

Physical characteristics: Small vesicles are visible in the hand specimen.

Petrography: Lithic clasts and mineral fragments (0.01 to 2 mm) set in an anorthositic matrix. Lithic clasts include anorthositic, gabbroic, noritic and impact melted clasts. Mineral fragments are dominated by pyroxene and minor olivine. Plagiocalse is highly Ca-rich ($K_2O < 0.025 \text{ wt\%}$) while a few clasts contain relatively K-rich plagiocalse ($K_2O = 0.23-0.45 \text{ wt\%}$). Some pyroxene grains exhibit exsolved lamella. Vesicles are common. Other accessory minerals include ilmenite, troilite and FeNi metal.

Geochemistry: Plagioclase (An_{95.5-99.3}Or_{0-0.2}, n=14; An_{85.0-90.7}Or_{1.6-3.5}, n=3), olivine (Fa_{19.6-34.9}, FeO/MnO=83.3-98.2, n=7), low-Ca pyroxene (Fs_{16.5-47.8}Wo_{2.4-13.2}, FeO/MnO=48.2-62.7, n=11), Ca-rich pyroxene (Fs_{8.8-52.8}Wo_{27.2-44.3}, FeO/MnO=43.6-73.4, n=11).

Classification: The texture and mineral composition are consistent with lunar feldspathic breccias.

Northwest Africa 13583 (NWA 13583)

Tunisia

Purchased: Jul. 2019

Classification: HED achondrite (Eucrite)

History: Purchased by Bo Zhang in Jul. 2019 from an anonymous dealer.

Physical characteristics: A single large stone with a gray fusion crust and a few holes.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
1/	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
رد ۱۸	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
72	
54 55	
22	
56	
57	
58	
50	

60

Petrography: The monomict brecciated specimen is composed dominantly of subhedral pyroxene and subhedral or lath-shaped plagioclase up to 0.5 mm. Pyroxene is extensively exsolved with μ m-sized (<1 to 10 μ m) lamellae. Accessory minerals include ilmenite, troilite and silica. Impact melt veins are present.

Geochemistry: Plagioclase (An_{85.6-97.6}Or_{0.1-1.3}, n=10), low-Ca pyroxene (Fs_{61.4-65.6}Wo_{1.4-5.8}, FeO/MnO=31.6-37.0, n=8), Ca-rich pyroxene (Fs_{28.3-41.8}Wo_{31.7-42.5}, FeO/MnO=29.4-33.0, n=8).

Classification: The brecciated texture, calcic plagioclase, relatively homogeneous composition of pyroxene are consistent with monomict eucrites.

Northwest Africa 13618 (NWA 13618)

Morocco

Purchased: 2019

Classification: Ordinary chondrite (L~4)

History: (Ziyao Wang) Purchased by Fangmei Wang from a Moroccan dealer at the China Mineral & Gem Show in *Beijing* City in Nov. 2019

Physical characteristics: (Ziyao Wang) Dark gray-yellow stone of 48 kg without fusion crust **Petrography**: (R. Bartoschewitz) gray matrix with well-developed, darker gray to gray-black chondrules (0.3-2 mm, mean 0.7 mm), chondrule fragments and irregular metal and sulfide specks below 1 mm

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 4.56 Classification: Ordinary chondrite (L~4, W1)

Specimens: 24.3 g on deposit at *Kiel*, Fangmei Wang holds the main mass, and 77 g with *Bart*.

Northwest Africa 13619 (NWA 13619)

Morocco

Purchased: 2019

Classification: Ordinary chondrite (L~5)

History: (Ziyao Wang) Purchased by Chengguang Liang from a Moroccan dealer at the China Mineral & Gem Show in *Beijing* City in Nov. 2019

Physical characteristics: (Ziyao Wang) light-gray stone of 844 g without fusion crust **Petrography**: (R. Bartoschewitz) gray recrystallized matrix with distinct chondrules (0.4-2 mm, mean 0.8 mm) and irregular metal and sulfide specks and patches up to 3 mm with rusty halos

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 4.82 **Classification**: Ordinary chondrite (L~5, W1)

Specimens: 23.0 g on deposit at *Kiel*, Chengguang Liang holds the main mass, and 83 g with *Bart*.

Northwest Africa 13620 (NWA 13620)

Morocco Purchased: 2019

Classification: Ordinary chondrite (L~5)

History: (Ziyao Wang) Purchased by Weijiang from a Moroccan dealer at the China Mineral & Gem Show in *Beijing* City in Nov. 2019

Physical characteristics: (Ziyao Wang) Dark-yellow stone of 6 kg without fusion crust; weathering is significant

Petrography: (R. Bartoschewitz) gray matrix with distinct chondrules (0.4-2.5 mm, mean 0.8 mm), melt pockets and veins, and tiny metal and sulfide specks up to 1 mm

Geochemistry: Magnetic susceptibility (R. Bartoschewitz, *Bart*) $\log \chi$ (× 10⁻⁹ m³/kg) = 5.17 **Classification**: Ordinary chondrite (L~5, W2)

Specimens: 25.4 g on deposit at *Kiel*, Weijiang Wang holds the main mass, and 122 g with *Bart*.

Northwest Africa 13621 (NWA 13621)

Mali

Purchased: 2020 Jan-Sep

Classification: Lunar meteorite (feldspathic breccia)

History: Additional stones (total 49 pieces) very similar to the unusual and distinctive specimens classified as <u>Tisserlitine 001</u>, and which were recovered at the same location in Mali, were acquired from several dealers by John Higgins (500 g), Fabien *Kuntz* (311 g), Dirk Ross (407 g), and an Algerian team represented by David Lehman (390 g). Comparative assessment and analyses of samples from each of these batches of stones were conducted to confirm their pairing with the previous material.

Physical characteristics: Most of the specimens have a flattened slab-like form and all have distinctive medium-brown, "knobby" exterior surfaces coated by desert patina. Interiors of stones are multi-colored (pink, tan, gray) with some darker gray and white clasts and small grains of metal.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Breccia composed of mineral clasts of anorthite, olivine, augite and pigeonite, plus sparse lithic clasts of microcrystalline anorthosite with fine grained mafic phases, are set in a fine grained microvesicular matrix containing accessory altered kamacite, troilite and rare pentlandite together with secondary calcite and barite. Olivine grains have been partially replaced by inhomogeneous phyllosilicate-rich assemblages characterized by systematically low oxide analytical sums (89-94 wt.%) and deficiency in manganese (yielding elevated FeO/MnO ratios of 119-122). **Geochemistry**: Olivine (Fa_{24.5-40.6}, FeO/MnO = 77-98, N = 7), pigeonite (Fs_{20.6-24.0}Wo_{5.8-6.8}, FeO/MnO = 46-50, N = 3), augite (Fs_{14.1-14.4}Wo_{37.3-41.4}, FeO/MnO = 50-54, N = 3), anorthite

 $(An_{94.6-97.5}Or_{0.0-0.1}, N = 3).$

Classification: Lunar (feldspathic regolithic breccia, partially hydrothermally-altered). The colors, textures, mineral compositions and distinctive secondary alteration in these specimens establish beyond doubt that they are paired stones to Tisserlitine 001.

Specimens: 22.2 g including a polished endcut and one polished mount at *UWB*; 25 g plus one polished thin section at *PSF*; remaining material with Mr. J. Higgins, *Kuntz*, Mr. D. Ross and Mr. D. Lehman.

Northwest Africa 13623 (NWA 13623)

(Northwest Africa)

Purchased: 2020 Sept

Classification: Mesosiderite

History: The meteorite was found near El Hank close to the border of Mali and Algeria and purchased by the main mass holders from a dealer in Morocco.

Physical characteristics: Three brownish fragments partly covered with fusion crust.

Running Head

Petrography: Mesosiderite composed of silicate (about 60 vol%) and metallic (about 40 vol%) portions. In the metallic lithology kamacite dominates over taenite some of which altered to iron-oxides. The silica fraction is predominantly composed of up to 1 mm sized often compositionally zoned low-Ca pyroxene, less abundant Ca-pyroxene (mostly as blebs in orthopyroxene), calcic plagioclase, and minor silica and merrillite.

Geochemistry: zoned low-Ca pyroxene: $Fs_{32.9\pm4.5}Wo_{3.8\pm0.5}$ ($Fs_{26.7-39.4}Wo_{2.9-4.4}$, n=10,

FeO/MnO=22 \pm 3); Ca-pyroxene: Fs_{19.8 \pm 0.5}Wo_{39.9 \pm 0.1} (Fs_{19.0-20.4}Wo_{38.2-41.2}, n=5, FoO/MnO=17+1); solate relationed and the second second

FeO/MnO=17±1); calcic plagioclase: An_{94.1±0.5} (An_{93.7-94.8}, n=5)

Northwest Africa 13624 (NWA 13624)

(Northwest Africa)

Purchased: 2020 Oct

Classification: Primitive achondrite (Winonaite)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Three dark-brownish fragments partly covered with fusion crust. Large exposed metal areas are visible.

Petrography: The meteorite displays a recrystallized texture predominantly composed of typically 100 to 300 µm sized low-Ca pyroxene, forsteritic olivine, augite, and some sodic feldspar grains with enstatite being the most abundant mineral phase. 120 degree triple junctions are frequent; no chondrules were observed. Kamacite, taenite, and troilite are mostly finely dispersed throughout the meteorite and veins are only rarely found. Contains minor apatite.

Geochemistry: olivine: Fa_{3.2±0.1} (Fa_{3.2-3.4} FeO/MnO=16±1, n=6); low-Ca pyroxene: Fs_{3.9±0.1}Wo_{1.9±0.1} (Fs_{3.8-4.0}Wo_{1.7-1.9}, FeO/MnO=14±2, n=5); Ca-pyroxene: Fs_{1.1±0.1}Wo_{44.5±0.9} (Fs_{1.0-1.4}Wo_{43.2-45.9}, FeO/MnO=9±3, n=6); feldspar: An_{22.6±0.2}Ab_{74.9±0.3}Or_{2.5±0.1}, n=3

Northwest Africa 13625 (NWA 13625)

(Northwest Africa)

Purchased: 2020 Oct

Classification: Lunar meteorite (feldspathic breccia)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Dark-grayish fragment without fusion crust.

Petrography: Feldspathic breccia composed of mineral fragments, basaltic, and impact melt clasts cemented by a mostly shock-melted groundmass. Predominant minerals are calcic plagioclase, olivine, exsolved pyroxene, and pyroxenes showing complex patchy zoning. Minor phases are chromite, ilmenite, and FeS. No metallic was detected. Shock melt frequently shows schlieren and pronounced flow textures.

Geochemistry: olivine: Fa_{23.7±7.3} (Fa_{16.9-44.1}, FeO/MnO=83±8, n=16); fayalite: Fa_{80.8±0.1}, FeO/MnO=95±2, n=2; low-Ca pyroxene: Fs_{19.6±0.2}Wo_{3.2±0.7} (Fs_{19.3-19.8}Wo_{2.2-4.2},

FeO/MnO=45±4, n=5); Ca-pyroxene: $Fs_{8.2\pm0.3}Wo_{44.1\pm0.8}$ (Fs_{7.6-8.6}Wo_{42.8-45.4}, FeO/MnO=28±2, n=6); complex zoned pyroxene: $Fs_{38.3\pm9.6}Wo_{15.4\pm3.2}$ (Fs_{29.2-50.9}Wo_{9.3-18.6}, FeO/MnO=55±8, n=5); calcic plagioclase: An_{96.1±0.8} (An_{95.2-97.0}, n=7)

Classification: Lunar (feldspathic breccia)

Northwest Africa 13627 (NWA 13627)

⁽Northwest Africa)

Purchased: 2020 Oct Classification: Ordinary chondrite (H3)
History: The meteorite was purchased from a dealer in Morocco.
Physical characteristics: Dark-brownish fragment without fusion crust.
Petrography: The meteorite shows a chondritic texture with well separated mostly rounded chondrules (apparent mean diameter about 0.4 mm) in a fine-grained dark matrix that contains sulfides and abundant FeNi metal.

Northwest Africa 13628 (NWA 13628)

(Northwest Africa)

Purchased: 2020 Oct

Classification: HED achondrite (Eucrite)

History: The meteorite was found by Mr. Muhamad Salm and subsequently purchased by the main mass holder from a dealer in Adrar, Algeria.

Physical characteristics: Dark-grayish fragment without fusion crust.

Petrography: Predominantly composed of up 3 mm sized exsolved pyroxene and calcic plagioclase fragments cemented by abundant shock melt. Shock melt is partly recrystallized with lath-shaped plagioclase needles; embedded mineral fragment are partially resorbed. Minor phases are silica, chromite, and FeS; no metallic iron has been detected. The meteorite contains secondary barite and calcite-filled cracks.

Geochemistry: low-Ca pyroxene: $Fs_{33,9\pm0.3}Wo_{2,2\pm0.1}$ ($Fs_{33.5-34.6}Wo_{2.0-2.3}$, n=11, FeO/MnO=25-28); Ca-pyroxene: $Fs_{12.6\pm0.8}Wo_{44.9\pm0.9}$ ($Fs_{10.8-13.8}Wo_{44.0-47.0}$, n=13, FeO/MnO=18-21); calcic plagioclase: $An_{92.9\pm0.9}$ ($An_{91.7-93.9}$, n=5)

Northwest Africa 13629 (NWA 13629)

(Northwest Africa)

Purchased: 2020 Oct

Classification: Ordinary chondrite (H5)

History: The meteorite was found by Mr. Muhamad Salm and subsequently purchased by the main mass holder from a dealer in Tindouf, Algeria.

Physical characteristics: Dark brownish fragment with some fusion crust.

Petrography: The plagioclase grain size is about 20 µm.

Northwest Africa 13630 (NWA 13630)

(Northwest Africa)

Purchased: 2020

Classification: HED achondrite (Diogenite)

History: The meteorite was purchased from a dealer in Morocco.

Physical characteristics: Six fragments some of which almost completely covered with fusion crust.

Petrography: Fragmental breccia predominantly composed of up to 1.5 mm sized orthopyroxene crystals set into fine-grained related matrix. Some of the pyroxenes display magmatic zoning. Minor phases include olivine, calcic plagioclase, chromite, FeS, and FeNimetal.

Geochemistry: zoned low-Ca pyroxene: $Fs_{24.5\pm1.5}Wo_{2.0\pm0.6}$ ($Fs_{22.9-27.7}Wo_{1.1-2.8}$, n=16, FeO/MnO=26±2); olivine: $Fa_{35.3\pm0.1}$ ($Fa_{35.1-35.6}$, n=16, FeO/MnO=44±2) **Classification**: Diogenite (olivine-bearing)

1	
2	
3	
4	
5	Northwest Africa 13631 (NWA 13631)
6	(Northwest A frica)
/	Durahagad: 2016
8	$\begin{array}{c} \text{Fulchased. 2010} \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \ \left(\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array} \right) \\ \text{Cl} \ \left(\begin{array}{c} \text{Cl} \\ \ \\ \text{Cl} \end{array} \right) \\ \text{Cl} \ \ \left(\begin{array}{c} \text{Cl} \end{array} \right) \\ \text{Cl} \ \left(\begin{array}{c} \text{Cl} \end{array} \right) \\ \ \text{Cl} \ \ \left(\begin{array}{c} \text{Cl} \\ \end{array} \right) \\ \ \ \ \ \left(\begin{array}{c} \text{Cl} \end{array} \right) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
9	Classification: Carbonaceous chondrite (CR2)
10	History : The meteorite was purchased from a dealer in Morocco.
11	Physical characteristics : Dark-brownish fragment without fusion crust.
12	Petrography : Carbonaceous chondrite composed of abundant, mostly rounded, sometimes
13	slightly flattened chondrules with an apparent mean diameter of about 700 µm and about 30%
14	almost black matrix Chondrules are predominatly of type I one type II chondrule present
15	Some chondrules are metal-decorated and contain 150-200 um sized metal blebs typical of
10	CR CAIs are sparse: only one has been encountered in the section studied. Low matrix totals
18	CK. CAIs are sparse, only one has been encountered in the section studied. Low matrix totals
19	suggest presence of nyurous mineral phases.
20	Geochemistry : olivine in type I chondrules: $Fa_{2.7\pm0.7}$, Cr_2O_3 : 0.73±0.12 wt%, n=15; low-Ca
21	pyroxene: $Fs_{3.3\pm0.8}Wo_{0.8\pm0.1}$, n=12; olivine in type II chondrules: $Fa_{19.3\pm6.8}$ ($Fa_{13.9-31.0}$, n=7).
22	Matrix analyses yield an average total of 84.8±1.1 wt% (5 µm defocused beam, N=12)
23	suggesting the presence of hydrous minerals.
24	
25	
26	Northwest Africa 13632 (NWA 13632)
27	Morocco
28	Purchased: 2010 Dec
29	Charifination Enstatite chandrite (EUC)
30	Classification: Enstatute chondrite (EH6)
31	History : The meteorite was purchased by Ziyao Wang from Smara Addi in Tarfaia,
32	Laayoune, Morocco, Dec. 2019
33	Physical characteristics : The meteorite is weathered highly with some relict fusion crust.
34	The surface color is gray-brown with rusty spots. The Fe-Ni metal and sulfides are visible in
35	the cut.
30 27	Petrography : The meteorite shows a granular recrystallized texture composed of enstatite
27 20	$(\sim 65 \text{ vol }\% \text{ 0 } 1-0.5 \text{ mm in size})$ nlagioclase (15 vol $\% \text{ 0 } 1-0.3 \text{ mm in size})$ and $\sim 20 \text{ vol }\%$
30	onaque minerals (including ~ 8 vol% Si-bearing kamacite and ~ 5 vol% sulfides and
40	sabraibaraita) no alivina is found. There are a faw relief abandrules found in the section. Its
41	schleiderstich, no onvine is found. There are a few fenet chondrules found in the section. Its
42	weathering is strong with much of the kamacite and suffices altered to brown limonite.
43	Geochemistry: Enstatite: $En_{97.91-98.46}Fs_{0.27-1.16}Wo_{0.93-1.45}$ (n=12); Plagioclase: $An_{13.62}$.
44	$_{14.93}$ Or _{2.72-4.62} (n=12); Si-bearing kamacite: Fe=85.99-92.84 wt%, Ni=5.04-7.63 wt%, Si=2.53-
45	3.36 wt% (n=16); Schreibersite: 67.13-72.48 wt% Fe, 12.48-14.88 wt% Ni, 9.53-14.36 wt%
46	P, 0.16-0.22 wt% Si, 0.17-0.30 wt% Co (n=12); Troilite: 35.34-36.43 wt% S, 58.80-63.33
47	wt% Fe, 0.54-1.31 wt% Cr, 0.06-0.32 wt% Ti (n=10); Cr-bearing sulfides: 52.1-53.1 wt% Fe,
48	38 89-40 00 wt% S 3 88-4 78 wt% Cr (n=10)
49	Classification : Enstatite chondrite (FH6)
50	Speciments: 72.0 g including one polished thin section are deposited in <i>CUT</i>
51	specificitis. 72.9 g meruding one ponsiled tim section are deposited in 0.07
52	
53	
54	Northwest Africa 13633 (NWA 13633)
55	Algeria
56	Purchased: 2020
57	Classification: Ordinary chondrite (LL3)
58	History: Purchased from Mostafa Hnini reportedly found in Algeria in 2019
59	
60	

Physical characteristics: One piece with no fusion crust. A sawn surface reveals many densely packed chondrules of variable size. Petrography: (C. Agee, UNM) Microprobe examination of a polished mount shows numerous unequilibrated chondrules, apparent mean diameter 1000±600 µm (n=13), many with porphyritic, igneous-zoned olivines and pyroxenes, most with glass or mesostasis. Abundant fine-grained matrix throughout. Geochemistry: (C. Agee, UNM) All chondrule olivine Fa_{18.7±9.4}, range Fa_{0.6-33.7}, Fe/Mn=47 \pm 16, Cr₂O₃=0.10 \pm 0.11 wt%, n=20; low-Ca pyroxene Fs_{13.7 \pm 6.6Wo_{1.0 \pm 1.4},} Fe/Mn=31±18, n=10. Classification: Ordinary chondrite (LL3), estimated subtype 3.4 based. Specimens: 30 g on deposit at UNM, Simon de Boer holds the main mass. Northwest Africa 13634 (NWA 13634) Morocco Purchased: 2017 Classification: HED achondrite (Howardite) History: Purchased from AJ meteorites, found June 2017, Morocco. Physical characteristics: Single stone partially covered in weathered fusion crust. A saw cut reveals a breccia with light and dark clasts set in a light-tan matrix. **Petrography**: (C. Agee, UNM) This meteorite is a polymict breccia consisting of approximately 55% diogenite and 45% eucrite clasts. Accessory opaques, favalitic olivine, and silica observed. Geochemistry: (C. Agee, UNM) Diogenite low-Ca pyroxene Fs_{27,1±3,1}Wo_{3,1±0,4}, Fe/Mn=28±2, n=11; eucrite low-Ca pyroxene $Fs_{53,4\pm6,4}Wo_{5,6\pm3,4}$, Fe/Mn=31±2, n=9; plagioclase An_{90,2±2,7}, n=7 Classification: Howardite Specimens: 20.1 g on deposit at UNM, Simon de Boer holds the main mass. Northwest Africa 13635 (NWA 13635) Algeria Purchased: 2020 Classification: Ordinary chondrite (H6) History: Reportedly found near Tablat, Algeria, in May 2020. **Physical characteristics**: Eighteen identically appearing stones found together. All stones have fresh fusion crust. A broken surface reveals a fine-grained gray matrix with many scattered brown patches. **Petrography**: (C. Agee, UNM) Microprobe examination of a polished mount shows a few small scattered chondrules set in recrystallized matrix. Abundant fresh, unweathered metal grains observed. Geochemistry: (C. Agee, UNM) Olivine Fa_{18.5±0.1}, Fe/Mn=38±2, n=10; low-Ca pyroxene $Fs_{16,3\pm0.0}Wo_{1.5\pm0.1}$, Fe/Mn=22±1, n=5. Classification: Ordinary chondrite (H6) Specimens: 25.9 g on deposit at UNM, Matthew Stream holds 17 stones 2318 g, Martin Lollar holds a 595.6 g stone. Northwest Africa 13636 (NWA 13636) Algeria

1	
2	
3	Purchased: 2018
4	Classification: HED achondrite (Eucrite, unbrecciated)
5	History Reportedly found near Bechar Algeria in 2018
6	Physical characteristics : Five identically appearing stones found together. All stones have
/	smooth sand blasted exterior surfaces. Saw out surfaces reveal a gray fine grained baseltic
8	sinootii sanu olasteu exterior surfaces. Saw-eut surfaces revear a gray, nine-granieu oasatue
9 10	Determined by (C. Assa, UNDA) Missessen har examination of a maliabal manual above a
10	Petrography: (C. Agee, UNM) Microprobe examination of a polished mount snows a
12	intergranular texture with approximately 50% pyroxene and 40% plagioclase. Plagioclase
13	grains are lath-shaped up to 500 μ m in length. Accessory phases include chromite, Cr-rich
14	ilmenite, and silica.
15	Geochemistry: (C. Agee, UNM) Low-Ca pyroxene $Fs_{53.7\pm3.6}Wo_{15.1\pm5.0}$, Fe/Mn=33±1, n=16;
16	plagioclase $An_{86.8\pm0.9}Ab_{12.4\pm0.9}$, n=8.
17	Classification: Basaltic eucrite, unbrecciated
18	Specimens: 21.9 g on deposit at UNM, Matthew Stream holds 278.92 g, John Divelbiss holds
19	595.6 g stone.
20	
21	
22	Nova 062
23	California United States
24	Ein de 2016 Nore 11
25	Find: 2016 Nov 11
20	Classification: Ordinary chondrite (L5)
28	History : A single 1500 g stone was purportedly found in California by Robert Verish on
29	November 11, 2016.
30	Physical characteristics: Stone has a greenish-brown, relict fusion-crust. Parts of the fusion
31	crust has been devitrified and weathered away, it readily reveals the fabic of the interior
32	showing numerous matrix-supported chondrules of various color and size.
33	Petrography : (Daniel Sheikh, FSU) Chondrule boundaries blurred (750±50 µm, N=6).
34	Recrystallized coarse-grained matrix with plagioclase (20-30 µm). Numerous interconnected
35	iron-oxide veins. Troilite, FeNi-metal, and chromite are also present. (A. Rubin, UCLA)
36	Troilite is polycrystalline. A 0.5 um grain of metallic copper found inside metal
3/	Geochemistry: Olivine Factors (N=25): orthonyroyene Factors Worker (N=25)
38 20	Classification: Ordinary Chondrite (I 5)
39 40	Speaimons: 100 groms at <i>UCL</i> 4: main mass with Variah
40 41	specimens. 100 grams at OCLA, main mass with verisn.
42	
43	
44	Nova 063
45	California, United States
46	Find: 2016 Dec 12
47	Classification: Ordinary chondrite (H5)
48	History: A single 18.25 g stone was purportedly found in California by Robert Verish on
49	December 12, 2016.
50	Physical characteristics : A flat brownish-black fragment with a weathered fusion-crust. The
51	one side not covered in fusion-crust has patches of a shiny-black desert-pating. The interior is
52	iust as dark as the exterior
53	Patrography: (D. Sheikh, FSU) Chondrule boundaries blurred (600+50 µm, N=2)
54 55	EVENUS I CHORENE (D. SHOREN, TSO) Chorene do outride obuildanes of the (000±30 µm), $N=2$). Recrystallized coarse grained matrix with plagical sec (20, 40 µm). Numerous intercorrected
56	iron oxide voing. Trailite, EoNi metal, and chromite are clear present.
57	non-oxide venis. Frome, reprinted, and chromite are also present.
58	Geochemistry: Olivine, Fa _{19,8±0.2} (N=25); orthopyroxene, Fs _{18.9±0.2} Wo _{1.9±0.1} (N=25).
59	Classification: Ordinary Chondrite (H5)
60	Specimens : 4.8 grams at UCLA; main mass with Verish.

Nova 064

California, United States Find: 2016 Dec 13

Classification: Ordinary chondrite (H5)

History: A single 70.88 g stone was purportedly found in California by Robert *Verish* on December 13, 2016.

Physical characteristics: A very dark-brown stone with a 3-sided pyramid shape. One side appears to be covered in relict fusion-crust by evidence of tiny vesicles, but this observation was confounded when a saw-cut of the interior revealed numerous pores in a nearly friable groundmass.

Petrography: (D. Sheikh, *FSU*) Chondrule boundaries blurred ($300\pm100 \mu m$, N=3). Recrystallized coarse-grained matrix with plagioclase ($40-45 \mu m$). Numerous interconnected iron-oxide veins. Troilite, FeNi-metal, and chromite are also present.

Geochemistry: Olivine, Fa_{19,4±0,2} (N=25); orthopyroxene, $Fs_{18,8\pm0,2}Wo_{1.9\pm0,1}$ (N=25).

Classification: Ordinary Chondrite (H5)

Specimens: 14.3 g at UCLA; main mass with Verish.

Nova 065

(Unknown)

Find: 2016 Nov 23

Classification: Ordinary chondrite (L4)

History: On 2016 November 23, a 1144 g stone was purportedly found by Robert *Verish* in California.

Physical characteristics: A weathered, orange-brown stone. A 5-sided angular fragment, with one side fusion-crusted, having deeply fluted regmaglypts. Other sides appear to have secondary fusion-crust but evidence is ephemeral due to devitrification, and the overall degree of weathering of the exterior.

Petrography: (D. Sheikh, *FSU*) Chondrules blurred (700±50 μm, n=5). Sample composed of olivine, low-Ca pyroxene, troilite, Fe-Ni metal, chromite, and Fe-oxides.

Geochemistry: Olivine (Fa_{24.3±1.5}, n=24), low-Ca Pyroxene (Fs_{20.7±1.5}Wo_{1.3±0.5}, n=18).

Classification: Ordinary Chondrite (L4)

Specimens: 39.4 grams at UCLA; main mass with Verish.

Novo Mesto 45°49.01'N, 15°6.75'E

Slovenia

Confirmed fall: 28 Feb 2020

Classification: Ordinary chondrite (L5)

History (B. Ambrožič, *CENN*; J. Atanackov, *GeoZS*; M. Jeršek, *SMNH*): At 10:31 AM (local time; 9:31 UT) on 28 February 2020, a very large fireball exploded over southeast Slovenia. It was seen by a large number of eyewitnesses in Slovenia, Croatia, Austria, Hungary, and Italy. As of 7 May 2020, three meteorite fragments totaling 720 g have been recovered. The first stone (203 g) was found by Gregor Kos on March 4 in the driveway to his house in the village of Prečna, near the town of Novo mesto (hence the name of the meteorite). The second stone (469 g) was found on March 10, near the village of Mirna Peč by an anonymous finder. The third stone (48 g) was found on March 14, in a forest near Novo mesto by Gaja Ukar Ekart. Extensive search efforts took place within the preliminary estimated strenwfield, however, in

Running Head

 the second half of March all search efforts were temporarily paused due to the COVID-19 pandemic lockdown.

Physical characteristics (B. Ambrožič, *CENN*; M. Jeršek, *SMNH*): About half of the first meteorite fragment (203 g) is covered by a brownish-black fusion crust. On the surface, few chondrules (up to 10 mm in size) and metal grains are visible. A network of thin dark shock veins protruding the light greyish interior of the meteorite is visible. Orange-brownish oxide rims formed around metal grains are indicative of a low weathering stage. The second stone (469 g) is brecciated with light-colored more or less rounded clasts in a dark fine-grained matrix. Clasts vary in size from less than a millimeter to a few centimeters. Less than 10 % of the stone's surface is covered by a fusion crust. The third stone (48 g) is almost entirely covered with a fusion crust. On cut surface a network of shock veins and melt pockets is visible.

Petrography (B. Ambrožič, CENN; L. Ferrière, NHMV; M. Miler, GeoZS): The light lithology (represented by the 203 g stone and as clasts within the brecciated stone) is moderately to severely shocked and thermally metamorphosed. Chondrule boundaries are poorly defined. Most of the chondrules (fragments) are fractured and displaced and are dominated by barred olivine, radial pyroxene, and porphyritic olivine-pyroxene types. Chondrule size varies from 200 to up to 2500 µm, with an average size of about 500 µm. Olivine crystals shows distinct sets of planar deformation features. Plagioclase size from 5 to 50 µm. Troilite (8 vol.%), Fe-Ni metal (2 vol.%), chromite (0.6 vol.%), and phosphates (0.3 vol.%), including chlorapatite and merrillite, are present. Chromite occurs as subhedral grains in the matrix and chondrules, and as euhedral crystals in chromite-plagioclase assemblages. Numerous shock veins and melt pockets occur. The brecciated lithology (description based on observations conducted on the 469 g stone) is composed of several different types of clasts in a fine-grained matrix. The first type of clasts are of the light lithology. The second type of clasts are chondrules and fragments of chondrules. The third type of clasts are composed of poorly sorted euhedral olivine and low-Ca pyroxene, Fe-Ni metal, troilite, and chromite grains in a glassy matrix. The fourth type of clasts, so-called "breccia in breccia", consists of very poorly sorted anhedral olivine and low-Ca pyroxene grains (0.5-200 µm), chondrule fragments, Fe-Ni metal, troilite, and chromite grains in very fine-grained matrix of olivine and pyroxene grains. The matrix between the different types of clasts is composed of Fe-Ni metal, troilite, plagioclase, and pyroxene glass.

Geochemistry (M. Miler, *GeoZS*; B. Ambrožič, *CENN*): For the light lithology: Olivine is $Fa_{25.1\pm0.7}$ (N=63). Low-Ca Pyroxene is $Fs_{20.5\pm1.4}Wo_{1.5\pm0.1}$ (N=58). High-Ca pyroxene is $Fs_{7.8\pm0.6}Wo_{45.0\pm0.8}$ (N=22). Plagioclase is $An_{14.8\pm5.7}Ab_{77.0\pm1.1}Or_{8.2\pm1.6}$ (N=7). Kamacite is Ni 10.4±3.6(N=4). Taenite Ni 26.3±3.7 (N=12). Troilite is Fe61.1±1.7 (N=5). For the brecciated lithology: Olivine is $Fa_{25.1\pm0.8}$ (N=86). Low-Ca pyroxene is $Fs_{21.2\pm0.5}Wo_{1.5\pm0.3}$ (N=54). High-Ca pyroxene is $Fs_{8.1\pm0.8}Wo_{44.4\pm1.8}$ (N=17). Plagioclase is $An_{5.6\pm1.2}Ab_{85.7\pm1.1}Or_{8.7\pm0.6}$ (N=13). Kamacite is Ni 13.2±4.5 (N=19). Taenite is Ni 24.7±3.1 (N=7). Troilite is Fe 61.1±2.1 (N=13). All data based on SEM-EDS investigations.

Classification: Ordinary chondrite (L5), shock stage (S5), weathering grade (W0/1). **Specimens**: Three pieces with a total known mass of 720 g were found. The 203 g stone and 469 g are deposited at the *SMNH*.

Noyon 43°13'11.8"N, 102°39'56.7"E Omnogovi, Mongolia Find: 2018 Aug 25 Classification: Ordinary chondrite (LL(L)3) **History**: Meteorite (one sample - 745.47 g) was found 25 August 2018 by the *UrFU* - *IAG*-*MAS* meteorite expedition-2018 in southern Gobi (Pastukhovich A.Yu., Kolunin R.N., Larionov M.Yu., Muraviev L.A., Petrova E.V., Yakovlev G.A., Naasa Ochir) in 45 km East of Noyon, the Ömnögovi aimag (province), Mongolia.

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17 18

19

20

21

22

23

24 25

26

27

28

29

30

31

32 33

34

35

36

37

38

39

40 41

42

43

44

45

46

47 48

49

50

51

52

53

54

55 56

57

58

59

60

Physical characteristics: Size is 10x5x5 cm. The meteorite has roughly rounded shape.Exterior of the stone is desert polished. The surface and interior of the meteorite are gray to dark brown in color due to Fe-hydroxides. Fusion crust is locally present.

Petrography: Classification (Victor V. Sharygin, SIGM and UrFU). The meteorite shows a chondritic texture. The amount of chondrules and their fragments is more than 90 vol.%. Chondrules are well delineated. Average chondrule apparent diameter 1008±442 µm (n=20). Chondrule apparent diameter up to 2 mm. Chondrules are represented by BO, PO, POP, RP and CC textural types. Chondrules mainly consist of olivine, low-Ca-pyroxene and glassy-like (cryptocrystalline) matrix, diopside, ±chromite and blebs of troilite and FeNi-metal. In all chondrules the mesostasis does not contain fresh glass, and is a finely devitrified aggregate of clinopyroxene and feldspar or nepheline-like phase. BSE images for some POP and PO chondrules show strong zonation for olivine and sometimes low-Ca-pyroxene, which can form skeletal/dendritic crystals. RP chondrules may contain SiO₂ polymorph. All these indicate the high rate of quenching. Olivine and low-Ca-pyroxene are main minerals in finegrained matrix; plagioclase was not observed. All petrographic features indicate a petrological type of 3 for the meteorite. Undulatory extinction and irregular fractures in olivine reveal a shock stage of S2. Majority of grains of FeNi-metal (30-400 μ m) are mainly represented by kamacite, taenite and tetrataenite; but individual grains of kamacite also occur. Weathering products (hematite, goethite and other Fe-Ni-hydroxides, gypsum) are locally abundant and mainly occur as in situ partial alteration of FeNi-metal and troilite, and fill microfractures in all minerals (weathering grade – W2-3). The appearance of Ni-rich pyrrhotite and smythite maybe related to troilite alteration. Clinopyroxene, chromite, ilmenite, merrillite and chlorapatite (100-300 µm) occur locally in the matrix. Merrillite was also as rounded inclusions (up to 5 µm) in FeNi-metal and troilite. The abundances of FeNi-metal and sulfides are 3.5 and 4.3 vol.%, respectively (by point counting over 670 mm², Pastukhovich A.Yu.). **Geochemistry:** Mineral composition and Geochemistry: EDS-WDS analyses (V.V. Sharygin, SIGM and UrFU). The primary chondrite paragenesis includes olivine, low-Capyroxene, Cr-bearing clinopyroxene (Cr_2O_3 - up to 2.6 wt.%), plagioclase, spinel-supergroup minerals, ilmenite, chlorapatite, merrillite, FeNi-metal, SiO₂ polymorph, troilite and maybe pyrrhotite. The main minerals drastically vary in composition. The averaged olivine is Fa_{21,47±7,10} (N=100). The olivine grains from matrix have homogeneous composition – Fa_{26.78±0.95} (N=30), max – Fa_{28.83.} However zoned olivine crystals in chondrules show a wider range: Fa_{19,31±7,50} (n=70). The same situation exists with low-Ca-pyroxene: average - $Fs_{13.51\pm7.98}Wo_{2.04\pm2.45}$ (N=63); matrix $-Fs_{18.53\pm6.5.13}Wo_{2.04\pm2.55}$ (N=19), max $-Fs_{24.6}$; chondrules (N=44): average - $Fs_{11,38\pm8,09}Wo_{2,05\pm2,43}$ (N=63); core (min) - $Fs_{2,87}$, rim (max) - $Fs_{36,85}$. The maximal values of Fa and Fs in olivine and low-Ca pyroxene outline the LL group, whereas high standard deviations for these minerals in chondrules may indicate subtype 3.0-3.3. Plagioclase is rare and found only in matrix of some POP chondrules: anorthite An_{76.6}Ab_{21.7}Or_{1.7} (N=4) occurs in the POP chondrules with zoned olivine, whereas albite Ab_{89,6}An_{5,1}Or_{5,4} (N=8) is common of other POP chondrules. Spinel-supergroup minerals are represented by chromite Crt_{89.6}Spl_{4.5} (N=10, common in matrix and chondrules) and zoned Cr-rich spinel (in some chondrules) with composition from $Sp_{186}Crt_{399}$ (core) to Spl_{82.0}Crt_{16.1} (rim). Ilmenite is Ilm_{87.3} (N=7). Composition of metals (in wt.%): kamacite (N=25) - Fe 93.62±0.85, Ni - 5.63±0.86, Co - 0.82±0.13; taenite (N=10) - Fe 60.76, Ni 38.93, Co 0.22; tetrataenite (N=12) – Fe 49.52, Ni 50.33, Co 0.16. Nepheline-normative glassy-like aggregate (or nepheline ?) in a POP chondrule with zoned olivine has following

 composition (in wt.%, N=12): SiO₂ 48.58, Al₂O₃ 28.42, TiO₂ 1.18, Cr₂O₃ 0.62, FeO 2.52, MgO 0.69, CaO 0.57, Na₂O 14.97, K₂O 2.28.

Classification: Ordinary chondrite. LL(L)3, S2, W2-3. In variations of Fa in olivine and Fs in low-Ca pyroxene in chondrules it seems to be related to 3.0-3.3 subtype. Chondrule size points to LL, but the metal content points to L, hence the LL(L) designation.

Specimens: 636 g sample – *IAG-MAS*; 102.72 g sample – *UrFU*; 6.75 g cut-off and thin section – *SIGM*.

Oiuru 001 22°24.2'N, 18°33.0'E

Murzuq, Libya

Find: 2016 Mar 25

Classification: Iron meteorite (IVB)

History: (Dieter *Heinlein*). While prospecting for gold in the desert region of Kufra, southern Libya, a chunk of iron was found buried in a depth of about two meters. The finding site is near Egay Zuma, not far from the village of Wath, close to the border between Libya and Chad.

Physical characteristics: (Dieter *Heinlein*). The mass of the irregular chunk of meteoritic iron is about 450 kg, the dimensions are $94 \times 47 \times 45$ cm.

Petrography: Iron meteorite

Geochemistry: (Xiaosong Li, FRM II). Composition of the metal obtained by using INAA: Ni = 18.2, Co = 0.79 (both in wt%), Ga = 0.21, Ir = 15.7 (both in ppm) and very low Ge. **Classification**: Iron, Ataxite, IVB

Specimens: Type Specimens: 20.9 g, *IfP*; the main mass is with the finder.

Orlov Dol 42.113271°N, 26.163802°E

Burgas, Bulgaria

Find: 2018

Classification: Iron meteorite (IID)

History: In the summer of 2018, Ivan Ivanov, Nedko Rusev, and Zhivko Andonov were walking an old country road near the village of Orlov Dol, when they noticed an unusual stone in the middle of the road. There had been heavy rain the previous day, which washed away the road. They removed the stone from the ground and found it to be metallic. They took it with them and left it in an old barn, not knowing what it could be. The stone stayed there for almost a year. On 2019 June 6, they attended a BGNMHA (Bulgarian Gold Nugget and Meteorite Hunting Association) meeting, and brought a small piece for analysis. XRF analysis indicated a high Ni content (13 wt%) and there was a visible Widmanstätten pattern on the surface. Subsequently, a sample was sent by George Penneff to Jerome Gattacceca (*CEREGE*) for further analysis and classification.

Physical characteristics: A single mass covered with rust.

Petrography: Etching of a polished section reveals a medium octahedrite texture with average kamacite bandwidth 0.83±0.21 mm. Martensitic areas and Neumann bands are present.

Geochemistry: (J.T. Wasson, *UCLA*): INAA data, Ni = 98.7, Co = 6.66 (both mg/g), Cu = 282, Ga = 70.5, As = 4.3, W= 2.97, Re = 1.977, Ir = 18.9, Pt = 20.9, Au = 0.602 (all μ g/g). **Classification**: Iron, IID

Specimens: Type specimen at *CEREGE*. Main mass with Ivan Ivanov.

Meteoritics & Planetary Science

Oslo 59°55'47.66''N, 10°46'17.96''E Oslo, Norway Probable fall: 2012 Mar 9 Classification: Ordinary chondrite (H3-6)

History: The first piece of the meteorite was found by Anne-Margrethe Thomassen in her cabin house at Rodeløkka, Oslo, on March 12, 2012. The meteorite had hit the edge of the roof and split into two pieces, 550 g in total mass. The hole in the roof was not there a few days before, so the estimated fall date is March 9 or 10. Two independent sources also claim they heard a loud sound on the afternoon of March 9. No fireball that can be connected to the fall was reported by the Norwegian Meteorite network, but it was very cloudy in Oslo around those days. Some days later, a 700 g piece and a 26 g specimen were both found on Ekebergsletta, Oslo, located ~4 km away from Rodeløkka. In this location, near the Ekeberg kindergarten, a full piece 115 g in mass was found soon after. Many further pieces were also recovered during systematic, organized meteorite search; they total 150 g, but individual stones do not exceed 30 g. A further, but unofficial find of 4.65 kg at Grefsen, was reported in the media, but this putative meteorite has not been available for scientific investigations for verification (Bilet & Selbekk 2013). On 6 February 2014, i.e. two years later, another piece (2.8 kg) was found by Steinar Engh at Kjelsås, Stilla. The piece was stuck in the roof and was recovered during maintenance work.

Physical characteristics: The type specimen in the collection of Natural History Museum in Oslo broke apart into two, separate roughly equal-sized stones. The specimen has clearly developed secondary fusion crust, indicating that fragmentation of larger body occurred in the atmosphere before fall. The specimen is fresh, not weathered and the interior seen on broken surfaces reveals brecciated light-dark structure with light clasts up to several cm in size embedded in dark matrix.

Petrography: (A. Krzesinska, *UOslo*) The meteorite has brecciated light-dark structure with a major light-colored lithology and dark parts containing many cm-sized clasts of various appearances. The light part is classified as H6, with plagioclase grains up to 60 μm in size. The dark material contains aboundant chondrules and clasts of unequilibrated material set in cataclastic olivine-pyroxene matrix. In both lithologies, olivine crystals are fractured and reveal planar fractures and undulose extinction. No melt pockets or veins are present. Native copper locally occurs within plessite grains.

Geochemistry: (A. Krzesinska and M. Erabmert, *UOslo*) Light part of the breccia is composed of olivine with Fa_{19,3} (Fa_{18.8-19.6}, n=37), orthopyroxene Fs_{16.6}Wo_{1.6} (Fs_{16.6-17.3}Wo_{1.0-1.9}, n=24), plagioclase An_{13.3}Or_{5.6} (n=9, range An_{12.8-14.0}Or_{4.8-7.1}) and kamacite (0.44-0.56 wt% Co), taenite and tetrataenite present. Accessory minerals include troilite, chromite (78.6 mol% Chr, 14.2 mol% Sp), ilmenite, diospide, Cl-apatite and merrillite. Chondrules in the dark lithology are composed of zoned olivine (Fa_{0.9-24.7}, n=19) and pyroxene (Fs_{2.5-16.5}Wo_{0.2-0.9}, n=14) crystals. The composition of matrix in the dark lithology is more equilibrated than the chondrules and it reveals olivine with Fa_{18.9±0.51}, and opx Fs_{16.9±0.23}Wo_{1.4±0.3}.

Classification: Brecciated, ordinary chondrite of H3-6 type, based on composition of olivine, pyroxene as well as content and composition of kamacite. Light part is highly equilibrated H6 material and dark part is of H3 type, however, individual cm-sized clasts in the dark part can be classified as H4 or H5 type material.

Specimens: (H. Friis, M. Bilet, R. Selbekk, *UOslo*) Several specimens were recovered over the time. The first specimen (type specimen and main mass), weighting 550 g is in the collection of Natural History Museum in Oslo. Three thin sections are stored in the museum. Some more specimens of various sizes (totaling 4 kg) are in private collections, and based on unofficial reports, an additional 4.6 kg may exist.

Oyo 7.877°N, 3.963°E Oyo, Nigeria Find: 2019 Jan

Classification: Ordinary chondrite (LL4)

History: Three similar-appearing stones were found together 4.4 km NE of the town of Oyo, Nigeria at 7.877°N, 3.963°E and were purchased from the finder by Mbark Arjdal in January 2019.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Closely packed, well-formed chondrules are set in a sparse matrix containing altered kamacite, taenite, chromite, troilite and merrillite.

Geochemistry: Olivine (Fa_{28.3±0.2}, range Fa_{28.1-28.5}, N = 6), low-Ca pyroxene

 $(Fs_{23.4\pm0.5}Wo_{1.6\pm0.3}, range Fs_{23.0-24.3}Wo_{1.4-2.0}, N = 6)$, augite $(Fs_{8.3\pm0.3}Wo_{45.4\pm0.1}, range Fs_{8.0-1})$

 $_{8.5}$ Wo_{45.3-45.5}, N = 3). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 3.41.

Classification: Ordinary chondrite (LL4).

Specimens: 54.2 g including one polished thin section at *UWB*; remainder with Mr. M. Arjdal.

Pakepake 001 38°02.04'N, 83°39.36'E

Xinjiang, China Find: 2019 Jan

Classification: Ordinary chondrite (L6)

History: The meteorite was Found by Pengli Chen who is a meteorite hunter in gobi desert near to Niya ruin in January, 2019. The Niya ruin is the historic site of the Jingjue Kingdom from the 2nd century B.C. to the 5th century A.D., in Minfeng county , Southern of Xinjiang, China.

Physical characteristics: Five specimens were recovered in the gobi desert. The individual specimen covered by black fusion crust weighs from 100 to 1500 g. The total mass is ~1.5 kg. **Petrography**: (J. Ji, S. Hu and Y. Lin, *IGGCAS*) The meteorite has a typical chondritic texture, mainly composed of olivine, pyroxene, plagioclase, Fe-Ni metal and troilite, with minor other accessory minerals. The matrix displays a high degree of crystallization. Most plgioclase grains are larger than 50 mm in diameter. Some Fe-Ni metal grains have been oxidized along the rims. Shock melt veins and pocket were not identified across the section. **Geochemistry**: Mineral compositions and geochemistry: (J. Ji, S. Hu and Y. Lin, *IGGCAS*) The olivine and pyroxene are homogeneous in chemical compositions. Olivine: Fa=24.2±0.7 (n=27), orthopyroxene: $Fs_{20.8\pm 1.0}Wo_{1.4\pm0.4}$ (n=28)

Classification: (J. Ji, S. Hu and Y. Lin, *IGGCAS*) L6 **Specimens**: The main mass is held by Pengli Chen.

Paposo 064 24°56'36.2''S, 70°02'02.1''W

Antofagasta, Chile

Find: 2017 Feb 27

Classification: Ureilite

History: Found on granodiorite pediment surface by a three-person team.

Petrography: (J. Gattacceca, *CEREGE*) Siliceous rock with blocky texture. Main mineral is low-Ca pyroxene with typical grain size 600 µm and reduced rims. Metal is found at the

silicate grain rims, and as aligned μ m grains within silicate grains. Carbon material is present at the grain rims. Troilite.

Geochemistry: Low-Ca pyroxene $Fs_{19,2\pm0.3}Wo_{4.8\pm0.1}$, FeO/MnO = 28.4±0.9 (n=3). Low-Ca pyroxene rim $Fs_{13}Wo_{4.9}$ (n=1).

Classification: Ureilite

Specimens: Type specimen at CEREGE. Main mass with Andreas Koppelt.

Pizhanka 57°20.42'N, 48°30.15'E

Kirovskaya oblasť', Russia

Find: May 2016

Classification: Iron meteorite (IAB-MG)

History: Single piece of iron (46.78 kg) was found by Mr. O.N. Rykov while he was plowing fields near Akhmanovo and Pizhanka in May 2016.

Physical characteristics: The meteorite has an elongated, irregular, heart-like shape; it is covered by a shell of iron oxides. Total weigh is 46.78 kg.

Petrography: The polished and etched section (150 cm^2) reveals coarse kamacite plates, ranging from 6 to 12 mm (8.18±2.52 mm, n=11), with sets of parallel Neumann lines and intergrowths of rhabdite needles. Patches of recrystallized kamacite are sparsely distributed on the surface, and particularly concentrated around a large troilite-graphite inclusions. Three large $(15 \times 25, 20 \times 10, 12 \times 15 \text{ mm})$ and some small knobby troilite nodules with swathing 1-3 mm schreibersite are present. Schreibersite occurs as scattered, cuneiform, skeletal crystals 0.3-2 mm in size, with 20-100 µm wide, discontinuous grain-boundary veinlets. **Geochemistry**: Mineral compositions and geochemistry: (N. N. Kononkova, *Vernad*, EMP) kamacite: Ni =7.40±0.07 (N=4), Co = 0.53 ± 0.05 (N=4), P = 0.23 ± 0.02 (N=4); taenite: Ni = 29.9±3.15 (N=8) (all in wt%); schreibersite: Ni =37.3±0.68 (N=4), P = 14.5±0.29(N=4); rabdite: Ni =47.0±1.61 (N=4), P = 13.8 ± 0.65 (N=4); (J.T. Wasson, *UCLA*): INAA data, Ni = 67.4, Co = 4.65 (both mg/g), Au = 1.593, Ga = 83.2, Ge = 422, Re = 0.254, Pt = 5.66, Ir = 2.74, Cr = 22, W = 1.02, As = 12.7, Cu = 119 (all µg/g).

Classification: Iron, IAB-MG, Ogg

Specimens: Total 5616.88 g and thick section are on deposit at Vernad.

Poltavskoe 43°59.05'N, 44°45.59'E

Stavropol'skiy kray, Russia

Find: 2018 Apr 2

Classification: Ordinary chondrite (L6)

History: The meteorite was found by Mr. Nikolay Nikolaevich Saprykin in April 2018 in the protective forest belt between cultivated fields, 4.5 km to the south of Poltavskoe village (Kursky region of Stavropolsky kray, Russia).

Physical characteristics: A single incomplete stone of ellipsoidal shape of 2630 g. A surface is covered by well preserved fusion crust of greyish-brown color.

Petrography: The meteorite has recrystallized chondritic texture with the chondrule relics in the granular silicate mass. It is composed of olivine, pyroxene, minor feldspar, FeNi metal and troilite and accessory chromite. The meteorite contains melt pockets and shock melt veins. Olivine in the main mass of the meteorite has undulatory optical extinction and planar fractures, and mosaic extinction and planar deformation features near the shock veins.

Geochemistry: Mineral composition and geochemistry: Olivine is $Fa_{24.0\pm0.1}$ (N=12); Pyroxene is $Fs_{20.2\pm0.2}Wo_{1.4\pm0.2}$ (N=13)

 $\begin{array}{c} \text{59} \\ \text{60} \end{array} \qquad \begin{array}{c} \text{Is } 1 \ \text{s}_{20.2 \pm 0.2} \ \text{wol}_{1.4 \pm 0.2} \ (1 \ \text{v} \ 15) \\ \text{Classification: ordinary chondrite (L6).} \end{array}$

 Specimens: A thick slab of 368.4 g total mass and one polished thin section of the meteorite are on deposit at *Vernad*. Anonymous person holds the main mass.

Qiakuertu 46°25'16.15"N, 89°26'41.32"E Xinjiang, China Find: 2018 May 22

Classification: Ordinary chondrite (H5)

History: Found during a meteorite hunting campaign organized by meteorite hunters Yuxian Zhao and Kun Zhang.

Geochemistry: Olivine Fa_{18.5-18.7}, N=5; Low-Ca pyroxene Fs_{16.3-16.7}Wo_{0.98-1.35}, N=5 (EPMA)

Rafsa 001 28.736°N, 7.607°W

Tindouf, Algeria

Find: 2019 Feb

Classification: Martian meteorite (Shergottite)

History: A 70.9 g stone was found by a group of camel herders near Bou Akba in northwestern Algeria in February 2019. Some time later they found an identical-appearing 56.7 g stone about 700 m from the first one. In September 2019, both stones were purchased by Ben Hoefnagels through an American agent for the finders.

Physical characteristics: Both stones lack fusion crust and have weathered exteriors. Saw cuts reveal that both have thin weathering rinds, but the fresh interiors exhibit dark olivine phenocrysts in a fine-grained lighter-colored groundmass and sparse dark melt pockets containing vesicles (some partly filled with secondary terrestrial minerals).

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Euhedral to subhedral, zoned olivine phenocrysts (up to 2mm; with interior regions of orange-brown staining) are set in a groundmass composed mainly of polysynthetically-twinned, prismatic clinopyroxene and maskelynite with accessory orthopyroxene (as cores to some groundmass pyroxene grains), merrillite, Ti-chromite, Ti-free chromite, ilmenite, pyrrhotite and pentlandite. Sparse dark shock melt pockets (with swirly texture and secondary calcite in vesicular cavities) are present.

Geochemistry: Olivine (cores Fa_{28.8-30.4}, FeO/MnO = 47-54, N = 5; rims Fa_{32.4-35.2}, FeO/MnO = 50-54, N = 5), orthopyroxene core (Fs_{21.8}Wo_{3.8}, FeO/MnO = 29), pigeonite (cores Fs_{23.7}. 23.9Wo_{8.6-10.4}, FeO/MnO = 28-30, N = 4; rims Fs_{27.6-30.7}Wo_{9.0-10.3}, FeO/MnO = 25-32, N = 4), high-Ca pyroxene (Fs_{16.8-17.6}Wo_{36.1-30.5}, FeO/MnO = 25-29, N = 3), maskelynite (An_{62.6-64.9}Or_{0.3-0.5}, N = 3).

Classification: Shergottite (olivine-phyric).

Specimens: 21 g including one polished thin section at *UWB*; remainder with Mr. B. Hoefnagels.

Reid 029 30°19'S, 128°58'E

Western Australia, Australia

Find: 10 Aug 1975

Classification: Ordinary chondrite (L5)

History: A single fragment of 274 g was found at an ancient Aboriginal camping site **Physical characteristics**: The fragment is partly crusted, large chondrules and angular chondrule fragments are visible on cut surfaces.

Petrography: (A. W. R. Bevan *WAM*) The stone comprises recognizable chondrules in a crystalline matrix. Olivine shows undulose extinction to incipient mosaicism. Metal and troilite particles are heavily weathered to oxyhydroxides of iron, and there is extensive oxide staining.

Geochemistry: Mineral compositions and geochemistry: (A. W. R. Bevan, *WAM*). Mineral compositions as determined by EMP: olivine $Fa_{25.1}$; orthopyroxene $Fs_{20.9}$. **Classification**: (L5); S3; W3.

Specimens: Main mass, slices totaling 92.6 g, and thin section, WAM

Saint-Ouen-en-Champagne 47°57'51''N, 0°9'40''W

Pays de la Loire, France

 Probable fall: 29 Sep 1799

Classification: Ordinary chondrite (H5)

History: A 12 g sample labelled as Saint-Ouen-en-Champagne discovered in the Chadel collection in 2006 drew the attention of the meteoritical community on another, homonymous 39 g sample curated in *LeMans*, in the département of the eponymous commune. The curator Nicolas Morel found in the local learned literature several mentions of this fall, which occurred after a violent thunder clap on September 29, 1799, at 3 pm, in the farm Le Pin in Saint-Ouen-en-Champagne. The stone, which weighed 9 pounds 7 ounces, fell at the feet of a day laborer and was at first too hot to touch. It was subsequently divided among several naturalists, but only 51 g are currently extant.

Physical characteristics: fragment dull gray in color, studded with minuscule metallic grains, partly covered by a blackish/brown fusion crust

Petrography (T. Shisseh, *FSAC* and S. Pont, MNHP): Polished section showing typical chondrite texture with moderate number of chondrules and abundant scattered metal. Fusion crust is up to 0.75 mm locally with abundant vesicles up to 100 µm. Chondrules are up to 1 mm and rarely 2 mm. Many have well-defined borders and other do not. Chondrules types are porphyritic olivine-pyroxene (POP), barred olivine (BO), granular olivine-pyroxene (GOP) and possible remnant radiating pyroxene chondrules (RP). Olivine and orthopyroxene are the dominant phases with minor chromite, Ca-pyroxene, apatite and troilite. Metal and sulfides are interstitial to olivine and pyroxene and clustered in the form of large anhedral grains enclosing silicates. Few silicates are embedded in metal. No nodule-shaped metal was observed.

Geochemistry: Mineral composition and geochemistry (T. Shisseh, H. Chennaoui Aoudjehane, *FSAC*): Olivine $Fa_{18,22\pm0.21}$ (N=12) Opx = $En_{82}Fs_{16}Wo_2$ (N=3) Clinopyroxene= $En_{48}Fs_6 Wo_{46}$ (N=1) and $En_{75}Fs_{15} Wo_8$ (N=2). Plagioclase is Ab₈₀₋₈₃ An₁₂₋₁₆ Or₄₋₅. Chromite compositions are Cr/(Cr+Al)=0.91 and Fe/(Fe+Mg)=0.9 (N=3). Kamacite with 6% Ni. **Classification**: Ordinary chondrite (H5)

Specimens: 38 g, LeMans, type specimen; 12 g, A. Carion; 1 g, MNHNP

San Salvador River 33°35.93'S, 58°7.83'W

Soriano, Uruguay

Find: 2015

Classification: Ordinary chondrite (H5)

History: The meteorite was found in 2015 by Rolando Bianchi Cendón about 11 km SE of the city of Dolores (Soriano Department, Uruguay), in alluvial deposits of the San Salvador River.

Physical characteristics: Physical Characteristics: Light to dark brown, elongated stone with numerous open fractures. A network of veins is visible on cut surfaces (filled with alteration product, mainly iron oxides).

Petrography: (L. Ferrière and S. Rajpriye, *NHMV*). This meteorite is a moderately weathered, fractured, and thermally metamorphosed chondrite. Chondrule boundaries and matrix are difficult to discern. The chondrules are mainly barred and porphyritic olivine-pyroxene types. Opaque phases include Fe-Ni metal (including tetrataenite, measuring up to 70 μ m), metal oxides, and troilite. Accessories such as chromite, chlorapatite (heavily fractured, up to 100 μ m), and merrillite (up to 200 μ m) are also present. Fractures are common and are filled with alteration products, i.e., metal oxides of varying composition. A large fraction of the metal grains have been heavily altered and troilite grains are surrounded by iron oxides. A crust of alteration is seen at the surface, containing high-Ca pyroxene and a few quartz grains (of terrestrial origin). Exsolution lamellae occur in a number of troilite grains.

Geochemistry: (L. Ferrière, S. Rajpriye, and D. Topa, *NHMV*). Olivine: Fa_{19.05±0.43} (Fa_{18.4-20.3}) and Fe/Mn: 39.43±2.90 (N=20). Low-Ca pyroxene Fs_{16.99±0.83}Wo_{1.34±0.32} (Fs_{16.0-19.2}Wo_{0.0-1.6}) and Fe/Mn: 24.32±3.79 (N=22). Plagioclase: An_{10.93±0.46}Ab_{84.37±0.67}Or_{4.70±0.73} (An_{10.4-12.1}Ab_{83.1-85.3}Or_{4.0-6.5}) (N=11). Kamacite: Ni 5.43±1.02 (3.99-6.31), Co 0.39±0.15 wt% (N=6). Taenite: Ni 28.13±4.79 (20.83-35.61), Co 0.14±0.03 wt% (N=9). Tetrataenite: Ni 50.64±1.27 (48.06-52.20), Co 0.07±0.04 wt% (N=11). Chromite: Cr#: 0.86, Fe#: 0.85.

Classification: Ordinary Chondrite (H5), S3, W3

Specimens: The main mass (765 g) is with the finder (Rolando Bianchi Cendón, Uruguay); Two fragments (*NHMV*-O1892 and *NHMV*-O1790, 31.29 g and 13.75 g, respectively) as well as one polished thin section (*NHMV*-O1791) and a polished thick section (*NHMV*-O1792) are at *NHMV*.

Santa Filomena 8°9'45.66"S, 40°36'50.54"W

Pernambuco, Brazil

Confirmed fall: 2020 Aug 19

Classification: Ordinary chondrite (H5-6)

History: (Andre L R Moutinho, Marcelo Zurita). A bright fireball appeared on the western region of Pernambuco state, Brazil, on August 19, 2020, 13:18:17 UTC. Four cameras from a weather forecast company named "Clima Ao Vivo" recorded the bolide in the cities of Floresta, Salgueiro, Belém de São Francisco and São José do Belmonte. The GOES-16 satellite also captured the bolide flash. Using the video data, the BRAMON (Brazilian Meteor Observation Network) performed the bolide triangulation and orbit calculation. The meteoroid entered the Earth atmosphere at 15.36 km/s, in a 43.1° inclination (relative to ground) travelling 61.3 km in 4 " and extinguished at 20.9 km height, 7.5 km east of the city of Santa Filomena. The meteoroid orbit was calculated as follows: semi-major axis 2.0 AU, eccentricity 0.94, inclination 0.26°, pericenter longitude 143.5° and ascending node 146.7°. Stones were recovered within a 16.0×2.7 km elipse compared to the predicted strewn field of 40×4 km as calculated by Jim Goodall. Santa Filomena is located nearly at the middle of the strewn field. The majority of the stones, by weight, were recovered by local people. A 38.2 kg mass was found ~7 km from Santa Filomena on the Pernambuco-Piaui state border. A 2.81 kg oriented nosecone hammered a house in front of the main city church and plaza. Another 1.5 kg stone hit a Cohab house ~ 1 km NE of the plaza. Other stones were witnessed to fall by residents of the village of Caramari located few hundred meters North of the Cohab house. Stones were also found by researchers and meteorite hunters: Andre L. R. Moutinho (4 pcs, 57 g), "Meteoriticas" - UFRJ (3 pc, 83.2 g), Robert Ward (1 pc, 34 g), José C. Medeiros -

Astro Agreste (3 pcs, 62 g), Cartier Ramalho and Evandro Peixoto - CASF (3 pcs, 243g) and Luiz F. Castro - GASF (2 pcs, 118 g).

Physical characteristics: Recovered meteorites range in weight from <1 g to 38.2 kg, and the total mass recovered is at least 80 kg. Most stones are whole individuals with a high percentage of crust while a smaller percentage are fragments. The fusion crust is dull black and very fresh. The 2.81 kg specimen (*MNRJ*) is cone-shaped, regmaglypted and flight-oriented. The 38.2 kg is covered with regmaglypts and fully fusion crusted.

Petrography: (M. E. Zucolotto, MN/UFRJ and A. Tosi, IGEO/UFRJ) Five thin polished sections from brecciated and unbrecciated masses were examined. The unbrecciated specimen is composed of medium gray colored lithology and shows some scattered, faint, texturally equilibrated chondrules set within a recrystallized groundmass. The mean visible chondrule diameter is 0.5mm. The main phases are olivine and orthopyroxene. Olivine shows mosaicism, planar fractures and darkening. Small and rare feldspar grains are present and show undulatory extinction. Opaque phases include metals (kamacite, taenite) and troilite. Other accessory phases include phosphate and chromite. The brecciated lithology consists of a chondritic texture with medium-gray chondritic clasts in a dark-gray chondritic host that has similar texture and composition, but much darker in color. Plagioclase grains are present with sizes up to 50 microns in diameter. Highly recrystallized fragments (type 6) coexist with areas showing a chondritic texture (type 5) and fragments of impact darkening. No melt pockets or veins are present. Olivine shows weak mosaicism and darkening indicating shock stage S4. Kamacite is predominantly found in single crystals with well-defined and distorted Neumann lines. Troilite shows multiple twinning also indicating a shock stage S4.

Geochemistry: (A. Tosi, IGEO/UFRJ; M. Gomes, CPGq/UFRGS) Electron microprobe analysis yields: unbrecciated lithology: olivine Fa_{18.8.5 ± 0.4} (25), low Ca pyroxene Fs_{17.1 ±} $_{0.4}$ Wo_{1.2±0.8} (18), plagioclase Ab_{71.9±9.3} An_{12.7±6.3} Or_{15.3±13.0} (10), Co in Kamacite 0.112 ± 0.02 (22). Equilibrated clasts: Fa_{19.6±0.5} (57), low Ca pyroxene Fs_{17.3±0.6} (93), plagioclase Ab_{75.3±9.2} An_{10.9±2.7} Or_{13.8±11.4} (15). Oxygen isotopes (K. Ziegler, *UNM*) (linearized, all per mil rel. to V-SMOW, TFL slope=0.528): A total of 3 untreated (i.e., no acid-wash) fragments/subsamples were analyzed by laser fluorination. Sample weights for each measurement were between 1.5 and 2.5 mg. δ^{18} O = 4.366, 4.618, 4.452; δ^{17} O = 2.958, 3.161, 3.115; Δ^{17} O = 0.652, 0.723, 0.731, all permil.

Classification: H5-6 breccia ordinary chondrite. Weathering (W0) and moderately shocked (S4)

Specimens: *MNRJ* 2.81 kg and 40.2 g type specimen; 38.2 kg with finder; André L R. Moutinho ~1.2 kg; Michael Farmer ~3 kg; Roberto Vargas and Mark Lyon ~570 g

Shalim 025 18°22.56'N, 55°10.42'E

Dhofar, Oman Find: 2018 Dec 1

Classification: Monomict Eucrite

History: The meteorite was found in the desert of central Oman by Dr. Sobhi Nasir **Physical characteristics**: Physical Description (P. Hill, *UWO*) The sample has a millimeter thick, dark brown fusion crust present on all faces except one cut face. This fusion crust has large remaglypts on one of the sides, whereas the remaining sides are a smooth continuous surface. There are no contraction cracks present on this sample. The cut face has dark brown clasts surrounded by a beige white matrix. Several of the clasts exceed 1 cm in width. Certain portions of the crust show browning due to oxidization.

Petrography (P. Hill, *UWO*) The sample is a breccia containing numerous clasts of orthopyroxene and plagioclase. The clasts are poorly sorted and are sub-angular with one clast

1	
2	
3	1
4	1
5	7
6	(
/	
8	
9 10	1
10	I
12	ć
13	2
14	1
15	(
16	(
17	1
18	
19	
20	
21	
22	
24	
25	
26	
27	1
28	L
29	1
30)
31	
32 22	(
33	_
35	(
36	á
37	
38	(
39	(
40	1
41	ć
42	5
43	(
44	
45 46	
40 47	
48	
49	,
50	1
51	•
52	(
53	
54	(
55	
56	
5/	5
50 50	

reaching up to 2 cm but most less than 0.5 mm across. Orthopyroxene (~70% area) and plagioclase (~30% area) make up most of the clasts and the groundmass. Thin (5 to 40 μ m in width) exsolution lamellae of high Ca pyroxene are present within the grains of orthopyroxene. Troilite, native Fe, and Cr- and Ti-bearing oxides are present within both the clasts and the groundmass. No secondary alteration phases were observed and no FeO was identified using EDS suggesting the meteorite is fresh and hasn't undergone extensive terrestrial alteration. The sample does show undulose extinction in the grains of plagioclase and pyroxene and irregular fractures were observed, but not in high abundance. Based on the shock stages put forward by <u>Stöffler et al. (2018)</u>, the presence of undulatory extinction in plagioclase and pyroxene suggests a shock pressure range from 5 to 10-12 GPa. **Geochemistry**: Mineral composition and geochemistry (P. Hill, M. Beauchamp *UWO*) low-Ca pyroxene (En_{58,9±1.0}Fs_{37,4±1.2}Wo_{3.7±2.2}), high-Ca pyroxene (En_{41,2±1.9}Fs_{15,8±3.1}Wo_{43,1±5.0}), and

plagioclase $(An_{91.8\pm0.7}Ab_{7.8\pm0.6}Or_{0.4\pm0.1})$.

Classification: Monomict eucrite

Specimens: 463 g type specimen, including polished thin section, are on deposit at SQU.

Shinejinst 44°37'15.6"N, 99°012'38.1"E

Bayankhongor, Mongolia

Find: 2018 Aug 30

Classification: Ordinary chondrite (H4)

History: Four fragments (156.17, 101.73, 208.17, and 227.35 g) were found on 30 and 31 August 2018 by the *UrFU - IAG-MAS* meteorite expedition-2018 in Southern Gobi (Pastukhovich A.Yu., Kolunin R.N., Larionov M.Yu., Muraviev L.A., Petrova E.V., Yakovlev G.A., Naasa Ochir) 10 km northwest of Shinejinst, Bayankhongor aimag (province), Mongolia.

Petrography: Classification (K. Dugushkina and S. Berzin, *RAS-UB*). Petrographic observation of a polished section shows a fine-grained inequigranular recrystallized matrix and chondrules (25%). Chondrite consists of olivine 50%, orthopyroxene 15%, clinopyroxene 10%, plagioclase 15%, chromite 3%, troilite 3-4%, Fe-Ni-metal 3-4%. Also chondrite contains accessory apatite and ilmenite. Predominate porphyritic olivine (PO) and porphyritic olivine-pyroxene (POP) chondrules. Chondrules mostly have even boundaries. Petrographic type is 4. Chromite-plagioclase assemblages are found in the recrystallized matrix. The assemblages range in size from 10-350 μ m and consist of 0.2-30- μ m-size rounded, euhedral, subhedral and anhedral chromite grains surrounded by plagioclase or glass of plagioclase composition. Moderate oxidation of metal, about 20-60% being affected, alteration of mafic silicates is beginning (weathering grade - W2). The samples are transected by dark shock veins. Shock stage is S3/4.

Geochemistry: EDX analyses by K. Dugushkina, *RAS-UB*. The meteorite is composed olivine Fa_{20±2.1} (N=37), low-Ca pyroxene Fs_{18±0.4}En_{80±0.4}Wo_{1±0.3} (N=17), plagioclase An_{24±3.5} (N=9), clinopyroxene En_{49±3.6}Fs_{10±1.7}Wo_{42±2.8} (N=6), chromite, troilite, kamacite (Ni 5.5-6.8 wt%), taenite (Ni 19.7-36 wt%), apatite and ilmenite. Average composition of chromite (N=9): Cr₂O₃ 55.6±0.9 wt%, FeO 28.4±1.4 wt%, MgO 4.8±1.1 wt%, Al₂O₃ 7.8±0.8 wt%, TiO₂ 2.2±0.2 wt%, MnO 0.7±0.04 wt%, SiO₂ 0.5±0.17 wt%, CaO 0.1±0.02 wt%, NiO 0.2±0.01 wt%.

Classification: Ordinary chondrite (H4)

Specimens: 591 g (3 samples) at *IAG-MAS*; 96.43 g sample and 5.30 g cut-off and thin section at *UrFU*.

Shisr 201 18°37'35,08''N, 53°54'57,41''E Zufar, Oman Find: 2012 Classification: Ordinary chondrite (L6) History: The meteorite was found 2012 during a field trip in the Oman desert and purchased by Jens Bäumer from the anonymous finder. Physical characteristics: Dark brownish fragment with some fusion crust. Petrography: The plagioclase grain size is about 80 µm. Shisr 202 18°31.574'N, 53°52.936'E Zufar. Oman Find: 2008 Classification: Ordinary chondrite (L5) History: The meteorite was found 2008 during a field trip in the Oman desert and purchased in 2020 by the main mass holder from a Polish meteorite dealer. Physical characteristics: Dark-brownish fragment without fusion crust. **Petrography**: The plagioclase grain size is about 40 µm. Sierra Gorda 027 22°30.27'S, 69°8.54'W Antofagasta, Chile Find: 24 Oct 2019 Classification: Ordinary chondrite (H5, melt breccia) Petrography: The meteorite is composed of chondrules, chondrule fragments and fragments of recrystallized aggregates of silicates, metal and sulfides; all the components are embedded in a fine-grained interstitial aggregate of pyroxene crystals and feldspar that resembles devitrified melt rock. The mineral grains and the chondrule fragments are intensively darkened due to occurrence of sub-micrometer troilite and metal inclusions that are highly abundant in the matrix as well. The main phases are olivine, pyroxene, metallic Fe, troilite and feldspar; minor chromite. Olivine has strong undulatory extinction.

Sierra Gorda 028 22°30.09'S, 69°2.44'W

Antofagasta, Chile

Find: 25 Mar 2019

Classification: Ordinary chondrite (H/L5)

Petrography: (Lorenz C.A., *Vernad*) The meteorite has chondritic texture and is composed of chondrule fragments, minor poorly lineated chondrules, and metal and troilite grains, set in minor recrystallized granular matrix. Modal abundance of metal is 4 vol%, troilite 3 vol%. Silicate grains often have finest troilite network. Olivine has undulatory and mosaic extinction, irregular and planar fractures and planar deformation features. Feldspar is partly isotropic. Chromite-feldspar objects were found. The meteorite is rich in troilite- and metal-troilite veinlets and aggregates. Silicate glass-troilite-metal melt pockets and melt veins are present.

Classification: The meteorite is classified as H/L5 chondrite based on pyroxene composition between that of H and L groups

Sierra Gorda 030 22°30.393'S, 69°02.233'W

Running Head

1	
2	
3	Antofagasta Chile
4	Find: 2017 Oct 19
5	Find. 2017 Oct 18 Classifications Onlinement on doits (L5)
6	Classification: Ordinary chondrite (LS)
7	History : One fragment (375.66 g) was found 18 October 2017 by the <i>UrFU</i> meteorite
8	expedition-2017 in Chile (Pastukhovich A.Yu., Larionov M.Yu., Kruglikov N.A., Kolunin
9	R.N.) near Calama.
10	Petrography: Classification (K. Dugushkina and S. Berzin, RAS-UB). The meteorite consists
11	mostly of a fine-grained, inequigranular, recrystallized matrix and chondrules (20%).
12	Chondrite consists of olivine 70%, orthopyroxene 15%, clinopyroxene 5-7%, plagioclase 5-
13	7% chromite 1-2% troilite 3-4% Fe-Ni-metal 1-3% with accessory anatite. Predominantly
14	porphyritic olivine (PO) and porphyritic olivine-pyroyene (POP) chondrules. Chondrules have
15	yagua boundarias. Thara is a grid of thin, matal trailita shoak yains in fractures in alivina
16	vague boundaries. There is a grid of thin, metal-troffice shock vehis in fractures in onvine,
17 19	pyroxene and plagloclase. Plagloclase is not melted. Snock stage is S3-4. Moderate oxidation
10	of metal, about 20-60% being affected, alteration of matic silicates is beginning. Metal and
19 20	troilite are almost completely oxidized in the grid of thin shock veins. Weathering grade is
20	W2.
22	Geochemistry: EDX analyses by K. Dugushkina, RAS-UB. Clinopyroxene
23	$En_{45}Fs_{12}Wo_{43\pm1}$ (N=7), plagioclase An _{20\pm0.7} (N=17), chromite, apatite, troilite, kamacite (Ni
24	5.7-6.8 wt%), taenite (Ni 28.17-35.2 wt%). The average composition of chromite (N=6):
25	$Cr_{2}O_{3}$ 55.7±0.4%, TiO ₂ 2.9±0.3%, Al ₂ O ₃ 5.8±0.2%, FeO 32.3±0.6%, MgO 2.5±04%, MnO
26	0.4+0.3% SiO ₂ 0.4+0.2
27	Classification: (K. Dugushking RAS-UR) I.5. ordinary chondrite
28	Speciments: 261.06 g in 2 gamples, plug 12.7 g out off and thin section. <i>UrEU</i>
29	Specimens . 301.96 g in 2 samples, plus 13.7 g cut-off and thin section, <i>OFF O</i>
30	
31	
32	Sierra Gorda 040 22°30.71'S, 69°2.19'W
33	Antofagasta, Chile
34 25	Find: 28 Oct 2018
35 26	Classification: Ordinary chondrite (L6)
27 27	Petrography : The meteorite of recrystallized chondrite texture is crossed by clast-laden melt
38	vein of severall mm in thickness. The olivine of the meteorite main mass demonstrates
39	undulatory extinction or weakly- to medium-developed mosaizism planar deformation
40	features in olivine are rare. These ontic features of olivine point to the shock stage S4. The
41	oliving in the melt vein demonstrates strong mosaicizm: the ringwoodite and wadsleite are
42	widely distributed in the melt vain that corresponds to the shear stage S6
43	where distributed in the ment vent that corresponds to the shock stage 50.
44	
45	
46	Sierra Gorda 041 22°30.11'S, 69°3.17'W
47	Antofagasta, Chile
48	Find: 13 Oct 2018
49	Classification: Ordinary chondrite (L5)
50	Petrography : The meteorite has brecciated texture. The breccia is composed of fragments of
51	two different lithologies. The dominant lithology is microporphyritic rock with rare relicts of
52	chondrules and inclusions of metal Fe-Ni. The melt nockets and shock veins of silicate glass
53	and ongque phases are present. The minor lithology is a shock darkaned chondrite composed
54 55	by the abandrule fragments and recruitellized groupler metric corresponding to network
55 56	by the chondrule magnetics and recrystantized granular matrix corresponding to petrologic
50	Type 5. The tragments of these rocks are glued together by silicate glass with inclusions of
	mineral tragments and onaque globules

58 59 60

22°30.11'S, 69°3.17'W

neteorite has brecciated texture. The breccia is composed of fragments of gies. The dominant lithology is microporphyritic rock with rare relicts of sions of metal Fe-Ni. The melt pockets and shock veins of silicate glass re present. The minor lithology is a shock-darkened chondrite composed gments and recrystallized granular matrix corresponding to petrologic nts of these rocks are glued together by silicate glass with inclusions of and opaque globules. mineral fragments

 Sierra Gorda 043 22°30.15'S, 69°3.22'W Antofagasta, Chile Find: 13 Oct 2018 Classification: Ordinary chondrite (L5, melt breccia) Petrography: The meteorite has brecciated texture with angular clasts 0.5-15 mm in size in a partly transparent, glass-rich melt rock with metal-sulfide blebs. The clasts are of petrologic type 5. Olivine in the clasts shows weak mosaicism and planar fractures.
 Sierra Gorda 044 22°30.324'S, 69°02.069'W Antofagasta, Chile Find: 18 Oct 2017 Classification: Ordinary chondrite (H5) History: One fragment of meteorite (88.03 g) was found 18 October 2017 by the UrFU meteorite expedition-2017 in Chile (Pastukhovich A.Yu., Larionov M.Yu., Kruglikov N.A., Kolumin P.N.) page gitt Colome
Ridginkov N.A., Kolumi K.N.J. hear city Calama. Physical characteristics : Total mass is 88.03 g. The meteorite has roughly rounded shape. Exterior of the stone is desert polished. The surface and interior of the meteorite is light to dark brown in color due to Fe-hydroxides. No fusion crust was observed. Petrography : Classification (KsK. eniya Dugushkina, <i>RAS-UB</i>). Chondrite with recrystallized texture. Predominantly porphyritic olivine (PO) and porphyritic olivine- pyroxene (POP) chondrules. Weathering grade is W2, moderate oxidation of metal. There is a network of thin metal-troilite shock veins in fractures in olivine and pyroxene. Plagioclase is melted. Shock stage is S4/5. Geochemistry : EDX analyses by K. Dugushkina, <i>RAS-UB</i> . The chondrite paragenesis includes olivine Fa _{19,3±3,0} (N=17), orthopyroxene En _{80,7±2.8} Fs _{17,7±2.5} Wo _{1.7±0.4} (N=11), clinopyroxene En _{49,9±2.1} Fs _{12.7±0.5} Wo _{37.5±2.1} (N=3), plagioclase An _{20,1±3.3} (N=5), chromite, apatite, troilite, taenite (Ni 8.8-31.3 wt.%) and kamacite (Ni 6.3 wt.%). The average composition of chromite (N=5): Cr ₂ O ₃ 57.0±1.3 wt%, FeO 29.9±0.8 wt%, MgO 3.3±0.4 wt% Al ₂ O ₃ 5.5±0.2 wt%, TiO ₂ 3.0±0.1 wt%, SiO ₂ 0.8±0.2 wt%, NiO 0.5±0.3 wt%. Classification : (K. Dugushkina, <i>RAS-UB</i>) H5, ordinary chondrite. Specimens : 78.10 g sample and 7.93 g cut-off and thin section, <i>UrFU</i>
Sierra Gorda 045 $22^{\circ}30.15^{\circ}S, 69^{\circ}9.27^{\circ}W$ Antofagasta, ChileFind: 2018 Oct 24Classification: Ordinary chondrite (L4)Petrography: (J. Gattacceca, <i>CEREGE</i>) Chondrite with packed, well-defined chondrules.Opaque are metal and sulfides.Geochemistry: Olivine Fa _{23.9±0.5} , Fa PMD = 1.7 %. Low-Ca pyroxeneFs _{15.4±6.1} Wo _{0.9±0.3} (n=8). Ca-pyroxene Fs _{12.5} Wo _{30.4} (n=1).Classification: Ordinary chondrite (L4).
Tanezrouft 090 (Tnz 090)25.163°N, 0.289°EAdrar, AlgeriaFind, possible fall: 2019 Oct 1Classification: Ordinary chondrite (L6)

Running Head

History: On October 1, 2019, at around 11 pm, observers in the area south of Adrar, Algeria, witnessed a bright fireball event. After searching by hunters in the desert, multiple crusted and broken stones were found together on October 13 in an area close to Bir Zmila, northwest of the town of Ouallene. Naji Ben Faraji purchased the stones in Tindouf, Algeria on October 27, 2019.

Physical characteristics: A total of 16 pieces ranging in weight from 43 g to 1489 g
(combined weight 6219 g). Most of the broken stones are partially coated by fresh black
fusion crust, and the interiors are overall light gray with visible fresh metal and some thin,
black shock melt veinlets.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Very fresh, highly recrystallized specimen with very sparse remnant chondrules and partial chondrules. Much of the studied thin section exhibits a poikiloblastic texture. Accessory phases include lightly stained kamacite, taenite, troilite, chromite, chlorapatite and merrillite.

Geochemistry: Olivine (Fa_{24.9±0.2}, range Fa_{24.6-25.1}, N = 6), low-Ca pyroxene (Fs_{20.7±0.3}Wo_{1.7±0.1}, range Fs_{20.4-21.1}Wo_{1.6-1.8}, N = 5), augite (Fs_{8.0±0.1}Wo_{44.6±0.3}, range Fs_{7.9-8.1}Wo_{44.3-44.8}, N = 3).

Classification: Ordinary chondrite (L6).

Specimens: 20.3 g including one polished thin section at *UWB*; remainder held jointly by Mr. N. Ben Faraji and Mr. M. Brahim Sueilem.

Tanezrouft 091 (Tnz 091) 24°15.85'N, 0°09.64'W

Adrar, Algeria

Purchased: 2020

Classification: Mesosiderite

History: Two stones totaling 4988 g were found near Adrar, Algeria. Carlos Muñecas Muñoz purchased the samples from a dealer in Morocco in 2020.

Physical characteristics: Samples are dark brown in color, rounded, and lack fusion crust. Rounded metal nodules protrude through the surface. A cut face shows the interior is composed of a breccia containing: metal grains, cm-sized rounded metal nodules and silicate clasts (up to 4 cm) and mineral grains (up to 0.5 cm).

Petrography: Description and Classification (A. Love, *App*): Sample is a breccia composed of (vol%): cm-sized rounded metal nodules (3); cm-sized rounded lithic clasts (10) with cumulate and brecciated textures, mineral clasts set within a matrix of poikiloblastic orthopyroxene plagioclase and silicates and metal (~35vol%). Modal percentages (vol%) of silicates (image thresholding of 20 backscattered electron images): orthopyroxene (60), plagioclase (31), olivine (5) and a lath-shaped silica polymorph (4). Matrix pyroxenes are inverted and show blebby and lamellar exsolution. Olivine shows well-developed reaction coronas some of which have replaced entire grains. Grain boundaries between silicates are sutured. Additional minerals are: kamacite, taenite, lath-shaped Si polymorph, apatite, troilite, chromite, trace ilmenite.

Geochemistry: (A. Love, *App*) Olivine, Fa_{36.6±7.7} (Fa_{25.7-44.3}, Fe/Mn=40.4±2.5, n=5); zoned low-Ca pyroxene, Fs_{30.8±2.5}Wo_{2.1±0.7} (Fe/Mn=27.5±1.4, n=6); matrix,

 $Fs_{37.5\pm1.3}Wo_{3.2\pm0.1}$ (Fe/Mn=23.6±0.5, n=4); high-Ca pyroxene, $Fs_{18.1\pm1.7}Wo_{40.6\pm4.2}$ (n=3). Plagioclase, $An_{92.4\pm0.4}Or_{0.1\pm0.1}$ (n=5).

Classification: Mesosiderite (estimated class) A3. Mesosiderite Class A based on texture, metal abundance, magnetic susceptibility and modal silicate abundance of plagioclase and Opx. Metamorphic class 3 based on recrystallization textures of silicates and absence of pigeonite.

Meteoritics & Planetary Science

Specimens: Carlos Muñecas (Expometeoritos) holds the 2525 g main mass. A 24.46 g slice and polished mount are on deposit at *App*.

Tarda 31° 49' 35"N, 4° 40' 46"W

Morocco

Confirmed fall: 2020

Classification: Carbonaceous chondrite (C2, ungrouped)

History: (H. Chennaoui Aoudjehane, FSAC, ATTARIK Foundation: A. Aaronson) On Tuesday, 25 August 2020, around 2:30 pm Moroccan time (GMT+1) a fireball was widely witnessed by people in southern Morocco from Alnif, Zagora, Tazarine, and Rich. The fireball trajectory was from the SW to NE. A search was immediately undertaken by local residents and meteorite hunters between Goulmima and Errachidia. Hundreds of people began searching on the same day, and the first piece was found the following day by Alalou Youssef close to his village of Tarda. The fall location is crossed by the national road linking Ouarzazate to Errachidia, and because of the easy access thousands of people soon traveled to the area. National TV channels Al Oula and 2M recorded the activity. A field mission was organized to the fall site on 27 and 28 August 2020, with Dr Mohamed Aoudjehane, Prof. Faouziya Haissen and Prof. Hasnaa Chennaoui (members of the board of directors of ATTARIK Foundation), with the support of Prof. Hicham Si Mhamdi (Faculty of Sciences, Errachidia), Adam Aaronson and members of the Moroccan Association of Meteorites (Ahmed Bouferra, Mohamed and Zaid El Guireh). Several eyewitnesses from areas up to 150 km away were interviewed, and reported three " of a bright yellow, barrel-sized fireball with green edges. The meteor was followed by a thick trail of white smoke that remained suspended for several seconds. The fireball was reported to release little pieces around its edges, witnesses said the fireball was accompanied by a whistle, followed by multiple detonations. One evewitness reported an almost vertical trajectory. Thousands of small, mostly complete stones were collected ranging from only a few milligrams to 99 g. Many pieces were recovered by hunters using magnets. The strewn field is about 3 km long and situated ~10 km east of Tarda centered at 31.8265°N, 4.6794°W.

Physical characteristics: Hundreds of small to medium-sized fusion crusted stones ranging from 0.1 g to 99 g. The majority of the fusion-crusted stones are <1 g. Some flight-oriented stones show a blue iridescence on their trailing edge, similar to that observed with Aguas Zarcas. Many stones shattered upon impact with the ground. The stones have low density, are somewhat friable, and are particularly susceptible to moisture, and rapidly slake in contact with water or alcohol. Freshly picked up stones were said to have a charcoal-like odor. Small fragments crushed in water emit a powerful tar-like odor. The interiors of the stones are dull black with dispersed white or light-colored grains or clasts (up to ~1 mm in size). Magnetic susceptibility log χ (× 10⁻⁹ m³/kg) = 4.99, 4.83, 5.03 (A. Irving, *UWS*), 4.80 (H. Chennaoui Aoudjehane, *FSAC*), 4.96 (D. Sheikh, *FSU*); average 4.92±0.10, n=5.

Petrography: (A. Irving, UWS; P. Carpenter, WUSL; L. Garvie, ASU; D. Sheikh, FSU)
Optical and electron microprobe observations of three fragments in polished thin sections reveal a matrix-rich breccia containing small chondrules (granular, BO) and chondrule fragments, very fine grained AOA, grains of forsterite (exhibiting slight undulose extinction) and other clasts set in a dominant fine-grained matrix (~80 vol.%, opaque in thin section). Chondrule sizes measured in two thin sections: 310±150 µm, n=10; 450±200 µm, n=5. No CAIs were identified. The dominant chondrule phase is forsterite (but spinel is present in two examples), and some are mantled by forsterite dust or exhibit partial replacement by Fe-Mn-dolomite, siderite or phyllosilicate material. A single igneous achondrite clast with subophitic texture was observed, and consists predominantly (~75 vol.%) of laths of twinned anorthite
Running Head

59

60

with subordinate forsterite, enstatite and minor diopside. Electron microprobe surveys of thin sections and powder X-ray diffraction studies of several ~20 mg fragments show that the matrix is dominated by phyllosilicates, with lesser magnetite, pyrrhotite, pentlandite, troilite, carbonates (Fe-Mn-dolomite, Mg-rich siderite and siderite), and olivine. The phyllosilicates show broad basal reflections at 14.7 Å and 7.4 Å, consistent with smectite and serpentine or interstratified serpentine/smectite, respectively. No reflections for sulfates were recognized. Magnetite (<20 μ m) is scattered throughout the sample in the form of framboids, platelets, and individual spherules; other accessory phases identified in the matrix by EPMA are troilite, Ni-bearing pyrrhotite, chromite and very rare kamacite.

Geochemistry: (D. Sheikh, *FSU*;P. Carpenter, *WUSL*): Forsterite (Fa_{1.0±0.6}, range Fa_{0.2-2.9}; CaO wt% = 0.2±0.1, range 0.1-0.4; Cr₂O₃ wt% = 0.51±0.17, range 0.11-0.91; FeO/MnO =10±6, range 3-24; n=35), ferroan olivine (Fa_{26.5±1.6}, range Fa_{24.8-28.0}; CaO wt% =0.2±0.1, range 0.2-0.3; Cr₂O₃ wt% = 0.44±0.06, range 0.40-0.51; FeO/MnO = 91±7, range 88-99; n=3). Achondrite clast: anorthite (An_{99.7±0.4}, range An_{99.4-99.9}, n=2), forsterite (Fa_{1.1}, FeO/MnO = 7, n=1), enstatite (Fs_{1.1±0.1} Wo_{3.2±0.5}, range Fs_{1.0+1.2} Wo_{2.7-3.7}, FeO/MnO = 3, n=3), diopside (Fs_{1.7} Wo_{44.0}, FeO/MnO = 3, n=1). Bulk composition of the matrix measured using 1 µm-sized beam (in wt%): SiO₂= 30.5±6.1, P₂O₅= 0.1±0.1, Cr₂O₃= 0.4±0.1, Na₂O= 1.0±0.2, TiO₂= 0.1±0.1, Al₂O₃= 2.1±0.5, FeO= 20.2±3.2, MnO= 0.3±0.3, MgO= 19.3±1.8, CaO= 0.5±0.5, K₂O= 0.1±0.1, NiO=2.0±1.0, S= 3.5±1.1, Sum 79.8±6.0, n=26. Oxygen isotopes (K. Ziegler, *UNM*) (linearized, all per mil relative to V-SMOW, TFL slope=0.528): A total of 7 untreated (i.e., no acid-wash) fragments were analyzed by laser fluorination. Sample weights for each measurement were between 2.0 and 4.7 mg. $\delta^{18}O = 21.971$, 17.924, 15.943, 20.842, 16.434, 17.034, 20.607; $\delta^{17}O = 11.423$, 9.124, 7.975, 10.613, 8.277, 8.859, 10.779; $\Delta^{17}O = -$ 0.178, -0.340, -0.443, -0.391, -0.401, -0.135, -0.102.

Classification: (C. Agee, UNM; K. Ziegler, UNM; A. Irving, UWS; L. Garvie, ASU; D. Sheikh, FSU; P. Carpenter, WUSL; H. Chennaoui Aoudjehane, FSAC; M. Zolensky, JSC; P. Schmitt-Kopplin, HZM) Carbonaceous chondrite (C2-ungrouped). The bulk mineralogy is consistent with a petrologic grade 2, based on the predominance of smectite and serpentine together with the presence of anhydrous mafic silicates, AOA, and chondrules. The oxygen isotopes give a bimodal distribution of the δ^{18} O-values, with one group having values somewhat like those of the CI chondrites, and the other group like values for the Yamato-type (CY) carbonaceous chondrites (King et al., 2019). However, Δ^{17} O values are lower than those for CI and CY chondrites, and plot below the TFL. These isotopic values do not overlap with those of any established carbonaceous chondrite group, hence the ungrouped designation. **Specimens**: 18.4 g including one polished thin section and one polished thick section at UWB; 21g and one polished thin section at UNM; 7 g provided by A. Aaronson and 6 g provided by J. Redelsperger at FSAC; 20 g at the Ministry of Energy, Mines and Environment, Rabat, Morocco provided by A. Aaronson; total 628 g with A. Aaronson (including 99 g, 82.4 g and 52.6 g stones); 540 g with M. Farmer and A. Karl, 260 g with J. Poblador; 480 g with D. Dickens; 145 g with M. Oulkouch; 146 g with J. Redelsperger; 31 g with B. Hoefnagels.

Tassédet 005 ~18°50'N, ~7°00'E

Agadez, Niger

Find: 2018

Classification: Ordinary chondrite (L6)

History: (Ziyao Wang) A meteorite strewn field was discovered west of Arlit. Ziyao Wang and Wenxi Jin purchased more than 100 pieces of above 50 kg from that strewn field from Adnane Sami in Agadez, Niger in 2018.

Physical characteristics: (Ziyao Wang) More than 100 individals and fragments between 3 kg and 5 g with fresh gray-brown fusion crust with contraction cracks. The total discovered mass exceeds 50 kg.

Petrography: (R. Bartoschewitz, *Bart*) Light gray matrix with well recognizable darker to dark gray chondrules (0.3-1.3 mm, av. 0.7 mm) of various types, and metal and sulfide particles that mainly present rusty halos.

Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine

Fa_{24.0±0.2} (n=19); pyroxene Fs_{20.3±0.4}Wo_{1.5±0.1} (n=10); diopside En₄₇Fs₇Wo₄₆; feldspar An₉Or₆ (n=2); chromite CRAL86, FFM88; galaxite. Kamacite Ni=5.3-6.7 wt%, Co=0.6-0.9 wt% (n=3=; troilite. Magnetic susceptibility (R. Bartoschewitz, *Bart*) log χ (× 10⁻⁹ m³/kg) = 4.81 ± 0.09 (n=10).

Classification: Ordinary chondrite (L6, S3, W1)

Specimens: 23.5 g at *Kiel* on deposit, Wenxi Jin and Ziyao Wang hold the main mass and 105 g with *Bart*.

Tata 001 29°44'42''N, 7°41'59"W

South, Morocco

Find: 2019

Classification: Lunar meteorite

Physical characteristics: A small greyish fragment. Cut surface reveals a dark interior. **Petrography**: (J. Gattacceca, *CEREGE*) Brecciated igneous rock with fractured mineral clasts to 300 μm set in a glassy mesostasis of feldspathic composition. Clasts are Ca-pyroxene (some with exsolutions) and plagioclase. The mesostasis has abundant ~20 μm vesicles. FeNi metal is present as ~10 μm grains.

Geochemistry: Ca-pyroxene Fs_{37.9±14.0}Wo_{15.4±8.6}, FeO/MnO 59.3±11.8 (n=6). Plagioclase An_{96.7}Ab_{3.1}Or_{0.2} (n=2).

Classification: Achondrite (lunar, feldspathic breccia)

Specimens: Type specimen at CEREGE. Main mass with J. Bassemon.

Tazhong 001 39°21.14'N, 83°15.49'E

Xinjiang, China

Find: 2019 Jan

Classification: Ordinary chondrite (H5/6)

History: The meteorite was found by Pengli Chen who is a meteorite hunter in middle Taklimakan desert near to Tazhong town, Southern Xinjiang, in January, 2019. Tazhong town was built in desert because of the exploration of oil.

Physical characteristics: Ten specimens were collected in the Taklimakan desert. The specimens are covered by black fusion crust. The partial fusion crust surface is cemented by sand. The masses of specimens are in a range 50 to 1000 g. The total mass is ~ 2 kg. **Petrography**: (J. Ji, S. Hu and Y. Lin, *IGGCAS*)The meteorite has a typical chondritic texture. Few relict chondrules are observed across the section, ranging up to ~ 1 mm in diameter. The major constituent minerals are olivine, pyroxene, plagioclase, Fe-Ni metal, and troilite, with minor chromite and phosphates. Some plgioclase grains are larger than 50 mm in diameter. Fe-Ni metal grains have been partially oxidized.

Geochemistry: Mineral compositions and geochemistry: (J. Ji, S. Hu and Y. Lin, *IGGCAS*) The olivine and pyroxene are homogeneous in chemical compositions. Olivine: Fa=17.8±0.9 (n=57), orthopyroxene: $Fs_{15.5\pm 1.1}Wo_{1.1\pm 0.46}(n=43)$

Classification: (J. Ji, S. Hu and Y. Lin, IGGCAS) H5/6

Tazzari	ne 002 30°30.3'N, 5°48.85'W
South	i, Morocco
Find:	2018 ification: Ordinary abandrita (115)
History	Collected by Geologist Juan Avilés Poblador in the winter of 2018 during an
expediti	on through the north of Zagora on behalf of the University of Alicante (Earth
Science	S Department Laboratory of Applied Petrology)
Physica	I characteristics : The single, 5105 g stone is roughly shaped like a loaf of bread
approxi	nately 15 cm long, with a dark brown exterior. Cut surfaces reveal abundant
chondru	les, with some cm-scale darker zones.
Petrogr	aphy: (C. Herd, UAb) Optical and microprobe examination of a polished thin sect
shows s	mall (generally $< 1000 \ \mu$ m), poorly-defined chondrules. Numerous small iron oxid
veinlets	are present throughout. Olivine has sharp optical extinction with <2° angular
variatio	
Geoche	mistry: (C. Herd and A. Locock, <i>UAb</i>) Data obtained by EMP examination of carl
coated t	nin section: Olivine $Fa_{19,4\pm0.5}$ (n=95); Low-Ca Pyroxene $Fs_{17,4\pm1.0}$ Wo _{1.4±1.0} (n=69).
Classin	cation: Ordinary chondrife, H5
at <i>UAlic</i>	ens. Type specifien of 149.0 g, meruding one tim section, is at <i>OAD</i> . Main mass
at Omit	
Tiberta	tine 001 31°4'45.87"N, 3°11'6.65"W
Bech	ar, Algeria
Find:	2018 Oct
Class	ification: Carbonaceous chondrite (CO3)
History	: The meteorite was found in the region of Bechar, Algeria, by the military.
Physica	I characteristics: A single piece of 126 g, completely covered by a fusion crust.
Petrogr	aphy : (I. Kerraouch; A. Bischoff, <i>IfP</i>) Chondrules, chondrule fragments, and CAI
are emb	edded in a fine-grained brownish matrix, which has an abundance of about 30 vol
The may	ority of chondrules have Fe-poor mineral constituents and the mean apparent
Coocho	ie size is about 200 μm. The sample is moderately weathered.
Randon	Instry . (K. Klemini, A. Dischoni, ηr) Mineral compositions and geochemistry. measurements of oliving grains revealed Easo (Easo (Easo (a))) n=30. Random
measure	ments of low-Ca pyroxene grains revealed $F_{21} = 18.8$ (rad, 5.57.5), $n=50$. Kandoln ments of low-Ca pyroxene grains revealed $F_{22} = 10.8$ (rad, 5.57.5), $n=50$. Kandoln ments of low-Ca pyroxene grains revealed $F_{22} = 10.8$ (rad, 5.57.5), $n=50$.
Classifi	cation: CO3 chondrite based on small chondrule size, chondrule-matrix ratio text
and min	eral chemistry
Specim	ens: 4.55 g in <i>IfP</i> , 121 g in Algeria (<i>IST-USTHB</i>)
1	
Tiros	18°54'37 03"8 45°49'10 14"W
Mina	s Gerais Brazil
Prob	ible fall: 2020 May 8
Class	ification: HED achondrite (Eucrite, cumulate)
History	: (M. Zurita, BRAMON, D. Andrade, OV/UFRJ) On May 8, 2020, at 06:25:15 UT
a bright	fireball was seen from some cities of Minas Gerais and São Paulo states, Brazil. A
loud exp	olosion sound was heard in at least 18 cities in the Triângulo Mineiro region. Eight
weather	cameras from "Clima Ao Vivo" recorded the fireball from seven cities in Minas
would be	vality as it will will a strategy in the second of the sec

Gerais, São Paulo and Paraná states. The fireball flash was also detected by GLM instrument on GOES-16 satellite. Analyzing the videos the BRAMON (Brazilian Meteor Network) calculated that the meteor traveled on a southwest-to-northeast trajectory, with velocity of 18.5 km/s, in a 15.8 deg inclination (relative to ground) crossing 180.1 km in 9.76 " and extinguished at 29.7 km high, 9.2 km west of Tiros city, MG. A 84 × 7 km2 strewn field was calculated by Jim Goodall covering a vast area between Tiros and Morada Nova de Minas city. Searches were performed by residents and by meteorite hunters, but with Covid 19 and the vast region covered by mountain and vegetation, no fragment was found. In early September when cutting the vegetation, he found a stone that drew his attention, but let it in the same place. On September 18, Mr. Titota found this shiny black stone just 150 m from the farmhouse and brought it to his wife's rock collection. He made a video and send to a friendship whatsapp group. The priest José Luis de Araujo Paiva, who participated in the group, suspected to be a meteorite and sent the video to Sandro Barcelos, from Tirense Noticias website, that published the video. The video was shared by @mulheresdeestrelas. Through the @mulheresdeestrelas website and Sandro, The Meteoríticas found the owner of the meteorite. The finder and his family assure that they never saw that rock before. Since the find place is only about 30 km from the calculated strewn field and due to the meteorite be so fresh, it is probably associated with the May fireball.

Physical characteristics: Single flight-oriented stone with glassy black fusion crust and flow lines.

Petrography: (M.E Zucolotto) Three thin sections were analyzed, it is a coarse-grained (~1 mm) eucrite with a cumulate texture. It Consists mainly of anorthitic plagioclase feldspar, ortho and clinopyroxene with minor amounts of ferroan olivine, SiO₂, troilite, phosphate and ilmenite. At those small sections no chromite neither Fe-metal were observed. The most abundant pyroxene is pigeonite. Some grains exhibit subsolidus augite exsolution. From the plagioclase An content and the texture, it can be classified as a cumulate eucrite. It shows undulatory extinction and planar fractures in plagioclases and planar and irregular fractures and weak mosaicism in some pyroxene grains are indicatives of a shock stage S4. **Geochemistry**: (A. Tosi, IGEO/UFRJ) Electron microprobe analysis yields: Low-Ca pyroxene: Fs_{39.8±11.5}Wo_{6.3±1.8}, Fe/Mn=34.1±1.5 (n=36). Rich-Ca pyroxene: Fs_{49.5±6.1}Wo_{24.8±7.9}, Fe/Mn=34.7±7.0 (n=60). Olivine: Fa_{64.7±0.6} (n=9). Plagioclase:

 $An_{93.4\pm2.8}Ab_{6.4\pm2.7}Or_{0.2\pm0.1}$ (n=58).

Classification: Cumulate Eucrite. Weathering (W0) and moderately shocked (S4) **Specimens**: Type specimen at *MNRJ*. Main mass with Mr. Titota

Tisserlitine 001 21.325°N, 0.729°E

Gao, Mali

Find: 2019 Dec

Classification: Lunar meteorite (feldspathic breccia)

History: Beginning in December 2019 many similar dark stones were found together in the Kidal region of Mali, close to the border with Algeria. One very large stone (40026 g), another stone (4037 g) and 44 smaller stones (combined weight 3642 g) (total weight 47705 g) were purchased by Aziz Habibi in January 2020 from an Algerian dealer and subsequently acquired by Darryl Pitt. Independently, ten other stones of the same distinctive material (combined weight 8536 g) plus many smaller fragments (combined weight 1169 g) were purchased by Mbark Arjdal in February and March 2020 from a relative of the same Algerian dealer.

Physical characteristics: All specimens (many of which have a flattened slab-like form) lack fusion crust and exhibit medium-brown, "knobby" exterior surfaces. Interiors of stones have

an overall tan to pinkish hue with obvious light gray, dark gray and whitish clasts plus some visible small grains of metal.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) Two separate endcut specimens were studied. Both are samples of the same breccia material, composed of mineral clasts of anorthite, olivine, pigeonite, subcalcic augite, augite and orthopyroxene, plus sparse lithic clasts of spinel troctolite, set in a fine grained microvesicular matrix containing accessory altered kamacite, troilite, taenite and pentlandite. Secondary calcite is present pervasively in one of the two specimens studied and in places may be replacing original glass. Olivine grains in both studied specimens have been partially replaced by inhomogeneous phyllosilicate-rich assemblages, which apparently are hydroxylated (as evidenced by systematically low oxide analytical sums of 88-90 wt.% and absence of measurable F and Cl), and which are very Mndeficient (yielding very elevated FeO/MnO ratios in the range 150-250). Troctolitic clasts are composed predominantly of anorthite and olivine with accessory Cr-pleonaste, low-Ca pyroxene and/or higher-Ca pyroxene.

Geochemistry: Olivine (Fa_{17.3-32.1}, FeO/MnO = 76-100, N = 15), anorthite (An_{95.4-99.0}Or_{0.2-0.0}, N = 7), pigeonite (Fs_{18.2-26.8}Wo_{12.4-4.7}, FeO/MnO = 47-54, N = 6), orthopyroxene (Fs_{16.0-21.6}Wo_{2.2-3.7}, FeO/MnO = 51-66, N = 4), subcalcic augite (Fs_{15.9}Wo_{31.0}, FeO/MnO = 41), augite (Fs_{7.6-7.9}Wo_{42.9-45.6}; Fs_{13.8}Wo_{38.9}; FeO/MnO = 36-48, N = 3). Troctolite clast: olivine (Fa_{18.2-21.2}, FeO/MnO = 84-92, N = 4), anorthite (An_{97.7}Or_{0.0}), pleonaste (mg = 0.721, cr = 0.093).

Classification: Lunar (feldspathic regolithic breccia, partially hydrothermally-altered). **Specimens**: 37.6 g in the form of two polished endcuts at *UWB*; remainder with *DPitt* and Mr. M. Arjdal.

Toconao 001 22°58.68'S, 68°18.01'W

Antofagasta, Chile

Find: 26 Mar 2019

Classification: Ordinary chondrite (LL3)

History: The meteorite was found by Mr. T. Kryachko on March 26, 2019, during a visual search for the meteorites in the Atacama desert.

Physical characteristics: The meteorite shows numerous fragments of irregular shape. It is grayish-brown in color, with fusion crust is absent, and chondritic texture visible on the sample surface. Some of the fragments are patchy, covered by salts; some of them are fractured by sub-parallel fracture planes due to weathering processes.

Petrography: (Lorenz C. A.) The meteorite is composed of chondrules of RP, RO, BP, BO, POP, PO and C types. Average chondrule diameter is 486±290 μm (N=280). Minor components are chondrule fragments, mineral grains and essentially fine-grained, non-transparent matrix. The chondrules are well outlined and have sharp contacts with the matrix. Troilite-rich chondrules are widely distributed, silica-rich chondrule was found. The main phases are olivine, pyroxene, troilite and glass; metal is accessory. Several chondrules contain Al-rich clinopyroxene. Olivine has sharp optical extinction. A network of thin veins of weathering products crosses the meteorite.

Geochemistry: Mineral compositions and geochemistry: Olivine: Fa_{19.4±12.3} (N=70), PMD Fa is 63.2%, CaO 0.01-0.58 wt%; pyroxene Fs_{8.3±7.6}Wo_{1.2±1.2} (N=30), clinopyroxene Fs_{15.4±6.1}Wo_{23.4±8.2} (N=6); Al-rich clinopyroxene (wt%, N=22): Al₂O₃ 13.7±4.3; TiO₂ 0.7±0.4; Cr₂O₃ 0.3±0.3; sulfide is troilite; Total Fe of the meteorite is 19.7 wt% (XRF, T. G. Kuzmina, *Vernad*).

Classification: Based on a texture, PMD of Fa olivine and total Fe abundance the meteorite is classified as ordinary chondrite of LL group, petrological type 3.

Specimens: Type specimen of 158 g and thin section are on deposit in *Vernad*. Mr. T. V. Kryachko holds main mass of the meteorite.

 Touat 004
 27°10'20.6''N, 0°44'50.0''W

 Adrar, Algeria
 Find: March 2019

Classification: Lunar meteorite (feldspathic breccia)

History: The sample was purchased in July 2020 via Internet contact as a single piece of 345 g. Based on the information of the Moroccan dealer the rock was found in the Adrar region, Algeria, in March 2019.

Physical characteristics: The piece has a rough grayish appearance with no obvious fusion crust. Saw cuts reveal a breccia with numerous angular dark clasts. The rock appears to be a relative fine-grained breccia compared to many other lunar breccias. Most obvious are dark clasts up to ~5 mm in size and white veins and areas often including brownish components. **Petrography**: (A. Bischoff and K. Klemm, *IfP*). Optical studies of a thin section show that it is a breccia of different clasts embedded in a fine-grained matrix. The most abundant lithology is a feldspar-rich granulitic breccia. Overall the rock appears to be a well-recrystallized rock. The lithic clasts primarily consist of highland components dominated by anorthositic lithologies. Plagioclase transformed into maskelynite and glassy areas are less common compared to their abundances in many other lunar breccias. The breccia contains large areas and veins of secondary terrestrial alteration materials (mostly carbonates) often including red-brownish mineral aggregates.

Geochemistry: (A. Bischoff and K. Klemm, *IfP*) Mineral compositions: Olivine Fa_{35.9±2.1}, range Fa₃₂₋₃₉, Fe/Mn=109, n=7; low-Ca pyroxene Fs_{22.8±2.0}Wo_{8.0±3.4} Fe/Mn=55, n=13; plagioclase: An_{95.4±1.4}, n=16

Classification: Lunar meteorite (feldspathic breccia)

Touat 005 27.747222, -1.369722

Adrar, Algeria Find: 2020

Classification: Lunar meteorite (feldspathic breccia)

History: These two stones were found by meteorite hunters driving off-road between Tabelbala, Algeria, and the <u>Erg Chech 002</u> find locality. Nearest towns to this find are Adrar and Tamentit, Algeria.

Physical characteristics: Two stones, identical in appearance, (2035 and 1675 g) were found together. This is a fragmental breccia with white plagioclase megacrysts and lithic clasts set in a dark shocked matrix. Plagioclase megacrysts are up to two centimeters in length and are translucent in thinly sliced slabs. No fusion crust is present.

Petrography: (C. Agee, *UNM*) Electron microprobe analysis and imaging reveals a fragmental breccia with large, sometimes euhedral anorthite crystals (megacrysts). The megacrysts appear to be shock-mosaicized or recrystallized with a significant amount of dark and light inclusions present, some of the observed inclusion veining in the megacysts is possibly maskelynite. The compositions of the plagioclase megacrysts are slightly more anorthitic than the groundmass plagioclase fragments, although there is compositional overlap between the two that is within microprobe error. This is possibly a monomict breccia since the section analyzed had only one coherent population of pyroxenes and olivines that appear to be related by equilibrium igneous crystallization. The olivine and pyroxene compositions are

1	
2	
3	similar to that in ferroan anorthosites Shock melt veins with vesicles were observed Minor
4	onaque phases are ilmenite and chromite
5	Coordination (C. A goo UNA Diagoolago magaaryata An Ab Or $n=6$:
б	Geochemistry. (C. Agee, $OIVIII$) Flagioclase inegacrysis Ang _{7,2±0.7} Au _{2.6±0.3} Oi _{0.2±0.1} , ii=0,
7	groundmass plagiociase An _{96.5±0.3} Ab _{3.2±0.3} Or _{0.2±0.1} , n=6; low-Ca pyroxene Fs _{28.2±5.9} Wo _{5.6±3.1} ,
8	Fe/Mn=59 \pm 6, n=6; augite Fs _{18.7\pm0.4} Wo _{43.2\pm1.5} , Fe/Mn=48 \pm 1, n=2; olivine Fa _{36.7\pm10.1},}
9	Fe/Mn=95 \pm 3, n=9; shock melt vein SiO ₂ =43.6 \pm 0.4, Al ₂ O ₃ =31.1 \pm 0.8, FeO=3.7 \pm 0.6,
10	MgO=3.3±0.5, MnO=0.05±0.02, CaO=17.3±0.1, Na ₂ O=0.32±0.05 all wt%, n=3.
11	Classification : Lunar feldspathic breccia with plagioclase megacrysts. Mafic minerals similar
12	in composition to that present in ferroan anorthosites
13	Specimental 25.9 and denositiest UNIA Month Lycen helds the main messes
14	Specimens : 25.8 g on deposit at <i>ONM</i> , Mark Lyon noids the main masses.
15	
16	
17	Touat 006 27°03'N, 0°10'W
18	Adrar, Algeria
19	Purchased: 2019
20	Classification: UED schondrite (Eucrite molt brassie)
21	Ut a The definition of the def
22	History : The meteorite was found in the Adrar desert and was purchased as one piece of 6/0
23	g from a meteorite dealer in Mauritania
24	Physical characteristics: Dark-grayish rock with some light clasts and pores
25	Petrography : (A. Bischoff and K. Klemm, <i>IfP</i>) The meteorite is a eucrite-melt breccia
26	composed of up to several mm sized eucritic clasts set into a fine-grained melt rock matrix.
27	The locally schlieren-like melt matrix is mostly crystalline and contains abundant pores
28	Coochemistry: (A Bischoff and K Klemm <i>IfP</i>): The rock contains low Ca and Ca
29	Geotermistry . (A. Dischort and K. Kichnin, $\eta \eta$). The fock contains low-Ca and Ca
30	pyroxene. Low-Ca pyroxene is $FS_{58.7\pm6.2} WO_{4.7\pm3.3} (FS_{35.8-63.5} WO_{1.8-12.9})$; mean Fe/Min=33.8;
31	n=19) and the Ca-pyroxene has $Fs_{27.8\pm0.7}Wo_{42.4\pm1.1}$ (Fs _{26.6-28.9} Wo _{40.2-43.8} ; n=13). Calcic
32	plagioclase has a composition of $An_{90.3\pm1.0}$ ($An_{88.6-91.6}$, n=11)
33	Classification: HED achondrite (Eucrite, melt breccia)
34	
35	
36	Tungsten Mountain 054 (TM 054) 30°41 3426'N 117°37 2048'W
37	Nevida United States
38	F: 1 4 A 2001
39	Find: 4 Aug 2001
40	Classification: Ordinary chondrite (H5)
41	History: While conducting meteorite recovery on a dry-lake in Edwards Creek Valley,
42	Robert <i>Verish</i> found this stone fragment on 2001-08-04
43	Physical characteristics : An 11.5 g stony fragment, tabular-shaped $(30 \times 25 \times 8 \text{ mm})$ having
44	dark-brown hackly exterior with black pating on some sides and one tiny patch of relict
45	fusion-crust Basically a typical-looking fragment of a H-chondrite from this this dry-lake in
46	Edwards Create Valley
47	Edwards Creek valley.
40 40	retrography : (D. Sneikn, FSU) Low chondrule abundance (500-1000 μ m, n=2). Sample is
49	composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size $10\pm 2 \mu m$),
50	troilite, Fe-Ni metal, Fe-oxides, and chromite.
50	Geochemistry : Olivine (Fa _{18.6\pm0.4} , n=9), Low-Ca Pyroxene (Fs _{16.5\pm0.5} Wo _{1.3\pm0.3} , n=13).
52 53	Classification: Ordinary Chondrite (H5)
55	Snecimens: 10.3 σ at <i>UCLA</i> : main mass with <i>Vorish</i>
55	$\mathbf{S}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} \mathbf{s}_{\mathbf{r}} $
55	
57	
58	Tungsten Mountain 055 (<i>TM</i> 055) 39°41.3455'N, 117°37.1916'W
59	Nevada, United States
60	Find: 4 Aug 2001

4

5

6

7

8

9 10

11

12

13

14

15

16

21

22

23

24

25 26

27

28

29

30

31 32

33

34

35

36

37

42

43

44

45

46

47 48

49

50

51

52

53

54

55 56

57

58 59 60

Classification: Ordinary chondrite (H5) **History**: While conducting meteorite recovery on a dry-lake in Edwards Creek Valley, Robert Verish found this stone fragment on 2001-08-04 **Physical characteristics**: A single 7.4 g stony fragment, tabular-shaped $(32 \times 25 \times 8 \text{ mm})$ having dark-brown, hackly exterior with some black patina, and one tiny patch of relict fusion-crust. Basically, a typical-looking fragment of a H-chondrite from this this dry-lake in Edwards Creek Valley. **Petrography**: (D. Sheikh, FSU) Low chondrule abundance (500-1000 µm, n=2). Sample is composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size $6\pm1 \mu m$), troilite, Fe-Ni metal, Fe-oxides, and chromite. **Geochemistry**: Olivine (Fa_{19.0±0.8}, n=15), Low-Ca Pyroxene (Fs_{16.5±0.7}Wo_{1.3±0.2}, n=17). **Classification**: Ordinary Chondrite (H5) **Specimens**: 7 g at UCLA; main mass with Verish. 39°41.3442'N, 117°37.1896'W **Tungsten Mountain 056** (*TM* 056) Nevada, United States Find: 4 Aug 2001 Classification: Ordinary chondrite (H5) **History**: While conducting meteorite recovery on a dry-lake in Edwards Creek Valley, Robert Verish found this stone fragment on 2001-08-04 **Physical characteristics**: A single 28.8 g stony fragment, flat-oval shape $(45 \times 30 \times 10 \text{ mm})$ having dark-brown, hackly exterior with some black patina, and one tiny patch of relict fusion-crust. Basically, a typical-looking fragment of a H-chondrite from this this dry-lake in Edwards Creek Valley. **Petrography**: (D. Sheikh, FSU) Low chondrule abundance (300-1200 μ m, n=7). Sample is composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size $5\pm1 \mu m$), troilite, Fe-Ni metal, Fe-oxides, and chromite. **Geochemistry**: Olivine (Fa_{18,7±0.9}, n=19), Low-Ca Pyroxene (Fs_{16,7±0.7}Wo_{1,4±0.2}, n=20). **Classification**: Ordinary Chondrite (H5) Specimens: 27.9 g at UCLA; main mass with Verish. **Tungsten Mountain 057** (*TM* 057) 39°41.3294'N, 117°37.1671'W Nevada, United States Find: 4 Aug 2001 Classification: Ordinary chondrite (H5) **History**: While conducting meteorite recovery on a dry-lake in Edwards Creek Valley, Robert Verish found this stone fragment on 2001-08-04 **Physical characteristics**: A single 11.5 g stony fragment, rectangular-solid $(23 \times 21 \times 11)$ mm) having dark-brown exterior with two sides fusion-crusted. Cut surface reveals an orange and beige interior with small metal-grains and chondrules. **Petrography**: (D. Sheikh, FSU) Low chondrule abundance (300-1000 µm, n=5). Sample is composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size 6±2 µm), troilite, Fe-Ni metal, Fe-oxides, and chromite. **Geochemistry**: Olivine (Fa_{18,7±0,4}, n=14), Low-Ca Pyroxene (Fs_{16,3±0,4}Wo_{1,3±0,2}, n=13). **Classification**: Ordinary Chondrite (H5) Specimens: 9.9 g at UCLA; main mass with Verish.

2	
3	Tungsten Mountain 058 (<i>TM</i> 058) 39°41.3333'N, 117°37.2057'W
4	Nevada United States
5	Find: A Aug 2001
6	Classifications Ordinary shandhita (US)
7	Classification: Ordinary chondrite (H5)
8	History : While conducting meteorite recovery on a dry-lake in Edwards Creek Valley,
9	Robert Verish found this stone fragment on 2001-08-04
10	Physical characteristics : A single 34.9 g stony fragment, shaped like a dried apricot (40×35)
11	\times 15 mm) having dark-brown hackly exterior with some black pating and a small patch of
12	relict fusion_crust A saw_cut reveals dark_tan interior with snarse metal_grains and small
13	show drylog Degically, a typical looking from out of a U show drite from this this dry lake in
14	chondrules Basically, a typical-looking fragment of a H-chondrite from this this dry-lake in
15	Edwards Creek Valley.
16	Petrography : (D. Sheikh, <i>FSU</i>) Low chondrule abundance (500-700 µm, n=2). Sample is
17	composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size $7\pm1 \mu m$),
18	troilite Fe-Ni metal Fe-oxides and chromite
19	Geochemistry: Oliving (Faloring, $n=18$) Low-Ca Pyroyene (Estrono Worston, $n=16$)
20	Classification: Ordinary Chandrite (II5)
21	Classification. Ordinary Chondrifle (HS)
22	Specimens: 32.1 g at UCLA; main mass with Verish.
23	
24	
25	Tungsten Mountain 059 (<i>TM</i> 059) 39°41.3069'N, 117°37.2672'W
26	Nevada United States
27	Find: 4 Aug 2001
28	Classifications Onlinementary data (US)
29	Classification: Ordinary chondrite (H5)
30	History: While conducting meteorite recovery on a dry-lake in Edwards Creek Valley,
31	Robert Verish found this stone fragment on 2001-08-04
32	Physical characteristics : A single 12 g stony fragment, four-sided $(28 \times 17 \times 10 \text{ mm})$ with 3
33	sides forming a corner covered in 1mm-thick fusion-crust Saw-cut reveals a light-brown
34	interior with many metal-grains and visible chondrules
35	Batagraphy (D. Sheikh, ESU) Law abandrula abundance (200, 1000 μ m, n=10). Sample is
36	retrography. (D. Sheikh, FSO) Low chondrule abundance (300-1000 µm, n-10). Sample is
37	composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size $10\pm2 \ \mu m$),
38	troilite, Fe-Ni metal, Fe-oxides, and chromite.
39	Geochemistry : Olivine (Fa _{19.0±0.7} , n=20), Low-Ca Pyroxene (Fs _{16.9±0.9} Wo _{1.3±0.1} , n=16).
40	Classification: Ordinary Chondrite (H5)
41	Specimens: 10.1 g at UCLA: main mass with Verish
42	specimens. 10.1 g at 0 CL21, main mass with 7 Crish.
43	
44	
45	Tungsten Mountain 060 (<i>TM</i> 060) 39°41.3092′N, 117°37.2650′W
46	Nevada, United States
47	Find: 4 Aug 2001
48	Classification. Ordinary chondrite (H5)
49	History : While conducting meteorite recovery on a dry-lake in Edwards Creek Valley
50	Pahort Variah found this stone frequent on 2001 08 04
51	Robert <i>Vertsh</i> found this stone fragment of $2001-06-04$
52	Physical characteristics : A single 18.9 g stone, flat, with no fusion-crust (interior) fragment
53	$(35 \times 20 \times 6 \text{ mm})$ having dark-brown, hackly exterior with some subtle slickened-side.
54	Basically, a typical-looking fragment of a H-chondrite from this this dry-lake in Edwards
55	Creek Valley.
56	Petrography : (D. Sheikh, <i>FSU</i>) Low chondrule abundance (300-1200 µm n=12). Sample is
57	composed of oliving low-ca pyroxene recrystallized plagioclase (average size 6+1 µm)
58	troilite. Fo Ni motel. Fo ovides and abromite
59	
60	Geochemistry: Olivine (Fa _{18.7±0.6} , n=20), Low-Ca Pyroxene (Fs _{16.6±0.3} Wo _{1.3±0.2} , n=14).

З
4
4
5
6
7
8
0
9
10
11
12
13
14
1-
15
16
17
18
19
20
20
21
22
23
24
25
25
20
27
28
29
30
31
22
32
33
34
35
36
27
57
38
39
40
41
42
12 12
43
44
45
46
47
48
-10 40
49 50
50
51
52
53
51
54 55
55
56
57
58
59
60
υU

Classification: Ordinary Chondrite (H5) **Specimens**: 16 g at *UCLA*; main mass with *Verish*.

Tungsten Mountain 073 (*TM* 073) 39°40.7732'N, 117°37.7552'W

Nevada, United States

Find: 5 Aug 2001

Classification: Ordinary chondrite (H5)

History: While conducting meteorite recovery on a dry-lake in Edwards Creek Valley, Robert *Verish* found this stone fragment on 2001-08-05

Physical characteristics: A single 28.5 g stony fragment, pyrimidal in shape $(40 \times 30 \times 23 \text{ mm})$ having dark-brown, hackly exterior with some black patina. One side is covered in a patchy, rough-surfaced relict fusion -crust. Cut surface reveals many small metal-grains and small chondrules in a light-brown matrix.

Petrography: (D. Sheikh, *FSU*) Low chondrule abundance (900-1200 μ m, n=3). Sample is composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size 8±2 μ m), troilite, Fe-Ni metal, Fe-oxides, and chromite.

Geochemistry: Olivine (Fa_{19.3±0.5}, n=9), Low-Ca Pyroxene (Fs_{16.8±0.7}Wo_{1.2±0.2}, n=20).

Classification: Ordinary Chondrite (H5)

Specimens: 26.2 g at UCLA; main mass with Verish.

Tungsten Mountain 084 (*TM* 084)

39°41.2226'N, 117°37.3741'W

Nevada, United States Find: 5 Aug 2001

Classification: Ordinary chondrite (H5)

History: While conducting meteorite recovery on a dry-lake in Edwards Creek Valley, Robert *Verish* found this stone fragment on 2001-08-05

Physical characteristics: Two physically-paired stony fragments, total weight 28.1 g, irregularly shaped (badly weathered) having dark-brown, hackly exterior with some black patina, but no fusion-crust. Basically, a typical-looking fragment of a H-chondrite from this this dry-lake in Edwards Creek Valley.

Petrography: (D. Sheikh, *FSU*) Low chondrule abundance (700-900 μ m, n=2). Sample is composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size 6±2 μ m), troilite, Fe-Ni metal, Fe-oxides, and chromite.

Geochemistry: Olivine (Fa_{18.9±0.5}, n=16), Low-Ca Pyroxene (Fs_{16.9±0.8}Wo_{1.1±0.2}, n=7).

Classification: Ordinary Chondrite (H5)

Specimens: 12.7 g at UCLA; main mass with Verish.

Tungsten Mountain 116 (*TM* 116) 39°41.2358'N, 117°37.3940'W

Nevada, United States

Find: 5 Aug 2001

Classification: Ordinary chondrite (H5)

History: While conducting meteorite recovery on a dry-lake in Edwards Creek Valley, Robert *Verish* found this stone fragment on 2001-08-05

Physical characteristics: One 7 g stony fragment, angular with an irregular shape $(25 \times 20 \times 15 \text{ mm})$ having dark-brown, hackly exterior with a black patina, and small patches of relict fusion crust. Saw-cut reveals light-brown interior with many metal-grains and visible

1	
2	
3	chondrules Basically a typical-looking fragment of a H-chondrite from this this dry-lake in
4	Edwards Creek Valley
5	Detworks Creek Valley.
6	Petrography: (D. Sneikn, FSU) Low chondrule abundance (700-1200 µm, n=3). Sample is
7	composed of olivine, low-ca pyroxene, recrystallized plagioclase (average size $9\pm 2 \ \mu m$),
8	troilite, Fe-Ni metal, Fe-oxides, and chromite.
9	Geochemistry: Olivine (Fa _{18,8+0,5} , n=13) Low-Ca Pyroxene (Fs _{16,6+0,6} Wo _{1,2+0,1} , n=12)
10	Classification: Ordinary Chondrite (H5)
11	Successification. Ordinary Cholidine (115)
12	Specimens : 5.5 g at OCLA; main mass with <i>Vertsn</i> .
12	
14	
15	Tungsten Mountain 121 (<i>TM</i> 121) 39°41.2412'N, 117°37.3834'W
15	Nevada United States
17	Eind: 5 Aug 2001
17	Filla. 5 Aug 2001
10	Classification: Ordinary chondrite (H5)
19	History : While conducting meteorite recovery on a dry-lake in Edwards Creek Valley,
20	Robert Verish found this stone fragment on 2001-08-05
21	Physical characteristics : One 2.6 g stony fragment teardron-shaped ($15 \times 7 \times 7$ mm) having
22	dark brown backly exterior with a block nating, but no fusion crust Protructing through the
23	dark-brown, nackry exterior with a black patina, but no rusion-crust. Frontuding through the
24	exterior is one large $(1 \times 0.75 \text{ mm})$ oval chondrule. Saw-cut reveals light-brown interior with
25	many metal-grains and visible chondrules. Basically, a typical-looking fragment of a H-
26	chondrite from this this dry-lake in Edwards Creek Valley.
27	Petrography : (D. Sheikh <i>ESU</i>) Low chondrule abundance (200-1000 μ m n=9). Sample is
28	composed of aliving low-ca pyrayene recrystallized plagioclase (average size 6+1 µm)
29	composed of on vine, low-ea pyroxene, recrystantized plagiociase (average size $0\pm 1 \mu m$),
30	trollite, Fe-Ni metal, Fe-oxides, and chromite.
31	Geochemistry: Olivine (Fa _{18.7±0.8} , n=23), Low-Ca Pyroxene (Fs _{16.4±0.7} Wo _{1.0±0.3} , n=12).
32	Classification: Ordinary Chondrite (H5)
33	Specimens : 1 g at UCLA; main mass with Verish.
34	
35	
36	
37	Tyro ~37.0°N, ~95.8°W
38	Kansas, United States
39	Find: 1978
40	Classification: Ordinary chondrite (L6)
41	History . The meteorite was found by a farmer in a field in 1978 near the small town of Tyro
42	Vangag It was given to his piece. Dione Crowford It remained in their family until it was
43	Kansas. It was given to his meee, Diane Crawford. It remained in their family until it was
44	recognized as a meteorite by the Kansas Meteorite Society in October 2008.
45	Petrography : The rock is very recrystallized chondrite with discernable PO, POP and BO
46	chondrules. Plagioclase grain size is ~60 μm.
47	Classification : Ordinary chondrite (I.6, S3, W2)
48	Chassification: Oraniary enomatice (E0, 55, (12)
49	
50	
51	United Arab Emirates 030 (UAE 030) 23°36'13,12''N, 55°09'01,56''E
57	Abu Dhabi, United Arab Emirates
J∠ 52	Find: 2012
33 E 4	Classification: Ordinary chondrite (I 6)
54 55	Chapsen carrier of the material structure of the structu
55	History . The meteorite was found 2012 during a field trip to the United Arab Emirate desert
56	and purchased by Jens Bäumer from the anonymous finder.
5/	Physical characteristics: Dark brownish fragment with some fusion crust.
58	Petrography : The plagioclase grain size is about 80 um. Contains black shock melt veins
59	
60	

Utting 33°59.20'N, 114°0.10'W Arizona, United States Find: 2020 Jan 28

Classification: Ordinary chondrite (H4)

History: While searching for additional stones of the <u>Bouse</u> (L4-6) meteorite, a cluster of broken fragments was recovered by Robert *Verish* on January 28, 2020. Sample was taken from the 294 g specimen.

Physical characteristics: Many stones are dark-brown, angular fragments. Some stones have one or more sides which appear to be a thick, desert-varnished patina, which is indistinguishable from a relict fusion-crust. A cut surface reveals an interior with small, matrix-supported chondrules of various colors.

Petrography: (D. Sheikh, *FSU*) Chondrules moderately abundant (500±50 μm). Sample composed of olivine, low-Ca pyroxene, troilite, Fe-Ni metal, and Fe-oxides.

Geochemistry: Olivine (Fa_{17,8±0.2}, n=16), low-Ca Pyroxene ($Fs_{16,1\pm0.4}Wo_{1,2\pm0.2}$, n=25).

Classification: Ordinary Chondrite (H4)

Specimens: 27.2 grams at UCLA; main mass with Verish.

Valle 59°01'20.9"N, 7°15'28.1" E

Aust-Agder, Norway

Find, possible fall: 2013 Jun 9

Classification: Ordinary chondrite (H5)

History: (M. Bilet, H. Friis, *UOslo*) The meteorite was found on 9 June 2013 by Terje Fjeldheim, during a fishing trip in an open mountain area above tree line, near a small lake. The rock was in a small pit in the ground and was clearly discernible from the surrounding terrain. The meteorite was split into two pieces when discovered. A fireball was observed by the Norwegian Meteorite Camera Network on February 2, 2012, where the triangulation indicates an impact that overlaps with the location where this meteorite was discovered. **Physical characteristics**: (A. Krzesinska, *UOslo*) Meteorite has thick black fusion crust covering whole specimen. On the broken surface, light interior is seen with chondritic texture. Minor weathering of FeNi minerals is seen on broken surface, on its outermost part and is manifested by rusty appearance.

Petrography: (A. Krzesinska, *UOslo*) Recrystallized chondritic texture manifested by presence of some chondrules, up to 800 μm in size, relatively well preserved with glassy-microcrystalline mesostasis. Some orthorhombic pyroxene present in fine-grained matrix. Weakly shocked, with olivine exhibiting only minor undulose extinction and irregular fractures.

Geochemistry: (A. Krzesinska, M. Erambert, *UOslo*) Equilibrated H chondrite. Olivine with Fa_{18.2±0.4}, low-Ca pyroxene Fs_{16.1±0.3}Wo_{1.60.4}, glassy mesostasis of plagioclase composition (An_{10.0±0.5}Or_{5.2±1.5}) and diopside crystallites in places (Fs_{5.8±0.1}Wo_{46.0±0.6}), chromite (Fe,Crrich; Fe#=0.85, Cr#=0.88), merrillite (up to 2.8 wt% Na₂O, 3.6 wt% of MgO and 0.38 wt% FeO), and Cl-apatite (up to 0.35 wt% Na₂O and various content of Cl, up to pure Cl-apatite with 5.62 wt% Cl). Kamacite with 0.45-0.49 wt% Co, taenite and tetrataenite also present. **Classification**: (A. Krzesinska, *UOslo*) Ordinary chondrite, H5 type based on composition of silicates and metal.

Specimens: (H. Friis, M. Bilet, *UOslo*): Specimen broken into two fragments (4700 in total), both in the collection of the Natural History Museum at *UOslo*. Two thin sections prepared out of it, and two epoxy mounts.

2	
3	
4	
5	Villamuava 25 2200NI 105 2220W
6	vinanueva 55.258 N, 105.552 W
7	New Mexico, United States
8	Find: 1974
9	Classification: Ordinary chondrite (H6)
10	History : Found by an anonymous (now deceased) person in 1974 about a mile southeast of
11	where the Villa Nueva State Park is now located southeast of Santa Fe. New Mexico. Some
12	time later the man's nices brought the specimen (in two nices that fit together) to a mineral
13	time fater the mail's mede brought the specifien (in two pieces that in together) to a mineral
14	shop (Mama's Minerals) in Albuquerque, New Mexico, where it was on display for many
15	years. In November 2014 the smaller piece was acquired from the shop owner by
16	Blaine Reed.
17	Petrography : (A. Irving, UWS and P. Carpenter, WUSL) The specimen is extensively
18	recrystallized with rare remnant chondrules. Primary kamacite has been partly altered to
19	goethite and thin veinlets of reddish brown goethite crosscut the studied thin section. Other
20	goeinie and unit venticis of redusit-brown goeinie crossed the studied unit section. Other
21	accessory phases are sodic plagloclase, taenite, low-11 chromite, trollite and merrillite.
22	Geochemistry : Olivine (Fa _{19.1±0.2} , range Fa _{18.8-19.3} , N = 5), low-Ca pyroxene
23	$(Fs_{16.7\pm0.2}Wo_{1.5\pm0.2}, range Fs_{16.5-16.9}Wo_{1.3-1.8}, N = 4)$, augite $(Fs_{6.4\pm0.2}Wo_{45.3\pm0.4}, range Fs_{6.2-10})$
24	$_{6.5}$ Wo _{45.6-45.0} , N = 2). Magnetic susceptibility log χ (× 10 ⁻⁹ m ³ /kg) = 4.88.
25	Classification: Ordinary chondrite (H6).
26	Specimens : 24.1 g including one polished thin section at <i>PSF</i> : 632 g with Mr. B. <i>Reed</i> : main
27	mass with Ms. I. Bandolph (Mama's Minerals)
28	mass with Wis. L. Randolph (Mania S Minerals).
29	
30	
31	Wad Lahteyba 27°22'23.153"N, 8°58'51.744"W
32	Morocco/Western Sahara
33	Confirmed fall: 2019 June 27
34	Classification: Ordinary chondrite (H5)
35	History: (H. Chennaqui Aqudiahana, H. Al Harbi, F.Z. Jadid) On Thursday, 27 Juna 2010, at
36	Final of the second se
37	5 pm (GW1+1) a lifeball was seen by many people. Eyewitnesses reported a yellow to red
38	color of the fireball during around 3 " on a SW to NE trajectory. No sonic booms were
39	reported. Hundreds of hunters and nomads went to the area where they though the fall
40	occurred. First pieces were recovered on June 29, two days after the event. There were so
41	many reports of the fall that the national Moroccan TV organized a documentary that was
42	shown on the TV news Many hunters (including "Ali Salem Sayad" and "Ali Amikar") gave
43	their testimonies to the TV journalists and talked about a notential strewnfield. Every times Ali
44	Tamparint sources to the TV journalists and taked about a potential strewinned. Eyewittess An
45	ramaanit saw the medan nom Oued Essakiya and Lhou Ousalan saw it nom Lobounat.
46	Additional information was given by Ali Hmida and Jaffar. So far, many pieces totaling
47	around 20 kg were collected, the biggest one 4330 g.
48	Physical characteristics: (H. Chennaoui Aoudjehane) Many small pieces from a few grams
49	to 4 kg. Very fresh, thin, black and matte fusion crust covers the pieces. The interior is gray
50	showing numerous chondrules. The rock is friable and the external part of a small pieces is
51	rough showing a secondary fusion crust. Metal and sulfides are very thin Magnetic
52	suggestibility (II. Champoovi A sudishare) measured with a SM20 instrument is less () 10-
53	susceptionity (iii. Chemiaoui Aoudjenane) measured with a SNI30 instrument is $\log \chi$ (× 10 ⁻¹
54	$m^{3}/kg) = 5.29.$
55	Petrography: (C. Agee, UNM) Microprobe examination of a polished mount shows
56	numerous porphyritic chondrules set in a recrystallized groundmass. Plagioclase grains are
57	ubiguitous with sizes up to 25 microns in diameter. Abundant FeNi-metal and troilite
58	observed throughout Apatite and chromite are ubiquitous minor phases
59	costi e unougnout. A putto una omornite uro ubiquitous minor phuses.
60	

Geochemistry: (C. Agee, *UNM*) Olivine Fa_{18.6±0.3}, Fe/Mn=38±3, n=9; low-Ca pyroxene $Fs_{16.4\pm0.1}Wo_{1.6\pm0.1}$, n=7. **Classification**: Ordinary chondrite, H5, S3, W0 **Specimens**: 20.2 g including microprobe mount at *UNM* (0.3 g) provided by Hamza Al Harbi,

as well as 25.3 g provided by the "Moroccan Association of Meteorites" on deposit at *FSAC*. Vincent Jacques holds the main mass 4330 g plus some pieces totaling 218 g; 19g and 8.7g on a private collection in Casablanca.

Wellman (f) 33.13°N, 102.38°W

Texas, USA Find: 2002

Classification: Ordinary chondrite (H3-4)

History: Found in 2002 by oil field geologist Rodney Michel in the region north of Highway 62 between Brownfield and Wellman, Texas, and subsequently purchased from the finder in February 2020 by Peter Allen.

Petrography: (A. Irving, *UWS* and P. Carpenter, *WUSL*) The specimen is a breccia composed of discrete, well-formed chondrules plus lithic chondrite clasts set in sparse matrix containing extensively altered kamacite, taenite, low-Ti chromite, merrillite and chlorapatite. Both unequilibrated Type 3 clasts (containing relatively small, well-formed glass-bearing chondrules) and equilibrated Type 4 clasts (containing well-formed chondrules with albitic plagioclase) are present. Silica polymorph is present in some low-Ca pyroxene chondrules. **Geochemistry**: Olivine in equilibrated chondrules (Fa_{18.4±0.3}, range Fa_{18.1-18.8}, N = 4), olivine in unequilibrated chondrules (Fa_{16.4±8.6}, range Fa_{6.7-25.1}, N = 4), low-Ca pyroxene in both sorts of chondrules (Fs_{14.8±9.3}Wo_{1.3±1.3}, range Fs_{2.8-28.5}Wo_{0.2-3.4}, N = 5), diopside (Fs_{3.6}Wo_{36.7}; Fs_{5.4}Wo_{46.1}; N = 2).

Classification: Ordinary chondrite (H3-4 breccia).

Specimens: 22.2 g including one polished thin section at UWB; remainder with Mr. P. Allen.

Wubao 002 42°17'47.80"N, 92°28'18.93"E

Xinjiang, China

Find: 2018

Classification: Ordinary chondrite (LL3)

History: (Ziyao Wang) Discovered by Wentao Yang (Urumqi) in the desert near Dahaidao (Xinjiang Province) in 2018

Physical characteristics: (Ziyao Wang) Gray-brown stone of 105 g without fusion crust **Petrography**: (R. Bartoschewitz, *Bart*) well defined chondrules (~50 vol%) of 0.3-2 mm (av. 0.7 mm) and AOIs (~10 vo%) are set in a black opaque matrix with few irregular metal and sulfide aggregates up to 0.3 mm (<1 vol%).

Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine

Fa_{14.1±7.7} (n=31) (range Fa_{0.6-31.4}), Fe/Mn=43, Fe/Mg=0.17; low Ca pyroxene

Fs_{8.7±5.7}Wo_{0.7±0.7} (Fs_{1.5-15.6}Wo_{0.2-2.2}, n=8); pigeonite En₇₇Fs₁₈Wo₅ (n=1); feldspar

An₈₅Ab₁₅ (n=1). Kamacite Ni=2.6-5.1, Co=0.4-0.9 wt% (n=8). O-isotopes (A. Pack, UGött):

 $\delta^{17}O(\infty) = 4.151, \delta^{18}O(\infty) = 5.928$. Magnetic susceptibility (R. Bartoschewitz, *Bart*) log χ (×

 $10^{-9} \text{ m}^3/\text{kg}$) = 4.82 plots outside the LL range, as O-isotopes reflect.

Classification: Ordinary chondrite (LL3, S4, W0-1)

Specimens: 17.8 g at *Kiel* and 4.7 g at *UGött* on deposit, Ziyao Wang holds the main mass and 27 g with *Bart*.

45

46

47 48

49

50

51

52

53

54

55

56 57

58

59

60

1	
2	
3	
4	
5	
6	Zhengjiabu 40°47′34"N, 124°27′58"E
7	Liaoning, China
8	Find, possible fall: 1982
9	Classification: Ordinary chondrite (H5)
10	History : Jin Zhicheng Dandong city remembers that when he was 12 years old in the
11	summer of 1982 at about 9:30 nm one night when most local people were asleen a bright
12	firshall illuminated the gluy and the ground, followed by an explosion with an each that
13	Theoan mummated the sky and the ground, followed by an explosion with an echo that
14	continued for a long time. The next day, local people unsuccessfully searched for the cause,
15	and the event was mostly forgotten. Fourteen years later, Jin Zhicheng returned to Zhengjiabu
16	village to support his family. On May 6, 1996, he discovered a big stone while plowing a
17	field, buried 30-40 cm in the heavy soil. He felt that it might be the stone that fell 14 years
18	ago and put it in the vard for a further 23 years, until he asked Zivao Wang for support in
19	2019
20	Physical characteristics: (7iyao Wang) 17 kg completly crusted individual with
21	reamonalumta, the emist is northy endired
22	D etre success (D. Derte el construit de la c
23	Petrography: (R. Bartoschewitz, Bart) chondrule margins are difficult to discern in the
24	strong recrystallized matrix; metal and sulfide mainly show irregular inclusions.
25	Geochemistry: (R. Bartoschewitz, Bart, P. Appel and B. Mader, Kiel) Olivine
26	$Fa_{19,4\pm0.3}$ (n=18); low-Ca pyroxene $Fs_{17,2\pm0.5}$ Wo _{1.6±0.5} (n=15); Ca pyroxene En ₄₈ Fs ₆ Wo ₄₆ (n=1);
27	feldspar An ₁₂ Or ₆ (n=3); chromite CRAL83-85, FFM87-84 (n=2); Cl-apatite and merrillite.
28	Kamacite Ni=5.8-6.2. Co=0.7: taenite Ni=32-34. Co=0.2 (n=3) (all wt-%): troilite. Magnetic
29	susceptibility (R Bartoschewitz <i>Bart</i>) log γ (× 10 ⁻⁹ m ³ /kg) = 5.01
30	Classification: Ordinary chondrite (H5, S2, W2)
27	Specimens: 20.8 g at <i>Kiel</i> on denosit. Zhieheng lin holds the main mass. Zivee Wang 25 g
32	specificity. 20.8 g at <i>Kiel</i> on deposit, Zhieneng Jin holds the main mass, Ziyao wang 25 g
34	and 131 g with Bari.
35	
36	
37	Zhob 31°22'N, 69°34'E
38	Baluchistan, Pakistan
39	Confirmed fall: 2020 Jan 9
40	Classification [•] Ordinary chondrite (H3-4)
41	History: (M Farmer Arizona) A bright firehall followed by sonic booms was seen and heard
42	around the northern part of the Deluchisten province of Delviston energy instally 6:20 nm level
43	around the northern part of the Bardenstan province of Pakistan, approximately 0.50 pm local
44	time on 9 January 2020. Shortly thereafter, a stone fell through a house in a local village of

the Mando Khel tribal area ~12 km NE of Zhob, Zhob District, Baluchistan province, Pakistan. The largest stone was found shortly after the fall by goat herders. Two more stones were subsequently found in this area.

Physical characteristics: To date, four fusion-crusted stones have been found: 6.309, ~5.5, 4.924, and 2.231 kg. The stones are blocky to rounded, with broad shallow regmaglypts, and covered with black matte fusion crust. The 6.309 kg stone is broken, exposing $\sim 15 \times 9$ cm of the interior, which displays a breccia of rounded to sub-rounded, light-colored clasts in a light-gray matrix. The clasts range from 1 cm to 5×4 cm. The stone is easy to break and weakly consolidated. The measured density of a 24 g fragment that contains both the lithologies is 3.18 g/cm^3 .

Petrography: (L. Garvie, ASU) The exposed surface of the 6.309 kg stone has an earthy luster, with scattered small (<1 mm) chondrules and rare troilite fragments to 4 mm. No shock veins are visible. Two polished mounts were examined from the gray matrix and a large lightcolored clast, respectively. Gray matrix: Section dominated by chondrules and chondrule

fragments set in a fine-grained fragmental matrix. Chondrules abundant and clearly visible under a petrographic microscope and BSE imaging, with an apparent mean diameter of 460 μ m (n=36). Some PO and PP chondrules show phenocrysts with clear zoning. A PO and BO chondrule contains transparent purple glass. Fe-Ni metal dominated by two grain types: the first is irregularly shaped, with holly-leaf-shaped outlines, to 200 μ m grains of kamacite that are single crystals exhibiting weakly developed Neumann bands; the second are rounded grains up to 150 μ m, with thin taenite rims enclosing cores of dark-etching plessite. Native copper is rare occurring as grains to 20 μ m between Fe-Ni metals and troilite. Troilite grains to 150 μ m are largely single crystals and lack shock lamellae. Chromite is a common accessory mineral, occurring as anhedral grains to 200 μ m and as fine-grained chondrule-like aggregates to 300 mm. Light-colored clast: The petrography and chondrule size in this clast is similar to the gray matrix section, but differs in showing a coarser grained matrix with abundant feldspathic phase up to 20 μ m, and lacking chondrules with zoned olivine or pyroxene-bearing phenocrysts.

Geochemistry: (A. Wittmann, L. Garvie, *ASU*) Gray matrix - Olivine (n=23) Fa_{17.2±6.6}, range Fa_{0.7-34.3}, Cr₂O₃ to 1.2 wt% and CaO to 0.5 wt%. FeO/MnO = 38.6±7.9. Low-Ca pyroxene (n=20) Fs_{13.8±5.3}Wo_{1.3±1.1}, FeO/MnO = 25.1±10.3. High-Ca pyroxene (n=2) Fs_{1.1}Ca45.9 and Fs_{24.2}Ca30.5. Light-colored clast - Olivine (n=14) Fa_{18.5±0.24}, range Fa_{17.9-18.8}, FeO/MnO = 37.8. Low-Ca pyroxene (n=17) Fs_{15.3±0.3}Wo_{1.3±0.1}, FeO/MnO = 23.4. Kamacite: Ni 6.71-7.08 wt%, Co 0.44-0.48 wt%. Feldspathic phase (stoichiometry is poor, FeO is fairly high): Ab_{81.4-83.1}An_{10.7-12.6}Or_{4.3-6.5} (n=10).

Classification: H3-4. Breccia of H4 clasts in an unequilibrated H3 host matrix. W0 and S2. **Specimens**: The 6.309 and 2.231 kg stones are with *MFarmer*.

Zinder 003

Niger

Find: June 2019

Classification: Eucrite melt breccia

History: The meteorite was purchased from a meteorite dealer in Morocco.

Physical characteristics: Dark-grayish rock with minor fusion crust.

Petrography: The meteorite is a eucrite-melt breccia composed of up to several mm sized basaltic clasts set into dark melt rock matrix, which is fine-grained and vesicular melt-textured. Basaltic clasts often contain lath-shaped calcic plagioclase. The fine-grained melt rock is mostly recrystallized and mineral grains in contact with the melt are partly resorbed; some regions show flow textures.

Geochemistry: The rock contains low-Ca and Ca pyroxene. Low-Ca pyroxene is

 $Fs_{60.2\pm2.0}Wo_{3.0\pm1.8}$ (Fs_{54.3-62.4}Wo_{1.7-9.1}; n=24) and the Ca-pyroxene has Fs_{27.2±1.9}Wo_{41.6±2.6} (Fs_{24.9-30.2}Wo_{41.9-43.8}; n=7); the mean Fe/Mn ratio of the pyroxenes is 34.6 (n=31). Calcic plagioclase has a composition of An_{89.7±1.6} (An_{86.6-92.4}, n=23)

1							
2	ماله : ما	alla us a usa a	alla alalaman	alla autora			alla a a constan c
2	ab_ia	db_name	db_abbrev	db_amn	db_anttype	db_class	ab_country
4	72659	Acter 402				CV3	Algeria
5	/34/5	Adrar 004				H4	Algeria
7	/34/6	Adrar 005				L5	Algeria
8	73477	Adrar 006				H5	Algeria
0	73478	Adrar 007				H5	Algeria
9 10	73479	Adrar 008				L5/6	Algeria
10	73480	Adrar 009				H4	Algeria
12	73481	Adrar 010				L5	Algeria
12	73482	Adrar 011				L5	Algeria
14	73538	Akka 001				Acapulcoite	Morocco
15	72326	Al Farciya				L6	Western Saha
16	70862	Antarctica 001		-	AP	L/LL4	Antarctica
17	71677	Asuka 09179	A 09179	J27	JB	Iron, IID	Antarctica
18	71678	Asuka 12016	A 12016	J27	JB	Iron, IIIAB	Antarctica
19	73471	Auckland				L5	New Zealand
20	71123	Avdar 004				Eucrite-br	Morocco
21	72708	Avdar 005				116	Morocco
22	72446	Baia California				Iron IIIAB	Mexico
23	72485	Balambala				Iron IIF	Kenva
24	73565	Balver Bluff				116	Australia
25	70344	Bagiangzi					China
26	72072	Bayin Cobi 00					China
27	71050	Black Butto OC					United States
28	71059	Black Bulle OL				H3-4	United States
29	71060	Black Butte UL	BB 002			H3-4	United States
30	71063	Black Butte OL	BB 003			H4	United States
31	72462	Blaubeuren				H4-5	Germany
32	71691	Boshruyeh 00				L6	Iran
33	70863	Calama 058				CR2	Chile
34	70864	Calama 062				Iron, IIAB	Chile
35	70900	Calama 070				L6	Chile
36	70901	Calama 071				H5	Chile
37	70943	Calama 072				H5	Chile
38	71064	Calama 073				L6	Chile
39	71066	Calama 074				L5	Chile
40	71169	Calama 075				H3	Chile
41	71196	Calama 076				Diogenite	Chile
42	71095	Calama 077				H4	Chile
43	71096	Calama 078				LL5	Chile
44	71590	Calama 079				H4	Chile
45	71592	Calama 080				H4	Chile
46	71611	Calama 081				H5	Chile
47	71652	Calama 082				Diogenite nm	Chile
48	71644	Calama 083				ия	Chile
49	71044	Colomo 084					Chile
50	7 1040	Calama 004					Chile
51	72323	Calama 085				H(L)3	Chile
52	71673	Calama 086				H5	Chile
53	/1/5/	Calama 087				CO3	Chile
54	72370	Calama 088				H5	Chile
55	72372	Calama 089				L5	Chile
56	72391	Calama 090				L6	Chile
57	72408	Calama 091				H6	Chile
58	72409	Calama 092				H6	Chile
59	72410	Calama 093				H5	Chile
60	72757	Calama 094				L4	Chile

-				
3	72411	Calama 095	H5	Chile
4	72412	Calama 096	H5	Chile
5	72413	Calama 097	L6	Chile
6	72414	Calama 098	H4	Chile
7	72435	Calama 099	L5	Chile
8	72437	Calama 100	L6	Chile
9	72506	Calama 101	H5	Chile
10	72510	Calama 102	16	Chile
11	72511	Calama 103	H6	Chile
12	72513	Calama 104	16	Chile
13	72514	Calama 105		Chile
14	72514	Calama 105	115	Chile
15	72010	Calama 107	LO	Chile
16	72547		LO	Chile
17	72549		HO	Chile
18	72550		H5	Chile
19	72564	Calama 110	LL5	Chile
20	72570	Calama 111	H5	Chile
21	72574	Calama 112	L6	Chile
22	72591	Calama 113	L6	Chile
23	72612	Calama 114	L6-melt brecci	Chile
24	72595	Calama 115	H5	Chile
25	72635	Calama 116	H5	Chile
26	72636	Calama 117	H6	Chile
27	72637	Calama 118	L6	Chile
28	72638	Calama 119	H5	Chile
29	72792	Calama 120	H5	Chile
30	72793	Calama 121	L5	Chile
31	72794	Calama 122	16	Chile
32	72795	Calama 123	H5	Chile
33	72796	Calama 124	H5	Chile
34	73493	Calama 125	15	Chile
35	73/0/	Calama 126	15	Chile
36	73405	Calama 120	L5 H5	Chile
37	73406	Calama 127		Chilo
38	73490	Calama 120		Chile
39	73497	Calama 129		Chile
40	73490	Calama 130		Chile
41	73499			Chile
42	71105		L5	Chile
43	71106		L5	Chile
44	/110/	Calate 021	H5	Chile
45	71108	Calate 022	H5	Chile
40	71109	Calate 023	H5	Chile
4/	71619	Calate 024	H5	Chile
48	71620	Calate 025	H5	Chile
49	71621	Calate 026	L5	Chile
50	71622	Calate 027	H5	Chile
51	71675	Calate 028	L5	Chile
J∠ 52	72628	Calate 029	L6	Chile
22	72629	Calate 030	LL5	Chile
54 55	72630	Calate 031	L5	Chile
56	72631	Calate 032	L6	Chile
57	71079	Caleta el CobrCeC 037	L6-melt brecci	Chile
58	71170	Caleta el Cobi CeC 038	LL6	Chile
50	72392	Caleta el Cobi CeC 039	L6	Chile
60	72405	Caleta el Cobi CeC 040	H5	Chile
00				

2				
3	72689	Caleta el Cobi CeC 041	L3	Chile
4	72852	Caleta el Cobi CeC 050	Achondrite-un	Chile
5	73512	Camel Donga	H6	Australia
6	71730	Carson Lake	H6	United States
7	71023	Catalina 338	H5	Chile
8	71024	Catalina 339	L5/6	Chile
9	71033	Catalina 340	H5	Chile
10	71037	Catalina 341	L6	Chile
11	71038	Catalina 342	H6	Chile
12	71082	Catalina 343	LL6	Chile
13	71085	Catalina 344	H4	Chile
14	72393	Catalina 345	H6	Chile
15	72404	Catalina 346	H5	Chile
10	72671	Catalina 347	H5	Chile
17	72672	Catalina 348	H5	Chile
10	72674	Catalina 349	H5	Chile
20	72677	Catalina 350	H5	Chile
20	72682	Catalina 351	H6	Chile
22	72683	Catalina 352	H5	Chile
23	72684	Catalina 353	H5	Chile
24	72534	Cavezzo	L5-an	Italy
25	70899	Chua Chua 01	15	Chile
26	70902	Chug Chug 01	H6	Chile
27	70903	Chua Chua 01	H5	Chile
28	71176	Chug Chug 01	H4-an	Chile
29	70944	Chua Chua 02	116	Chile
30	70945	Chua Chua 02	115	Chile
31	71708	Chug Chug 02	L(H)3	Chile
32	71067	Chug Chug 02	H5	Chile
33	71171	Chug Chug 02	16	Chile
34	71605	Chug Chug 02	H5	Chile
35	71606	Chug Chug 02	H5	Chile
36	71607	Chug Chug 02	H5	Chile
3/	71609	Chug Chug 02	H5	Chile
38	71612	Chug Chug 02	15	Chile
39	71613	Chug Chug 02	H6	Chile
40	71614	Chug Chug 0?	H5	Chile
41	71615	Chug Chug 0:	H5	Chile
43	71646	Chug Chug 0?	16	Chile
44	71671	Chug Chug 0 ²	16	Chile
45	71672	Chug Chug 0:	15	Chile
46	71674	Chug Chug 0:	L5 H5	Chile
47	71694	Chug Chug 0?	16	Chile
48	71695	Chug Chug 0?	16	Chile
49	717/3	Chug Chug 0?	L0 H5	Chile
50	71745	Chug Chug 04	H5	Chile
51	71745	Chug Chug 04	H5	Chile
52	72368	Chug Chug 04	15	Chile
53	72300			Chile
54	72660			Chile
55	72000	Chug Chug 04		Chile
56	72430	Chug Chug 04	16	Chile
57	72430			Chile
58	72509	Chug Chug 04		Chile
59	72512			Chile
60	72548		LO	Chile

3	72551	Chug Chug 05			H4	Chile
4	72552	Chug Chug 05			L6	Chile
5	72553	Chug Chug 05			L6	Chile
6	72554	Chug Chug 05			L5	Chile
7	72555	Chug Chug 05			L6	Chile
8	72565	Chug Chug 05			H6	Chile
9	72566	Chug Chug 05			H5	Chile
10	72567	Chua Chua 05			L5	Chile
11	72568	Chua Chua 05			H6	Chile
12	72569	Chua Chua 05			L5	Chile
13	72571	Chua Chua 06			H5	Chile
14	72572	Chua Chua 06			16	Chile
15	72573	Chua Chua 06			H5	Chile
10	72589	Chua Chua 0f			14	Chile
17	72590	Chua Chua Of			13	Chile
10	72592	Chug Chug 0f			H5	Chile
20	72593				16	Chile
20	72594				L0 H5	Chile
21	72624				15	Chile
22	72625				16	Chile
23	72627				16	Chile
25	72632				L0 H3	Chile
26	72633				113	Chile
27	72033				115	Chile
28	72040					Chile
29	72041					Chile
30	72042					Chile
31	72043					Chile
32	72795					Chile
33	72700					Chile
34	12100					Chile
35	72790					Chile
36	72704					Chile
37	72791					Unite Mastara Caba
38	09084				C3.00-ung	Western Sana
39	72489				003	Western Sana
40	12122				ureinte	Western Sana
41	71058				LL3	United States
42	72586	Coya Sur 006 CS 006			H5	Chile
43	72587	Coya Sur 007 CS 007			H5	Chile
44	71061				H4	United States
45	71062	Crescent Valle CV 002			H4	United States
40 47	72469	Deh-Salm 001	10/11		H6	Iran
47	71366	Devils Glacier DEV 17280	43(1)	A	L5	Antarctica
40	71367	Devils Glacier DEV 17281	43(1)	A	H5	Antarctica
50	71111	Dhofar 2094 Dho 2094			L6	Oman
51	71177	Dhofar 2102 Dho 2102			L6	Oman
52	71647	Dhofar 2103 Dho 2103			L6	Oman
53	72374	Dhofar 2104 Dho 2104			H4	Oman
54	72375	Dhofar 2105 Dho 2105			H5	Oman
55	72431	Dhofar 2106 Dho 2106			CM2	Oman
56	72376	Dhofar 2107 Dho 2107			L5	Oman
57	72476	Dhofar 2108 Dho 2108			L5/6	Oman
58	71584	Dominion Ran DOM 18019	43(1)	A	CO3	Antarctica
59	71585	Dominion Ran DOM 18069	43(1)	A	CO3	Antarctica
60	71586	Dominion Ran DOM 18070	43(1)	A	CO3	Antarctica

1						
2						
3	71587	Dominion Ran DOM 18242	43(1)	A	Lunar (bas. br	Antarctica
4	71588	Dominion Ran DOM 18244	43(1)	А	Lunar (bas. br	Antarctica
5	71589	Dominion Ran DOM 18293	43(1)	А	Eucrite-br	Antarctica
6	71753	Eboliang 004			L5	China
7	72576	Eboliang 005			H4	China
8	72466	El Hassan Ou EHOH 001			Eucrite-unbr	Mauritania
9	71022	El Médano 42 EM 423				Chile
10	71022	El Médano 42 EM 424				Chilo
11	71025					Chile
12	71020					Chile
13	71027	El Medano 42 EM 426			H5/6	Chile
14	71028	El Médano 42 EM 427			H5	Chile
15	71029	El Médano 42 EM 428			H5/6	Chile
16	71030	El Médano 42 EM 429			L5	Chile
17	71031	El Médano 43 EM 430			H5	Chile
18	71032	El Médano 43 EM 431			H5	Chile
19	71034	El Médano 43 EM 432			L6	Chile
20	71035	El Médano 43 EM 433			H5	Chile
20	71036	El Médano 43 EM 434			H5	Chile
21	71030	El Médano 43 EM 435			15	Chilo
22	71039	El Médere 42 EM 435			LUC	Chile
25	71040				Ho	Chile
24	71041	El Medano 43 EM 437			H5	Chile
25	71042	El Médano 43 EM 438			H5	Chile
26	71043	El Médano 43 EM 439			H5	Chile
27	71044	El Médano 44 EM 440			H5	Chile
28	71045	El Médano 44 EM 441			H6	Chile
29	71046	El Médano 44 EM 442			L6	Chile
30	71086	El Médano 44 EM 443			L6	Chile
31	71144	El Médano 44 EM 444			FI 6	Chile
32	71081	El Médano 44 EM 445			115	Chile
33	71172	El Médano 44 EM 446				Chilo
34	71173				LO	Chile
35	71174				LO	Chile
36	71698	El Medano 44 EM 448			H5	Chile
37	71701	El Médano 44 EM 449			H5	Chile
38	71702	El Médano 45 EM 450			L6	Chile
39	72397	El Médano 45 EM 451			H5	Chile
40	72398	El Médano 45 EM 452			H5	Chile
41	72399	El Médano 45 EM 453			L6	Chile
42	72400	El Médano 45 EM 454			L6	Chile
43	72401	El Médano 45 EM 455			L6	Chile
44	72402	El Médano 45 EM 456			16	Chile
45	72403	El Médano 45 EM 457			16	Chile
46	72406	El Médano 45 EM 459				Chilo
47	72400					Chile
48	72543	El Medano 45 EM 459			HD	Chile
40	72544	El Medano 46 EM 460			H5	Chile
50	72545	El Médano 46 EM 461			L6	Chile
51	72678	El Médano 46 EM 462			H5	Chile
51	72845	El Médano 46 EM 463			CO3	Chile
J∠ 52	72846	El Médano 46 EM 464			CO3	Chile
53	72847	El Médano 46 EM 465			CO3	Chile
54	71199	Elephant Mora EET 16001	43(1)	А	L5	Antarctica
55	71200	Elephant More EET 16003	43(1)	А	H5	Antarctica
56	71201	Elephant More EET 16000	43(1)	Δ	16	Antarctica
5/	71202	Elephant More EET 16004	13(1)	Δ	15	Antarctica
58	71202	Elophant Morr EET 16003	+3(1)	A		Antarotica
59	71203		43(1)	A _		Antarctica
60	71204	Elephant Mora EE1 16008	43(1)	A	Lb	Antarctica

-						
3	71205	Elephant Mora EET 16009	43(1)	А	L6	Antarctica
4	71206	Elephant Mora EET 16010	43(1)	А	H6	Antarctica
5	71207	Elephant Mora EET 16011	43(1)	А	L6	Antarctica
6	71208	Elephant Mora EET 16012	43(1)	А	L5	Antarctica
7	71209	Elephant Mora EET 16013	43(1)	А	L5	Antarctica
8	71210	Elephant More EET 16014	43(1)	A	L6	Antarctica
9	71211	Elephant More EET 16015	43(1)	Δ	15	Antarctica
10	71212	Elephant More EET 16017	/3(1)	Δ	15	Antarctica
11	71212	Elophant More EET 16018	+3(1)	A A	15	Antarctica
12	71213		+3(1)	^		Antarctica
13	71214	Elephant More EET 16019	43(1)	A		Antarctica
14	71215	Elephant More EET 16022	43(1)	A	LO	Antarctica
15	71216	Elephant Mora EE1 16023	43(1)	A	Lb	Antarctica
16	/121/	Elephant Mora EE I 16024	43(1)	A	H6	Antarctica
17	71218	Elephant More EET 16025	43(1)	A	L5	Antarctica
18	71219	Elephant Mora EET 16026	43(1)	А	L6	Antarctica
19	71220	Elephant Mora EET 16027	43(1)	А	L6	Antarctica
20	71221	Elephant Mora EET 16028	43(1)	А	L6	Antarctica
21	71222	Elephant Mora EET 16030	43(1)	А	L6	Antarctica
22	71223	Elephant Mora EET 16031	43(1)	А	L6	Antarctica
23	71224	Elephant Mora EET 16032	43(1)	А	L6	Antarctica
24	71225	Elephant Mora EET 16033	43(1)	А	L6	Antarctica
25	71226	Elephant Mora EET 16034	43(1)	А	L5	Antarctica
26	71227	Elephant More EET 16035	43(1)	A	16	Antarctica
27	71228	Elephant More EET 16036	43(1)	Δ	15	Antarctica
28	71220	Elephant More EET 16030	43(1)	Λ	16	Antarctica
29	71229	Elephant More EET 16037	43(1)	A A		Antarctica
30	71230	Elephant More EET 16041	43(1)	A ^		Antarctica
31	71231		43(1)	A		Antarctica
32	71232	Elephant Mora EE1 16042	43(1)	A	LO	Antarctica
33	71233	Elephant Mora EE1 16051	43(1)	A	H5	Antarctica
34	/1234	Elephant Mora EE I 16052	43(1)	A	L6	Antarctica
35	71235	Elephant More EET 16053	43(1)	A	L6	Antarctica
36	71236	Elephant More EET 16054	43(1)	А	L6	Antarctica
37	71237	Elephant More EET 16055	43(1)	А	L5	Antarctica
38	71238	Elephant Mora EET 16056	43(1)	А	L6	Antarctica
39	71239	Elephant Mora EET 16057	43(1)	А	H5	Antarctica
40	71240	Elephant Mora EET 16058	43(1)	А	L5	Antarctica
41	71241	Elephant Mora EET 16059	43(1)	А	L5	Antarctica
42	71242	Elephant Mora EET 16060	43(1)	А	L6	Antarctica
43	71243	Elephant Mora EET 16061	43(1)	А	L5	Antarctica
44	71244	Elephant Mora EET 16062	43(1)	А	L5	Antarctica
45	71245	Elephant More EET 16063	43(1)	A	H4	Antarctica
46	71246	Elephant More EET 16064	43(1)	Δ	15	Antarctica
47	71240	Elephant More EET 16065	43(1)	Λ	16	Antarctica
48	71247	Elephant Morr EET 16066	43(1)	A A		Antarctica
49	71240		43(1)	A ^		Antarctica
50	71249	Elephant More EET 10007	43(1)	A	LO	Antarctica
51	71250	Elephant Mora EE1 16068	43(1)	A	L5	Antarctica
52	71251	Elephant Mora EE1 16069	43(1)	A	Lb	Antarctica
53	71252	Elephant Mora EET 16070	43(1)	A	L6	Antarctica
54	/1253	Elephant Mora EET 16071	43(1)	A	L5	Antarctica
55	71254	Elephant Mora EET 16072	43(1)	A	L5	Antarctica
56	71255	Elephant Mora EET 16073	43(1)	A	L5	Antarctica
57	71256	Elephant Mora EET 16074	43(1)	A	L5	Antarctica
58	71257	Elephant Mora EET 16075	43(1)	А	L6	Antarctica
59	71258	Elephant Mora EET 16076	43(1)	А	L5	Antarctica
60	71259	Elephant Mora EET 16077	43(1)	А	H6	Antarctica

1						
2						
3	71260	Elephant Mora EET 16078	43(1)	А	H6	Antarctica
4	71261	Elephant Mora EET 16080	43(1)	А	L5	Antarctica
5	71262	Elephant Mora EET 16081	43(1)	А	L5	Antarctica
6	71263	Elephant Mora EET 16082	43(1)	А	L5	Antarctica
7	71264	Elephant Mora EET 16083	43(1)	А	L6	Antarctica
8	71265	Elephant More EET 16084	43(1)	A	116	Antarctica
9	71266	Elephant More EET 16085	43(1)	Δ	H6	Antarctica
10	71267	Elophant More EET 16086	42(1)	^		Antarctica
11	71207	Elephant More EET 16097	+3(1)	^	16	Antarctica
12	71200		43(1)	A		Antarctica
13	71209	Elephant More EET 16088	43(1)	A	LO	Antarctica
14	71270	Elephant Mora EET 16089	43(1)	A	L5	Antarctica
15	/12/1	Elephant Mora EET 16090	43(1)	A	H5	Antarctica
16	71272	Elephant Mora EE I 16091	43(1)	A	L6	Antarctica
17	71273	Elephant Mora EET 16092	43(1)	A	L5	Antarctica
18	71274	Elephant More EET 16093	43(1)	А	LL5	Antarctica
19	71275	Elephant Mora EET 16094	43(1)	А	L5	Antarctica
20	71276	Elephant Mora EET 16095	43(1)	А	H6	Antarctica
21	71277	Elephant Mora EET 16096	43(1)	А	L5	Antarctica
22	71278	Elephant Mora EET 16098	43(1)	А	L5	Antarctica
23	71279	Elephant Mora EET 16099	43(1)	А	L5	Antarctica
24	71280	Elephant Mora EET 16101	43(1)	А	H4	Antarctica
25	71281	Elephant Mora EET 16102	43(1)	А	L6	Antarctica
26	71282	Elephant More EET 16103	43(1)	A	16	Antarctica
27	71283	Elephant More EET 16104	43(1)	A	15	Antarctica
28	71284	Elephant More EET 16105	43(1)	Δ	16	Antarctica
29	71285	Elephant More EET 16106	43(1)	Δ	15	Antarctica
30	71286	Elephant More EET 16107	43(1)	Λ	15	Antarctica
31	71200	Elophant More EET 16109	+3(1)	A A	15	Antarctica
32	71207	Elephant More EET 16100	43(1)	A ^		Antarctica
33	71200	Elephant More EET 16110	43(1)	A ^		Antarctica
34	71209	Elephant More EET 16111	43(1)	A		Antarctica
35	71290		43(1)	A	LO	Antarctica
36	71291	Elephant More EET 16112	43(1)	A		Antarctica
37	71292	Elephant More EET 16113	43(1)	A	LO	Antarctica
38	71293	Elephant Mora EET 16114	43(1)	A	Ho	Antarctica
39	71294	Elephant Mora EET 16115	43(1)	A	L5	Antarctica
40	71295	Elephant Mora EET 16116	43(1)	A	L5	Antarctica
41	71296	Elephant Mora EE1 16117	43(1)	A	L5	Antarctica
42	71297	Elephant Mora EE I 16118	43(1)	A	L5	Antarctica
43	71298	Elephant Mora EE I 16120	43(1)	A	H6	Antarctica
44	71299	Elephant Mora EET 16121	43(1)	A	L6	Antarctica
45	71300	Elephant Mora EET 16122	43(1)	А	L6	Antarctica
46	71301	Elephant Mora EET 16123	43(1)	А	H6	Antarctica
47	71302	Elephant More EET 16124	43(1)	А	H5	Antarctica
48	71303	Elephant Mora EET 16125	43(1)	А	L5	Antarctica
49	71304	Elephant Mora EET 16126	43(1)	А	L6	Antarctica
50	71305	Elephant Mora EET 16130	43(1)	А	L5	Antarctica
51	71306	Elephant Mora EET 16131	43(1)	А	L6	Antarctica
52	71307	Elephant Mora EET 16132	43(1)	А	H6	Antarctica
55 57	71308	Elephant Mora EET 16133	43(1)	А	H6	Antarctica
54 55	71309	Elephant Mora EET 16134	43(1)	А	H5	Antarctica
55	71310	Elephant Mora EET 16135	43(1)	А	L5	Antarctica
50	71311	Elephant Mora EET 16136	43(1)	А	L6	Antarctica
57 50	71312	Elephant Mora EET 16137	43(1)	А	L6	Antarctica
50 50	71313	Elephant Mora EET 16138	43(1)	A	H6	Antarctica
60	71314	Elephant More EET 16139	43(1)	A	L6	Antarctica
00						

3	71315	Elephant Mora EET 16140	43(1)	А	H6	Antarctica
4	71316	Elephant Mora EET 16141	43(1)	А	H6	Antarctica
5	71317	Elephant Mora EET 16142	43(1)	А	L4	Antarctica
6	71318	Elephant Mora EET 16143	43(1)	A	16	Antarctica
7	71319	Elephant Mora EET 16144	43(1)	A	115	Antarctica
8	71320	Elephant More EET 16145	43(1)	Δ	H6	Antarctica
9	71321	Elephant More EET 16146	43(1)	Δ	H6	Antarctica
10	71322	Elephant More EET 16147	43(1)	Δ	16	Antarctica
11	71322	Elephant More EET 16148	43(1)	A A	L0 H5	Antarctica
12	71323	Elophant More EET 16140	+3(1)	A A		Antarctica
13	71324	Elephant More EET 16150	43(1)	A A		Antarctica
14	71325		43(1)	A ^		Antarctica
15	71320		43(1)	A		Antarctica
16	71327	Elephant More EET 16152	43(1)	A	L5	Antarctica
17	71328	Elephant Mora EET 16153	43(1)	A	LO	Antarctica
18	71329	Elephant Mora EE1 16154	43(1)	A	L3	Antarctica
19	71330	Elephant Mora EE1 16155	43(1)	A	Lb	Antarctica
20	/1331	Elephant Mora EE 1 16156	43(1)	A	L6	Antarctica
21	71332	Elephant Mora EE I 16157	43(1)	A	L6	Antarctica
22	71333	Elephant Mora EE I 16158	43(1)	A	L5	Antarctica
23	71334	Elephant Mora EE I 16159	43(1)	A	L6	Antarctica
24	71335	Elephant Mora EE I 16160	43(1)	A	L5	Antarctica
25	71336	Elephant Mora EET 16161	43(1)	A	H6	Antarctica
20	71337	Elephant Mora EET 16162	43(1)	A	L6	Antarctica
27	71338	Elephant Mora EET 16163	43(1)	A	H6	Antarctica
20	71339	Elephant Mora EET 16164	43(1)	A	H6	Antarctica
30	71340	Elephant Mora EET 16165	43(1)	A	L5	Antarctica
31	71341	Elephant Mora EET 16166	43(1)	A	L4	Antarctica
32	71342	Elephant Mora EET 16167	43(1)	A	H4	Antarctica
33	71343	Elephant Mora EET 16168	43(1)	A	Acapulcoite	Antarctica
34	71344	Elephant Mora EET 16169	43(1)	A	L5	Antarctica
35	71345	Elephant Mora EET 16175	43(1)	A	H6	Antarctica
36	71346	Elephant Mora EET 16176	43(1)	A	L6	Antarctica
37	71347	Elephant Mora EET 16177	43(1)	A	H6	Antarctica
38	71348	Elephant Mora EET 16178	43(1)	A	CK5	Antarctica
39	71349	Elephant Mora EET 16179	43(1)	А	L6	Antarctica
40	71350	Elephant Mora EET 16180	43(1)	А	H6	Antarctica
41	71351	Elephant Mora EET 16181	43(1)	А	H6	Antarctica
42	71352	Elephant More EET 16182	43(1)	А	L6	Antarctica
43	71353	Elephant Mora EET 16183	43(1)	А	H6	Antarctica
44	71354	Elephant Mora EET 16184	43(1)	А	H6	Antarctica
45	71355	Elephant More EET 16185	43(1)	А	L6	Antarctica
46	71356	Elephant More EET 16186	43(1)	А	H5	Antarctica
4/	71357	Elephant Mora EET 16187	43(1)	А	H5	Antarctica
48	71358	Elephant More EET 16188	43(1)	А	H6	Antarctica
49	71359	Elephant Mora EET 16189	43(1)	А	LL6	Antarctica
50	71360	Elephant Mora EET 16190	43(1)	А	H6	Antarctica
50	71361	Elephant Mora EET 16191	43(1)	А	H6	Antarctica
52	71362	Elephant Mora EET 16192	43(1)	A	L5	Antarctica
55	71363	Elephant Mora EET 16193	43(1)	A	L6	Antarctica
55	71364	Elephant Mora EET 16194	43(1)	А	L6	Antarctica
56	71365	Elephant Mora EET 16195	43(1)	А	H6	Antarctica
57	72343	Erenhot			H~6	China
58	72645	Erenhot 002			L5	China
59	72475	Erg Chech 00: EC 002			Achondrite-ur	n Algeria
60	72840	Errachidia 003			Winonaite	Morocco

3	71098	Flensburg			C1-ung	Germany
4	72710	Foum Agoutir			L4	Morocco
5	71122	Gadamis 001			Martian (shere	Libva
6	72767	Gandom Berv			H5	Iran
7	72768	Gandom Bery			Ни	Iran
8	7200	Gang 004			1.~5	China
9	72074	Cana 005			L-5	China
10	72070				L~5	China
11	72876				L~5	China
12	72877	Gand 007			L~0	China
13	72450	Gatuto			L6	Kenya
14	72529	Ghadduwah 0			Lunar (anorth)	Libya
15	72467	Golden Gate M			H4	United States
16	71738	Gömüce			L6	Turkey
17	72646	Gonggar			L5	China
18	72614	Gouchi 001			R4	Niger
19	72870	Gourara 003			Eucrite-mmict	Algeria
20	71368	Grosvenor Mo GRO 17002	43(1)	А	H6	Antarctica
21	71369	Grosvenor Mo GRO 17003	43(1)	А	H6	Antarctica
22	71370	Grosvenor Mo GRO 17005	43(1)	А	H5	Antarctica
23	71371	Grosvenor Mo GRO 17007	43(1)	А	H6	Antarctica
24	71372	Grosvenor Mo GRO 17008	43(1)	А	H6	Antarctica
25	71373	Grosvenor Mo GRO 17009	43(1)	А	L3	Antarctica
26	71374	Grosvenor Mo GRO 17010	43(1)	A	H6	Antarctica
27	71375	Grosvenor Mo GRO 17011	43(1)	A	16	Antarctica
28	71376	Grosvenor Mo GRO 17012	43(1)	Δ	H6	Antarctica
29	71377	Grosvenor McGRO 17012	43(1)	Δ	16	Antarctica
30	71378	Grosvenor McGPO 17014	43(1)	Λ	He	Antarctica
31	71370	Crosvenor Mc CPO 17014	43(1)	A A		Antarctica
32	71379	Grosvenor Ma CRO 17015	43(1)	A		Antarctica
33	71300	GIOSVEIIOI MOGRO 17016	43(1)	A		Antarctica
34	71381	Grosvenor Mo GRO 17017	43(1)	A		Antarctica
35	71382	Grosvenor Mo GRO 17018	43(1)	A	LO	Antarctica
36	71383	Grosvenor Mo GRO 17019	43(1)	A	L5	Antarctica
37	71384	Grosvenor Mo GRO 17020	43(1)	A	HG	Antarctica
38	71385	Grosvenor Mo GRO 17021	43(1)	A	H5	Antarctica
39	71386	Grosvenor Mo GRO 17023	43(1)	A	H6	Antarctica
40	71387	Grosvenor Mo GRO 17024	43(1)	A	H6	Antarctica
41	71388	Grosvenor Mo GRO 17025	43(1)	A	H6	Antarctica
42	71389	Grosvenor Mo GRO 17026	43(1)	А	L3	Antarctica
43	71390	Grosvenor Mo GRO 17027	43(1)	А	L6	Antarctica
44	71391	Grosvenor Mo GRO 17028	43(1)	А	L4	Antarctica
45	71392	Grosvenor Mo GRO 17029	43(1)	А	H6	Antarctica
46	71393	Grosvenor Mo GRO 17030	43(1)	А	L5	Antarctica
47	71394	Grosvenor Mo GRO 17031	43(1)	А	H6	Antarctica
48	71395	Grosvenor Mo GRO 17032	43(1)	А	L5	Antarctica
49	71396	Grosvenor Mo GRO 17033	43(1)	А	H5	Antarctica
50	71397	Grosvenor Mo GRO 17034	43(1)	А	L6	Antarctica
51	71398	Grosvenor Mo GRO 17035	43(1)	А	H6	Antarctica
52	71399	Grosvenor Mo GRO 17036	43(1)	А	LL4	Antarctica
53	71400	Grosvenor Mo GRO 17037	43(1)	A	15	Antarctica
54	71401	Grosvenor Mo GRO 17040	43(1)	A	H6	Antarctica
55	71402	Grosvenor McGRO 17041	43(1)	A	H6	Antarctica
56	71403	Grosvenor Mc GPO 17047	43(1)	Δ	H6	Antarctica
57	71404	Grosvenor Mc GPO 17042	43(1)	Δ	H5	Antarctica
58	71404	Grosvonor McCPO 17043	+3(1)	^		Antarctica
59	71405	Grosvenor Ma CDO 17044	42(1)	A		Antarctica
60	11400	GIUSVEIIUI IVIU GRU 17045	43(1)	A	110	AntalClica

3	71407	Grosvenor MoGRO 17046	43(1)	А	H6	Antarctica
4	71408	Grosvenor MoGRO 17047	43(1)	А	H5	Antarctica
5	71409	Grosvenor MoGRO 17050	43(1)	А	H4	Antarctica
6	71410	Grosvenor MoGRO 17052	43(1)	А	L6	Antarctica
7	71411	Grosvenor MoGRO 17053	43(1)	А	L5	Antarctica
8	71412	Grosvenor MoGRO 17054	43(1)	А	L6	Antarctica
9	71413	Grosvenor MoGRO 17055	43(1)	А	LL5	Antarctica
10	71414	Grosvenor MoGRO 17056	43(1)	А	L5	Antarctica
11	71415	Grosvenor MoGRO 17057	43(1)	A	L5	Antarctica
12	71416	Grosvenor MoGRO 17058	43(1)	А	L5	Antarctica
13	71417	Grosvenor MoGRO 17061	43(1)	A	H6	Antarctica
14	71418	Grosvenor Mo GRO 17062	43(1)	A	H5	Antarctica
15	71419	Grosvenor MoGRO 17065	43(1)	A	H6	Antarctica
16	71420	Grosvenor MoGRO 17066	43(1)	A	H5	Antarctica
17	71421	Grosvenor MoGRO 17067	43(1)	A	H6	Antarctica
10	71422	Grosvenor MoGRO 17068	43(1)	A	H6	Antarctica
20	71423	Grosvenor McGRO 17069	43(1)	Δ	H5	Antarctica
20	71420	Grosvenor McGRO 17071	43(1)	Δ	He	Antarctica
21	71425	Grosvenor McGRO 1707	43(1)	Δ	H5	Antarctica
22	71426	Grosvenor McGRO 17073	+3(1)	^	H5	Antarctica
23	71420	Grosvenor McGRO 17073	43(1)	A A		Antarctica
25	71427	Grosvenor Mc CRO 17074	43(1)	A A		Antarctica
26	7 1420	Glosvenor Ma CRO 17075	43(1)	A		Antarctica
27	71429	Grosvenor Mc CRO 17076	43(1)	A		Antarctica
28	7 1430	Grosvenor Ma CDO 17077	43(1)	A		Antarctica
29	7 143 1	Grosvenor Mo GRO 17078	43(1)	A		Antarctica
30	71432	Grosvenor Mo GRO 17079	43(1)	A	Но	Antarctica
31	71433	Grosvenor Mo GRO 17080	43(1)	A	LLb	Antarctica
32	71434	Grosvenor Mo GRO 17081	43(1)	A	L5	Antarctica
33	71435	Grosvenor Mo GRO 17082	43(1)	A	Ho	Antarctica
34	71436	Grosvenor MoGRO 17083	43(1)	A	H6	Antarctica
35	71437	Grosvenor MoGRO 17084	43(1)	A	H6	Antarctica
36	71438	Grosvenor MoGRO 17085	43(1)	A	L6	Antarctica
37	71439	Grosvenor MoGRO 17086	43(1)	A	H5	Antarctica
38	71440	Grosvenor MoGRO 17087	43(1)	A	L5	Antarctica
39	71441	Grosvenor MoGRO 17088	43(1)	A	H5	Antarctica
40	71442	Grosvenor MoGRO 17089	43(1)	A	H6	Antarctica
41	71443	Grosvenor MoGRO 17090	43(1)	A	L6	Antarctica
42	71444	Grosvenor MoGRO 17091	43(1)	A	H6	Antarctica
43	71445	Grosvenor MoGRO 17092	43(1)	A	H6	Antarctica
44	71446	Grosvenor MoGRO 17093	43(1)	A	H6	Antarctica
45	71447	Grosvenor MoGRO 17094	43(1)	A	H5	Antarctica
46	71448	Grosvenor MoGRO 17095	43(1)	A	H6	Antarctica
47	71449	Grosvenor MoGRO 17096	43(1)	А	L6	Antarctica
48	71450	Grosvenor MoGRO 17097	43(1)	А	H5	Antarctica
49	71451	Grosvenor MoGRO 17100	43(1)	А	L6	Antarctica
50	71452	Grosvenor MoGRO 17101	43(1)	А	H6	Antarctica
51	71453	Grosvenor MoGRO 17103	43(1)	А	H5	Antarctica
53	71454	Grosvenor MoGRO 17104	43(1)	А	L6	Antarctica
54	71455	Grosvenor MoGRO 17105	43(1)	А	L5	Antarctica
55	71456	Grosvenor MoGRO 17106	43(1)	А	H6	Antarctica
56	71457	Grosvenor MoGRO 17107	43(1)	А	L6	Antarctica
57	71458	Grosvenor MoGRO 17109	43(1)	А	H6	Antarctica
58	71459	Grosvenor MoGRO 17110	43(1)	А	H6	Antarctica
59	71460	Grosvenor MoGRO 17111	43(1)	А	L6	Antarctica
60	71461	Grosvenor MoGRO 17112	43(1)	А	EH3	Antarctica

1						
2						
3	71462	Grosvenor MoGRO 17113	43(1)	А	L5	Antarctica
4	71463	Grosvenor MoGRO 17114	43(1)	А	H6	Antarctica
5	71464	Grosvenor MoGRO 17115	43(1)	А	L5	Antarctica
6	71465	Grosvenor MoGRO 17116	43(1)	А	L6	Antarctica
7	71466	Grosvenor MoGRO 17117	43(1)	Α	H5	Antarctica
8	71467	Grosvenor McGRO 17118	43(1)	Δ	16	Antarctica
9	71/69	Grosvenor McGRO 17120	43(1)	Λ		Antarctica
10	7 1400	Grosvenor Ma CDO 17120	43(1)	A		Antarctica
11	7 1409	GIOSVEIIOI MUGRO 17121	43(1)	A		Antarctica
12	71470	Grosvenor MoGRO 17122	43(1)	A	LL5	Antarctica
13	/14/1	Grosvenor MoGRO 1/123	43(1)	A	H6	Antarctica
14	71472	Grosvenor MoGRO 17124	43(1)	A	L5	Antarctica
15	71473	Grosvenor MoGRO 17125	43(1)	A	H6	Antarctica
16	71474	Grosvenor MoGRO 17126	43(1)	А	H6	Antarctica
17	71475	Grosvenor MoGRO 17127	43(1)	А	L6	Antarctica
18	71476	Grosvenor MoGRO 17129	43(1)	А	L6	Antarctica
19	71477	Grosvenor MoGRO 17130	43(1)	А	H6	Antarctica
20	71478	Grosvenor MoGRO 17131	43(1)	А	L6	Antarctica
21	71479	Grosvenor MoGRO 17132	43(1)	Α	H5	Antarctica
27	71480	Grosvenor MoGRO 17133	43(1)	Δ	H5	Antarctica
22	71/81	Grosvenor McGPO 17134	43(1)	Λ	Не	Antarctica
23	71401	Crosvenor Mc CRO 17134	+3(1)	^		Antarctica
25	7 1402	Glosvenor Ma CDO 17135	43(1)	A	L4	Antarctica
25	7 1483	Grosvenor MoGRO 17136	43(1)	A	HO	Antarctica
20	/1484	Grosvenor MoGRO 1/13/	43(1)	A	Ho	Antarctica
27	71485	Grosvenor MoGRO 17140	43(1)	A	L6	Antarctica
20	71486	Grosvenor MoGRO 17141	43(1)	A	L6	Antarctica
29	71487	Grosvenor MoGRO 17143	43(1)	A	L5	Antarctica
50 21	71488	Grosvenor MoGRO 17144	43(1)	А	L5	Antarctica
31	71489	Grosvenor MoGRO 17145	43(1)	А	L6	Antarctica
3Z	71490	Grosvenor MoGRO 17146	43(1)	А	L6	Antarctica
33	71491	Grosvenor MoGRO 17147	43(1)	А	L6	Antarctica
34	71492	Grosvenor MoGRO 17148	43(1)	А	H5	Antarctica
35	71493	Grosvenor MoGRO 17149	43(1)	A	H5	Antarctica
36	71494	Grosvenor MoGRO 17150	43(1)	Δ	H6	Antarctica
3/	71/05	Grosvenor McGRO 17151	43(1)	Δ	16	Antarctica
38	71406	Grosvenor McGRO 17152	42(1)	A A		Antarctica
39	71490	Grosvenor Mc CRO 17152	43(1)	A 		Antarctica
40	7 1497	Grosvenor Mo GRO 17153	43(1)	A	Но	Antarctica
41	71498	Grosvenor MoGRO 17154	43(1)	A	LO	Antarctica
42	71499	Grosvenor MoGRO 1/155	43(1)	A	H6	Antarctica
43	71500	Grosvenor MoGRO 17156	43(1)	A	L4	Antarctica
44	71501	Grosvenor MoGRO 17157	43(1)	A	H5	Antarctica
45	71502	Grosvenor MoGRO 17158	43(1)	A	H5	Antarctica
46	71503	Grosvenor MoGRO 17159	43(1)	А	L5	Antarctica
47	71504	Grosvenor MoGRO 17160	43(1)	А	H6	Antarctica
48	71505	Grosvenor MoGRO 17161	43(1)	А	L5	Antarctica
49	71506	Grosvenor MoGRO 17162	43(1)	А	L6	Antarctica
50	71507	Grosvenor MoGRO 17163	43(1)	А	H6	Antarctica
51	71508	Grosvenor MoGRO 17164	43(1)	А	H5	Antarctica
52	71509	Grosvenor MoGRO 17165	43(1)	Δ	H5	Antarctica
53	71510	Grosvenor McGPO 17166	43(1)	Δ	15	Antarctica
54	71511	Grosvenor McCBO 17167	43(1)	Λ	13	Antarotica
55	71510		42(1)	A		Antorotica
56	71512	Grosvenor Ma CDC 17170	43(1)	A		Antarctica
57	71513	Grosvenor Mo GRU 17171	43(1)	A	C13	Antarctica
58	71514	Grosvenor Mo GRO 17172	43(1)	A	H5	Antarctica
59	/1515	Grosvenor Mo GRO 17173	43(1)	A	H6	Antarctica
60	71516	Grosvenor MoGRO 17174	43(1)	A	H6	Antarctica

3	71517	Groevener Mc CPO 17	177	12(1)	٨	12	Antarctica
1	71517		177	43(1)	A	LJ	Antarctica
4	/1518	Grosvenor MoGRO 17	178	43(1)	A	HG	Antarctica
5	71519	Grosvenor MoGRO 17	179	43(1)	A	H6	Antarctica
6	71520	Grosvenor MoGRO 17	183	43(1)	Α	L5	Antarctica
7	71521	Grosvenor MoGRO 17	184	43(1)	А	H5	Antarctica
8	71522	Grosvenor MoGRO 17	187	43(1)	Δ	16	Antarctica
9	71502	Crosvener McCRO 17	107	40(1)	^	1.5	Antarotica
10	71525		190	43(1)	A	LU	Antarctica
11	71524	Grosvenor MoGRO 17	191	43(1)	A	HG	Antarctica
12	71525	Grosvenor McGRO 17	192	43(1)	A	H6	Antarctica
12	71526	Grosvenor MoGRO 17	193	43(1)	Α	H6	Antarctica
13	71527	Grosvenor MoGRO 17	194	43(1)	А	H6	Antarctica
14	71528	Grosvenor MoGRO 17	196	43(1)	Α	H6	Antarctica
15	71520	Grosvopor MaGPO 17	100	13(1)	^		Antarotica
16	71529	Grosvenor Ma ODO 17	197	43(1)	~		Antarctica
17	71530	Grosvenor MoGRO 17	198	43(1)	A	Ho	Antarctica
18	71531	Grosvenor MoGRO 17	199	43(1)	A	H6	Antarctica
19	71532	Grosvenor MoGRO 17	201	43(1)	Α	H5	Antarctica
20	71533	Grosvenor MoGRO 17	202	43(1)	Α	H5	Antarctica
21	71534	Grosvenor MoGRO 17	203	43(1)	Α	15	Antarctica
22	71535	Grosvenor McGRO 17	204	A3(1)	Δ	H6	Antarctica
22	71555	Grosvener Mc CDO 17	204	+3(1)	^		Antarctica
25	71536	Grosvenor MoGRO 17	205	43(1)	A	Ho	Antarctica
24	71537	Grosvenor MoGRO 17	206	43(1)	A	H6	Antarctica
25	71538	Grosvenor MoGRO 17	207	43(1)	Α	H6	Antarctica
26	71539	Grosvenor MoGRO 17	208	43(1)	Α	H5	Antarctica
27	71540	Grosvenor MoGRO 17	209	43(1)	А	LL5	Antarctica
28	72881	Grove Mounta GRV 02	0205		C	НИ	Antarctica
29	72001	Crove Mounta CRV 020	0200		C C		Antarctica
30	72002	GIOVE MOUIILAGRY 020	0200	-			Antarctica
31	72883	Grove Mounta GRV 020	0207	-	C	H5	Antarctica
32	72884	Grove Mounta GRV 02	0208	-	С	H5	Antarctica
32	72885	Grove Mounta GRV 020	0209	-	С	H4	Antarctica
22	72886	Grove Mounta GRV 020	0213	-	С	H5	Antarctica
34	72887	Grove Mounta GRV 020	0215	-	С	H4	Antarctica
35	72888	Grove Mounta GRV 02	0218	_	C	H5	Antarctica
36	72000	Crove Mounta CRV 02	0210		C C	16	Antarctica
37	72009	Grove Mounta GRV 020	0223	-			Antarctica
38	72890	Grove Mounta GRV 020	0229	-	C	H4	Antarctica
39	72891	Grove Mounta GRV 02	0233	-	С	H5	Antarctica
40	72892	Grove Mounta GRV 020	0235	-	С	H5	Antarctica
41	72893	Grove Mounta GRV 020	0244	-	С	H5	Antarctica
42	72894	Grove Mounta GRV 020	0246	-	С	H4	Antarctica
43	72895	Grove Mounta GRV 02	0247	_	C.	H4	Antarctica
44	72806	Grove Mounta GRV 02	0240		C		Antarotica
44	72090	GIOVE MOUIILAGRY 020	0240	-			Antarctica
45	72897	Grove Mounta GRV 020	0255	-	C	H5	Antarctica
46	72898	Grove Mounta GRV 02	0260	-	С	H5	Antarctica
47	72899	Grove Mounta GRV 020	0263	-	С	H5	Antarctica
48	72900	Grove Mounta GRV 020	0264	-	С	H5	Antarctica
49	72901	Grove Mounta GRV 020	0265	_	С	H4	Antarctica
50	72002	Grove Mounta GRV 02	0267		C		Antarotica
51	72902	Grove Mounta GRV 020	0207	-			Antarctica
52	72903	Grove Mounta GRV 02	0208	-		CD CD	Antarctica
53	72904	Grove Mounta GRV 02	0269	-	C	H5	Antarctica
54	72905	Grove Mounta GRV 02	0270	-	С	H5	Antarctica
54	72906	Grove Mounta GRV 02	0271	-	С	H5	Antarctica
33 56	72907	Grove Mounta GRV 02	0272	-	С	H5	Antarctica
50	72908	Grove Mounta GRV 02	0278	_	C.	H4	Antarctica
57	72000	Crove Mounta CDV 020	0270		C		Antorotico
58	72909	Grove Mourita GRV 02	0279	-	0	Π4 1.1.0	Antarctica
59	72910	Grove Mounta GRV 02	0282	-	C	LL6	Antarctica
60	72911	Grove Mounta GRV 02	0286	-	С	L6	Antarctica

Runni	na ł	Head
Numm	ngi	leau

2						
3	72912	Grove Mounta GRV 0202	289 -	С	L4	Antarctica
4	72913	Grove Mounta GRV 0202	294 -	С	L6	Antarctica
5	72914	Grove Mounta GRV 0202	295 -	С	L4	Antarctica
6	72915	Grove Mounta GRV 0202	296 -	Ċ	15	Antarctica
7	72016	Grove Mounta GRV 0202	208 -	C C	15	Antarctica
8	72910	Grove Mounta GRV 0202	- 00	0		Antarctica
9	72917	Grove Mounta GRV 0202	199 -		LO	Antarctica
10	72918	Grove Mounta GRV 0203	306 -	C	L5	Antarctica
11	72919	Grove Mounta GRV 0203	308 -	С	L6	Antarctica
12	72920	Grove Mounta GRV 0203	309 -	С	L5	Antarctica
13	72921	Grove Mounta GRV 0203	313 -	С	L5	Antarctica
17	72922	Grove Mounta GRV 0203	316 -	С	L5	Antarctica
14	72923	Grove Mounta GRV 0203	320 -	С	L5	Antarctica
15	72924	Grove Mounta GRV 0203	321 -	С	H6	Antarctica
10	72925	Grove Mounta GRV 0203	322 -	C.	16	Antarctica
17	72026	Grove Mounta CPV 0203	224	C C	15	Antarctica
18	72920	Grove Mounta GRV 0203	24 -	0		Antarctica
19	72927	Grove Mounta GRV 0203	20 -		LO	Antarctica
20	72928	Grove Mounta GRV 0203	330 -	C	LG	Antarctica
21	72929	Grove Mounta GRV 0203	332 -	С	L6	Antarctica
22	72930	Grove Mounta GRV 0203	336 -	С	L5	Antarctica
23	72931	Grove Mounta GRV 0203	338 -	С	L5	Antarctica
24	72932	Grove Mounta GRV 0203	341 -	С	L6	Antarctica
25	72933	Grove Mounta GRV 0203	342 -	С	L5	Antarctica
26	72934	Grove Mounta GRV 0203	343 -	C C	15	Antarctica
27	72935	Grove Mounta GRV 0203	844 -	C C	15	Antarctica
28	72026	Crove Mounta CRV 0203		0	15	Antarotica
29	72930	Grove Mounta GRV 0203	040 - 040		LO	Antarctica
30	72937	Grove Mounta GRV 0203	948 -		LO	Antarctica
31	72938	Grove Mounta GRV 0203	350 -	C	H5	Antarctica
32	72939	Grove Mounta GRV 0203	352 -	С	H5	Antarctica
33	72940	Grove Mounta GRV 0203	357 -	С	L5	Antarctica
34	72941	Grove Mounta GRV 0203	358 -	С	L5	Antarctica
35	72942	Grove Mounta GRV 0203	360 -	С	L4	Antarctica
36	72943	Grove Mounta GRV 0203	363 -	С	L5	Antarctica
37	72944	Grove Mounta GRV 0203	364 -	С	L4	Antarctica
20	72945	Grove Mounta GRV 0203	366 -	С	L5	Antarctica
20	72946	Grove Mounta GRV 0203	367 -	C C	15	Antarctica
39	72047	Grove Mounta GRV 0203	268	C C	15	Antarctica
40	72040	Crove Mounta CRV 0203	270	0	15	Antarctica
41	72940	Grove Mounta GRV 0203	070 -		LO	Antarctica
42	72949	Grove Mounta GRV 0203	3/1 -	0	L5	Antarctica
43	72950	Grove Mounta GRV 0203	372 -	C	L5	Antarctica
44	72951	Grove Mounta GRV 0203	373 -	С	L5	Antarctica
45	72952	Grove Mounta GRV 0203	374 -	С	L5	Antarctica
46	72953	Grove Mounta GRV 0203	375 -	С	L5	Antarctica
47	72954	Grove Mounta GRV 0203	376 -	С	L5	Antarctica
48	72955	Grove Mounta GRV 0203	377 -	С	L5	Antarctica
49	72956	Grove Mounta GRV 0203	378 -	С	15	Antarctica
50	72957	Grove Mounta GRV 0203	870 -	C C	15	Antarctica
51	72059	Grove Mounta CRV 0203	ΩQ1	C C	15	Antarctica
52	72950	Grove Mounta GRV 0203		0		Antarctica
53	72959	Grove Mounta GRV 0203	002 -	0		Antarctica
54	72960	Grove Mounta GRV 0203	003 -	0	L4	Antarctica
55	72961	Grove Mounta GRV 0203	387 -	C	L5	Antarctica
56	72962	Grove Mounta GRV 0203	388 -	С	L5	Antarctica
57	72963	Grove Mounta GRV 0203	389 -	С	L5	Antarctica
58	72964	Grove Mounta GRV 0203	390 -	С	L5	Antarctica
59	72965	Grove Mounta GRV 0203	391 -	С	L5	Antarctica
60	72966	Grove Mounta GRV 0203	393 -	С	L5	Antarctica
00					-	

3	72967	Grove Mounta GRV (020394	-	С	L5	Antarctica
4	72968	Grove Mounta GRV (020396	-	С	L5	Antarctica
5	72969	Grove Mounta GRV (020398	-	С	L5	Antarctica
6	72970	Grove Mounta GRV (020399	-	С	L5	Antarctica
7	72971	Grove Mounta GRV (020400	-	С	L5	Antarctica
8	72972	Grove Mounta GRV (020401	_	C	H5	Antarctica
9	72973	Grove Mounta GRV (020402	_	C	H4	Antarctica
10	72974	Grove Mounta GRV (120403	_	C	15	Antarctica
11	72075	Grove Mounta GRV (120400	_	C	15	Antarctica
12	72076	Grove Mounta GRV (120404	-	C	15	Antarctica
13	72077	Grove Mounta GRV (120405	-	C	15	Antarctica
14	72079	Crove Mounta CRV (JZ0400	-	C		Antarctica
15	72970	Grove Mounta GRV (JZU4U7	-		LO	Antarctica
16	72979	Grove Mounta GRV (JZU4U8	-		L5	Antarctica
17	72980	Grove Mounta GRV	JZ0409	-		LO	Antarctica
18	72981	Grove Mounta GRV (J20410	-	C	L4	Antarctica
19	72982	Grove Mounta GRV (J20411	-	C	L5	Antarctica
20	72983	Grove Mounta GRV (020412	-	С	L6	Antarctica
21	72984	Grove Mounta GRV (020414	-	С	L5	Antarctica
22	72985	Grove Mounta GRV (020415	-	С	L5	Antarctica
23	72986	Grove Mounta GRV (020416	-	С	L4	Antarctica
24	72987	Grove Mounta GRV (020417	-	С	L5	Antarctica
25	72988	Grove Mounta GRV (020418	-	С	L5	Antarctica
26	72989	Grove Mounta GRV (020419	-	С	L4	Antarctica
27	72990	Grove Mounta GRV (020420	-	С	H5	Antarctica
28	72991	Grove Mounta GRV (020421	-	С	L5	Antarctica
29	72992	Grove Mounta GRV (020422	-	С	L5	Antarctica
30	72993	Grove Mounta GRV (020423	-	С	L5	Antarctica
31	72994	Grove Mounta GRV (020424	_	С	L5	Antarctica
32	72995	Grove Mounta GRV (020425	_	C	15	Antarctica
33	72996	Grove Mounta GRV (120426	_	C	15	Antarctica
34	72997	Grove Mounta GRV (120427	_	C	15	Antarctica
35	72998	Grove Mounta GRV (120428	_	C	14	Antarctica
36	72000	Grove Mounta GRV (120420	_	C	15	Antarctica
3/	73000	Grove Mounta GRV (120420	_	C	15	Antarctica
38	73000	Grove Mounta GRV (120430	-	C	15	Antarctica
39	73001	Grove Mounta CDV (JZ0431	-			Antarctica
40	73002	Grove Mounta GRV (JZ043Z	-			Antarctica
41	73003	Grove Mounta GRV (JZ0433	-			Antarctica
42	73004	Grove Mounta GRV (JZU434	-		L5	Antarctica
43	73005	Grove Mounta GRV (JZU435	-		L5	Antarctica
44	73006	Grove Mounta GRV (J20436	-	C	L4	Antarctica
45	73007	Grove Mounta GRV ()20437	-	С	L5	Antarctica
40	73008	Grove Mounta GRV ()20438	-	С	L5	Antarctica
47	73009	Grove Mounta GRV (020439	-	С	L5	Antarctica
40	73010	Grove Mounta GRV (020440	-	С	L5	Antarctica
49 50	73011	Grove Mounta GRV (020441	-	С	L5	Antarctica
50	73012	Grove Mounta GRV (020442	-	С	L6	Antarctica
57	73013	Grove Mounta GRV (020443	-	С	L5	Antarctica
53	73014	Grove Mounta GRV (020444	-	С	H5	Antarctica
54	73015	Grove Mounta GRV (020445	-	С	L5	Antarctica
55	73016	Grove Mounta GRV (020446	-	С	H4	Antarctica
56	73017	Grove Mounta GRV (020447	-	С	L5	Antarctica
57	73018	Grove Mounta GRV (020448	-	С	L5	Antarctica
58	73019	Grove Mounta GRV (020449	-	С	L5	Antarctica
59	73020	Grove Mounta GRV (020450	-	С	L5	Antarctica
60	73021	Grove Mounta GRV	020451	-	С	L5	Antarctica
~~							

	_
κυρρισό θέλα	
numining neu	ч.

2						
3	73022	Grove Mounta GRV 020452	-	С	L4	Antarctica
4	73023	Grove Mounta GRV 020453	-	С	L4	Antarctica
5	73024	Grove Mounta GRV 020454	-	С	L5	Antarctica
6	73025	Grove Mounta GRV 020455	-	С	L5	Antarctica
7	73026	Grove Mounta GRV 020456	-	C	15	Antarctica
8	73027	Grove Mounta GRV 020457	_	C	15	Antarctica
9	73028	Grove Mounta GRV 020407	_	C	15	Antarctica
10	73020	Grove Mounta GRV 020450	-	0		Antarctica
11	73029	Grove Mounta GRV 020459	-		LO	Antarctica
12	73030	Grove Mounta GRV 020460	-		L4	Antarctica
13	73031	Grove Mounta GRV 020461	-	C	L4	Antarctica
14	73032	Grove Mounta GRV 020462	-	С	L5	Antarctica
15	73033	Grove Mounta GRV 020463	-	С	L5	Antarctica
16	73034	Grove Mounta GRV 020464	-	С	L4	Antarctica
17	73035	Grove Mounta GRV 020465	-	С	L4	Antarctica
18	73036	Grove Mounta GRV 020466	-	С	L5	Antarctica
19	73037	Grove Mounta GRV 020467	-	С	L5	Antarctica
20	73038	Grove Mounta GRV 020468	-	С	L5	Antarctica
21	73039	Grove Mounta GRV 020469	_	C.	15	Antarctica
27	73040	Grove Mounta GRV 020470	_	C	15	Antarctica
22	730/1	Grove Mounta GRV 020470	_	C	16	Antarctica
23	73047	Grove Mounta GRV 020471	-	C		Antarctica
25	73042	Grove Mounta CDV 020472	-	C		Antarctica
25	73043	Grove Mounta GRV 020473	-		LO	Antarctica
20	73044	Grove Mounta GRV 020474	-	C	L5	Antarctica
27	73045	Grove Mounta GRV 020475	-	С	L5	Antarctica
20	73046	Grove Mounta GRV 020476	-	С	L5	Antarctica
29	73047	Grove Mounta GRV 020477	-	С	L5	Antarctica
30	73048	Grove Mounta GRV 020478	-	С	L4	Antarctica
37	73049	Grove Mounta GRV 020479	-	С	L5	Antarctica
32	73050	Grove Mounta GRV 020480	-	С	H4	Antarctica
34	73051	Grove Mounta GRV 020481	-	С	L5	Antarctica
35	73052	Grove Mounta GRV 020482	-	С	L5	Antarctica
36	73053	Grove Mounta GRV 020483	-	С	L5	Antarctica
37	73054	Grove Mounta GRV 020484	-	С	L5	Antarctica
38	73055	Grove Mounta GRV 020485	-	С	L5	Antarctica
39	73056	Grove Mounta GRV 020486	-	С	L6	Antarctica
40	73057	Grove Mounta GRV 020487	-	C	16	Antarctica
40	73058	Grove Mounta GRV 020488	_	C	15	Antarctica
40	73050	Grove Mounta GRV 020180	_	C	15	Antarctica
42	73060	Grove Mounta GRV 020400	_	C		Antarctica
43	73061	Grove Mounta GRV 020490		C	1.5	Antarctica
45	73001	Crove Mounta CRV 020491	-	C		Antarctica
46	73062	Grove Mounta GRV 020492	-		LO	Antarctica
40	73063	Grove Mounta GRV 020493	-		L5	Antarctica
47	73064	Grove Mounta GRV 020494	-	C	L5	Antarctica
40	73065	Grove Mounta GRV 020495	-	С	L5	Antarctica
49 50	73066	Grove Mounta GRV 020496	-	С	L5	Antarctica
51	73067	Grove Mounta GRV 020497	-	С	L5	Antarctica
50	73068	Grove Mounta GRV 020498	-	С	L6	Antarctica
52	73069	Grove Mounta GRV 020499	-	С	L5	Antarctica
55	73070	Grove Mounta GRV 020500	-	C	L6	Antarctica
55	73071	Grove Mounta GRV 020501	-	С	L5	Antarctica
55	73072	Grove Mounta GRV 020502	-	С	L6	Antarctica
57	73073	Grove Mounta GRV 020503	-	С	L5	Antarctica
58	73074	Grove Mounta GRV 020504	-	С	L6	Antarctica
50	73075	Grove Mounta GRV 020505	-	С	L6	Antarctica
59	73076	Grove Mounta GRV 020506	_	C	15	Antarctica
00				•		, interotiou

Page	356	of	686
i uge	550	~	000

2						
3	73077	Grove Mounta GRV 020507	-	С	L6	Antarctica
4	73078	Grove Mounta GRV 020508	-	С	L5	Antarctica
5	73079	Grove Mounta GRV 020509	-	С	L6	Antarctica
6	73080	Grove Mounta GRV 020510	-	С	L5	Antarctica
7	73081	Grove Mounta GRV 020511	-	C	L6	Antarctica
8	73082	Grove Mounta GRV 020512	-	C	14	Antarctica
9	73083	Grove Mounta GRV 020513	_	C	16	Antarctica
10	73084	Grove Mounta GRV 020514	_	C	15	Antarctica
11	73085	Grove Mounta GRV 020515	_	C	15	Antarctica
12	73086	Grove Mounta GRV 020515		C		Antarctica
13	73000	Crove Mounta CRV 020510	-	C	15	Antarctica
14	73007	Grove Mounta GRV 020517	-	C	LO	Antarctica
15	73000	Grove Mounta GRV 020519	-			Antarctica
16	73089	Grove Mounta GRV 020520	-	C	L5	Antarctica
17	73090	Grove Mounta GRV 020521	-	C	L5	Antarctica
18	73091	Grove Mounta GRV 020522	-	C	L5	Antarctica
19	73092	Grove Mounta GRV 020523	-	С	L5	Antarctica
20	73093	Grove Mounta GRV 020524	-	С	L6	Antarctica
21	73094	Grove Mounta GRV 020525	-	С	L5	Antarctica
22	73095	Grove Mounta GRV 020526	-	С	L4	Antarctica
23	73096	Grove Mounta GRV 020527	-	С	L5	Antarctica
24	73097	Grove Mounta GRV 020528	-	С	L5	Antarctica
25	73098	Grove Mounta GRV 020529	-	С	H6	Antarctica
26	73099	Grove Mounta GRV 020530	-	С	L5	Antarctica
27	73100	Grove Mounta GRV 020531	-	С	L5	Antarctica
28	73101	Grove Mounta GRV 020532	-	С	L5	Antarctica
29	73102	Grove Mounta GRV 020533	-	C	L6	Antarctica
30	73103	Grove Mounta GRV 020534	-	C	15	Antarctica
31	73104	Grove Mounta GRV 020535	-	C	16	Antarctica
32	73105	Grove Mounta GRV 020536	_	C	15	Antarctica
33	73106	Grove Mounta GRV 020537	_	C	15	Antarctica
34	73107	Grove Mounta GRV 020538	_	C	15	Antarctica
35	73108	Grove Mounta GRV 020530		C		Antarctica
36	73100	Grove Mounta GRV 020539		C	15	Antarctica
37	73109	Grove Mounta GRV 020540	-	C		Antarctica
38	73110	Grove Mounta GRV 020541	-	C		Antarctica
39	73111	Grove Mounta GRV 020542	-		LO	Antarctica
40	73112	Grove Mounta GRV 020543	-		LS	Antarctica
41	73113	Grove Mounta GRV 020544	-	C	L5	Antarctica
42	73114	Grove Mounta GRV 020545	-	C	L5	Antarctica
43	73115	Grove Mounta GRV 020546	-	С	L5	Antarctica
44	73116	Grove Mounta GRV 020547	-	С	L5	Antarctica
45	73117	Grove Mounta GRV 020548	-	С	L5	Antarctica
46	73118	Grove Mounta GRV 020549	-	С	L5	Antarctica
4/	73119	Grove Mounta GRV 020550	-	С	L6	Antarctica
48	73120	Grove Mounta GRV 020551	-	С	L6	Antarctica
49	73121	Grove Mounta GRV 020552	-	С	L6	Antarctica
50	73122	Grove Mounta GRV 020553	-	С	L6	Antarctica
51	73123	Grove Mounta GRV 020554	-	С	L5	Antarctica
52	73124	Grove Mounta GRV 020555	-	С	L5	Antarctica
JJ F4	73125	Grove Mounta GRV 020556	-	С	L5	Antarctica
54	73126	Grove Mounta GRV 020557	-	С	L5	Antarctica
55 56	73127	Grove Mounta GRV 020558	-	С	L6	Antarctica
50 57	73128	Grove Mounta GRV 020559	_	C	L5	Antarctica
5/	73129	Grove Mounta GRV 020560	_	C	14	Antarctica
58	73130	Grove Mounta GRV 020500	_	C	15	Antarctica
59	73131	Grove Mounta GRV 020501		0	15	Antarctica
60	13131	Grove Wounta GRV 020502	-	0	LU	Antarctica

-		
Dun	nina	Hood
nun	i ili iu	i ieau

2						
3	73132	Grove Mounta GRV 020563	-	С	L6	Antarctica
4	73133	Grove Mounta GRV 020564	-	С	L5	Antarctica
5	73134	Grove Mounta GRV 020565	-	С	L5	Antarctica
6	73135	Grove Mounta GRV 020567	-	С	L4	Antarctica
7	73136	Grove Mounta GRV 020568	-	С	L5	Antarctica
8	73137	Grove Mounta GRV 020575	-	C	16	Antarctica
9	73138	Grove Mounta GRV 020577	_	C	15	Antarctica
10	73130	Grove Mounta GRV 020077	_	C	15	Antarctica
11	73140	Grove Mounta GRV 020570	-	C	15	Antarctica
12	73140	Crove Mounta CRV 020579	-	C		Antarctica
13	73141	Grove Mounta CRV 020580	-	C	114	Antarctica
14	73142	Grove Mounta GRV 020362	-	C		Antarctica
15	73143	Grove Mounta GRV 020566	-		LO	Antarctica
16	73144	Grove Mounta GRV 020591	-		L5	Antarctica
17	73145	Grove Mounta GRV 020592	-	C	Lo	Antarctica
18	73146	Grove Mounta GRV 020593	-	C	L5	Antarctica
19	/314/	Grove Mounta GRV 020596	-	С	L6	Antarctica
20	73148	Grove Mounta GRV 020597	-	С	L5	Antarctica
21	73149	Grove Mounta GRV 020598	-	С	L6	Antarctica
22	73150	Grove Mounta GRV 020602	-	С	L6	Antarctica
23	73151	Grove Mounta GRV 020603	-	С	L5	Antarctica
24	73152	Grove Mounta GRV 020604	-	С	L6	Antarctica
25	73153	Grove Mounta GRV 020605	-	С	L5	Antarctica
26	73154	Grove Mounta GRV 020606	-	С	L5	Antarctica
27	73155	Grove Mounta GRV 020607	-	С	L5	Antarctica
28	73156	Grove Mounta GRV 020608	-	С	L5	Antarctica
29	73157	Grove Mounta GRV 020609	-	С	L6	Antarctica
30	73158	Grove Mounta GRV 020610	-	С	L5	Antarctica
31	73159	Grove Mounta GRV 020611	-	C	L6	Antarctica
32	73160	Grove Mounta GRV 020612	-	C	16	Antarctica
33	73161	Grove Mounta GRV 020613	_	C	15	Antarctica
34	73162	Grove Mounta GRV 020614	_	C	15	Antarctica
35	73163	Grove Mounta GRV 020014	_	C	15	Antarctica
36	73164	Grove Mounta GRV 020010		C		Antarctica
37	73165	Grove Mounta GRV 020017	-	C	1.5	Antarctica
38	73105	Grove Mounta CRV 020018	-	C		Antarctica
39	73100	Grove Mounta GRV 020020	-	C	LO	Antarctica
40	73107	Grove Mounta GRV 020621	-		LO	Antarctica
41	73168	Grove Mounta GRV 020622	-		LS	Antarctica
42	73169	Grove Mounta GRV 020623	-	C	L5	Antarctica
43	73170	Grove Mounta GRV 020624	-	C	L5	Antarctica
44	73171	Grove Mounta GRV 020625	-	С	H5	Antarctica
45	73172	Grove Mounta GRV 020626	-	С	L5	Antarctica
46	73173	Grove Mounta GRV 020627	-	С	L5	Antarctica
47	73174	Grove Mounta GRV 020628	-	С	L5	Antarctica
48	73175	Grove Mounta GRV 020629	-	С	L5	Antarctica
49	73176	Grove Mounta GRV 020630	-	С	L5	Antarctica
50	73177	Grove Mounta GRV 020631	-	С	L5	Antarctica
51	73178	Grove Mounta GRV 020632	-	С	L5	Antarctica
52 52	73179	Grove Mounta GRV 020633	-	С	L5	Antarctica
55 E A	73180	Grove Mounta GRV 020634	-	С	L6	Antarctica
54 55	73181	Grove Mounta GRV 020635	-	С	L6	Antarctica
55 56	73182	Grove Mounta GRV 020636	-	С	L5	Antarctica
50	73183	Grove Mounta GRV 020637	-	С	L5	Antarctica
50 50	73184	Grove Mounta GRV 020638	-	С	L6	Antarctica
50 50	73185	Grove Mounta GRV 020639	-	C	L5	Antarctica
50 60	73186	Grove Mounta GRV 020640	_	C	15	Antarctica
00	10100					, 11010100

3	73187	Grove Mounta GRV 0)20641 -	-	С	L5	Antarctica
4	73188	Grove Mounta GRV 0)20642 -	-	С	L5	Antarctica
5	73189	Grove Mounta GRV 0)20643 -	-	С	L5	Antarctica
6	73190	Grove Mounta GRV 0)20644 -	_	С	L5	Antarctica
7	73191	Grove Mounta GRV ()20645 -	_	C	15	Antarctica
8	73192	Grove Mounta GRV (020646 -	_	C	15	Antarctica
9	73103	Grove Mounta GRV (120647.	_	C	15	Antarctica
10	73104	Grove Mounta GRV (120047		C	15	Antarctica
11	73105	Grove Mounta GRV (1200 4 0 ·	-	C	15	Antarctica
12	73195	Grove Mounta CRV (J20050 -	-	C		Antarctica
13	73190	Grove Mounta GRV (J20051 ·	-		LO	Antarctica
14	73197	Grove Mounta GRV C	J20052 -	-		L5	Antarctica
15	73198	Grove Mounta GRV C	J20653 -	-	C	L5	Antarctica
16	73199	Grove Mounta GRV ()20654 -	-	C	L5	Antarctica
17	73200	Grove Mounta GRV 0)20655 -	-	С	L5	Antarctica
18	73201	Grove Mounta GRV 0)20656 -	-	С	L5	Antarctica
19	73202	Grove Mounta GRV 0)20657 -	-	С	L5	Antarctica
20	73203	Grove Mounta GRV 0)20658 -	-	С	L5	Antarctica
21	73204	Grove Mounta GRV 0)20659 -	-	С	L5	Antarctica
22	73205	Grove Mounta GRV 0	020660 -	-	С	L6	Antarctica
23	73206	Grove Mounta GRV 0	020661 -	-	С	L5	Antarctica
24	73207	Grove Mounta GRV 0)20662 -	-	С	L5	Antarctica
25	73208	Grove Mounta GRV 0)20663 -	_	С	L5	Antarctica
26	73209	Grove Mounta GRV ()20664 -	_	C	16	Antarctica
27	73210	Grove Mounta GRV ()20665 -	_	C	16	Antarctica
28	73211	Grove Mounta GRV (120666	_	C.	15	Antarctica
29	73212	Grove Mounta GRV (120667		C	16	Antarctica
30	73212	Grove Mounta GRV (120007 -	-	C	15	Antarctica
31	73213	Grove Mounta CRV (20000 -	-	C		Antarctica
32	73214	Grove Mounta GRV (J20009 -	-		LO	Antarctica
33	73213	Grove Mounta GRV (JZU070 ·	-		LO	Antarctica
34	73216	Grove Mounta GRV C	J20671 -	-		L5	Antarctica
35	73217	Grove Mounta GRV C	J20672 -	-		L5	Antarctica
36	73218	Grove Mounta GRV C)20673 -	-	C	L5	Antarctica
37	73219	Grove Mounta GRV ()20674 -	-	C	L5	Antarctica
38	73220	Grove Mounta GRV 0)20675 -	-	С	L5	Antarctica
39	73221	Grove Mounta GRV 0)20676 -	-	С	L5	Antarctica
40	73222	Grove Mounta GRV 0)20677 -	-	С	L5	Antarctica
41	73223	Grove Mounta GRV 0)20678 -	-	С	L5	Antarctica
42	73224	Grove Mounta GRV 0)20679 -	-	С	L5	Antarctica
43	73225	Grove Mounta GRV 0)20680 -	-	С	H6	Antarctica
44	73226	Grove Mounta GRV 0)20681 -	-	С	L5	Antarctica
45	73227	Grove Mounta GRV 0)20682 -	-	С	L5	Antarctica
46	73228	Grove Mounta GRV 0)20683 -	-	С	L5	Antarctica
47	73229	Grove Mounta GRV 0)20684 -	_	С	L6	Antarctica
48	73230	Grove Mounta GRV 0)20685 -	_	С	L4	Antarctica
49	73231	Grove Mounta GRV ()20686 -	_	C	15	Antarctica
50	73232	Grove Mounta GRV ()20687 -	_	C	16	Antarctica
51	73233	Grove Mounta GRV (120688 -	_	C	14	Antarctica
52	73234	Grove Mounta GRV (120680	_	C	15	Antarctica
53	73235	Grove Mounta GRV (120000		C		Antarctica
54	73236	Grove Mounta GRV (120090 -		C	15	Antarctica
55	73230	Grove Mounta GRV (20091 -		0		Antarctica
56	73237	Grove Mounta GRV (20092 -		0		Antarclica
57	73238	Grove Mounta GRV (120693 -		0		Antarctica
58	73239	Grove Mounta GRV C	J20694 -	-	C	LG	Antarctica
59	73240	Grove Mounta GRV 0	J20695 -	-	C	L5	Antarctica
60	73241	Grove Mounta GRV 0)20696 -	-	С	L5	Antarctica

1						
2						
3	73242	Grove Mounta GRV 020697	′ -	С	L5	Antarctica
4	73243	Grove Mounta GRV 020698	5 -	С	L4	Antarctica
5	73244	Grove Mounta GRV 020699) -	С	L5	Antarctica
6	73245	Grove Mounta GRV 020701	-	С	L6	Antarctica
7	73246	Grove Mounta GRV 020702	2 _	C	H5	Antarctica
8	73247	Grove Mounta GRV 020703	_	C	16	Antarctica
9	732/18	Grove Mounta GPV 020704		C	15	Antarctica
10	73240	Grove Mounta GRV 020704	-	C		Antarctica
11	73249	Grove Mounta GRV 020703) -		LO	Antarctica
12	73250	Grove Mounta GRV 020706	. –		LO	Antarctica
13	73251	Grove Mounta GRV 020707	-	C	L5	Antarctica
14	73252	Grove Mounta GRV 020708	5 -	С	L5	Antarctica
15	73253	Grove Mounta GRV 020709) -	С	L6	Antarctica
16	73254	Grove Mounta GRV 020710) –	С	L5	Antarctica
17	73255	Grove Mounta GRV 020711	-	С	L5	Antarctica
18	73256	Grove Mounta GRV 020712	! -	С	L6	Antarctica
19	73257	Grove Mounta GRV 020713	-	С	L4	Antarctica
20	73258	Grove Mounta GRV 020714		С	L5	Antarctica
21	73259	Grove Mounta GRV 020715	-	C	16	Antarctica
27	73260	Grove Mounta GRV 020716	_	C	15	Antarctica
22	73261	Grove Mounta GRV 020717	· -	C	16	Antarctica
23	73201	Grove Mounta CRV 020717	-	C	LO	Antarctica
24	73202	Grove Mounta GRV 020718) -		LO	Antarctica
25	73263	Grove Mounta GRV 020/19	-	C	L5	Antarctica
20	73264	Grove Mounta GRV 020720) -	С	L5	Antarctica
27	73265	Grove Mounta GRV 020721	-	С	L5	Antarctica
28	73266	Grove Mounta GRV 020722	2 -	С	L5	Antarctica
29	73267	Grove Mounta GRV 020723	i -	С	L6	Antarctica
30	73268	Grove Mounta GRV 020724	-	С	L6	Antarctica
31	73269	Grove Mounta GRV 020725	i -	С	L6	Antarctica
32	73270	Grove Mounta GRV 020726	i -	С	L5	Antarctica
33	73271	Grove Mounta GRV 020727	, _	С	L5	Antarctica
34	73272	Grove Mounta GRV 020728	-	C	L5	Antarctica
35	73273	Grove Mounta GRV 020729	-	C.	14	Antarctica
36	73274	Grove Mounta GPV 020720		C	15	Antarctica
37	73274	Crove Mounta CRV 020730	, -	C		Antarctica
38	73275	Grove Mounta CDV 020731	_	C		Antarctica
39	73270	Grove Mounta GRV 020732	-		LO	Antarctica
40	/32//	Grove Mounta GRV 020734	-	C	L5	Antarctica
41	/32/8	Grove Mounta GRV 020735) -	C	L5	Antarctica
42	73279	Grove Mounta GRV 020737	′-	С	L6	Antarctica
43	73280	Grove Mounta GRV 020738	5 -	С	L5	Antarctica
44	73281	Grove Mounta GRV 020739) _	С	L6	Antarctica
45	73282	Grove Mounta GRV 020740) -	С	L6	Antarctica
46	73283	Grove Mounta GRV 020741	-	С	L6	Antarctica
47	73284	Grove Mounta GRV 020742	! -	С	L4	Antarctica
48	73285	Grove Mounta GRV 020743	; _	С	L5	Antarctica
49	73286	Grove Mounta GRV 020744		C	15	Antarctica
50	73287	Grove Mounta GRV 020745	_	C.	16	Antarctica
51	73288	Grove Mounta GRV 020746	_	C.	15	Antarctica
52	73280	Grove Mounta GRV 020740		C	15	Antarotica
53	73209	Grove Mounta CRV 020747		0	15	Antarotica
54	73290	Grove Mounta GRV 020748	-	0		Antarctica
55	73291	Grove Mounta GRV 020/49	-		L5	Antarctica
56	73292	Grove Mounta GRV 020750	-	C	LG	Antarctica
57	73293	Grove Mounta GRV 020751	-	C	L5	Antarctica
58	73294	Grove Mounta GRV 020752	-	С	L5	Antarctica
59	73295	Grove Mounta GRV 020753	-	С	L5	Antarctica
60	73296	Grove Mounta GRV 020754		С	L5	Antarctica

Page	360	of	686
i uge	200	U.	000

2						
3	73297	Grove Mounta GRV 020755	-	С	L5	Antarctica
4	73298	Grove Mounta GRV 020756	-	С	L6	Antarctica
5	73299	Grove Mounta GRV 020757	-	С	L6	Antarctica
6	73300	Grove Mounta GRV 020758	-	С	L6	Antarctica
7	73301	Grove Mounta GRV 020759	_	C	L6	Antarctica
8	73302	Grove Mounta GRV 020760	-	C	16	Antarctica
9	73303	Grove Mounta GRV 020761	_	C	15	Antarctica
10	73304	Grove Mounta GRV 020762	_	C	16	Antarctica
11	73305	Grove Mounta GRV 020702	_	C		Antarctica
12	73306	Grove Mounta GRV 020703		C	15	Antarctica
13	73300	Crove Mounta CRV 020704	-	C	L5	Antarctica
14	73307	Grove Mounta CRV 020705	-	C	LO	Antarctica
15	73300	Grove Mounta GRV 020766	-		LO	Antarctica
16	73309	Grove Mounta GRV 020767	-		LO	Antarctica
17	73310	Grove Mounta GRV 020768	-	C	L5	Antarctica
18	73311	Grove Mounta GRV 020769	-	C	L5	Antarctica
19	73312	Grove Mounta GRV 020770	-	C	L5	Antarctica
20	73313	Grove Mounta GRV 020771	-	С	L5	Antarctica
21	73314	Grove Mounta GRV 020772	-	С	L5	Antarctica
22	73315	Grove Mounta GRV 020774	-	С	L5	Antarctica
23	73316	Grove Mounta GRV 020776	-	С	L5	Antarctica
24	73317	Grove Mounta GRV 020777	-	С	L5	Antarctica
25	73318	Grove Mounta GRV 020778	-	С	L5	Antarctica
26	73319	Grove Mounta GRV 020779	-	С	L5	Antarctica
27	73320	Grove Mounta GRV 020780	-	С	L5	Antarctica
28	73321	Grove Mounta GRV 020781	-	С	L4	Antarctica
29	73322	Grove Mounta GRV 020782	-	С	L5	Antarctica
30	73323	Grove Mounta GRV 020783	-	С	L5	Antarctica
31	73324	Grove Mounta GRV 020784	_	С	L6	Antarctica
32	73325	Grove Mounta GRV 020785	_	C	L5	Antarctica
33	73326	Grove Mounta GRV 020786	-	C	16	Antarctica
34	73327	Grove Mounta GRV 020787	-	C	15	Antarctica
35	73328	Grove Mounta GRV 020788	_	C	15	Antarctica
36	73320	Grove Mounta GRV 020789	_	C	16	Antarctica
3/	73330	Grove Mounta GRV 020700	_	C	16	Antarctica
38	73331	Grove Mounta GRV 020790		C	16	Antarctica
39	70001	Crove Mounta CRV 020791	-	C		Antarctica
40	70002	Grove Mounta CRV 020792	-	C	LO	Antarctica
41	70004	Grove Mounta GRV 020793	-			Antarctica
42	73334	Grove Mounta GRV 020794	-		LO	Antarctica
43	73335	Grove Mounta GRV 020795	-		LD	Antarctica
44 45	73336	Grove Mounta GRV 020796	-	C	L5	Antarctica
45	73337	Grove Mounta GRV 020798	-	C	L5	Antarctica
40	73338	Grove Mounta GRV 020799	-	C	L4	Antarctica
47 70	73339	Grove Mounta GRV 020800	-	С	L6	Antarctica
40	73340	Grove Mounta GRV 020803	-	С	L5	Antarctica
49	73341	Grove Mounta GRV 020804	-	С	L6	Antarctica
51	73342	Grove Mounta GRV 020805	-	С	H6	Antarctica
57	73343	Grove Mounta GRV 020806	-	С	L6	Antarctica
52	73344	Grove Mounta GRV 020807	-	С	L5	Antarctica
54	73345	Grove Mounta GRV 020812	-	С	L5	Antarctica
55	73346	Grove Mounta GRV 020813	-	С	L5	Antarctica
56	73347	Grove Mounta GRV 020814	-	С	L6	Antarctica
57	73348	Grove Mounta GRV 020815	-	С	L5	Antarctica
58	73349	Grove Mounta GRV 020816	-	С	L6	Antarctica
59	73350	Grove Mounta GRV 020818	-	С	L5	Antarctica
60	73351	Grove Mounta GRV 020819	-	С	L5	Antarctica
-						
-----	----------	-------				
Dun	nina	Hood				
nun	i ili iu	rieau				

2						
3	73352	Grove Mounta GRV 020822	-	С	L5	Antarctica
4	73353	Grove Mounta GRV 020825	-	С	L5	Antarctica
5	73354	Grove Mounta GRV 020827	-	С	L4	Antarctica
6	73355	Grove Mounta GRV 020828	-	С	L5	Antarctica
7	73356	Grove Mounta GRV 020829	_	C	15	Antarctica
8	73357	Grove Mounta GRV 020830	_	C.	16	Antarctica
9	73358	Grove Mounta GRV 020000	_	C	16	Antarctica
10	73350	Grove Mounta GRV 020031	-	0		Antarctica
11	73339	Grove Mounta GRV 020832	-		LO	Antarctica
12	73360	Grove Mounta GRV 020833	-		L5	Antarctica
13	73361	Grove Mounta GRV 020834	-	C	L5	Antarctica
14	73362	Grove Mounta GRV 020835	-	С	L5	Antarctica
15	73363	Grove Mounta GRV 020836	-	С	L6	Antarctica
16	73364	Grove Mounta GRV 020837	-	С	L5	Antarctica
17	73365	Grove Mounta GRV 020838	-	С	L5	Antarctica
18	73366	Grove Mounta GRV 020839	-	С	L5	Antarctica
19	73367	Grove Mounta GRV 020840	-	С	L5	Antarctica
20	73368	Grove Mounta GRV 020841	-	С	L5	Antarctica
21	73369	Grove Mounta GRV 020842	_	C.	15	Antarctica
22	73370	Grove Mounta GRV 020843	_	C	H5	Antarctica
23	73371	Grove Mounta GRV 020844	_	C	H4	Antarctica
24	73372	Grove Mounta GRV 020044		C	15	Antarctica
25	73372	Grove Mounta GRV 020045		0	16	Antarctica
26	70074	Grove Mounta GRV 020840	-	C		Antarctica
20	73374	Grove Mounta GRV 020847	-		L5	Antarctica
27	73375	Grove Mounta GRV 020848	-	C	L5	Antarctica
20	73376	Grove Mounta GRV 020849	-	С	H6	Antarctica
29	73377	Grove Mounta GRV 020850	-	С	H5	Antarctica
30	73378	Grove Mounta GRV 020851	-	С	L5	Antarctica
37	73379	Grove Mounta GRV 020852	-	С	L5	Antarctica
32	73380	Grove Mounta GRV 020853	-	С	L5	Antarctica
34	73381	Grove Mounta GRV 020854	-	С	L5	Antarctica
25	73382	Grove Mounta GRV 020855	-	С	L4	Antarctica
36	73383	Grove Mounta GRV 020856	-	С	L5	Antarctica
37	73384	Grove Mounta GRV 020857	-	С	H5	Antarctica
38	73385	Grove Mounta GRV 020858	-	С	LL5	Antarctica
30	73386	Grove Mounta GRV 020859	_	C	15	Antarctica
<i>4</i> 0	73387	Grove Mounta GRV 020860	_	C.	15	Antarctica
40 //1	73388	Grove Mounta GRV 020861	_	C.	16	Antarctica
41	73380	Grove Mounta GRV 020001		C	15	Antarctica
42	73300	Grove Mounta GRV 020002	-	C	15	Antarctica
43	73390	Grove Mounta CRV 020805	-	C	LJ	Antarctica
44	73391	Grove Mounta GRV 020804	-	C	LO	Antarctica
45	73392	Grove Mounta GRV 020865	-		L5	Antarctica
40	73393	Grove Mounta GRV 020866	-	C	L5	Antarctica
47	73394	Grove Mounta GRV 020867	-	С	L6	Antarctica
40	73395	Grove Mounta GRV 020868	-	С	L4	Antarctica
49 50	73396	Grove Mounta GRV 020869	-	С	L5	Antarctica
50	73397	Grove Mounta GRV 020870	-	С	L5	Antarctica
51	73398	Grove Mounta GRV 020871	-	С	L6	Antarctica
52	73399	Grove Mounta GRV 020872	-	С	L5	Antarctica
55 E A	73400	Grove Mounta GRV 020873	-	С	L5	Antarctica
54 55	73401	Grove Mounta GRV 020874	-	С	L5	Antarctica
55 56	73402	Grove Mounta GRV 020875	-	С	H4	Antarctica
50	73403	Grove Mounta GRV 020876	-	С	L5	Antarctica
5/	73404	Grove Mounta GRV 020877	_	C	16	Antarctica
58 50	73405	Grove Mounta GRV 020077	_	C.	16	Antarctica
59 60	73406	Grove Mounta GPV 020870		C	15	Antarctica
60	75400	GIOVE MOUNTA GRV 020079	-	0	L3	Antarctica

3	73407	Grove Mounta GRV	020880	-	С	L6	Antarctica
4	73408	Grove Mounta GRV	020881	-	С	L5	Antarctica
5	73409	Grove Mounta GRV (020882	-	C	15	Antarctica
6	73410	Grove Mounta GRV (020883	_	C	15	Antarctica
7	73/11	Grove Mounta GRV (020884	_	C	15	Antarctica
8	70411	Grove Mounta GRV (020004	-	C		Antarctica
9	73412	Grove Mounta GRV	020000	-		LO	Antarctica
10	73413	Grove Mounta GRV	020886	-		L5	Antarctica
11	/3414	Grove Mounta GRV	020887	-	C	L5	Antarctica
12	73415	Grove Mounta GRV	020888	-	С	L5	Antarctica
13	73416	Grove Mounta GRV	020889	-	С	L5	Antarctica
14	73417	Grove Mounta GRV	020890	-	С	L4	Antarctica
15	73418	Grove Mounta GRV	020891	-	С	L6	Antarctica
16	73419	Grove Mounta GRV	020892	-	С	L5	Antarctica
17	73420	Grove Mounta GRV	020893	-	С	L5	Antarctica
18	73421	Grove Mounta GRV	020894	-	С	L5	Antarctica
10	73422	Grove Mounta GRV (020895	-	C	14	Antarctica
20	73423	Grove Mounta GRV (020896	_	C	15	Antarctica
20	73424	Grove Mounta GRV (020000		C	15	Antarctica
21	73424	Grove Mounta GRV	020091	-			Antarctica
22	73423	Grove Mounta GRV	020090	-		LO	Antarctica
23	73426	Grove Mounta GRV	020899	-	C	L5	Antarctica
24	/342/	Grove Mounta GRV	020900	-	C	L6	Antarctica
25	73428	Grove Mounta GRV	020901	-	С	L5	Antarctica
26	73429	Grove Mounta GRV	020902	-	С	L4	Antarctica
27	73430	Grove Mounta GRV	020903	-	С	L5	Antarctica
28	73431	Grove Mounta GRV	020904	-	С	L4	Antarctica
29	73432	Grove Mounta GRV	020905	-	С	L5	Antarctica
30	73433	Grove Mounta GRV	020907	-	С	L5	Antarctica
31	73470	Grove Mounta GRV (020908	_	C	16	Antarctica
32	73434	Grove Mounta GRV (020909	_	C	15	Antarctica
33	73/35	Grove Mounta GRV (020000	_	C	16	Antarctica
34	73436	Grove Mounta GRV (020310	-	C		Antarctica
35	73430	Grove Mounta GRV (020911	-	C		Antarctica
36	73437	Grove Mounta GRV	020912	-		L4	Antarctica
37	73438	Grove Mounta GRV	020913	-		L5	Antarctica
38	73439	Grove Mounta GRV	020914	-	C	L4	Antarctica
39	73440	Grove Mounta GRV	020915	-	С	L6	Antarctica
40	73441	Grove Mounta GRV	020916	-	С	L6	Antarctica
41	73442	Grove Mounta GRV	020920	-	С	L5	Antarctica
42	73443	Grove Mounta GRV	020923	-	С	L5	Antarctica
43	73444	Grove Mounta GRV	020927	-	С	L5	Antarctica
44	73445	Grove Mounta GRV	020928	-	С	L5	Antarctica
45	73446	Grove Mounta GRV	020929	-	С	L5	Antarctica
46	73447	Grove Mounta GRV	020930	_	C	15	Antarctica
47	73448	Grove Mounta GRV (020031	_	C	15	Antarctica
48	73440	Grove Mounta GRV (020001	_	C	15	Antarctica
49	73443	Grove Mounta GRV (020900 1	-	C		Antarctica
50	73430	Grove Mounta GRV	020934	-			Antarctica
51	73451	Grove Mounta GRV	020935	-		LO	Antarctica
52	73452	Grove Mounta GRV	020937	-	C	L5	Antarctica
53	73453	Grove Mounta GRV (020938	-	С	L5	Antarctica
54	73454	Grove Mounta GRV	020939	-	С	L5	Antarctica
55	73455	Grove Mounta GRV	020944	-	С	L5	Antarctica
56	73456	Grove Mounta GRV	020945	-	С	L5	Antarctica
57	73457	Grove Mounta GRV	020946	-	С	L5	Antarctica
58	73458	Grove Mounta GRV	020947	-	С	L5	Antarctica
59	73459	Grove Mounta GRV	020948	-	С	H5	Antarctica
60	73460	Grove Mounta GRV	020949	-	С	L4	Antarctica
00					-	-	

1 ว					
2	70404		<u>^</u>	15	Antoration
2	73461	Grove Mounta GRV 020950 -	C	L5	Antarctica
4 E	73462	Grove Mounta GRV 020951 -	C	L5	Antarctica
5	73463	Grove Mounta GRV 020952 -	C	L5	Antarctica
0	73464	Grove Mounta GRV 020953 -	С	L5	Antarctica
/	73465	Grove Mounta GRV 020954 -	С	L5	Antarctica
8	73466	Grove Mounta GRV 020955 -	С	L5	Antarctica
9	73467	Grove Mounta GRV 020956 -	С	L5	Antarctica
10	73468	Grove Mounta GRV 020957 -	С	L4	Antarctica
11	73469	Grove Mounta GRV 020958 -	С	L5	Antarctica
12	72336	Gusev Crater		Iron	Mars
15	72337	Gusev Crater		Iron	Mars
14	71747	Halloran Sprin		Iron. IIIAB	United States
15	71717	Hardpan Elat		Ureilite	United States
16	73573	Hassi el Biod (HeB 001		Diogenite-an	Algeria
17	72756	Hassi el Mada HeM 001			Algeria
18	71756	Hongliu Dagur		LL4 H~6	China
19	71750			11~0	China
20	71754	Hongshijing ot			China
21	70942	Huangtuya 00		Iron, IIIAB	China
22	73509	Hugnes 059		H5	Australia
23	73510	Hughes 060		H5	Australia
24	73511	Hughes 061		H5	Australia
25	70923	Huntsman (b)		H3	United States
26	71640	Imilac 002		H6	Chile
27	71641	Imilac 003		L5	Chile
28	72598	Iran 001		L6	Iran
29	72599	Iran 002		H5	Iran
50 21	72600	Iran 003		L6	Iran
ו כ כי	72601	Iran 004		L6	Iran
32	72602	Iran 005		L6	Iran
34	72603	Iran 006		L6	Iran
35	72604	Iran 007		H5	Iran
36	72605	Iran 008		H5	Iran
37	72700	Iran 009		LL5	Iran
38	70925	Istifane 006		L6	Morocco
39	72832	Jdiriya 003		Eucrite	Western Saha
40	71178	Jiddat al Hara JaH 1107		H6	Oman
41	71595	Jiddat al Hara JaH 1108		LL6-melt bred	Oman
42	72377	Jiddat al Hara JaH 1109		H5	Oman
43	72415	Jiddat al Hara JaH 1110		L5	Oman
44	68553	Kerman 205		H5	Iran
45	68554	Kerman 206		H5	Iran
46	68555	Kerman 207		H5	Iran
47	68556	Kerman 208		H5	Iran
48	68557	Kerman 209		H5	Iran
49	68558	Kerman 210		H5	Iran
50	68550	Kerman 211		H5	Iran
51	68560	Kerman 212		H5	Iran
52	68561	Kerman 213		H5	Iran
53	68562	Korman 214			Iran
54	68562	Kormon 215		H4 H5	Iran
55	00000	Kermon 216			Iran
56	00004	Kermen 217		H4	Iran
57	00000			H5	Iran
58	00000	Kerman 218		H5	Iran
59	00007			H5	Iran
60	80080	Kerman 220		HD	iran

3	68569	Kerman 221	H5	Iran
4	68570	Kerman 222	H5	Iran
5	68571	Kerman 223	H5	Iran
6	68572	Kerman 224	H5	Iran
7	68573	Kerman 225	H5	Iran
8	68574	Kerman 226	H5	Iran
9	68575	Kerman 227	H3	Iran
10	68576	Kerman 228	H5	Iran
11	68577	Kerman 229	H5	Iran
12	68578	Kerman 230	L5	Iran
13	68579	Kerman 231	H3	Iran
14	68580	Kerman 232	H5	Iran
15	68581	Kerman 233	H5	Iran
10	68582	Kerman 234	H6	Iran
17	68583	Kerman 235	H4	Iran
10	68584	Kerman 236	H5	Iran
19 20	68585	Kerman 237	H5	Iran
20	68586	Kerman 238	15	Iran
21	68587	Kerman 239	L5 H5	Iran
22	68588	Kerman 240	H5	Iran
23	68580	Kerman 241	H5	Iran
25	68500	Korman 242		Iran
26	69501	Kerman 242		Iran
27	69502	Kerman 244		Iran
28	70021	Kerman 244		Iran
29	70921	Kerman 245	LO	Iran
30	08094	Kerman 240		Iran
31	08090	Kerman 247		Iran
32	08590	Kerman 248	HS	Iran
33	68597	Kerman 249	L5	Iran
34	72350	Kerman 253	H5	Iran
35	72351	Kerman 254	H5	Iran
36	72352	Kerman 255	H5	Iran
37	72607	Kolang	CM1/2	Indonesia
38	72340	Kuiyibage	H5	China
39	68443	Kumtag 041	L~5	China
40	68789	Kumtag 055	L6	China
41	70054	Kumtag 056	L5	China
42	70499	Kumtag 059	L5	China
43	72860	Kumtag 061	Brachinite	China
44	72577	Kumtag 062	L6	China
45	72578	Kumtag 063	H4	China
46	72575	Kumtag 064	L6	China
47	73472	Kuźnica	H5	Poland
48	72516	Laâyoune 001	L3	Western Saha
49	73564	Lake Gwynne	H5	Australia
50	71198	Lenghu 007	L~6	China
51	71143	Limón Verde (CK5	Chile
52	72396	Limón Verde (L5/6	Chile
55	72508	Limón Verde (H5	Chile
55	72345	Liuyuan 001	L~5	China
56	71080	Los Vientos 3!LoV 354	H6	Chile
57	71083	Los Vientos 3!LoV 355	H6	Chile
58	71084	Los Vientos 3!LoV 356	H5	Chile
59	71087	Los Vientos 3!LoV 357	H6	Chile
60	71088	Los Vientos 3!LoV 358	H5	Chile

1				
2				
3	71089	Los Vientos 3(LoV 359	H4	Chile
4	71100	Los Vientos 3(LoV 360	LL4-6	Chile
5	71172	Los Vientos 3(LoV 361	H5	Chile
6	71597	Los Vientos 3(LoV 362	H4/5	Chile
7	71663	Los Vientos 3(LoV 363	L5	Chile
8	72658	Los Vientos 3(LoV 364	Eucrite	Chile
9	71692	Los Vientos 3(LoV 365	L6	Chile
10	71697	Los Vientos 3(LoV 366	H5	Chile
11	71703	Los Vientos 3(LoV 367	L6	Chile
12	72317	Los Vientos 3(LoV 368	LL4-6	Chile
13	72388	Los Vientos 3(LoV 369	L6	Chile
14	72407	Los Vientos 3 LoV 370	H5	Chile
15	72670	Los Vientos 3: LoV 371	16	Chile
10	72673	Los Vientos 31 oV 372	H5	Chile
17	72675	Los Vientos 31 oV 373	16	Chile
10	72676	Los Vientos 31 oV 374	115	Chile
20	72800	Los Vientos 31 oV 375	H5	Chile
20	72680	Los Vientos 31 oV 376	16	Chile
21	72681	Los Vientos 31 oV 377	15	Chile
22	72685	Los Vientos 31 oV 378	L5 H5	Chile
23	72705	Los Vientos 31 oV 370	НЛ	Chile
25	72706		16	Chilo
26	72600			Chile
27	72090			Chile
28	72091		LO	Chile
29	72040		Howardite	Chile
30	72049	Los Vientos 3(Lov 304		Chile
31	72850		Urenite	Chile
32	72851		Eucrite	Chile
33	72693		H4	Chile
34	72694	Los Vientos 3 Lov 388	L6	Chile
35	72698	Los Vientos 31LoV 389	H4	Chile
36	70055	Loulan Yizhi 0	L6	China
37	70496	Loulan Yizhi 0	Ureilite	China
38	70500	Loulan Yizhi 0	H5	China
39	70873	Loulan Yizhi 0	LL~6	China
40	70874	Loulan Yizhi 0	L~4	China
41	70877	Loulan Yizhi 0	H~4	China
42	72606	Loulan Yizhi 0	L5-melt brecci	China
43	72579	Loulan Yizhi 0	L6	China
44	71699	Machuca 014	L5	Chile
45	71700	Machuca 015	L5	Chile
46	72395	Machuca 016	H5	Chile
47	72679	Machuca 017	L5	Chile
48	72349	Mahadeva	H5	India
49	73500	Marsa Alam 0 MA 020	H5	Egypt
50	73501	Marsa Alam 0 MA 021	H5	Egypt
51	73502	Marsa Alam 0 MA 022	H5	Egypt
52 52	73503	Marsa Alam 0 MA 023	H5	Egypt
55 F 4	73504	Marsa Alam 0 MA 024	H5	Egypt
54 55	71659	Matarka	L6	Morocco
55 56	70922	Mederdra	R4-5	Mauritania
50 57	72329	Meridiani Plan MP 002	Stony iron	Mars
57 50	72330	Meridiani Plan MP 003	Stony iron	Mars
50	72331	Meridiani Plan MP 004	Stony iron	Mars
59	72332	Meridiani PlanMP 005	Stony iron	Mars
00				

3	72333	Meridiani Plan MP 006			Iron, IAB com	Mars
4	72334	Meridiani Plan MP 007			Iron, IAB com	Mars
5	72335	Meridiani Plan MP 008			Iron	Mars
6	72778	Montes Claros			H5	Brazil
7	73563	Mount Marion			H5	Australia
8	71580	Mount Prestru PRE 17270	43(1)	А	L6	Antarctica
9	71581	Mount Prestru PRE 17273	43(1)	А	L6	Antarctica
10	71582	Mount Prestru PRE 17274	43(1)	А	L5	Antarctica
11	71583	Mount Prestru PRE 17276	43(1)	А	H6	Antarctica
12	73513	Mundrabilla 02	()		H5	Australia
13	72653	Narashino			H5	Japan
14	71541	Nodtvedt Nun NOD 17220	43(1)	А	L5	Antarctica
15	71542	Nodtvedt Nun: NOD 17221	43(1)	A	15	Antarctica
10	71543	Nodtvedt Nun: NOD 17222	43(1)	A	H6	Antarctica
10	71544	Nodtvedt Nun: NOD 17223	43(1)	Δ	H6	Antarctica
10 10	71545	Nodtvedt Nun: NOD 17224	43(1)	Δ	H5	Antarctica
19	71546	Nodtvedt Nun: NOD 17224	+3(1)	^	НЛ	Antarctica
20	71540	Notived: NuniNOD 17225	43(1)	A 		Antarctica
21	71547	Notived: Nun(NOD 17220	43(1)	A		Antarctica
22	71040	Notived: NuniNOD 17227	43(1)	A		Antarctica
25	71549	Notived: Nun: NOD 17228	43(1)	A	H4	Antarctica
24	7 1550	Notiveal Nun NOD 17229	43(1)	A	HO	Antarctica
25	71551	Notiveat Nun NOD 17230	43(1)	A	LLO	Antarctica
20	71552	Nodtvedt Nun NOD 17231	43(1)	A	H4	Antarctica
27	71553	Nodtvedt Nun NOD 1/232	43(1)	A	H6	Antarctica
20	71554	Nodtvedt Nun NOD 17233	43(1)	A	H6	Antarctica
30	71555	Nodtvedt Nuna NOD 17234	43(1)	A	H5	Antarctica
31	71556	Nodtvedt NunaNOD 17235	43(1)	A	L6	Antarctica
32	71557	Nodtvedt NunaNOD 17236	43(1)	A	H6	Antarctica
33	71558	Nodtvedt NunaNOD 17237	43(1)	A	H6	Antarctica
34	71559	Nodtvedt Nun; NOD 17238	43(1)	А	H6	Antarctica
35	71560	Nodtvedt Nun; NOD 17239	43(1)	A	H5	Antarctica
36	71561	Nodtvedt Nun; NOD 17240	43(1)	А	H6	Antarctica
37	71562	Nodtvedt Nun: NOD 17242	43(1)	А	H6	Antarctica
38	71563	Nodtvedt Nun: NOD 17243	43(1)	А	H6	Antarctica
39	71564	Nodtvedt Nun: NOD 17244	43(1)	А	H6	Antarctica
40	71565	Nodtvedt Nuna NOD 17245	43(1)	А	H6	Antarctica
41	71566	Nodtvedt Nun: NOD 17246	43(1)	А	H4	Antarctica
42	71567	Nodtvedt Nun; NOD 17247	43(1)	А	H6	Antarctica
43	71568	Nodtvedt Nun; NOD 17248	43(1)	А	H4	Antarctica
44	71569	Nodtvedt Nun; NOD 17249	43(1)	А	H6	Antarctica
45	71570	Nodtvedt Nun; NOD 17250	43(1)	А	H6	Antarctica
46	71571	Nodtvedt Nun NOD 17251	43(1)	А	H4	Antarctica
47	71572	Nodtvedt Nun NOD 17252	43(1)	А	H6	Antarctica
48	71573	Nodtvedt Nun NOD 17253	43(1)	A	H4	Antarctica
49	71574	Nodtvedt Nun: NOD 17254	43(1)	A	H6	Antarctica
50	71575	Nodtvedt Nun: NOD 17255	43(1)	Δ	H6	Antarctica
51	71576	Nodtvedt Nun: NOD 17256	43(1)	Δ	H6	Antarctica
52	71577	Nodtvedt Nun: NOD 17257	43(1)	Δ	115	Antarctica
53	71578	Nodtvedt Nun: NOD 17258	43(1)	Δ	H5	Antarctica
54	71570	Nodtvedt Nun: NOD 17250	+3(1)	^	16	Antarctica
55	72650	North Edward		~		United States
56	71685	Northeast Afric NEA 000			LU Martian (abor	Libyo
57	71000	Northeast Africial Add				Libya
58	72303	Northoast Afri NEA 010			Nortion (shore	Libya
59	72300	Northeast Africial Add			wartian (sner	Libya
60	72449	Northeast AfricineA 012			LJ	Libya

1				
2				
3	72536	Northeast Afric NEA 013	Diogenite	(Northeast Afr
4 5	72608	Northeast Afric NEA 014	Lunar (feldsp.	Libya
5	73566	Northeast Afric NEA 015	Martian (sherg	Libya
6 7	32154	Northwest Afri NWA 1281	Diogenite-pm	(Northwest Afr
7 8	32158	Northwest Afri NWA 1286	L4	(Northwest Afr
9	32317	Northwest Afri NWA 1458	H4	(Northwest Afr
10	33139	Northwest Afri NWA 2628	CK3	(Northwest Afr
10	33175	Northwest Afri NWA 2682	L3-6	(Northwest Afr
12	33189	Northwest Afri NWA 2696	Eucrite-br	(Northwest Afr
13	33477	Northwest Afri NWA 3144	CV3	(Northwest Afr
14	45410	Northwest Afri NWA 4295	EL-melt rock	Morocco
15	45458	Northwest Afri NWA 4454	H6	(Northwest Afr
16	45761	Northwest Afri NWA 4837	CV3	(Northwest Afr
17	45763	Northwest Afri NWA 4839	CV3	(Northwest Afr
18	47268	Northwest Afri NWA 5147	Howardite	(Northwest Afr
19	47271	Northwest Afri NWA 5150	H7	(Northwest Afr
20	49065	Northwest Afri NWA 5335	Mesosiderite	(Northwest Afr
21	49180	Northwest Afri NWA 5471	Brachinite	(Northwest Afr
22	49295	Northwest Afri NWA 5596	CO3	(Northwest Afr
23	49296	Northwest Afri NWA 5597	Diogenite	(Northwest Afr
24	50774	Northwest Afri NWA 5888	Pallasite	(Northwest Afr
25	50775	Northwest Afri NWA 5889	Winonaite	(Northwest Afr
26	50776	Northwest Afri NWA 5890	Winonaite	(Northwest Afr
27	50777	Northwest Afri NWA 5891	Pallasite	(Northwest Afr
28	51436	Northwest Afri NWA 6027	CK3	(Northwest Afr
29	52757	Northwest Afri NWA 6431	LL(L)3	Northwest Afr
30	52771	Northwest Afri NWA 6445	CO3	(Northwest Afr
31	54690	Northwest Afri NWA 7051	Eucrite	Morocco
32	54897	Northwest Afri NWA 7145	CK4	(Northwest Afr
33	54919	Northwest Afri NWA 7167	CK4	Northwest Afr
34 25	55687	Northwest Afri NWA 7357	Eucrite-cm	Morocco
36	55689	Northwest Afri NWA 7359	Diogenite	Morocco
30	55693	Northwest Afri NWA 7363	Eucrite-pmict	Morocco
38	56399	Northwest Afri NWA 7540	LL3	(Northwest Afr
39	61014	Northwest Afri NWA 8580	L3.15	Northwest Afr
40	73525	Northwest Afri NWA 10189	CR2	Morocco
41	73526	Northwest Afri NWA 10841	H5	Morocco
42	73527	Northwest Afri NWA 10845	L/LL5	Morocco
43	71110	Northwest Afri NWA 10898	LL3.10	(Northwest Afr
44	71655	Northwest Afri NWA 11333	Ureilite	Northwest Afr
45	72373	Northwest Afri NWA 11867	L3-7	(Northwest Afr
46	70613	Northwest Afri NWA 11983	L3-6	(Northwest Afr
47	70614	Northwest Afri NWA 11988	L3-6	(Northwest Afr
48	70615	Northwest Afri NWA 11989	L3-6	(Northwest Afr
49	68630	Northwest Afri NWA 12266	13	(Northwest Afr
50	68447	Northwest Afri NWA 12302	CV3	Morocco
51	68458	Northwest Afri NWA 12313	H4	Morocco
52	69695	Northwest Afri NWA 12386	15	(Northwest Afr
53	71656	Northwest Afri NWA 12445	Eucrite-an	(Northwest Afr
54	69369	Northwest Afri NWA 12458	13-6	(Northwest Afr
55	68791	Northwest Afri NWA 12493	H3-5	(Northwest Afr
56	68795	Northwest Afri NWA 12497	H4	(Northwest Afr
5/	68803	Northwest Afri NWA 12505	R3	Mauritania
58	70616	Northwest Afri NWA 12512	13-6	(Northwest Afr
59	72654	Northwest Afri NWA 12512	113	(Northwest Afr
00	. 2001			(101110001711

2		
3	72655	Northwest Afri NWA 12520
4	72858	Northwest Afri NWA 12523
5	72859	Northwest Afri NWA 12524
6	72321	Northwest Afri NWA 12688
7	70204	Northwest Afri NWA 12727
8	70946	Northwest Afri NWA 12735
9	70947	Northwest Afri NWA 12736
10	70059	Northwest Afri NMA 12790
11	70050	Northwest Afri NVA 12700
12	70059	Northwest Afrikiva 12761
13	70060	Northwest Afri NVA 12782
14	70064	Northwest Afri NWA 12786
15	70065	Northwest Afri NWA 12787
16	70071	Northwest Afri NWA 12793
17	71704	Northwest Afri NWA 12794
18	71624	Northwest Afri NWA 12868
19	70497	Northwest Afri NWA 12894
20	70502	Northwest Afri NWA 12897
21	70503	Northwest Afri NWA 12898
22	70504	Northwest Afri NWA 12899
23	70505	Northwest Afri NWA 12900
24	70506	Northwest Afri NWA 12901
25	71625	Northwest Afri NWA 12007
26	70201	Northwest Afri NMA 12907
27	72301	Northwest Afri NMA 12940
28	72302	Northwest Afri NVA 12941
29	72303	Northwest Afri NVA 12942
30	72304	Northwest Afri NWA 12943
31	72305	Northwest Afri NWA 12944
32	70948	Northwest Afri NWA 12957
32	71706	Northwest Afri NWA 12969
34	71626	Northwest Afri NWA 12984
35	71119	Northwest Afri NWA 13002
36	70865	Northwest Afri NWA 13019
37	70866	Northwest Afri NWA 13021
38	70867	Northwest Afri NWA 13025
30	70868	Northwest Afri NWA 13026
<u> </u>	70869	Northwest Afri NWA 13027
40	70870	Northwest Afri NWA 13028
41	70871	Northwest Afri NWA 13020
42	70071	Northwest Afri NMA 13029
43	70072	Northwest Afri NMA 13030
44	71113	Northwest Afrikiwa 13031
45	71114	Northwest Afri NVA 13032
40	71115	Northwest Afri NVA 13034
47	71116	Northwest Afri NWA 13035
40 40	71117	Northwest Afri NWA 13036
49	71118	Northwest Afri NWA 13038
50	70879	Northwest Afri NWA 13040
51 52	70881	Northwest Afri NWA 13042
5Z	70888	Northwest Afri NWA 13049
53 F 4	70890	Northwest Afri NWA 13051
54	70891	Northwest Afri NWA 13052
55	70924	Northwest Afri NWA 13054
50	70892	Northwest Afri NWA 13055
57	70893	Northwest Afri NIWA 13056
58	70804	Northwest Afri NIMA 12057
59	10094	Northwest All INVA 15057

60

Northwest Afri NWA 13058

LL6-melt brec	(Northwest Afr
CVred3	(Northwest Afr
CK5	(Northwest Afr
Ureilite	(Northwest Afr
LL3	Morocco
LL6-an	(Northwest Afr
Achondrite-un	(Northwest Afr
LL7	Morocco
CV3	Morocco
CV3	Morocco
L4-melt brecci	Morocco
H3	Morocco
L6	(Northwest Afr
L5-melt brecci	(Northwest Afr
Ureilite	Morocco
L3	Morocco
H4	(Northwest Afr
H6	(Northwest Afr
Eucrite	(Northwest Afr
H5	(Northwest Afr
L6	(Northwest Afr
Achondrite-pri	(Northwest Afr
Eucrite	Morocco
C3.00-ung	(Northwest Afr
Achondrite-un	(Northwest Afr
	(11011111001711
Iron, ungroupe	Mauritania
Iron, ungroupe Eucrite-br	Mauritania Algeria
Iron, ungroupe Eucrite-br CK6	Mauritania Algeria (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite	Mauritania Algeria (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm	Mauritania Algeria (Northwest Afr (Northwest Afr Algeria
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria (Northwest Afr Algeria
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp.	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria (Northwest Afr Algeria Morocco
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherg	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria Morocco (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherg LL~3	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria (Northwest Afr Algeria Morocco (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherc Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherc LL~3 LL~4	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria (Northwest Afr Algeria Morocco (Northwest Afr (Northwest Afr (Northwest Afr Morocco
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherg LL~3 LL~4 L~6	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria Morocco (Northwest Afr Morocco (Northwest Afr Morocco (Northwest Afr Morocco (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherg LL~3 LL~4 L~6 L~6	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria Morocco (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherg LL~3 LL~4 L~6 L~6 H~4	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria (Northwest Afr Algeria Morocco (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherc Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherc LL~3 LL~4 L~6 L~6 H~4 CV3	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria (Northwest Afr Algeria Morocco (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherg LL~3 LL~4 L~6 L~6 H~4 CV3 LL3	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria Morocco (Northwest Afr Morocco (Northwest Afr Morocco (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherg LL~3 LL~4 L~6 L~6 H~4 CV3 LL3 H5	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria Morocco (Northwest Afr Morocco (Northwest Afr (Northwest Afr
Iron, ungroupe Eucrite-br CK6 Pallasite Pallasite Ureilite Eucrite CV3 CO3 CV3 Martian (sherg Diogenite-pm Eucrite-br CK4 Lunar (feldsp. Martian (sherg LL~3 LL~4 L~6 L~6 H~4 CV3 LL3 H5 H5	Mauritania Algeria (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr (Northwest Afr Algeria Morocco (Northwest Afr (Northwest Afr

1				
2				
3	71047	Northwest Afri NWA 13059	CO3	(Northwest Afr
4	71048	Northwest Afri NWA 13060	R3	(Northwest Afr
5	71049	Northwest Afri NWA 13061	Ureilite	(Northwest Afr
6	70895	Northwest Afri NWA 13062	L6	(Northwest Afr
7	71657	Northwest Afri NWA 13063	CO3	Northwest Afr
8	71050	Northwest Afri NWA 13064	Eucrite	(Northwest Afr
9	71051	Northwest Afri NWA 13065	Eucrite	(Northwest Afr
10	71167	Northwest Afri NWA 13066	CO3	(Northwest Afr
11	71052	Northwest Afri NWA 13067	Eucrite	(Northwest Afr
12	71002	Northwest Afri NMA 12069		(Northwest Afr
13	71120	Northwest Afri NMA 12060		(Northwest Afr
14	70090	Northwest Afri NA(A 42070	LL4	(Northwest Afr
15	70897		L3	(Northwest All
16	71168	Northwest Afri NWA 130/1	003	(Northwest Afr
17	71053	Northwest Afri NWA 130/2	Eucrite	(Northwest Afr
18	70898	Northwest Afri NWA 13073	L3	(Northwest Afr
19	71054	Northwest Afri NWA 13074	CK6	(Northwest Afr
20	70905	Northwest Afri NWA 13075	L5	(Northwest Afr
21	70906	Northwest Afri NWA 13076	L6	(Northwest Afr
22	71055	Northwest Afri NWA 13077	R3-5	Morocco
23	70907	Northwest Afri NWA 13078	L5	(Northwest Afr
24	70908	Northwest Afri NWA 13079	H6	(Northwest Afr
25	70909	Northwest Afri NWA 13080	H6	Northwest Afr
26	70910	Northwest Afri NWA 13081	15	(Northwest Afr
27	70911	Northwest Afri NWA 13082	H5	(Northwest Afr
28	70912	Northwest Afri NWA 13083	H4	(Northwest Afr
29	70913	Northwest Afri NWA 13084	16	(Northwest Afr
30	70014	Northwest Afri NWA 13085	15	(Northwest Afr
31	71121	Northwest Afri NWA 13087	Eucrite projet	(Northwest Afr
32	71056	Northwest Afri NMA 13088		Morocco
33	70026	Northwest Afri NMA 13080		Morocco
34	70920	Northwest Afri NMA 13009		Morocco
35	70927	Northwest Afri NMA 12001		Morocco
36	70920	Northwest Afri NN/A 13091		Maragaa
37	70929	Northwest Afri NIVA 13092		Maragaa
38	70930	Northwest Afri NIAA 13093	LO	Maraaaa
39	70931	Northwest Afri NVA 13094	H5	Morocco
40	70932	Northwest Afri NVVA 13095	Lb	Morocco
41	70933	Northwest Afri NVVA 13096	Ho	Morocco
42	70934	Northwest Afri NVVA 13097	L6	Morocco
43	70935	Northwest Afri NVVA 13098	H5	Morocco
44	70936	Northwest Afri NWA 13099	H5	Morocco
45	70915	Northwest Afri NWA 13100	LL6	(Northwest Afr
40	71124	Northwest Afri NWA 13101	Lunar (feldsp.	(Northwest Afr
47	71125	Northwest Afri NWA 13102	Mesosiderite	(Northwest Afr
48	71126	Northwest Afri NWA 13103	L6-melt brecci	(Northwest Afr
49	71127	Northwest Afri NWA 13104	Eucrite-mmict	(Northwest Afr
50	71128	Northwest Afri NWA 13105	L7	(Northwest Afr
50 50	71129	Northwest Afri NWA 13106	Martian (shere	(Northwest Afr
52 53	71130	Northwest Afri NWA 13107	LL7	(Northwest Afr
55	71131	Northwest Afri NWA 13108	EL6	(Northwest Afr
55 55	70916	Northwest Afri NWA 13109	L4	(Northwest Afr
56	71132	Northwest Afri NWA 13110	Diogenite-pm	(Northwest Afr
57	70917	Northwest Afri NWA 13111	H4/5	(Northwest Afr
58	71133	Northwest Afri NWA 13112	Lunar (feldsp.	(Northwest Afr
59	70918	Northwest Afri NWA 13113	L4	Mali
60	71134	Northwest Afri NWA 13114	CV3	Algeria

1	
I	
2	
2	
5	
4	
5	
5	
6	
7	
,	
8	
9	
10	
11	
10	
12	
13	
11	
14	
15	
16	
1-	
17	
18	
10	
19	
20	
21	
21	
22	
23	
24	
24	
25	
26	
20	
27	
28	
20	
29	
30	
21	
51	
32	
22	
55	
34	
35	
26	
20	
37	
28	
50	
39	
40	
11	
41	
42	
⊿२	
-1-5	
44	
45	

3	71135	Northwest Afri NWA 13115	Martian (sher	c(Northwest Afr
4	70919	Northwest Afri NWA 13116	H6	Mali
5	71136	Northwest Afri NWA 13117	Eucrite-mmic	t (Northwest Afr
6	70920	Northwest Afri NWA 13118	L6	Northwest Afr
7	71137	Northwest Afri NWA 13119	Lunar (Felds	Mauritania
8	71057	Northwest Afri NWA 13120	Lunar (feldsp	. Morocco
9	70937	Northwest Afri NWA 13126	L4	Morocco
10	70938	Northwest Afri NWA 13127		Morocco
11	70939	Northwest Afri NWA 13129	L5	Morocco
12	71139	Northwest Afri NWA 13130	CV3	(Northwest Afr
13	70940	Northwest Afri NWA 13131	H5	(Northwest Afr
14	70941	Northwest Afri NWA 13132	L5/6	Niger
15	71140	Northwest Afri NWA 13133	EL6	(Northwest Afr
10	71707	Northwest Afri NWA 13134	Martian (sher	(Northwest Afr
17	71141	Northwest Afri NWA 13135	Ureilite	Morocco
10 10	71658	Northwest Afri NWA 13136		Algeria
19	71142	Northwest Afri NWA 13137	H5-melt brec	C(Northwest Δfr
20	71186	Northwest Afri NWA 13138	Lunar (felden	Northwest Afr
21	71060	Northwest Afri NWA 13130		(Northwest Afr
22	71009	Northwest Afri NWA 13139		(Northwest Afr
23	71070	Northwest Afri NWA 13140	Magaaidarita	(Northwest All
25	71107	Northwest Afri NWA 13141		Morocco
25	71071	Northwest Afri NWA 13142	C⊓ Llouverdite	Maragaa
20	71188	Northwest Afri NWA 13143	Howardite	
28	71072	Northwest Afri NWA 13144	Lo-meit breco	
29	71073	Northwest Afri NWA 13145	LL3	(Northwest Afr
30	71189	Northwest Afri NVVA 13146	Eucrite	(Northwest Afr
31	71074	Northwest Afri NVVA 13147	L4	(Northwest Afr
32	71190	Northwest Afri NWA 13148	Eucrite	(Northwest Afr
33	71191	Northwest Afri NWA 13149	Eucrite	(Northwest Afr
34	71192	Northwest Afri NWA 13150	CM2	(Northwest Afr
35	71075	Northwest Afri NWA 13151	LL7	(Northwest Afr
36	/10/6	Northwest Afri NWA 13152	LL3	(Northwest Afr
37	71077	Northwest Afri NWA 13153	LL7	Morocco
38	/10/8	Northwest Afri NWA 13154	H5	(Northwest Afr
39	71193	Northwest Afri NWA 13155	Ureilite	(Northwest Afr
40	71194	Northwest Afri NWA 13156	CK6	(Northwest Afr
41	71195	Northwest Afri NWA 13157	Pallasite	(Northwest Afr
42	71090	Northwest Afri NWA 13158	H3	(Northwest Afr
43	71150	Northwest Afri NWA 13159	L6-melt breco	ci (Northwest Afr
44	71151	Northwest Afri NWA 13160	Eucrite	(Northwest Afr
45	71091	Northwest Afri NWA 13161	L3	(Northwest Afr
46	71152	Northwest Afri NWA 13162	R3-6	(Northwest Afr
47	71153	Northwest Afri NWA 13163	Diogenite	(Northwest Afr
48	71154	Northwest Afri NWA 13164	Eucrite	(Northwest Afr
49 50	71092	Northwest Afri NWA 13165	L6	(Northwest Afr
50	71155	Northwest Afri NWA 13166	Eucrite-melt	o (Northwest Afr
57	72656	Northwest Afri NWA 13167	C2-ung	(Northwest Afr
52	71093	Northwest Afri NWA 13168	L6	(Northwest Afr
54	71094	Northwest Afri NWA 13169	LL6	(Northwest Afr
55	71197	Northwest Afri NWA 13170	Achondrite-u	n (Northwest Afr
56	71099	Northwest Afri NWA 13171	L3	Morocco
57	71101	Northwest Afri NWA 13172	L5	Algeria
58	71102	Northwest Afri NWA 13173	H5	(Northwest Afr
59	71103	Northwest Afri NWA 13174	LL5	Mauritania
60	71104	Northwest Afri NWA 13175	H5	Algeria

1				
2				
3	71679	Northwest Afri NWA 13176	Diogenite	Algeria
4	72439	Northwest Afri NWA 13177	L3-6	Morocco
5	71627	Northwest Afri NWA 13178	CO3	Mali
6	71709	Northwest Afri NWA 13179	Martian	Algeria
/	71145	Northwest Afri NWA 13180	L4	Algeria
8	71628	Northwest Afri NWA 13181	Eucrite-br	(Northwest Afr
9	71146	Northwest Afri NWA 13182	LL3	Mali
10	71147	Northwest Afri NWA 13183	H5	(Northwest Afr
11	71148	Northwest Afri NWA 13184	L4/5	(Northwest Afr
12	71629	Northwest Afri NWA 13185	Lunar (feldsp.	Northwest Afr
13	71149	Northwest Afri NWA 13186	L4 ` '	Northwest Afr
14	71630	Northwest Afri NWA 13187	Martian (shere	(Northwest Afr
15	71664	Northwest Afri NWA 13188	Achondrite-ur	(Northwest Afr
10	71639	Northwest Afri NWA 13189	Mesosiderite	Morocco
17	71631	Northwest Afri NWA 13190	Martian (shere	Algeria
10	71632	Northwest Afri NWA 13191	Lunar (feldsn	Morocco
20	71161	Northwest Afri NWA 13192		Morocco
20	71162	Northwest Afri NWA 13103	15	(Northwest Afr
21	71163	Northwest Afri NWA 13194	16	(Northwest Afr
22	71164	Northwest Afri NWA 13105		(Northwest Afr
23	71104	Northwest Afri NWA 13195		(Northwest All
25	71105	Northwest Afri NWA 13190		(Northwest All
26	71179	Northwest Afri NWA 13197		(Northwest All
20	71180	Northwest Afri NWA 13198		(Northwest All
28	71181	Northwest Afri NWA 13199	H4	(Northwest Afr
29	71182	Northwest Afri NWA 13200	L3	(Northwest Afr
30	71183	Northwest Afri NVVA 13201	L4/5	(Northwest Afr
31	71636	Northwest Afri NWA 13202	Chondrite-ung	g(Northwest Afr
32	71184	Northwest Afri NWA 13203	L4	(Northwest Afr
33	71637	Northwest Afri NWA 13204	Martian (shere	(Northwest Afr
34	71185	Northwest Afri NWA 13205	H4/5	(Northwest Afr
35	71638	Northwest Afri NWA 13206	Howardite	(Northwest Afr
36	71633	Northwest Afri NWA 13207	H5-6	(Northwest Afr
37	71634	Northwest Afri NWA 13208	Ureilite	(Northwest Afr
38	71593	Northwest Afri NWA 13209	H6	(Northwest Afr
39	71710	Northwest Afri NWA 13210	EL-melt rock	(Northwest Afr
40	71635	Northwest Afri NWA 13211	Eucrite	(Northwest Afr
41	71711	Northwest Afri NWA 13212	CK6	(Northwest Afr
42	71594	Northwest Afri NWA 13213	L3	(Northwest Afr
43	71712	Northwest Afri NWA 13214	Achondrite-ur	(Northwest Afr
44	71713	Northwest Afri NWA 13215	Martian (sher	(Northwest Afr
45	71714	Northwest Afri NWA 13216	Lunar (Feldsp	(Northwest Afr
46	71715	Northwest Afri NWA 13217	Martian (shere	(Northwest Afr
47	71716	Northwest Afri NWA 13218	LL3.2	(Northwest Afr
48	71718	Northwest Afri NWA 13219	Eucrite-cm	Niger
49	71601	Northwest Afri NWA 13220	H3	(Northwest Afr
50	71602	Northwest Afri NWA 13221	L4	Mali
51	71719	Northwest Afri NWA 13222	H3	(Northwest Afr
52	71720	Northwest Afri NWA 13223	Eucrite-mmic	(Northwest Afr
53	71603	Northwest Afri NWA 13224	LL6	(Northwest Afr
54	71721	Northwest Afri NWA 13225	Lunar (feldsn	(Northwest Afr
55	71722	Northwest Afri NWA 13226	H3-4	(Northwest Afr
56	71723	Northwest Afri NWA 13227	Martian (sher	(Northwest Afr
5/	71604	Northwest Afri NWA 13228	H3	(Northwest Afr
58 50	71648	Northwest Afri NWA 13220	Martian (sher	(Northwest Afr
59	71726	Northwest $\Delta fri NW/\Delta$ 13230		(Northwest Afr
00	11120		Orenite	(NorthWest All

2		
3	71649	Northwest Afri NWA 13231
4	71618	Northwest Afri NWA 13232
5	71650	Northwest Afri NWA 13233
6	71727	Northwest Afri NWA 13234
7	71728	Northwest Afri NWA 13235
8	71651	Northwest Afri NWA 13236
9	71725	Northwest Afri NWA 13237
10	71732	Northwest Afri NWA 13238
11	71682	Northwest Afri NWA 13239
12	71683	Northwest Afri NWA 13240
13	71684	Northwest Afri NM/A 13240
14	71661	Northwest Afri NIMA 13247
15	71686	Northwest Afri NIMA 13242
16	71000	Northwest Afri NIMA 13244
17	72303	Northwest Afri NIMA 13245
18	72304	Northwest Afri NWA 13240
19	71087	Northwest Afri NVA 13247
20	71680	Northwest Afri NVA 13248
21	72755	Northwest Afri NVVA 13249
22	71681	Northwest Afri NVVA 13250
23	71665	Northwest Afri NWA 13251
24	71731	Northwest Afri NWA 13252
25	71642	Northwest Afri NWA 13253
26	71643	Northwest Afri NWA 13254
27	71733	Northwest Afri NWA 13255
28	71734	Northwest Afri NWA 13256
29	71735	Northwest Afri NWA 13257
50 21	71736	Northwest Afri NWA 13258
31 22	71737	Northwest Afri NWA 13259
32	71662	Northwest Afri NWA 13260
24	72613	Northwest Afri NWA 13261
35	71666	Northwest Afri NWA 13262
36	71739	Northwest Afri NWA 13263
37	71667	Northwest Afri NWA 13264
38	71740	Northwest Afri NWA 13265
39	72324	Northwest Afri NWA 13266
40	71741	Northwest Afri NWA 13267
41	71668	Northwest Afri NWA 13268
42	71729	Northwest Afri NWA 13269
43	72325	Northwest Afri NWA 13270
44	71742	Northwest Afri NW/A 13271
45	72310	Northwest Afri NM/A 13272
46	72510	Northwest Afri NM/A 13272
47	7003	Northwest Afri NIMA 13273
48	72311	Northwest Afri NMA 13274
49	71070	Northwest Afri NWA 13275
50	72312	Northwest Aminwa 13276
51	72313	Northwest Afri NVVA 132//
52	72314	Northwest Afri NVVA 13278
53	72315	Northwest Afri NWA 13279
54	72316	Northwest Afri NWA 13280
55	/16/6	Northwest Afri NWA 13281
56	71688	Northwest Afri NWA 13282
57	72657	Northwest Afri NWA 13283
58	71689	Northwest Afri NWA 13284
59	71693	Northwest Afri NWA 13285

60

Northwest Afri NWA 13286

H4 (Northwest Afr	
L6 (Northwest Afr	
Eucrite-melt b (Northwest Afr	
LL7 (Northwest Afr	
Howardite (Northwest Afr	
LL6-melt brec (Northwest Afr	
Martian (sherc(Northwest Afr	
LL4 (Northwest Afr	
Ureilite (Northwest Afr	
CV3 (Northwest Afr	
Lodranite (Northwest Afr	
L4 (Northwest Afr	
CV3 (Northwest Afr	
Eucrite-melt b (Northwest Afr	
CK3 (Northwest Afr	
Winonalte (Northwest Aff	
H5-meit brecc Niger	
C2-ung Libya Martian (abort Mouritania	
L-meit fock vestern Sana	
113 Morocco	
Diogenite Morocco	
Lunar (felden Western Saba	
Martian (sherc(Northwest Afr	
CV3 Morocco	
Lunar (feldsp (Northwest Afr	
H6 (Northwest Afr	
CK5 (Northwest Afr	
L3 (Northwest Afr	
Howardite (Northwest Afr	
LL5 (Northwest Afr	
CV3 (Northwest Afr	
Enst achon (Northwest Afr	
L6-melt brecci Northwest Afr	
H4/5 Algeria	
Eucrite-unbr Mauritania	
LL3.5 Algeria	
LL3.15 (Northwest Afr	
Achondrite-un (Northwest Afr	
L6 (Northwest Afr	
Achondrite-un (Northwest Afr	
L6 (Northwest Afr	
Martian (sherc(Northwest Afr	
L-melt rock (Northwest Afr	
Aubrite (Northwest Afr	
CV3 (Northwest Afr	
Eucrite-pmict (Northwest Afr	
L5 Niger	
L3 Western Saha	
Lunar (Northwest Afr	
H5 Morocco	
L5-6 Morocco	
Howardite (Northwest Afr	

1				
2				
3	72307	Northwest Afri NWA 13287	Eucrite	(Northwest Afr
4	72308	Northwest Afri NWA 13288	Eucrite	(Northwest Afr
5	72309	Northwest Afri NWA 13289	Martian (shere	(Northwest Afr
6	71749	Northwest Afri NWA 13290	H6	Algeria
/	71750	Northwest Afri NWA 13291	H5	(Northwest Afr
8	71751	Northwest Afri NWA 13292	H3	Algeria
9	71752	Northwest Afri NWA 13293	LL3	Algeria
10	72341	Northwest Afri NWA 13294	Eucrite	(Northwest Afr
11	72418	Northwest Afri NWA 13295	CV3	Algeria
12	72342	Northwest Afri NWA 13296	Eucrite-br	Algeria
13	72318	Northwest Afri NWA 13297	LL3	Algeria
14	72319	Northwest Afri NWA 13298	LL3	Morocco
15	72478	Northwest Afri NWA 13299	EH3	Algeria
10	72320	Northwest Afri NWA 13300	L5	Algeria
18	72348	Northwest Afri NWA 13302	Mesosiderite-/	Morocco
19	72338	Northwest Afri NWA 13303	Ureilite	(Northwest Afr
20	72339	Northwest Afri NWA 13304	Aubrite	Northwest Afr
21	72347	Northwest Afri NWA 13305	H7	(Northwest Afr
22	72358	Northwest Afri NWA 13306	Lunar (feldsp.	(Northwest Afr
23	72359	Northwest Afri NWA 13307	Achondrite-un	(Northwest Afr
24	72360	Northwest Afri NWA 13308	Eucrite-unbr	(Northwest Afr
25	72361	Northwest Afri NWA 13309		(Northwest Afr
26	72362	Northwest Afri NWA 13310	Eucrite-br	(Northwest Afr
27	72363	Northwest Afri NWA 13311	CK3	(Northwest Afr
28	72364	Northwest Afri NWA 13312	Achondrite-un	(Northwest Afr
29	72365	Northwest Afri NWA 13313	13-6	Mali
30	72366	Northwest Afri NWA 1331/	Eucrite_br	(Northwest Afr
31	72300	Northwest Afri NMA 13317		Algeria
32	72420	Northwest Afri NMA 13318	1146	Morocco
33	72353	Northwest Afri NMA 13310	15	Morocco
34	72354	Northwest Afri NMA 13320		Morocco
35	72334	Northwest Afri NMA 13321	CV3	Morocco
36	72422	Northwest All NWA 13321	CV3	Morocco
37	72423	Northwest Afri NMA 13322	CV3	Northwoot Afr
38	72420	Northwest Afri NMA 13323		(Northwest All
39	72440	Northwest Afri NMA 13324	LLJ. 10 Eusrita hr	(Northwest All
40	72420	Northwest Afri NIVA 13325	Eucrite-br	(Northwest All
41	72300	Northwest Afri NIVA 13320	LLJ	(Northwest All
42	72441	Northwest Afri NIVA 13327	Martian (shere	(Northwest All
43	72442	Northwest Afri NWA 13328	LL4-5 meit bre	(Northwest Afr
44 45	72427	Northwest Afri NVVA 13329	CO3	(Northwest Afr
45	72428	Northwest Afri NVVA 13330	Eucrite-br	(Northwest Afr
40	72429	Northwest Afri NWA 13331	H/	(Northwest Afr
47	72443	Northwest Afri NWA 13332	CK3	(Northwest Afr
40	72367	Northwest Afri NWA 13333	LL3	Morocco
49 50	72419	Northwest Afri NWA 13334	Ureilite	(Northwest Afr
51	72424	Northwest Afri NWA 13335	Eucrite	Morocco
52	72444	Northwest Afri NWA 13336	CR2	(Northwest Afr
53	72445	Northwest Afri NWA 13337	Mesosiderite	(Northwest Afr
54	72378	Northwest Afri NWA 13338	H6	(Northwest Afr
55	72379	Northwest Afri NWA 13339	LL3	(Northwest Afr
56	72380	Northwest Afri NWA 13340	H5	(Northwest Afr
57	72381	Northwest Afri NWA 13341	H5	(Northwest Afr
58	72382	Northwest Afri NWA 13342	LL6	(Northwest Afr
59	72432	Northwest Afri NWA 13343	Eucrite-mmict	(Northwest Afr
60	72433	Northwest Afri NWA 13344	Eucrite	(Northwest Afr

2			
3	72434	Northwest Afri NWA 13345	Howardite (Northwest Afr
4	72452	Northwest Afri NWA 13346	Lunar (feldsp. (Northwest Afr
5	72453	Northwest Afri NWA 13347	Diogenite (Northwest Afr
6	72454	Northwest Afri NWA 13348	CH3 (Northwest Afr
7	72455	Northwest Afri NWA 13349	Eucrite-mmict Northwest Afr
8	72387	Northwest Afri NWA 13350	L4 (Northwest Afr
9	72456	Northwest Afri NWA 13351	Achondrite-un Northwest Afr
10	72457	Northwest Afri NWA 13352	Eucrite-mmict Algeria
11	72458	Northwest Afri NWA 13353	CO3 Algeria
12	72459	Northwest Afri NWA 13354	Lodranite (Northwest Afr
15	72470	Northwest Afri NWA 13355	Eucrite-an (Northwest Afr
14	72447	Northwest Afri NWA 13356	LL4 (Northwest Afr
16	72471	Northwest Afri NWA 13357	CK3-6 Algeria
17	72448	Northwest Afri NWA 13358	L5 (Northwest Afr
18	72472	Northwest Afri NWA 13359	Eucrite-pmict (Northwest Afr
19	72481	Northwest Afri NWA 13360	Martian (sherc(Northwest Afr
20	72451	Northwest Afri NWA 13361	L6 Morocco
21	72465	Northwest Afri NWA 13362	Martian (sherc(Northwest Afr
22	72463	Northwest Afri NWA 13363	Angrite Algeria
23	72473	Northwest Afri NWA 13364	CV3 Morocco
24	72474	Northwest Afri NWA 13365	Diogenite Morocco
25	72479	Northwest Afri NWA 13366	Martian (sherc Algeria
26	72480	Northwest Afri NWA 13367	Martian (sherc Algeria
27	72528	Northwest Afri NWA 13368	Martian (nakh Mauritania
28	72486	Northwest Afri NWA 13369	Martian (sherc Algeria
29	72487	Northwest Afri NWA 13370	Howardite Morocco
30	72488	Northwest Afri NWA 13371	CM2 Morocco
31	72477	Northwest Afri NWA 13372	H3-6 Morocco
32	72490	Northwest Afri NWA 13373	H5 Mauritania
33	72491	Northwest Afri NWA 13374	L6 Mauritania
34	72492	Northwest Afri NWA 13375	L6 Mauritania
35	72493	Northwest Afri NWA 13376	LL3 Morocco
20 27	72494	Northwest Afri NWA 13377	H5 (Northwest Afr
38	72495	Northwest Afri NWA 13378	H5 (Northwest Afr
20	72496	Northwest Afri NWA 13379	LL5 (Northwest Afr
40	72533	Northwest Afri NWA 13380	H7 (Northwest Afr
41	72535	Northwest Afri NWA 13381	CK3 (Northwest Afr
42	72497	Northwest Afri NWA 13382	L3 (Northwest Afr
43	72615	Northwest Afri NWA 13383	Ureilite (Northwest Afr
44	72498	Northwest Afri NWA 13384	L5 (Northwest Afr
45	72538	Northwest Afri NWA 13385	CVred3 Morocco
46	72499	Northwest Afri NWA 13386	L5 Morocco
47	72500	Northwest Afri NWA 13387	L5 Morocco
48	72501	Northwest Afri NWA 13388	L5 Morocco
49	72502	Northwest Afri NWA 13389	L5 Morocco
50	72616	Northwest Afri NWA 13390	Lunar (frag. br Mauritania
51	72503	Northwest Afri NWA 13391	LL5 (Northwest Afr
52	72504	Northwest Afri NWA 13392	LI 5-6 (Northwest Afr
53	72505	Northwest Afri NWA 13393	L6 (Northwest Afr
54	72539	Northwest Afri NWA 13394	LI 6-melt breck(Northwest Afr
55	72540	Northwest Afri N M 13305	Fuerite_mmiet (Northwest Afr
56	72518	Northwest Afri NWA 13396	H5 Morocco
57	72510	Northwest Afri NWA 13397	
58	72520	Northwest Afri NWA 13308	H5 Mauritania
59	72521	Northwest Afri NWA 13399	H5 Mauritania
00	1 202 1		no mauntania

1				
2				
3	72532	Northwest Afri NWA 13400	C3-ung	(Northwest Afr
4	72464	Northwest Afri NWA 13401	Martian (sher	ς(Northwest Afr
5	72522	Northwest Afri NWA 13402	H5	Mauritania
6	72523	Northwest Afri NWA 13403	L6	Mauritania
/	72524	Northwest Afri NWA 13404	L6	Morocco
8	72525	Northwest Afri NWA 13405	H6	Mauritania
9	72526	Northwest Afri NWA 13406	H6	Morocco
10	72527	Northwest Afri NWA 13407	L5	Mauritania
11	72542	Northwest Afri NWA 13408	Lunar (feldsp	. Algeria
12	72541	Northwest Afri NWA 13410	L6	Algeria
13	73474	Northwest Afri NWA 13411	OC5-an	Morocco
14	72580	Northwest Afri NWA 13412	CV3	(Northwest Afr
15	72581	Northwest Afri NWA 13413	Howardite	Northwest Afr
10	72582	Northwest Afri NWA 13414	L6-melt brecc	Northwest Afr
18	72583	Northwest Afri NWA 13415	Eucrite	(Northwest Afr
19	72556	Northwest Afri NWA 13416	L5	(Northwest Afr
20	72661	Northwest Afri NWA 13417	H3-6	(Northwest Afr
21	72557	Northwest Afri NWA 13418	L5	(Northwest Afr
22	72662	Northwest Afri NWA 13419	Acapulcoite	(Northwest Afr
23	72558	Northwest Afri NWA 13420	16	(Northwest Afr
24	72559	Northwest Afri NWA 13421	H4	(Northwest Afr
25	72560	Northwest Afri NWA 13422	15	(Northwest Afr
26	72561	Northwest Afri NWA 13423	H4	(Northwest Afr
27	72562	Northwest Afri NWA 13424	14	(Northwest Afr
28	72563	Northwest Afri NWA 13425	H4	(Northwest Afr
29	72584	Northwest Afri NWA 13426	Lunar	(Northwest Afr
30	72600	Northwest Afri NWA 13428	Diogenite nm	(Northwest Afr
31	72610	Northwest Afri NWA 13420		(Northwest Afr
32	72010	Northwest Arri NWA 13429	L/ Howardito	(Northwest An
33	72595	Northwest Afri NWA 13430		(Northwest Afr
34	72649	Northwest Arri NWA 13431	Minonaita	(Northwest An
35	72640	Northwest Afri NWA 13432		Mouritania
36	72049	Northwest Arri NWA 12424	Eucrite molt k	Mauritaria
37	72724	Northwest Afri NWA 12425	Diogonito	(Northwest All
38	72725	Northwest Afri NMA 12426	Diogenite Eusrite amist	(Northwest All
39	72720	Northwest Afri NMA 13430		(Northwest All
40	72720	Northwest Afri NMA 13437	CV3	(Northwest All
41	72740	Northwest Afri NMA 13430	CU3	(Northwest All
42	72718	Northwest Afri NWA 13439	Eucrite	NIOFOCCO
43	72720	Northwest Afri NWA 13440	Martian (sner	ç Algeria
44	72719	Northwest Afri NWA 13441	Martian (sner	ç Algeria
45	72618	Northwest Afri NWA 13442	CO3.0	(Northwest Afr
40	72619	Northwest Afri NWA 13443	CO3.1	(Northwest Afr
47	72620	Northwest Afri NWA 13445	L4	(Northwest Afr
40 40	72663	Northwest Afri NWA 13446	Achondrite-ur	n Algeria
50	72621	Northwest Afri NWA 13447	H3	(Northwest Afr
51	72622	Northwest Afri NWA 13448	LL3	(Northwest Afr
52	72664	Northwest Afri NWA 13449	CK5	(Northwest Afr
53	72665	Northwest Afri NWA 13450	Lunar (feldsp	Algeria
54	72666	Northwest Afri NWA 13451	CV3	(Northwest Afr
55	72667	Northwest Afri NWA 13452	R4-6	(Northwest Afr
56	72668	Northwest Afri NWA 13453	CK5	(Northwest Afr
57	72669	Northwest Afri NWA 13454	R3	(Northwest Afr
58	73528	Northwest Afri NWA 13455	CO3-an	(Northwest Afr
59	73570	Northwest Afri NWA 13456	C2	(Northwest Afr
60	73484	Northwest Afri NWA 13457	Eucrite	(Northwest Afr

1		
2		
3	72623	Northwest Afri NWA 13458
4	72716	Northwest Afri NWA 13459
5	72717	Northwest Afri NWA 13460
6	72687	Northwest Afri NWA 13461
7	72758	Northwest Afri NWA 13462
8	72759	Northwest Afri NWA 13463
9	72760	Northwest Afri NWA 13464
10	72688	Northwest Afri NWA 13465
11	72761	Northwest Afri NWA 13466
12	72762	Northwest Afri NWA 13467
13	72763	Northwest Afri NWA 13468
14	72764	Northwest Afri NWA 13469
15	72765	Northwest Afri NWA 13470
10	72766	Northwest Afri NWA 13471
17	72715	Northwest Afri NWA 13472
10	72713	Northwest Afri NWA 13473
79 20	72770	Northwest Afri NWA 13474
20	72771	Northwest Afri NWA 13475
21	73540	Northwest Afri NWA 13476
22	70040	Northwest Afri NWA 13477
23	72773	Northwest Afri NWA 13478
25	72774	Northwest Afri NWA 13470
26	72775	Northwest Afri NWA 13479
27	72712	Northwest Afri NWA 13480
28	72026	Northwest Afri NWA 13461
29	72020	Northwest Afri NWA 13462
30	72020	Northwest Afri NWA 13463
31	72828	Northwest Afri NWA 13484
32	72829	Northwest Afri NWA 13485
33	72030	Northwest Afri NWA 13400
34	72831	Northwest Afri NWA 13487
35	72033	Northwest Afri NWA 13400
36	72834	Northwest Afri NWA 13489
37	72835	Northwest Afri NVVA 13490
38	72836	Northwest Afri NVVA 13491
39	72837	Northwest Afri NVVA 13492
40	72838	Northwest Afri NVVA 13493
41	72839	Northwest Afri NVVA 13494
42	72841	Northwest Afri NWA 13495
43	72842	Northwest Afri NVVA 13496
44	72843	Northwest Afri NWA 13497
45	72704	Northwest Afri NWA 13498
40	72844	Northwest Afri NWA 13499
47	72692	Northwest Afri NWA 13500
40	72853	Northwest Afri NWA 13501
49 50	72699	Northwest Afri NWA 13502
51	72854	Northwest Afri NWA 13503
52	72855	Northwest Afri NWA 13504
53	72856	Northwest Afri NWA 13505
54	72701	Northwest Afri NWA 13509
55	72702	Northwest Afri NWA 13514
56	72777	Northwest Afri NWA 13515
57	72865	Northwest Afri NWA 13516
58	72864	Northwest Afri NWA 13517
59	72801	Northwest Afri NWA 13518
60	72779	Northwest Afri NWA 13519

H5	Morocco
Martian (sher	Morocco
Martian (sher	Morocco
LL5-6	(Northwest Afr
Eucrite-melt b	(Northwest Afr
Ureilite	Northwest Afr
CO3	(Northwest Afr
H5	(Northwest Afr
CKE	(Northwest Afr
UNO Martian (ahan	(Northwest Afr
Martian (sner	(Northwest Afr
R3-6	(Northwest Afr
Eucrite-melt b	(Northwest Afr
Eucrite	(Northwest Afr
Eucrite-melt b	(Northwest Afr
LL4-6	Mauritania
H4	(Northwest Afr
Martian (shere	Morocco
I 5-melt brecc	i/Northwest Afr
Liroilito	(Northwest Afr
Orenite	(Northwest An
003	(Northwest Afr
Lunar (feldsp.	(Northwest Afr
C2-ung	(Northwest Afr
Eucrite-mmic	t (Northwest Afr
H4	(Northwest Afr
CK5-6	Algeria
CK5	Algeria
Lunar (feldsn	(Northwest Afr
Eucrite unbr	Algeria
Martian (abor	Algeria
Mesosiderite	(Northwest Afr
CK6	Morocco
Brachinite	(Northwest Afr
CO3	(Northwest Afr
CO3	(Northwest Afr
Eucrite	(Northwest Afr
Eucrite	Northwest Afr
Eucrite	(Northwest Afr
CO3	(Northwest Afr
Mososidorito	(Northwest Afr
Fuerite	(Northwest Afr
Eucrite	(Northwest All
L3	(Northwest Afr
Eucrite	Algeria
L(LL)3	(Northwest Afr
H3.10	(Northwest Afr
H6	(Northwest Afr
CK3	(Northwest Afr
L3.10	(Northwest Afr
CK5	(Northwest Afr
	(Northwest Afr
	Morecee
LO	NOIOCCO
H5	Morocco
Eucrite-unbr	(Northwest Afr
Martian (shere	(Northwest Afr
R4-5	(Northwest Afr
125	(Northwoot Afr

1				
2				
3	73554	Northwest Afri NWA 13520	L(H)3	(Northwest Afr
4	72780	Northwest Afri NWA 13521	L5	(Northwest Afr
5	73555	Northwest Afri NWA 13522	CV3	Morocco
0	72867	Northwest Afri NWA 13523	Eucrite-br	Algeria
7 8	72781	Northwest Afri NWA 13524	LL6	(Northwest Afr
9	72782	Northwest Afri NWA 13525	LL6	(Northwest Afr
10	72868	Northwest Afri NWA 13526	R5	Morocco
11	72783	Northwest Afri NWA 13527	LL3	Algeria
12	72869	Northwest Afri NWA 13528	CK5	(Northwest Afr
13	72798	Northwest Afri NWA 13529	H4	Morocco
14	73575	Northwest Afri NWA 13530	CV3	Morocco
15	72871	Northwest Afri NWA 13531	Lunar (feldsp.	(Northwest Afr
16	72872	Northwest Afri NWA 13532	Mesosiderite-I	(Northwest Afr
17	72799	Northwest Afri NWA 13533	L6	(Northwest Afr
18	72802	Northwest Afri NWA 13534	L4	(Northwest Afr
19	72857	Northwest Afri NWA 13535	L4	(Northwest Afr
20	72803	Northwest Afri NWA 13536	H4	(Northwest Afr
21	72804	Northwest Afri NWA 13537	L4	(Northwest Afr
22	72805	Northwest Afri NWA 13538	H5	(Northwest Afr
23	72806	Northwest Afri NWA 13539	H6	(Northwest Afr
24	72807	Northwest Afri NWA 13540	LL5	(Northwest Afr
25	72808	Northwest Afri NWA 13541	H5	(Northwest Afr
26	73556	Northwest Afri NWA 13542	CV3	(Northwest Afr
27	73557	Northwest Afri NWA 13543	CV3	(Northwest Afr
28	73541	Northwest Afri NWA 13544	CK5	(Northwest Afr
29	73542	Northwest Afri NWA 13545	Eucrite	Northwest Afr
30	73543	Northwest Afri NWA 13546	Lunar (feldsp.	Northwest Afr
31	73544	Northwest Afri NWA 13547	CM2	Northwest Afr
32	73545	Northwest Afri NWA 13548	Eucrite-melt b	(Northwest Afr
33	73546	Northwest Afri NWA 13549	Eucrite	Northwest Afr
34 25	73473	Northwest Afri NWA 13550	Pallasite	Northwest Afr
25 26	72809	Northwest Afri NWA 13551	H6	Northwest Afr
30	72810	Northwest Afri NWA 13552	H5	Northwest Afr
38	72811	Northwest Afri NWA 13553	L5	(Northwest Afr
30	72812	Northwest Afri NWA 13554	H5	(Northwest Afr
40	72813	Northwest Afri NWA 13555	LL6	(Northwest Afr
41	72814	Northwest Afri NWA 13556	LL6	(Northwest Afr
42	73485	Northwest Afri NWA 13557	CK6	(Northwest Afr
43	72815	Northwest Afri NWA 13558	H6	(Northwest Afr
44	73486	Northwest Afri NWA 13559	CO3	(Northwest Afr
45	72816	Northwest Afri NWA 13560	H5	(Northwest Afr
46	73487	Northwest Afri NWA 13561	Martian (polyn	(Northwest Afr
47	73488	Northwest Afri NWA 13562	L odranite	(Northwest Afr
48	72817	Northwest Afri NWA 13563	16	(Northwest Afr
49	73489	Northwest Afri NWA 13564	Pallasite	(Northwest Afr
50	73530	Northwest Afri NWA 13565	Mesosiderite	Mauritania
51	73558	Northwest Afri NWA 13566		Morocco
52	73547	Northwest Afri NWA 13567		Morocco
53	73532	Northwest Afri NWA 13568	Lunar	Algeria
54	73572	Northwest Afri NW/A 13560	CV/3	Morocco
55	735/8	Northweet Afri NM/A 13570	Eucrite br	Morocco
56	73533	Northweet Afri NM/A 13571	Eucrite molt b	Morocco
57	73524	Northweet Afri NM/A 13572	Howardite	Westorn Saha
58	73535	Northwest Afri NWA 13572	CVox3	Morocco
59	73550	Northwest Afri NIVIA 13573	Howardita	Morocco
60	10008	NORTHWEST ATTINING 15574	nowarule	MOIOCCO

1				
2				
3	73560	Northwest Afri NWA 13575	CVox3	Morocco
4	73490	Northwest Afri NWA 13576	H4	Morocco
5	72686	Northwest Afri NWA 13579	Pallasite	Niger
0 7	73571	Northwest Afri NWA 13580	Diogenite	Algeria
/ 0	72861	Northwest Afri NWA 13581	Martian (sherg	Algeria
0 0	72862	Northwest Afri NWA 13582	Lunar (feldsp.	(Northwest Afr
10	72863	Northwest Afri NWA 13583	Eucrite	Tunisia
10	72878	Northwest Afri NWA 13618	L~4	Morocco
12	72879	Northwest Afri NWA 13619	L~5	Morocco
13	72880	Northwest Afri NWA 13620	L~5	Morocco
14	73529	Northwest Afri NWA 13621	Lunar (feldsp.	Mali
15	73549	Northwest Afri NWA 13623	Mesosiderite	(Northwest Afr
16	73550	Northwest Afri NWA 13624	Winonaite	(Northwest Afr
17	73551	Northwest Afri NWA 13625	Lunar (feldsp.	(Northwest Afr
18	73505	Northwest Afri NWA 13626	H5	(Northwest Afr
19	73506	Northwest Afri NWA 13627	H3	(Northwest Afr
20	73552	Northwest Afri NWA 13628	Eucrite	(Northwest Afr
21	73507	Northwest Afri NWA 13629	H5	(Northwest Afr
22	73561	Northwest Afri NWA 13630	Diogenite	(Northwest Afr
23	73562	Northwest Afri NWA 13631	CR2	(Northwest Afr
24	73553	Northwest Afri NWA 13632	EH6	Morocco
25	73536	Northwest Afri NWA 13633	LL3	Algeria
26	73567	Northwest Afri NWA 13634	Howardite	Morocco
27	73537	Northwest Afri NWA 13635	H6	Algeria
28	73568	Northwest Afri NWA 13636	Eucrite-unbr	Algeria
29	72482	Nova 062	L5	United States
30	72483	Nova 063	H5	United States
31	72484	Nova 064	H5	United States
32	72546	Nova 065	L4	(Unknown)
33	72430	Novo Mesto	L5	Slovenia
34	72322	Novon	LL(L)3	Mongolia
35	72356	Oiuru 001	Iron, IVB	Libva
30 27	71097	Orlov Dol	Iron, IID	Bulgaria
30	72530	Oslo	H3-6	Norway
30	72537	Ovo	114	Nigeria
40	72460	Pakepake 001	16	China
40 41	71598	Panoso 060	H4/5	Chile
42	71599	Panoso 061	H5	Chile
43	71600	Panoso 062	15	Chile
44	71690	Panoso 063	15	Chile
45	72825	Panoso 064	L Ireilite	Chile
46	72695	Paposo 065		Chile
47	72606	Papaso 066	L0 H5	Chile
48	72607	Paposo 067	НБ	Chile
49	71724		Iron IAR MG	Duccio
50	71724			Russia
51	72520	Cickuctu		Chipa
52	71110		Martian (chore	Algeria
53	77220	Raisa 001 Royar 005		Iron
54	72309	Rever 006		Iran
55	72709		Π4 L 5	Australia
56	73508		L5	Australia
57	71021	Sanara 98129	H3-5	(Sanara)
58	71013	Sanara 98341	H4	(Sanara)
59	70949	Sanara 98377	LL5	(Sanara)
60	70950	Sahara 98378	L5/6	(Sahara)

1				
2				
3	70951	Sahara 98379	L6	(Sahara)
4	70952	Sahara 98381	H5/6	(Sahara)
5	70953	Sahara 98382	H5/6	(Sahara)
6	71014	Sahara 98383	H3-5	(Sahara)
7	70954	Sahara 98384	LL5/6	(Sahara)
8	70955	Sahara 98385	LL5/6	(Sahara)
9	70956	Sahara 98386	H5	(Sahara)
10	70957	Sahara 98387	LL5/6	(Sahara)
11	70958	Sahara 98388	115/6	(Sahara)
12	70959	Sahara 98389	115/6	(Sahara)
13	70960	Sahara 98390	H5	(Sahara)
14	70961	Sahara 98391	H5/6	(Sahara)
15	70962	Sahara 98302	16	(Sahara)
16	70902	Sahara 08303		(Sahara)
17	70903	Sahara 08304		(Sahara)
18	70904	Sahara 09205		(Sahara)
19	70905	Saliala 90395	L5/0	(Saliala)
20	70900	Saliala 90390		(Sahara)
21	70967	Sanara 98397	H4-0	(Sanara)
22	70968	Sanara 98398	H4-5	(Sanara)
23	70969	Sanara 98400	H4-5	(Sanara)
24	71068	Sahara 98401	L5/6	(Sahara)
25	71015	Sahara 98403	H3-6	(Sahara)
20	71016	Sahara 98405	H3-6	(Sahara)
27	70970	Sahara 98406	L5/6	(Sahara)
20	70971	Sahara 98407	L5/6	(Sahara)
29	70972	Sahara 98408	H5/6	(Sahara)
30 21	70973	Sahara 98409	L5	(Sahara)
27	70974	Sahara 98410	H5	(Sahara)
32	70975	Sahara 98411	H5	(Sahara)
34	70976	Sahara 98412	L5	(Sahara)
35	70977	Sahara 98413	H4	(Sahara)
36	71017	Sahara 98414	H3-6	(Sahara)
37	70978	Sahara 98415	H6	(Sahara)
38	70979	Sahara 98416	L6	(Sahara)
39	70980	Sahara 98417	H4	(Sahara)
40	71018	Sahara 98418	H3	(Sahara)
41	70981	Sahara 98419	H5	(Sahara)
42	70982	Sahara 98420	L5-6	(Sahara)
43	70983	Sahara 98421	L5/6	(Sahara)
44	70984	Sahara 98422	16	(Sahara)
45	70985	Sahara 98423	16	(Sahara)
46	70986	Sahara 98424	H4-5	(Sahara)
47	70087	Sahara 98425	H5/6	(Sahara)
48	70988	Sahara 98426	H4_6	(Sahara)
49	70300	Sahara 00427	16	(Sahara)
50	70909	Sahara 09427		(Saliara)
51	70990	Saliala 90420 Sabara 09421		(Saliala)
52	70991	Saliald 3043 I Sabara 0.9422		(Saliara)
53	71019	Sanara 98432	L3	(Sanara)
54	70992	Sanara 98434	H4-5	(Sahara)
55	70993	Sanara 98435	L5	(Sahara)
56	70994	Sanara 98436	L5	(Sahara)
57	70995	Sahara 98437	H5	(Sahara)
58	70996	Sahara 98438	L6	(Sahara)
59	70997	Sahara 98439	L6	(Sahara)
60	70998	Sahara 98440	H4-5	(Sahara)

3	70999	Sahara 98441	L5	(Sahara)
4	71000	Sahara 98442	L5-6	(Sahara)
5	71001	Sahara 98443	15/6	(Sahara)
6	71002	Sahara 98/1/	He	(Sahara)
7	71002	Sabara 08445		(Sahara)
8	71020	Saliala 90445	115	(Saliara)
9	71003	Sanara 98449		(Sanara)
10	71004	Sahara 98450	H4	(Sahara)
11	71005	Sahara 98451	L5-6	(Sahara)
12	71006	Sahara 98452	L5	(Sahara)
13	71007	Sahara 98453	H4	(Sahara)
17	71008	Sahara 98454	H5	(Sahara)
14	71009	Sahara 98455	L4/5	(Sahara)
15	71010	Sahara 98456	16	(Sahara)
10	71011	Sahara 98457	H5	(Sahara)
17	71012	Sahara 98458	15	(Sahara)
10	71138	Saint-Ouen-er	H5	France
19	71705	San Salvador	H5	
20	77652	Santo Eilomor		Brozil
21	72002			Omen
22	72394			Oman
23	71623	Shallm 025	Eucrite-mmict	Oman
24	70861	Shinejinst	H4	Mongolia
25	71654	Shişr 200	L5	Oman
26	72416	Shişr 201	L6	Oman
27	73491	Shişr 202	L5	Oman
28	70904	Sierra Gorda (H4	Chile
29	71160	Sierra Gorda (H5-melt brecc	Chile
30	71660	Sierra Gorda (H/L5	Chile
31	71065	Sierra Gorda (L5	Chile
32	71591	Sierra Gorda (L5	Chile
33	71608	Sierra Gorda (16	Chile
34	71610	Sierra Gorda (15	Chile
35	71616	Sierra Gorda (L0 H5	Chile
36	71617	Sierra Gorda (H6	Chile
3/	71606	Sierra Corda (16	Chilo
38	71030	Sierra Corda (Chile
39	71744	Sierra Gorda (Chile
40	72369	Sierra Gorda (HD	Chile
41	72588	Sierra Gorda (L3	Chile
42	72596	Sierra Gorda (L5	Chile
43	72597	Sierra Gorda (L6	Chile
44	72626	Sierra Gorda (L5	Chile
45	72634	Sierra Gorda (L6	Chile
46	73514	Sierra Gorda (L5-melt brecci	Chile
47	72769	Sierra Gorda (H5	Chile
48	72703	Sierra Gorda (L4	Chile
49	72788	Sierra Gorda (L5	Chile
50	72790	Sierra Gorda (L5	Chile
51	73492	Sierra Gorda (H5	Chile
52	72468	Tanezrouff 09 Tnz 090	16	Algeria
53	73531	Tanezrouft 00 Tnz 001	Mesosiderite	Algeria
54	72644	Tarda	C2-ung	Morocco
55	70057	Tassádat 005	L6	Nigor
56	70007		Luper	Morecoo
57	73539			Chine
58	72401		H5/0	China
59	72/14		H5	Norocco
60	73569	libertatine 00	CO3	Algeria

2						
3	72707	Tichiya 002			H5	Western Saha
4	73515	Tiros			Eucrite-cm	Brazil
5	72357	Tisserlitine 00			Lunar (feldsp.	Mali
6	71653	Toconao 001			LL3	Chile
7	72371	Toconao 002			L6	Chile
8	72507	Toconao 003			H5	Chile
9	72639	Toconao 004			H5	Chile
10	72797	Toconao 005			15	Chile
11	72721	Touat 004			Lunar (feldsp	Algeria
12	72866	Touat 005			Lunar (feldsp.	Algeria
13	73574	Touat 006			Eucrite-melt h	Algeria
14	71700	Tungsten Mou TM 054				United States
15	71800	Tungsten Mou TM 054			H5	United States
16	71000	Tungsten Mou TM 055				United States
17	71001	Tungsten Mou TM 050				United States
18	71002	Tungsten Mou TM 057				United States
19	71003	Tungsten Mou TM 050				United States
20	71804	Tungsten Mou TM 059			HS	United States
21	71805	Tungsten Mou TM 060			H5	United States
22	71818	Tungsten Mou TM 073			H5	United States
23	71829	Tungsten Mou TM 084			H5	United States
24	71838	Tungsten Mou TM 116			H5	United States
25	71843	Tungsten Mou TM 121			H5	United States
26	71748	Tyro			L6	United States
27	72417	United Arab E UAE 030			L6	United Arab E
28	72617	Utting			H4	United States
29	72531	Valle			H5	Norway
30 21	72651	Villanueva			H6	United States
21	72327	Wad Lahteyba			H5	Western Saha
22 22	72776	Wellman (f)			H3-4	United States
34	70056	Wubao 002			LL3	China
35	36997	Yamato 98037Y-980372	J27	J	H5	Antarctica
36	36999	Yamato 98037Y-980374	J27	J	L6	Antarctica
37	37000	Yamato 98037Y-980375	J27	J	L6	Antarctica
38	37002	Yamato 98037Y-980377	J27	J	L6	Antarctica
39	37008	Yamato 98038Y-980383	J27	J	H5	Antarctica
40	37009	Yamato 98038Y-980384	J27	J	H5	Antarctica
41	37015	Yamato 9803(Y-980390	J27	J	L3	Antarctica
42	37017	Yamato 9803(Y-980392	J27	J	H5	Antarctica
43	37018	Yamato 9803(Y-980393	J27	J	H6	Antarctica
44	37036	Yamato 98041Y-980411	.127	J	116	Antarctica
45	37044	Yamato 98041Y-980419	.127	J	H6	Antarctica
46	37053	Yamato 9804; Y-980428	.127	.1	H5	Antarctica
47	37058	Vamato 98042 V-980434	127	1		Antarctica
48	37061	Vamato 9804: V-980437	127	1	He	Antarctica
49	37065	Vamato 9804/V 9804/1	127	1		Antarctica
50	27066	Vamato 0804/ V 080442	127	J		Antarctica
51	27067	Yamata 0904/ Y 090442	J27	J		Antarctica
52	37007	Yamata 0904/ Y 090443	JZ7	J		Antarctica
53	27022	Vamata 02044 1-980447	J27	J		Antarctica
54	37062	Vamata 0004(1-980408	JZ7	J		Antarctica
55	37090	Tamato 9804(Y-980467	J27	J		Antarctica
56	37099	Yamato 98047Y-980476	J27	J	L3	Antarctica
57	37105	Yamato 98048 Y-980482	J27	J	LLb	Antarctica
58	37106	Yamato 98048 Y-980483	J27	J	LL6	Antarctica
59	37109	Yamato 98048 Y-980486	J27	J	L3	Antarctica
60	37110	Yamato 98048Y-980487	J27	J	H4	Antarctica

3	37112	Yamato 98048 Y-980489	J27	J	H6	Antarctica
4	37114	Yamato 9804§Y-980491	J27	J	H6	Antarctica
5	37115	Yamato 9804§Y-980492	J27	J	LL3	Antarctica
6	37126	Yamato 9805(Y-980503	J27	J	L4	Antarctica
7	37127	Yamato 9805(Y-980504	.127		H5	Antarctica
8	37137	Yamato 98051Y-980514	.127	.]	116	Antarctica
9	37130	Vamato 98051V-980516	127	1	He	Antarctica
10	37142	Vamato 08051V 080510	127	1		Antarctica
11	27144	Vamata 080511-980519	JZ7	J		Antarctica
12	07445	Variate 080521-980521	JZ7	J		Antarctica
13	37 143	Yamata 00052 Y-960522	JZ7	J	LO	Antarctica
14	37148	Yamato 98052 Y-980525	J27	J	Но	Antarctica
15	3/15/	Yamato 9805: Y-980534	J27	J	H5	Antarctica
16	37158	Yamato 9805: Y-980535	J27	J	CM2	Antarctica
17	37161	Yamato 9805: Y-980538	J27	J	LL6	Antarctica
18	37162	Yamato 9805: Y-980539	J27	J	LL6	Antarctica
19	37170	Yamato 98054Y-980547	J27	J	L6	Antarctica
20	37172	Yamato 98054Y-980549	J27	J	H6	Antarctica
21	37174	Yamato 9805{Y-980551	J27	J	H6	Antarctica
22	37175	Yamato 9805: Y-980552	J27	J	L6	Antarctica
23	37176	Yamato 9805{Y-980553	J27	J	H5	Antarctica
24	37177	Yamato 9805{Y-980554	J27	J	L6	Antarctica
25	37179	Yamato 9805(Y-980556	J27	J	H6	Antarctica
26	37180	Yamato 9805; Y-980557	.127	J	H5	Antarctica
27	37181	Yamato 9805/ Y-980558	.127		15	Antarctica
28	37189	Yamato 98056 Y-980566	127	1	16	Antarctica
29	37102	Vamato 9805(V-980569	127	1	He	Antarctica
30	37102	Vamato 08057 V 080570	127	1	16	Antarctica
31	27107	Vameta 080571-980570	JZ7	J		Antarctica
32	37 197	Yamata 090571-960574	JZ7	J		Antarctica
33	37201	Yamata 0005(Y 000500	JZ7	J		Antarctica
34	37213	Yamato 9805; Y-980590	J27	J	CR2	Antarctica
35	37217	Yamato 98058 Y-980594	J27	J	L4	Antarctica
36	37221	Yamato 98058 Y-980598	J27	J	H6	Antarctica
37	37222	Yamato 9805(Y-980599	J27	J	CO3	Antarctica
38	37223	Yamato 9806(Y-980600	J27	J	CO3	Antarctica
39	37224	Yamato 9806(Y-980601	J27	J	H5	Antarctica
40	37226	Yamato 9806(Y-980603	J27	J	H4	Antarctica
41	37231	Yamato 9806(Y-980608	J27	J	H4	Antarctica
42	37232	Yamato 9806(Y-980609	J27	J	H4	Antarctica
43	37233	Yamato 98061Y-980610	J27	J	H4	Antarctica
44	37234	Yamato 98061Y-980611	J27	J	L6	Antarctica
45	37236	Yamato 98061Y-980613	J27	J	H5	Antarctica
46	37237	Yamato 98061Y-980614	J27	J	H5	Antarctica
47	37238	Yamato 98061Y-980615	.127	J	H6	Antarctica
48	37240	Yamato 98061Y-980617	.127		H6	Antarctica
49	37243	Yamato 9806(Y-980620	127	1	H5	Antarctica
50	37240	Vamato 98062 V 980621	127	1	H5	Antarctica
51	37244	Vamato 08061 V 080622	127	1		Antarctica
52	37245	Vamata 08061 V 080624	JZ7	J		Antarctica
53	37247	Yamata 08062 Y-960624	JZ7	J		Antarctica
54	37249		J27	J		Antarctica
55	37251	ramato 98062 Y-980628	J27	J	H5	Antarctica
56	37252	Yamato 98062 Y-980629	J27	J	H5	Antarctica
57	37255	Yamato 9806: Y-980632	J27	J	L6	Antarctica
58	37256	Yamato 9806: Y-980633	J27	J	L6	Antarctica
59	37257	Yamato 9806: Y-980634	J27	J	L6	Antarctica
60	37260	Yamato 9806: Y-980637	J27	J	H6	Antarctica

Meteoritics & Planetary Science

	_
κυρρισό θέλα	
numing neu	ч.

1						
2						
3	37261	Yamato 9806: Y-980638	J27	J	H5	Antarctica
4	37264	Yamato 98064Y-980641	J27	J	H6	Antarctica
5	37266	Yamato 98064Y-980643	J27	J	H6	Antarctica
6	37267	Yamato 98064Y-980644	J27	J	L6	Antarctica
7	37268	Yamato 98064 Y-980645	J27	J	L6	Antarctica
8	37273	Yamato 9806{Y-980650	J27	J	H6	Antarctica
9	37274	Yamato 9806{Y-980651	J27	J	H5	Antarctica
10	37275	Yamato 9806{Y-980652	J27	J	H5	Antarctica
11	37276	Yamato 98065 Y-980653	J27	J	H6	Antarctica
12	37282	Yamato 98065 Y-980659	.127	J	H4	Antarctica
13	37284	Yamato 9806f Y-980661	.127	J	H5	Antarctica
14	37289	Yamato 98066 Y-980666	.127		16	Antarctica
15	37290	Yamato 98066 Y-980667	127	1	14	Antarctica
16	37203	Vamato 98067 V-980670	127	1	15	Antarctica
1/	27204	Vamate 02067 V 020671	127	J		Antarctica
18	27200	Vamata 02067 V 020676	JZ7	J		Antarctica
19	37299	Vamata 02067 V 020677	JZ7	J		Antarctica
20	37300		JZ7	J		Antarctica
21	37301	Yamato 98067Y-980678	J27	J	LG	Antarctica
22	37302	Yamato 98067Y-980679	J27	J	H5	Antarctica
23	37309	Yamato 98068 Y-980686	J27	J	L6	Antarctica
24	37314	Yamato 98069 Y-980691	J27	J	H6	Antarctica
25	37315	Yamato 9806{Y-980692	J27	J	H6	Antarctica
26	37319	Yamato 9806{Y-980696	J27	J	H6	Antarctica
27	37322	Yamato 9806{Y-980699	J27	J	L6	Antarctica
28	37333	Yamato 98071Y-980710	J27	J	H6	Antarctica
29	37337	Yamato 98071Y-980714	J27	J	H5	Antarctica
30	37338	Yamato 98071Y-980715	J27	J	H5	Antarctica
31	37340	Yamato 98071Y-980717	J27	J	H5	Antarctica
32	37341	Yamato 98071Y-980718	J27	J	L4	Antarctica
33	37342	Yamato 98071Y-980719	J27	J	L6	Antarctica
34	37343	Yamato 98072Y-980720	J27	J	H5	Antarctica
35	37344	Yamato 98072Y-980721	J27	J	H5	Antarctica
30	37345	Yamato 9807; Y-980722	.127	J	H5	Antarctica
3/	37347	Yamato 9807; Y-980724	.127	.	H5	Antarctica
38	37355	Yamato 9807: Y-980732	127	1	H5	Antarctica
39 40	37356	Vamato 9807: V-980733	127	1	15	Antarctica
40	37357	Vamato 9807: V 980734	127	1		Antarctica
41	27250	Vamate 0907: V 090725	127	J		Antarctica
42	27266	Vamata 0907/V 0907/2	JZ7	J		Antarctica
43	37300	Variate 0007/V 000745	JZ7	J		Antarctica
44	37309	Yamato 98072 Y-980746	JZ7	J	HD	Antarctica
45	37371	Yamato 98072 Y-980748	J27	J	H5	Antarctica
40	37373	Yamato 98075Y-980750	J27	J	H6	Antarctica
47	37374	Yamato 98075 Y-980751	J27	J	H5	Antarctica
40	37380	Yamato 9807{Y-980757	J27	J	H5	Antarctica
49	37383	Yamato 9807(Y-980760	J27	J	CO3	Antarctica
50	37392	Yamato 9807(Y-980769	J27	J	L6	Antarctica
51	37395	Yamato 98077Y-980772	J27	J	L5	Antarctica
52	37396	Yamato 98077Y-980773	J27	J	L5	Antarctica
55	37397	Yamato 98077Y-980774	J27	J	H5	Antarctica
55	37398	Yamato 98077Y-980775	J27	J	LL6	Antarctica
55	37400	Yamato 98077Y-980777	J27	J	H4	Antarctica
50	37401	Yamato 98077Y-980778	J27	J	L6	Antarctica
52	37403	Yamato 98078Y-980780	J27	J	H5	Antarctica
50	37404	Yamato 98078Y-980781	J27	J	H5	Antarctica
60	37406	Yamato 98078 Y-980783	J27	J	L6	Antarctica
00				-		

1						
2						
3	37416	Yamato 9807{Y-980793	J27	J	H5	Antarctica
4	37421	Yamato 9807§Y-980798	J27	J	H5	Antarctica
5	37424	Yamato 9808(Y-980801	J27	J	H5	Antarctica
7	37426	Yamato 9808(Y-980803	J27	J	H6	Antarctica
, 8	37435	Yamato 98081Y-980812	J27	J	H6	Antarctica
9	37436	Yamato 98081Y-980813	J27	J	H5	Antarctica
10	37441	Yamato 98081Y-980818	J27	J	L6	Antarctica
11	37442	Yamato 98081Y-980819	J27	J	L6	Antarctica
12	37443	Yamato 98082 Y-980820	J27	J	L6	Antarctica
13	37445	Yamato 98082 Y-980822	J27	J	L6	Antarctica
14	37448	Yamato 98082 Y-980825	J27	J	L6	Antarctica
15	37450	Yamato 98082 Y-980827	J27	J	H5	Antarctica
16	3/451	Yamato 98082 Y-980828	J27	J	H4	Antarctica
17	37453	Yamato 9808: Y-980830	J27	J	H5	Antarctica
18	37454	Yamato 9808: Y-980831	J27	J	H5	Antarctica
19	37455	Yamato 9808: Y-980832	J27	J	H5	Antarctica
20	37458	Yamato 9808: Y-980835	J27	J	LL5	Antarctica
21	37461	Yamato 9808: Y-980838	J27	J	L6	Antarctica
22	37465	Yamato 98084Y-980842	J27	J	L6	Antarctica
23	37466	Yamato 98084Y-980843	J27	J	L6	Antarctica
24	37469	Yamato 98084Y-980846	J27	J	H6	Antarctica
25	37471	Yamato 98084 Y-980848	J27	J	L5	Antarctica
26	37472	Yamato 98084Y-980849	J27	J	L6	Antarctica
27	37481	Yamato 9808{Y-980858	J27	J	H5	Antarctica
28	37487	Yamato 9808(Y-980864	J27	J	H3	Antarctica
29	37488	Yamato 9808(Y-980865	J27	J	H5	Antarctica
30	37492	Yamato 9808(Y-980869	J27	J	H5	Antarctica
37	37493	Yamato 98087Y-980870	J27	J	H5	Antarctica
32	37497	Yamato 98087Y-980874	J27	J	L6	Antarctica
34	37503	Yamato 98088 Y-980880	J27	J	L6	Antarctica
35	37511	Yamato 98088 Y-980888	J27	J	L4	Antarctica
36	37513	Yamato 9808(Y-980890	J27	J	H4	Antarctica
37	37515	Yamato 9808(Y-980892	J27	J	H5	Antarctica
38	37517	Yamato 9808(Y-980894	J27	J	H5	Antarctica
39	37518	Yamato 9808(Y-980895	J27	J	H5	Antarctica
40	37519	Yamato 9808(Y-980896	J27	J	H5	Antarctica
41	37520	Yamato 9808(Y-980897	J27	J	H5	Antarctica
42	37529	Yamato 9809(Y-980906	J27	J	H5	Antarctica
43	37532	Yamato 9809(Y-980909	J27	J	L6	Antarctica
44	37533	Yamato 98091Y-980910	J27	J	H5	Antarctica
45	37534	Yamato 98091Y-980911	J27	J	L6	Antarctica
46	37535	Yamato 98091Y-980912	J27	J	L3	Antarctica
47	37536	Yamato 98091Y-980913	J27	J	H5	Antarctica
48	37537	Yamato 98091Y-980914	J27	J	H6	Antarctica
49	37538	Yamato 98091Y-980915	J27	J	H6	Antarctica
50	37542	Yamato 98091Y-980919	J27	J	H5	Antarctica
51	37546	Yamato 98092Y-980923	J27	J	H5	Antarctica
52	37548	Yamato 98092Y-980925	J27	J	H5	Antarctica
53	37554	Yamato 9809: Y-980931	J27	J	H5	Antarctica
54 55	37555	Yamato 9809: Y-980932	J27	J	H6	Antarctica
55 56	37556	Yamato 9809: Y-980933	J27	J	H6	Antarctica
50 57	37590	Yamato 9809(Y-980967	J27	J	H5	Antarctica
52	37595	Yamato 98097Y-980972	J27	J	H5	Antarctica
50	37596	Yamato 98097Y-980973	J27	J	H5	Antarctica
60	37597	Yamato 98097Y-980974	J27	J	H5	Antarctica

Meteoritics & Planetary Science

	_
κυρρισό θέλα	
numing neu	ч.

2						
3	37602	Yamato 98097Y-980979	J27	J	H5	Antarctica
4	37606	Yamato 98098 Y-980983	J27	J	H4	Antarctica
5	37607	Yamato 98098Y-980984	J27	J	H4	Antarctica
6	37608	Yamato 98098 Y-980985	J27	J	H4	Antarctica
7	37609	Yamato 98098Y-980986	J27	J	H4	Antarctica
8	37610	Yamato 98098 Y-980987	J27	J	H4	Antarctica
9	37613	Yamato 98095 Y-980990	.127	J	H4	Antarctica
10	37615	Yamato 9809(Y-980992	.127		H4	Antarctica
11	37616	Vamato 9809(V-98093	127	U U	H4	Antarctica
12	37617	Vamato 08000 V 080004	127	1		Antarctica
13	37618	Vamato 98092 1-960994	127	5		Antarctica
14	27624	Vamate 0810(V 081001	127	5		Antarctica
15	37024	Yamata 0810(Y 08100)	JZ7	J		Antarctica
16	37625	Yamato 9810(Y-981002	JZ7	J	H4	Antarctica
17	37626	Yamato 9810(Y-981003	J27	J	H4	Antarctica
18	37627	Yamato 9810(Y-981004	J27	J	H4	Antarctica
19	37631	Yamato 9810(Y-981008	J27	J	L6	Antarctica
20	37633	Yamato 98101Y-981010	J27	J	L6	Antarctica
21	37634	Yamato 98101Y-981011	J27	J	H6	Antarctica
22	37640	Yamato 98101Y-981017	J27	J	L6	Antarctica
23	37652	Yamato 98102Y-981029	J27	J	H4	Antarctica
24	37653	Yamato 9810: Y-981030	J27	J	H4	Antarctica
25	37665	Yamato 98104Y-981043	J27	J	L6	Antarctica
26	37671	Yamato 98104Y-981049	J27	J	L6	Antarctica
27	37675	Yamato 98105Y-981053	J27	J	H4	Antarctica
28	37676	Yamato 9810{Y-981054	J27	J	CV3	Antarctica
29	37681	Yamato 9810{Y-981059	J27	J	H6	Antarctica
30	37682	Yamato 9810€Y-981060	J27	J	Ureilite	Antarctica
31	37684	Yamato 9810(Y-981062	J27	J	H6	Antarctica
32	37688	Yamato 9810(Y-981066	.127	J	H4	Antarctica
33	37690	Yamato 9810(Y-981068	.127		H5	Antarctica
34	37693	Vamato 98107 V-981071	127	U U	H6	Antarctica
35	37604	Vamato 08107 V 081077	127	1	H6	Antarctica
36	37600	Vamate 08107 081072	127	5		Antarctica
37	27710	Vamata 09101 - 901077	JZ7	J		Antarctica
38	27745	Yamata 0010(Y 00100)	JZ7	J		Antarctica
39	37715	Yamato 9810: Y-981093	JZ7	J	H4	Antarctica
40	37716	Yamato 98105 Y-981094	J27	J	H4	Antarctica
41	37718	Yamato 98105 Y-981096	J27	J	H4	Antarctica
42	37719	Yamato 98105 Y-981097	J27	J	H4	Antarctica
43	37720	Yamato 9810§Y-981098	J27	J	H4	Antarctica
44	37726	Yamato 9811(Y-981104	J27	J	H4	Antarctica
45	37729	Yamato 9811(Y-981107	J27	J	H4	Antarctica
46	37735	Yamato 98111Y-981113	J27	J	H4	Antarctica
47	37739	Yamato 98111Y-981117	J27	J	H4	Antarctica
48	37740	Yamato 98111Y-981118	J27	J	H5	Antarctica
49	37744	Yamato 98112Y-981122	J27	J	H4	Antarctica
50	37747	Yamato 98112Y-981125	J27	J	H5	Antarctica
51	37748	Yamato 98112Y-981126	J27	J	H5	Antarctica
52	37750	Yamato 98112Y-981128	J27	J	L6	Antarctica
55 E 4	37753	Yamato 9811: Y-981131	J27	J	H6	Antarctica
54 57	37778	Yamato 98115Y-981156	J27	J	L6	Antarctica
55 56	37782	Yamato 9811(Y-981160	J27	J	H4	Antarctica
20 57	37793	Yamato 98117Y-981171	J27	J	H3	Antarctica
5/ E0	37800	Yamato 98117Y-981178	J27	J	H4	Antarctica
50 50	37801	Yamato 98117Y-981179	J27	J	H4	Antarctica
50 60	37807	Yamato 98118 Y-981185	.127	J	H4	Antarctica
00	01001		021	0		

2						
3	37812	Yamato 9811{Y-981190	J27	J	H5	Antarctica
4	37814	Yamato 9811{Y-981192	J27	J	H4	Antarctica
5	37815	Yamato 9811(Y-981193	J27	J	H4	Antarctica
6	37819	Yamato 9811(Y-981197	J27	J	H4	Antarctica
7	37827	Yamato 9812(Y-981205	J27	J	H4	Antarctica
8	37853	Yamato 9812; Y-981231	J27	J	H6	Antarctica
9	37861	Yamato 9812; Y-981239	J27	J	H4	Antarctica
10	37865	Yamato 98124 Y-981243	.127	.	H4	Antarctica
11	37866	Yamato 98124 Y-981244	.127	.1	H4	Antarctica
12	37870	Vamato 9812/ V-981244	127	1	H4	Antarctica
13	37877	Vamato 0812^{4} V_081255	127	о Т	H5	Antarctica
14	37870	Vamato 08121 V 081257	127	J	НЛ	Antarctica
15	27001	Vamate 091257 091257	J27	J	114	Antarctica
16	27001	Vamata 0912(Y-901259	J27	J	LU CM2	Antarctica
17	37003	Yamata 0012(Y-961201	JZ7	J		Antarctica
18	3/88/	Yamato 0812(Y-981205	JZ7	J		Antarctica
19	37892	Yamalo 981271-981270	J27	J		Antarctica
20	37895	Yamato 98127Y-981273	J27	J	003	Antarctica
21	37898	Yamato 9812/Y-9812/6	J27	J	L6	Antarctica
22	37903	Yamato 98128 Y-981281	J27	J	CO3	Antarctica
23	37909	Yamato 98128 Y-981287	J27	J	CO3	Antarctica
24	37914	Yamato 9812§Y-981292	J27	J	CO3	Antarctica
25	37915	Yamato 9812(Y-981293	J27	J	CO3	Antarctica
26	37916	Yamato 9812(Y-981294	J27	J	CO3	Antarctica
27	37922	Yamato 9813(Y-981300	J27	J	H4	Antarctica
28	37928	Yamato 9813(Y-981306	J27	J	H4	Antarctica
29	37932	Yamato 98131Y-981310	J27	J	H5	Antarctica
30	37933	Yamato 98131Y-981311	J27	J	H4	Antarctica
3 I 2 2	37939	Yamato 98131Y-981317	J27	J	H5	Antarctica
2∠ 22	37950	Yamato 98132Y-981328	J27	J	L6	Antarctica
37	37952	Yamato 9813: Y-981330	J27	J	L6	Antarctica
35	37958	Yamato 9813: Y-981336	J27	J	L6	Antarctica
36	37961	Yamato 9813: Y-981339	J27	J	L5	Antarctica
37	37963	Yamato 98134Y-981341	J27	J	L5	Antarctica
38	37964	Yamato 98134Y-981342	J27	J	L5	Antarctica
39	37966	Yamato 98134Y-981344	J27	J	L5	Antarctica
40	37974	Yamato 9813{Y-981352	J27	J	H5	Antarctica
41	37975	Yamato 98135 Y-981353	J27	J	L5	Antarctica
42	37978	Yamato 98135 Y-981356	J27	J	16	Antarctica
43	37985	Yamato 9813(Y-981363	J27	J	16	Antarctica
44	37986	Yamato 9813(Y-981364	.127	J	 H5	Antarctica
45	37989	Yamato 98136 Y-981367	.127	.	H4	Antarctica
46	37996	Yamato 98137Y-981374	.127	.	H5	Antarctica
47	37999	Yamato 98137Y-981377	.127		H5	Antarctica
48	38000	Vamato 98137 V-981378	127	1	16	Antarctica
49	38001	Vamato 08137V 081370	127	J		Antarctica
50	38004	Vamato 0813(V 081382	127	J		Antarctica
51	38004	Vamato 0813(V 081382	J27	J		Antarctica
52	20005	Vamata 0912(V 091294	J27	J		Antarctica
53	38009	Vamato 0913(V 091396	127	3	H5	Antarctica
54	20000	Vamata 0942(V 004207	JZ7	J		Antarctica
55	30009		J27	3		Antarctica
56	38013	Tamato 981351-981391	J27	J	CH	Antarctica
57	38014	Tamato 98135 Y-981392	J27	J	CH LO	Antarctica
58	38018	Yamato 98135 Y-981396	J27	J	Lb	Antarctica
59	38019	Yamato 98135 Y-981397	J27	J	L6	Antarctica
60	38026	Yamato 9814(Y-981404	J27	J	H5	Antarctica

n		11
RIIN	nina	HOAN
nun	IIIII IQ	ricau

2						
3	38031	Yamato 9814(Y-981409	J27	J	L6	Antarctica
4	38045	Yamato 98142Y-981423	J27	J	L3	Antarctica
5	38046	Yamato 98142Y-981424	J27	J	L6	Antarctica
6	38052	Yamato 9814: Y-981430	J27	J	L6	Antarctica
7	38062	Yamato 98144 Y-981440	.127	J	14	Antarctica
8	38074	Yamato 9814/ Y-981452	.127	.	14	Antarctica
9	38076	Vamato 9814/ V-981454	127	J	н <u>5</u>	Antarctica
10	39091	$V_{2} = 0.0014 \times 0.001454$	127	1		Antarctica
11	30001	Vamato 0814(V 081461	127	J		Antarctica
12	30003	Vamata 0014(V 001467	JZ7	J		Antarctica
13	38089	Yamato 9814(Y-981467	JZ7	J	LO	Antarctica
14	38090		JZ7	J	LO	Antarctica
15	38092	Yamato 98147Y-981470	J27	J	Ho	Antarctica
16	38095	Yamato 98147 Y-981473	J27	J	L4	Antarctica
17	38100	Yamato 98147Y-981478	J27	J	L6	Antarctica
18	38101	Yamato 98147Y-981479	J27	J	L6	Antarctica
19	38110	Yamato 9814{Y-981488	J27	J	L6	Antarctica
20	38141	Yamato 98151Y-981518	J27	J	H4	Antarctica
21	38142	Yamato 98151Y-981519	J27	J	CR2	Antarctica
22	38147	Yamato 98152Y-981524	J27	J	H4	Antarctica
23	38154	Yamato 9815: Y-981531	J27	J	H6	Antarctica
24	38155	Yamato 9815: Y-981532	J27	J	L6	Antarctica
25	38160	Yamato 9815; Y-981537	J27	J	H6	Antarctica
26	38161	Yamato 9815; Y-981538	.127	.	H6	Antarctica
27	38178	Vamato 9815/ V-981555	127	1	H6	Antarctica
28	38180	Vamato 0815/ V 081557	127	5 I	15	Antarctica
29	20100	Vamate 0915: V 091570	JZ7	J		Antarctica
30	30193	Yamata 091571-961570	JZ7	J		Antarctica
31	38194	Yamato 98157Y-981571	JZ7	J	H4	Antarctica
32	38197	Yamato 98157 Y-981574	J27	J	H5	Antarctica
33	38200	Yamato 98157Y-981577	J27	J	L4	Antarctica
34	38201	Yamato 98157 Y-981578	J27	J	H5	Antarctica
35	38202	Yamato 98157 Y-981579	J27	J	H6	Antarctica
36	38215	Yamato 98159 Y-981592	J27	J	H4	Antarctica
37	38231	Yamato 9816(Y-981608	J27	J	LL6	Antarctica
38	38233	Yamato 98161Y-981610	J27	J	H3	Antarctica
39	38241	Yamato 98161Y-981618	J27	J	L6	Antarctica
40	38246	Yamato 98162Y-981623	J27	J	L5	Antarctica
41	38249	Yamato 98162Y-981626	J27	J	H6	Antarctica
42	38251	Yamato 98162Y-981628	J27	J	L6	Antarctica
43	38258	Yamato 9816: Y-981635	J27	J	H5	Antarctica
44	38281	Yamato 9816{Y-981659	J27	J	H5	Antarctica
45	38283	Yamato 9816(Y-981661	.127	J	116	Antarctica
46	38297	Yamato 98167Y-981675	.127	.	16	Antarctica
47	38312	Vamato 9816(V-981690	127	J	16	Antarctica
48	38315	Vamato 0816(V 081603	127	J		Antarctica
49	20213	Vamate 0816(V 081600	127	J		Antarctica
50	20221	Vamata 0017(V 001704	JZ7	J		Antarctica
51	38320	Yamato 9817(Y-981704	JZ7	J	LLO	Antarctica
52	38330	Yamato 9817(Y-981708	J27	J	H5	Antarctica
53	38339	Yamato 981/1Y-981717	J27	J	HG	Antarctica
54	38355	Yamato 9817: Y-981733	J27	J	L6	Antarctica
55	38369	Yamato 98174Y-981747	J27	J	H5	Antarctica
56	38370	Yamato 98174Y-981748	J27	J	H5	Antarctica
57	38373	Yamato 9817{Y-981751	J27	J	L6	Antarctica
58	38377	Yamato 98175 Y-981755	J27	J	L6	Antarctica
59	38379	Yamato 98175Y-981757	J27	J	H4	Antarctica
60	38382	Yamato 9817(Y-981760	J27	J	CM2	Antarctica

2						
3	38383	Yamato 98176Y-981761	J27	J	H6	Antarctica
4	38384	Yamato 98176 Y-981762	J27	J	H4	Antarctica
5	38385	Yamato 9817€Y-981763	J27	J	L6	Antarctica
6	38391	Yamato 9817€Y-981769	J27	J	L6	Antarctica
7	38393	Yamato 98177Y-981771	J27	J	L6	Antarctica
8	38396	Yamato 98177Y-981774	J27	J	H4	Antarctica
9	38403	Yamato 98178 Y-981781	.127	- .	H4	Antarctica
10	38405	Yamato 98178 Y-981783	.127	J	H3	Antarctica
11	38407	Yamato 98178 V-981785	127	U U	H5	Antarctica
12	38409	Vamato 08175 V-081787	127	U U	Ни	Antarctica
13	38/10	Vamato 08175V 081788	127	5	H5	Antarctica
14	39415	Vamato 0817(V 081703	127	5	ны Ци	Antarctica
15	20476	Vamata 0819(V 081904	127	5		Antarctica
16	20420	Vamata 0818(V 081805	JZ7	J		Antarctica
17	30427	Variate 0010(Y 001005	JZ7	J		Antarctica
18	38428	Yamata 0918(Y 091807	JZ7	J		Antarctica
19	38429	Yamato 9818t Y-981807	JZ7	J	LO	Antarctica
20	38433	Yamato 98181 Y-981811	J27	J	H5	Antarctica
21	38434	Yamato 98181Y-981812	J27	J	H5	Antarctica
22	38435	Yamato 98181Y-981813	J27	J	H4	Antarctica
23	38468	Yamato 98182 Y-981846	J27	J	H4	Antarctica
24	38469	Yamato 98184 Y-981847	J27	J	H4	Antarctica
25	38470	Yamato 98184Y-981848	J27	J	H4	Antarctica
26	38472	Yamato 98185Y-981850	J27	J	H4	Antarctica
27	38474	Yamato 98185Y-981852	J27	J	H4	Antarctica
28	38476	Yamato 98185Y-981854	J27	J	H4	Antarctica
29	38487	Yamato 98186 Y-981865	J27	J	H4	Antarctica
50 21	38490	Yamato 9818(Y-981868	J27	J	H4	Antarctica
27	38491	Yamato 9818(Y-981869	J27	J	H4	Antarctica
32	38493	Yamato 98187Y-981871	J27	J	H5	Antarctica
34	38494	Yamato 98187Y-981872	J27	J	H5	Antarctica
35	38495	Yamato 98187Y-981873	J27	J	H4	Antarctica
36	38496	Yamato 98187Y-981874	J27	J	H4	Antarctica
37	38497	Yamato 98187Y-981875	J27	J	H4	Antarctica
38	38498	Yamato 98187Y-981876	J27	J	H4	Antarctica
39	38499	Yamato 98187Y-981877	J27	J	H4	Antarctica
40	38501	Yamato 98187Y-981879	J27	J	H4	Antarctica
41	38502	Yamato 98188 Y-981880	J27	J	H4	Antarctica
42	38504	Yamato 98188 Y-981882	J27	J	H5	Antarctica
43	38517	Yamato 9818(Y-981895	J27	J	H5	Antarctica
44	38521	Yamato 9818(Y-981899	J27	J	L6	Antarctica
45	38524	Yamato 9819(Y-981902	J27	J	H5	Antarctica
46	38525	Yamato 9819(Y-981903	J27	J	H4	Antarctica
47	38535	Yamato 98191Y-981913	J27	J	H6	Antarctica
48	38539	Yamato 98191Y-981917	J27	J	H6	Antarctica
49	38540	Yamato 98191Y-981918	.127	J	H6	Antarctica
50	38541	Yamato 98191Y-981919	.127	J.	H6	Antarctica
51	38542	Yamato 9819; Y-981920	.127	J	H6	Antarctica
52	38572	Yamato 9819/ V-981950	127	U U	116	Antarctica
53	38581	Yamato 9810/ V_081050	.127	.1	H4	Antarctica
54	38583	Vamato 98106V_081061	127	I	He	Antarctica
55	38584	Vamato 08106V 081062	127	1	HS	Antarctica
56	38587	Vamato 08106V 081065	127	1	НБ	
57	38599	Vamato 0210(V 021066	127	J		Antarctica
58	30500	Vamato 0810(V 081067	127	J	∏4 ⊔£	Antarctica
59	20509	Vamata 0910 V 091070	127	J		Antarctica
60	30392	Tamato 9019/1-9019/0	JZ1	J	Π4	Antarctica

1						
2						
3	38594	Yamato 98197Y-981972	J27	J	L4	Antarctica
4	38609	Yamato 98198Y-981987	J27	J	H5	Antarctica
5	38614	Yamato 98199Y-981992	J27	J	L3	Antarctica
6	38629	Yamato 9820(Y-982007	J27	J	H5	Antarctica
7	38630	Yamato 9820(Y-982008	J27	J	L6	Antarctica
8	38631	Yamato 9820(Y-982009	J27	J	H4	Antarctica
9	38632	Yamato 98201Y-982010	J27	J	L4	Antarctica
10	38637	Yamato 98201Y-982015	J27	J	H4	Antarctica
11	38646	Yamato 98202Y-982024	J27	J	H4	Antarctica
12	38651	Yamato 98202Y-982029	J27	J	H4	Antarctica
13	38652	Yamato 9820: Y-982030	J27	J	H4	Antarctica
14	38654	Yamato 9820: Y-982032	J27	J	H4	Antarctica
15	38657	Yamato 9820: Y-982035	J27	J	H5	Antarctica
10	38658	Yamato 9820: Y-982036	J27	J	H6	Antarctica
17	38663	Yamato 98204 Y-982041	.127	.	H3	Antarctica
10	38669	Yamato 98204 Y-982047	.127	J	H4	Antarctica
19	38670	Vamato 9820/ V-982048	127	1	H4	Antarctica
20	38671	Vamato 0820/ V 0820/0	127	J		Antarctica
21	38672	Vamato 98204 V 982050	127	1	H5	Antarctica
22	39677	Vamato 08206 V 082055	127	J		Antarctica
23	39679	Vamato 0820(V 082055	JZ7	J		Antarctica
25	29670	Vamata 0820(V 082057	JZ7	J	114 LI4	Antarctica
26	30079	Yamata 08201 Y 082057	JZ7	J		Antarctica
27	38080	Yamato 98201 Y 982058	J27	J		Antarctica
28	38081	Yamato 9820t Y-982059	J27	J		Antarctica
29	38682	Yamato 9820t Y-982060	J27	J	HS	Antarctica
30	38683	Yamato 9820t Y-982061	J27	J	HS	Antarctica
31	38686	Yamato 9820t Y-982064	J27	J	H4	Antarctica
32	38687	Yamato 9820t Y-982065	J27	J	H4	Antarctica
33	38688	Yamato 98208 Y-982066	J27	J	H4	Antarctica
34	38694	Yamato 98207Y-982072	J27	J	H5	Antarctica
35	38695	Yamato 98207Y-982073	J27	J	H5	Antarctica
36	38709	Yamato 98208 Y-982087	J27	J	H3	Antarctica
37	38711	Yamato 98208 Y-982089	J27	J	H5	Antarctica
38	38712	Yamato 9820§Y-982090	J27	J	H5	Antarctica
39	38714	Yamato 9820§Y-982092	J27	J	H4	Antarctica
40	38716	Yamato 9820(Y-982094	J27	J	H4	Antarctica
41	38717	Yamato 9820(Y-982095	J27	J	L5	Antarctica
42	38718	Yamato 9820(Y-982096	J27	J	H5	Antarctica
43	38722	Yamato 9821(Y-982100	J27	J	H4	Antarctica
44	38738	Yamato 98211Y-982116	J27	J	H5	Antarctica
45	38740	Yamato 98211Y-982118	J27	J	L6	Antarctica
46	38746	Yamato 98212Y-982124	J27	J	H4	Antarctica
47	38749	Yamato 98212Y-982127	J27	J	H4	Antarctica
48	38750	Yamato 98212Y-982128	J27	J	H4	Antarctica
49	38751	Yamato 98212Y-982129	J27	J	H4	Antarctica
50	38753	Yamato 9821: Y-982131	J27	J	H5	Antarctica
51	38764	Yamato 98214Y-982142	J27	J	Winonaite	Antarctica
52	38773	Yamato 98215Y-982151	J27	J	L6	Antarctica
53 E4	38774	Yamato 98215Y-982152	J27	J	H6	Antarctica
54 57	38776	Yamato 98215Y-982154	J27	J	H4	Antarctica
55 56	38780	Yamato 9821{Y-982158	J27	J	H5	Antarctica
50 57	38783	Yamato 9821(Y-982161	J27	J	H4	Antarctica
50	38784	Yamato 9821(Y-982162	J27	J	H6	Antarctica
50 50	38787	Yamato 9821(Y-982165	J27	J	H6	Antarctica
60	38803	Yamato 98218 Y-982181	J27	J	L6	Antarctica
00				-		

Runn	ina	Head
num	шy	neau

Page	390	of	686
ruge	5,00	U.	000

2						
3	38808	Yamato 98218Y-982186	J27	J	H4	Antarctica
4	38839	Yamato 98221Y-982217	J27	J	H5	Antarctica
5	38840	Yamato 98221Y-982218	J27	J	H5	Antarctica
6	38841	Yamato 98221Y-982219	J27	J	H5	Antarctica
7	38849	Yamato 98222 Y-982227	J27	J	L6	Antarctica
8	38850	Yamato 98222 Y-982228	J27	J	H6	Antarctica
9	38877	Yamato 98225 Y-982255	.127		H3	Antarctica
10	38878	Vamato 0822/ V_082256	127	1	Не	Antarctica
11	38881	Vamato 08221 V 082250	127	1	H5	Antarctica
12	20001	Vamata 0822(1-902259	127	J		Antarctica
13	20002	Vamata 0822(1-902200	JZ7	J	Π 4 Ц4	Antarctica
14	30003		JZ7	J	□ 4	Antarctica
15	38886	Yamato 9822t Y-982264	J27	J	H4	Antarctica
16	38887	Yamato 9822t Y-982265	J27	J	H4	Antarctica
17	38888	Yamato 9822€Y-982266	J27	J	H4	Antarctica
18	38891	Yamato 9822(Y-982269	J27	J	H4	Antarctica
19	38892	Yamato 98227Y-982270	J27	J	H4	Antarctica
20	38896	Yamato 98227Y-982274	J27	J	H3	Antarctica
21	38897	Yamato 98227 Y-982275	J27	J	H6	Antarctica
22	38899	Yamato 98227 Y-982277	J27	J	H5	Antarctica
23	38906	Yamato 98228Y-982284	J27	J	H6	Antarctica
24	38919	Yamato 9822(Y-982297	J27	J	L6	Antarctica
25	38920	Yamato 9822(Y-982298	J27	J	L6	Antarctica
26	38923	Yamato 9823(Y-982301	.127	J	H5	Antarctica
27	38935	Yamato 98231Y-982313	.127	.	H6	Antarctica
28	38936	Yamato 98231Y-982314	127	J	H4	Antarctica
29	38038	Vamato 98231V-982316	127	1	H5	Antarctica
30	20044	Vamata 09221 V 092222	127	J		Antarctica
31	30944	Yamata 00222 1-902322	JZ7	J		Antarctica
32	38948	Yamata 00000 X 000007	JZ7	J		Antarctica
33	38949		J27	J	HS	Antarctica
34	38950	Yamato 98232 Y-982328	J27	J	H5	Antarctica
35	38952	Yamato 9823: Y-982330	J27	J	H5	Antarctica
36	38953	Yamato 9823: Y-982331	J27	J	H4	Antarctica
37	38954	Yamato 9823: Y-982332	J27	J	H5	Antarctica
38	38961	Yamato 9823: Y-982339	J27	J	H5	Antarctica
39	38962	Yamato 98234Y-982340	J27	J	H4	Antarctica
40	38963	Yamato 98234Y-982341	J27	J	H4	Antarctica
41	38968	Yamato 98234Y-982346	J27	J	H6	Antarctica
42	38969	Yamato 98234Y-982347	J27	J	H6	Antarctica
43	38984	Yamato 9823(Y-982362	J27	J	L6	Antarctica
44	38992	Yamato 98237Y-982370	J27	J	H6	Antarctica
45	39013	Yamato 9823(Y-982391	J27	J	H6	Antarctica
46	39026	Yamato 9824(Y-982404	J27	J	H6	Antarctica
47	39034	Yamato 98241Y-982412	.127		H5	Antarctica
48	39042	Yamato 9824: Y-982420	.127		H6	Antarctica
49	30053	Vamato 082421 002420	127	1	Не	Antarctica
50	30062	Vamato 0824/V 082440	127	3		Antarctica
51	39002	Vamata 0824-1-962440	JZ7	J		Antarctica
52	39096	Yamata 0004()/ 000404	JZ7	J		Antarctica
53	39103	Tamato 98248 Y-982481	J27	J	сп	Antarctica
54	39139	ramato 98251 Y-98251/	J27	J	LS	Antarctica
55	39143	Yamato 98252 Y-982521	J27	J	L6	Antarctica
56	39147	Yamato 98252 Y-982525	J27	J	L6	Antarctica
57	39150	Yamato 98252Y-982528	J27	J	L6	Antarctica
58	39151	Yamato 98252Y-982529	J27	J	LL6	Antarctica
59	39153	Yamato 9825: Y-982531	J27	J	H4	Antarctica
60	39154	Yamato 9825: Y-982532	J27	J	L5	Antarctica

1						
2						
3	39156	Yamato 9825: Y-982534	J27	J	LL6	Antarctica
4	39157	Yamato 9825: Y-982535	J27	J	H5	Antarctica
5	39180	Yamato 9825{ Y-982558	J27	J	LL6	Antarctica
6	39188	Yamato 9825(Y-982566	J27	J	H6	Antarctica
7	39191	Yamato 9825(Y-982569	J27	J	LL6	Antarctica
8	39192	Yamato 98257Y-982570	J27	J	LL6	Antarctica
9	39201	Yamato 98257Y-982579	J27	J	L6	Antarctica
10	39202	Yamato 98258 Y-982580	J27	J	L5	Antarctica
11	39203	Yamato 98258 Y-982581	J27	J	L5	Antarctica
12	39205	Yamato 98258 Y-982583	J27	J	L5	Antarctica
13	39227	Yamato 9826(Y-982605	J27	J	L6	Antarctica
14	39228	Yamato 9826(Y-982606	J27	J	H6	Antarctica
15	39232	Yamato 98261Y-982610	J27	J	H6	Antarctica
10	39238	Yamato 98261Y-982616	J27	J	H6	Antarctica
17	39253	Yamato 9826; Y-982631	.127	J	116	Antarctica
10	39254	Yamato 9826; Y-982632	.127	J	116	Antarctica
20	39255	Yamato 9826; Y-982633	.127		116	Antarctica
20	39356	Yamato 9827: Y-982734	.127		H6	Antarctica
27	39358	Yamato 9827: Y-982736	.127		H6	Antarctica
23	39722	Yamato 9831(Y-983100	127	1	16	Antarctica
24	39756	Yamato 9831:Y-983134	.127	.1	H6	Antarctica
25	39757	Vamato 9831 V-983135	127	1	Н6	Antarctica
26	30758	Vamato 9831: V-983136	127	1	Не	Antarctica
27	30882	Vamato 98326 V-983260	127	1	CO3	Antarctica
28	30886	Vamato 08326 V 083264	127	1	Н6	Antarctica
29	40046	Vamato 08341V 083424	127	1	16	Antarctica
30	40040	Vamato 08347V 083477	127	5		Antarctica
31	40099	Vamata 0824(V 082406	JZ7	J		Antarctica
32	40110	Vamata 0925/V 092547	JZ7	J		Antarctica
33	40109	Vamata 08205V 082078	JZ7	J		Antarctica
34	40090	Yamata 00021V 000211	JZ7	J		Antarctica
35	41076	Yamate 0003 F-0003 F	JZ7	J	IION, INAD	Antarctica
36	41244	Yamato 00047Y-000479	JZ7	J	Iron, IAB-ung	Antarctica
37	41302	Yamato 0005; Y-000537	JZ7	J	Iron, IAB-ung	Antarctica
38	41312	Yamato 00054 Y-000547	J27	J	Iron, IAB-ung	Antarctica
39	41352	Yamato 00058 Y-000587	J27	J	Iron, IAB-ung	Antarctica
40	41467	Yamato 0007(Y-000703	J27	J	Iron, IIIAB	Antarctica
41	41608	Yamato 00084 Y-000846	J27	J	Iron, IAB-ung	Antarctica
42	72711	Yazd 003			L6	Iran
43	72346	Zhengjiabu			H5	China
44	71596	Zhob			H3-4	Pakistan
45	72517	Zinder 003			Eucrite-melt b	Niger
40						

3	db state	db approved	db modified	db reason	tbl stateco	tbl origin	tbl purchplac
4	Tamanghasse	2020-11-01	0000-00-00	-	Tamanghasse	Desert	Moroccan Dea
5	Adrar	2020-11-28	0000-00-00		Adrar		
6	Adrar	2020-11-28	0000-00-00		Adrar		
7	Adrar	2020-11-28	0000-00-00		Adrar		
8	Adrar	2020-11-28	0000-00-00		Adrar		
9	Adrar	2020-11-28	0000-00-00		Adrar		
10	Adrar	2020-11-28	0000-00-00		Adrar		
11	Adrar	2020-11-28	0000-00-00		Adrar		
12	Adrar	2020-11-28	0000-00-00		Adrar		
13	South	2020-12-09	0000-00-00		South		
14	Couli	2020-05-09	0000-00-00		oodan	Lahmada Lha	
15		2020-00-00	0000-00-00			Edimidida Eba	
16		2020-01-01	0000-00-00				
17		2020-03-20					
18	Auckland	2020-03-20			Auckland	Ellorelio Auck	Auckland
19	Auckianu	2020-11-22	0000-00-00		Auckianu	Ellerslie, Auck	Zagora
20	South	2020-02-09	0000-00-00		South		Zagora
21	Soun Daia California	2020-11-02	0000-00-00		Soun Daia Califamai	The final least	
22	Baja California	2020-07-04	0000-00-00		Baja California	i ne find locati	
23	North-Eastern	2020-08-02	0000-00-00		North-Eastern		
24	vvestern Austr	2020-12-16	0000-00-00		vvestern Aust	r Cue Shire	
25	Xinjiang	2020-05-23	0000-00-00		Xinjiang	desert	
20	Nei Mongol	2020-11-19	0000-00-00		Nei Mongol	desert	
27	Nevada	2020-01-31	0000-00-00		Nevada	drylake	
20	Nevada	2020-01-31	0000-00-00		Nevada	drylake	
30	Nevada	2020-01-31	0000-00-00		Nevada	playa	
31	Baden-Wurtte	2020-07-07	0000-00-00		Baden-Wurtte	Private garder	
32	Khorasan	2020-03-28	0000-00-00		Khorasan	desertic surface	
32	Antofagasta	2020-01-01	0000-00-00		Antofagasta	Limestone pla	
34	Antofagasta	2020-01-01	0000-00-00		Antofagasta	Limestone pla	
35	Antofagasta	2020-01-10	0000-00-00		Antofagasta		
36	Antofagasta	2020-01-10	000-00-00		Antofagasta		
37	Antofagasta	2020-01-28	000-00-00		Antofagasta		
38	Antofagasta	2020-01-31	000-00-00		Antofagasta		
39	Antofagasta	2020-01-31	0000-00-00		Antofagasta		
40	Antofagasta	2020-02-12	0000-00-00		Antofagasta		
41	Antofagasta	2020-02-17	0000-00-00		Antofagasta		
42	Antofagasta	2020-01-31	0000-00-00		Antofagasta	limestone defl	
43	Antofagasta	2020-01-31	0000-00-00		Antofagasta	limestone defl	
44	Antofagasta	2020-02-23	0000-00-00		Antofagasta	limestone defl	
45	Antofagasta	2020-02-23	0000-00-00		Antofagasta	limestone defl	
46	Antofagasta	2020-02-23	0000-00-00		Antofagasta		
47	Antofagasta	2020-03-10	0000-00-00		Antofagasta		
48	Antofagasta	2020-03-07	0000-00-00		Antofagasta		
49	Antofagasta	2020-03-07	0000-00-00		Antofagasta		
50	Antofagasta	2020-05-09	0000-00-00		Antofagasta	Limestone def	
51	Antofagasta	2020-03-21	0000-00-00		Antofagasta		
52	Antofagasta	2020-04-18	0000-00-00		Antofagasta		
53	Antofagasta	2020-06-13	0000-00-00		Antofagasta		
54	Antofagasta	2020-06-13	0000-00-00		Antofanaeta		
55	Antofagasta	2020-06-73	0000-00-00		Antofacaeta		
56	Antofagasta	2020-06-27	0000-00-00		Antofagasta		
57	Antofagasta	2020-06-27			Antofagasta		
58	Antofagasta	2020-00-27			Antofagasta		
59	Antofagasta	2020-00-27			Antofogoata		
60	Antolayasid	2020-11-11	0000-00-00		milliayasid		

1					
2					
3	Antofagasta	2020-06-27	0000-00-00		Antofagasta
4	Antofagasta	2020-06-27	0000-00-00		Antofagasta
5	Antofagasta	2020-06-27	0000-00-00		Antofagasta
6	Antofagasta	2020-06-27	0000-00-00		Antofagasta
7	Antofagasta	2020-07-03	0000-00-00		Antofagasta
8	Antofagasta	2020-07-03	0000-00-00		Antofagasta
9	Antofagasta	2020-08-02	0000-00-00		Antofagasta
10	Antofagasta	2020-08-02	0000-00-00		Antofagasta
11	Antofagasta	2020-08-02	0000-00-00		Antofagasta
12	Antofagasta	2020-08-02	0000-00-00		Antofagasta
13	Antofagasta	2020-08-02	0000-00-00		Antofagasta
14	Antofagasta	2020-08-02	0000-00-00		Antofagasta
15	Antofagasta	2020-00-05	0000-00-00		Antofagasta
16	Antofagasta	2020-00-00	0000-00-00		Antofagasta
17	Antofagasta	2020-00-05	0000-00-00		Antofagasta
18	Antofagasta	2020-00-05	0000-00-00		Antofagasta
19	Antofagasta	2020-09-05			Antofagasta
20	Antofagasta	2020-09-05	0000-00-00		Antofagasta
21	Antofagasta	2020-09-05	0000-00-00		Antofogoata
22	Antofagasta	2020-09-19	0000-00-00		Antofagasta
23	Antolagasta	2020-09-28	0000-00-00		Antolagasta
24	Antolagasta	2020-09-19	0000-00-00		Antolagasta
25	Antoragasta	2020-10-10	0000-00-00		Antofagasta
20	Antofagasta	2020-10-10	0000-00-00		Antofagasta
27	Antofagasta	2020-10-10	0000-00-00		Antofagasta
20	Antofagasta	2020-10-10	0000-00-00		Antofagasta
30	Antofagasta	2020-11-11	0000-00-00		Antofagasta
31	Antofagasta	2020-11-11	0000-00-00		Antofagasta
32	Antofagasta	2020-11-11	0000-00-00		Antofagasta
33	Antofagasta	2020-11-11	0000-00-00		Antofagasta
34	Antofagasta	2020-11-11	0000-00-00		Antofagasta
35	Antofagasta	2020-11-28	0000-00-00		Antofagasta
36	Antofagasta	2020-11-28	0000-00-00		Antofagasta
37	Antofagasta	2020-11-28	0000-00-00		Antofagasta
38	Antofagasta	2020-11-28	0000-00-00		Antofagasta
39	Antofagasta	2020-11-28	0000-00-00		Antofagasta
40	Antofagasta	2020-11-28	0000-00-00		Antofagasta
41	Antofagasta	2020-11-28	0000-00-00		Antofagasta
42	Antofagasta	2020-02-05	0000-00-00		Antofagasta
43	Antofagasta	2020-02-05	0000-00-00		Antofagasta
44	Antofagasta	2020-02-05	0000-00-00		Antofagasta
45	Antofagasta	2020-02-05	0000-00-00		Antofagasta
46	Antofagasta	2020-02-05	0000-00-00		Antofagasta
47	Antofagasta	2020-02-23	0000-00-00		Antofagasta
48	Antofagasta	2020-02-23	0000-00-00		Antofagasta
49	Antofagasta	2020-02-23	0000-00-00		Antofagasta
50	Antofagasta	2020-02-23	0000-00-00		Antofagasta
51	Antofagasta	2020-02-20	0000-00-00		Antofagasta
52	Antofagasta	2020-00-21	0000-00-00		Antofagasta
53	Antofagasta	2020-10-10	0000-00-00		Antofagasta
54	Antofagasta	2020-10-10			Antofagasta
55	Antofagasta	2020-10-10			Antofagaata
56	Antofagasta	2020-10-10	2021 04 25	rooloopified as	Antofogoata
57	Antofagasta	2020-01-31	2021-04-25	reclassified as	Antofagasta
58	Antofagasta	2020-02-12	0000-00-00		Antolagasta
59	Antofagasta	2020-06-27	0000-00-00		Antolagasta
60	Antofagasta	2020-06-27	0000-00-00		Antofagasta

1					
2					
3	Antofagasta	2020-11-02	0000-00-00	Antofagasta	
4	Antofagasta	2020-11-14	0000-00-00	Antofagasta	
5	Western Aust	r 2020-11-28	0000-00-00	Western Aust	r
6	Colorado	2020-04-05	0000-00-00	Colorado	
7	Antofagasta	2020-01-31	000-00-00	Antofagasta	
8	Antofagasta	2020-01-31	000-00-00	Antofagasta	
9	Antofagasta	2020-01-31	000-00-00	Antofagasta	
10	Antofagasta	2020-01-31	000-00-00	Antofagasta	
11	Antofagasta	2020-01-31	000-00-00	Antofagasta	
12	Antofagasta	2020-01-31	000-00-00	Antofagasta	
13	Antofagasta	2020-01-31	0000-00-00	Antofagasta	
14	Antofagasta	2020-06-27	000-00-00	Antofagasta	
15	Antofagasta	2020-06-27	0000-00-00	Antofagasta	
17	Antofagasta	2020-11-01	0000-00-00	Antofagasta	
12	Antofagasta	2020-11-01	0000-00-00	Antofagasta	
10	Antofagasta	2020-11-01	0000-00-00	Antofagasta	
20	Antofagasta	2020-11-01	0000-00-00	Antofagasta	
20	Antofagasta	2020-11-01	0000-00-00	Antofagasta	
22	Antofagasta	2020-11-01	0000-00-00	Antofagasta	
23	Antofagasta	2020-11-01	0000-00-00	Antofagasta	
24	Emilia-Romac	2020-09-05	0000-00-00	Emilia-Romac	Gravel
25	Antofagasta	2020-01-10	0000-00-00	Antofagasta	goravor
26	Antofagasta	2020-01-10	0000-00-00	Antofagasta	
27	Antofagasta	2020-01-10	0000-00-00	Antofagasta	
28	Antofagasta	2020-01-10		Antofagasta	Decort
29	Antofagasta	2020-04-05		Antofagasta	Desert
30	Antofagasta	2020-01-20		Antofagasta	
31	Antofagasta	2020-01-20	0000-00-00	Antofagasta	
32	Antofagasta	2020-04-05	0000-00-00	Antofagasta	
33	Antofagasta	2020-01-31	0000-00-00	Antofagasta	
34	Antofagasta	2020-02-12	0000-00-00	Antofagasta	
35	Antolagasta	2020-02-23	0000-00-00	Antofagasta	
36	Antolagasta	2020-02-23	0000-00-00	Antolagasta	
37	Antofagasta	2020-02-23	0000-00-00	Antofagasta	
38	Antofagasta	2020-02-23	0000-00-00	Antofagasta	
39	Antofagasta	2020-02-23	0000-00-00	Antofagasta	
40	Antofagasta	2020-02-23	0000-00-00	Antofagasta	
41	Antofagasta	2020-02-23	0000-00-00	Antofagasta	
42	Antofagasta	2020-02-23	0000-00-00	Antofagasta	
43	Antofagasta	2020-03-07	0000-00-00	Antofagasta	
44	Antofagasta	2020-03-21	0000-00-00	Antofagasta	
45	Antofagasta	2020-03-21	0000-00-00	Antofagasta	
46	Antofagasta	2020-03-21	0000-00-00	Antofagasta	
47	Antofagasta	2020-03-28	0000-00-00	Antofagasta	
40	Antofagasta	2020-03-28	0000-00-00	Antofagasta	
49 50	Antofagasta	2020-04-05	0000-00-00	Antofagasta	
50	Antofagasta	2020-04-05	0000-00-00	Antofagasta	
52	Antofagasta	2020-04-05	0000-00-00	Antofagasta	
53	Antofagasta	2020-06-13	0000-00-00	Antofagasta	
54	Antofagasta	2020-06-27	0000-00-00	Antofagasta	
55	Antofagasta	2020-11-01	000-00-00	Antofagasta	plain
56	Antofagasta	2020-07-03	000-00-00	Antofagasta	
57	Antofagasta	2020-07-03	000-00-00	Antofagasta	
58	Antofagasta	2020-08-02	000-00-00	Antofagasta	
59	Antofagasta	2020-08-02	000-00-00	Antofagasta	
60	Antofagasta	2020-09-05	0000-00-00	Antofagasta	

2					
3	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
4	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
5	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
6	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
/	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
8	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
9	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
10	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
17	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
12	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
14	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
15	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
16	Antofagasta	2020-09-05	0000-00-00	Antofagasta	
17	Antofagasta	2020-09-19	0000-00-00	Antofagasta	
18	Antofagasta	2020-09-19	0000-00-00	Antofagasta	
19	Antofagasta	2020-09-19	0000-00-00	Antofagasta	
20	Antofagasta	2020-09-19	0000-00-00	Antofagasta	
21	Antofagasta	2020-09-19	0000-00-00	Antofagasta	
22	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
23	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
24	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
25	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
26	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
27	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
28	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
29	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
30	Antofagasta	2020-10-10	0000-00-00	Antofagasta	
31	Antofagasta	2020-11-11	0000-00-00	Antofagasta	
32	Antofagasta	2020-11-11	0000-00-00	Antofagasta	
33	Antofagasta	2020-11-11	0000-00-00	Antofagasta	
34 25	Antofagasta	2020-11-11	0000-00-00	Antofagasta	
36	Antofagasta	2020-11-11	0000-00-00	Antofagasta	
37	Antofagasta	2020-11-11	0000-00-00	Antofagasta	
38	Saguia el Har	1 2020-02-17	0000-00-00	Saguia el Har	ז
39	Saguia el Har	1 2020-08-02	0000-00-00	Saguia el Har	1
40	Saguia el Har	1 2020-11-02	0000-00-00	Saguia el Har	r i
41	California	2020-01-31	0000-00-00	California	saddle
42	Antofagasta	2020-09-19	0000-00-00	Antofagasta	
43	Antofagasta	2020-09-19	0000-00-00	Antofagasta	
44	Nevada	2020-01-31	0000-00-00	Nevada	drylake
45	Nevada	2020-01-31	0000-00-00	Nevada	drylake
46	Khorasan	2020-07-18	0000-00-00	Khorasan	desertic surfac
47		2020-02-21	0000-00-00		
48		2020-02-21	0000-00-00		
49	Zufar	2020-02-09	0000-00-00	Zufar	
50	Zufar	2020-02-16	0000-00-00	Zufar	
51	Zufar	2020-03-07	0000-00-00	Zufar	
52	Zufar	2020-06-14	0000-00-00	Zufar	
53	Zufar	2020-06-14	0000-00-00	Zufar	
54	Zufar	2020-07-03	0000-00-00	Zufar	
55	Zufar	2020-06-14	0000-00-00	Zufar	
56	Zufar	2020-07-19	0000-00-00	Zufar	Desert
5/		2020-02-21	0000-00-00		20001
50 50		2020-02-21	0000-00-00		
59 60		2020-02-21	0000-00-00		
00					

Guelmim Morocco Zagora, Moroc 0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

1 ว		
2		2020-02-21
4		2020-02-21
5		2020-02-21
6	Qinghai	2020-12-21
7	Qinghai	2020-09-05
8	Tiris Zemmou	2020-07-18
9	Antofagasta	2020-01-31
10	Antofagasta	2020-01-31
11	Antofagasta	2020-01-31
12	Antofagasta	2020-01-31
13	Antofagasta	2020-01-31
14 15	Antofagasta	2020-01-31
15	Antofagasta	2020-01-31
10 17	Antofagasta	2020-01-31
18	Antofagasta	2020-01-31
19	Antofagasta	2020-01-31
20	Antofagasta	2020-01-31
21	Antofagasta	2020-01-31
22	Antofagasta	2020-01-31
23	Antofagasta	2020-01-31
24	Antofagasta	2020-01-31
25	Antofagasta	2020-01-31
26	Antofagasta	2020-01-31
27	Antofagasta	2020-01-31
28	Antofagasta	2020-01-31
29	Antofagasta	2020-01-31
30	Antofagasta	2020-01-31
31	Antofagasta	2020-02-09
32	Antofagasta	2020-01-31
33	Antofagasta	2020-02-12
34 25	Antofagasta	2020-02-12
35 26	Antofagasta	2020-03-28
30	Antofagasta	2020-03-28
38	Antofagasta	2020-03-28
39	Antofagasta	2020-06-27
40	Antofagasta	2020-06-27
41	Antofagasta	2020-06-27
42	Antofagasta	2020-06-27
43	Antofagasta	2020-06-27
44	Antofagasta	2020-06-27
45	Antofagasta	2020-06-27
46	Antofagasta	2020-06-27
47	Antofagasta	2020-09-05
48	Antofagasta	2020-09-05
49	Antofagasta	2020-09-05
50	Antofagasta	2020-11-01
51	Antofagasta	2020-11-14
52	Antofagasta	2020-11-14
53	Antofagasta	2020-11-14
54	0	2020-02-21
55 56		2020-02-21
50 57		2020-02-21
58		2020-02-21
59		2020-02-21
60		2020-02-21
~~		

Qinghai desert Qinghai Tiris Zemmoui Imourene Antofagasta Antofagasta
1	
2	
3	
4	
5	
6	
7	
8	
9	
1	(
1	
1	
1	
1	
1	1
1	(
1	
1	
1	•
2	(
2	
2	
2	
2	
2	
2	(
2	
2	
2	
3	(
3	
3	•
3	
3	
3	
3	(
3	•

2			
3	2020-02-21	0000-00-00	
4	2020-02-21	0000-00-00	
5	2020-02-21	0000-00-00	
б	2020-02-21	0000-00-00	
7	2020-02-21	0000-00-00	
8	2020-02-21	0000-00-00	
9	2020-02-21	0000-00-00	
10	2020-02-21	0000-00-00	
11	2020-02-21	0000-00-00	
12	2020-02-21	0000-00-00	
13	2020-02-21	0000-00-00	
14	2020-02-21	0000-00-00	
15	2020-02-21	0000-00-00	
10 17	2020-02-21	0000-00-00	
1/ 10	2020-02-21	0000-00-00	
10	2020-02-21	0000-00-00	
20	2020-02-21	0000-00-00	
20 21	2020 02 21	0000-00-00	
21 22	2020-02-21	0000-00-00	
22	2020-02-21		
23	2020-02-21		
25	2020-02-21		
26	2020-02-21		
27	2020-02-21	0000-00-00	
28	2020-02-21	0000-00-00	
29	2020-02-21		
30	2020-02-21	0000-00-00	
31	2020-02-21	0000-00-00	
32	2020-02-21	0000-00-00	
33	2020-02-21	0000-00-00	
34	2020-02-21	0000-00-00	
35	2020-02-21	0000-00-00	
36	2020-02-21	0000-00-00	
37	2020-02-21	0000-00-00	
38	2020-02-21	0000-00-00	
39	2020-02-21	0000-00-00	
40	2020-02-21	0000-00-00	
41	2020-02-21	0000-00-00	
42 42	2020-02-21	0000-00-00	
43 44	2020-02-21	0000-00-00	
44 15	2020-02-21	0000-00-00	
45 46	2020-02-21	0000-00-00	
40 47	2020-02-21	0000-00-00	
48	2020-02-21	0000-00-00	
49	2020-02-21	0000-00-00	
50	2020-02-21	0000-00-00	
51	2020-02-21	0000-00-00	
52	2020-02-21	0000-00-00	
53	2020-02-21	0000-00-00	
54	2020-02-21	0000-00-00	
55	2020-02-21	0000-00-00	
56	2020-02-21	0000-00-00	
57	2020-02-21	0000-00-00	
58	2020-02-21	0000-00-00	
59	2020-02-21	0000-00-00	
60	2020-02-21	0000-00-00	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
2∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51 E2	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	

2020-02-21

2020-02-21

2020-02-21

0000-00-00

0000-00-00

0000-00-00

2020-02-21 0000-00-00

0000-00-00

2020-02-21

3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
ו כ ר ז	
52	
53	
54	
55	
56	
57	
58	
59	

	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020 02 21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21					
	2020-02-21					
	2020-02-21					
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
	2020-02-21	0000-00-00				
Nei Mongol	2020-05-23	0000-00-00		Nei Mongol	Steppe	Erenhot, Inner
Nei Mongol	2020-10-14	0000-00-00		Nei Mongol		
Adrar	2020-07-19	2020-08-09	Updated inform	Adrar		Morocco
Centre-South	2020-11-14	0000-00-00		Centre-South		

2 Schleswig-Hol 2020-02-05 0000-00-00 Schleswig-Hol Private garder South 2020-11-02 0000-00-00 Schleswig-Hol Private garder South 2020-11-11 0000-00-00 Kerman Agadir Kerman 2020-11-11 0000-00-00 Kerman Agadir Cinghai 2020-11-11 0000-00-00 Cinghai desert Cinghai 2020-11-19 0000-00-00 Cinghai desert Cinghai 2020-11-19 0000-00-00 Cinghai desert Cinghai 2020-11-19 0000-00-00 Cinghai desert Cinghai 2020-07-14 0000-00-00 Antaiya Sizang Cinghai Cinder 2020-07-18 0000-00-00 Antaiya Kizang Cinder Desert Moroccan Dez Chardaia 2020-02-21 0000-00-00 Zizang Zizo-02-21 Moroccan Dez Chardaia 2020-02-21 0000-00-00 Zizang Zizo-02-21 Moroccan Dez Chardaia 2020-02-21 0000-00-00	1							
3 Schleswig-Hol 2020-02-05 0000-00-00 Schleswig-Hol Private garder 5 Ghadamis 2020-02-09 0000-00-00 Kerman Agadir 6 Kerman 2020-11-11 0000-00-00 Kerman Cariginal Agadir 7 Kerman 2020-11-11 0000-00-00 Cariginal desert - 0 Cariginal 2020-11-19 0000-00-00 Cariginal desert - 10 Cariginal 2020-11-19 0000-00-00 Cariginal desert - 11 Cariginal 2020-07-14 0000-00-00 Antaya desert Libya 12 Caringal 2020-07-14 0000-00-00 Antaya dyrstreamber 13 Antaya 2020-07-14 0000-00-00 Xizarg Xizarg Xizarg Xizarg 14 Antaya 2020-02-21 0000-00-00 Xizarg Xizarg Xizarg Xizarg 15 Antaya 2020-02-21 0000-00-00 Xizarg Xizarg	2							
4 South 2020-01-09 Obool 000-00-00 Chadamis Agadir 6 Kerman 2020-11-11 0000-00-00 Kerman	3	Schleswig-Ho	2020-02-05	0000-00-00		Schleswig-Ho	olPrivate garde	r
5 Ghadamis 2020-02-09 0000-00-00 Kerman Agadir 7 Kerman 2020-11-11 0000-00-00 Kerman 9 Qinghai 2020-11-19 0000-00-00 Qinghai desert 10 Qinghai 2020-11-19 0000-00-00 Qinghai desert 11 Qinghai 2020-01-119 0000-00-00 Qinghai desert 12 Qinghai 2020-01-114 0000-00-00 Attaina desert 12 Qinghai 2020-01-14 0000-00-00 Attaina dy streambec 13 Avitan 2020-01-14 0000-00-00 Attaina dy streambec 14 Avitania 2020-10-10 0000-00-00 Xizang dy streambec 16 Attaina 2020-11-10 0000-00-00 Xizang dy streambec 18 Zinder 2020-02-11 0000-00-00 Xizang desert Moroccan Des 2020-02-21 0000-00-00 Xizang desert desert desert	4	South	2020-11-02	0000-00-00		South		
6 Kerman 2020.11.11 0000-00-00 Kerman 8 Qinghai 2020.11.11 0000-00-00 Qinghai desert 10 Qinghai 2020.11.11 0000-00-00 Qinghai desert 11 Qinghai 2020.11.11 0000-00-00 Qinghai desert 11 Qinghai 2020.11.11 0000-00-00 Qinghai desert 12 Qinghai 2020.01.11 0000-00-00 Qinghai desert 12 Qinghai 2020.01.01 0000-00-00 Antalya Moroccan Des 13 Zinder 2020.01.11 0000-00-00 Zitzang Desert Moroccan Des 14 Arizana 2020.02.11 0000-00-00 Zitzang Desert Moroccan Des 15 Zinder 2020.01.10 0000-00-00 Zitzang Desert Moroccan Des 16 Antalya 2020.02.21 0000-00-00 Zitzang Desert Moroccan Des 17 Zitzang 2020.02.21	5	Ghadamis	2020-02-09	0000-00-00		Ghadamis		Agadir
Rerman 2020-11-19 0000-00-00 Cinghai desert Qinghai 2020-11-19 0000-00-00 Qinghai desert Qinghai 2020-11-19 0000-00-00 Qinghai desert Qinghai 2020-11-19 0000-00-00 Qinghai desert Qinghai 2020-07-04 0000-00-00 Awari Libya Awbari 2020-07-18 0000-00-00 Awari Libya Awbari 2020-07-18 0000-00-00 Arizona dry streambec Awbari 2020-07-18 0000-00-00 Xizong dry streambec Awari 2020-07-11 0000-00-00 Xizong Desert Moroccan Dec Qindraia 2020-02-21 0000-00-00 Zinder Desert <td>6</td> <td>Kerman</td> <td>2020-11-11</td> <td>0000-00-00</td> <td></td> <td>Kerman</td> <td></td> <td></td>	6	Kerman	2020-11-11	0000-00-00		Kerman		
8 Oinghai 2020-11-19 0000-00-00 Oinghai desert 10 Oinghai 2020-11-19 0000-00-00 Oinghai desert 12 Oinghai 2020-11-19 0000-00-00 Oinghai desert 12 Oinghai 2020-11-19 0000-00-00 Central desert 13 Central 2020-07-08 0000-00-00 Arbaiya desert 14 Arbaiya 2020-07-18 0000-00-00 Arbaiya divstreambec 16 Antalya 2020-04-05 0000-00-00 Xizang divstreambec 17 Xizang 2020-10-10 0000-00-00 Xizang Desert Moroccan Des 18 Zinder 2020-02-21 0000-00-00 Xizang Desert Moroccan Des 21 2020-02-21 0000-00-00 Xizang Desert Moroccan Des 22 2020-02-21 0000-00-00 Xizang Zizang-22 Desert Moroccan Des 23 2020-02-21 0000-00-00	7	Kerman	2020-11-11	0000-00-00		Kerman		
9 Oinghai 2020-11-19 0000-00-00 Oinghai desert 11 Oinghai 2020-11-19 0000-00-00 Oinghai desert 12 Oinghai 2020-17-04 0000-00-00 Oinghai desert 13 Central 2020-07-04 0000-00-00 Awbari Libya 14 Awbari 2020-07-18 0000-00-00 Arizona dry streambec 16 Arizona 2020-07-18 0000-00-00 Xizang Uibya 17 Xizang 2020-10-14 0000-00-00 Xizang Esert Moroccan Des 19 Ghardaia 2020-02-21 0000-00-00 Zinder Desert Moroccan Des 21 2020-02-21 0000-00-00 Caraa Ghardaia 2020-02-21 Oono-00-00 22 2020-02-21 0000-00-00 Ghardaia 2020-02-21 000-00-00 Ghardaia 2020-02-21 000-00-00 Ghardaia 2020-02-21 000-00-00 Ghardaia 2020-02-21 0000-00-00 Ghardaia <td>8</td> <td>Qinghai</td> <td>2020-11-19</td> <td>0000-00-00</td> <td></td> <td>Qinghai</td> <td>desert</td> <td></td>	8	Qinghai	2020-11-19	0000-00-00		Qinghai	desert	
Image: 100 Outrophail Outrophail Outrophail desert Central 2020-11-19 0000-00-00 Central desert Central 2020-07-04 0000-00-00 Artabal Libya Artzona 2020-07-04 0000-00-00 Artzona dry streambec Artzona 2020-07-18 0000-00-00 Artzona dry streambec Antalya 2020-01-10 0000-00-00 Xizang Desert Moroccan Des Imder 2020-11-19 0200-00-00 Zinder Desert Moroccan Des Other 2020-02-21 0000-00-00 Zinder 2020-02-21 Noroccan Des 20 2020-02-21 0000-00-00 Zinder 2020-02-21 Noroccan Des 21 2020-02-21 0000-00-00 Zinder 2020-02-21 Noroccan Des 22 2020-02-21 0000-00-00 Zinder Zinder <tdz< td=""><td>9</td><td>Qinghai</td><td>2020-11-19</td><td>0000-00-00</td><td></td><td>Qinghai</td><td>desert</td><td></td></tdz<>	9	Qinghai	2020-11-19	0000-00-00		Qinghai	desert	
11 Cinghal 2020-11-19 0000-00-00 Cinghal desert 13 Central 2020-07-04 0000-00-00 Awbari Libya 14 Awbari 2020-07-18 0000-00-00 Awbari Libya 15 Arizona 2020-07-18 0000-00-00 Arizona dry streambec 16 Antalya 2020-10-14 0000-00-00 Xizang East 17 Xizang 2020-10-21 0000-00-00 Zinder Desert Moroccan Des 20 2020-02-21 0000-00-00 Zinder Desert Moroccan Des 21 2020-02-21 0000-00-00 Zinder Desert Moroccan Des 22 2020-02-21 0000-00-00 Zinder Zinder Zinder Zinder 22 2020-02-21 0000-00-00 Zinder Zinder <td>10</td> <td>Qinghai</td> <td>2020-11-19</td> <td>0000-00-00</td> <td></td> <td>Qinghai</td> <td>desert</td> <td></td>	10	Qinghai	2020-11-19	0000-00-00		Qinghai	desert	
12 Caraginal 2020-07-04 O000-00-00 Cartral Gatuto, Komb 14 Awbari 2020-07-05 0000-00-00 Awbari Libya 15 Arizona 2020-07-18 0000-00-00 Arizona diy streambec 16 Antalya 2020-04-05 0000-00-00 Xizona diy streambec 17 Xizang 2020-10-14 0000-00-00 Xizang Desert Moroccan Des 18 Zinder 2020-02-21 0000-00-00 Ziander Desert Moroccan Des 20 2020-02-21 0000-00-00 Ziander Zi20-02-21 000-00-00 21 2020-02-21 0000-00-00 Ziander Zi20-02-21 000-00-00 22 2020-02-21 0000-00-00 Ziander Zi20-02-21 000-00-00 23 2020-02-21 0000-00-00 Ziander Ziander Ziander 24 2020-02-21 0000-00-00 Ziander Ziander Ziander 25 2020-02-21 0000-00-00	11	Oinghai	2020-11-19	0000-00-00		Oinghai	desert	
13 Cantan Catalon -	12	Central	2020 07 04			Contral	Gatuto Komh	i i
14 Awaali 2020-03-00 0000-00-00 Awaali Luya 15 Antalya 2020-07-18 0000-00-00 Antalya dry streambec 16 Antalya 2020-07-18 0000-00-00 Antalya dry streambec 17 Xizang 2020-10-10 0000-00-00 Xizang Desert Moroccan Des 19 Ghardaia 2020-02-21 0000-00-00 Zinder Desert Moroccan Des 20 2020-02-21 0000-00-00 Zinder 2020-02-21 000-00-00 21 2020-02-21 0000-00-00 Zinder Zinder Zinder 2020-02-21 0000-00-00 Zinder Zinde	13	Awbari	2020-07-04			Awbari	Galulo, Rome	, Libya
15 Antabila 2020-01-16 0000-00-00 Antabila Offset antable 16 Antabilya 2020-01-01 0000-00-00 Xizang 18 Zinder 2020-10-10 0000-00-00 Xizang 19 Ghardaia 2020-02-21 0000-00-00 Zinder Desert Moroccan Des 201 2020-02-21 0000-00-00 Zinder Desert Moroccan Des 21 2020-02-21 0000-00-00 Zinder Desert Moroccan Des 22 2020-02-21 0000-00-00 Zinder Desert Moroccan Des 23 2020-02-21 0000-00-00 Zinder Zinder Zinder Zinder 23 2020-02-21 0000-00-00 Zinder Zin	14	Avidan	2020-09-05	0000-00-00		Awball	dructroombo	сюуа
Info Antalya Output-us Output-us Antalya IX Zizang 2020-10-10 0000-000 Zinder Desert Moroccan Der I9 Ghardaia 2020-10-10 0000-000 Zinder Desert Moroccan Der 19 Ghardaia 2020-12-21 0000-00-00 Zinder Desert Moroccan Der 21 2020-02-21 0000-00-00 Zinder Desert Moroccan Der 23 2020-02-21 0000-00-00 Zinder Zinder Zinder 24 2020-02-21 0000-00-00 Zinder Zinder Zinder 26 2020-02-21 0000-00-00 Zinder Zinder Zinder 26 2020-02-21 0000-00-00 Zinder Zinder Zinder 2020-02-21 0000-00-00 Zinder Zinder Zinder Zinder 2020-02-21 0000-00-00 Zinder Zinder Zinder Zinder 2020-02-21 0000-00-00 Zinder Zinder	15	Anzona	2020-07-16	0000-00-00		Anzona	dry streambed	
Nzang 2020-10-14 0000-00-00 Zinder Desert Moroccan Des 19 Ghardaia 2020-11-19 2020-12-21 Corrected ma: Ghardaia Ghardaia 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 Corrected ma: Ghardaia Sevent	16	Antaiya	2020-04-05	0000-00-00		Antalya		
18 Zinder 2020-10-10 0000-00-00 Zinder Desert Moroccan Des 19 Ghardaia 2020-12-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 20 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 21 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 22 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 24 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 25 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 26 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 30 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 31 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 32 2020-02-21 0000-00-00 Corrected ma: Ghardaia Corrected ma: Ghardaia 33 2020-02-21 00	17	Xizang	2020-10-14	0000-00-00		Xizang		
19 Ghardaia 2020-02-1 2000-12-21 Corrected mat Ghardaia 20 2020-02-21 0000-00-0 21 2020-02-21 0000-00-0 23 2020-02-21 0000-00-0 24 2020-02-21 0000-00-0 25 2020-02-21 0000-00-0 26 2020-02-21 0000-00-0 27 2020-02-21 0000-00-0 28 2020-02-21 0000-00-0 29 2020-02-21 0000-00-0 30 2020-02-21 0000-00-0 31 2020-02-21 0000-00-0 32 2020-02-21 0000-00-0 33 2020-02-21 0000-00-0 34 2020-02-21 0000-00-0 35 2020-02-21 0000-00-0 36 2020-02-21 0000-00-0 37 2020-02-21 0000-00-0 38 2020-02-21 0000-00-0 41 2020-02-21 0000-00-0 42 2020-02-21 0000-00-0	18	Zinder	2020-10-10	0000-00-00		Zinder	Desert	Moroccan Dea
20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 <td>19</td> <td>Ghardaia</td> <td>2020-11-19</td> <td>2020-12-21</td> <td>Corrected mas</td> <td>Ghardaia</td> <td></td> <td></td>	19	Ghardaia	2020-11-19	2020-12-21	Corrected mas	Ghardaia		
21 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 <td>20</td> <td></td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td> <td></td> <td></td> <td></td>	20		2020-02-21	0000-00-00				
22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 <td>21</td> <td></td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td> <td></td> <td></td> <td></td>	21		2020-02-21	0000-00-00				
23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 <td>22</td> <td></td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td> <td></td> <td></td> <td></td>	22		2020-02-21	0000-00-00				
24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 <td>23</td> <td></td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td> <td></td> <td></td> <td></td>	23		2020-02-21	0000-00-00				
25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 <td>24</td> <td></td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td> <td></td> <td></td> <td></td>	24		2020-02-21	0000-00-00				
26 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 <td>25</td> <td></td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td> <td></td> <td></td> <td></td>	25		2020-02-21	0000-00-00				
27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 <td>26</td> <td></td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td> <td></td> <td></td> <td></td>	26		2020-02-21	0000-00-00				
28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 <td>27</td> <td></td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td> <td></td> <td></td> <td></td>	27		2020-02-21	0000-00-00				
29 $2020.02.21$ $0000-00.00$ 30 $2020.02.21$ $0000-00.00$ 31 $2020.02.21$ $0000-00.00$ 33 $2020.02.21$ $0000-00.00$ 34 $2020.02.21$ $0000-00.00$ 35 $2020.02.21$ $0000-00.00$ 36 $2020.02.21$ $0000-00.00$ 37 $2020.02.21$ $0000-00.00$ 38 $2020.02.21$ $0000-00.00$ 39 $2020.02.21$ $0000-00.00$ 41 $2020.02.21$ $0000-00.00$ 42 $2020.02.21$ $0000-00.00$ 43 $2020.02.21$ $0000-00.00$ 44 $2020.02.21$ $0000-00.00$ 45 $2020.02.21$ $0000-00.00$ 46 $2020.02.21$ $0000-00.00$ 47 $2020.02.21$ $0000-00.00$ 48 $2020.02.21$ $0000-00.00$ 50 $2020.02.21$ $0000-00.00$ 51 $2020.02.21$ $0000-00.00$ 52 $2020.02.21$ $0000-00.00$ 53 $2020.02.21$ $0000-00.00$ 54 $2020.02.21$ $0000-00.00$ 55 $2020.02.21$ $0000-00.00$ 56 $2020.02.21$ $0000-00.00$ 57 $2020.02.21$ $0000-00.00$ 58 $2020.02.21$ $0000-00.00$ 59 $2020.02.21$ $0000-00.00$ 59 $2020.02.21$ $0000-00.00$ 59 $2020.02.21$ $0000-00.00$ 59 $2020.02.21$ $0000-00.00$	28		2020-02-21	0000-00-00				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29		2020-02-21	0000-00-00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30		2020-02-21	0000-00-00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31		2020-02-21	0000-00-00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32		2020-02-21	0000-00-00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33		2020 02 21	0000-00-00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34		2020-02-21	0000-00-00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35		2020-02-21					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36		2020-02-21					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37		2020-02-21					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38		2020-02-21	0000-00-00				
40 $2020-02-21$ $0000-00-00$ 41 $2020-02-21$ $0000-00-00$ 42 $2020-02-21$ $0000-00-00$ 43 $2020-02-21$ $0000-00-00$ 44 $2020-02-21$ $0000-00-00$ 45 $2020-02-21$ $0000-00-00$ 46 $2020-02-21$ $000-00-00$ 47 $2020-02-21$ $000-00-00$ 48 $2020-02-21$ $000-00-00$ 50 $2020-02-21$ $000-00-00$ 51 $2020-02-21$ $000-00-00$ 52 $2020-02-21$ $000-00-00$ 53 $2020-02-21$ $000-00-00$ 54 $2020-02-21$ $000-00-00$ 56 $2020-02-21$ $000-00-00$ 57 $2020-02-21$ $0000-00-00$ 58 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$	39		2020-02-21	0000-00-00				
41 $2020-02-21$ $0000-00-00$ 42 $2020-02-21$ $0000-00-00$ 43 $2020-02-21$ $0000-00-00$ 44 $2020-02-21$ $0000-00-00$ 45 $2020-02-21$ $0000-00-00$ 46 $2020-02-21$ $0000-00-00$ 47 $2020-02-21$ $0000-00-00$ 48 $2020-02-21$ $0000-00-00$ 49 $2020-02-21$ $0000-00-00$ 50 $2020-02-21$ $0000-00-00$ 51 $2020-02-21$ $0000-00-00$ 52 $2020-02-21$ $0000-00-00$ 53 $2020-02-21$ $0000-00-00$ 54 $2020-02-21$ $0000-00-00$ 56 $2020-02-21$ $0000-00-00$ 57 $2020-02-21$ $0000-00-00$ 58 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$	40		2020-02-21	0000-00-00				
42 $2020-02-21$ $0000-00-00$ 43 $2020-02-21$ $0000-00-00$ 44 $2020-02-21$ $0000-00-00$ 45 $2020-02-21$ $0000-00-00$ 46 $2020-02-21$ $0000-00-00$ 47 $2020-02-21$ $0000-00-00$ 48 $2020-02-21$ $0000-00-00$ 49 $2020-02-21$ $0000-00-00$ 50 $2020-02-21$ $0000-00-00$ 51 $2020-02-21$ $0000-00-00$ 52 $2020-02-21$ $0000-00-00$ 53 $2020-02-21$ $0000-00-00$ 54 $2020-02-21$ $0000-00-00$ 56 $2020-02-21$ $0000-00-00$ 57 $2020-02-21$ $0000-00-00$ 58 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 50 $2020-02-21$ $0000-00-00$	41		2020-02-21	0000-00-00				
43 $2020-02-21$ $0000-00-00$ 44 $2020-02-21$ $0000-00-00$ 45 $2020-02-21$ $0000-00-00$ 46 $2020-02-21$ $0000-00-00$ 47 $2020-02-21$ $0000-00-00$ 48 $2020-02-21$ $0000-00-00$ 49 $2020-02-21$ $0000-00-00$ 50 $2020-02-21$ $0000-00-00$ 51 $2020-02-21$ $0000-00-00$ 52 $2020-02-21$ $0000-00-00$ 53 $2020-02-21$ $0000-00-00$ 54 $2020-02-21$ $0000-00-00$ 56 $2020-02-21$ $0000-00-00$ 57 $2020-02-21$ $0000-00-00$ 58 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 60 $2020-02-21$ $0000-00-00$	42		2020-02-21	0000-00-00				
44 $2020-02-21$ $0000-00-00$ 45 $2020-02-21$ $0000-00-00$ 46 $2020-02-21$ $0000-00-00$ 47 $2020-02-21$ $0000-00-00$ 48 $2020-02-21$ $0000-00-00$ 49 $2020-02-21$ $0000-00-00$ 50 $2020-02-21$ $0000-00-00$ 51 $2020-02-21$ $0000-00-00$ 52 $2020-02-21$ $0000-00-00$ 53 $2020-02-21$ $0000-00-00$ 54 $2020-02-21$ $0000-00-00$ 56 $2020-02-21$ $0000-00-00$ 57 $2020-02-21$ $0000-00-00$ 58 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 60 $2020-02-21$ $0000-00-00$	43		2020-02-21	0000-00-00				
45 $2020-02-21$ $0000-00-00$ 46 $2020-02-21$ $0000-00-00$ 47 $2020-02-21$ $0000-00-00$ 48 $2020-02-21$ $0000-00-00$ 49 $2020-02-21$ $0000-00-00$ 50 $2020-02-21$ $0000-00-00$ 51 $2020-02-21$ $0000-00-00$ 52 $2020-02-21$ $0000-00-00$ 53 $2020-02-21$ $0000-00-00$ 54 $2020-02-21$ $0000-00-00$ 56 $2020-02-21$ $0000-00-00$ 57 $2020-02-21$ $0000-00-00$ 58 $2020-02-21$ $0000-00-00$ 59 $2020-02-21$ $0000-00-00$ 60 $2020-02-21$ $0000-00-00$	44		2020-02-21	0000-00-00				
46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	45		2020-02-21	0000-00-00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46		2020-02-21	0000-00-00				
48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	47		2020-02-21	0000-00-00				
49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	48		2020-02-21	0000-00-00				
50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	49		2020-02-21	0000-00-00				
51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	50		2020-02-21	0000-00-00				
52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	51		2020-02-21	0000-00-00				
53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	52 53		2020-02-21	0000-00-00				
54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	55		2020-02-21	0000-00-00				
56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	55		2020-02-21	0000-00-00				
57 2020-02-21 0000-00-00 58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	56		2020-02-21	0000-00-00				
58 2020-02-21 0000-00-00 59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	57		2020-02-21	0000-00-00				
59 2020-02-21 0000-00-00 60 2020-02-21 0000-00-00	58		2020-02-21	0000-00-00				
60 2020-02-21 0000-00-00	59		2020-02-21	0000-00-00				
	60		2020-02-21	0000-00-00				

1	
2	
3 4	
5	
6 7	
8	
9 10	
11	
12	
14 15	
16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31 32	
33	
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45 46	
40 47	
48 ⊿o	
49 50	
51 52	
52	

2			
3	2020-02-21	0000-00-00	
4	2020-02-21	0000-00-00	
5	2020-02-21	0000-00-00	
6	2020-02-21	0000-00-00	
7	2020-02-21	0000-00-00	
8	2020 02 21		
9	2020-02-21	0000-00-00	
10	2020-02-21	0000-00-00	
11	2020-02-21	0000-00-00	
12	2020-02-21	0000-00-00	
13	2020-02-21	0000-00-00	
14	2020-02-21	0000-00-00	
15	2020-02-21	0000-00-00	
15	2020-02-21	0000-00-00	
10	2020-02-21	0000-00-00	
17	2020-02-21	0000-00-00	
18	2020-02-21		
19	2020-02-21	0000-00-00	
20	2020-02-21	0000-00-00	
21	2020-02-21	0000-00-00	
22	2020-02-21	0000-00-00	
23	2020-02-21	0000-00-00	
24	2020-02-21	0000-00-00	
25	2020-02-21	0000-00-00	
26	2020-02-21	0000-00-00	
27	2020-02-21	0000-00-00	
28	2020 02 21		
29	2020-02-21	0000-00-00	
30	2020-02-21		
31	2020-02-21	0000-00-00	
32	2020-02-21	0000-00-00	
33	2020-02-21	0000-00-00	
34	2020-02-21	0000-00-00	
35	2020-02-21	0000-00-00	
36	2020-02-21	0000-00-00	
50 27	2020-02-21	0000-00-00	
20	2020-02-21	0000-00-00	
20	2020-02-21	0000-00-00	
39	2020-02-21		
40	2020-02-21		
41	2020-02-21	0000-00-00	
42	2020-02-21	0000-00-00	
43	2020-02-21	0000-00-00	
44	2020-02-21	0000-00-00	
45	2020-02-21	0000-00-00	
46	2020-02-21	0000-00-00	
47	2020-02-21	0000-00-00	
48	2020-02-21	0000-00-00	
49	2020-02-21	0000-00-00	
50	2020 02 21		
51	2020-02-21		
52	2020-02-21		
53	2020-02-21		
54	2020-02-21	0000-00-00	
55	2020-02-21	0000-00-00	
56	2020-02-21	0000-00-00	
57	2020-02-21	0000-00-00	
58	2020-02-21	0000-00-00	
50	2020-02-21	0000-00-00	
29	2020 02 21	0000-00-00	
00	2020-02-21		

1	
2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30 21	
31	
33	
34	
35	
36	
37	
38	
39	
40	
41	
4Z //3	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	
2020-02-21	
2020-02-21	
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	
2020-02-21	0000-00-00
2020-02-21	
2020-02-21	
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00
2020-02-21	0000-00-00

2020-02-21

0000-00-00

iezoni

1	
2	
2	
3	
4	
-	
5	
6	
7	
/	
8	
9	
9	
10	
11	
10	
12	
13	
14	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
21	
22	
22	
25	
24	
25	
25	
26	
27	
2,	
28	
29	
20	
30	
31	
22	
52	
33	
34	
54	
35	
36	
27	
37	
38	
20	
39	
40	
∆ 1	
-11	
42	
43	
44	
45	
10	
40	
47	
٥٨	
40	
49	
50	
51	
52	
52	
53	
54	
55	
22	
56	
57	
/	

59

60

2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21		
2020-02-21		
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-02-21	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19		
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	

ice field ice field

ice field ice field

1	
2	
5 4	
5	
6	
7	
o 9	
10	
11	
12	
14	
15	
16 17	
17	
19	
20	
21	
23	
24	
25 26	
20	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38 30	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	
57	
58	
59	
00	

2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19	0000-00-00	9
2020-11-10	0000-00-00	
2020 11 10	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	

ice field

ice field ice field

2			
3	2020-11-19	0000-00-00	
4	2020-11-19	0000-00-00	
5	2020-11-19	0000-00-00	
6	2020-11-13		
7	2020-11-19	0000-00-00	
, 8	2020-11-19	0000-00-00	
0	2020-11-19	0000-00-00	
9	2020-11-19	0000-00-00	
10	2020-11-19	0000-00-00	
11	2020-11-19	0000-00-00	
12	2020-11-19	0000-00-00	
13	2020-11-19	0000-00-00	
14	2020 11 10		
15	2020-11-19	0000-00-00	
16	2020-11-19	0000-00-00	
17	2020-11-19	0000-00-00	
18	2020-11-19	0000-00-00	
19	2020-11-19	0000-00-00	
20	2020-11-19	0000-00-00	
21	2020-11-19	0000-00-00	
22	2020-11-19	0000-00-00	
23	2020-11-19	0000-00-00	
24	2020-11-19	0000-00-00	
25	2020-11-19	0000-00-00	
25	2020-11-19	0000-00-00	
20	2020-11-19	0000-00-00	
27	2020-11-19	0000-00-00	
20	2020-11-19	0000-00-00	
29	2020-11-19	0000-00-00	
30	2020-11-19	0000-00-00	
31	2020-11-19	0000-00-00	
32	2020-11-19	0000-00-00	
33	2020-11-19	0000-00-00	
34	2020-11-19	0000-00-00	
35	2020-11-19	0000-00-00	
36	2020-11-19	0000-00-00	
37	2020-11-19	0000-00-00	
38	2020-11-19	0000-00-00	
39	2020-11-19	0000-00-00	
40	2020-11-19	0000-00-00	
41	2020-11-19	0000-00-00	
42	2020-11-19	0000-00-00	
43	2020-11-19	0000-00-00	
44	2020-11-19	0000-00-00	
45	2020-11-19	0000-00-00	
46	2020 11 10		
47	2020-11-19		
48	2020-11-19	0000-00-00	
40	2020-11-19	0000-00-00	
50	2020-11-19	0000-00-00	
51	2020-11-19	0000-00-00	
51	2020-11-19	0000-00-00	
52	2020-11-19	0000-00-00	
55	2020-11-19	0000-00-00	
54	2020-11-19	0000-00-00	
55	2020-11-19	0000-00-00	
56	2020-11-10	0000-00-00	
57	2020-11-19		
58	2020-11-19		
59	2020-11-19		
60	2020-11-19	0000-00-00	

ice field ice field

1	
2	
5 4	
5	
6	
7	
o 9	
10	
11	
12	
14	
15	
16 17	
17	
19	
20	
21	
23	
24	
25 26	
20	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38 30	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	
57	
58	
59	
00	

2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19		
2020-11-19		
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020 11 10	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	4
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19		
2020-11-19		
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	

ice field

ice field ice field

2			
3	2020-11-19	0000-00-00	
4	2020-11-19	0000-00-00	
5	2020-11-19	0000-00-00	
6	2020-11-19	0000-00-00	
7	2020 11 10		
8	2020-11-19	0000-00-00	
9	2020-11-19	0000-00-00	
10	2020-11-19	0000-00-00	
11	2020-11-19	0000-00-00	
12	2020-11-19	0000-00-00	
12	2020-11-19	0000-00-00	
13	2020-11-19	0000-00-00	
14	2020-11-19	0000-00-00	
15	2020-11-19	0000-00-00	
10	2020-11-19	0000-00-00	
17	2020-11-10	0000-00-00	
18	2020-11-13		
19	2020-11-19		
20	2020-11-19	0000-00-00	
21	2020-11-19	0000-00-00	
22	2020-11-19	0000-00-00	
23	2020-11-19	0000-00-00	
24	2020-11-19	0000-00-00	
25	2020-11-19	0000-00-00	
26	2020-11-19	0000-00-00	
27	2020-11-19	0000-00-00	
28	2020-11-19	0000-00-00	
29	2020-11-19	0000-00-00	
30	2020-11-19	0000-00-00	
31	2020-11-13		
32	2020-11-19		
33	2020-11-19	0000-00-00	
34	2020-11-19	0000-00-00	
35	2020-11-19	0000-00-00	
36	2020-11-19	0000-00-00	
37	2020-11-19	0000-00-00	
38	2020-11-19	0000-00-00	
39	2020-11-19	0000-00-00	
40	2020-11-19	0000-00-00	
41	2020-11-19	0000-00-00	
42	2020-11-19	0000-00-00	
43	2020-11-19	0000-00-00	
44	2020-11-19	0000-00-00	
45	2020-11-19	0000-00-00	
46	2020-11-13		
47	2020-11-13	0000-00-00	
48	2020-11-19	0000-00-00	
49	2020-11-19	0000-00-00	
50	2020-11-19	0000-00-00	
51	2020-11-19	0000-00-00	
52	2020-11-19	000-00-00	
53	2020-11-19	0000-00-00	
54	2020-11-19	0000-00-00	
55 55	2020-11-19	0000-00-00	
55	2020-11-19	0000-00-00	
57	2020-11-19	0000-00-00	
57	2020-11-19	0000-00-00	
50	2020-11-19	0000-00-00	
22	2020-11-10	0000-00-00	
00	2020-11-19		

1	
2	
5 4	
5	
6	
7	
o 9	
10	
11	
12	
14	
15	
16 17	
17	
19	
20	
21	
23	
24	
25 26	
20	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38 30	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	
57	
58	
59	
00	

2020-11-19	0000-00-00	ice field
2020-11-19	0000-00-00	ice field
2020-11-19	0000-00-00	ICE TIEID
2020-11-19	0000-00-00	
2020-11-19		ice field
2020-11-19	0000-00-00	ICE TIEID
2020-11-19		
2020-11-19	0000-00-00	ice field

ice field ice field

2			
3	2020-11-19	0000-00-00	
4	2020-11-19	0000-00-00	
5	2020-11-19	0000-00-00	
6	2020-11-19	0000-00-00	
7	2020-11-10	0000-00-00	
8	2020-11-13	0000-00-00	
9	2020-11-19	0000-00-00	
10	2020-11-19	0000-00-00	
11	2020-11-19	0000-00-00	
12	2020-11-19	0000-00-00	
12	2020-11-19	0000-00-00	
17	2020-11-19	0000-00-00	
14	2020-11-19	0000-00-00	
15	2020-11-19	0000-00-00	
10	2020-11-19	0000-00-00	
17	2020 11 10		
18	2020-11-19		
19	2020-11-19	0000-00-00	
20	2020-11-19	0000-00-00	
21	2020-11-19	0000-00-00	
22	2020-11-19	0000-00-00	
23	2020-11-19	0000-00-00	
24	2020-11-19	0000-00-00	
25	2020-11-19	0000-00-00	
26	2020-11-19	0000-00-00	
27	2020-11-19	0000-00-00	
28	2020 11 10		
29	2020-11-19		
30	2020-11-19	0000-00-00	
31	2020-11-19	0000-00-00	
32	2020-11-19	0000-00-00	
33	2020-11-19	0000-00-00	
34	2020-11-19	0000-00-00	
35	2020-11-19	0000-00-00	
36	2020-11-19	0000-00-00	
37	2020-11-19	0000-00-00	
20	2020-11-19	0000-00-00	
20	2020-11-19	0000-00-00	
39	2020-11-10	0000-00-00	
40	2020-11-13		
41	2020-11-19	0000-00-00	
42	2020-11-19	0000-00-00	
43	2020-11-19	0000-00-00	
44	2020-11-19	0000-00-00	
45	2020-11-19	0000-00-00	
46	2020-11-19	0000-00-00	
47	2020-11-19	0000-00-00	
48	2020-11-19	0000-00-00	
49	2020-11-19	0000-00-00	
50	2020-11-19	0000-00-00	
51	2020-11-19	0000-00-00	
52	2020-11-10	0000-00-00	
53	2020-11-19	0000-00-00	
54	2020-11-19		
55	2020-11-19		
56	2020-11-19	0000-00-00	
57	2020-11-19	000-00-00	
58	2020-11-19	0000-00-00	
59	2020-11-19	0000-00-00	
60	2020-11-19	0000-00-00	

ice field ice field

ו 2	
3	
4	
5	
6	
7	
8 Q	
9 10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23 24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
30	
38	
39	
40	
41	
42 13	
44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55 56	
50	
58	
59	
60	

 0000 44 40	0000 00 00	
2020-11-19		
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19	0000-00-00	
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19		
2020-11-19	0000-00-00	

ice field

ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field ice field

2			
3	2020-11-19	0000-00-00	ice field
4	2020-11-19	0000-00-00	ice field
5	2020-11-19	0000-00-00	ice field
6	2020-11-19	0000-00-00	ice field
7	2020-11-19	0000-00-00	ice field
8	2020-11-19	0000-00-00	ice field
9	2020-11-19	0000-00-00	ice field
10	2020-11-10	0000-00-00	ice field
11	2020-11-10	0000-00-00	ice field
12	2020-11-13		ice field
13	2020-11-19		ice field
14	2020-11-19		
15	2020-11-19	0000-00-00	
16	2020-11-19	0000-00-00	
17	2020-11-19	0000-00-00	ice field
18	2020-11-19	0000-00-00	
19	2020-11-19	0000-00-00	ice field
20	2020-11-19	0000-00-00	ice field
21	2020-11-19	0000-00-00	ice field
22	2020-11-19	0000-00-00	ice field
23	2020-11-19	0000-00-00	ice field
24	2020-11-19	0000-00-00	ice field
25	2020-11-19	0000-00-00	ice field
26	2020-11-19	0000-00-00	ice field
27	2020-11-19	0000-00-00	ice field
28	2020-11-19	0000-00-00	ice field
29	2020-11-19	0000-00-00	ice field
30	2020-11-19	0000-00-00	ice field
31	2020-11-19	0000-00-00	ice field
32	2020-11-19	0000-00-00	ice field
33	2020-11-19	0000-00-00	ice field
34	2020-11-19	0000-00-00	ice field
35	2020-11-19	0000-00-00	ice field
36	2020-11-10	0000-00-00	ice field
3/	2020-11-10	0000-00-00	ice field
38	2020-11-13		ice field
39	2020-11-19	0000-00-00	ice field
40	2020-11-19		ice field
41	2020-11-19	0000-00-00	
42	2020-11-19	0000-00-00	
43	2020-11-19	0000-00-00	
44 45	2020-11-19	0000-00-00	
45	2020-11-19	0000-00-00	ice field
40	2020-11-19	0000-00-00	ice field
47	2020-11-19	0000-00-00	ice field
40	2020-11-19	0000-00-00	ice field
49	2020-11-19	0000-00-00	ice field
50	2020-11-19	0000-00-00	ice field
57	2020-11-19	0000-00-00	ice field
53	2020-11-19	0000-00-00	ice field
54	2020-11-19	0000-00-00	ice field
55	2020-11-19	0000-00-00	ice field
56	2020-11-19	0000-00-00	ice field
57	2020-11-19	0000-00-00	ice field
58	2020-11-19	0000-00-00	ice field
59	2020-11-19	0000-00-00	ice field
60	2020-11-19	0000-00-00	ice field

ice field ice field

ו 2	
3	
4	
5	
6	
7	
8 0	
9 10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23 24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
30	
38	
39	
40	
41	
42 13	
44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55 56	
50	
58	
59	
60	

2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1		
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	
2020-11-1	9 0000-00-00	

ice field

ice field ice field

2			
3	2020-11-19	0000-00-00	
4	2020-11-19	0000-00-00	
5	2020-11-19	0000-00-00	
6	2020-11-19	0000-00-00	
7	2020-11-19	0000-00-00	
8	2020-11-19	0000-00-00	
9	2020-11-10	0000-00-00	
10	2020-11-19		
11	2020-11-19	0000-00-00	
12	2020-11-19	0000-00-00	
13	2020-11-19	0000-00-00	
14	2020-11-19	0000-00-00	
15	2020-11-19	0000-00-00	
16	2020-11-19	0000-00-00	
17	2020-11-19	0000-00-00	
18	2020-11-19	0000-00-00	
19	2020-11-19	0000-00-00	
20	2020-11-19	0000-00-00	
21	2020-11-19	0000-00-00	
22	2020-11-19	0000-00-00	
23	2020-11-19	0000-00-00	
24	2020-11-19	0000-00-00	
25	2020-11-10	0000-00-00	
26	2020-11-13		
27	2020-11-19	0000-00-00	
28	2020-11-19	0000-00-00	
29	2020-11-19		
30	2020-11-19	0000-00-00	
31	2020-11-19	0000-00-00	
32	2020-11-19	0000-00-00	
33	2020-11-19	0000-00-00	
34	2020-11-19	0000-00-00	
35	2020-11-19	0000-00-00	
36	2020-11-19	0000-00-00	
37	2020-11-19	0000-00-00	4
38	2020-11-19	0000-00-00	
39	2020-11-19	0000-00-00	
40	2020-11-19	0000-00-00	
41	2020-11-19	0000-00-00	
42	2020-11-19	0000-00-00	
43	2020-11-19	0000-00-00	
44	2020-11-19	0000-00-00	
45	2020-11-19	0000-00-00	
46	2020-11-19	0000-00-00	
47	2020-11-19	0000-00-00	
48	2020-11-19	0000-00-00	
49	2020-11-19	0000-00-00	
50	2020-11-19	0000-00-00	
51	2020-11-19	0000-00-00	
52	2020-11-19	0000-00-00	
53	2020-11-19	0000-00-00	
54	2020-11-19	0000-00-00	
55	2020 11-10	0000-00-00	
56	2020-11-19	0000-00-00	
57	2020-11-19	0000-00-00	
58	2020-11-19		
59	2020-11-19		
60	2020-11-19	0000-00-00	

1 2				
3		2020-11-19	0000-00-00	
4		2020-11-19	0000-00-00	
5		2020-11-19	0000-00-00	
6		2020-11-19	0000-00-00	
7		2020-11-19	0000-00-00	
8		2020-11-19	0000-00-00	
9		2020-11-19	0000-00-00	
10		2020-11-19	0000-00-00	
11		2020-11-19	0000-00-00	
12		2020-05-17	0000-00-00	
13		2020-05-17	0000-00-00	
14	California	2020-04-18	0000-00-00	Californi
15	Nevada	2020-04-05	0000-00-00	Nevada
17	Ouargla	2020-12-18	000-00-00	Ouargla
18	Adrar	2020-11-11	0000-00-00	Adrar
19	Nei Mongol	2020-04-18	000-00-00	Nei Mon
20	Xinjiang	2020-12-21	0000-00-00	Xinjiang
21	Xinjiang	2020-01-20	0000-00-00	Xinjiang
22	South Australi	2020-11-28	000-00-00	South A
23	South Australi	2020-11-28	0000-00-00	South Au
24	South Australi	2020-11-28	000-00-00	South Au
25	Nebraska	2020-01-18	000-00-00	Nebrask
26	Antofagasta	2020-03-07	0000-00-00	Antofaga
27	Antofagasta	2020-03-07	000-00-00	Antofaga
28	Semnan	2020-09-28	000-00-00	Semnan
29	Semnan	2020-09-28	000-00-00	Semnan
30	Semnan	2020-09-28	000-00-00	Semnan
31	Damghan	2020-09-28	000-00-00	Damgha
32	Kerman	2020-09-28	000-00-00	Kerman
33	Kerman	2020-09-28	0000-00-00	Kerman
35	Damghan	2020-09-28	000-00-00	Damgha
36	Kerman	2020-09-28	000-00-00	Kerman
37		2020-11-02	000-00-00	
38	South	2020-01-18	000-00-00	South
39	Saguia el Han	2020-11-14	000-00-00	Saguia e
40	Al Wusta	2020-02-16	000-00-00	Al Wusta
41	Al Wusta	2020-02-23	000-00-00	Al Wusta
42	Zufar	2020-06-14	000-00-00	Zufar
43	Al Wusta	2020-06-27	000-00-00	Al Wusta
44	Kerman	2020-01-10	000-00-00	Kerman
45	Kerman	2020-01-10	000-00-00	Kerman
46	Kerman	2020-01-10	000-00-00	Kerman
47	Kerman	2020-01-10	000-00-00	Kerman
48	Kerman	2020-01-10	000-00-00	Kerman
49	Kerman	2020-01-10	000-00-00	Kerman
50	Kerman	2020-01-10	000-00-00	Kerman
51	Kerman	2020-01-10	000-00-00	Kerman
52	Kerman	2020-01-10	000-00-00	Kerman
55	Kerman	2020-01-10	000-00-00	Kerman
55	Kerman	2020-01-10	0000-00-00	Kerman
56	Kerman	2020-01-10	0000-00-00	Kerman
57	Kerman	2020-01-10	0000-00-00	Kerman
58	Kerman	2020-01-10	0000-00-00	Kerman
59	Kerman	2020-01-10	0000-00-00	Kerman
60	Kerman	2020-01-10	0000-00-00	Kerman

	ice field ice field ice field ice field ice field ice field ice field ice field Gusev Crater Gusev Crater	
California		
Vevada	dry lake	
Duargla	-	Algeria
Adrar		Tindouf, Alger
vei Mongol	desert	
Kinjiang	desert	
Kinjiang		
South Australi		
South Australi		
South Australi		
Nebraska		
Antofagasta		
Sompon		Iron
Semnan		Iran
Semnan		Iran
Damohan		Iran
Kerman		Iran
Kerman		Iran
Damghan		Iran
Kerman		Iran
		Damghane
South		
Saguia el Han		
Al Wusta		
Al Wusta		
Zufar		
Kerman		
Kerman		
Cormon		
(erman		
(erman		
Kerman		

1				
2	Kormon	2020 01 10	0000 00 00	Kormon
3 4	Kerman	2020-01-10	0000-00-00	Kerman
5	Kerman	2020-01-10	0000-00-00	Kermen
6	Kerman	2020-01-10	0000-00-00	Kerman
7	Kerman	2020-01-10	0000-00-00	Kerman
8	Kerman	2020-01-10	0000-00-00	Kerman
9	Kerman	2020-01-10	0000-00-00	Kerman
10	Kerman	2020-01-10	0000-00-00	Kerman
11	Kerman	2020-01-10	0000-00-00	Kerman
12	Kerman	2020-01-10	0000-00-00	Kerman
13	Kerman	2020-01-10	0000-00-00	Kerman
14	Kerman	2020-01-10	0000-00-00	Kerman
15	Kerman	2020-01-10	0000-00-00	Kerman
16	Kerman	2020-01-10	0000-00-00	Kerman
17	Kerman	2020-01-10	0000-00-00	Kerman
18	Kerman	2020-01-10	0000-00-00	Kerman
19	Kerman	2020-01-10	0000-00-00	Kerman
20	Kerman	2020-01-10	0000-00-00	Kerman
21	Kerman	2020-01-10	0000-00-00	Kerman
22	Kerman	2020-01-10	0000-00-00	Kerman
23	Kerman	2020-01-10	0000-00-00	Kerman
24	Kerman	2020-01-10	0000-00-00	Kerman
25	Kerman	2020-01-10	0000-00-00	Kerman
26	Kerman	2020-01-10	0000-00-00	Kerman
27	Kerman	2020-01-10	0000-00-00	Kerman
28	Kerman	2020-01-10	0000-00-00	Kerman
29	Kerman	2020-01-10	0000-00-00	Kerman
30	Kerman	2020-01-10	0000-00-00	Kerman
31	Kerman	2020-01-10	0000-00-00	Kerman
32	Kerman	2020-01-10	0000-00-00	Kerman
33	Kerman	2020-05-31	0000-00-00	Kerman Kalout region
34 25	Kerman	2020-05-31	0000-00-00	Kerman
35 26	Kerman	2020-05-31	0000-00-00	Kerman Kalout region
30 27	Sumatera Uta	2020-09-28	0000-00-00	Sumatera Uta
30	Xiniiana	2020-05-23	0000-00-00	Xinijang Kujvibage
30	Xiniiang	2020-04-18	0000-00-00	Xinijang desert
40	Xiniiano	2020-02-17	0000-00-00	Xinijang desert
40	Xiniiang	2020-04-18	0000-00-00	Xinijang desert
42	Xiniiang	2020-12-21	0000-00-00	Xinjiang desert
43	Xiniiang	2020-11-19	0000-00-00	Xinijang Kumtag
44	Xinijang	2020-09-05	0000-00-00	Xinjiang
45	Xinjiang	2020-00-05	0000-00-00	Xinjiang
46	Xinjiang	2020-00-00	0000-00-00	Xinjiang
47	Czestochowa	2020-00-00	0000-00-00	Częstochowa sandy nath
48	Saguia el Han	2020-11-22	0000-00-00	Saquia el Han Moroccan
49	Western Austr	2020-00-00	0000-00-00	Western Austrnear Kanowns
50	Oinghai	2020-12-10		Oinghai dosort
51	Antofagasta	2020-02-17		Antofagasta
52	Antofagasta	2020-02-09	0000-00-00	Antofagasta
53	Antofagasta	2020-00-27		Antofagasta
54	Xiniiana	2020-06-02	0000-00-00	Aniolayasia Vinijang desert
55	Antoforcete	2020-05-23		
56	Antofagasta	2020-01-31		Antofagasta Cravel notice
57	Antolagasta	2020-01-31		Antolagasta Gravel pedime
58	Antoragasta	2020-01-31		Antofagasta Gravel pedime
59	Antoragasta	2020-01-31		
60	Antoragasta	2020-01-31	0000-00-00	Antoragasta Gravel pedime

Dea

2				
3	Antofagasta	2020-01-31	0000-00-00	Antofagasta Gravel pedime
4	Antofagasta	2020-02-05	0000-00-00	Antofagasta
5	Antofagasta	2020-02-12	0000-00-00	Antofagasta
6	Antofagasta	2020-02-23	0000-00-00	Antofagasta Dessert
7	Antofogasta	2020-03-21	0000-00-00	Antofogasta Limestone def
8	Antofagasta	2020-11-01	0000-00-00	Antofagasta
9	Antofagasta	2020-03-28	0000-00-00	Antofagasta
10	Antofagasta	2020-03-28	0000-00-00	Antofagasta Gravel pedime
11	Antofagasta	2020-03-28	0000-00-00	Antofagasta
12	Antofagasta	2020-05-02	0000-00-00	Antofagasta
13	Antofagasta	2020-06-27	0000-00-00	Antofagasta Gravel pedime
14	Antofagasta	2020-06-27	0000-00-00	Antofagasta
16	Antofagasta	2020-11-01	0000-00-00	Antofagasta Gravel pedime
17	Antofagasta	2020-11-01	0000-00-00	Antofagasta Gravel pedime
18	Antofagasta	2020-11-01	0000-00-00	Antofagasta
19	Antofagasta	2020-11-01	0000-00-00	Antofagasta
20	Antofagasta	2020-11-12	0000-00-00	Antofagasta
21	Antofagasta	2020-11-01	0000-00-00	Antofagasta
22	Antofagasta	2020-11-01	0000-00-00	Antofagasta
23	Antofagasta	2020-11-01	0000-00-00	Antofagasta Gravel pedime
24	Antofagasta	2020-11-02	0000-00-00	Antofagasta
25	Antofagasta	2020-11-02	0000-00-00	Antofagasta
26	Antofagasta	2020-11-02	0000-00-00	Antofagasta Gravel pedime
27	Antofagasta	2020-11-02	0000-00-00	Antofagasta Gravel pedime
28	Antofagasta	2020-11-14	0000-00-00	Antofagasta
29	Antofagasta	2020-11-14	0000-00-00	Antofagasta
30	Antofagasta	2020-11-14	0000-00-00	Antofagasta
31	Antofagasta	2020-11-14	0000-00-00	Antofagasta
32	Antofagasta	2020-11-02	0000-00-00	Antofagasta Gravel pedime
33	Antofagasta	2020-11-02	0000-00-00	Antofagasta Gravel pedime
34	Antofagasta	2020-11-02	0000-00-00	Antofagasta
35	Xiniiang	2020-04-18	0000-00-00	Xiniiang desert
36	Xinjiang	2020-09-05	0000-00-00	Xinjiang desert
3/	Xinjiang	2020-04-18	0000-00-00	Xinjiang desert
38	Xinjiang	2020-02-17	0000-00-00	Xinjiang desert
39	Xinjiang	2020-02-17	0000-00-00	Xinjiang desert
40	Xinjiang	2020-02-17	0000-00-00	Xinjiang desert
41	Xinjiang	2020-02-17	0000-00-00	Xinjiang
42	Xinjiang	2020-09-20	0000-00-00	Xinjiang
44	Antofagasta	2020-03-28	0000-00-00	Antofagasta
45	Antofagasta	2020-03-20	0000-00-00	Antofagasta
46	Antofagasta	2020-03-20	0000-00-00	Antofaqasta
47	Antofagasta	2020-00-27		Antofagasta
48	Rihar	2020-11-01	0000-00-00	Bibar Mabdeva
49	Al Rohr ol Ahr	2020-03-31	0000-00-00	Al Bahr al Ahn
50	Al Bahr al Ahr	2020-11-20		
51	Al Bahr al Ahr	2020-11-20		
52	Al Bahr al Ahr	2020-11-20		
53	Al Dahi al Ahi	2020-11-20		Al Bahr al Ahn
54	Fastern	2020-11-20		Eastern Eoum Zoouid
55	Trarza	2020-03-21		
56	IIdiza	2020-01-14		Moridiani Dian
57		2020-05-17		Maridiani Dian
58		2020-05-17		Moridiani Plan
59		2020-05-17		
60		2020-05-17	0000-00-00	ivierialani Plan

3 2020-05-17 0000-00-00 Meridiani Plan 5 2020-05-17 0000-00-00 Goias Farm 6 Goias 2020-02-11 0000-00-00 Western Aust: 2020-12-16 000-00-00 8 2020-02-21 0000-00-00 Western Aust: 2020-12-21 000-00-00 10 2020-02-21 0000-00-00 Western Aust: 2020-11-28 000-00-00 11 2020-02-21 0000-00-00 Western Aust: 2020-11-28 000-00-00 12 Western Aust: 2020-11-28 0000-00-00 Kanto Kanto 13 Western Aust: 2020-12-21 0000-00-00 Kanto Kanto 14 Kanto 2020-02-21 0000-00-00 Kanto Kanto 14 Kanto 2020-02-21 0000-00-00 Kanto Kanto Kanto 15 2020-02-21 0000-00-00 Kanto Kanto Kanto Kanto 16 2020-02-21 0000-00-00 Kanto Kanto Kanto Kanto 17 2020-02-21 <t< th=""><th>2</th><th></th><th></th><th></th></t<>	2			
4 2020-05-17 000-00-00 Meridiani Plan 6 Goias 2020-11-11 000-00-00 Goias Farm 7 Western Austr 2020-12-16 000-00-00 Western Austr Coolgardie Sh 8 2020-02-21 0000-00-00 Western Austr Coolgardie Sh 9 2020-02-21 000-00-00 Western Austr Coolgardie Sh 10 2020-02-21 000-00-00 Kanto Xeetern Austr Coolgardie Sh 11 2020-02-21 000-00-00 Kanto Xeetern Austr Coolgardie Sh 11 2020-02-21 000-00-00 Kanto Xeetern Austr Coolgardie Sh 12 2020-02-21 000-00-00 Kanto Xeetern Austr Coolgardie Sh 12 2020-02-21 000-00-00 Kanto Xeetern Austr Coolgardie Sh 13 2020-02-21 000-00-00 Xeetern Austr Coolgardie Sh Xeetern Austr Coolgardie Sh 14 2020-02-21 000-00-00 Xeetern Austr Coolgardie Sh Xeetern Austr Coolgardie Sh 15 2020-02-21 000-00-00 Xeetern Austr Coolgardie Sh Xeetern Au	3	2020-05-17	000-00-00	Meridiani Plan
5 2020-05-17 000-00-00 Mendiani Plan 6 Goias 2020-11-11 0000-00-00 Goias Farm 8 2020-02-21 0000-00-00 Western Aust: 700-221 000-00-00 10 2020-02-21 0000-00-00 Western Aust: 700-221 000-00-00 11 2020-02-21 0000-00-00 Western Aust: 700-211 000-00-00 12 Western Aust: 700-212 0000-00-00 Kanto 14 14 Kanto 2020-02-21 0000-00-00 Kanto 14 14 Kanto 2020-02-21 0000-00-00 Kanto 14 15 2020-02-21 0000-00-00 14 2020-02-21 000-00-00 16 2020-02-21 0000-00-00 14 2020-02-21 000-00-00 17 2020-02-21 0000-00-00 14 2020-02-21 000-00-00 17 2020-02-21 000-00-00 14 2020-02-21 000-00-00 18 2020-02-21 0000-00-00 14 2020-02-2	4	2020-05-17	0000-00-00	Meridiani Plan
6 Goias 2020-11-11 0000-00-00 Goias Farm 8 2020-02-21 0000-00-00 Western Aust/Coolgardle Sh 9 2020-02-21 0000-00-00 Western Aust/Coolgardle Sh 9 2020-02-21 0000-00-00 Western Aust/Coolgardle Sh 10 2020-02-21 0000-00-00 Kanto 11 Kanto 2020-02-21 0000-00-00 12 Western Aust/2020-11-28 0000-00-00 Kanto 12 2020-02-21 0000-00-00 Kanto 12 2020-02-21 0000-00-00 Kanto 13 2020-02-21 0000-00-00 Kanto 14 2020-02-21 0000-00-00 Kanto 15 2020-02-21 0000-00-00 Kanto 16 2020-02-21 0000-00-00 Kanto 17 2020-02-21 0000-00-00 Kanto 18 2020-02-21 0000-00-00 Kanto 19 2020-02-21 000-00-00 Kanto 12 <td< td=""><td>5</td><td>2020-05-17</td><td>0000-00-00</td><td>Meridiani Plan</td></td<>	5	2020-05-17	0000-00-00	Meridiani Plan
7 Western Austr 2020-12-16 0000-00-00 Western Austr Coolgardie Sh 8 2020-02-21 0000-00-00 Western Austr Coolgardie Sh 10 2020-02-21 0000-00-00 Western Austr Coolgardie Sh 11 2020-02-21 0000-00-00 Western Austr Coolgardie Sh 12 Western Austr 2020-11-28 0000-00-00 Western Austr 14 Kanto 2020-02-21 0000-00-00 15 2020-02-21 0000-00-00 Western Austr 16 2020-02-21 0000-00-00 Western Austr 17 2020-02-21 0000-00-00 Western Austr 18 2020-02-21 0000-00-00 Western Austr 21 2020-02-21 0000-00-00 Western Austr 23 2020-02-21 0000-00-00 Western Austr 24 2020-02-21 0000-00-00 Western Austr 25 2020-02-21 0000-00-00 Western Austr 26 2020-02-21 0000-00-00 Western Austr 27 2020-02-21 0000-00-00<	6	Goias 2020-11-11	0000-00-00	Goias Farm
a Nestern Austr 2020-02-21 0000-00-00 Nestern Austr 2020-02-21 0000-00-00 2020-02-21 0000-00-00 Western Austr 2020-11-01 0000-00-00 Kanto 2020-02-21 0000-00-00 13 Western Austr 2020-11-12 0000-00-00 Kanto 2020-02-21 0000-00-00 14 Kanto 2020-02-21 0000-00-00 Kanto 2020-02-21 1000-00-00 2020-02-21 0000-00-00 Kanto 2020-02-21 000-00-00 15 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 222 2020-02-21 0000-00-00 222 2020-02-21 0000-00-00 222 2020-02-21 0000-00-00 222 2020-02-21 0000-00-00 222 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 24 2020-02-21	7	Western Austr 2020 12 16		Western AustrCoolgordio Sh
9 2220-02-21 0000-00-00 10 2020-02-21 0000-00-00 11 2020-02-21 0000-00-00 12 Western Austr 2020-11-28 0000-00-00 14 Kanto 2020-02-21 0000-00-00 15 2020-02-21 0000-00-00 Kanto 16 2020-02-21 0000-00-00 Kanto 17 2020-02-21 0000-00-00 Kanto 18 2020-02-21 0000-00-00 Kanto 20 2020-02-21 0000-00-00 Kanto 21 2020-02-21 0000-00-00 Kanto 22 2020-02-21 0000-00-00 Kanto 23 2020-02-21 0000-00-00 Kanto 24 2020-02-21 0000-00-00 Kanto 25 2020-02-21 0000-00-00 Kanto 26 2020-02-21 0000-00-00 Kanto 27 2020-02-21 0000-00-00 Kanto 28 2020-02-21 0000-00-00 Kanto	8	Western Austr 2020-12-10	0000-00-00	Western Austr Coolgardie Sh
10 2020-02-21 0000-00-00 11 2020-02-21 0000-00-00 13 Western Austr 2020-11-28 0000-00-00 14 Kanto 2020-02-21 0000-00-00 15 2020-02-21 0000-00-00 Kanto 16 2020-02-21 0000-00-00 Kanto 17 2020-02-21 0000-00-00 Kanto 2020-02-21 0000-00-00 Kanto Kanto 2020-02-21 0000-00-00 Kanto Kanto 2020-02-21 0000-00-00 Kanto Kanto 21 2020-02-21 0000-00-00 Kanto Kanto 22 2020-02-21 0000-00-00 Kanto Kanto 23 2020-02-21 0000-00-00 Kanto Kanto 24 2020-02-21 0000-00-00 Kanto Kanto 25 2020-02-21 0000-00-00 Kanto Kanto 26 2020-02-21 0000-00-00 Kanto Kanto 27 2020-02-21	9	2020-02-21	0000-00-00	
10 2020-02-21 0000-00-00 12 Western Austr 2020-11-28 0000-00-00 14 Kanto 2020-11-28 0000-00-00 15 2020-02-21 0000-00-00 16 2020-02-21 0000-00-00 17 2020-02-21 0000-00-00 18 2020-02-21 0000-00-00 19 2020-02-21 0000-00-00 20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 <	10	2020-02-21	0000-00-00	
2020-02-21 0000-00-00 Western Austr 13 Western Austr 2020-11-20 0000-00-00 Kanto 14 Kanto 2020-02-21 0000-00-00 15 2020-02-21 0000-00-00 16 2020-02-21 0000-00-00 17 2020-02-21 0000-00-00 18 2020-02-21 0000-00-00 202 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 202 2020-02-21 0000-00-00 202 202-02-21 0000-00-00 202 002-02-10 000-00-00 202 0000-00-00 20	10	2020-02-21	0000-00-00	
12 Western Austr 2020-11-28 0000-00-00 Western Austr 14 Kanto 2020-02-21 0000-00-00 15 2020-02-21 0000-00-00 16 2020-02-21 0000-00-00 17 2020-02-21 0000-00-00 18 2020-02-21 0000-00-00 20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00	11	2020-02-21	0000-00-00	
13 Kanto 2020-11-01 0000-00-00 Kanto 15 2020-02-21 0000-00-00 16 2020-02-21 0000-00-00 17 2020-02-21 0000-00-00 18 2020-02-21 0000-00-00 19 2020-02-21 0000-00-00 202 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 2020-02-21 0000-00-00 <td< td=""><td>12</td><td>Western Austr 2020-11-28</td><td>0000-00-00</td><td>Western Austr</td></td<>	12	Western Austr 2020-11-28	0000-00-00	Western Austr
14 2020-02-21 0000-00-00 16 2020-02-21 0000-00-00 17 2020-02-21 0000-00-00 18 2020-02-21 0000-00-00 20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 000-00-00 44 2020-02-21 000-00-00 45 2020-02-21 000-00-00	13	Kanto 2020-11-01	0000-00-00	Kanto
15 2020-02-21 0000-00-00 17 2020-02-21 0000-00-00 18 2020-02-21 0000-00-00 201 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 000-00-00 <td>14</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	14	2020-02-21	0000-00-00	
16 2020-02-21 0000-00-00 18 2020-02-21 0000-00-00 19 2020-02-21 0000-00-00 20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 <td>15</td> <td>2020 02 21</td> <td></td> <td></td>	15	2020 02 21		
17 2020-02-21 0000-00-00 19 2020-02-21 0000-00-00 20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 <td>16</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	16	2020-02-21	0000-00-00	
18 2020-02-21 0000-00-00 20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 <td>17</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	17	2020-02-21	0000-00-00	
19 2020-02-21 0000-00-00 20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 <td>18</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	18	2020-02-21	0000-00-00	
20 2020-02-21 0000-00-00 21 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 <td>19</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	19	2020-02-21	0000-00-00	
21 2020-02-21 0000-00-00 22 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 <td>20</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	20	2020-02-21	0000-00-00	
222 2020-02-21 0000-00-00 23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 </td <td>21</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	21	2020-02-21	0000-00-00	
23 2020-02-21 0000-00-00 24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 <td>22</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	22	2020-02-21	0000-00-00	
24 2020-02-21 0000-00-00 25 2020-02-21 0000-00-00 26 2020-02-21 0000-00-00 27 2020-02-21 0000-00-00 28 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 <td>23</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	23	2020-02-21	0000-00-00	
25 2220.02-21 0000-00-00 26 2020.02-21 0000-00-00 27 2020.02-21 0000-00-00 28 2020.02-21 0000-00-00 29 2020.02-21 0000-00-00 30 2020.02-21 0000-00-00 31 2020.02-21 0000-00-00 33 2020.02-21 0000-00-00 34 2020.02-21 0000-00-00 35 2020.02-21 0000-00-00 36 2020.02-21 0000-00-00 37 2020.02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 <td>24</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	24	2020-02-21	0000-00-00	
2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21	25	2020 02 21		
2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00	26	2020-02-21	0000-00-00	
28 2020-02-21 0000-00-00 29 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 <td>20</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	20	2020-02-21	0000-00-00	
229 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 </td <td>27</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	27	2020-02-21	0000-00-00	
229 2020-02-21 0000-00-00 30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 </td <td>20</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	20	2020-02-21	0000-00-00	
30 2020-02-21 0000-00-00 31 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 <td>29</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	29	2020-02-21	0000-00-00	
31 2020-02-21 0000-00-00 32 2020-02-21 0000-00-00 33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 <td>30</td> <td>2020-02-21</td> <td>000-00-00</td> <td></td>	30	2020-02-21	000-00-00	
33 2020-02-21 0000-00-00 34 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 <td>31</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	31	2020-02-21	0000-00-00	
33 2020-02-21 0000-00-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 <td>32</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	32	2020-02-21	0000-00-00	
34 2020-02-21 0000-00 35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California semi-arid regit 56 California 2020-03-28 2020-06-27 56 California semi-arid regit 57 2020-0	33	2020-02-21	0000-00-00	
35 2020-02-21 0000-00-00 36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California semi-arid regik 2020-02-21 0000-00-00 Libya 55 2020-03-28 2020-06-27 Renamed NW Libya 59	34	2020-02-21	0000-00-00	
36 2020-02-21 0000-00-00 37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California semi-arid regit 56 California 2020-03-28 2020-06-27 56 California semi-arid regit 57 2020-06-27 0000-00-00 Libya	35	2020-02-21	0000-00-00	
37 2020-02-21 0000-00-00 38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 Libya 55 2020-02-27 0000-00-00 Libya 58 2020-06-27 0000-00-00 Libya <td>36</td> <td>2020-02-21</td> <td>0000-00-00</td> <td></td>	36	2020-02-21	0000-00-00	
38 2020-02-21 0000-00-00 39 2020-02-21 0000-00-00 40 2020-02-21 0000-00 41 2020-02-21 0000-00 42 2020-02-21 0000-00 43 2020-02-21 0000-00 44 2020-02-21 0000-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California 2020-11-01 0000-00-00 56 California 2020-02-27 000-00-00 57 2020-02-27 0000-00-00 Libya 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 <t< td=""><td>37</td><td>2020-02-21</td><td>0000-00-00</td><td>4</td></t<>	37	2020-02-21	0000-00-00	4
39 2020-02-21 0000-00-00 40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California 2020-11-01 000-00-00 56 California 2020-02-21 0000-00-00 57 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 0000-00-00 Libya 59 2020-07-04 0000-00-00 Libya	38	2020-02-21	0000-00-00	
40 2020-02-21 0000-00-00 41 2020-02-21 0000-00-00 42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-11-01 000-00-00 57 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 59 2020-07-04 0000-00-00 Libya	39	2020-02-21	0000-00-00	
 41 2020-02-21 0000-00 42 2020-02-21 0000-00 43 2020-02-21 0000-00 44 2020-02-21 0000-00 45 2020-02-21 0000-00 46 2020-02-21 0000-00 47 2020-02-21 0000-00 48 2020-02-21 0000-00 49 2020-02-21 0000-00 50 2020-02-21 0000-00 50 2020-02-21 0000-00 51 2020-02-21 0000-00 52 2020-02-21 0000-00 53 2020-02-21 0000-00 54 2020-02-21 0000-00 55 California 2020-11-01 0000-00 56 California 2020-01-27 0000-00 57 2020-02-27 0000-00 58 2020-02-27 0000-00 59 2020-02-27 0000-00 59 2020-02-27 0000-00 59 2020-02-27 0000-00 50 2020-02-27 00	40	2020-02-21	0000-00-00	
42 2020-02-21 0000-00-00 43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 Libya 58 2020-03-28 2020-06-27 Renamed NW Libya 59 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 59 2020-07-04 0000-00-00 Libya	41	2020-02-21	000-00-00	
43 2020-02-21 0000-00-00 44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-11-01 0000-00-00 57 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	42	2020-02-21	0000-00-00	
44 2020-02-21 0000-00-00 45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-11-01 0000-00-00 57 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	43	2020-02-21	0000-00-00	
45 2020-02-21 0000-00-00 46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California 2020-11-01 0000-00-00 56 California 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 0000-00-00 Libya Libya 59 2020-07-04 0000-00-00 Libya	44	2020-02-21	0000-00-00	
46 2020-02-21 0000-00-00 47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California 2020-11-01 0000-00-00 56 California 2020-03-28 2020-06-27 Renamed NW 58 2020-06-27 0000-00-00 Libya 59 2020-07-04 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	45	2020 02 21	0000-00-00	
47 2020-02-21 0000-00-00 48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California 2020-11-01 0000-00-00 56 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 0000-00-00 Libya 59 2020-07-04 0000-00-00 Libya	46	2020-02-21	0000-00-00	
48 2020-02-21 0000-00-00 49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-11-01 0000-00-00 57 2020-03-28 2020-06-27 Renamed NW 58 2020-06-27 0000-00-00 Libya 59 2020-07-04 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	47	2020-02-21	0000-00-00	
49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 2020-02-21 0000-00-00 57 2020-02-21 0000-00-00 58 2020-03-28 2020-06-27 Renamed NW 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	т/ Л8	2020-02-21	0000-00-00	
49 2020-02-21 0000-00-00 50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 California 2020-11-01 0000-00-00 56 California 2020-03-28 2020-06-27 Renamed NW 57 2020-06-27 0000-00-00 Libya 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	40	2020-02-21	0000-00-00	
50 2020-02-21 0000-00-00 51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-11-01 0000-00-00 57 2020-03-28 2020-06-27 Renamed NW 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	49	2020-02-21	0000-00-00	
51 2020-02-21 0000-00-00 52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-11-01 0000-00-00 57 2020-03-28 2020-06-27 Renamed NW 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	50	2020-02-21	0000-00-00	
52 2020-02-21 0000-00-00 53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-11-01 0000-00-00 57 2020-03-28 2020-06-27 Renamed NW 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	51	2020-02-21	0000-00-00	
53 2020-02-21 0000-00-00 54 2020-02-21 0000-00-00 55 2020-02-21 0000-00-00 56 California 2020-11-01 0000-00-00 57 2020-03-28 2020-06-27 Renamed NW 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	52	2020-02-21	0000-00-00	
54 2020-02-21 0000-00-00 55 California 2020-11-01 0000-00-00 56 California 2020-03-28 2020-06-27 Renamed NW 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	53	2020-02-21	0000-00-00	
55 California 2020-02-21 0000-00-00 California semi-arid regic 56 California 2020-11-01 0000-00-00 California semi-arid regic 57 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	54	2020-02-21		
56 California 2020-11-01 0000-00-00 California semi-arid regit 57 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	55	2020-02-21 Colifornia 2020 44 04	0000-00-00	
57 2020-03-28 2020-06-27 Renamed NW Libya 58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	56		0000-00-00	California semi-ario regi
58 2020-06-27 0000-00-00 Libya 59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	57	2020-03-28	2020-06-27	Renamed NW Libya
59 2020-06-27 0000-00-00 Libya 60 2020-07-04 0000-00-00 Libya	58	2020-06-27	0000-00-00	Libya
60 2020-07-04 0000-00-00 Libya	59	2020-06-27	0000-00-00	Libya
	60	2020-07-04	0000-00-00	Libya

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
1/	
18	
19	
20	
21	
22	
23	
<u>2</u> 2	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
 >⊿	
34	
35	
36	
37	
38	
39	
40	
41	
<u>4</u> 2	
72 72	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
- su	

1

2020-11-01

0000-00-00

2020-09-05	0000-00-00	
2020-09-28	0000-00-00	
2020-12-16	0000-00-00	
2020-09-05	0000-00-00	
2020-08-02	0000-00-00	
2020-08-02	0000-00-00	
2020-08-02	0000-00-00	
2020-08-02	0000-00-00	
2020-09-28	0000-00-00	
2020-09-28	0000-00-00	
2020-02-29	0000-00-00	
2020-08-02	0000-00-00	
2020-07-04	0000-00-00	
2020-07-04	0000-00-00	
2020-07-04	0000-00-00	
2020-07-04	0000-00-00	
2020-02-09	0000-00-00	
2020-03-10	0000-00-00	
2020-07-03	0000-00-00	
2020-07-03	0000-00-00	
2020-02-29	0000-00-00	
2020-03-10	0000-00-00	
2020-03-10	0000-00-00	
2020-03-10	0000-00-00	
2020-03-10	0000-00-00	
2020-08-02	0000-00-00	
2020-12-12	0000-00-00	
2020-05-02	0000-00-00	
2020-07-19	0000-00-00	
2020-07-19	0000-00-00	
2020-04-05	0000-00-00	
2020-04-05	0000-00-00	
2020-04-05	0000-00-00	
2020-12-12	0000-00-00	
2020-01-01	0000-00-00	
2020-12-05	0000-00-00	
2020-12-05	0000-00-00	
2020-12-05	0000-00-00	
2020-02-09	0000-00-00	
2020-03-21	0000-00-00	
2020-08-02	0000-00-00	
2020-08-02	0000-00-00	
2020-08-02	0000-00-00	
2020-08-02	0000-00-00	
2020-08-02	0000-00-00	
2020-05-31	0000-00-00	
2020-05-31	0000-00-00	
2020-01-20	000-00-00	
2020-03-21	0000-00-00	
2020-08-02	000-00-00	
2020-04-18	0000-00-00	
2020-04-18	0000-00-00	
2020-05-31	0000-00-00	
2020-08-02	0000-00-00	

Libya Libya Paris Zagora Zagora Zagora Erfoud Erfoud Morocco Rissani Erfoud Erfoud Erfoud Erfoud Morocco Morocco Besancon, Fra Erfoud, Moroc Morocco Outat el Hadj, St. Marie aux Besancon, Fra Erfoud, Moroc Midelt, Moroco Erfoud. Moroc Tucson Erfoud Tucson Gem a Temara Erfoud Mailed from M Mailed from M Mailed from M Munich, Germ Sainte-Marie-& Erfoud Erfoud Erfoud Northwest Afri Foum Zguid Munich Munich Munich Munich Morocco Chenzhou, Hu Agadir, Moroc Ouarzazate, N Algeria Munich Hamburg Hamburg Erfoud, Moroc Munich Zagora

desert

desert

desert

1					
2					
3	2020-11-01	0000-00-00			Mauritania
4	2020-11-19	0000-00-00			Agadir
5	2020-11-19	0000-00-00			Aqadir
6	2020-06-13	0000-00-00			Agadir, Moroc
7	2020-12-12	0000-00-00	Morocco		Erfoud
8	2020-01-31	0000-00-00			Morocco
9	2020-01-31	0000-00-00			Erfoud
10	2020-01-31			dooort	LIIUuu
11	2020-05-23	0000-00-00		desert	
12	2020-05-23	0000-00-00		desert	
13	2020-05-23	0000-00-00		desert	
14	2020-04-18	0000-00-00		desert	
15	2020-12-21	0000-00-00		desert	
16	2020-12-21	0000-00-00			Chenzhou
17	2020-04-05	0000-00-00		Desert	Osnabrück, G
18	2020-02-29	0000-00-00			Tuscon Gem a
19	2020-12-21	0000-00-00		desert	Chenzhou?Ch
20	2020-06-13	0000-00-00			Bologna
21	2020-06-13	0000-00-00			Bologna
22	2020-07-03	0000-00-00			Munich
23	2020-06-13	0000-00-00			Munich
24	2020-06-13	0000-00-00			Munich
25	2020-02-29	0000-00-00			Morocco
26	2020-02-23				Tucson Com (
27	2020-05-02				Tucson Gem (
28	2020-05-02	0000-00-00			
29	2020-05-02	0000-00-00			Tucson Gem a
30	2020-05-02	0000-00-00			Tucson Gem a
31	2020-05-02	0000-00-00			Tucson Gem a
32	2020-01-31	0000-00-00			
33	2020-04-05	0000-00-00			Nouakchott
34	2020-02-29	0000-00-00			
35	2020-02-09	0000-00-00			Morocco
36	2020-01-01	0000-00-00			Erfoud, Moroc
37	2020-01-01	0000-00-00			Morocco
38	2020-01-01	0000-00-00			Zagora, Moroc
39	2020-01-01	0000-00-00			Erfoud, Moroc
40	2020-01-01	0000-00-00			Erfoud, Moroc
41	2020-01-01	0000-00-00			Morocco
42	2020-01-01	0000-00-00			Morocco
43	2020-01-01	0000-00-00			Morocco
44	2020-02-09	0000-00-00			Agadir
45	2020-02-03			Adrar	Agaan
46	2020-02-09	0000-00-00		Aurai	
47	2020-02-09	0000-00-00		Adron	
48	2020-02-09	0000-00-00		Adrar	7
49	2020-02-09	0000-00-00			Zagora
50	2020-02-09	0000-00-00			Zouerat, Maur
51	2020-02-17	0000-00-00		desert	Chenzhou, Ch
52	2020-04-18	0000-00-00		desert	Chenzhou, Ch
53	2020-11-19	0000-00-00		desert	Beijing, China
54	2020-12-21	0000-00-00		desert	Beijing, China
55	2020-04-18	0000-00-00		desert	Beijing, China
56	2020-01-18	0000-00-00			Morocco
57	2020-01-10	0000-00-00			Morocco
58	2020-01-10	0000-00-00			Morocco
50	2020-01-10	0000-00-00			Morocco
29 60	2020-02-12	0000-00-00			Morocco
00	2020-02-12	3000 00-00			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
17	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30	
رد در	
20	
10	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

	2020-01-31	0000-00-00
	2020-01-31	0000-00-00
	2020-01-31	0000-00-00
	2020-01-10	0000-00-00
	2020-03-21	0000-00-00
	2020-01-31	0000-00-00
	2020-01-31	0000-00-00
	2020-02-12	0000-00-00
	2020-01-31	0000-00-00
	2020-02-09	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-02-12	0000-00-00
	2020-01-31	0000-00-00
	2020-01-10	0000-00-00
	2020-01-31	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-01-31	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-01-10	0000-00-00
	2020-02-09	0000-00-00
	2020-01-31	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-18	0000-00-00
	2020-01-10	0000-00-00
	2020-02-09	0000-00-00
	2020-02-09	0000-00-00
	2020-02-09	0000-00-00
	2020-02-09	0000-00-00
	2020-02-09	0000-00-00
	2020-02-09	0000-00-00
	2020-02-09	0000-00-00
	2020-02-09	0000-00-00
	2020-01-10	0000-00-00
	2020-02-09	0000-00-00
	2020-01-10	0000-00-00
	2020-02-09	0000-00-00
	2020-01-10	0000-00-00
	2020-02-09	0000-00-00

Morocco Zagora, Moroc Morocco Morocco Zagora, Moroc Internet Zagora, Moroc Morocco Morocco Morocco Genova Genova Genova Genova Genova Genova Genova Genova Arfoud Morocco Morocco Morocco Tucson Tucson Tucson Tucson Tucson Tucson Tucson Tucson Tucson Erfoud Mauritania Zagora Agadir Rissani Agadir Agadir Rissani Zagora Munich Zagora Munich Ensisheim Timbuktu, Mal Algeria

iezon

2				
3	2020-02-09	0000-00-00		Tucson
4	2020-01-10	0000-00-00		Timbuktu, Mal
5	2020-02-09	0000-00-00		Zagora
6	2020-01-10	0000-00-00		Munich
7	2020-02-09	0000-00-00		Mauritania
8	Southern Prov 2020-01-31	0000-00-00	Southern Prov	Tucson
9	2020-01-18	0000-00-00		Said Hadnany
10	2020-01-18	0000-00-00		Said Hadnany
11	2020-01-18	0000-00-00		Adam Aaronse
12	2020-02-09	0000-00-00		Morocco
13	2020-01-18	0000-00-00		Morocco
14	2020-01-18	0000-00-00		Morocco
15	2020-02-09	0000-00-00		Morocco
16	2020-02-03	0000-00-00		Morocco
17	2020-04-03	0000-00-00		Zagora
18	2020-02-03	0000-00-00		Zagora
19	2020-03-21	0000-00-00		Morocco
20	2020-02-03			Erfoud
21	2020-02-17			Enouu
22	2020-01-31			
23	2020-01-31			intornat
25	2020-02-17			internet
26	2020-01-31			internet
27	2020-02-17			Dissoni Moro
28	2020-01-31			Rissani, Moro
29	2020-01-31	0000-00-00		Zagora, Moro
30	2020-02-17	0000-00-00		Gueimin, Mort
31	2020-01-31	0000-00-00		Gueimin, Mort
32	2020-02-17	0000-00-00		Gueimin, Morc
33	2020-02-17	0000-00-00		Gueimin, Morc
34	2020-02-17	0000-00-00		Gueimin, Morc
35	2020-01-31	0000-00-00		Gueimin, Mort
36	2020-01-31	0000-00-00		
37	2020-01-31 Maragan 2020-01-31		Maragan	Verona, italy
38	2020-01-31	0000-00-00	WOIOCCO	Verona, italy
39	2020-02-17	0000-00-00		Maraaaa
40	2020-02-17	0000-00-00		Maragaa
41	2020-02-17	0000-00-00		
42	2020-01-31	0000-00-00		Zagora, Moroc
45	2020-02-09	0000-00-00		Munich, Germ
44	2020-02-09	0000-00-00		Munich, Germ
45 46	2020-01-31	0000-00-00		Munich, Germ
40	2020-02-09	0000-00-00		Nouakcholl, IV
48	2020-02-09	0000-00-00		
49	2020-02-09	0000-00-00		
50	2020-01-31	0000-00-00		Maraaaa
51	2020-02-09			IVIOI OCCO
52	2020-11-01			
53	2020-01-31			Hamburg, Ger
54	2020-01-31			Framburg, Ger
55	2020-02-17		Couthorn Duri	
56	South 2020-02-05		Southern Prov	Chenzhou, Ch
57	Decital 2020-02-05		DECIIO	
58	2020-02-05			
59	2020-02-05			
60	2020-02-05	0000-00-00		

2	
2	
<u></u> .	
4	
5	
6	
7	
ò	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
31	
25	
35	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
46	
40	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	

	2020-03-28	0000-00-00	
	2020-07-04	0000-00-00	
	2020-02-29	0000-00-00	
	2020-04-05	0000-00-00	
	2020-02-09	0000-00-00	
	2020-02-29	0000-00-00	
	2020-02-09	0000-00-00	
	2020-02-09	0000-00-00	
	2020-02-09	0000-00-00	
	2020-02-29	0000-00-00	
	2020-02-09	0000-00-00	
	2020-02-29	0000-00-00	
	2020-03-21	0000-00-00	
	2020-03-03	0000-00-00	
Southorn Droy	2020-02-29		Southarn Dray
Southern Prov	2020-02-29	0000-00-00	Soumern Prov
Kem Kem	2020-02-12	0000-00-00	Kem Kem Danara
	2020-02-12		Saliara
	2020-02-10		
	2020-02-16		
	2020-02-10		
	2020-02-10		
	2020-02-10		
	2020-02-29	0000-00-00	
	2020-02-10	0000-00-00	
	2020-02-16	0000-00-00	
	2020-02-29	0000-00-00	
	2020-02-29	0000-00-00	
	2020-02-29	0000-00-00	
	2020-02-23	0000-00-00	
	2020-04-05	0000-00-00	
	2020-02-29	0000-00-00	
	2020-04-05	0000-00-00	
	2020-02-23	0000-00-00	
	2020-04-05	0000-00-00	
	2020-04-05	0000-00-00	
	2020-04-05	0000-00-00	
	2020-04-05	0000-00-00	
	2020-04-05	0000-00-00	
	2020-04-05	0000-00-00	
	2020-02-23	0000-00-00	
	2020-02-23	0000-00-00	
	2020-04-05	0000-00-00	
	2020-04-05	0000-00-00	
	2020-02-23	0000-00-00	
	2020-04-05	0000-00-00	
	2020-04-05	0000-00-00	
	2020-04-05	0000-00-00	
	2020-02-23	0000-00-00	
	2020-03-10	0000-00-00	
	2020-04-05	0000-00-00	

	Guelmin Nouakchott, N Zagora Algeria Tagounite Timbuktu, Mal Munich Munich Morocco Morocco Verona, italy Huizhou, Chin
	Erfoud Zagora Spain Agadir Agadir Zagora Hamburg, Ger Munich, Germ Munich, Germ Munich, Germ Hamburg, Ger Hamburg, Ger Hamburg, Ger Hamburg, Ger Morocco Laayoune, Å N Laayoune, Mo Morocco Morocco Morocco Morocco Mailed from M Zagora Algeria Zagora Mali Zagora Erfoud Zagora Morocco
L E	_aayoune, Mo Erfoud, Moroc

2				
3	2020-03-10	0000-00-00		Errachidia, Mc
4	2020-02-23	0000-00-00		Mauritania
5	2020-03-10	0000-00-00		Mauritania
6	2020-04-05	0000-00-00		Morocco
7	2020-04-05	0000-00-00		Mali
8	2020-04-05	0000-00-00		Mail
9	2020-03-10	0000-00-00		Algeria
10	2020-04-05	0000-00-00		France
10	2020-04-05	0000-00-00		Ensisheim
10	2020-03-28	0000-00-00		Timbuktu, Mal
12	2020-03-28	0000-00-00		Laayoune
13	2020-03-28	0000-00-00		Smara
14	2020-03-21	0000-00-00		Libva
15	2020-03-28	0000-00-00		Khatari Moror
16	2020-03-20			Agadir
17	2020-00-27	0000-00-00		Ayauli Zagara
18	2020-06-27	0000-00-00		Zagora
19	2020-03-28	0000-00-00		Smara
20	2020-03-28	0000-00-00	Akokan	Niger
21	2020-11-11	0000-00-00		Gadamis
22	2020-03-28	0000-00-00		
23	2020-03-21	0000-00-00		Erfoud
24	2020-04-05	0000-00-00		Munich Minera
25	2020-03-07	0000-00-00		Str. Marie aux
26	2020-03-07			Encichoim
27	2020-03-07	0000-00-00		
28	2020-04-05	0000-00-00		
20	2020-04-05	0000-00-00		
30	2020-04-05	0000-00-00		Algeria
21	2020-04-05	0000-00-00		
27	2020-04-05	0000-00-00		Munich
32 33	2020-03-21	0000-00-00		Morocco
22	2020-10-10	0000-00-00		Morocco
34	2020-03-21	0000-00-00		
35	2020-04-05	0000-00-00		Lavoune Wes
36	2020-03-21	0000-00-00		
3/	2020-03-21			Layoune Wes
38	2020-04-05	0000-00-00		Layoune, wes
39	2020-05-09	0000-00-00		IVIAII
40	2020-04-05	0000-00-00		Algeria
41	2020-03-21	0000-00-00		
42	2020-04-05	0000-00-00		
43	2020-05-09	0000-00-00		
44	2020-04-05	0000-00-00		Zagora
45	2020-05-02	0000-00-00		Zouerat, Maur
46	2020-03-21	0000-00-00		Zagora
47	2020-05-02	0000-00-00		Agadir: Tucso
48	2020-03-21	0000-00-00		Zadora
49	2020-05-02	0000-00-00		Mali and Maur
50	2020-05-02	0000-00-00		Maragoo
51	2020-05-02	0000-00-00		
52	2020-05-02			Ouargia, Algei
53	2020-05-02	0000-00-00		Morocco
54	2020-05-02	0000-00-00		Algeria
55	2020-03-21	0000-00-00		
56	2020-03-28	0000-00-00		
57	2020-11-01	0000-00-00		Rissani, Moro
58	purchased St. 2020-03-28	0000-00-00	purchased St.	Sainte-Marie a
50	2020-03-28	0000-00-00		Zagora
50	2020-05-02	0000-00-00		Agadir
00	2020-00-02			, iguan

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28 20	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
45 11	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

	2020-05-02	0000-00-00	Brügg, Switze
	2020-05-02	0000-00-00	St. Marie aux
	2020-05-02	0000-00-00	Rissani
	2020-04-18	0000-00-00	
	2020-04-18	0000-00-00	Mauritania
	2020-04-18	0000-00-00	
	2020-04-18	0000-00-00	
	2020-05-23	0000-00-00	Algeria
	2020-07-03	0000-00-00	
	2020-05-23	0000-00-00	
	2020-05-02	0000-00-00	Laayoune, Mo
	2020-05-02	0000-00-00	Errachidia, Mc
	2020-08-02	0000-00-00	Tindouf, Alger
Ouargla	2020-05-02	0000-00-00	Ouargla
	2020-05-31	0000-00-00	Zagora, Moroc
	2020-05-23	0000-00-00	Morocco
	2020-05-23	0000-00-00	Morocco
	2020-05-31	0000-00-00	Zouérat, Maur
	2020-06-13	0000-00-00	Guelmin, Morc
	2020-06-13	0000-00-00	Zagora
	2020-06-13	0000-00-00	Kingman, Ariz
	2020-06-13	0000-00-00	Timbuktu, Mal
	2020-06-13	0000-00-00	Marrakech
	2020-06-13	0000-00-00	Timbuktu, Mal
	2020-06-13	0000-00-00	Timbuktu, Mal
	2020-06-13	0000-00-00	Timbuktu, Mal
	2020-06-13	0000-00-00	Marrakech
	2020-07-03	0000-00-00	Sahara Deser Moroccan Dea
	2020-07-03	0000-00-00	West Sahara I Erfoud Dealer
	2020-05-31	0000-00-00	West Sahara Moroccan Dea
	2020-05-31	0000-00-00	West Sahara Moroccan Dea
	2020-07-03	0000-00-00	West Sahara Erfoud Dealer
	2020-07-03	0000-00-00	West Sahara Moroccan Dea
	2020-07-03	0000-00-00	Timbuktu, Mal
	2020-07-04	0000-00-00	Temara
	2020-07-03	0000-00-00	Morocco
	2020-05-31	0000-00-00	Timbuktu, Mal
	2020-07-04	0000-00-00	Tucson
	2020-07-04	0000-00-00	Morocco
	2020-07-03	0000-00-00	Morocco
	2020-07-03	0000-00-00	Morocco
	2020-07-03	0000-00-00	Mauritania
	2020-07-04	0000-00-00	Munich
	2020-06-13	0000-00-00	Erfoud, Moroc
	2020-07-03	0000-00-00	Quartzite, Ariz
	2020-07-03	0000-00-00	West Sahara Smara Dealer
	2020-07-04	0000-00-00	Morocco
	2020-07-04	0000-00-00	Morocco
	2020-06-14		Layoune, Wes
	2020-06-14		Layoune, Wes
	2020-06-14	0000-00-00	Layoune, Wes
	2020-06-14	0000-00-00	Mauritania
	2020-06-14	0000-00-00	Mauritania
	2020-07-03	0000-00-00	Morocco
	2020-07-03	0000-00-00	Morocco

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 70	
40 70	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

	2020-07-03 2020-07-07 2020-07-07 2020-07-07 2020-07-07 2020-07-07 2020-07-07 2020-07-07 2020-07-07 2020-07-19 2020-07-19 2020-07-19 2020-07-04 2020-07-07 2020-07-07 2020-07-07 2020-07-19 2020-07-19 2020-07-19 2020-07-19	0000-00-00 0000-00-00 0000-00-00 0000-00-			Mauritania Mesa, Arizona Mauritania Morocco Zouerat, Maur Zagora Mauritania Algeria Algeria Morocco Mauritania Timbuktu, Mal Algeria Timbuktu, Mal Riverside, Cal Morocco Mallorca Morocco St Marie aux M Ensisheim Algeria
	2020-08-02	0000-00-00			Morocco
	2020-08-08	2020-08-09	Updated info		Mauritania
Adrar	2020-08-02	0000-00-00		Adrar	Tindouf
	2020-08-02	0000-00-00			Guelmim
Chwichiva	2020-08-02	0000-00-00		Chwichiva	Munich Minera
onnioniya	2020-07-19	0000-00-00			Genoa
	2020-08-02	0000-00-00			Conou
	2020-08-02	0000-00-00			
	2020-08-02	0000-00-00			
	2020-08-02	0000-00-00		$\mathbf{N}_{\mathbf{A}}$	
	2020-08-02	0000-00-00			Northwest Afri
	2020-08-02	0000-00-00			Northwest Afri
	2020-08-02	0000-00-00			Northwest Afri
	2020-09-05	0000-00-00			(Northwest Afr
	2020-09-05	0000-00-00			Mauritania
	2020-08-02	0000-00-00			Tucson
	2020-10-10	0000-00-00			Tucson
	2020-08-02	0000-00-00			Denver
Drâa-Tafilalet	2020-09-05	0000-00-00		Drâa-Tafilalet	Morocco
Didd-i aniaict	2020-03-03	0000-00-00			Morocco
	2020-00-02	0000-00-00			
	2020-08-02	0000-00-00			
	2020-08-02	0000-00-00			
	2020-10-10	0000-00-00			Nouakchott M
	2020-08-02	0000-00-00			Benzeran, Mo
	2020-08-02	0000-00-00			Tindouf. Alger
	2020-08-02	0000-00-00			Tata. Morocco
	2020-09-05	0000-00-00			Smara. West :
	2020-09-05	0000-00-00			Tindouf. Alaer
	2020-08-08	0000-00-00			Bologna. Italv
	2020-08-08	0000-00-00			Morocco
	2020-08-08	0000-00-00			Mauritania
	2020-08-08	0000-00-00			Mauritania

2	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
12	
45	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
57	
50	
59	
60	

	0000 00 05	0000 00 00		M
	2020-09-05	0000-00-00		Morocco
	2020-07-07	0000-00-00		Morocco
	2020-08-08	0000-00-00		Mauritania
	2020-08-08	0000-00-00		Mauritania
Laayoune	2020-08-08	0000-00-00	Laayoune	Norocco
	2020-08-08	0000-00-00		Mauritania
	2020-08-08	0000-00-00		Morocco
	2020-08-08	0000-00-00		Mauritania
The day of	2020-09-05	0000-00-00	The day of	The day of
Lindout	2020-09-05	0000-00-00		lindout
western Sana	2020-11-22	0000-00-00	vvestern Sana	M
	2020-09-19	0000-00-00		Morocco
	2020-09-19	0000-00-00		Morocco
	2020-09-19	0000-00-00		Zagora, Moroc
	2020-09-19	0000-00-00		Lindouf, Alger
	2020-09-05	0000-00-00		Denver
	2020-11-01	0000-00-00		Denver
	2020-09-05	0000-00-00		Zagora
	2020-11-01	0000-00-00		Erfoud
	2020-09-05	0000-00-00		Zagora
	2020-09-05	0000-00-00		Zagora
	2020-09-05	0000-00-00		Zagora
	2020-09-05	0000-00-00		Zagora
	2020-09-05	0000-00-00		Zagora
	2020-09-05	0000-00-00		Zagora
	2020-09-19	0000-00-00		Lindouf, Alger
	2020-09-28	0000-00-00		Morocco
	2020-09-28	0000-00-00		Mauritania
	2020-09-28	0000-00-00		
	2020-09-19	0000-00-00		Greeley, CO
	2020-10-14	0000-00-00		Mouritopio
	2020-10-14	0000-00-00		Munich Corre
	2020-11-02		9	Zagara Mara
	2020-11-02			Zayura, Murut
	2020-11-02	0000-00-00		Cuelmin Mer
	2020-11-02			Zagara Moro
	2020-11-02	0000-00-00		Zagora Moroc
	2020-11-02			
	2020-11-02	0000-00-00		
	2020-11-02	0000-00-00		Zagora
	2020-10-10	0000-00-00		∠ayura Zagora
	2020-10-10			Morocco
	2020-10-10	0000-00-00		Adrar
	2020-11-01	0000-00-00		Riverside CA
	2020-10-10	0000-00-00		Algeria
	2020-10-10	0000-00-00		Morocco
	2020-11-01	0000-00-00		Tindouf
	2020-11-01	0000-00-00		Morocco
	2020-11-01	0000-00-00		Morocco
	2020-11-01	0000-00-00		Morocco
	2020-11-01	0000-00-00		Morocco
	2020-12-05	0000-00-00		Morocco
	2020-12-17	0000-00-00		Guelmim Mor
	2020-11-28	0000-00-00		Algeria
	2020 11-20			, ugona

2					
3	Dakhla	2020-10-10	0000-00-00	Dakhla	Agadir, Moroc
4	South	2020-11-02	0000-00-00	South	Tucson, USA
5	South	2020-11-02	0000-00-00	South	Tucson LISA
6	Couli	2020 11 02		Couli	Morocco
7		2020-11-01	0000-00-00		
8		2020-11-11	0000-00-00		Spain
0		2020-11-11	0000-00-00		Munich, Germ
9 10		2020-11-11	0000-00-00		Morocco
10		2020-11-01	0000-00-00		Aathal, Switze
11		2020-11-11	0000-00-00		Algeria
12		2020-11-11	0000-00-00		Morocco
13		2020-11-11	0000-00-00		Adra Algeria
14		2020-11-11	0000-00-00		Adra Algeria
15		2020-11-11			Mouritonio
16		2020-11-11	0000-00-00		Mauritania
17		2020-11-11	0000-00-00		Mauritania
18		2020-11-02	0000-00-00		
19		2020-11-02	0000-00-00		Timbuktu, Mal
20		2020-11-11	0000-00-00		Tindouf
21		2020-11-11	0000-00-00		Mauritania
22		2020-12-12	0000-00-00		Riverside, CA
23		2020-11-11	0000-00-00		Algeria
24		2020-11-11	0000-00-00		Mauritania
25		2020 11 11			Mauritania
26		2020-11-11	0000-00-00		
20		2020-11-11	0000-00-00		Zagora
27		2020-11-02	0000-00-00		Rissani
20		2020-11-14	0000-00-00		
29		2020-11-14	0000-00-00		
30		2020-11-14	0000-00-00		
31		2020-11-14	0000-00-00		
32		2020-11-14	0000-00-00		
33		2020-11-14	0000-00-00		Ensisheim (Er
34	Tarfava	2020-11-14	0000-00-00	Tarfava	Agadir
35	Tunuyu	2020 11 14		l'anaya	Zagora Moroc
36		2020-11-14	0000-00-00		Zagora, Morot
37		2020-11-14	0000-00-00		Zagora, Moroc
38		2020-11-14	0000-00-00		Munich, Germ
39		2020-11-14	0000-00-00		Munich, Germ
40		2020-11-14	0000-00-00		Munich, Germ
41		2020-11-14	0000-00-00		Zagora, Moroc
42		2020-11-14	0000-00-00		Laayoune
43		2020-11-14	0000-00-00		Zagora, Moroc
44		2020-11-14	0000-00-00		Tindouf, Alger
45		2020-11-02	0000-00-00		Zagora, Moroc
46		2020-11-14	0000-00-00		Guelmim
47		2020 11 14			Guelmim
48		2020-11-02			Gueimin Erfoud (Moroa
49		2020-11-14	0000-00-00		
50		2020-11-02	0000-00-00		Zagora, Moroc
51		2020-11-14	0000-00-00		Zagora, Moroc
57		2020-11-14	0000-00-00		Munich, Germ
52		2020-11-14	0000-00-00		Munich, Germ
55		2020-11-02	0000-00-00		Mauritania
34 55		2020-11-02	0000-00-00		Morocco
22		2020-11-11	0000-00-00		Morocco
56		2020-11-10	0000-00-00		
57		2020 11 10			Encichaim En
58		2020-11-19			
59		2020-11-12			
60		2020-11-11	0000-00-00		Tucson, AZ

Tucson, AZ Tucson, AZ

Morocco

Morocco

Internet Internet Portland OR Bethar, Algeria Ensisheim, Fra

Algeria Algeria Algeria Algeria Morocco Morocco Algeria Morocco Erfoud Morocco Mauritania Ouarzazate, N Ouarzazate, N Tindouf, Alger Guelmim, Mor Ensisheim Ouzarzazate, Errachidia, Mc Errachidia, Mc

Errachidia, Mc

2
3
4
5
5
6
7
8
õ
9
10
11
12
12
15
14
15
16
17
17
18
19
20
21
21
22
23
24
25
25
26
27
28
20
29
30
31
32
22
22
34
35
36
37
57
38
39
40
<u></u> Δ1
42
42
43
44
45
10
40
47
48
49
50
50
51
52
53
55
54
55
56
57
50
JÖ
59

60

	2020-12-16	0000-00-00	
	2020-11-11	0000-00-00	
	2020-12-16	0000-00-00	
	2020-11-19	0000-00-00	
	2020-11-11	0000-00-00	
	2020-11-11	0000-00-00	
	2020-11-19	0000-00-00	
	2020-11-11	0000-00-00	
	2020-11-19		
	2020-11-11		
	2020-12-22	0000-00-00	
	2020-11-19	0000-00-00	
	2020-11-11	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-14	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-12-16	0000-00-00	
	2020-12-16	0000-00-00	
	2020-12-12	0000-00-00	
	2020-12-12	0000-00-00	
	2020-12-12	0000-00-00	
	2020-12-12		
	2020-12-12		
	2020-12-12	0000-00-00	
	2020-11-22	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-28	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-28	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-28	0000-00-00	
	2020-11-28	0000-00-00	
	2020-11-12	0000-00-00	
	2020-11-28	0000-00-00	
	2020-12-05		
	2020-12-10	0000-00-00	
Tindouf	2020-12-05	0000-00-00	Tindouf
Indoar	2020-12-17	0000-00-00	
	2020-12-12	0000-00-00	
	2020-12-05	0000-00-00	
	2020-12-05	0000-00-00	
	2020-12-05	0000-00-00	
	2020-12-16	0000-00-00	

2							
3		2020-12-16	0000-00-00				Errachidia, Mc
4		2020-11-28	0000-00-00				
5		2020-11-01	0000-00-00				
6		2020-12-17	0000-00-00				Tindouf
7		2020 12 17					Mali
8		2020-11-19	0000-00-00				Mauritania
9		2020-11-19	0000-00-00				Mauritaria
10		2020-11-19	0000-00-00				Mauritania
11		2020-11-19	0000-00-00			desert	Beijing, China
17		2020-11-19	0000-00-00			desert	Beijing, China
12		2020-11-19	0000-00-00			desert	Beijing, China
13		2020-12-05	0000-00-00				Algeria, Moroc
14		2020-12-12	0000-00-00				Morocco
15		2020-12-12	0000-00-00				Morocco
16		2020-12-12	0000-00-00				Morocco
17		2020-12-12					Morocco
18		2020-11-20	0000-00-00				Maragaa
19		2020-11-20	0000-00-00				
20		2020-12-12	0000-00-00				Adrar, Algeria
21		2020-11-28	0000-00-00				Tindouf, Alger
22		2020-12-16	0000-00-00				Morocco
23		2020-12-16	0000-00-00				Morocco
24		2020-12-12	0000-00-00				Laayoune, Mo
25		2020-12-09	0000-00-00				Morocco
26		2020-12-16	0000-00-00				Morocco
27		2020 12 10	0000-00-00				Morocco
28		2020-12-05					Morocco
29	California	2020-12-10	0000-00-00		California		NOTOCCO
30	California	2020-08-02	0000-00-00		California		
31	California	2020-08-02	0000-00-00		California		
32	California	2020-08-02	0000-00-00		California		
33		2020-09-05	0000-00-00				
34		2020-07-03	0000-00-00				
35	Omnogovi	2020-05-09	0000-00-00		Omnogovi	gravel surface	
36	Murzuq	2020-06-13	0000-00-00		Murzug	Desert and mo	
27	Haskovo	2020-02-05	2020-12-18	Corrected stat	Burgas		
20	Oslo	2020-09-05	0000-00-00		Oslo	Rodeløkka an	
20	Ονο	2020-09-05	0000-00-00		Ovo		Nigeria
39	Xinijana	2020 07 07			Vinijana		Ngena
40	Antofogoata	2020-07-07			Antofogoata	Descart	
41	Antofagasta	2020-02-23	0000-00-00		Antofagasta	Dessert	
42	Antolagasta	2020-02-23	0000-00-00		Antolagasta	Dessen	
43	Antofagasta	2020-02-23	0000-00-00		Antofagasta	Dessert	
44	Antofagasta	2020-03-28	0000-00-00		Antofagasta	Gravel pedime	
45	Antofagasta	2020-11-14	0000-00-00		Antofagasta	Gravel pedime	
46	Antofagasta	2020-11-02	0000-00-00		Antofagasta	Fine gravel hil	
47	Antofagasta	2020-11-02	0000-00-00		Antofagasta	Gravel pedime	
48	Antofagasta	2020-11-02	0000-00-00		Antofagasta		
49	Kirovskava ob	2020-04-05	0000-00-00		Kirovskava ob)	
50	Stavropol'skiv	2020-05-09	0000-00-00		Stavropol'skiv	,	
51	Xinijang	2020-10-14	0000-00-00		Xiniiana		
52	Tindouf	2020 02 00			Tindouf	Bou Akba	Wieconein
53	Kormon	2020-02-09	0000-00-00		Kormon	doportio ourfor	**1300113111
54	Kernall	2020-06-27	0000-00-00			ueseriic surfa(
55	Kerman	2020-11-02	0000-00-00		Kerman		
56	Western Austr	2020-11-28	0000-00-00		Western Aust	r	
57		2020-01-31	0000-00-00			Desert	
58		2020-01-31	0000-00-00			Desert	
59		2020-01-31	0000-00-00			Desert	
60		2020-01-31	0000-00-00			Desert	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
34	
35	
36	
27	
27 20	
20	
29	
40 11	
41 10	
42 12	
45 11	
44 15	
45 46	
40	
4/ 10	
48 40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

2020-01-31	0000-00-00	Desert
2020-01-31	0000-00-00	Desert
2020-01-31		Desert
2020-01-31		Desert
2020-01-31		Desert
2020-01-31	0000-00-00	Desert

Running Head

1						
2						
3		2020-01-31	0000-00-00		Desert	
4 5		2020-01-31	0000-00-00		Desert	
5		2020-01-31	0000-00-00		Desert	
7		2020-01-31	0000-00-00		Desert	
, 8		2020-01-31	0000-00-00		Desert	
9		2020-01-31	0000-00-00		Desert	
10		2020-01-31	0000-00-00		Desert	
11		2020-01-31	0000-00-00		Desert	
12		2020-01-31	0000-00-00		Desert	
13		2020-01-31	0000-00-00		Desert	
14		2020-01-31	0000-00-00		Desert	
15		2020-01-31	0000-00-00		Desert	
16		2020-01-31	0000-00-00		Desert	
17		2020-01-31	0000-00-00		Desert	
18		2020-01-31	0000-00-00		Desert	
19	Pays de la Lo	12020-02-09	0000-00-00	Pays de la Lo) 	
20	Soriano	2020-04-05	0000-00-00	Soriano	alluvial deposi	
21	Pernambuco	2020-11-01	0000-00-00	Pernambuco	City, Roads ar	
22	Al Wusta	2020-06-27	0000-00-00	Al Wusta		
23	Zufar	2020-02-29	0000-00-00	Dhofar		
24	Bayanhongor	2020-01-01	0000-00-00	Bayankhongo		
25	Zufar	2020-03-10	0000-00-00	Zufar	Desert	
20	Zufar	2020-06-27	0000-00-00	Zufar		
27	Zufar	2020-11-28	0000-00-00	Zufar		Poland
29	Antofagasta	2020-01-10	0000-00-00	Antofagasta		
30	Antofagasta	2020-03-21	0000-00-00	Antofagasta		
31	Antofagasta	2020-03-21	0000-00-00	Antofagasta		
32	Antofagasta	2020-01-31	0000-00-00	Antofagasta	l'an a da a a da fi	
33	Antofagasta	2020-02-23	0000-00-00	Antofagasta	limestone defi	
34	Antofagasta	2020-02-23	0000-00-00	Antolagasta		
35	Antofagasta	2020-02-23		Antofagasta		
36	Antofagasta	2020-02-23		Antofagasta		
37	Antofagasta	2020-02-23	0000-00-00	Antofagasta		
38	Antofagasta	2020-03-20	0000-00-00	Antofagasta		
39 40	Antofagasta	2020-06-13	0000-00-00	Antofagasta		
40	Antofagasta	2020-09-19	0000-00-00	Antofagasta		
42	Antofagasta	2020-09-19	0000-00-00	Antofagasta		
43	Antofagasta	2020-09-19	0000-00-00	Antofagasta		
44	Antofagasta	2020-10-10	0000-00-00	Antofagasta		
45	Antofagasta	2020-10-10	0000-00-00	Antofagasta		
46	Antofagasta	2020-11-28	0000-00-00	Antofagasta		
47	Antofagasta	2020-11-11	0000-00-00	Antofagasta	limestone defl	
48	Antofagasta	2020-11-02	0000-00-00	Antofagasta		
49	Antofagasta	2020-11-11	0000-00-00	Antofagasta		
50	Antofagasta	2020-11-11	0000-00-00	Antofagasta		
51	Antofagasta	2020-11-28	000-00-00	Antofagasta		
52 53	Adrar	2020-07-18	000-00-00	Adrar		Tindouf
55 54	Adrar	2020-12-05	000-00-00	Adrar		Morocco
55 55		2020-10-14	000-00-00			
56	Agadez	2020-12-21	000-00-00	Agadez	desert	Agadez, Niger
57	South	2020-12-09	0000-00-00	South		
58	Xinjiang	2020-07-07	0000-00-00	Xinjiang		
59	South	2020-11-02	0000-00-00	South		
60	Bechar	2020-12-17	0000-00-00	Bechar		bechar

2			
3		2020-11-02	0000-00-00
4	Minas Gerais	2020-11-28	0000-00-00
5	Gao	2020-06-13	0000-00-00
6	Antofagasta	2020-03-10	0000-00-00
7	Antofagasta	2020-06-13	0000-00-00
8	Antofagasta	2020-08-02	0000-00-00
9	Antofagasta	2020-00-02	0000-00-00
10	Antofagasta	2020-10-10	
11	Antorayasta	2020-11-11	
12	Adrar	2020-11-02	0000-00-00
13	Adrar	2020-11-19	0000-00-00
14	Aurar	2020-12-10	0000-00-00
15	Nevada	2020-07-07	0000-00-00
16	Nevada	2020-07-07	0000-00-00
17	Nevada	2020-07-07	0000-00-00
18	Nevada	2020-07-07	0000-00-00
19	Nevada	2020-07-07	0000-00-00
20	Nevada	2020-07-07	0000-00-00
21	Nevada	2020-07-07	0000-00-00
22	Nevada	2020-07-07	0000-00-00
23	Nevada	2020-07-07	0000-00-00
24	Nevada	2020-07-07	0000-00-00
25	Nevada	2020-07-07	0000-00-00
26	Kansas	2020-04-18	0000-00-00
27	Abu Dhabi	2020-06-27	0000-00-00
28	Arizona	2020-10-10	0000-00-00
29	Aust-Agder	2020-09-05	0000-00-00
30	New Mexico	2020-11-01	0000-00-00
31		2020-05-09	0000-00-00
32	Texas	2020-11-11	0000-00-00
33 24	Xinjiang	2020-11-28	0000-00-00
24 25	, ,	2020-03-26	0000-00-00
36		2020-03-26	0000-00-00
37		2020-03-26	0000-00-00
38		2020-03-26	0000-00-00
39		2020-03-26	0000-00-00
40		2020-03-26	0000-00-00
41		2020-03-26	0000-00-00
42		2020-03-26	0000-00-00
43		2020-03-26	0000-00-00
44		2020-03-26	0000-00-00
45		2020-03-26	0000-00-00
46		2020 00 20	0000-00-00
47		2020-03-20	0000-00-00
48		2020-03-20	
49		2020-03-20	
50		2020-03-20	0000-00-00
51		2020-03-20	0000-00-00
52		2020-03-20	0000-00-00
53		2020-03-20	0000-00-00
54		2020-03-26	0000-00-00
55		2020-03-26	0000-00-00
56		2020-03-26	0000-00-00
57		2020-03-26	0000-00-00
58		2020-03-26	0000-00-00
59		2020-03-26	0000-00-00
60		2020-03-26	0000-00-00

Minas Gerais Gao Antofagasta Antofagasta Antofagasta Antofagasta Antofagasta Adrar	Farm Desert	Mali
Adrar Adrar Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada Abu Dhabi	Desert drylake drylake drylake drylake drylake drylake drylake drylake drylake drylake drylake	Mauritania
Aust-Agder New Mexico Texas Xinjiang	Valle Al Mahbes Terry County desert	Albuquerque Texas
1		
------------	--	
2		
3		
1		
4		
5		
6		
7		
,		
8		
9		
10		
11		
11		
12		
13		
14		
15		
15		
16		
17		
18		
10		
19		
20		
21		
22		
22		
23		
24		
25		
20		
26		
27		
28		
20		
29		
30		
31		
32		
22		
22		
34		
35		
36		
27		
5/		
38		
39		
40		
10		
41		
42		
43		
44		
45		
45		
46		
47		
<u>/</u> 2		
+0		
49		
50		
51		

~			
3	2020-03-26	0000-00-00	
4	2020-03-26	0000-00-00	
5	2020-03-26	0000-00-00	
6	2020-03-26	0000-00-00	
7	2020-03-26	0000-00-00	
8	2020-03-26	0000-00-00	
9	2020-03-26	0000-00-00	
10	2020-03-26	0000-00-00	
11	2020-03-20	0000-00-00	
12	2020-03-20		
13	2020-03-20	0000-00-00	
14	2020-03-20	0000-00-00	
15	2020-03-20	0000-00-00	
16	2020-03-26	0000-00-00	
17	2020-03-26	0000-00-00	
18	2020-03-26	0000-00-00	
19	2020-03-26	0000-00-00	
20	2020-03-26	0000-00-00	
21	2020-03-26	0000-00-00	
22	2020-03-26	0000-00-00	
23	2020-03-26	0000-00-00	
24	2020-03-26	0000-00-00	
25	2020-03-26	0000-00-00	
26	2020-03-26	0000-00-00	
27	2020-03-20	0000-00-00	
28	2020-03-20		
29	2020-03-20	0000-00-00	
30	2020-03-20	0000-00-00	
31	2020-03-26	0000-00-00	
32	2020-03-26	0000-00-00	
33	2020-03-26	0000-00-00	
34	2020-03-26	0000-00-00	
35	2020-03-26	0000-00-00	
36	2020-03-26	0000-00-00	
37	2020-03-26	0000-00-00	
38	2020-03-26	0000-00-00	
39	2020-03-26	0000-00-00	
40	2020-03-26	0000-00-00	
41	2020-03-26	0000-00-00	
42	2020-03-26	0000-00-00	
43	2020-03-26	0000-00-00	
44	2020-03-26	0000-00-00	
45	2020-03-26	0000-00-00	
46	2020-03-26	0000-00-00	
47	2020 03 26		
48	2020-03-20		
49	2020-03-20	0000-00-00	
50	2020-03-26	0000-00-00	
51	2020-03-26	0000-00-00	
52	2020-03-26	0000-00-00	
53	2020-03-26	0000-00-00	
54	2020-03-26	0000-00-00	
55	2020-03-26	0000-00-00	
56	2020-03-26	0000-00-00	
57	2020-03-26	0000-00-00	
58	2020-03-26	0000-00-00	
50	2020-03-26	0000-00-00	
59	2020-03-26	0000-00-00	
00	2020 00 20		

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47	
48	
49 50	
50	
ו כ בי	
52 52	
22	
54	
55 56	
50	
50	
50	
27	
00	

0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	

1	
I	
2	
3	
4	
4	
5	
6	
7	
/	
8	
9	
10	
10	
11	
12	
12	
15	
14	
15	
16	
10	
17	
18	
10	
17	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
20	
20	
30	
31	
32	
22	
33	
34	
35	
26	
20	
37	
38	
39	
10	
40	
41	
42	
⊿2	
43	
44	
45	
46	
47	
4/	
48	
49	
50	
50	
51	
52	

Z		
3	2020-03-26	0000-00-00
4	2020-03-26	0000-00-00
5	2020-03-26	0000-00-00
6	2020-03-26	0000-00-00
7	2020-03-26	0000-00-00
8	2020-03-20	
9	2020-03-20	0000-00-00
10	2020-03-26	0000-00-00
11	2020-03-26	0000-00-00
12	2020-03-26	0000-00-00
13	2020-03-26	0000-00-00
14	2020-03-26	0000-00-00
15	2020-03-26	0000-00-00
16	2020-03-26	0000-00-00
17	2020-03-26	0000-00-00
18	2020-03-26	0000-00-00
19	2020-03-26	0000-00-00
20	2020-03-26	0000-00-00
21	2020-03-26	0000-00-00
22	2020-03-26	0000-00-00
23	2020-03-26	0000-00-00
24	2020-03-26	0000-00-00
25	2020-03-26	0000-00-00
26	2020-03-20	
27	2020-03-20	
28	2020-03-20	
29	2020-03-20	0000-00-00
30	2020-03-26	0000-00-00
31	2020-03-26	0000-00-00
32	2020-03-26	0000-00-00
33	2020-03-26	0000-00-00
34	2020-03-26	0000-00-00
35	2020-03-26	0000-00-00
36	2020-03-26	0000-00-00
37	2020-03-26	0000-00-00
38	2020-03-26	0000-00-00
39	2020-03-26	0000-00-00
40	2020-03-26	0000-00-00
41	2020-03-26	0000-00-00
42	2020-03-26	0000-00-00
43	2020-03-26	0000-00-00
44	2020-03-26	0000-00-00
45	2020-03-26	0000-00-00
46	2020-03-26	0000-00-00
47	2020-03-26	0000-00-00
48	2020-03-20	0000-00-00
49	2020-03-20	
50	2020-03-20	
51	2020-03-20	0000-00-00
52	2020-03-26	
53	2020-03-26	
54	2020-03-26	0000-00-00
55	2020-03-26	0000-00-00
56	2020-03-26	0000-00-00
57	2020-03-26	0000-00-00
58	2020-03-26	0000-00-00
59	2020-03-26	0000-00-00
60	2020-03-26	0000-00-00

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

1	
2 3	
4	
5	
6 7	
8	
9	
10	
12	
13	
14 15	
16	
17	
18	
20	
21	
22 23	
23	
25	
26 27	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38 39	
40	
41 42	
42 43	
44	
45 46	
47	
48	
49 50	
51	
52	
53 54	
55	
56 57	
57 58	
59	
60	

0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	
0000-00-00	

1	
ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	י ר
1	2 2
1	د ۸
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	- २
2	л Л
2	4 5
2	2
2	6 -
2	/
2	8
2	9
3	0
3	1
3	2
3	3
3	4
2	5
2 2	ر د
с ר	0
3	/
3	8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
-	2

Z			
3	2020-03-26	0000-00-00	
4	2020-03-26	0000-00-00	
5	2020-03-26	0000-00-00	
6	2020-03-26	0000-00-00	
7	2020 03 26		
8	2020-03-20	0000-00-00	
9	2020-03-26	0000-00-00	
10	2020-03-26	0000-00-00	
11	2020-03-26	0000-00-00	
12	2020-03-26	0000-00-00	
12	2020-03-26	0000-00-00	
13	2020-03-26	0000-00-00	
14	2020-03-26	0000-00-00	
15	2020-03-26	0000-00-00	
10	2020-03-26	0000-00-00	
17	2020-03-26	0000-00-00	
18	2020-03-20		
19	2020-03-20	0000-00-00	
20	2020-03-26	0000-00-00	
21	2020-03-26	0000-00-00	
22	2020-03-26	0000-00-00	
23	2020-03-26	0000-00-00	
24	2020-03-26	0000-00-00	
25	2020-03-26	0000-00-00	
26	2020-03-26	0000-00-00	
27	2020-03-26	0000-00-00	
28	2020-03-26	0000-00-00	
29	2020-03-26	0000-00-00	
30	2020-03-26	0000-00-00	
31	2020-03-26	0000-00-00	
32	2020-03-20		
33	2020-03-20	0000-00-00	
34	2020-03-20		
35	2020-03-20	0000-00-00	
36	2020-03-20	0000-00-00	
37	2020-03-26	0000-00-00	
38	2020-03-26	0000-00-00	
39	2020-03-26	0000-00-00	
40	2020-03-26	0000-00-00	
41	2020-03-26	0000-00-00	
42	2020-03-26	0000-00-00	
43	2020-03-26	0000-00-00	
44	2020-03-26	0000-00-00	
45	2020-03-26	0000-00-00	
46	2020-03-26	0000-00-00	
47	2020-03-26	0000-00-00	
48	2020-03-26	0000-00-00	
49	2020-03-26	0000-00-00	
50	2020-03-26	0000-00-00	
51	2020-03-20		
52	2020-03-20		
53	2020-03-20		
54	2020-03-26		
55	2020-03-26		
56	2020-03-26	0000-00-00	
57	2020-03-26	0000-00-00	
58	2020-03-26	0000-00-00	
59	2020-03-26	0000-00-00	
60	2020-03-26	0000-00-00	

2	
3	
4 5	
6	
7 o	
9	
10	
11 12	
13	
14 15	
15	
17	
18 19	
20	
21	
22 23	
24	
25 26	
20	
28	
29 30	
31	
32 33	
34	
35	
30 37	
38	
39 40	
41	
42 42	
43	
45	
46 47	
48	
49 50	
51	
52 52	
55 54	
55	
56 57	
58	
59	
60	

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26 2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00 0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00 0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

Meteoritics & Planeta	ry S	cien	ce

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40 41	
41 42	
4∠ ⊿२	
43 ⊿⊿	
44 45	
46	
47	
48	
49	
50	
51	

2			
3	2020-03-26	0000-00-00	
4 F	2020-03-26	0000-00-00	
5	2020-03-26	0000-00-00	
7	2020-03-26	0000-00-00	
/ Q	2020-03-26	0000-00-00	
0 0	2020-03-26	0000-00-00	
9 10	2020-03-26	0000-00-00	
10	2020-03-26	0000-00-00	
12	2020-03-26	0000-00-00	
13	2020-03-26	0000-00-00	
14	2020-03-26	0000-00-00	
15	2020-03-26	0000-00-00	
16	2020-03-26	0000-00-00	
17	2020-03-26	0000-00-00	
18	2020-03-26	0000-00-00	
19	2020-03-26	0000-00-00	
20	2020-03-26	0000-00-00	
21	2020-03-26	0000-00-00	
22	2020-03-26	0000-00-00	
23	2020-03-26	0000-00-00	
24	2020-03-26	0000-00-00	
25	2020-03-26	0000-00-00	
26	2020-03-26	0000-00-00	
27	2020-03-26	0000-00-00	
28	2020-03-26	0000-00-00	
29	2020-03-26	0000-00-00	
30	2020-03-26	0000-00-00	
3 I 2 2	2020-03-26	0000-00-00	
32 22	2020-03-26	0000-00-00	
21	2020-03-26	0000-00-00	
25	2020-03-26	0000-00-00	
36	2020-03-26	0000-00-00	
37	2020-03-26	0000-00-00	
38	2020-03-26	0000-00-00	
39	2020-03-26	0000-00-00	
40	2020-03-26	0000-00-00	
41	2020-03-26	0000-00-00	
42	2020-03-26	0000-00-00	
43	2020-03-26	0000-00-00	
44	2020-03-26	0000-00-00	
45	2020-03-26	0000-00-00	
46	2020-03-26	0000-00-00	
47	2020-03-26	0000-00-00	
48	2020-03-26	0000-00-00	
49	2020-03-26	0000-00-00	
50	2020-03-26	0000-00-00	
51	2020-03-26	0000-00-00	
52	2020-03-26	0000-00-00	
53	2020-03-26	0000-00-00	
54 E E	2020-03-26	0000-00-00	
55 56	2020-03-26	0000-00-00	
50 57	2020-03-26	0000-00-00	
57 58	2020-03-26	0000-00-00	
50	2020-03-26	0000-00-00	
60	2020-03-26	0000-00-00	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	
2020-03-26	0000-00-00	

2020-03-26

2020-03-26

2020-03-26

2020-03-26

2020-03-26

0000-00-00

0000-00-00

0000-00-00

0000-00-00

0000-00-00

Meteoritics & Planetary Science

1
2
3
4
5
ر د
6
7
8
9
10
10
11
12
13
14
15
15
16
17
18
10
20
20
21
22
23
24
24
25
26
27
28
20
20
30
31
32
33
34
25
55
36
37
38
39
10
40
41
42
43
44
15
45
46
47
48
40

2			
3	2020-03-26	0000-00-00	
4	2020-03-26	0000-00-00	
5	2020-03-26	0000-00-00	
0 7	2020-03-26	0000-00-00	
/ 0	2020-03-26	0000-00-00	
0 0	2020-03-26	0000-00-00	
9 10	2020-03-26	0000-00-00	
10	2020-03-26	0000-00-00	
12	2020-03-26	0000-00-00	
13	2020-03-26	0000-00-00	
14	2020-03-26	0000-00-00	
15	2020-03-26	0000-00-00	
16	2020-03-26	0000-00-00	
17	2020-03-26	0000-00-00	
18	2020-03-26	0000-00-00	
19	2020-03-26	0000-00-00	
20	2020-03-26	0000-00-00	
21	2020-03-26	0000-00-00	
22	2020-03-26	0000-00-00	
23	2020-03-26	0000-00-00	
24	2020-03-26	0000-00-00	
25	2020-03-26	0000-00-00	
26	2020-03-26	0000-00-00	
27	2020-03-26	0000-00-00	
28	2020-03-26	0000-00-00	
29	2020-03-26	0000-00-00	
30	2020-03-26	0000-00-00	
31	2020-03-26	0000-00-00	
32	2020-03-26	0000-00-00	
33 24	2020-03-26	0000-00-00	
24 25	2020-03-26	0000-00-00	
36	2020-03-26	0000-00-00	
37	2020-03-26	0000-00-00	
38	2020-03-26	0000-00-00	
39	2020-03-26	0000-00-00	
40	2020-03-26	0000-00-00	
41	2020-03-26	0000-00-00	
42	2020-03-26	0000-00-00	
43	2020-03-26	0000-00-00	
44	2020-03-26	0000-00-00	
45	2020-03-26	0000-00-00	
46	2020-03-26	0000-00-00	
47	2020-03-26	0000-00-00	
48	2020-03-26	0000-00-00	
49	2020-03-26	0000-00-00	
50	2020-03-26	0000-00-00	
51	2020-03-26	0000-00-00	
52	2020-03-26	0000-00-00	
Σ 5 7	2020-03-26	0000-00-00	
54 55	2020-03-26	0000-00-00	
55 56	2020-03-26	0000-00-00	
50 57	2020-03-26	0000-00-00	
57 58	2020-03-26	0000-00-00	
50 59	2020-03-26	0000-00-00	
60	2020-03-26	0000-00-00	

2	
3	
Δ	
5	
2	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
17	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
31	
25	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
79	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	

	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	000-00-00		
	2020-03-26	000-00-00		
	2020-03-26	000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	0000-00-00		
	2020-03-26	000-00-00		
	2020-03-26	0000-00-00		
Yazd	2020-11-02	0000-00-00	Yazd	desertic surfa
Liaoning	2020-05-23	0000-00-00	Liaoning	farmland
Baluchista	n 2020-02-23	0000-00-00	Baluchistan	
	2020-08-08	0000-00-00		Desert

1							
2							
3	tbl_date	tbl_lat	tbl_long	tbl_mass	tbl_pieces	tbl_class	tbl_shock
4	2019 Nov	27°30'42.7"N	3°56'54.7"E	620.0	several	CV3	S3
5	Sep 2017	27°54'39.16"N	0° 7'43.33"E	14282.5	38	H4	S3
6	Sep 2017	27°41'50.01"N	0° 5'26.70"E	2468.5	1	L5	S3
7	Sep 2017	27°57'54.78"N	0° 8'40.42"E	1564	9	H5	S3
8	Sep 2017	27°51'43.86"N	0° 3'26.17"E	2226	19	H5	S3
9	Sep 2017	27°31'9.19"N	0°10'32.33"E	210.3	1	L5/6	S2
10	Sep 2017	27°37'16 66"N	0° 1'5 75"E	147	1	H4	S3
11	Sep 2017	27°40'57 97"N	0° 5'50 80"F	412	1	15	S2
12	Sep 2017	27°36'59 86"N	0° 8'10 94"E	82	1	15	S3
13	2020	29°04'48"N	8°51'26"W	20.96	1	Acapulcoite	00
14	2019 Aug 20	27°01'27 59"N	9°44'39 59"W	~1300	Many	16	\$3
15	1002-1003	27 0127.00 1	10 44 00.00 11	2303	2		S1
16	2009			2505 95 8	1	Iron IID	01
17	2003			276 1	1	Iron IIIAB	
18	2012 2004 Jun 12	26052 25210	174º49 262'E	1202.65	1		
19	2004 Juli 12	30 33.35Z 3	174 40.302 E	1502.05	1	LU Eucrite br	low
20	2019	27.00U IN		105.0	1	Eucrite-bi	IOW
21	2019 Dec 20	2/ 5248.// N	10 25 06.42 V	230	1		
22	Defore July 20			10000	1		1
23	2018 Jan	0°3.555'N	39°6.45'E	97000	1	Iron, IIF	IOW
24	2012 Dec 26	27°27'50.81"S	117-50-37.82	2080	2	LL6	54
25	2012	43°54'09.2"N	93°12'13.2"E	1200	3	EL/	
20	Oct 2015	~41°19'N	~105°20'E	3920	1	L~6	
27	2015 Aug 8	41°24.061'N	118°13.198'W	27.5	1	H3-4	S3
20	2015 Aug 9	41°24.207'N	118°13.478'W	9.9	1	H3-4	S2
29	2018 Sep 27	41°23.3'N	118°7.8'W	4.4	1	H4	S2
31	1989	48°24'06.4"N	9°46'01.3"E	30670.0	2	H4-5	S2
32	2017	33.13734°N	57.04487°E	56000	2	L6	
32	2016-Oct-17	22°21.521'S	068°35.335'W	140	1	CR2	low
34	2017-Aug-27	22°25.615'S	068°39.164'W	442.6	1	Iron, IIAB	
35	30 Mar 2019	22°27.42'S	68°48.93'W	20	5	L6	S3
36	30 Mar 2019	22°27.70'S	68°49.61'W	141.8	1	H5	S2
37	20 Oct 2019	22°29.73'S	68°52.03'W	137	1	H5	S1
38	24 Mar 2019	22°28.88'S	68°48.00'W	1115	Many	L6	S2
39	18 Oct 2018	22°21.82'S	68°36.34'W	17	1	L5	S3
40	18 Oct 2019	22°29.05'S	68°48.17'W	220	Many	H3	S4
41	2019 Mar 30	22°29.320'S	68° 53.347'W	443	1	Diogenite	
42	2017 Oct 19	22°26.569'S	68°37.983'W	175.26	1	H4	S2
43	2017 Oct 14	22°22.855'S	68°35.996'W	1686.00	1	LL5	S2
44	2017 Oct 14	22°24.362 S	68°34.391 W	44.34	1	H4	S3
45	2017 Oct 24	22°27.941'S	68°38.858'W	148.52	2	H4	S1/2
46	9 Apr 2018	22°25.39'S	68°38.26'W	42.3	1	H5	S1
47	19 Oct 2019	22°8 50'S	68°37 37'W	2850	many	Diogenite-pm	-
48	16 Oct 2019	22°26 93'S	68°37 98'W	238 1	many	H5	S1
49	16 Oct 2019	22°26 67'S	68°38 51'W	114	4	H5	S1
50	2017 Oct 19	22°26 854'S	68°36 489'\//	1486	1	H(I)3	S2/3
51	30 Oct 2019	22 20.004 0 22°27 80'S	68°59 85'\\/	93.6	1	H5	S1
52	2018 Oct 27	22°28 25'9	68°51'\\\/	36.13	1	CO3	51
53	10 Oct 2010	22 20.200 22°10 21'9	68°37 17'\\/	37	1	H5	S1
54	20 Oct 2019	22 10.013 22°19 00'9	68°10 07.17 VV	67	1	15	S1
55	29 001 2019	22 10.90 3	00 40.02 VV	205	I 51		34
56		22 29.100		∠U3 405	บ 1		<u>6</u> 2
57	22 JULY 2018	22 20.100		400	ა ი		32
58	30 September	22-25.385	00°40.51W	∠40 220	3		52
59	15 Uctoper 20	22-29.355	00°51.26W	330	1		১ ৩
60	2018 Jul 22	22 26.365	08°49.53W	19	ა	L4	51

1							
2							
3	11 November	22°29.14S	68°51.51W	340	1	H5	S1
4	14 July 2018	22°26.11S	68°50.18W	54	2	H5	S3
5	30 September	22°26.01S	68°48.42W	40	3	L6	S3
0	17 September	22°26.34S	68°48.57W	110	3	H4	S2
7 8	17 Oct 2019	22°26.17'S	68°38.27'W	68	1	L5	S3
0	19 Oct 2019	22°8.21'S	68°37.23'W	160	1	L6	S4
10	19 Oct 2019	22°9.81'S	68°37.66'W	40	3	H5	S1
10	18 Oct 2019	22°27.26'S	68°49.08'W	30	1	L6	S1
12	16 Oct 2019	22°27.46'S	68°37.07'W	12	1	H6	S1
13	18 Oct 2019	22°27.98'S	68°49.29'W	18	1	L6	S3
14	18 Oct 2019	22°27.42'S	68°49.22'W	18	1	H3	S1
15	18 Oct 2019	22°27.47'S	68°49.21'W	55	1	L5	S2
16	8 Apr 2018	22°15.55'S	68°30.46'W	191	1	L5	S3
17	14 Oct 2018	22°26.16'S	68°45.02'W	640	2	H6	S1
18	28 Mar 2019	22°27.24'S	68°49.16'W	780	Many	H5	S2
19	19 Oct 2019	22°8.45'S	68°37.62'W	53	1	LL5	S1
20	19 Oct 2019	22°8.84'S	68°37.84'W	54	1	H5	S1
21	29 Oct 2019	22°16.54'S	68°38.69'W	28.4	1	L6	S3
22	30 Mar 2019	22°27.34'S	68°49.10'W	63	Many	L6	S3
23	9 Apr 2018	22°24.88'S	68°37.61'W	356	2	L6-melt brecc	iS2
24	10 Oct 2018	22°28.92'S	68°47.94'W	13.5	1	H5	S2
25	17 Oct 2019	22°27.21'S	68°38.15'W	3.85	1	H5	S3
20	17 Oct 2019	22°27.20'S	68°38.48'W	61.35	2	H6	S2
27	19 Oct 2019	22°28.57'S	68°50.66'W	800	1	L6	S2
20	19 Oct 2019	22°28.45'S	68°50.65'W	3380	many	H5	S1
30	01 Apr 2019	22°29.19'S	68°44.24'W	15.6	1	H5	S2
31	01 Apr 2019	22°28.36'S	68°45.44'W	96.5	1	L5	S1
32	17 Oct 2019	22°27.12'S	68°38.18'W	173	5	L6	S4
33	19 Oct 2019	22°8.11'S	68°37.31'W	362	2	H5	S1
34	20 Oct 2019	22°29.10'S	68°50.21'W	79	1	H5	S1
35	30 Mar 2019	22°27.65'S	68°49.27'W	/1./	2	L5	S2
36	30 Mar 2019	22°27.72'S	68°49.27'W	13.08	2	L5	S3
37	30 Mar 2019	22°27.63'S	68°49.24'W	164.6	2	H5	S1
38	30 Mar 2019	22°28.68'S	68°49.17'W	104.8	6	H5	S1
39	1 Apr 2019	22°29.31'S	68°48.40'W	50	4	H5	S2
40	16 Oct 2019	22°27.19'S	68°38.64'W	219.7	many	H5	S1
41	20 Oct 2019	22°27.90'S	68°51.16'W	80	1	H5	S1
42	20 Oct 2016	21°34.97'S	69°38.48'W	1	1	L5	S1
43	21 Oct 2016	21°35.47'S	69°37.63'W	102	many	L5	S2
44	24 Oct 2016	21°35.44'S	69°38.28'W	22	1	H5	S1
45	25 Oct 2016	21°33.36'S	69°39.24'W	37	1	H5	S1
40	26 Oct 2016	21°34.65'S	69°36.90'W	9	1	H5	51
48	20 Oct 2016	21°35.18'S	69°38.30'W	51	2	H5	S1
49	20 Oct 2016	21°35.70'S	69°37.72'W	75	1	H5	S2
50	21 Oct 2016	21°34.34'S	69°37.83'W	3.5	1	L5	S1
51	24 Oct 2016	21°37.00'S	69°37.13'W	21.6	Many	H5	S1
52	23 Oct 2016	21-35.735	69°37.89'W	3.0	1	L5	51
53	20 Oct 2016	21-35.23 5	69°38.02'W	5	1	LO	51
54	22 UCT 2016	21 35.27 5	09'38.1/W	3.5	1		52
55	23 UCT 2016	21 30.735	09'31.18'W	2.1	1	L5	52
56	25 UCT 2016	21 30.54 5	09'31.58'W	1.2	1		53
57		24 14.016'S		1007	1		
58	2018 Dec	24°08.781'S	70°21.324'W	3319	1	LLb	
59		24°11.988'W	70°18.283'W	080	1	LO	
60	2018 Apr 14	24°11'32.4"S	70°21'30.5"W	14118	712	H5	

2							
3	2018 Dec	24°17.678'S	70°19.746'W	1046	1	L3	
4	2020 Apr 27	24°15'S	70°31'W	1590	1	Achondrite-un	
5	2007 Apr 24	30°19'S	126°37'E	49.28	1	H6	S3
6	1941	38°36.432'N	103°0.087'W	18370	1	H6	C-S3
7	22 Nov. 2017	25°14'S	69°43'W	13.9	1	H5	
8	22 Nov. 2017	25°14'S	69°43'W	17.7	1	L5/6	
9	12 Nov. 2017	25°14'S	69°43'W	29.9	1	H5	
10	22 Nov 2017	25°14'S	69°43'W	12	1	16	
11	22 Nov 2017	25°14'S	69°43'W	14.3	1	H6	
12	2019 Nov 07	25°14'S	69°43'W	159	1	116	
13	2016 Nov 03	24°56'27 5"S	69°44'18 8"\W	232	1	H4	
14	2010 Nov 00	25°14'S	60°43'\\\/	202	1	H6	
15	2017 Nov 08	20 14 0 24°55'36 8"S	60°47'56 7"\\\/	185	1	H5	
16	2017 NOV 00 2010 Sen 30	25 030313°S	60 723858°\\/	158 7	1	H5	
17	2010 Sep 30	25.059515 5	60 711/13°W	130.7	1		
18	2010 Sep 30	23.001942 3	60 775555°W	432.1	1		
19	2014 Dec 20	24.91401407	60°42'50 4"W	420	1		
20	2016 Oct 04	24 00 22.9 3	09 42 30.4 W	429	1		
21	2019 NOV 25	24 50 29.9 5	69 44 35.4 W	4350	40	HO	
22	2019 NOV 25	24 50 21.3 5	69 44 05.4 W	593	0	HO	
23	2019 NOV 27	24°54'44.9"S	69°47'12.3"W	12	1	H5	00
24	1 Jan 2020	44°49'44"N	10°58'20"E	55.3	2	L5-an	S2
25	5 Apr 2018	22°29.76'S	69°8.86'W	1520	Many	L5	S2
20	17 Oct 2018	22°29.49'S	69°6.72'W	95	1	H6	S2
27	2 Apr 2019	22°29.08'S	69°7.49'W	62.5	1	H5	S2
20	27 Oct 2018	22°29.46'S	69°07.57'W	5	1	H4-an	S1
30	22 Oct 2019	22°28.96'S	69°2.72'W	206	1	LL6	S1
31	28 Oct 2019	22°29.28'S	69°8.88'W	251	1	LL5	S1
37	21 Oct 2019	22°29.37'S	69°8.20'W	13	1	L(H)3	S3
32	21 Oct 2019	22°29.39'S	69°7.80'W	20	1	H5	S1
34	2018 Oct 13	22°29.86'S	69°2.66'W	55	1	L6	
35	29 Mar 2018	22°29.23'S	69°6.51'W	175	1	H5	S2
36	31 Mar 2018	22°29.37'S	69°10.15'W	361	1	H5	S1
37	1 Apr 2018	22°29.87'S	69°8.07'W	590	1	H5	S2
38	4 Apr 2018	22°28.70'S	69°6.51'W	324	many	H5	S1
39	16 Oct 2018	22°29.62'S	69°14.75'W	36.7	1	L5	S2
40	19 Oct 2018	22°28.77'S	69°7.79'W	1200	1	H6	S1
41	19 Oct 2018	22°28.68'S	69°7.80'W	1455	many	H5	S3
42	24 Oct 2018	22°29.00'S	69°7.87'W	625	1	H5	S1
43	22 Oct 2019	22°28.98'S	69°3.30'W	107.4	1	L6	S1
44	30 Oct 2019	22°28.81'S	69°0.83'W	1500	1	L6	S1
45	28 Oct 2019	22°29.70'S	69°7.70'W	46	1	L5	S1
46	28 Oct 2019	22°28.89'S	69°10.67'W	72.5	1	H5	S1
47	2018 Oct 13	22°29.86'S	69°2.66'W	9.29	1	L6	
48	2018 Oct 24	22°29.65'S	69°8.98'W	247.8	1	L6	
49	31 Mar 2018	22°29.38'S	69°10.18'W	86	1	H5	S1
50	04 Apr 2018	22°28 68'S	69°6 28'W	43	1	H5	S1
51	12 Oct 2018	22°29 56'S	69°8 04'W	163.3	2	H5	S1
52	19 Oct 2018	22°29 10'S	69°8 10'W	1080	Many	15	S3
53	2018 Oct 20	22°29 97'S	69°2 37'W	12 7	1	116	00
54	2018 Mar 18	22°29 969'S	69°10 181'\//	1270	1	14	S1
55	18 Oct 2010	22 20.000 0 22°20 12'9	60°15 72'\\\/	338	2	L-+ H6	53
56	25 Oct 2019	22 23.13 3 22°28 80'9	60°11 02'\//	207.2	- 1	16	53
57	21 Oct 2019	22 20.03 0 22°20 65'9	60°7 65'\//	Δ01.2 ΛΛ	1	16	S1
58	17 Oct 2019	22 23.03 3 22°20 27'9	60°0 36'\//	- - 26	1	L0 H6	S1
59	3 Apr 2019	22 23.01 3 22°22 02'5	60°5 35'\//	2500	Many	16	01 02
60	5 API 20 10	22 20.933	US 3.33 W	2000	wany	LU	33

Meteoritics & Planetary Science

1							
2							
3	19 Oct 2018	22°29.07'S	69°7.52'W	2570	Many	H4	S1
4	21 Oct 2019	22°28.97'S	69°8.31'W	45	1	L6	S1
5	21 Oct 2019	22°29.65'S	69°7.71'W	26	1	L6	S1
6	22 Oct 2019	22°28.96'S	69°2.45'W	58	1	L5	S1
7	24 Oct 2019	22°29.13'S	69°12.63'W	21	1	L6	S2
8	24 Oct 2019	22°29.36'S	69°12.00'W	4.3	1	H6	S1
9	24 Oct 2019	22°29.35'S	69°12.17'W	47.6	1	H5	S2
10	24 Oct 2019	22°29.43'S	69°8.92'W	12.9	1	L5	S2
11	24 Oct 2019	22°29.39'S	69°8.64'W	36.5	1	H6	S1
12	30 Mar 2018	22°29 96'S	69°2 04'W	85.5	1	15	S6
13	22 Oct 2019	22°28 74'S	69°2 22'W	80	1	H5	S2
14	22 Oct 2019	22°28 91'S	69°3 13'W	76	1	16	S2
15	24 Oct 2019	22°29 49'S	69°12 24'W	59	1	L0 H5	S3
16	17 Oct 2018	22°20,40°C	69°2 17'\\/	72	1	14	S3
17	30 Mar 2018	22 20.00 0	60°0 001'\\\	67.8	1	13	S1
18	28 Mar 2018	22 21.02 0 22°28 00'S	60°2 /1'\\/	1712	Many	L5 H5	S1
19	20 Mar 2010	22 20.99 0	60°1 06'W	1712	Many	16	01 01
20	20 Mar 2010	22 20.00 3	09 1.90 W	1020	Many		01 60
21	30 Mai 2010	22 29.99 3	09 2.07 W	5100			52
22	17 Oct 2019	22 29.5 5	09 8.14 W	56			51
25	17 Oct 2019	22,29.58,5	69°7.61 W	51	2	LO	53
24	27 Mar 2019	22°29.76'S	69°2.26 W	79	1	Lo	S4
23	5 Apr 2018	22°29.84'S	69°7.88'W	203	1	H3	S2
20	21 Oct 2018	22°29.94'S	69°10.40'W	202	1	H3	S1
27	21 Oct 2019	22°29.47'S	69°7.83'W	26.5	1	L6	S1
20	21 Oct 2019	22°29.46'S	69°7.68'W	27	1	H5	S1
30	21 Oct 2019	22°29.25'S	69°7.71'W	23.5	1	H5	S1
31	17 Oct 2018	22°29.93'S	69°2.02'W	198	1	L6	S3
37	21 Oct 2019	22°29.46'S	69°7.68'W	24.3	1	L6	S1
32	25 Oct 2019	22°29.24'S	69°9.55'W	73	1	H5	S3
34	25 Oct 2019	22°29.63'S	69°11.22'W	10	1	H5	S2
35	17 Oct 2018	22°29.88'S	69°2.38'W	49	1	L5	S5
36	23 Mar 2019	22°29.68'S	69°10.80'W	1310	many	H5	S3
37	31 Mar 2019	22°28.93'S	69°2.97'W	1650	many	H5	S1
38	2018 Jun 10	27°06'45.02"N	11°10'25.2"W	779	many	C3.00-ung	
39	2019	27°14.39' N	011° 40.12'W	249	1	CO3	C-S2
40	P 2020 Mar	27° 7'40.65"N	11°12'33.33"V	244	1	ureilite	low
41	2018 May 13	34°15.396'N	115°47.188'W	/>1100	>150	LL3	S2
42	19 Oct 2019	22°8.34'S	69°37.73'W	168	2	H5	S2
43	15 Oct 2019	22°29.57'S	69°52.71'W	322	2	H5	S3
44	2013 Oct 16	40°25.924'N	116°30.754'W	2.47	2	H4	S2
45	2013 Oct 22	40°25.754'N	116°30.729'W	6.4	1	H4	S2
46	2019	31.25483°N	59.04573°E	3500	1	H6	
47	2017	-86,2629	-165.056	44.69	1	L5	
48	2017	-86.2636	-165.055	1.38	1	 H5	
49	2010 Nov	18°49 60	54°43 33	14.5	1	16	S2
50	2010	19°8 860'N	54°39 316'E	111	3	16	S2
51	2010	18°36 424'N	54°6 637'E	122	1	16	S2
52	2009	10°7 755'N	54°36 ∩36'⊑	40	1	LU H4	S2
53	2003	18°42 557'N	54°21 Q0//E		1	н т Н5	S2
54	2003	10 72.007 IN	54°10 470'E	6	1	CM2	Q2 Q1
55	2010	10 2 1.030 IN	54°45 2221	0	i many		60
56	2009	19 10.100 N	04 40.202 E	∠ 11 5270	1		32 62
57	2011 Dec 0	10 40 43.0 N	167 046	5270	1	L0/0	33
58	2010	-00.0002	107.240	02.191 25.0	1	CO3	
59	2018	-05.0294	100.900	30.9	1	003	
60	2018	-85./	167.121	03.445	1	003	

1							
2							
3	2018	-85.6514	167.23	15.92	1	Lunar (bas. br	
4	2018	-85.656	167.251	25.065	1	Lunar (bas. br	
5	2018	-85.6505	167.105	8.33	1	Eucrite-br	
0	2016	38°12'08"N	92°50'32"E	30.2	1	L5	S4
7 8	2018 Dec 12	38°26'15.05"N	92°29'59.14"E	25000	over 20	H4	
9	2019 Dec	25.229°N	08.624°W	12164	1	Eucrite-unbr	low
10	14 Nov. 2017	24°43.72'S	70°21.67'W	39.5	1	L6	
10	14 Nov. 2017	24°51'S	70°32'W	36.3	1	L6	
12	16 Nov. 2017	24°37.73'S	70°17.68'W	27.9	1	H5	
13	16 Nov. 2017	24°38.72'S	70°17.67'W	118.1	1	H5/6	
14	14 Nov. 2017	24°43.38'S	70°21.28'W	8.2	1	H5	
15	15 Nov. 2017	24°39.29'S	70°17.85'W	14.6	1	H5/6	
16	14 Nov. 2017	24°44.85'S	70°21.97'W	87.7	1	L5	
17	14 Nov. 2017	24°51'S	70°32'W	43.9	1	H5	
18	16 Nov. 2017	24°38.89'S	70°17.73'W	125	1	H5	
19	16 Nov. 2017	24°38.64'S	70°17.83'W	35.7	1	L6	
20	14 Nov. 2017	24°46.13'S	70°21.67'W	27.6	1	H5	
21	15 Nov. 2017	24°43.30'S	70°20.35'W	18.4	1	H5	
22	15 Nov. 2017	24°39.36'S	70°18.00'W	2.2	1	L5	
23	15 Nov. 2017	24°39.39'S	70°17.96'W	24	1	H6	
24	15 Nov. 2017	24°39.54'S	70°17.87'W	13.3	1	H5	
25	15 Nov. 2017	24°39.41'S	70°17.98'W	13	1	H5	
26	15 Nov. 2017	24°39.38'S	70°17.96'W	22.8	1	H5	
27	15 Nov. 2017	24°39.46'S	70°17.98'W	14.3	1	H5	
28	15 Nov. 2017	24°39.32'S	70°17.96'W	19.5	1	H6	
29	15 Nov. 2017	24°39.46'S	70°17.98'W	15	1	L6	
30	2017 Jun 19	24°49'08.3"S	70°03'05.8"W	54	1	L6	
31	14 Nov. 2017	24°44.75'S	70°21.49' W	167	1	EL6	
32	2019 Nov 05	24.665°S	70.289°W	410	1	LL5	
33 24	2017 May 17	24°48'36.5"S	70°04'13.8"W	48	1	L6	
24 25	2017 Nov 07	24°47'29.6"S	70°00'31.8"W	73	1	L6	
35	2017 Nov 06	24°51'S	70°32'W	194	1	H5	
37	2017 May 17	24°46'50.2"S	70°03'29.2"W	916	4	H5	
38	2017 Nov 07	24°51'S	70°32'W	94	1	L6	
39	2017 May 18	24°47'54.5"S	70°04'42.2"W	551	1	H5	
40	2017 May 18	24°47'17.4"S	70°03'47.9"W	927	1	H5	
41	2017 May 18	24°51'S	70°32'W	28	1	L6	
42	2017 May 18	24°51'S	70°32'W	30	1	L6	
43	2017 Jun 19	24°51'S	70°32'W	48	1	L6	
44	2017 Jun 19	24°51'S	70°32'W	12	1	16	
45	2017 Nov 07	24°51'S	70°32'W	34	1	16	
46	2019 Jan 10	24°46'12 1"S	70°06'27 9"W	666	1	H5	
47	2020	24°40 572'S	70°17 778'W	389	1	H5	S2
48	2020	24°41 080'S	70°18 340'W	298.9	1	H5	S2
49	2020	24°40 634'S	70°18 508'W	40	1	16	S2
50	2019 Jan 10	24°48'01 3"S	70°05'53 6"W	1705	1	H5	02
51	2016 Nov 04	24°51'S	70°32'W	3071	1	CO3	
52	2019 Jan 09	24°51'S	70°32'W	7090	1	CO3	
53	2019 Jan 10	24°51'S	70°32'W	5225	1	CO3	
54	2016	-76 2512	156 402	181 58	1	15	
55	2016	-76 2364	156 693	220 52	1	<u></u> H5	
56	2016	-76 2362	156 520	265 32	1	16	
57	2016	-76 2386	156 520	251 98	1	15	
58	2016	-76 2601	156 427	84.05	1		
59	2016	-76 2/1	156 38	90 47	1	16	
60	2010	-10.241	100.00	30.47	I	LU	

1						
2						
3	2016	-76.2552	156.391	105.74	1	L6
4	2016	-76.2392	156.544	114.33	1	H6
5	2016	-76,2553	156.39	90.89	1	L6
6	2016	-76.2514	156.401	102.81	1	L5
7	2016	-76 2402	156 535	79 77	1	15
8	2016	-76 2765	156 526	82.66	1	16
9	2016	-76 2405	156 367	52.06	1	15
10	2010	76 2572	156 / 1/	110 60	1	15
11	2010	76 2483	156 375	55 65	1	15
12	2010	76 256	150.375	55.05 60.50	1	
13	2010	76 2407	150.4	00.08	1	
14	2010	-70.2497	150.400	217.32	1	
15	2010	-70.230	150.410	337.03	1	
16	2016	-/6.26/4	150.508	160.72	1	Нб
17	2016	-76.256	156.416	122.28	1	L5
18	2016	-76.253	156.384	91.59	1	LG
19	2016	-76.2593	156.409	59.48	1	L6
20	2016	-76.2566	156.36	60.46	1	L6
21	2016	-76.2548	156.359	24.7	1	L6
22	2016	-76.2574	156.361	22.92	1	L6
23	2016	-76.2578	156.389	31.92	1	L6
24	2016	-76.2523	156.365	17.63	1	L6
25	2016	-76.2708	156.423	55.68	1	L5
26	2016	-76.2514	156.357	28.11	1	L6
27	2016	-76.2535	156.352	27.7	1	L5
28	2016	-76.257	156.387	18.35	1	L6
29	2016	-76.2478	156.389	30.53	1	L6
30	2016	-76.2878	156.35	70.57	1	H4
31	2016	-76.2398	156.377	80.67	1	L6
32	2016	-76.2359	156.508	38.038	1	H5
33	2016	-76.2399	156.386	28.222	1	L6
34 25	2016	-76.2767	156.45	42.693	1	L6
35	2016	-76.2674	156.415	25.317	1	L6
30 27	2016	-76.2548	156.345	17.719	1	L5
27 20	2016	-76 2506	156 386	36 684	1	16
20	2016	-76 2367	156 516	46 706	1	H5
40 29	2016	-76 2706	156 44	24 66	1	15
40 //1	2016	-76 2541	156 352	61 273	1	15
42	2016	-76 2675	156 44	11 545	1	16
42	2010	-76 261	156 30	13.26	1	15
43	2010	76 2561	156 408	12 /7/	1	15
45	2010	76 2519	156 366	12.474	1	
46	2010	76 2526	150.300	14.00	1	1 4
47	2010	-70.2000	150.550	14.042	1	
48	2010	-70.2322	150.353	20.009	1	
49	2010	-70.2399	150.397	29.730	1	
50	2016	-70.2530	150.387	19.483		LO
51	2016	-76.252	156.387	22.840		L5
52	2016	-76.2672	156.441	16.473	1	L6
53	2016	-/6.2404	150.367	17.50	1	Lb
54	2016	-/6.2513	156.398	22.67	1	L5
55	2016	-76.2537	156.345	23.33	1	L5
56	2016	-76.2311	156.559	18.08	1	L5
57	2016	-76.2507	156.392	19.77	1	L5
58	2016	-76.2435	156.379	23.58	1	L6
59	2016	-76.2513	156.355	20.28	1	L5
60	2016	-76.2408	156.494	17.77	1	H6

Meteoritics & Planetary Science

1						
2						
3	2016	-76.2406	156.558	6.7	1	H6
4	2016	-76.252	156.361	8.282	1	L5
5	2016	-76.2664	156.45	10.314	1	L5
6	2016	-76.267	156.441	9.71	1	L5
7	2016	-76.2496	156.373	5.645	1	L6
8	2016	-76.2802	156.355	14,145	1	LL6
9	2016	-76 2399	156 463	16 205	1	H6
10	2016	-76 2491	156 4	7 617	1	H6
11	2016	-76 2665	156 441	21 465	1	15
12	2016	-76 2558	156 41	25 194	1	15
13	2010	-76 2523	156 405	7 645	1	15
14	2010	-76 2374	156 564	22 28	1	L5 H5
15	2010	76 2527	156 208	20.46	1	16
16	2010	-10.2001	150.590	20.40	1	
17	2010	-70.2300	150.522	JZ.Z	1	
18	2016	-70.2002	100.00	9.99	1	
19	2016	-70.2470	150.539	11.20	1	LO
20	2016	-76.2414	156.527	9.25	1	H6
21	2016	-76.2553	156.39	9.07	1	L5
22	2016	-76.248	156.576	10.4	1	L5
23	2016	-76.2461	156.539	10.65	1	L5
24	2016	-76.2802	156.355	16.19	1	H4
25	2016	-76.2524	156.352	18.09	1	L6
26	2016	-76.2658	156.454	13.97	1	L6
27	2016	-76.2564	156.395	16.51	1	L5
28	2016	-76.2539	156.381	12.67	1	L6
29	2016	-76.2675	156.44	17.44	1	L5
30	2016	-76.2535	156.359	12.41	1	L5
31	2016	-76.2521	156.387	9.84	1	L5
32	2016	-76.2679	156.351	10.51	1	L5
33	2016	-76.2529	156.383	6.475	1	L5
34 25	2016	-76.2541	156.553	4.541	1	L5
25 26	2016	-76.2392	156.363	14.865	1	L6
30 27	2016	-76.2553	156.39	12.85	1	L6
27 20	2016	-76.2306	156.505	29.755	1	 Н6
30	2016	-76 2396	156 364	8 725	1	15
39 40	2016	-76 2409	156 449	18 058	1	15
40	2016	-76 2546	156 346	10.325	1	15
47	2016	-76 2514	156 347	12 604	1	15
42	2010	-76 2345	156 515	4 65	1	H6
43	2010	76 250	156 301	3 72	1	16
45	2010	76 256	156.4	5.72	1	
46	2010	-70.200	150.4	2.40	1	
47	2010	-70.2029	150.364	3.00	1	
48	2016	-70.2534	150.304	0.2	1	
49	2016	-70.203	150.305	2.53	1	LO
50	2016	-76.2414	156.534	4.24	1	L6
51	2016	-76.2542	156.35	4.22	1	L5
52	2016	-76.2506	156.388	4.47	1	LG
53	2016	-76.2403	156.502	2.87	1	H6
54	2016	-76.2353	156.518	3.76	1	H6
55	2016	-76.2556	156.548	3.13	1	H5
56	2016	-76.2535	156.548	4.03	1	L5
57	2016	-76.2544	156.35	3.48	1	L6
58	2016	-76.2657	156.454	2.47	1	L6
59	2016	-76.2509	156.549	2.46	1	H6
60	2016	-76.2547	156.345	4.15	1	L6

Runni	na F	lead
num	ing i	icuu

Page 450	of	686
Tage 450	01	000

1						
2						
3	2016	-76.2348	156.52	1.48	1	H6
4	2016	-76.2404	156.501	1.2	1	H6
5	2016	-76.2459	156.538	1.67	1	L4
6	2016	-76.24	156.51	2.05	1	L6
7	2016	-76.2352	156.532	2.24	1	LL5
8	2016	-76.2342	156.502	3.17	1	H6
9	2016	-76.2347	156.517	2.15	1	H6
10	2016	-76.2576	156.403	2.26	1	L6
11	2016	-76.2566	156.587	1.36	1	H5
12	2016	-76.2403	156.502	2.49	1	H6
13	2016	-76.2544	156.392	3.619	1	L6
14	2016	-76.2547	156.345	6.48	1	L6
15	2016	-76.2511	156.349	5.754	1	L5
10	2016	-76.2401	156.362	4.757	1	 L6
17	2016	-76.2388	156.507	6.409	1	L3.5
10	2016	-76.2524	156.349	8.468	1	L6
20	2016	-76 2518	156 354	5 456	1	16
20	2016	-76 2443	156 378	3 265	1	16
22	2016	-76 2524	156.4	4 067	1	15
23	2016	-76 2596	156 397	3 869	1	16
24	2016	-76 2541	156 546	3.63	1	15
25	2016	-76 2464	156 541	1.9	1	H6
26	2010	76 2520	156 35	2.43	1	16
27	2016	-76 2505	156 539	3.5	1	L0 H6
28	2010	76 2460	156 54	2.58	1	Не
29	2010	76 2347	156 518	2.30	1	16
30	2010	76 2679	156.42	1.41	1	
31	2010	-70.2070	150.45	3.97	1	
32	2010	76 2529	150.494	2.42	1	Aconulcoito
33	2010	76 2503	156 574	2.72	1	
34	2010	-70.2003	150.574	4.49		L0 L6
35	2010	-70.2307	150.407	2.93		
36	2010	-70.2011	150.549	2.39		
37	2010	-70.233	150.521	1.50		
38	2010	-70.2300	150.522	1.52	1	
39	2010	-70.2331	150.519	1.07	1	
40	2016	-70.2340	150.512	1.14		
41	2010	-70.234	150.505	2.20	1	
42	2016	-70.249	150.390	1.14	1	
45	2016	-70.2409	150.524	1.27	1	
44	2016	-70.2373	100.0	2.13	1	
46	2016	-70.2002	100.071	1.31	1	
47	2016	-/0.24//	150.539	1.47	1	
48	2016	-76.2398	156.488	2.75	1	
49	2016	-70.2349	150.578	1.49		Ho
50	2016	-70.2048	150.345	1.30		LLO
51	2016	-76.2388	156.491	4.72	1	H6
52	2016	-76.2262	156.501	2.02		Ho
53	2016	-76.2235	156.576	2.84	1	L5
54	2016	-10.2348	150.516	1.5	1	
55	2016	-/0.2523	150.352	3.86	1	LD
56	2016	-/6.2283	156.592	1.24	1	HO
57	2018	~43°40'N	~112° 0'E	117.9	1	H~6
58	2019 Apr 12	43°26'44"N	111°57'9"E	38000	15	L5
59	2020 May	26.032°N	1.611°W	31/83	23	Achondrite-un low
60	P 2020 Mar	32°02.250'N	4°03.733'W	247	many	Winonaite

1							
2							
3	2019 Sept 12	54°45.6873' N	9°22.7353' E	24.5	1	C1-ung	
4	2017 Apr 03	27° 51.052'N	12° 9.670'W	279	1	L4	
5	P 2019 Mav	30.203°N	9.535°E	7000	3	Martian (shere	hiah
6	3 Jan 2017	31°52.223'N	57°08.846'E	299.89	1	H5	S3/4
7	3.lan 2017	31°54 296'N	57°02 350'E	78 75	4	H4	S3
8	22 June 2014	137°35'20 80"N	07 02.000 E	3003	5	1~5	00
9	22. June 2014	127°25'22.00 N	02°17'50.40 L	1101	1		
10	22. June 2014	137 33 32.00 N		105 0	1	L~5	
11	June 2014	~37°35'30"N	~92°17'30°E	125.8	1	L~5	
12	June 2014	~37°35'30"N	~92°17'40"E	150	1	L~6	
13	2020 Apr 24	0.570°S	37.29°E	~25000	several	L6	S2
14	2020 Jan 7	26.803056	13.535278	265	1	Lunar (anorth)	low
15	2011 May 1	32°08.999'N	111°06.817'W	/ 16.7	1	H4	
16	2018 Nov 20	36°23'18.3"N	29°44'08.6"E	1100	1	L6	
17	2017 Jul 12	29°20'25.91"N	91°4'57.12"E	3544	1	L5	
18	June 2019	13°49'15.4"N	9°00'10.8"E	189.0	1	R4	S3
19	2020	29°48.79'N	2°56.66'E	3273	1	Eucrite-mmict	moderate
20	2017	-85 92	174 395	6 74	1	H6	
20	2017	-85 916	174 404	99 35	1	H6	
21	2017	-85 0283	174.404	10.06	1	H5	
22	2017	95 0194	174.4	25.07	1	Це	
23	2017	-00.9104	174.41	30.07	1		
24	2017	-85.9214	174.408	39.20			
25	2017	-85.9196	174.39	44.56	1	L3.8	
20	2017	-85.8499	174.15	17.609	1	H6	
27	2017	-85.8516	174.173	12.412	1	L6	
28	2017	-85.921	174.373	9.296	1	H6	
29	2017	-85.8492	174.141	16.777	1	L6	
30	2017	-85.8409	174.414	11.145	1	H6	
31	2017	-85.9194	174.348	11.136	1	H5	
32	2017	-85.8529	174.189	30.45	1	H6	
33	2017	-85.8462	174.119	23.653	1	H5	
34	2017	-85 9204	174 363	12 656	1	16	
35	2017	-85 9183	174 338	3 204		15	
36	2017	85 0174	174.000	50.83	1	<u>не</u>	
3/	2017	85 8403	174.00	116 54	1	H5	
38	2017	-03.0403	174.07	27.02	1		
39	2017	-00.0494	174.143	37.92			
40	2017	-85.8494	174.146	71.04		Но	
41	2017	-85.8526	174.184	52.73	1	Hb	
42	2017	-85.9227	174.282	92.43	1	L3.4	
43	2017	-85.9037	174.27	87.93	1	L6	
44	2017	-85.8078	173.803	80.95	1	L4	
45	2017	-85.9046	174.316	363.69	1	H6	
46	2017	-85.7739	173.572	20.694	1	L5	
47	2017	-85.9012	174.128	25.246	1	H6	
48	2017	-85.8005	173.929	35.919	1	L5	
49	2017	-85.9257	174.353	26.689	1	H5	
50	2017	-85.8511	174.164	16.699	1	L6	
51	2017	-85 8527	174 186	25 572	1	H6	
52	2017	-85 7995	173 909	19 203	1	114	
53	2017	-85 9054	174 722	40 973	1	15	
54	2017	_85 8511	17/ 165	105 16/	1	<u>-</u> 0 Н6	
55	2017	-00.0011	174.100	106 004	1		
56	2017	-00.0001	174.19	100.291	1		
57	2017	-00.0020	174.184	133.935	1		
58	2017	-85.9006	174.258	175.33	1	H5	
59	2017	-85.8459	1/4.116	154.461	1	H5	
60	2017	-85.8489	174.136	158.66	1	H6	

2						
3	2017	-85.8367	174.033	79.87	1	H6
4	2017	-85.9218	174.41	60.39	1	H5
5	2017	-85.8515	174.174	954.2	1	H4
6	2017	-85.8531	174.19	1578.3	1	L6
7	2017	-85.8516	174.173	2502.8	1	L5
8	2017	-85.8495	174.144	1168.61	1	L6
9	2017	-85,9049	174.295	3192.08	1	LL5
10	2017	-85 8512	174 166	524 29	1	15
11	2017	-85 841	174 1	2144 7	1	15
12	2017	-85 8393	174 096	9485	1	15
13	2017	-85 9197	174 45	219 386	1	H6
14	2017	-85 8206	174 028	388.56	1	H5
15	2017	-85 8455	174 112	268.96	1	H6
16	2017	-85 901	174 152	142 33	1	H5
17	2017	-85 8004	173 013	275 54	1	Н6
18	2017	-85 8522	174 182	174 84	1	H6
19	2017	85 01/0	174.102	11/ 85	1	но H5
20	2017	85 851	174.350	184 077	1	ЦЕ
21	2017	85 0154	174.104	71 50	1	но H5
22	2017	85 8477	174.123	287.54	1	н5 Ц5
23	2017	-85 8514	174.120	136 73	1	H5
25	2017	-85 0101	174.109	100.75	1	H5
26	2017	95 021	174.430	150.23	1	
27	2017	-00.921	174.413	101.7	1	
28	2017	95 0163	174 262	101.7	1	
29	2017	85 0100	174.303	104.0	1	но Н6
30	2017	-05.9109 85.0166	174.301	129.97	1	
31	2017	85 0165	174.735	277 10	1	
32	2017	85 0106	174.417	277.19	1	L0 H6
33	2017	-05.9190	174.445	166 37	1	
34	2017	-03.9027	174.15	100.37	1	
35	2017	95 0009	174.130	121.27		
36	2017	85 8455	174.300	40.039	1	L0 115
37	2017	85 00/6	174.112	109.790	1	15
38	2017	95 9459	174.001	41.30Z	1	
39	2017	-00.0400	174.110	37.111 40.471	1	
40	2017	-00.0001	174.19	40.471	1	
41	2017	-05.0002	173.001	10.591	1	
42	2017	-00.9139	174.302	10.420	1	
45 44	2017	95 0127	174.395	5 676	1	
45	2017	-03.9137	174.309	5.070	1	
46	2017	95 0204	174.394	19 315	1	
47	2017	-00.9204 05.0102	174.379	20.262	1	
48	2017	-03.9103	174.404	12 005	1	
49	2017	-00.9100	174.302	13.990	1	
50	2017	-03.9109	174.422	1100.40	1	
51	2017	-00.9199	174.440	2011.74	1	
52	2017	-03.0347	174.074	2703.04	1	
53	2017	-00.0499	174.15	604.22	1	
54	2017	-00.0424	174.09	250.76	1	
55	2017	95 9470	174.100	200.70	1	
56	2017	-00.04/2 85 8279	174.123	004.70 167 50	1	L0 L0
57	2017 2017	-00.0010 95 9510	174.000	407.09 6 71	1	
58	2017	-00.0019 95.0016	174.1//	0.71	1	
59	2017	-00.9210	174.304	0.0 16.20	1	
60	2017	-00.903	1/4.//3	10.32	I	EHJ

Meteoritics & Planetary Science

1						
2						
3	2017	-85.8985	174.116	32.07	1	L5
4	2017	-85.8056	173.811	22.96	1	H6
5	2017	-85,9212	174,383	15.66	1	15
6	2017	-85 851	174 164	32.86	1	16
7	2017	-85 8483	17/ 13	11 03	1	<u>Ц</u> 5
8	2017	-05.0 4 05 85 8404	174.13	17	1	16
9	2017	-05.0494	174.143	01 42	1	
10	2017	-85.9182	174.408	91.43	1	L4
11	2017	-85.9184	174.414	101.87	1	Нб
12	2017	-85.9198	1/4.449	136.2	1	LL5
13	2017	-85.9165	174.407	70.14	1	H6
14	2017	-85.9215	174.406	24.21	1	L5
15	2017	-85.8778	174.484	39.64	1	H6
16	2017	-85.911	174.354	32.94	1	H6
17	2017	-85.9201	174.403	25.96	1	L6
18	2017	-85.9217	174.398	26.95	1	L6
19	2017	-85.9138	174.37	7.78	1	H6
20	2017	-85.9159	174.397	14.59	1	L6
21	2017	-85.915	174.388	8.51	1	H5
22	2017	-85.9211	174.374	14.01	1	H5
23	2017	-85.8492	174,141	14.02	1	H6
24	2017	-85,9183	174.337	9.75	1	14
25	2017	-85 9158	174 415	18.34	1	H6
26	2017	-85 914	174 383	11.57	1	H6
27	2017	-85 8557	174 215	728 43	1	16
28	2017	-85 8546	174 207	1188 99	1	16
29	2017	-85 8546	174.207	697 48	1	15
30	2017	-85 0183	174.200	160.67	1	15
31	2017	85 0383	174.300	186.24		16
32	2017	-05.9505	174.599	200 11	1	
33	2017	-05.0017	173.074	250.11		
34	2017	-05.9109	174.421	200.01	1	
35	2017	-05.9000	174.200	109.04		
36	2017	-03.9111	174.373	130.20		
37	2017	-85.7983	173.877	04.88		HO
38	2017		173.833	59.30	1	LO
39	2017	-85.8547	174.206	48.64	1	Ho
40	2017	-85.8547	174.206	82.36	1	Hb
41	2017	-85.8531	174.187	50.32	1	Lo
42	2017	-85.8531	1/4.192	55.22	1	H6
43	2017	-85.8035	1/3.922	40.94	1	L4
44	2017	-85.8537	174.198	69.3	1	H5
45	2017	-85.8537	174.198	97.35	1	H5
46	2017	-85.8547	174.206	85.52	1	L5
47	2017	-85.8529	174.191	76.6	1	H6
48	2017	-85.8047	173.878	65.6	1	L5
49 50	2017	-85.8511	174.163	93.83	1	L6
50 E 1	2017	-85.8541	174.201	61.77	1	H6
51	2017	-85.853	174.189	116.16	1	H5
52	2017	-85.8552	174.21	150.48	1	H5
54	2017	-85.9238	174.257	174.11	1	L5
55	2017	-85.8532	174.192	121.65	1	L3.4
56	2017	-85.795	173.984	302.29	1	H5
57	2017	-85.8025	173.881	321.34	1	H5
58	2017	-85.8538	174.198	219.35	1	H5
59	2017	-85.8558	174.216	473.9	1	H6
60	2017	-85.851	174.165	94.16	1	H6

2							
3	2017	-85.8457	174.112	65.77	1	L3.4	
4	2017	-85.8519	174.177	89.41	1	H6	
5	2017	-85.8511	174.164	93.28	1	H6	
6	2017	-85.9061	174.731	17.766	1	L5	
7	2017	-85.7877	173.753	8.77	1	H5	
8	2017	-85.8529	174.188	118.514	1	L6	
9	2017	-85.8072	173.919	25.328	1	L5	
10	2017	-85,8533	174,195	29.47	1	H6	
11	2017	-85.853	174.19	45,995	1	H6	
12	2017	-85 8559	174 216	25 604	1	H6	
13	2017	-85 8036	173 894	38 739	1	H6	
14	2017	-85 8504	174 124	51 408	1	H6	
15	2017	-85 8533	174 193	19.48	1	H6	
16	2017	-85 8537	17/ 107	3/ 771	1	Н6	
1/	2017	85 8553	174.107	32 036	1	Не	
10	2017	85 83/1	174.018	87 15 <i>1</i>	1	H5	
19	2017	-05.0541 95.0125	174.010	7/ 291	1		
20	2017	-05.9155	174.207	74.201 91.260	1		
21	2017	-00.9249	174.371	01.209	1	LO	
22	2017	-00.0499	174.10	10.900	1		
25	2017		174.105	48.284	1		
24	2017	-85.8489	174.137	19.622		Но	
25	2017	-85.921	174.389	6.535	1	Ho	
20	2017	-85.9214	1/4.385	8.19	1	H5	
27	2017	-85.9194	1/4.354	10.254	1	LL5	~ ~
20	8 Jan 2003	72°59'33"S	75°12'23"E	0.67	1	H4	S2
30	8 Jan 2003	72°59'33"S	75°12'23"E	0.95	1	H4	S2
31	8 Jan 2003	72°59'33"S	75°12'23"E	1.66	1	H5	S2
32	8 Jan 2003	72°59'33"S	75°12'23"E	2.04	1	H5	S2
33	8 Jan 2003	72°59'33"S	75°12'23"E	1.27	1	H4	S2
34	8 Jan 2003	72°59'33"S	75°12'23"E	0.12	1	H5	S2
35	8 Jan 2003	72°59'33"S	75°12'23"E	2.37	1	H4	S2
36	8 Jan 2003	72°59'33"S	75°12'23"E	10.7	1	H5	S2
37	8 Jan 2003	72°59'15"S	75°12'36"E	5	1	L6	S2
38	9 Jan 2003	72°59'36"S	75°12'44"E	3.04	1	H4	S2
39	9 Jan 2003	72°58'59"S	75°13'45"E	0.42	1	H5	S4
40	9 Jan 2003	72°58'59"S	75°13'45"E	0.29	1	H5	S2
41	9 Jan 2003	72°58'59"S	75°13'45"E	2.92	1	H5	S3
42	9 Jan 2003	72°58'59"S	75°13'45"E	2.26	1	H4	S4
43	9 Jan 2003	72°58'59"S	75°13'45"E	1.71	1	H4	S4
44	9 Jan 2003	72°58'59"S	75°13'45"E	1.26	1	H4	S2
45	9 Jan 2003	72°58'59"S	75°13'45"E	0.75	1	H5	S2
46	9 Jan 2003	72°58'59"S	75°13'45"E	0.53	1	H5	S3
47	9 Jan 2003	72°58'59"S	75°13'45"E	0.34	1	H5	S2
48	9 Jan 2003	72°58'59"S	75°13'45"E	0.49	1	H5	S3
49	9 Jan 2003	72°58'59"S	75°13'45"E	0.39	1	H4	S4
50	9 Jan 2003	72°58'59"S	75°13'45"E	0.22	1	H5	S2
51	9 Jan 2003	72°58'59"S	75°13'45"E	0.18	1	H5	S3
52	9 Jan 2003	72°58'59"S	75°13'45"E	0.18	1	H5	S4
53	9 Jan 2003	72°58'59"S	75°13'45"E	0.21	1	H5	S4
54	9 Jan 2003	72°58'59"S	75°13'45"E	0.07	1	H5	S3
55 56	9 Jan 2003	72°58'59"S	75°13'45"E	0.06	1	H5	S3
50 57	10 Jan 2003	72°58'44"S	75°15'39"E	3.61	1	H4	S4
5/	10 Jan 2003	72°58'44"S	75°15'39"E	4.79	1	H4	S2
50	10 Jan 2003	72°58'44"S	75°15'39"E	1.04	1	LL6	S2
59 60	10 Jan 2003	72°59'02"S	75°14'47"F	7.34	1	L6	S2
00				· · ·			

Meteoritics & Planetary Science

1							
2							
3	10 Jan 2003	72°59'02"S	75°14'47"E	3.76	1	L4	S2
4	10 Jan 2003	72°59'02"S	75°14'47"E	1.46	1	L6	S2
5	10 Jan 2003	72°59'02"S	75°14'47"E	0.95	1	14	S2
6	10 Jan 2003	72°59'02"S	75°14'47"E	1.93	1	15	S2
7	10 Jan 2003	72°59'02"S	75°14'47"E	1 4 9	1	15	S2
8	10 Jan 2003	72°59'02"S	75°14'47"E	1.10	1	15	S3
9	10 Jan 2003	72°59'02"S	75°14'47"E	2.22	1	15	S2
10	10 Jan 2003	72°50'02'0	75°14'47"E	2.22	1	16	S2
11	10 Jan 2003	72 33 02 3 72°50'02"S	75°14'47"E	1.67	1	15	S2
12	10 Jan 2003	72 39 02 3	75 1447 E	1.07	1		02 62
13	10 Jan 2003	72 39 02 3	73 1447 E	1.47	1		55
14	10 Jan 2003	72 39 02 3	73 1447 E	1.95	1	LO	33
15	10 Jan 2003	72 59 02 5	75 1447 E	1.42	1	L5	52
16	10 Jan 2003	72°59'02"S	75°14'47"E	1.6	1	Ho	S2
17	10 Jan 2003	72°59'02"S	75°14'47"E	1.1	1	L6	\$3
18	10 Jan 2003	72°59'02"S	75°14'47"E	1.02	1	L5	S3
19	10 Jan 2003	72°59'02"S	75°14'47"E	1.22	1	L5	S3
20	10 Jan 2003	72°59'02"S	75°14'47"E	1.02	1	L6	S3
21	10 Jan 2003	72°59'02"S	75°14'47"E	0.93	1	L6	S2
22	10 Jan 2003	72°59'02"S	75°14'47"E	0.93	1	L5	S3
23	10 Jan 2003	72°59'02"S	75°14'47"E	0.72	1	L5	S3
24	10 Jan 2003	72°59'02"S	75°14'47"E	0.93	1	L6	S3
25	10 Jan 2003	72°59'02"S	75°14'47"E	0.73	1	L5	S2
26	10 Jan 2003	72°59'02"S	75°14'47"E	0.85	1	L5	S3
27	10 Jan 2003	72°59'02"S	75°14'47"E	0.56	1	L5	S2
28	10 Jan 2003	72°59'02"S	75°14'47"E	0.61	1	L5	S2
29	10 Jan 2003	72°59'02"S	75°14'47"E	0.66		L5	S3
30	10 Jan 2003	72°59'02"S	75°14'47"E	0.61	1	H5	S2
31	10 Jan 2003	72°59'02"S	75°14'47"E	0.74		H5	S2
32	10 Jan 2003	72°59'02"S	75°14'47"E	0.77	1	15	S2
33	10 Jan 2003	72°59'02"S	75°14'47"E	0.71	1.	15	S2
34	10 Jan 2003	72°59'02"S	75°14'47"E	0.56	1	14	S4
35	10 Jan 2003	72°59'02"S	75°14'47"E	0.5		15	53
36	10 Jan 2003	72 33 02 3	75°14'47"E	0.5	1		50 S4
37	10 Jan 2003	72 39 02 3	75°14'47 L	0.31	1	L4	57 52
38	10 Jan 2003	72 39 02 3	75°14'47 L	0.33	1	L5	52 62
39	10 Jan 2003	72 39 02 3	75 1447 E	0.34	1		02
40	10 Jan 2003	72 39 02 3	73 1447 E	0.49	1	LO	33 02
41	10 Jan 2003	72 59 02 5	73 1447 E	0.25	1	LO	
42	10 Jan 2003	72°59'02"S	75°14'47"E	0.41	1	L5	52
43	10 Jan 2003	72*59*02*5	75°14'47"E	0.5	1	L5	54
44 45	10 Jan 2003	72°59'02"S	75°14'47"E	0.34	1	L5	53
45	10 Jan 2003	72°59'02"S	75°14'47"E	0.43	1	L5	S4
40	10 Jan 2003	72°59'02"S	75°14'47"E	0.57	1	L5	S3
47	10 Jan 2003	72°59'02"S	75°14'47"E	0.41	1	L5	S3
48	10 Jan 2003	72°59'02"S	75°14'47"E	0.62	1	L5	S2
49 50	10 Jan 2003	72°59'02"S	75°14'47"E	0.43	1	L5	S3
5U E 1	10 Jan 2003	72°59'02"S	75°14'47"E	0.34	1	L5	S3
51	10 Jan 2003	72°59'02"S	75°14'47"E	0.35	1	L5	S3
52 52	10 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	L6	S4
57 22	10 Jan 2003	72°59'02"S	75°14'47"E	0.33	1	L4	S2
54 55	10 Jan 2003	72°59'02"S	75°14'47"E	0.56	1	L5	S2
55	10 Jan 2003	72°59'02"S	75°14'47"E	0.5	1	L5	S2
57	10 Jan 2003	72°59'02"S	75°14'47"E	0.32	1	L5	S2
58	10 Jan 2003	72°59'02"S	75°14'47"E	0.3	1	L5	S2
50	10 Jan 2003	72°59'02"S	75°14'47"E	0.38	1	L5	S4
60	10 Jan 2003	72°59'02"S		0.58	1	 L5	S3
00			· · · · · · ·		•		

1							
2							
3	10 Jan 2003	72°59'02"S	75°14'47"E	0.31	1	L5	S2
4	10 Jan 2003	72°59'02"S	75°14'47"E	0.35	1	L5	S4
5	10 Jan 2003	72°59'02"S	75°14'47"E	0.38	1	L5	S4
6	10 Jan 2003	72°59'02"S	75°14'47"E	0.28	1	L5	S3
7	10 Jan 2003	72°59'02"S	75°14'47"E	0.36	1	L5	S2
8	10 Jan 2003	72°59'02"S	75°14'47"E	0.28	1	H5	S2
9	10 Jan 2003	72°59'02"S	75°14'47"F	0.06	1	H4	S2
10	10 Jan 2003	72°59'02"S	75°14'47"E	0.32	1	15	S2
11	10 Jan 2003	72°59'02"S	75°14'47"E	0.41	1	15	S2
12	10 Jan 2003	72°59'02"S	75°14'47"E	0.34	1	15	S2
13	10 Jan 2003	72°59'02"S	75°14'47"E	0.01	1	15	S4
14	10 Jan 2003	72°59'02"S	75°14'47"E	0.29	1	15	S2
15	10 Jan 2003	72°50'02'0	75°14'47"E	0.20	1	15	S2
16	10 Jan 2003	72 39 02 3 72°50'02"S	75°14'47"E	0.37	1	16	52 53
17	10 Jan 2003	72 59 02 5	75°14'47"E	0.00	1		60 62
18	10 Jan 2003	72 39 02 3	75°14'47 L	0.24	1	1.5	62
19	10 Jan 2003	72 39 02 3	75°14'47 L	0.33	1		53 64
20	10 Jan 2003	72 39 02 3	75 1447 E	0.34	1		04 04
21	10 Jan 2003	72 39 02 3	75 1447 E	0.4	1		54
22	10 Jan 2003	72 39 02 3	75 1447 E	0.32	1	LO	52
25	10 Jan 2003	72 59 02 5	75 1447 E	0.35	1		52
24	10 Jan 2003	72 59 02 5	75 1447 E	0.31	1	LO	54
25	10 Jan 2003	72"59"02"S	75°14'47"E	0.42	1	L5	52
20	10 Jan 2003	72°59'02"S	75°14'47"E	0.29	1	L4	54
27	10 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	H5	S2
20	10 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	L5	S4
30	10 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	\$3
31	10 Jan 2003	72°59'02"S	75°14'47"E	0.21		L5	S3
32	10 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	S4
33	10 Jan 2003	72°59'02"S	75°14'47"E	0.22	1	L5	S2
34	10 Jan 2003	72°59'02"S	75°14'47"E	0.25	1	L5	S2
35	10 Jan 2003	72°59'02"S	75°14'47"E	0.24	1	L5	S4
36	10 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L4	S3
37	10 Jan 2003	72°59'02"S	75°14'47"E	0.21	1	L5	S2
38	10 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	S2
39	10 Jan 2003	72°59'02"S	75°14'47"E	0.25	1	L5	S2
40	10 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	L5	S4
41	10 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L4	S3
42	10 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L5	S4
43	10 Jan 2003	72°59'02"S	75°14'47"E	0.27	1	L5	S2
44	10 Jan 2003	72°59'02"S	75°14'47"E	0.21	1	L4	S2
45	10 Jan 2003	72°59'02"S	75°14'47"E	0.2	1	L5	S3
46	10 Jan 2003	72°59'02"S	75°14'47"E	0.19	1	L5	S3
47	10 Jan 2003	72°59'02"S	75°14'47"E	0.29	1	L5	S4
48	10 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	S3
49	10 Jan 2003	72°59'02"S	75°14'47"E	0.22	1	L5	S2
50	10 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L6	S2
51	10 Jan 2003	72°59'02"S	75°14'47"E	0.13	1	L5	S2
52	10 Jan 2003	72°59'02"S	75°14'47"E	0.17	1	H5	S3
53	10 Jan 2003	72°59'02"S	75°14'47"E	0.21	1	L5	S4
54 55	10 Jan 2003	72°59'02"S	75°14'47"E	0.24	1	H4	S2
55 56	10 Jan 2003	72°59'02"S	75°14'47"E	0.21	1	L5	S3
57	10 Jan 2003	72°59'02"S	75°14'47"E	0.15	1	L5	S2
57 58	10 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	L5	S3
50	10 Jan 2003	72°59'02"S	75°14'47"E	0.21	1	L5	S2
60	10 Jan 2003	72°59'02"S	75°14'47"F	0.24	1	 L5	S4
00					•		• •

1							
2							
3	10 Jan 2003	72°59'02"S	75°14'47"E	0.15	1	L4	S3
4	10 Jan 2003	72°59'02"S	75°14'47"E	0.17	1	L4	S2
5	10 Jan 2003	72°59'02"S	75°14'47"E	0.21	1	L5	S4
0 7	10 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L5	S3
/ 0	10 Jan 2003	72°59'02"S	75°14'47"E	0.2	1	L5	S2
0	10 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	S3
9 10	10 Jan 2003	72°59'02"S	75°14'47"E	0.13	1	L5	S2
10	10 Jan 2003	72°59'02"S	75°14'47"E	0.12	1	L5	S2
17	10 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L4	S3
12	10 Jan 2003	72°59'02"S	75°14'47"E	0.22	1	L4	S2
13	10 Jan 2003	72°59'02"S	75°14'47"E	0.15	1	L5	S2
15	10 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L5	S3
16	10 Jan 2003	72°59'02"S	75°14'47"E	0.19	1	L4	S2
17	10 Jan 2003	72°59'02"S	75°14'47"E	0.12	1	L4	S4
18	10 Jan 2003	72°59'02"S	75°14'47"E	0.16	1	L5	S3
19	10 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	S3
20	10 Jan 2003	72°59'02"S	75°14'47"E	0.24	1	L5	S3
21	10 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L5	S3
22	10 Jan 2003	72°59'02"S	75°14'47"E	0.3	1	L5	S3
23	10 Jan 2003	72°59'02"S	75°14'47"E	0.2	1	16	S4
24	10 Jan 2003	72°59'02"S	75°14'47"E	0.24	1	 L5	S4
25	10 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	15	S3
26	10 Jan 2003	72°59'02"S	75°14'47"E	0.13	1	15	S2
27	10 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	15	S2
28	10 Jan 2003	72°59'02"S	75°14'47"E	0.10	1	15	S2
29	10 Jan 2003	72°59'02'0	75°14'47"E	0.2	1	15	S2
30	10 Jan 2003	72°50'02'0	75°1 <i>4</i> '47"E	0.11			63
31	10 Jan 2003	72 33 02 3	75°14'47"E	0.17		15	50 52
32	10 Jan 2003	72 39 02 3 72°50'02"S	75°14'47 L	0.10	1	LJ HA	52 53
33	10 Jan 2003	72 33 02 3	75°14'47"E	0.22		15	63
34	10 Jan 2003	72 39 02 3 72°50'02"S	75 1447 E 75°14'47"E	0.2	1	L5	55 S4
35	10 Jan 2003	72 39 02 3	75°14'47 L	0.15		15	62
36	10 Jan 2003	72 39 02 3	75 1447 E	0.10	1	LJ	0Z
37	10 Jan 2003	72 39 02 3	73 1447 E 75°14'47"E	0.10	1		33 62
38	10 Jan 2003	72 39 02 3	73 1447 E	0.17	1	LO	02
39	10 Jan 2003	72 39 02 3	73 1447 E	0.24	1	LO	52
40	10 Jan 2003	72 59 02 5	75 1447 E	0.14	1	LO	53
41	10 Jan 2003	72 39 02 3	73 1447 E	0.14	1	LO	54
42	10 Jan 2003	72°59'02"5	75°14'47"E	0.17	1	L5	52
43	10 Jan 2003	72 59 02 5	75 1447 E	0.18	1	L4	53
44 15	10 Jan 2003	72*59*02*5	75°14'47"E	0.16	1	L5	52
45	10 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L5	S2
40	10 Jan 2003	72°59'02"S	75°14'47"E	0.17	1	L5	53
47	10 Jan 2003	72°59'02"S	75°14'47"E	0.16	1	L5	S4
40 40	10 Jan 2003	72°59'02"S	75°14'47"E	0.15	1	L5	S3
50	10 Jan 2003	72°59'02"S	75°14'47"E	0.16	1	L5	S3
50	10 Jan 2003	72°59'02"S	75°14'47"E	0.16	1	L5	S3
52	10 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L6	S2
53	10 Jan 2003	72°59'02"S	75°14'47"E	0.05	1	L5	S3
54	10 Jan 2003	72°59'02"S	75°14'47"E	0.12	1	L6	S2
55	10 Jan 2003	72°59'02"S	75°14'47"E	0.12	1	L5	S2
56	10 Jan 2003	72°59'02"S	75°14'47"E	0.13	1	L6	S3
57	10 Jan 2003	72°59'02"S	75°14'47"E	0.19	1	L5	S2
58	10 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L6	S3
59	10 Jan 2003	72°59'02"S	75°14'47"E	0.13	1	L6	S2
60	10 Jan 2003	72°59'02"S	75°14'47"E	0.1	1	L5	S3

1							
2							
3	10 Jan 2003	72°59'02"S	75°14'47"E	0.16	1	L6	S2
4	10 Jan 2003	72°59'02"S	75°14'47"E	0.12	1	L5	S2
5	10 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	16	S2
6	10 Jan 2003	72°59'02"S	75°14'47"E	0.08	1	15	S3
7	10 Jan 2003	72°59'02"S	75°14'47"E	0.00	1	16	S4
8	10 Jan 2003	72°59'02'0	75°14'47"E	0.10	1	14	53
9	10 Jan 2003	72°50'02'0	75°14'47"E	0.00	1	16	52 52
10	10 Jan 2003	72 53 02 5	75°14'47"E	0.13	1		62
11	10 Jan 2003	72 39 02 3	75 1447 E 75°14'47"E	0.13	1		
12	10 Jan 2003	72 39 02 3	75 1447 E	0.09	1		52
13	10 Jan 2003	72 39 02 3	/3 144/ E 75°14'47"E	0.00	1	L4	50
14	10 Jan 2003	72 39 02 3	73 1447 E	0.11	1	LO	04
15	10 Jan 2003	72 59 02 5	75 1447 E	0.15		LO	53
16	10 Jan 2003	72*59'02*5	75°14'47"E	0.1		L5	53
17	10 Jan 2003	72*59*02*5	75°14'47"E	0.1	1	L5	52
18	10 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S4
19	10 Jan 2003	72°59'02"S	75°14'47"E	0.1	1	L5	S2
20	10 Jan 2003	72°59'02"S	75°14'47"E	0.08	1	L6	S4
21	10 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S4
22	10 Jan 2003	72°59'02"S	75°14'47"E	0.09	1	L4	S3
23	10 Jan 2003	72°59'02"S	75°14'47"E	0.09	1	L5	S4
24	10 Jan 2003	72°59'02"S	75°14'47"E	0.09	1	L5	S4
25	10 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	H6	S2
26	10 Jan 2003	72°59'02"S	75°14'47"E	0.09	1	L5	S4
27	10 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S3
28	10 Jan 2003	72°59'02"S	75°14'47"E	0.1	1	L5	S3
29	10 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L6	S2
30 21	10 Jan 2003	72°59'02"S	75°14'47"E	0.1	1	L5	S4
21	10 Jan 2003	72°59'02"S	75°14'47"E	0.08		L6	S3
22 22	10 Jan 2003	72°59'02"S	75°14'47"E	0.09	1	L5	S4
32	10 Jan 2003	72°59'02"S	75°14'47"E	0.08	1	L5	S3
35	10 Jan 2003	72°59'02"S	75°14'47"E	0.1	1	L5	S2
36	10 Jan 2003	72°59'02"S	75°14'47"E	0.09	1	L4	S3
37	10 Jan 2003	72°59'02"S	75°14'47"E	0.1	1	L5	S4
38	10 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L6	S2
39	10 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S2
40	10 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S4
41	10 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S3
42	10 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S4
43	10 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S4
44	10 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S2
45	10 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S2
46	10 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S3
47	10 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	16	S2
48	10 Jan 2003	72°59'02"S	75°14'47"E	0.05	1	• L6	S2
49	10 Jan 2003	72°59'02"S	75°14'47"E	0.08	1	16	S2
50	10 Jan 2003	72°59'02"S	75°14'47"E	0.05	1	16	S2
51	10 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	15	S2
52	10 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	15	S2
53	10 Jan 2003	72°59'02"S	75°14'47"⊑	0.07	1	15	<u>S4</u>
54	10 Jan 2003	72°59'02'0	75°1⊿'⊿7"⊏	0.00	1	15	54
55	10 Jan 2003	72°50'02 3	75°1 <i>/</i> '/7"⊏	0.07	1	16	0 1 02
56	10 Jail 2003	72 33 02 3 72°50'02"9	75°1 <i>/</i> 1/7"⊑	0.07	1		02 62
57	10 Jan 2003	72 53 02 3	75°1/'47"E	0.00	1		02
58	10 Jail 2003	12 JU UZ J	ィリコキキ/ ビ 75°1/'/7"ビ	0.00	1	L4 15	00 02
59	10 Jan 2003	7205000000	75°14'47 E	0.04	1		00
60	10 Jan 2003	12 39 02 3	10 1441 E	0.04	I	LO	54

1							
2							
3	10 Jan 2003	72°59'02"S	75°14'47"E	0.08	1	L6	S3
4	10 Jan 2003	72°59'02"S	75°14'47"E	0.05	1	15	S2
5	10 Jan 2003	72°50'02"S	75°14'47"E	0.00	1	15	54
6	10 Jan 2003	72°50'00"S		7.55	1		62
7	11 Jan 2003	72 39 00 3	75 1505 E	1.55	1		02
8	11 Jan 2003	72 39 02 3	75 1500 E	1.00	1	LO	33
9	11 Jan 2003	72 59 03 5	75 14 49 E	3.7		Lo	52
10	11 Jan 2003	72°59'01"S	75°14'50"E	4.76	1	L5	\$3
11	11 Jan 2003	72°59'01"S	75°14'50"E	3.77	1	L5	S3
12	11 Jan 2003	72°59'01"S	75°14'50"E	3.65	1	L5	S2
13	11 Jan 2003	72°59'01"S	75°14'50"E	3.87	1	H4	S3
14	11 Jan 2003	72°59'01"S	75°14'50"E	2.03	1	L6	S3
15	11 Jan 2003	72°59'02"S	75°14'47"E	1.04	1	L5	S4
16	11 Jan 2003	72°59'02"S	75°14'47"E	0.74	1	L5	S2
17	11 Jan 2003	72°59'02"S	75°14'47"E	0.74	1	L6	S2
17	11 Jan 2003	72°59'02"S	75°14'47"E	0.72	1	L5	S2
10	11 Jan 2003	72°59'02"S	75°14'47"E	0.66	1	L6	S4
20	11.Jan 2003	72°59'02"S	75°14'47"F	0.66	1	15	S4
20	11 Jan 2003	72°50'02"S	75°14'47"E	0.00	1	16	S2
21	11 Jan 2003	72°50'02'0	75°14'47"E	0.70	1		52 S4
22	11 Jan 2003	72 39 02 3	75 1447 L	0.77	1		04
23	11 Jan 2003	72 39 02 3	73 1447 E	0.4	1	LO	<u> </u>
24	11 Jan 2003	72"59"02"S	75°14'47"E	0.56	1	L6	52
25	11 Jan 2003	72°59'02"S	75°14'47"E	0.37	1	L5	\$3
20	11 Jan 2003	72°59'02"S	75°14'47"E	0.34	1	L5	S3
27	11 Jan 2003	72°59'02"S	75°14'47"E	0.3	1	L5	S2
20	11 Jan 2003	72°59'02"S	75°14'47"E	0.3	1	L5	S3
29	11 Jan 2003	72°59'02"S	75°14'47"E	0.25	1	L6	S2
30	11 Jan 2003	72°59'02"S	75°14'47"E	0.32	1	L5	S3
31	11 Jan 2003	72°59'02"S	75°14'47"E	0.5	1	L6	S3
32	11 Jan 2003	72°59'02"S	75°14'47"E	0.38	1	L6	S3
33	11 Jan 2003	72°59'02"S	75°14'47"E	0.56	1	L5	S3
34 25	11 Jan 2003	72°59'02"S	75°14'47"E	0.32	1	L5	S3
35	11 Jan 2003	72°59'02"S	75°14'47"E	0.38	1	L5	S2
30	11 Jan 2003	72°59'02"S	75°14'47"F	0.34	1	14	S3
37	11 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	15	S3
38	11 Jan 2003	72°50'02"S	75°14'47"E	0.20	1		54
39	11 Jan 2003	72 33 02 3	75°14'47"E	0.73	1		
40	11 Jan 2003	72 39 02 3	75 1447 E	0.23	1	LJ	00 04
41	11 Jan 2003	72 39 02 3	75 1447 E	0.23	1	LJ	0 4 00
42	11 Jan 2003	72 39 02 3	73 1447 E	0.24	1	LO	52
43	11 Jan 2003	72 59 02 5	75 1447 E	0.27	1	Lo	52
44	11 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	H5	S2
45	11 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	S3
46	11 Jan 2003	72°59'02"S	75°14'47"E	0.32	1	L5	S3
47	11 Jan 2003	72°59'02"S	75°14'47"E	0.3	1	L5	S2
48	11 Jan 2003	72°59'02"S	75°14'47"E	0.31	1	L5	S2
49	11 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	L5	S2
50	11 Jan 2003	72°59'02"S	75°14'47"E	0.24	1	L5	S2
51	11 Jan 2003	72°59'02"S	75°14'47"E	0.27	1	L5	S3
52	11 Jan 2003	72°59'02"S	75°14'47"E	0.3	1	L5	S3
53	11 Jan 2003	72°59'02"S	75°14'47"E	0.29	1	L6	S2
54	11 Jan 2003	72°59'02"S	75°14'47"F	0.17	1	16	S2
55	11 Jan 2003	72°59'02"S	75°14'47"F	0.19	1	15	S2
56	11 Jan 2003	72°50'02'0	75°1⊿'⊿7"⊏	0.10	1	15	S2
57	11 Jan 2003	72°50'02'0		0.14	1	16	02 ©2
58	11 Jan 2003	12 JUL J 72°50'02"9	15 1441 E 75°1 <i>1</i> '47"E	0.17	1		02 02
59	11 Jan 2003	12 39 02 3		0.20	 		33
60	11 Jan 2003	72°59'02"S	15°14'41"E	0.23	1	L5	S2

1							
2							
3	11 Jan 2003	72°59'02"S	75°14'47"E	0.25	1	L5	S3
4	11 Jan 2003	72°59'02"S	75°14'47"E	0.24	1	L5	S4
5	11 Jan 2003	72°59'02"S	75°14'47"E	0.22	1	L5	S3
6	11 Jan 2003	72°59'02"S	75°14'47"E	0.11	1	L5	S3
7	11 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	S4
8	11 Jan 2003	72°59'02"S	75°14'47"E	0.1	1	L5	S3
9	11 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	L5	S3
10	11 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L5	S2
11	11 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	 L5	S2
12	11 Jan 2003	72°59'02"S	75°14'47"F	0.15	1	15	S2
13	11 Jan 2003	72°59'02"S	75°14'47"E	0.23	1	15	S2
14	11 Jan 2003	72°59'02"S	75°14'47"E	0.28	1	15	S2
15	11 Jan 2003	72°59'02"S	75°14'47"E	0.20	1	15	S2
16	11 Jan 2003	72°59'02"S	75°14'47"E	0.24	1	15	S2
1/	11 Jan 2003	72°50'02'0	75°14'47"E	0.10	1	15	S2
18 10	11 Jan 2003	72 33 02 3 72°50'02"S	75°14'47"E	0.10	1	15	52 53
19	11 Jan 2003	72 33 02 3	75°14'47"E	0.15	1	15	50 S4
20	11 Jan 2003	72 39 02 3	75°14'47 L	0.15	1	15	62 62
21	11 Jan 2003	72 39 02 3	75 1447 E	0.10	1	LO	02 60
22	11 Jan 2003	72 39 02 3	75 1447 E	0.22	1		0Z
23	11 Jan 2003	12 39 02 3	73 1447 E	0.13	1		33 62
24	11 Jan 2003	72 39 02 3	75 1447 E	0.10	1	LO	33 62
25	11 Jan 2003	72 59 02 5	75 1447 E	0.12	1	L5	53
20	11 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L6	53
28	11 Jan 2003	72°59'02"S	75°14'47"E	0.15	1	L6	53
29	11 Jan 2003	72°59'02"S	75°14'47"E	0.17	1	L5	\$3
30	11 Jan 2003	72°59'02"S	75°14'47"E	0.16	1	L6	S2
31	11 Jan 2003	72°59'02"S	75°14'47"E	0.14		L5	S2
32	11 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L5	S2
33	11 Jan 2003	72°59'02"S	75°14'47"E	0.18	1	L5	S2
34	11 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L5	S3
35	11 Jan 2003	72°59'02"S	75°14'47"E	0.09	1	L5	S2
36	11 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S2
37	11 Jan 2003	72°59'02"S	75°14'47"E	0.13	1	L5	S2
38	11 Jan 2003	72°59'02"S	75°14'47"E	0.12	1	L5	S3
39	11 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S2
40	11 Jan 2003	72°59'02"S	75°14'47"E	0.16	1	L5	S3
41	11 Jan 2003	72°59'02"S	75°14'47"E	0.17	1	L5	S2
42	11 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S3
43	11 Jan 2003	72°59'02"S	75°14'47"E	0.09	1	H6	S2
44	11 Jan 2003	72°59'02"S	75°14'47"E	0.15	1	L5	S3
45	11 Jan 2003	72°59'02"S	75°14'47"E	0.08	1	L5	S2
46	11 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L5	S2
47	11 Jan 2003	72°59'02"S	75°14'47"E	0.13	1	L6	S2
48	11 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L4	S2
49	11 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S3
50	11 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L6	S2
51	11 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L4	S2
52 53	11 Jan 2003	72°59'02"S	75°14'47"E	0.15	1	L5	S3
55 57	11 Jan 2003	72°59'02"S	75°14'47"E	0.13	1	L4	S3
55	11 Jan 2003	72°59'02"S	75°14'47"E	0.04	1	L5	S4
55	11 Jan 2003	72°59'02"S	75°14'47"E	0.1	1	L5	S2
57	11 Jan 2003	72°59'02"S	75°14'47"E	0.14	1	L6	S3
58	11 Jan 2003	72°59'02"S	75°14'47"E	0.08	1	L6	S2
59	11 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S2
60	11 Jan 2003	72°59'02"S	75°14'47"E	0.07	1	L5	S3

1							
2							
3	11 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L5	S3
4	11 Jan 2003	72°59'02"S	75°14'47"E	0.06	1	L4	S3
5	11 Jan 2003	72°59'01"S	75°15'04"E	0.54	1	L5	S4
6	11 Jan 2003	72°59'02"S	75°15'00"E	0.12	1	L6	S3
7	11 Jan 2003	72°59'02"S	75°15'00"E	0.11	1	H5	S2
8	11 Jan 2003	72°59'02"S	75°15'00"E	0.08	1	1.6	S2
9	11.Jan 2003	72°59'02"S	75°15'00"E	0.08	1	15	S3
10	11 Jan 2003	72°59'02"S	75°15'00"E	0.00	1	15	S2
11	11 Jan 2003	72°59'02"S	75°15'00"E	0.11	1	15	53
12	11 Jan 2003	72°50'02'0	75°15'00"E	0.07	1	15	52 52
13	11 Jan 2003	72 33 02 3 72°50'02"S	75°15'00 E	0.10	1	15	52 53
14	11 Jan 2003	72°50'02"S	75°15'00 E	0.03	1	16	63
15	11 Jan 2003	72 39 02 3	75 1500 E	0.10	1		
16	11 Jan 2003	72 39 02 3	75 1500 E	0.10	1		33 62
17	11 Jan 2003	72 59 02 5	75 1500 E	0.07	1	LO	55
18	11 Jan 2003	72 59 02 5	75 1500 E	0.1	1	LO	54
19	11 Jan 2003	72"59"02"S	75°15'00"E	0.11	1	L4	52
20	11 Jan 2003	72°59'02"S	75°15'00"E	0.1	1	L5	S4
21	11 Jan 2003	72°59'02"S	75°15'00"E	0.08	1	L6	S2
22	11 Jan 2003	72°59'02"S	75°15'00"E	0.08	1	L5	\$3
23	11 Jan 2003	72°59'02"S	75°15'00"E	0.11	1	L6	S3
24	11 Jan 2003	72°59'02"S	75°15'00"E	0.04	1	L5	S2
25	11 Jan 2003	72°59'02"S	75°15'00"E	0.06	1	L5	S2
26	11 Jan 2003	72°59'02"S	75°15'00"E	0.1	1	L5	S3
27	11 Jan 2003	72°59'02"S	75°15'00"E	0.04	1	L5	S3
28	11 Jan 2003	72°59'02"S	75°15'00"E	0.06	1	L5	S3
29	11 Jan 2003	72°59'02"S	75°15'00"E	0.07	1	L6	S2
30 21	11 Jan 2003	72°59'02"S	75°15'00"E	0.05	1	L6	S3
3 I 2 2	11 Jan 2003	72°59'02"S	75°15'00"E	0.14	1	L6	S2
2∠ 22	11 Jan 2003	72°59'02"S	75°15'00"E	0.15	1	L5	S3
34	11 Jan 2003	72°59'02"S	75°15'00"E	0.08	1	L5	S2
35	11 Jan 2003	72°59'02"S	75°15'00"E	0.06	1	L5	S3
36	11 Jan 2003	72°59'02"S	75°15'00"E	0.09	1	L4	S2
37	11 Jan 2003	72°59'02"S	75°15'00"E	0.04	1	L5	S2
38	11 Jan 2003	72°59'02"S	75°15'00"E	0.08	1	🖊 L5	S2
39	11 Jan 2003	72°59'02"S	75°15'00"E	0.14	1	L6	S2
40	11 Jan 2003	72°59'02"S	75°15'00"E	0.1	1	L5	S2
41	11 Jan 2003	72°59'02"S	75°15'00"E	0.09	1	L5	S2
42	11 Jan 2003	72°59'02"S	75°15'00"E	0.12	1	L6	S2
43	11 Jan 2003	72°59'02"S	75°15'00"E	0.12	1	L5	S3
44	11 Jan 2003	72°59'02"S	75°15'00"E	0.09	1	L6	S2
45	11 Jan 2003	72°59'02"S	75°15'00"E	0.1	1	L6	S2
46	11 Jan 2003	72°59'02"S	75°15'00"E	0.05	1	L6	S3
47	11 Jan 2003	72°59'02"S	75°15'00"E	0.04	1	4	S3
48	11 Jan 2003	72°59'02"S	75°15'00"E	0.05	1	 L5	S4
49	11.Jan 2003	72°59'02"S	75°15'00"E	0.06	1	15	S3
50	11 Jan 2003	72°59'02"S	75°15'00"E	0.05	1	16	S4
51	11 Jan 2003	72°59'02"S	75°15'00"E	0.00	1	15	S2
52	11 Jan 2003	72°59'02"S	75°15'00"E	0.00	1	15	S2
53	11 Jan 2003	72°59'02'0	75°15'00"E	0.11	1	15	53
54	11 Jan 2003	72°50'02'0	75°15'00'E	0.15	1	15	52 52
55	11 Jan 2003	72°50'02'0	75°15'00 E	0.10	1	16	62
56	11 Jan 2003	7205023	75°15'00 E	0.12	ı 1		00 00
57	11 Jan 2003	12 JUL J	75°15'00 E	0.00	1		02 00
58	11 Jan 2003	12 JUL J 72°50'02"0	75°15'00 E	0.1	1		02 60
59	11 Jan 2003	720500000		0.10	I 4		32
60	11 Jall 2003	12 39 02 3	10 10 UU E	0.21	I	LO	33

1							
2							
3	11 Jan 2003	72°59'02"S	75°15'00"E	0.15	1	L5	S3
4	11. Jan 2003	72°59'02"S	75°15'00"E	0 15	1	16	S2
5	11 Jan 2002	72 00 02 0	75°15'00"E	0.10	1	16	62
5	11 Jan 2003	72 59 02 5	75 1500 E	0.09	1	LO	52
0	11 Jan 2003	72°59'02"S	75°15'00"E	0.09	1	L6	S2
/	11 Jan 2003	72°59'02"S	75°15'00"E	0.05	1	L6	S3
8	11 Jan 2003	72°59'02"S	75°15'00"E	0.08	1	L6	S3
9	11.Jan 2003	72°59'02"S	75°15'00"E	0.05	1	15	S2
10	11 Jan 2002	72°50'02"8	75°15'00"E	0.00	1	16	62
11	11 Jan 2003	72 39 02 3	75 1500 E	0.09	1		32
12	11 Jan 2003	72°59'02"S	75°15'00"E	0.07	1	L4	S2
13	11 Jan 2003	72°59'02"S	75°15'00"E	0.04	1	L5	S2
14	11 Jan 2003	72°59'02"S	75°15'00"E	0.06	1	L5	S3
15	11 Jan 2003	72°59'02"S	75°15'00"E	0.05	1	L5	S3
15	11. Jan 2003	72°59'02"S	75°15'00"E	0.06	1	16	S2
16	11 Jan 2002	72 00 02 0	75°15'00"E	0.00	1		62
17	11 Jan 2003	72 59 02 3	75 15 00 E	0.04		L3	33
18	11 Jan 2003	72°59'02"S	75°15'00"E	0.03	1	L5	\$3
19	11 Jan 2003	72°59'02"S	75°15'00"E	0.04	1	L5	S2
20	11 Jan 2003	72°59'02"S	75°15'00"E	0.18	1	L5	S3
21	11 Jan 2003	72°59'02"S	75°15'00"E	0.26	1	L5	S3
22	11 Jan 2003	72°50'02"S	75°15'00"E	0.42	1	15	63
22	11 Jan 2000	72 00 02 0	75 1500 E	0.72	1		00
25	11 Jan 2003	72 59 02 5	75 1500 E	0.38		L5	53
24	11 Jan 2003	72°59'02"S	75°15'00"E	0.34	1	L5	S2
25	11 Jan 2003	72°59'02"S	75°15'00"E	0.26	1	L5	S3
26	11 Jan 2003	72°59'02"S	75°15'00"E	0.35	1	L5	S2
27	11 Jan 2003	72°59'02"S	75°15'00"E	0.38	1	L5	S3
28	11 Jan 2003	72°50'02"S	75°15'00"E	0.37	1	14	\$2
29	11 Jan 2003	72 50 02 0	75°15'00'E	0.07			02 64
30	11 Jan 2003	72 39 02 3	75 1500 E	0.29		L3	34
31	11 Jan 2003	72°59'02"S	75°15'00"E	0.26	1	L5	\$3
30	11 Jan 2003	72°59'02"S	75°15'00"E	0.3	1	L6	S2
JZ 22	11 Jan 2003	72°59'02"S	75°15'00"E	0.41	1	L5	S3
33	11 Jan 2003	72°59'02"S	75°15'00"E	0.29	1	L6	S2
34	11.lan 2003	72°59'02"S	75°15'00"E	0.34	1	15	S3
35	11 Jan 2003	72°50'02"S	75°15'00"E	0.26		15	63
36	11 Jan 2003	72 39 02 3	75 1500 E	0.20		LO	33
37	11 Jan 2003	72°59'02"S	75°15'00"E	0.16		Lb	S2
38	11 Jan 2003	72°59'02"S	75°15'00"E	0.18	1	L6	S3
39	11 Jan 2003	72°59'02"S	75°15'00"E	0.23	1	L6	S2
40	11 Jan 2003	72°59'02"S	75°15'00"E	0.24	1	L5	S2
41	11 Jan 2003	72°59'02"S	75°15'00"E	0.31	1	16	S2
10	11 Jan 2003	72°50'02"S	75°15'00"E	0.01	1	16	63
42	11 Jan 2003	72 39 02 3	75 1500 L	0.21	1		00
43	11 Jan 2003	72 59 02 5	75 1500 E	0.16		LO	52
44	11 Jan 2003	72°59'02"S	75°15'00"E	0.16	1	L5	S3
45	11 Jan 2003	72°59'02"S	75°15'00"E	2.78	1	L5	S2
46	11 Jan 2003	72°59'02"S	75°15'00"E	1.89	1	L4	S4
47	11 Jan 2003	72°59'02"S	75°15'00"E	1 22	1	16	S2
48	11 Jan 2003	72°50'02"S	75°15'00"E	0.57	1	15	63
49	11 Jan 2003	72 33 02 3		0.07	1		00
50	11 Jan 2003	72 59 02 5	75 1500 E	0.43		LO	52
51	11 Jan 2003	72°59'02"S	∕5°15'00"E	1.88	1	HG	S2
51	11 Jan 2003	72°59'00"S	75°14'58"E	2	1	L6	S2
JZ 52	11 Jan 2003	72°59'00"S	75°14'58"E	1.92	1	L5	S3
53	11 Jan 2003	72°59'00"S	75°14'58"F	0.74	1	L5	S 3
54	11 Jan 2002	72°50'00''C	75°11'59"⊏	0.85	1	15	63
55				0.00	I 4		00
56	11 Jan 2003	12.28.00.2	15 14 58 E	0.96			52
57	11 Jan 2003	72°59'00"S	/5°14'58"E	0.79	1	L5	S3
58	11 Jan 2003	72°59'00"S	75°14'58"E	0.7	1	L6	S3
59	11 Jan 2003	72°59'00"S	75°14'58"E	0.51	1	L5	S3
60	11 Jan 2003	72°59'00"S	75°14'58"E	0.94	1	L5	S3
					-		

1							
2							
3	11 Jan 2003	72°59'00"S	75°14'58"E	0.35	1	L5	S3
4	11 Jan 2003	72°59'00"S	75°14'58"E	0.5	1	L5	S2
5	11 Jan 2003	72°59'00"S	75°14'58"E	0.37	1	L4	S2
0 7	11 Jan 2003	72°59'00"S	75°14'58"E	0.37	1	L5	S2
/ Q	11 Jan 2003	72°59'00"S	75°14'58"E	0.37	1	L5	S3
0	11 Jan 2003	72°59'00"S	75°14'58"E	0.39	1	L6	S2
10	11 Jan 2003	72°59'00"S	75°14'58"E	0.28	1	L6	S2
10	11 Jan 2003	72°59'00"S	75°14'58"E	0.29	1	L5	S3
12	11 Jan 2003	72°59'00"S	75°14'58"E	0.37	1	L5	S3
13	11 Jan 2003	72°59'00"S	75°14'58"E	0.24	1	L5	S2
14	11 Jan 2003	72°59'00"S	75°14'58"E	0.26	1	L5	S4
15	11 Jan 2003	72°59'00"S	75°14'58"E	0.24	1	L6	S2
16	11 Jan 2003	72°59'00"S	75°14'58"E	0.38	1	L5	S2
17	11 Jan 2003	72°59'00"S	75°14'58"E	0.27	1	L5	S3
18	11 Jan 2003	72°59'00"S	75°14'58"E	0.3	1	L5	S2
19	11 Jan 2003	72°59'00"S	75°14'58"E	0.27	1	L5	S2
20	11 Jan 2003	72°59'00"S	75°14'58"E	0.26	1	L5	S3
21	11 Jan 2003	72°59'00"S	75°14'58"E	0.3	1	L5	S3
22	11 Jan 2003	72°59'00"S	75°14'58"E	0.22	1	H5	S3
23	11 Jan 2003	72°59'00"S	75°14'58"E	0.23	1	H4	S2
24	11 Jan 2003	72°59'00"S	75°14'58"E	0.2	1	L5	S2
25	11 Jan 2003	72°59'00"S	75°14'58"E	0.2	1	L6	S3
26	11 Jan 2003	72°59'00"S	75°14'58"E	0.16	1	L5	S3
27	11 Jan 2003	72°59'00"S	75°14'58"E	0.15	1	L5	S2
28	11 Jan 2003	72°59'00"S	75°14'58"E	0.29	1	H6	S2
29	11 Jan 2003	72°59'00"S	75°14'58"E	0.24	1	H5	S3
30 21	11 Jan 2003	72°59'00"S	75°14'58"E	0.21	1	L5	S2
31 27	11 Jan 2003	72°59'00"S	75°14'58"E	0.21		L5	S3
22	11 Jan 2003	72°59'00"S	75°14'58"E	0.36	1	L5	S3
33	11 Jan 2003	72°59'00"S	75°14'58"E	0.21	1	L5	S3
35	11 Jan 2003	72°59'00"S	75°14'58"E	0.19	1	L4	S2
36	11 Jan 2003	72°59'00"S	75°14'58"E	0.21	1	L5	S3
37	11 Jan 2003	72°59'00"S	75°14'58"E	0.19	1	H5	S3
38	11 Jan 2003	72°59'00"S	75°14'58"E	0.17	1	LL5	S3
39	11 Jan 2003	72°59'00"S	75°14'58"E	0.22	1	L5	S2
40	11 Jan 2003	72°59'00"S	75°14'58"E	0.22	1	L5	S3
41	11 Jan 2003	72°59'00"S	75°14'58"E	0.15	1	L6	S1
42	11 Jan 2003	72°59'00"S	75°14'58"E	0.29	1	L5	S3
43	11 Jan 2003	72°59'00"S	75°14'58"E	0.25	1	L5	S2
44	11 Jan 2003	72°59'00"S	75°14'58"E	0.17	1	L5	S3
45	11 Jan 2003	72°59'00"S	75°14'58"E	0.15	1	L5	S3
46	11 Jan 2003	72°59'00"S	75°14'58"E	0.19	1	L5	S2
47	11 Jan 2003	72°59'00"S	75°14'58"E	0.12	1	L6	S3
48	11 Jan 2003	72°59'00"S	75°14'58"E	0.14	1	L4	S3
49	11 Jan 2003	72°59'00"S	75°14'58"E	0.22	1	L5	S3
50 F1	11 Jan 2003	72°59'00"S	75°14'58"E	0.12	1	L5	S3
51 50	11 Jan 2003	72°59'00"S	75°14'58"E	0.12	1	L6	S3
52	11 Jan 2003	72°59'00"S	75°14'58"E	0.14	1	L5	S3
54	11 Jan 2003	72°59'00"S	75°14'58"E	0.12	1	L5	S2
55	11 Jan 2003	72°59'00"S	75°14'58"E	0.12	1	L5	S3
56	11 Jan 2003	72°59'00"S	75°14'58"E	0.2	1	H4	S3
57	11 Jan 2003	72°59'00"S	75°14'58"E	0.14	1	L5	S3
58	11 Jan 2003	72°59'00"S	75°14'58"E	0.09	1	L6	S3
59	11 Jan 2003	72°59'00"S	75°14'58"E	0.12	1	L6	S2
60	11 Jan 2003	72°59'00"S	75°14'58"E	0.09	1	L5	S3

1							
2							
3	11 Jan 2003	72°59'00"S	75°14'58"E	0.15	1	L6	S3
4	11 Jan 2003	72°59'00"S	75°14'58"F	0.09	1	15	S2
5	11 Jan 2003	72°59'00"S	75°14'58"E	0.00	1	15	S2
6	11 Jan 2003	72°50'00'0	75°14'58"E	0.14	1	15	53 53
7	11 Jan 2003	72 39 00 3	75 14 50 E	0.1	1		33
8	11 Jan 2003	72 59 00 5	75 14 58 E	0.13		LO	53
9	11 Jan 2003	72°59'00"S	75°14'58"E	0.12	1	L5	S4
10	11 Jan 2003	72°59'00"S	75°14'58"E	0.11	1	L5	S4
10	11 Jan 2003	72°59'00"S	75°14'58"E	0.08	1	L5	S2
17	11 Jan 2003	72°59'00"S	75°14'58"E	0.06	1	L5	S3
12	11 Jan 2003	72°59'00"S	75°14'58"E	0.1	1	L5	S4
13	11 Jan 2003	72°59'00"S	75°14'58"E	0.08	1	L4	S3
14	11 Jan 2003	72°59'00"S	75°14'58"E	0.1	1	L6	S2
15	11 Jan 2003	72°59'00"S	75°14'58"F	0.12	1	15	S2
16	11 Jan 2003	72°59'00"S	75°14'58"E	0.1	1	15	S2
17	11 Jan 2003	72°50'00"9	75°14'58"E	0.1	1		62
18	11 Jan 2003	72 39 00 3	75 14 50 E	0.09	1		52
19	11 Jan 2003	72 59 00 5	75 14 58 E	0.09		L4	52
20	11 Jan 2003	72°59'00"S	75°14'58"E	0.05	1	L5	S2
21	11 Jan 2003	72°59'00"S	75°14'58"E	0.07	1	L5	S3
22	11 Jan 2003	72°59'00"S	75°14'58"E	0.08	1	L5	S3
23	11 Jan 2003	72°59'00"S	75°14'58"E	0.04	1	L5	S3
24	11 Jan 2003	72°59'00"S	75°14'58"E	0.08	1	L6	S2
25	11 Jan 2003	72°59'00"S	75°14'58"E	0.06	1	L5	S4
26	11 Jan 2003	72°59'00"S	75°14'58"E	0.06	1	L4	S2
27	11 Jan 2003	72°59'00"S	75°14'58"E	0.07	1	15	S2
28	11 Jan 2003	72°59'00"S	75°14'58"E	0.05	1	14	S2
29	11 Jan 2003	72°50'00'0	75°14'58"E	0.00	1		S2
30	11 Jan 2003	72 39 00 3	75 14 50 L	0.07			52
31	11 Jan 2003	72 59 00 5	73 14 30 E	0.00		LO	52
32	11 Jan 2003	72°59'00"S	75°14'58"E	0.04		L6	S2
33	11 Jan 2003	72°59'00"S	75°14'58"E	0.06	1	L5	S2
34	11 Jan 2003	72°59'00"S	75°14'58"E	0.05	1	L6	S2
35	11 Jan 2003	72°59'00"S	75°14'58"E	0.07	1	L4	S3
36	11 Jan 2003	72°59'00"S	75°14'58"E	0.07	1	L4	S3
37	11 Jan 2003	72°59'00"S	75°14'58"E	0.06	1	L5	S2
38	11 Jan 2003	72°59'00"S	75°14'58"E	0.06	1	L4	S4
39	11 Jan 2003	72°59'00"S	75°14'58"E	0.04	1	L6	S2
40	11 Jan 2003	72°59'02"S	75°14'47"E	1.61	1	16	S3
40	11 Jan 2003	72°59'02"S	75°14'47"E	1.92	1	15	S2
42	11 Jan 2003	72°59'02"S	75°14'47"E	1 1	1	15	S4
42	11 Jan 2003	72°50'02"S	75°1 <i>4</i> '47"E	0.71	1	15	S2
43	11 Jan 2003	72 39 02 3	75°14'47 L	0.71	1		52
44	11 Jan 2003	72 59 02 5	73 1447 E	0.73	1	LO	52
45	11 Jan 2003	72°59'02"S	75°14'47"E	0.71	1	L5	S2
40	11 Jan 2003	72°59'02"S	75°14'47"E	0.49	1	L5	\$3
47	11 Jan 2003	72°59'02"S	75°14'47"E	0.56	1	L5	S2
48	11 Jan 2003	72°59'02"S	75°14'47"E	0.51	1	L5	S3
49	11 Jan 2003	72°59'02"S	75°14'47"E	0.4	1	L6	S3
50	11 Jan 2003	72°59'02"S	75°14'47"E	0.42	1	L5	S3
51	11 Jan 2003	72°59'02"S	75°14'47"E	0.32	1	L5	S3
52	11 Jan 2003	72°59'02"S	75°14'47"E	0.36	1	L5	S3
53	11 Jan 2003	72°59'02"S		0.2	1	15	S2
54	11.lan 2003	72°59'02"S	75°14'47"⊑	0.33	1	15	\$2
55	11 Jan 2003	72°50'02'0	75°1 <i>∕</i> 1∕17"⊏	0.28	1	15	62
56	11 Jan 2003	72 53 02 3	75°1447 E	0.00	1		02 00
57	11 Jan 2003	12 33 02 3		0.43	1		32
58	11 Jan 2003	12 59025	10 14'4/"E	0.24	1	L5	54
59	11 Jan 2003	72-59.02"S	/5-14'4/"E	0.32	1	H5	S2
60	11 Jan 2003	72°59'02"S	75°14'47"E	0.29	1	L4	S3

1							
2							
3	11 Jan 2003	72°59'02"S	75°14'47"E	0.34	1	L5	S2
4	11 Jan 2003	72°59'02"S	75°14'47"E	0.31	1	L5	S3
5	11.lan 2003	72°59'02"S	75°14'47"E	0.2	1	15	S2
6	11 Jan 2003	72°59'02"S	75°14'47"E	0.21	1	15	53
7	11 Jan 2003	72 33 02 3		0.01	1		50
8	11 Jan 2003	72 59 02 5	73 1447 E	0.19	1		52
9	11 Jan 2003	72°59'02"S	75°14'47"E	0.2	1	L5	54
10	11 Jan 2003	72°59'02"S	75°14'47"E	0.22	1	L5	S3
10	11 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	L4	S4
17	11 Jan 2003	72°59'02"S	75°14'47"E	0.26	1	L5	S2
12	2 Jun 2006	14.60107°S	175.526855°E	42000	1	Iron	
13	2 Jun 2006	14.60107°S	175.526855°E	40000	1	Iron	
14	March 2019	35°25.63'N	115°55.62'W	18150	1	Iron, IIIAB	low
15	2015 Aug 06	41°7 0'N	118°19 0'\W	26	1	l Ireilite	moderate
16	D 2010 Aug 00	28°46'16 10"N	05°30'10 00"E	763	1	Diogenite an	
17	P 2020 Jan 2	20 40 10.10 N	00 50 10.00 L	- 703 - 644E			000
18	2019 Aug 01	20.772 IN		0115		LL4	52
19	2019 May 11	40°57'25.79"N	98°32'49.35"E	2900	1	H~6	
20	2017	40°16'13.63"N	92° 0'54.63"E	710	1	LL4	S2
21	2016 Sep 23	42°38'45"N	91°15'20"E	5345	1	Iron, IIIAB	
22	1975	30°8'S	129°8'E	192.4	several	H5	S3
23	1982	30°7'46.03"S	129°8'47.84"E	39.3	1	H5	S3
24	1986	30°34'S	129°0.7'E	226.1	1	H5	S2
25	1977	41°13 498'N	103°1 595'W	10215	1	H3	S5
26	2018 Nov 18	24°17 36'S	68°55 03'W	24.3	1	He	S2
27	28 Nov 2018	24°16 00'S	68°53 30'\W	65.3	1	15	62
28	20100 2010	24 10.99 3	00 33.39 W	22720	1		55
29	2019			33720		LO	
30	2019			3899	1	Ho	
31	2019			4890	1	L6	
37	2019			24758	1	L6	
32	2019			5156	1	L6	
34	2019			8998	1	L6	
25	2018			19976	1	H5	
26	2019			4094	1	H5	
30 27	2019			7640	1	115	
37	2017 Feb 12	31°34 91'N	5°32 32'W	177 0	1	16	S 5
38	2010 Dec 18	27°36'50 12"N	10°26'48 85"V	21 /	1	Eucrite	00
39	2019 Dec 10	27 30 39.42 N	FEº 44 0121	200	1		C1
40	2010	19 40.000 N	55 44.913 E	299			00
41	2010	19 37.511 N	55 47.111E	107		LL6-meit brec	01
42	2009	19°23.774'N	55°20.792'E	246	many	H5	S1
43	2012	19°47'48,18"N	55°53'30,34"E	:741	1	L5	S2
44	13 Mar 2017	30°46.41'N	57°47.71'E	52.2	1	H5	S1
45	13 Mar 2017	30°46.41'N	57°47.71'E	10.2	1	H5	S2
46	13 Mar 2017	30°46.41'N	57°47.71'E	6.8	5	H5	S1
47	13 Mar 2017	30°46.41'N	57°47.71'E	14.8	1	H5	S1
48	13 Mar 2017	30°46.41'N	57°47.71'E	35.6	1	H5	S2
49	13 Mar 2017	30°46 41'N	57°47 71'E	23.0	1	H5	S1
50	13 Mar 2017	30°46 41'N	57°47 71'⊑	20.6	1	H5	S1
51	12 Mar 2017	20°46 41'N	57°47 71'E	20.0 51 0	15		S1
52	13 Mai 2017	30 40.4 I N	57 47.71E	51.9	15		31
53	13 Mar 2017	30°46.41'N	5/ 4/./1E	9.9	8	HD	52
54	13 Mar 2017	30°46.41'N	5/°4/./1'E	19.9	1	H4	\$3
55	13 Mar 2017	30°46.41'N	57°47.71'E	28.8	1	H5	S1
56	13 Mar 2017	30°46.41'N	57°47.71'E	16.7	1	H4	S2
57	13 Mar 2017	30°46.41'N	57°47.71'E	14.5	5	H5	S2
58	14 Mar 2017	30°44.15'N	57°48.83'E	10.6	1	H5	S2
50	14 Mar 2017	30°44.15'N	57°48.83'E	5.5	2	H5	S2
60	14 Mar 2017	30°43 35'N	57°49 30'F	1.6	1	H5	S2
00					-		~-

1							
2							
3	14 Mar 2017	30°45.12'N	57°48.59'E	13.2	1	H5	S2
4	14 Mar 2017	30°45.12'N	57°48.59'E	106.3	45	H5	S2
5	14 Mar 2017	30°46.41'N	57°47.71'E	4.0	1	H5	S2
6	14 Mar 2017	30°46.41'N	57°47,71'E	2.5	1	H5	S2
7	14 Mar 2017	30°44 62'N	57°48 49'E	9.9	1	H5	S2
8	14 Mar 2017	30°39 92'N	57°50 37'E	229.0	1	H5	S1
9	14 Mar 2017	20°42 42'N	57°40.40'E	223.0	1		01 01
10	14 Mar 2017	30 42.42 N	57 49.40 E	904.9			01
11	15 Mar 2017	30 40.07 N	57 50.57 E	134.7		HO	51
12	15 Mar 2017	30°35.45'N	57°52.87'E	4.3	2	H5	51
13	15 Mar 2017	30°40.67'N	57°50.57'E	230.5	3	L5	S1
14	15 Mar 2017	30°39.85'N	57°50.93'E	404.6	1	H3	S2
15	15 Mar 2017	30°39.85'N	57°50.93'E	3.5	1	H5	S2
16	15 Mar 2017	30°46.23'N	57°48.20'E	88.6	1	H5	S2
17	15 Mar 2017	30°46.23'N	57°48.20'E	207.2	1	H6	S2
18	15 Mar 2017	30°46.23'N	57°48.20'E	125.4	1	H4	S2
19	15 Mar 2017	30°46.23'N	57°48.20'E	70.7	4	H5	S2
20	15 Mar 2017	30°46.23'N	57°48.20'E	16.6	3	H5	S2
20	15 Mar 2017	30°47 28'N	57°47 88'E	76.9	1	15	S1
21	16 Mar 2017	30°35 52'N	57°51 80'E	86	1	L5 H5	S1
22	16 Mar 2017	20°46 42'N	57°40 15'E	14.6	5		62
23	10 Mar 2017	20°20 00'N	57°50 15'E	255.0	1		02
24	10 Mar 2017	30 39.90 N	57 50.15 E	255.0			32
25	19 Mar 2017	30°46.00'N	57°47.52'E	31.2	1	H5	S2
20	19 Mar 2017	30°45.83'N	5/°4/.52'E	68.9	1	H5	S2
27	19 Mar 2017	30°45.73'N	57°47.60'E	13.2	1	H5	S2
20	19 Mar 2017	30°45.70'N	57°47.62'E	9.1	1	L5	S2
29	19 Mar 2017	30°45.55'N	57°47.74'E	90.7	14	H5	S2
30	19 Mar 2017	30°45.36'N	57°47.71'E	54.0	2	H5	S2
31	19 Mar 2017	30°45.36'N	57°47.71'E	4.7	3	H5	S2
32	17 Mar 2017	30°32.73'N	57°45.93'E	17.0	1	L5	S2
33	2017 Jan 9	30°45.353'N	57°48.126'E	29.4	1	H5	S2
34	2017 Jan 9	30°45,299'N	57°48.005'E	534,28	11	H5	S2
35	2017 Jan 9	30°45 477'N	57°48 085'E	35.3	3	H5	S2
36	1 Aug 2020	1°53'18 8"N	08°30'30 6"E	2550	4	CM1/2	02
3/	2018	38°5 02'N	77°0 51'E	6650	1	H5	\$2
38	2010	41°21'2 12"NI	03°36'35 08"E	53	1	1.5	02 Q1
39	21. Aug 2012	41 31 Z.1Z IN	93 30 33.00 E	- JJ - JJ = J	1		04 04
40	2013 2010 Mar	41 33 31.44 1	93 47 42.43 E	200.0			54
41	2019 Mar	41 42 3.15 N	93 43 20.98 E	1020	3	Lo	~~
42	2012	41°37'8.50"N	93°41'23.56"E	11300	1	L5	\$3
43	27 Oct. 2019	41°16'9.20"N	93°14'14.10"E	2540	1	Brachinite	
44	2019 Dec 8	41°31'56.14"N	93°19'49.80"E	70000	over 200	L6	
45	2019 Oct 27	41°17'42.75"N	93°19'20.36"E	7100	3	H4	
46	2020 Mar 27	41°25'57"N	93°29'37"E	470	1	L6	
47	2008	51°02'10.64"N	19°05'33.31"E	2143	1	H5	S1
48	Nov 2019	27.095770	-13.123126	1183.0	1	L3	S2
49	2003	30°31'57"S	121°36'27"E	210	1	H5	S4
50	2019 Sept 11	38°24'52.48"N	93°47'56.08"E	605	1	L~6	
51	20 Oct 2019	22°30 07'S	68°51 74'W	3	1	CK5	S2
52	2017 May 08	22°45'27 9"S	68°30'06 8"\W	60	1	15/6	02
53	20 Oct 2010	22°30 28'9	68°51 76'\\\/	7	1	H5	<u>S2</u>
54	1 May 2010	11°50'20 11"N	05 01.70 W	, 51	1	1~5	02
55	1 IVIAY 2019	-1 JUZO. 11 N	60°46"M	104	1		
56		24 415	09 40 W	104	1		
57	2017 Feb 20	24°39'04.5''S	009 55 34.2"V	10.7			
58	2017 Feb 21	24°38'54.0"S	069~53'03.0"V	33	4	H5	
59	2019	24°41'S	69°46'W	342000	1470	H6	
60	21 Feb 2017	24°41'47.2"S	069°55'27.5"V	243.3	1	H5	

2							
3	2017 Nov 12	24°39'09.7"S	069°48'50.5"V	174	1	H4	
4	2018 Jan 25	24°36.28'S	69°51.37'W	277.5	7	LL4-6	C-S3
5	2017 Jan 29	24°53'17.5"S	69°54'24.0"W	101	1	H5	
6	10 Dec 2019	24°36'S	69°54'W	29.1	1	H4/5	S3
7	4 Nov 2019	24°38.659'S	69°52.231'W	14	1	L5	S1
8	2019 Feb 1	24°40.108'S	69°53.504'W	180	1	Eucrite	low
9	2010 Apr 16	24°46 525'S	69°44 300'W	63.6	1	16	
10	2017 Feb 21	24°41'04 0"S	069°54'38 5"V	160	1	L0 H5	
11	2017 Nov 07	24°41'S	60°46'\\\/	253	1	16	
12	2018 Jan 5	24 410	60°51 355'\//	1050 8	1		C-93
13	2010 Jan J 21 Eph 2017	24 30.427 3	09 01:000 1	508	5		0-00
14	2010 Nov 12	24 39 22.1 3	60°51'51 1"\/	197	1		
15	2019 NOV 12	24 30 40.0 3	09 51 51.1 W	107	1		
16	2017 Feb 19	24 42 22.7 5	060°50'42 5"W	11.2	1		
17	2017 Feb 21	24 40 00.8 5	009 52 43.5 V	1155	4		
18	2014 Dec 21	24 41 5	69°46'W	203.4	1	LO	
19	2014 Dec 22	24.894214042	09.935475942	11.98	1	LL5	
20	2019 Nov 12	24°37'26.4"S	69°51'57.9"W	312	10	H5	
21	2019 Nov 12	24°36'41.0"S	69°51'57.7"W	2035	42	L6	
22	2019 Nov 13	24°39'10.1"S	69°52'02.7"W	61	1	L5	
23	20 Feb 2017	24°39'54.6"S	069°56'11.8"V	77.7	1	H5	
24	2010 Sep 29	24.703192°S	69.865290°W	264.1	4	H4	
25	2010 Sep 29	24.691729°S	69.922737°W	140.8	1	L6	
26	2017 Feb 20	24°38'31.8"S	069°56'05.3"V	18.4	1	L6	
27	2017 Feb 20	24°39'45.4"S	069°52'58.9"V	377.8	1	L6	
28	2019 Nov 11	24°41'S	69°46'W	230	6	Howardite	
29	2019 Nov 12	24°41'S	69°46'W	174	3	Howardite	
30	2020 Apr 04	24°41'S	69°46'W	65	4	Ureilite	
31	2020 Apr 16	24°41'S	69°46'W	1946	1	eucrite	
3Z	2017 Feb 19	24°42'21.9"S	069°54'06.8"V	25	1	H4	
22	2017 Feb 20	24°39'32.8"S	069°55'50.6"V	35.3	1	L6	
24 25	2010 Mar 22	24° 48.531'S	69° 43.741'W	149.3	2	H4	
36	2019	~40°26'N	~89°54'E	59	1	L6	S3
30	28 Mar 2019	~40°09'N	~89°39'E	7000	2	Ureilite	
38	2018	~40°37'N	~89°52'E	4700	1	H5	S1
30	2019	~40°09'N	~89°39'E	515	1	11~6	-
40	2019	~40°30'N	~89°40'E	63.1	1	1~4	
41	2019	~40°30'N	~89°40'E	11.2	1	H~4	
42	2019 Jun 28	40°24'16 59"N	89°54'51 01"E	302	1	15-melt brecc	i
43	2019 Aug 20	40°0'39 93"N	89°5'57 71"F	190000	over 100	16	
44	2016 Jul 04	22°45'18 6"S	68°25'05 0"W	451	1	15	
45	2017 Apr 24	22°45'15 6"S	68°29'50 7"W	159	1	15	
46	2016 Sen 16	22°45'31 0"S	68°25'27 5"\W	273	1	H5	
47	2010 000 10	22 40 01.0 0 22°44'36 6"S	68°20'38 2"\\/	18/	1	15	
48	2019 Jul 22	22 44 30.0 3	86°35'53 17"E	~15000	1	L5 H5	S 2
49	2019 Jul 22	20 20 50.20 N	24°51 66'E	295	1		0Z 01
50	10 Oct 2020	20 04.00 N	34 31.00 E	200	1		01
51	19 Oct 2020	25 19.48 N	34 43.29 E	9.8	1	HO	52
52	19 Oct 2020	25°19.31'N	34°43.58'E	05.7	3	H5	51
53	19 Oct 2020	25°19.50'N	34°43.27 E	1.1	1	H5	53
54	25 Oct 2020	25°00.54'N	34°54.15'E	8.3	1	H5	S1
55	2018 Jan 5	33°15'N	02°45'W	538	1	LG	S3
56	2019 July 17	16.8539806	-15.9293383	1552	1	R4-5	S2
57	27 May 2004	1.951°S	5.512°W	20-25	1	Stony iron	
58	21 Dec 2006	2.049°S	5.504°W	2500-3100	1	Stony-iron	
59	18 Nov 2008	2.076°S	5.512°W	427-528	1	Stony-iron	
60	12 May 2009	2.106°S	5.520°W	373-462	1	Stony-iron	

2							
3	31 Jul 2009	2.120°S	5.521°W	240000	1	Iron. IAB com	1
4	1 Oct 2009	2 121°S	5 532°W	100000	1	Iron IAB com	1
5	14 Oct 2009	2 120°S	5 533°W	65000	1	Iron	'I
6	2018 Sent	15°45'46 53"S	51°31'1 75"W	14915	1	H5	S4
7	2010 Sept	31°5'53"S	121°28'42"⊑	38.3	1	H5	54 54
8	2010 Gept	86 5374	16/ 878	27 72	1	16	04
9	2017	-00.0074	164 005	21.12	1		
10	2017	-60.5315	-104.000	49.47	1		
11	2017	-80.5393	-104.888	90.09	1	LO	
12	2017	-86.5344		121.86	1	Нб	~ (
13	2013	30°46'17.99"S	127°44'32.16"	66.53	1	H5	S4
14	2020 Jul 2	35°41'26"N	140°01'51"E	350	2	H5	S1
15	2017	-86.4691	-162.551	2.277	1	L5	
16	2017	-86.5166	-162.557	1.583	1	L5	
17	2017	-86.4471	-162.627	7.578	1	H6	
18	2017	-86.5258	-162.53	6.069	1	H6	
19	2017	-86.4517	-162.599	4.97	1	H5	
20	2017	-86.4722	-162.563	10.044	1	H4	
21	2017	-86.4463	-162.638	7.066	1	H6	
22	2017	-86.4554	-162.59	4.776	1	H5	
23	2017	-86 4722	-162 563	12 026	1	H4	
24	2017	-86 4533	-162 605	5 255	1	H6	
25	2017	-86 5263	-162.000	4 71	1		
26	2017	96 4722	162 562	4.22	1		
27	2017	-00.4722	162.502	4.22	1		
28	2017	-00.020	-102.529	3.97	1		
29	2017	-86.4501	-162.623	2.89	1	Но	
30	2017	-86.5165	-162.525	1.6	1	H5	
31	2017	-86.476	-162.375	0.94	1	L6	
32	2017	-86.4381	-162.669	10.17	1	H6	
33	2017	-86.4554	-162.595	7.01	1	H6	
34	2017	-86.4574	-162.583	4.35	1	H6	
35	2017	-86.4611	-162.57	7.78	1	H5	
36	2017	-86.4555	-162.591	7.641	1	H6	
37	2017	-86.4533	-162.604	6.801	1	H6	
38	2017	-86.436	-162.691	4.178	1	H6	
39	2017	-86.437	-162.683	12.314	1	H6	
40	2017	-86.4623	-162.569	6.785	1	H6	
41	2017	-86.4464	-162.64	18.535	1	H4	
42	2017	-86 4361	-162 69	18 23	1	H6	
43	2017	-86 4723	-162 562	32 864	1	На	
44	2017	-86 4227	-162.002	2/ 370	1	НА	
45	2017	86 5202	162 521	1 8	1	Не	
46	2017	-00.0202	162.521	4.0	1		
40	2017	-00.4722	-102.303	4.20	1		
48	2017	-80.5100	-102.527	2.22	1		
40	2017	-86.4723	-162.562	5.47	1	H4	
50	2017	-86.4467	-162.631	7.14	1	H6	
51	2017	-86.4467	-162.631	3.69	1	H6	
52	2017	-86.4371	-162.677	7.61	1	H6	
53	2017	-86.4132	-162.63	30.15	1	LL5	
54	2017	-86.4159	-162.615	81.01	1	H5	
55	2017	-86.4722	-162.562	30.87	1	L6	
56	1976	35.055° N	117.811° W	3000	1	L6	S1
57	P 2020 Jan			244.5	20	Martian (shere	c high
58	P 2019 Jan			647	1	R3-5	S2
50	P 2020 Jan			161.2	2	Martian (shere	c hiah
60	P 2019 Aug			635	1	L3	S2
						-	
1							
----------	---------------	---------	---------------	----------------	----------		
2							
3	P 2020 May	3250	1	Diogenite-mel	high		
4	P 2020 Aug	1601	1	Lunar (feldsp.	low		
5	P 2020 Dec	610	1	Martian (shere	high		
6	P 2002	468	2	Diogenite-pm	low		
7	P 2002	370	1	L4	S2		
8	P 2002	275	1	H4	S2		
9	P 2004	248	1	CK3	S2		
10	P 2004	636	1	L3-6	S2		
11	P 2004	~15000	manv	Eucrite-br	low		
12	P 2004 Aug	1053	1	CV3	S2		
13	P 2006 Mar	312	5	EL-melt rock	hiah		
14	P 2006 Feb	322	1	H6	S2		
15	P 2006	128	1	CV3	S2		
10	P 2006	28	1	CV3	S2		
1/ 10	P 2007	968	1	Howardite	low		
10	P 2007	2510	1	H7	S2		
19	P 2008	1257	many	Mesosiderite			
20 21	P 2008	538	21	Brachinite			
21 22	P 2007	780	1	CO3	S1		
22	P 2007	171 5	י ר	Diogonito	modorato		
25 74	P 2007	9	2 1	Diogenite	low		
25	F 2000	6.2	1 2	Minopoito			
26	F 2000	74.0	3	Winonalle	low		
20 27	P 2009	10.0	30	Vinonalle	IOW		
28	P 2005	10.9		Pallasile	IOW		
29	P 2009	47	1		52		
30	P 2009 Feb	891	1	LL(L)3	S2		
31	P 2010	5/1	1	CO3	S2		
32	P 2011	1200.96	1	Eucrite	moderate		
33	P 2011	66	1	CK4	S2		
34	P 2011	144	1	CK4	S2		
35	P 2019	271	1	Eucrite-cm	High		
36	P 2019	423	1	Diogenite	moderate		
37	P 2019	4050	Several hundr	Eucrite-pmict	moderate		
38	P 2011 Oct 26	267	1	LL3	C-S3		
39	P 2014 Jun 25	102	1	L3.15	S3		
40	2014	82	1	CR2	low		
41	P 2014	10.9	1	H5	S2		
42	P 2014	6.2	1	L/LL5	S2		
43	P 2015	682.29	1	LL3.10	S3		
44	P 2017 Mar	56000	1	Ureilite	low		
45	P 2005	23.41	1	L3-7	S2		
46	P 2005	193.1	1	L3-6	S2		
47	P 2005	87.64	1	L3-6	S2		
48	P 2005	40.54	1	L3-6	S2		
49	P 2018 Jun	1277	1	L3	S2		
50	P 2017	50	1	CV3	S2		
51	P 2018	439	1	H4	S2		
52	P 2018 Mar	1481	2	L5			
53	P 2018 Aug	797	21	Eucrite-an	moderate		
54 FF	P 2005	249	1	L3-6	S2		
55 E6	P 2018	701.5	1	H3-5	S2		
50 57	P 2018	99.5	1	H4	S4		
57 50	P 2017	81	1	R3			
50 50	P 2005	193	1	L3-6	S2		
59 60	P 2018 Aug	1479	10	LL3	S2		
		·· -	-				

1							
2							
3	P 2018 Nov			16000	1	LL6-melt brea	ci S2
4	P 2017			171	1	CVred3	
5	P 2018 Apr			349	2	CK5	
6	P 20 Apr 201	7		140	1	Ureilite	
7	P 2018			4530	1	LL3	S2
8	P 2018			285	1	LL6-an	
9	P 2015			10.91	1	Achondrite-ur	า
10	P 2019			8.5	1	LL7	
11	P 2019			34	1	CV3	
12	P 2018			92.5	1	CV3	S2
13	P 2018			422	1	L4-melt breco	ci
14	P 2019			196	1	H3	S2
15	P 2019			50	1	16	
10	P 2004			7.0	1	L5-melt brecc	N i
1/	P 2013			536.28	1	L Ireilite	moderate
10	P 2010			202	1		S2
19	D 2019			202	1	LJ HA	S2
20	F 2010			240	1		52
21	P 2010			995		⊓0 Fuorito	52 moderate
22	P 2017			79	2	Eucrite	moderate
23	P 2019			3030	1	H5	51
24	P 2019			791	1	Lo	S1
25	P 2019			724	2	Achondrite-pi	ri high
20 27	P 2012			2.12	1	Eucrite	low
2/	P 2012			217.58	4	Eucrite	moderate
20	P 2014			32.65	1	Eucrite	high
29	P 2011			814.13	2	Eucrite	moderate
21	P 2006			6.19	2	Eucrite	moderate
27	P 2018			43	several	C3.00-ung	
22	P 2019 May			5832	1	Achondrite-ur	n low
37	2017			850	1	Iron, ungroup	elow
35	P 2019			697	1	Eucrite-br	low
36	P 2016			40.6	1	CK6	S2
37	P 2014			64.5	18	Pallasite	S1
38	P 2016			1700	32	Pallasite	S1
30	P 2019			370	1	Ureilite	low
40	P 2019			395	1	Eucrite	moderate
40	P 2019			849	1	CV3	S1
42	P 2019			35.7	1	CO3	S1
43	P 2019			380	many	CV3	S2
44	P 2018 Mar			211	4	Martian (sher	r high
45	2019 Jun			654.9	1	Diogenite-pm	
46	2019 Jun 2018 Aug			054.5	1	Eucrite_br	moderate
47	2010 Aug 2010 May			930	1 2		C2
48	2019 May	24 502°N	10 767%/	010	2	UN4 Lunar (foldon	JZ biab
49	P 2020 Sep	24.302 N	13.707 VV	1010		Lunar (leiusp	. IIIYII xahiah
50	P 2019 NOV			587	1	Martian (sher	çnign
51	P 2019			15000	many	LL~3	
52	P 2019			372	3	LL~4	
53	P 2019			54	1	L~6	
54	P 2019			150	1	L~6	
55	P 2019			7.2	1	H~4	
56	P 2019			238	1	CV3	S1
					4	112	Q1
5/	P 2019			114	I	LLS	31
57 58	P 2019 P 2019			114 110	1	H5	S1
57 58 59	P 2019 P 2019 P 2019			114 110 38	1 1 1	H5 H5	S1 S1

1					
2					
3	P 2019	296	1	CO3	S1
4	P 2019	420	1	R3	S1
5	P 2019	50	1	Ureilite	low
6	P 2019	14	1	L6	S2
7	P 2019	60	many	CO3	S1
8	P 2019	6300	many	Eucrite	low
9	P 2019	13	1	Eucrite	moderate
10	P 2019	144	1	CO3	S1
11	P 2019	70	1	Eucrite	low
12	P 2019	80	1	CO3	S1
13	P 2016	361	1	114	S1
14	P 2015	315	2	13	S2
15	P 2015	140	1	CO3	S1
16	P 2018	180	1	Eucrite	moderate
17	P 2015	820	1	13	S2
10	P 2016	40	1	CK6	S1
19 20	P 2019	269	1	15	S2
20	P 2019	200 407	1	16	S2
21	P 2016	70	1	R3-5	S4
22	P May 2018	90	1	15	54 54
23	P May 2018	181	1	H6	S1
25	P May 2018	120	1	Не	\$2
26	P May 2018	74	1	15	S2 S3
27	P May 2010	858	1	L5 H5	S1
28	P May 2019	805	1	НЛ	S1
29	P May 2019	580	1	16	\$2
30	P May 2019	703	1		52 62
31	P March 2019 D March 2019	793	2	LU Eucrito projet	33
32		1866 52	2		\$2
33	D 2010 Mar 2	1000.52	1		S2 S2
34	P 2019 Mar 2	1182	1		S2 S3
35	P 2014 Feb	133.0			63
36	P 2014 Feb	174.2	1	L0 H6	00
3/	P 2014 Feb	107 1	1	16	
38	P 2014 Feb	326	1	H5	
39	P 2014 Feb	328	1	16	
40	P 2014 Feb	346.0	1	He	
41	P 2014 Feb	162.0	1	16	
43	P 2014 Feb	218.2	1	H5	
44	P 2014 Feb	656.6	1	H5	
45	P 2019	440	1		S2
46	2017.lan	68796	several	Lunar (feldsp	low
47	P 2019 Aug	139.3	1	Mesosiderite	low
48	P 2018 Mar	30000	many	I 6-melt brecci	S2 (clas
49	P 2019 Apr	175	1	Eucrite-mmict	
50	P 2018 Mar	2000	many		
51	P 2019 May	320	1	Martian (shere	high
52	P 2018 Mar	2320	1		S2
53	P 2010 Mar	860	1		S2
54	P 2005	286	1		S2
55	Ρ 2019 Δυσ	200 16 Q	1	L i Diogenito nm	
56	P 2015 Aug	90.9 220	1		S2
57	F 2000 D 2010 lun	220	1	1 14/0 Luper (folder	
58		1/185	ı many		S2
59	P 2019 Aug	1400	nany	L 4 C\/2	52 62
60	r zu i 9 Api	1/0/	several	003	32

Running Head

1		
2		
3	P 2019 Nov	1524
4	P 2010 Aug	15400
5	P 2019 Aug	10400
5	P 2019 Aug	102.2
0	P 2005	44.3
/	P 2019	7 kg
8	2015	818.7
9	P 2012	212.6
10	P 2012	305
11	D Ech 2015	7800
12		7800
13	P 2019	2319
14	P 2019	20000
15	P 2017	180000
16	unknown	90000
17	2012	15
18	P 2018 Apr	58.3
10	2017	147
20	D 2010	1382
20	F 2019	1002
21	P 2019	16.70
22	P 2018	8/
23	P 2018	7.07
24	2018	391
25	P 2016	4000
26	2018	307
27	P 2016 Jan	137
28	P 2019 May	957
29	P 2010 Sen	287
30	D 2010 Sep	402
31	P 2019 Sep	403
32	P 2019 Sep	151
33	P 2019 Sep	251
34	P 2019 Sep	5.91
35	P 2019 Sep	200
36	P 2019 Sep	87
37	P 2014 May	19.06
20	P May 2016	296
20	P 2019 Sent	472
39	P 2010 Copt	18/
40	F 2019 Sept	104
41	P 2019 Sept	1393
42	P 2019	118.3
43	P 2019	1392.5
44	P 2019	128.2
45	P 2019	317.6
46	P 2019	335
47	P 2019	416
48	P 2019	284
49	P 2010	3170
50	D 2010	400
51	F 2019	400
52	P 2019	1027
53	P 2019	248
54	P 2019	199
55	P May 2015	70
55	P 2017 Jun 18	7100
50	2018	86.81
51	2017	47.44
50 FC	2016	82 47
59	2010	200 EE
60	2010	200.00

1524	1	Martian (shero	high
15400	many	H6	S2
102.2	1	Eucrite-mmict	low
44.3	1	L6	S2
7 kg	3	Lunar (Feldsp	high
818.7	1	Lunar (feldsp.	
212.6	1	L4	S2
395	1	LL6	S3
7800	1	L5	S2
2319	1	CV3	S1
20000	Many	H5	So
180000	Many	L5/6	53/4 moderate
90000		EL0 Martian (shore	high
10 58 3	2	Inditian (Sherg	low
147	1		S2
1382	2	H5-melt brecc	S3
16.70	1	Lunar (feldsp.	00
87	1	H6	
7.07	1	H4	
391	9	Mesosiderite	
4000	1	H5	
307	3	Howardite	
137	1	L5-melt brecci	
957	1	LL3	
287	1	Eucrite	
403	1	L4	
151	1	Eucrite	
251	several	Eucrite	
200	several		
200 87			
19.06	1		
296	2	H5	
472	1	Ureilite	
184	1	CK6	
1393	2	Pallasite	
118.3	1	H3	S2
1392.5	many	L6-melt brecci	S3
128.2	1	Eucrite	low
317.6	1	L3	S1
335	1	R3-6	S2
416	1	Diogenite	IOW
204 2170	1	Eucrite	10W
400	1	Eucrite_melt b	moderate
400 1027	5	C2-und	S1
248	1	16	S3
199	1	LL6	S2
70	1	Achondrite-un	-
7100	1	L3	S1
86.81	1	L5	C-S3
47.44	1	H5	C-S3
82.47	1	LL5	C-S3
280.66	1	H5	C-S3

Running He	ad
------------	----

2		
3	2010	21
1	2019	
	2019	14
5	P 2019 Aug	18
6	P 2019 Aug	17
7	P 2019 Jun	94
8	P 2019 Jun	3
9	D 2010 Aug	0
10	F 2019 Aug	00
11	P 2005	55
12	P 2005	40
12	P 2019 Mar	30
1.0	P 2005	40
14	P 2019 Sen	16
15		6/
16	P 2017 Mor	
17		
18	2019	49
19	2015	13
20	August 1999	59
21	1998	9
22	1999	52
23	1000	
23	1000	
24	1999	57
25	P 2019 Mar	6,
20	P 2019 Mar	36
27	P 2019 Mar	14
28	P 2019 Mar	55
29	P 2019 Oct	18
30	P 2020 Jan	30
31	D 2020 Jan	60
32	P 2020 Jan	08
33	P 2019 Oct	76
34	P 2019 May	25
35	P 2019 Dec	41
36	P 2019	81
27	P 2019	16
20	P 2019	42
20	P 2010	1/
39	D 2019	1
40	P 2019	OC A
41	P 2019	18
42	P 2019	40
43	P 2019	2.
44	P 2019	15
45	P 2019	1(
46	P 2019	50
47	P 2014	20
48		50
49	P 2019 Augus	1
50	P 2019 Oct	63
50	P 2019 Sep	10
51	P 2019 Oct	27
52	P 2019 Nov	63
53	P 2019 Oct	12
54	P 2015	20
55		20
56		17
57	P 2019 Nov	23
58	P 2019 Oct	14
59	P 2019	10
60	P 2019	82
-		

222.52 1247	3 28	Diogenite L3-6	moderate C-S3
1876	many	CO3	S2
1/5	1	Martian	nign
945	2	L4	S2
31	several	Eucrite-br	low
83	1	LL3	S2
55.9	1	H5	S2
40.5	1	L4/5	S2
300	several	Lunar (feldsp.	high
40.5	1	L4	S2
1600	2	Martian (shere	high
646	1	Achondrite-un	•
132	17	Mesosiderite	
49	10	Martian (shere	hiah
134 86	1	Lunar (feldsn	ingii
50	1		
0	1		
9	1	LO	
52.2	1	LO	
45.30	1	Lb	
57.30	1	L6	
678.9	many	H5	S2
367.5	1	LL6	S4
1424.9	1	H4	S3
555.1	1	L3	S2
18020	1	L4/5	S2
396	2	Chondrite-ung	S2
6976	1	L4	S2
76.8	1	Martian (shere	high
2557	1	H4/5	S2
414	1	Howardite	low
81		H5-6	S2
164.8	3	l Ireilite	low
42.6	1	H6	S1
1150	10	El melt rock	
55	10	Euorito	low
10 7	12	CKG	10W
18.7		CKO	52
4000	1	L3	52
2.5	1	Acnonarite-un	moderate
150	1	Martian (sherg	strong
100.15	18	Lunar (Feldsp	high
50	5	Martian (sherg	high
368	7	LL3.2	S1
113	1	Eucrite-cm	High
630	1	H3	S2
1097	4	L4	S2
270	1	H3	S2
638	1	Eucrite-mmict	high
131	1	LL6	S2
200.4	4	Lunar (feldsp.	low
174	1	H3-4	S2
2300	1	Martian (shere	hiah
142	1	H3	S2
107	1	Martian (shere	hiah
820	1		low
020	I	Orennie	IUW

-		
Run	nina	Head
T COLL	minig	incua

P	aa	e	474	of	686
	uy	C	-17-1	U.	000

1		
2		
3	P 2019	38
4 5	P 2019	13
5	P 2019	86
7	P 2019	34
8	P 2019	13
9	P 2020	70
10	P 2014	36
11	P 2019 Jun	10
12	P 2019 Aug	28
13	P 2019 Dec	40
14	P 2019 NUV	12
15	P 2019 Juli P 2016 Mar	35
16	P 2010 Mar	96
/ 10	P 2019 Nov	71
1ð 10	P 2019 Nov	31
20	P 2018 Mar	70
20	P March 2019	47
22	P 2019 Dec	25
23	P 2008	10
24	P 2019	99
25	P 2019	21
26	P 2019	23
27	2019	65
28	2019	30
29	P 2018	15
30 21	2019	34
30 30	P 2018 Oct 26	24
33	P 2019	21
34	P 2019	11
35	P 2016	29
36	P 2019	11
37	P 2019	21
38	P 2019	70
39	P 2018	15
40	P 2020	41
41	2013	33
42 13	P 2019 2010 Ech 7	22
43	20191 eD 7 Ρ 2019 Διια	20
45	P 2019 Aug	16
46	P 2019 Oct	60
47	P 2019	25
48	P 2019 Oct	38
49	P 2019 Dec	36
50	P 2019	27
51	P 2019 Nov	56
52	P 2019 Apr	64
53 54	P 2019 Jun	98
54 55	2019	50
56	2018	18
57	P 2019	20
58	2015 Jun	58
59	P 2019 Oct	39
60	P 2019	10

380	1	H4	S2
1343	1	L6	S2
868	1	Eucrite-melt b	hiqh
341	5	LL7	SĨ
1344	1	Howardite	hiah
708	1	LI 6-melt brec	S2
36.46	1	Martian (shere	hiah
162 1	1		so.
287	1	LLA	
4000	1		60
4000	1	CV3	52 Iour
123.9		Louranite	
1237	5	L4	52
350	1	CV3	S2
966	many	Eucrite-melt b	high
717	1	CK3	S2
314.1	1	Winonaite	low
70000	many	H5-melt brecc	
4700	1	C2-ung	low
2572	1	Martian (sherg	high
101	1	L-melt rock	S4
99.3	1	L6-melt brecci	C-S5/6
210.6	1	H5	C-S2
236.8	1	LL3	C-S2
65.2	1	Diogenite	moderate
3000	10	Lunar (feldsp.	moderate
1500	10	Martian (sherc	hiah
340	11	CV3	S2
24.4	1	Lunar (feldsp	02
21155	1	H6	\$3
1185.4	1	CK5	low
20.7	1	13	S2
118		Howardite	strong
214	1		Silong S2
700	many		SZ S1
700		CV3	01
750	1		01
4150		Lo-meit brecci	53
333.2	1	H4/5	52
740	2	Eucrite-unbr	IOW
33	1	LL3.5	\$3
20.9	1	LL3.15	S2
1603	1	Achondrite-un	low
6056	1	L6	S2
255.5	8	Achondrite-un	low
3880	1	L6	S2
3652	4	Martian (sherg	high
277	several	L-melt rock	
564	1	Aubrite	low
6418	5	CV3	S2
987	1	Eucrite-pmict	low
50000	200	L5	S3
181	1	L3	S3
200.6	8	Lunar	moderate
581	19	H5	
399.6	1	L5-6	
1050	1	Howardite	low

1 2 3 4	P 2017 P 2019	
6 7 8	P 2019 2019 Apr P April 2019 2019	
9 10 11 12	2019 P 2018 2019	
12 13 14 15	2019 P 2020 P 2020	
16 17 18	P 2020 P 2019 P 2020	
19 20 21	P 2019 P 2019 P 2018 Mar	
22 23 24	P January 202 P 2020 Apr P 2019 Dec	
25 26 27	P 2019 Sep P 2020 Jan P 2019 Sep	
28 29 30 31	P 2019 Sep P 2019 Apr P 2020 Jan	
32 33 34	May 2019 May 2019 2019 Oct	
35 36 37	2019 Oct 2018 Mar October 2019	
38 39 40	P 2020 Feb P 2020 Jan P 2019 Nov	
41 42 43 44	P 2019 Nov P 2020 Feb P 2020 Jan P 2020 Jan	
45 46 47	P 2020 Jan P 2019 Nov P 2020 Jan P 2005	
48 49 50	P 2019 P 2009 July 2019	
51 52 53	P 2020 P 2019 P 2019	
54 55 56 57	P 2019 P 2019 P 2019 P 2019	
57 58 59 60	P 2019 P 2019 P 2020	

705.4	1	Eucrite	low
633.2	1	Eucrite	low
387.4	1	Martian (shere	high
16400	20		so.
10 4 00	20	110	02
500	1	H5	53
533	2	H3	S2
193	1	LL3	S2
26.4	1	Eucrite	moderate
203	1	CV3	S2
319	1	Eucrite-br	low
1973	Many	113	C-S3
730	1	113	C S3
200 0	1		0-00
290.0	1		0.00
20.5	1	LO	0-52
402.8	1	Mesosiderite-/	low
45	1	Ureilite	low
263	3	Aubrite	moderate
13080	1	H7	S1
1560	8	Lunar (feldsp.	moderate
467	1	Achondrite-un	low
168 1	1	Fucrite-unbr	high
5602	6		So
3002	0	LLJ. 10	
441	1	Eucrite-br	moderate
875	1	CK3	S2
45	1	Achondrite-un	low
987	1	L3-6	S2
2750	1	Eucrite-br	moderate
92.6	2	L3-5	S4
150.4	1	LL4-6	S2
785.0	1	15	S2
435.0	several	H4	S2
400.0	covoral	C\/2	S2
432.0	several	CV3	52
349.0	several		55
3957			52
5000	1	LL3.15	S2
7842	1	Eucrite-br	low
1235	1	LL3	S2
346	1	Martian (sherç	high
650	1	LL4-5 melt bre	S2 clast
360	several	CO3	S2
147 5	1	Eucrite-br	hiah
563	1	H7	S2
17.9	1	CK3	S2
057	1		0.05
957	1		C-55
526	109	Urellite	moderate
406.2	1	Eucrite	
290	1	CR2	S1
467	1	Mesosiderite	S2
355	1	H6	S2
471	1	LL3	S2
150	1	H5	S2
170	1	H5	S1
133 7	1	116	53
3000	many	Eucrite mmist	moderate
3000	illally 4		nouerale
1.1	1	⊢ucrite	IOW

Page	476	of	686
		•••	

1					
2					
3	P 2020	1245	1	Howardite	low
4	P 2020 May	48.7	1	Lunar (feldsp.	low
5	P 2019 Dec	348	1	Diogenite	low
7	P 2020 Apr	69	1	CH3	S2
, 8	P 2019 Jul	2097	1	Eucrite-mmict	high
9	P 2019 Oct	4316	1	L4	S2
10	P 2020 May	4870	31	Achondrite-un	low
11	P 2018 Dec	1297	many	Eucrite-mmict	low
12	P 2020 Mar	221.5	many	CO3	S2
13	P 2020 Jan	240	1	Lodranite	low
14	P 2020 May	672	1	Eucrite-an	low
15	P 2019 Aug	396	1	LL4	S2
16	P 2020 Mar	38.92	1	CK3-6	S2
17	P 2019 May	990	1	L5	S2
18	P 2020 Mar	96	1	Eucrite-pmict	nigh
19	P 2020 Jan	187	1	Martian (snerg	nign
20	unknown	1040.0	1	L6	S3
21	P January 202	4	1	Martian (sherg	nign
22	2020 Jan	54	1	Angrite	IOW
23	P 2019	227	1	CV3	C-S3
24	P 2019	230.2	5	Diogenite	IOW
25	P 2019	417	1	Martian (snerg	nign
20	P 2020	249	1	Martian (snerg	nign
28	P 2020 Jul	1105	1	Martian (nakni	IOW
29	P 2020	24.7	1	Martian (snerg	U-55
30	P 2020	311.0	2		NI-52
31	P 2010	24.0	5		0-52
32	P 2019 2019	7204	4		52
33	2010	2072	1		51
34	2010	1292	1		33 85
35	2010	7000			35
36	2010 D 2010	619 19	1		04 62
37	P 2019 P 2010	707 04	1	H5	33 63
38	P 2019	242.20	1		53
39	P 2019	242.29	1		moderate
40	P 2019 P 2020 Jun	100.0	1	CK3	S2
41 42	P 2016 Eeb	875	1		S2
42	P 2019 Feb	866 4	1	LIreilite	
44	P 2018 Sen	465 3	1		S2
45	P 2015	1040	many	CVred3	C-S2
46	2019	158	1	15	S2
47	2019	79	1	15	S2
48	2019	94	1	15	S3
49	2019	82	1	15	S3
50	P 2017 Apr 13	113	1	Lunar (frag. br	high
51	P 2020	374	1		S2
52	P 2020	393	1	115-6	S2
53	P 2020	944	many	16	S2
54	P 2020	480	11	LI 6-melt brec	S4
55	P 2020	736	manv	Eucrite-mmict	moderate
50 57	2015	177	1	H5	
57 50	2019	720	1	LL3	
50 50	2019	9252	1	H5	
60	2018	8865	1	H5	

1		
2		
3 4	P 2016 Dec	
5	P January 202	
6	2017	
7	2019	
8	2019	
9	2019	
10	2019	
12	2018	
13	2017	
14	P 2018	
15	P 2020	
16	P 2020 P 2020	
1/	P 2020	
10 19	P 2015 Sep	
20	P 2012 Sep	
21	P 2019 Oct	
22	P 2008 Jun	
23	P 2019 Oct	
24	P 2019 Oct	
23 26	P 2019 Oct	
27	P 2019 Oct	
28	P 2019 Oct	
29	P 2020	
30	P 2019	
31	P 2020 Jun	
32 33	P 2019	
34	P 2019 Mar	
35	P 2020 Mar	
36	P 2020 Aug	
37	P 2020 Feblua P 2020 Feb	
38 30	P 2020 Februa	
40	P 2020 Februa	
41	P 2020 Februa	
42	P 2018	
43	2018	
44 45	2019	
45 46	P March 2020	
47	P 2020 Mai P 2019 Oct	
48	P 2020 Jun	
49	P 2020 Mar	
50	P 2017 Dec	
51 52	P 2019	
52 53	P 2020 Jun	
54	P 2019	
55	P 2019	
56	P 2019 P 2010	
57	P 2019	
58 50	P 2019	
59 60	P June, 2020	

605 67 5636 3318 3800 2658 1482	1 2 1 1 1 1 1	C3-ung Martian (sherç H5 L6 L6 H6 H6	S2 high
2022	10	LO Lunar (folden	moderate
2000	12	Lunar (leiusp.	
99.22 264 2	2	CC5 an	C S2
204.2 6	1	CV3	S1
242	1	Howardite	low
648 2	1	I 6-melt brecci	S4
286	1	Fucrite	low
1834	1	15	S2
349.6	1	H3-6	S2
4654	1	15	S2
53	1	Acapulcoite	low
3908	1	L6	S2
11344	1	H4	S2
4976	1	L5	S2
3420	1	H4	S2
103.8	1	L4	S2
2596	1	H4	S2
137.3	many	Lunar	moderate
480	1	Diogenite-pm	low
2020	5	L7 .	S4
1276	1	Howardite	low
308	1	H4	S2
4459	5	Winonaite	low
24695	2	Eucrite-unbr	low
123.7	1	Eucrite-melt b	high
277.3	many	Diogenite	low
345.1	1	Eucrite-pmict	moderate
133.8	1	CV3	S1
63.5	1	CO3	S1
660	1	Eucrite	
309.95	4	Martian (sherç	high
84.69	4	Martian (sherç	high
127	many	CO3.0	S2
153	many	CO3.1	S2
542	1	L4	S2
0484	several	Acnonarite-un	IOW
209	1		52
114.7	l e	LL3 CK5	52
04Z	0	UND Lunar (folden	52 Iow
1120	16		IUW SO
1120	10		02 60
440 106	20 1		52 62
510	ו ס		32 62
150	<u>د</u>	110 CO3 an	02 Q1
160	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C2	S1
11780	1	02 Eucrite	low
11/00	1		1000

1		
2 3	P March 2008	
4	2017	
5	2017	
6 7	P August, 202	
8	P Aug 2020	
9	P UCL 2018 P June 2018	
10	P 2019	
11	P 2019	
12	P 2020	
14	P July 2020	
15	P July 2020	
16 17	P Sept 2020 P Sept 2020	
17 18	2018	
19	P 2018 Dec	
20	P 2020 Mar	
21	P 2019 May	
22	P 2020 Aug	
23	P 2020 Juli P 2020 Sen	
25	P 2020 Aug	
26	P 2020 Sep	
27 28	P 2014 Jan	
28 29	2019 Sep	
30	2019 2017	
31	2019	
32	2019	
33 34	P 2019 Jun	
35	P 2020	
36	P 2019 May	
37	P 2019 Oct	
39	P 2019 Oct	
40	P 2019 Oct	
41	P 2020 Jan	
42 43	P 2020 Feb	
43 44	P 2020 Feb	
45	P 2020 Feb	
46	P 2020 Jan	
47 48	P 2020 Jan	
40 49	P 2016 Apr	
50	P 2019 Oct	
51	P 2019 Oct	
52 53	P 2019 Oct	
55	P 2018 Sep	
55	P 2020 Sep	
56	P 2020 Sep	
57 50	P 2009 Jun	
эð 59	P 2020 Mar	
60	P 2020	

32.51 1 Martian (sherç 4.01 1 LL5-6 S2 277 1 Eucrite-melt b high 264.7 1 Ureilite low 446 1 CO3 S1 1500 many H5 S2 677 2 CK6 S2 80 1 Martian (sherç high 280 several R3-6 S2 27 1 Eucrite-melt b high 104 1 Eucrite-melt b high 104 1 Eucrite-melt b high 104 1 Eucrite-melt b high 814 1 LL4-6 S4 84 1 H4 S2 218 1 Martian (sherg high 8438 5 L5-melt brecci S2 clast 251 1 Ureilite high 777 1 CO3 S2 59 1 Lunar (feldsp. low 25.9 6 C2-ung S2 50	6500	1	H5	S2
4.01 1 Martian (sherç 1870 1 LL5-6 S2 277 1 Eucrite-melt b high 264.7 1 Ureilite low 446 1 CO3 S1 1500 many H5 S2 677 2 CK6 S2 80 1 Martian (sherc high 280 several R3-6 S2 277 1 Eucrite-melt b high 104 1 Eucrite-melt b high 104 1 Eucrite-melt b high 814 1 LL4-6 S4 84 1 H4 S2 218 1 Martian (sherc high 8438 5 L5-melt brecci S2 clast 251 1 Ureilite high 777 1 CO3 S2 59 1 Lunar (feldsp. low 25.9 25.9 6 C2-ung S2 1495 2 Eucrite-mmitclow 27.51 1 H4 <t< td=""><td>32.51</td><td>1</td><td>Martian (sherc</td><td>-</td></t<>	32.51	1	Martian (sherc	-
1 LL5-6 S2 277 1 Eucrite-melt b high 264.7 1 Ureilite low 446 1 CO3 S1 1500 many H5 S2 677 2 CK6 S2 80 several R3-6 S2 27 1 Eucrite-melt b high 104 1 Eucrite-melt b high 104 1 Eucrite-melt b high 104 1 Eucrite-melt b high 814 1 LL4-6 S4 84 1 H4 S2 218 1 Martian (sherc high 8438 5 L5-melt brecci S2 classi 251 1 Ureilite high 777 1 CO3 S2 1495 2 Eucrite-melt brecci S2 classi 259 6 C2-ung S2 11 Ureilite high 777 1 CO3 S2 1495 2 Eucrite-unbr Low	4.01	1	Martian (shere	
2771Eucrite-melt b high264.71Ureilitelow4461CO3S11500manyH5S26772CK6S2801Martian (sherr high280severalR3-6S2271Eucrite-melt b high1041Eucrite low1001Eucrite-melt b high8141LL4-6S4841H4S22181Martian (sherr high84385L5-melt brecci S2 clast2511Ureilitehigh7771CO3S2591Lunar (feldsp. low25.96C2-ungS244952Eucrite-mmict low27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherg581Mesosiderite39.33CK6253manyBrachinite299.41CO3123manyMesosiderite5285Eucrite66.81Lu310387.91H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr M-S149.7 </td <td>1870</td> <td>1</td> <td>LL5-6</td> <td>S2</td>	1870	1	LL5-6	S2
264.71Ureilitelow4461CO3S11500manyH5S26772CK6S2801Martian (sherç high280severalR3-6S2271Eucrite-melt b high1041Eucrite low1001Eucrite-melt b high8141LL4-6S4841H4S22181Martian (sherç high84385L5-melt brecci S2 clast2511Ureilite7771CO3S2591Lunar (feldsp. low25.96C2-ungS214952Eucrite-mmict low27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherg581Mesosiderite39.33CK6253manyBrachinite299.41CO3129.51Eucrite111.61Eucrite5721CO3123manyMesosiderite58.81L3.1029.41CO3129.51Eucrite5721CO3123manyMesosiderite58.81L3.1038.61CK3 <td>277</td> <td>1</td> <td>Eucrite-melt b</td> <td>high</td>	277	1	Eucrite-melt b	high
446 1 CO3 S1 1500 many H5 S2 677 2 CK6 S2 80 1 Martian (sherr, high) 280 several R3-6 S2 27 1 Eucrite-melt b high 104 1 Eucrite-melt b high 814 1 LL4-6 S4 84 1 H4 S2 218 1 Martian (sherc high 8438 5 L5-melt brecci S2 clast 251 1 Ureilite high 777 1 CO3 S2 59 1 Lunar (feldsp. low 25.9 25.9 6 C2-ung S2 1495 2 Eucrite-mmict low 27.51 27.51 1 H4 311 several 350 2 CK5 240 many 1675 several Eucrite-unbr 21 10 Martian (sherç 58 1 Mesosiderite 39.3 3 <td>264.7</td> <td>1</td> <td>Ureilite</td> <td>low</td>	264.7	1	Ureilite	low
1500manyH5S2 677 2CK6S2 80 1Martian (sherc high 280 severalR3-6S2 27 1Eucrite-melt b high 104 1Eucrite low 100 1Eucrite-melt b high 814 1LL4-6S4 84 1H4S2 218 1Martian (sherc high 8438 5L5-melt brecci S2 class 251 1Ureilite high 777 1CO3S2 59 1Lunar (feldsp. low 25.9 6C2-ungS2 1495 2Eucrite-mmict low 27.51 1H4 311 severalCK5-6 350 2CK5 240 manyLunar (feldsp. 1675 severalEucrite-unbr 21 10Martian (sherç 58 1Mesosiderite 39.3 3CK6 253 manyBrachinite 299.4 1CO3 123 manyMesosiderite 528 5Eucrite 68.8 1L3 177.7 1Eucrite 68.8 1L3 177.7 1Eucrite 68.8 1L3 177.7 1Eucrite 64.3 1CO3 123 manyMesosiderite 528 5Eucrite 68.8 1 <t< td=""><td>446</td><td>1</td><td>CO3</td><td>S1</td></t<>	446	1	CO3	S1
6772CK6S2801Martian (sherç high280severalR3-6S2271Eucrite-melt b high1041Eucrite low1001Eucrite-melt b high8141LL4-6S4841H4S22181Martian (sherç high84385L5-melt brecci S2 clast2511Ureilite7771CO3S2591Lunar (feldsp. low25.96C2-ungS214952Eucrite-mmict low27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç39.33CK6253manyBrachinite299.41CO3129.51Eucrite111.61Eucrite123manyMesosiderite5285Eucrite68.81L3177.71Eucrite18.61CK374.11L3.10387.91H638.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr138.61CK374.11L3.1	1500	many	H5	S2
80 1 Martian (sherç high 280 several R3-6 S2 27 1 Eucrite-melt b high 104 1 Eucrite low 100 1 Eucrite-melt b high 814 1 LL4-6 S4 84 1 H4 S2 218 1 Martian (sherc high 8438 5 L5-melt brecci S2 class 251 1 Ureilite high 777 1 CO3 S2 59 1 Lunar (feldsp. low 25.9 25.9 6 C2-ung S2 1495 2 Eucrite-mmit low 27.51 1 H4 311 several CK5-6 350 2 CK5 240 many Lunar (feldsp. 1675 several Eucrite-unbr 21 10 Martian (sherç 58 1 Mesosiderite 39.3 3 CK6 253 many Brachinite <td>677</td> <td>2</td> <td>CK6</td> <td>S2</td>	677	2	CK6	S2
280severalR3-6S2271Eucrite-melt b high1041Eucrite1001Eucrite1001Eucrite8141LL4-6S4841H4S22181Martian (sherç high84385L5-melt brecci S2 clast2511Ureilite7771CO3S2591Lunar (feldsp. low25.96C2-ungS214952Eucrite-mmict low27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33CK6253manyBrachinite299.41CO3129.51Eucrite64.31Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite24.641L(L1)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr M-S149.72Martian (Shert M-S4263467R4-5C	80	1	Martian (sherç	high
271Eucrite-melt b high1041Eucrite low1001Eucrite low1001Eucrite low1001Eucrite low1011LL4-6S48141H4S22181Martian (sherç high84385L5-melt brecci S2 clast2511Ureilite high7771CO3S2591Lunar (feldsp. low25.96C2-ungS214952Eucrite-mmict low27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33CK6253manyBrachinite299.41CO3129.51Eucrite111.61Eucrite64.31Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite24.641L(L1)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr M-S149.72Martian (Sherq M-S	280	several	R3-6	S2
1041Eucritelow 100 1Eucrite-melt b high 814 1LL4-6S4 84 1H4S2 218 1Martian (sherc high 8438 5L5-melt brecci S2 class 251 1Ureilitehigh 777 1CO3S2 59 1Lunar (feldsp. low 25.9 6C2-ungS2 1495 2Eucrite-mmict low 27.51 1H4 311 severalCK5-6 350 2CK5 240 manyLunar (feldsp. 1675 severalEucrite-unbr 21 10Martian (sherç 58 1Mesosiderite 39.3 3CK6 253 manyBrachinite 299.4 1CO3 144.5 1Eucrite 111.6 1Eucrite 111.6 1Eucrite 572 1CO3 123 manyMesosiderite 528 5Eucrite 68.8 1L3 177.7 1Eucrite 24.64 1L(L)3 197.8 1H6 138.6 1CK3 74.1 1L3.10 92.8 2CK5 1239 2LL4-6 522783 1 15 5461 149.7 2 27.7 2 3912 <	27	1	Eucrite-melt b	high
1001Eucrite-ment b high8141LL4-6S4841H4S22181Martian (sherç high84385L5-melt brecci S2 clast2511Ureilitehigh7771CO3S2591Lunar (feldsp. low25.96C2-ungS214952Eucrite-mmict low27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33CK6253manyBrachinite299.41CO3144.51Eucrite111.61Eucrite64.31Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite58.61L3.1037.91H6138.61CK374.11L3.1039.22LL4-65262227831L539121H55461Eucrite-unbr M-S149.72Martian (Shert M-S4263467R4-5C-S32341L3-5S3<	104	1	Eucrite	low
814 1 LL4-6 S4 84 1 H4 S2 218 1 Martian (sherç high 8438 5 L5-melt brecci S2 clast 251 1 Ureilite high 777 1 CO3 S2 59 1 Lunar (feldsp. low 25.9 25.9 6 C2-ung S2 1495 2 Eucrite-mmict low 27.51 1 H4 311 several CK5-6 350 2 CK5 240 many Lunar (feldsp. 1675 several Eucrite-unbr 21 10 Martian (sherç 58 1 Mesosiderite 39.3 3 CK6 253 many Brachinite 299.4 1 CO3 144.5 1 CO3 129.5 1 Eucrite 141.6 1 Eucrite 64.3 1 Eucrite 528 5 <td< td=""><td>100</td><td>1</td><td>Eucrite-melt b</td><td>high</td></td<>	100	1	Eucrite-melt b	high
04 1 14 52 218 1 Martian (shere high 8438 5 $L5$ -melt brecci S2 clast 251 1 Ureilite high 777 1 $CO3$ $S2$ 59 1 Lunar (feldsp. low 25.9 6 $C2$ -ung $S2$ 1495 2 Eucrite-mmict low 27.51 1 $H4$ 311 several $CK5-6$ 350 2 $CK5$ 240 many Lunar (feldsp. 66 75 240 many Lunar (feldsp. 66 1675 several Eucrite-unbr 10 1675 several Eucrite 83 3 1675 several Eucrite 83 1 1675 58 1 Mastian (sherg 88 1 1675 29.4 1 $CO3$ 123 1675 1675 299.4 1 $CO3$ 123 1675 1675 1675	814	1	LL4-6	S4
216 1 Martan (shere fight) 8438 5 L5-melt brecci S2 clast 251 1 Ureilite high 777 1 CO3 S2 59 1 Lunar (feldsp. low 25.9 6 C2-ung S2 1495 2 Eucrite-mmict low 27.51 1 H4 311 several CK5-6 350 2 CK5 240 many Lunar (feldsp. 1675 several Eucrite-unbr 21 10 Martian (sherg 58 1 Mesosiderite 39.3 3 CK6 253 many Brachinite 299.4 1 CO3 129.5 1 Eucrite 111.6 1 Eucrite 111.6 1 Eucrite 572 1 CO3 123 many Mesosiderite 528 5 Eucrite 68.8 1 L3 17	04	1	H4	52 high
3436 3 3 2511 1 1 1 1 22033 22033 251 1	210	5	LE molt broosi	nign S2 doot
2.511OrefateIngri7771 $CO3$ S2591Lunar (feldsp. low25.96 $C2$ -ungS214952Eucrite-mmict low27.511H4311several $CK5-6$ 3502 $CK5$ 240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33 $CK6$ 253manyBrachinite299.41 $CO3$ 144.51 $CO3$ 144.51Eucrite111.61Eucrite64.31Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite24.641L(LL)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr49.72Martian (Shert M-S4263467R4-5C-S32341L3-5S3	0430 251	0 1	Lo-meil Diecci	52 Clast
11 1 10000 020000 59 1Lunar (feldsp. low 25.9 6 $C2$ -ung $S2$ 1495 2Eucrite-mmict low 27.51 1H4 311 several $CK5-6$ 350 2 $CK5$ 240 manyLunar (feldsp. 1675 severalEucrite-unbr 21 10Martian (sherç 58 1Mesosiderite 39.3 3 $CK6$ 253 manyBrachinite 299.4 1 $CO3$ 144.5 1 $CO3$ 144.5 1Eucrite 111.6 1Eucrite 64.3 1Eucrite 572 1CO3 123 manyMesosiderite 528 5Eucrite 68.8 1L3 177.7 1Eucrite 24.64 1L(LL)3 197.8 1H6 138.6 1CK3 74.1 1L3.10 92.8 2CK5 1239 2LL4-6 $52S2S227831L539121H55461Eucrite-unbr49.72Martian (Shert M-S4263467R4-5C-S32341L3-5S3$	777	1	CO3	s2
25.96C2-ungS214952Eucrite-mmict low27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33CK6253manyBrachinite29.41CO3144.51CO3129.51Eucrite111.61Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite24.641L(LL)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr49.72Martian (Shert M-S4263467R4-5C-S32341L3-5S3	59	1	Lunar (feldsn	low
14952Eucrite-mmict low27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33CK6253manyBrachinite299.41CO3144.51CO3144.51CO3129.51Eucrite111.61Eucrite5721CO3123manyMesosiderite5285Eucrite5285Eucrite5285Eucrite68.81L3177.71Eucrite24.641L(LL)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr49.72Martian (Sherț M-S4263467R4-5C-S32341L3-5S3	25.9	6	C2-ung	S2
27.511H4311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33CK6253manyBrachinite299.41CO3144.51CO3129.51Eucrite111.61Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite24.641L(LL)3197.81H3.10387.91H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr49.72Martian (Shert M-S4263467R4-5C-S32341L3-5S3	1495	2	Eucrite-mmict	low
311severalCK5-63502CK5240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33CK6253manyBrachinite299.41CO3144.51CO3129.51Eucrite111.61Eucrite64.31CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite68.81L3177.71Eucrite24.641L(LL)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr49.72Martian (Shert M-S4263467R4-5C-S32341L3-5S3	27.51	1	H4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	311	several	CK5-6	
240manyLunar (feldsp.1675severalEucrite-unbr2110Martian (sherç581Mesosiderite39.33CK6253manyBrachinite299.41CO3144.51CO3129.51Eucrite111.61Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite24.641L(LL)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-65461Eucrite-unbr49.72Martian (Sherç M-S4263467R4-5C-S32341L3-5S3	350	2	CK5	
1675severalEucrite-unbr 21 10Martian (sherç 58 1Mesosiderite 39.3 3CK6 253 manyBrachinite 299.4 1CO3 144.5 1CO3 129.5 1Eucrite 111.6 1Eucrite 64.3 1Eucrite 572 1CO3 123 manyMesosiderite 528 5Eucrite 68.8 1L3 177.7 1Eucrite 24.64 1L(LL)3 197.8 1H6 138.6 1CK3 74.1 1L3.10 92.8 2CK5 1239 2LL4-6S2 2783 1L5 3912 1H5 546 1Eucrite-unbr 49.7 2Martian (Shert M-S4 2634 67R4-5C-S3 234 1L3-5S3	240	many	Lunar (feldsp.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1675	several	Eucrite-unbr	
581Mesosiderite 39.3 3CK6 253 manyBrachinite 299.4 1CO3 144.5 1CO3 129.5 1Eucrite 111.6 1Eucrite 64.3 1Eucrite 572 1CO3 123 manyMesosiderite 528 5Eucrite 68.8 1L3 177.7 1Eucrite 24.64 1L(LL)3 197.8 1H6 138.6 1CK3 74.1 1L3.10 92.8 2CK5 1239 2LL4-6S2 2783 1L5 3912 1H5 546 1Eucrite-unbr 49.7 2Martian (Sherr, M-S4 2634 67R4-5C-S3 234 1L3-5S3	21	10	Martian (sherg	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	1	Mesosiderite	
253manyBrachinite299.41CO3144.51CO3129.51Eucrite111.61Eucrite64.31Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite24.641L(LL)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-6S227831L539121H55461Eucrite-unbr <m-s1< td="">49.72Martian (Shert M-S4263467R4-5C-S32341L3-5S3</m-s1<>	39.3	3	CK6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	253	many	Brachinite	
144.51CO3 129.5 1Eucrite 111.6 1Eucrite 64.3 1Eucrite 572 1CO3 123 manyMesosiderite 528 5Eucrite 68.8 1L3 177.7 1Eucrite 24.64 1L(LL)3 197.8 1H6 138.6 1CK3 74.1 1L3.10 92.8 2CK5 1239 2LL4-6S2 2783 1L5 3912 1H5 546 1Eucrite-unbr 49.7 2Martian (Sher, M-S4 2634 67R4-5C-S3 234 1L3-5S3	299.4	1	CO3	
129.51Eucrite111.61Eucrite64.31Eucrite5721CO3123manyMesosiderite5285Eucrite68.81L3177.71Eucrite24.641L(LL)3197.81H6138.61CK374.11L3.1092.82CK512392LL4-6S227831L539121H55461Eucrite-unbr49.72Martian (Sheri M-S4263467R4-5C-S32341L3-5S3	144.5	1	CO3	
111.61Eucrite 64.3 1Eucrite 572 1 $CO3$ 123manyMesosiderite 528 5Eucrite 68.8 1L3 177.7 1Eucrite 24.64 1L(LL)3 197.8 1H3.10 387.9 1H6 138.6 1CK3 74.1 1L3.10 92.8 2CK5 1239 2LL4-6S2 2783 1L5 3912 1H5 546 1Eucrite-unbr 49.7 2Martian (Sheri M-S4 2634 67R4-5C-S3 234 1L3-5S3	129.5	1	Eucrite	
64.3 1 Eucrite 572 1 CO3 123 many Mesosiderite 528 5 Eucrite 68.8 1 L3 177.7 1 Eucrite 24.64 1 L(LL)3 197.8 1 H6 138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr 49.7 2 Martian (Sher, M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	111.6	1	Eucrite	
572 1 CO3 123 many Mesosiderite 528 5 Eucrite 68.8 1 L3 177.7 1 Eucrite 24.64 1 L(LL)3 197.8 1 H6 138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sher, M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	64.3	1	Eucrite	
123 many Mesosidence 528 5 Eucrite 68.8 1 L3 177.7 1 Eucrite 24.64 1 L(LL)3 197.8 1 H6 138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sherţ M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	572	1 mony	CO3 Mossocidarita	
68.8 1 L3 177.7 1 Eucrite 24.64 1 L(LL)3 197.8 1 H3.10 387.9 1 H6 138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sher, M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	528	111a11y 5	Fucrite	
177.7 1 Eucrite 24.64 1 L(LL)3 197.8 1 H3.10 387.9 1 H6 138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sherţ M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	68.8	1	Lucinte 13	
24.64 1 L(LL)3 197.8 1 H3.10 387.9 1 H6 138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sherţ M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	177 7	1	Eucrite	
197.8 1 H3.10 387.9 1 H6 138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sherţ M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	24.64	1		
387.9 1 H6 138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sher, M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	197.8	1	H3.10	
138.6 1 CK3 74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sheri M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	387.9	1	H6	
74.1 1 L3.10 92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sher(M-S4) 2634 67 R4-5 C-S3 234 1 L3-5 S3	138.6	1	CK3	
92.8 2 CK5 1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sher(M-S4) 2634 67 R4-5 C-S3 234 1 L3-5 S3	74.1	1	L3.10	
1239 2 LL4-6 S2 2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sher, M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	92.8	2	CK5	
2783 1 L5 3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sher(M-S4) 2634 67 R4-5 C-S3 234 1 L3-5 S3	1239	2	LL4-6	S2
3912 1 H5 546 1 Eucrite-unbr M-S1 49.7 2 Martian (Sher(M-S4) 2634 67 R4-5 C-S3 234 1 L3-5 S3	2783	1	L5	
5461Eucrite-unbrM-S149.72Martian (Shert M-S4)263467R4-5C-S32341L3-5S3	3912	1	H5	
49.7 2 Martian (Sher(M-S4 2634 67 R4-5 C-S3 234 1 L3-5 S3	546	1	Eucrite-unbr	M-S1
263467R4-5C-S32341L3-5S3	49.7	2	Martian (Sher	M-S4
234 1 L3-5 S3	2634	67	R4-5	C-S3
	234	1	L3-5	S3

Run	ning	Head

1					
2					
3	P 2008	719	1	L(H)3	S2
4	P 2020	585	1	LS	S3
5	2018	19	1	CV3	S2
6	2019	255	1	Eucrite-br	moderate
7	2019	123	1	116	S3
8	P 2019	830	1	116	S2
9	2016	25	1	R5	S2
10	2010	25	1		S2
11	2019 D 2014	50	1		52
12	F 2014	0.0	1		52
13	P 2018 Apr	1690	1		51
14	P 2018 Jul	350	1	CV3	
15	P 2017 Mar	22.9	1	Lunar (feldsp.	
16	P 2017	115	1	Mesosiderite-I	
17	P 2018 Mar 0(463.9	1	L6	S4
18	P 2020	3560	76	L4	C-S1
19	P 2009 Jun	4450	1	L4	C-S3
20	P 2019	280	1	H4	S1
21	P 2019	350	1	L4	S2
22	P 2019	490	1	H5	S1
23	P 2019	280	1	H6	S2
24	P 2019	2170	1	LL5	S2
25	P 2005	3500	1	H5	S2
26	P 2020	80	many	CV3	S1
27	P 2020	4400	many	CV3	S2
28	P 2020	2500	1	CK5	S1
29	P 2020	2700	1	Eucrite	low
30	P 2020	2300	many	Lunar (feldsp.	moderate
31	P 2020	17	1	CM2	low
32	P 2020	700	1	Eucrite-melt b	high
33	P 2020	25	1	Eucrite	low
34 25	P 02/2018	264	1	Pallasite	
35	P 2020	302	1	H6	S2
30 27	P 2020	140	1	H5	S1
27 20	P 2020	455	1	L5	S2
30	P 2020	89	1	H5	S1
40	P 2020	682	1	LL6	S1
41	P 2020	286	1	116	S2
42	P 2020	20	1	CK6	S2
43	P 2020	80	1	H6	S2
44	P 2020	172	1	CO3	S1
45	P 2020	2920	1	H5	S1
46	P 2020	1.5	1	Martian (polyn	moderate
47	P 2020	90	1	L odranite	S2
48	P 2020	120	1	16	S2
49	P 2020	75	1	Pallasite	S1
50	P 2020	1085	1	Mesosiderite	
51	P 2020	825 5	1		C-S3
52	P 2020	1080	1		C-S2
53	P 2020	825	51	Lunar	M-83
54	P 2020	24.2	1		C 62
55		27.2 23.7	1	Eucrito br	0-02 M 92
56	P 2013	20.1 61 1	1	Eucrite molt b	M_95
57		1650	3		M 92
58		2880	J 12	CVov2	101-32
59		2000 1525	14 2	U V UXJ	
60	r 2020	1525	2	nowaraite	IOW

3	P 2020			1912	6	CVox3	low
4	P May 2019			400	1	H4	
5	2019			719	22	Pallasite	low
6	P 2020			700	1	Diogenite	low
7	P Dec 2018			6300	1	Martian (Shere	
8	P lun 2019			11280	1	Lunar (felden	
9	D Iul 2010			78000	1	Eurorite	
10	F JUI. 2019			18000	1		
11	F 2019			40000	1	L~4	
12	F 2019			044		L~5	
13	P 2019			6000	many	L~⊃	1
14	P 2020 Jan-Se			1608	50	Lunar (feldsp.	IOW
15	P 2020 Sept			1889	3	Mesosiderite	IOW
16	P 2020 Oct			1161	3	Winonaite	S1
17	P 2020 Oct			54	1	Lunar (feldsp.	moderate
18	P 2020 Oct			138	1	H5	S1
19	P 2020 Oct			51	1	H3	S1
20	P 2020 Oct			67	1	Eucrite	moderate
21	P 2020 Oct			420	1	H5	S2
22	P 2020			85	6	Diogenite	moderate
23	P 2016			81	4	CR2	S2
24	P 2019 Dec			2828	72.9	EH6	
25	P 2020			605.3	1	LL3	S2
26	P 2017			134.86	1	Howardite	high
27	P 2020			2913.6	18	H6	S3
28	P 2018			806.92	5	Eucrite-unbr	low
29	2016 Nov 11			1500	1	15	S4
30	2016 Dec 12			18 25	1	L0 H5	S3
31	2010 Dec 12			70.88	1	H5	63
32	2010 Dec 13			1111	1	115	63
33	2010 NOV 23	45°40 01'N	15°6 75'E	720	2		00 85
34	20 FED 2020	40 49.01 IN	10 0.70 E	720	1		30 60
35	2016 Aug 25	43 13 11.0 N	102 39 30.7 E	143.47			32
36	2010 Mar 25	22 24.2 N	18 33.0 E	450000		Iron, IVB	
37	2018	42.113271°N	26.163802°E	151000	1	Iron, IID	00
38	2012 Mar 9	59°55'47.66"N	10°46'17.96"E	4350	many	H3-6	\$3
39	2019 Jan	7.877°N	3.963°E	1975	3	LL4	S2
40	2019 Jan	38°02.04'N	83°39.36'E	1823	5	L6	S3/4
41	11 Dec 2019	24°58'34.0"S	70°07'44.2"W	6280.0	1	H4/5	S3
42	11 Dec 2019	24°58'03.4"S	70°07'19.6"W	1220.8	2	H5	S2
43	12 Dec 2019	24°58'32.6"S	70°07'28.2"W	17.9	1	L5	S3
44	2017 Feb 17	24°57'15.1"S	070°02'07.7"V	36.9	1	L5	
45	2017 Feb 27	24°56'36.2"S	70°02'02.1"W	64.8	1	Ureilite	
46	2017 Feb 17	24°56.917'S	70°02.858'W	245	1	L6	
47	2017 Feb 17	24°57'18.6"S	070°01'51.3"V	1835	many	H5	
48	2009 Dec 12	25°0'S	70°28'W	226	2	H5	
49	May 2016	57°20.42'N	48°30.15'E	46780	1	Iron, IAB-MG	
50	2018 Apr 2	43°59.05'N	44°45.59'E	2630	1	L6	S3
51	2018 May 22	46°25'16.15"N	89°26'41.32"E	1271	1	H5	
52	2019 Feb	28.736°N	7.607°W	127.6	2	Martian (sherc	hiah
53	2018	31°57'00"N	56°54'55"E	1304	2	H5	0
54	2019	31.70869°N	56.69564°E	4200	1	H4	
55	10 Aug 1975	30°19'S	128°58'E	274	1	15	S3
50	1998		.10 00 2	1107 0	1	H3-5	S2
5/	1998			4 0	1	H4	S3
50 50	1998			21.0	1	115	S4
59 60	1008			50	1	15/6	S4
00	1000			0.0		20/0	57

1					
2					
3	1998	11.0	1	L6	S4
4	1998	22.0	1	H5/6	S1
5	1998	332.0	1	H5/6	S1
6	1008	15.0	1	H3_5	\$2
7	1998	72.0	1		0Z
8	1990	72.0	1		54 04
9	1998	28.0	1	LL5/6	54
10	1998	471.0	1	H5	\$3
10	1998	26.0	1	LL5/6	S4
12	1998	16.0	1	LL5/6	S4
12	1998	187.0	1	LL5/6	S4
13	1998	420.0	1	H5	S2
14	1998	87.0	1	H5/6	S1
15	1998	260.0	1	16	S4
10	1998	131.0	1	16	S4
17	1008	111 0	1	16	S1
18	1008	10.0	1	L0 L5/6	07 Q1
19	1998	10.0	1	L5/0	04
20	1998	12.0	1	L5/6	54
21	1998	541.0	1	H4-6	\$3
22	1998	107.0	1	H4-5	S3
23	1998	143.0	1	H4-5	S3
24	1998	120.0	1	L5/6	S4
25	1998	1102.0	1	H3-6	S3
26	1998	78.0	1	H3-6	S3
27	1998	145.0	1	L5/6	S3
28	1998	94.0	1	L5/6	S3
29	1998	51.0	1	H5/6	S1
30	1008	32.0	1	16,0	S1
31	1990	52.0	1		0 4 01
32	1990	002.0			01
33	1998	121.0			51
34	1998	72.0	1	L5	S1
35	1998	47.0	1	H4	S2
36	1998	123.0	1	H3-6	S2
37	1998	92.0	1	H6	S5
38	1998	90.0	1	L6	S4
39	1998	24.0	1	H4	S2
40	1998	95.0	1	H3	S2
41	1998	455.0	1	H5	S4
42	1998	2433.0	1	15-6	S4
43	1998	2894 0	1	15/6	S4
44	1008	1520.0	1	16	S1
45	1009	1520.0	1		07 04
46	1990	152.0	1		04 00
40	1998	322.0	1	H4-5	52
47	1998	3.0	1	H5/6	S2
40	1998	141.0	1	H4-6	S2
49	1998	207.0	1	L6	S4
50	1998	1830.0	1	L6	S1
51	1998	1322.0	1	L6	S4
52	1998	135.0	1	L3	S3
53	1998	175.0	1	H4-5	S2
54	1998	1720.0	1	15	S4
55	1998	3225.0	1	15	53
56	1998	473 0	1	<u></u> Н5	62
57	1008	35.0	1	16	00 02
58	1000	20.0	1		00 00
59	1990	29.0	1		১ ৩
60	1998	190.0	1	H4-5	S3

1							
2							
3	1998			70.0	1	L5	S4
4	1998			103.0	1	L5-6	S3
5	1998			1502.0	1	L5/6	S3
6	1998			52.0	1	H6	S5
7	1008			432.0	1		63
8	1990			452.0	1		00
9	1998			1534.0	1	H5	52
10	1998			323.0	1	H4	\$3
10	1998			722.0	1	L5-6	S4
17	1998			52.0	1	L5	S3
12	1998			728.0	1	H4	S2
13	1998			127.0	1	H5	S2
14 1 <i>C</i>	1998			110.0	1	L4/5	S4
15	1998			302.0	1	16	S3
16	1008			175.0	1	L0 H5	63
17	1000			95.0	1		00
18	1990		0201401044	00.0	1	LO	33
19	29 Sep 1799	47°57′51″N	0°9'40"W	4600	1	H5	
20	2015	33°35.93'S	58°7.83'W	820	1	H5	S3
21	2020 Aug 19	8°9'45.66"S	40°36'50.54"V	80000	Many	H5-6	S4
22	2014 Nov 05	20°32'37.527"	'56°40'35.984"	96.14	Many	L5	
23	2018 Dec 1	18°22.56'N	55°10.42'E	463	1	Monomict Euc	Weak
24	2018 Aug 30	44°37'15.6"N	99°012'38.1"E	693.42	4	H4	S3/4
25	02.11.2017	18°32'20.2"N	53°59'37.4"E	1259.5	2	L5	S3
26	2012	18°37'35 08"N	53°54'57 41"E	1094	1	16	S2
27	2008	18°31 574'N	53°52 036'E	860	1	15	S2
28	2000 11 Oct 2017	10 31.374 N	53 52.950 E	1000	1		02
29	14 Oct 2017	22 30.18 5	09 0.24 W	1800	1		51
30	24 Oct 2019	22°30.27°S	69°8.54°W	36	1	H5-meit brecc	;
31	25 Mar 2019	22°30.09'S	69°2.44'W	16	1	H/L5	S4
32	12 Oct 2018	22°30.25'S	69°9.13'W	760	Many	L5	S3
33	2017 Oct 18	22°30.393'S	69°02.233'W	375.66	1	L5	S3/4
22	3 Apr 2018	22°30.25'S	69°2.87'W	120.8	3	L6	S2
25	6 Apr 2018	22°30.27'S	69°8.90'W	175	1	L5	S2
33	28 Oct 2018	22°30.11'S	69°3.10'W	321.5	1	H5	S1
30	28 Oct 2018	22°30 19'S	69°4 83'W	1125	1	H6	S1
37	2018 Oct 25	22°30 21'S	69°9 01'W	1 66	1	16	01
38	03 Apr 2019	22 30.210	60°3 26'W	101.9	1		C1
39	05 Apr 2018	22 30.013		101.0	Manu		00
40	25 UCL 2018	22 30.25 5	09 9.59 W	959	wany		52
41	24 Oct 2018	22°30.34'S	69°7.89'W	9	1	L3	S1
42	30 Mar 2018	22°30.08'S	69°2.04'W	147.8	1	L5	S2
43	28 Oct 2018	22°30.71'S	69°2.19'W	110	Many	L6	S4
44	13 Oct 2018	22°30.11'S	69°3.17'W	53.3	1	L5	S5
45	2 Apr 2018	22°30.98'S	69°07.46'W	260	1	L6	S1
46	13 Oct 2018	22°30.15'S	69°3.22'W	94	1	L5-melt brecci	i S4
47	18 Oct 2017	22°30.324'S	69°02.069'W	88.03	1	H5	S4/5
48	2018 Oct 24	22°30 15'S	69°9 27'W	432	13	14	00
49	20 Oct 2018	22°30 68'S	60°3 24'W	168	1	15	85
50	20 Oct 2010	22 30.00 3	60°2 11'W	242	1		62
51	25 Mar 2019	22 30.00 5		242	1	LO	33
52	20 Mar 2019	22°30.96'S	69°07.51 W	11.3	1	H5	51
53	2019 Oct 1	25.163°N	0.289°E	6219	16	L6	S2
54	P 2020	24°15.85'N	0°09.64'W	4988	2	Mesosiderite	low
55	2020 Aug 25	31.8265°N	4.6794°W	4000	many	C2-ung	low
56	2018	~18°50'N	~7°00'E	>50000	many >100	L6	S3
57	2019	29°44'42"N	7°41'59"W	1.91	1	Lunar	
50	2019 Jan	39°21,14'N	83°15,49'F	1600	10	H5/6	S3/4
20	2018	30°30 3'N	5°48 85'W	5105	1	H5	S1
59	2018 Oct	31°/'/5 97"N	3°11'6 65"\\/	126	1	CO3	52
00		01 T T J.07 IN	0 110.00 W	120	I .	000	52

1							
2							
3	2019 Dec 10	24°22'11.46"N	13°58'55.08"V	649	1	H5	
4	2020 May 8	18°54'37.03"S	45°49'10.14"V	400	1	Eucrite-cm	S4
5	2019 Dec	21.325°N	0.729°E	57410	many	Lunar (feldsp.	low
6	26 Mar 2019	22°58.68'S	68°18.01'W	815	Many	LL3	S1
7	26 Oct 2019	22°58.69'S	68°18.01'W	15	1	L6	S2
8	26 Oct 2019	22°58.98'S	68°18.56'W	9	1	H5	S1
9	26 Oct 2019	22°59.39'S	68°17.43'W	66	1	H5	S1
10	26 Oct 2019	22°59.36'S	68°17.40'W	191	1	L5	S1
11	March 2019	27°10'20 6"N	0°44'50 0''W	345.0	1	Lunar (feldsp	•
12	2020	27 747222	-1 369722	3710	2	Lunar (feldsp.	hiah
13	P 2019	27°03'N	0°10'\\/	670	1	Eucrite-melt b	ingii
14	4 Aug 2001	30°/1 3/26'N	117°37 2048'	11 5	1		63
15	4 Aug 2001	20°41 2455'N	117 37.2040	774	1		63
16	4 Aug 2001	20°41 24401	117 37.1910	11.4	1		00 02
17	4 Aug 2001	39 41.3442 N	117 37.1090	120.0	1		33
18	4 Aug 2001	39 41.3294 N	11/ 3/.10/1	11.5	1		53
19	4 Aug 2001	39°41.3333 N	117 37.2057	134.9	1	Ho	53
20	4 Aug 2001	39°41.3069'N	11/°3/.26/2'\	12	1	H5	S3
21	4 Aug 2001	39°41.3092'N	117°37.2650'\	18.9	1	H5	S3
22	5 Aug 2001	39°40.7732'N	117°37.7552'\	28.5	1	H5	S3
23	5 Aug 2001	39°41.2226'N	117°37.3741'\	28.1	2	H5	S3
24	5 Aug 2001	39°41.2358'N	117°37.3940'\	7	1	H5	S3
25	5 Aug 2001	39°41.2412'N	117°37.3834'\	2.6	1	H5	S3
26	1978	~37.0°N	~95.8°W	895	1	L6	S3
27	2012	23°36'13,12"N	55°09'01,56"E	104.4	1	L6	S3
28	2020 Jan 28	33°59.20'N	114°0.10'W	2200	many	H4	S2
29	2013 Jun 9	59°01'20.9"N	7°15'28.1" E	4700	2	H5	S2
30	1974	35.238°N	105.332°W	2278	1	H6	S2
31	2019 June 27	27°22'23.153"	8°58'51.744"V	~20000	many	H5	S3
32	2002	33 13°N	102 38°W	252	1	H3-4	S2
33	2018	42°17'47 80"N	92°28'18 93"F	105	1	113	S4
34	1998	12 17 17.00 1	02 20 10.00 E	1 952	1	H5	01
35	1008			0.477		16	
36	1008			1 097	1		
37	1990			1.907	1		
38	1990			0.007			
39	1998			0.377	1	HD	
40	1998			2.156	1	H5	
41	1998			1.256	1	L3	
42	1998			1.4/3	1	H5	
43	1998			1410.150	1	H6	
44	1998			1.110	1	LL6	
45	1998			1.390	1	H6	
46	1998			0.566	1	H5	
4/	1998			2.863	1	LL6	
48	1998			2.447	1	H6	
49	1998			2.223	1	LL6	
50	1998			0.38	1	H5	
51	1998			0.902	1	H6	
52	1998			1.553	1	L6	
53	1998			1.53	1	H5	
54	1998			0.428	1	16	
55	1998			0 766	1	13	
56	1998			3 214	1		
57	1008			1 / 181	1		
58	1008			10 801	1		
59	1990			19.021	1		
60	1998			0.69	.1	H4	

1				
2				
3	1998	1 619	1	H6
4	1008	2.016	1	
5	1990	2.010	1	
6	1990	4.022	1	LLS
7	1998	0.551	1	L4
2	1998	2.365	1	H5
0	1998	3.034	1	LL6
9	1998	1.543	1	H6
10	1998	1.17	1	H5
11	1998	2.07	1	L6
12	1998	3.245	1	L5
13	1998	1.39	1	 Н6
14	1008	1.50	1	H5
15	1000	2 270	1	CM2
16	1990	2.379	1	
17	1990	2.20		LLO
18	1998	3.035	1	LL6
19	1998	0.813	1	L6
20	1998	4.301	1	H6
21	1998	0.431	1	H6
22	1998	0.318	1	L6
23	1998	1.771	1	H5
24	1998	0.901	1	L6
25	1998	0.935	1	H6
26	1008	4 784	1	H5
27	1990	4.704	1	115
28	1990	2.231	1	LO
29	1998	3.65	1	Lb
30	1998	2.231	1	H6
31	1998	2.386	1	L5
30	1998	2.473	1	H5
22	1998	2.38	1	H5
27	1998	0.467	1	CR2
24 25	1998	1.938	1	L4
33	1998	2.717	1	H6
	1998	2 807	1	CO3
37	1998	1 211	1	CO3
38	1008	0.51	1	H5
39	1990	1.51	1	
40	1990	1.515		П4 ЦИ
41	1998	2.05	1	H4
42	1998	0.77	1	H4
43	1998	0.810	1	H4
44	1998	0.287	1	L6
45	1998	0.661	1	H5
46	1998	1.150	1	H5
47	1998	0.561	1	H6
48	1998	0.636	1	H6
49	1998	1 524	1	H5
50	1008	2 067	1	H5
51	1008	3.064	1	Ни
52	1990	3.004	1	114
53	1990	2.071	1	
54	1998	3.385	T	H4
55	1998	0.805	1	H5
56	1998	2.189	1	H5
57	1998	0.484	1	L6
58	1998	1.510	1	L6
59	1998	0.916	1	L6
60	1998	1.808	1	H6
~ ~				

Running Head

2.469 2.442 0.795	1 1	H5
2.469 2.442 0.795	1 1	H5
2.442 0.795	1	
0 795		H6
	1	H6
1.410	1	L6
0.538	1	L6
2.821	1	H6
2.317	1	H5
1.931	1	H5
2.742	1	H6
2 334	1	H4
1 058	1	H5
2 710	1	16
2 706	1	14
1 925	1	15
0.815	1	H5
8 365	1	H5
1 / 00	1	H5
2 307	1	16
1 575	1	L0 H5
1.973	1	16
2 240	1	
2.349	1	
1.314	1	
1.013	1	HO
2.144	1	LO
1.326	1	Ho
0.696	1	H5
2.833	1	H5
1.306	1	H5
2.745	1	L4
0.532	1	L6
1.455	1	H5
0.89	1	H5
0.695	1	H5
1.087	1	H5
1.928	1	H5
0.488	1	L5
1.014	1	H4
0.730	1	H6
0.330	1	L6
1.292	1	H5
2.371	1	H5
0.624	1	H6
1.192	1	H5
1.767	1	H5
0.461	1	CO3
0.565	1	L6
1.322	1	L5
0.574	1	L5
1.335	1	H5
0.784	1	LL6
0.874	1	H4
1.732	1	L6
0.667	1	H5
0.889	1	H5
	2.821 2.317 1.931 2.742 2.334 1.058 2.710 2.706 1.925 0.815 8.365 1.490 2.307 1.575 1.844 2.349 1.314 1.013 2.144 1.326 0.696 2.833 1.306 2.745 0.532 1.455 0.89 0.695 1.087 1.928 0.488 1.014 0.730 0.330 1.292 2.371 0.624 1.192 1.767 0.461 0.565 1.322 0.574 1.335 0.784 0.89	2.821 1 2.317 1 1.931 1 2.742 1 2.334 1 1.058 1 2.706 1 1.925 1 0.815 1 1.925 1 0.815 1 1.490 1 2.307 1 1.575 1 1.844 1 2.307 1 1.314 1 1.013 1 2.745 1 0.696 1 2.833 1 1.306 1 2.745 1 0.695 1 1.455 1 0.695 1 1.087 1 1.087 1 1.022 1 2.371 1 0.624 1 1.192 1 1.767 1 0.574 1 1.335 <

1					
2					
3	1998		2.402	1	H5
4	1998		1.922	1	H5
5	1998		2.315	1	H5
6	1998		1.396	1	H6
7	1998		2 131	1	H6
8	1998	-	2 047	1	H5
9	1009	-	1 067	1	
10	1990		1.907	1	
11	1998	č	58.500	1	LO
12	1998		1.761	1	Lb
13	1998	(61.210	1	L6
14	1998	Ę	50.064	1	L6
15	1998		2.352	1	H5
16	1998		1.012	1	H4
17	1998	· · ·	1.157	1	H5
18	1998		2.662	1	H5
10	1998		1 385	1	H5
20	1998		2 605	1	115
20	1008		0.490	1	
21	1990		0.409	1	
22	1998		2.959	1	LO
23	1998		2.217	1	L6
24	1998		2.968	1	H6
25	1998		2.151	1	L5
26	1998		0.785	1	L6
27	1998		2.005	1	H5
28	1998	(0.309	1	H3
29	1998		1.154	1	H5
30	1998		1 234	1	H5
31	1998		1 1 20	1	H5
32	1008	,	2 0 9 2	1	16
33	1008	4	2.000		
34	1990	4	2.423		
35	1998	4	2.219		L4
36	1998		1.990	1	H4
37	1998	(0.514	1	H5
38	1998		1.004	1	H5
39	1998		2.428	1	H5
40	1998	(0.805	1	H5
41	1998		2.199	1	H5
42	1998	(0.927	1	H5
43	1998		2,502	1	16
44	1998	-	0.963	1	H5
45	1008		2 550	1	16
46	1009	4	1.046	1	
47	1996		1.040	1	LJ
47 48	1998	(0.714	1	H5
40 70	1998	(0.431	1	H6
50	1998	(0.606	1	H6
50	1998	(0.478	1	H5
51	1998	(0.544	1	H5
J∠ E2	1998		1.240	1	H5
55 F 4	1998		2.842	1	H5
54	1998		2.427	1	H6
55	1998		2 158	1	H6
56	1008	4	1 049	1	H5
57	1008		1.070	1	
58	1990	4	2.900 1 700	1	110 LIE
59	1990		1.790	1	
60	1998		2.424	1	H5

Running Head

n		11
RIIN	nina	HOAD
nun	IIIIIG	ricau

1				
2				
3	1998	2.508	1	H5
4	1998	2.875	1	H4
5	1998	1.988	1	H4
6	1998	1.032	1	H4
7	1998	1.365	1	H4
8	1998	1.442	1	H4
9	1998	2.436	1	H4
10	1998	2.062	1	H4
11	1998	2.439	1	H4
12	1998	2 158	1	H4
13	1998	1 079	1	H4
14	1998	1 447	1	H4
15	1998	2 382	1	H4
10	1998	1 215	1	H4
17	1008	1 343	1	H4
10	1008	1 783	1	16
19	1008	1.700	1	16
20	1008	1.756	1	LO
∠1 22	1990	2 162	1	110
22	1990	2.102	1	
23	1990	2.042	1	П4 Ци
2 4 25	1990	1.700	1	П 4 L С
25	1998	2.019	1	LO
20	1998	1.902	1	Lo
28	1998	1.228	1	H4
20	1998	16.417	1	CV3
30	1998	1.897	1	H6
31	1998	1.711	1	Ureilite
32	1998	2.084	1	H6
33	1998	12.173	1	H4
34	1998	13.623	1	H5
35	1998	1.988	1	H6
36	1998	1.438	1	H6
37	1998	2.250	1	H6
38	1998	1.75	1	H4
39	1998	1.78	1	H4
40	1998	1.85	1	H4
41	1998	2.32	1	H4
42	1998	2.9	1	H4
43	1998	2.43	1	H4
44	1998	2.0	1	H4
45	1998	2.80	1	H4
46	1998	1.84	1	H4
47	1998	6.61	1	H4
48	1998	2.195	1	H5
49	1998	45.80	1	H4
50	1998	1.692	1	H5
51	1998	1.841	1	H5
52	1998	1.28	1	L6
53	1998	2.957	1	H6
54	1998	2.505	1	L6
55	1998	1.418	1	H4
50	1998	1.725	1	H3
57	1998	1 613	1	H4
20 50	1998	1.593	1	H4
59 60	1998	1 045	1	H4
00	1000	1.040	•	117

1				
2				
2				
3	1998	2.41	1	H5
4	1008	1 35/	1	НИ
5	1990	1.354	1	114
5	1998	1.47	1	H4
6	1998	1.822	1	H4
7	1008	1 27/	1	НИ
8	1990	1.274	1	
0	1998	2.122	1	Нб
10	1998	1.15	1	H4
10	1998	1 529	1	H4
11	1000	2.217	1	
12	1990	2.217	I	Π4
13	1998	2.609	1	H4
14	1998	567.58	1	H5
14	1998	2 203	1	H4
15	1990	2.235	1	
16	1998	1.71	1	L5
17	1998	1.267	1	CM2
10	1998	3 968	1	CM2
10	1000	1.00	1	CM2
19	1990	1.00	I	CIVIZ
20	1998	2.528	1	CO3
21	1998	1,129	1	16
22	1009	1 622	1	CO3
22	1990	1.022	1	003
23	1998	12.731	1	CO3
24	1998	1.254	1	CO3
25	1998	2,860	1	CO3
26	1000	2.000	1	000
20	1998	1.117	I	003
27	1998	2.609	1	H4
28	1998	1.251	1	H4
29	1008	1 3/8	1	НБ
30	1990	1.340	1	110
21	1998	1.118	1	H4
20	1998	1.868	1	H5
32	1998	2 827	1	16
33	1000	2.027		
34	1998	2.395		Lo
35	1998	16.655	1	L6
26	1998	1.188	1	L5
50	1008	1 210	1	15
37	1990	1.210		
38	1998	1.016	1	L5
39	1998	1.465	1	L5
40	1998	1 063	1	H5
40	1000	2.240	1	1.5
41	1990	2.349	1	LO
42	1998	5.512	1	L6
43	1998	2.102	1	L6
44	1998	1 809	1	H5
15	1000	0.001	1	
45	1998	2.091	I	Π4
46	1998	2.404	1	H5
47	1998	2.122	1	H5
48	1998	1 717	1	16
49	1990	1.7 17	1	
50	1998	1.663	1	L6
50	1998	1.537	1	L6
51	1998	1.362	1	H5
52	1009	2 525	1	Це
53	1990	2.000	1	011
54	1998	1.523	1	H5
57	1998	1.227	1	H6
22	1008	1 183	1	Н5
56	1000	1.100	1	
57	1998	1.891	"I	H5
58	1998	1.753	1	L6
50	1998	1.697	1	L6
60	1008	2 517	1	H5
00	1990	2.017	I	110

Meteoritics & Planetary Science

Dun	nina	Haad
Run	ning	пеац

2				
3	1998	1.365	1	L6
4	1998	18	1	13
5	1008	1 010	1	16
6	1009	1.013	1	
7	1990	1.472	1	
, 8	1998	1.600	1	L4
0	1998	1.529	1	L4
9 10	1998	1.432	1	H5
10	1998	1.043	1	H5
11	1998	1.973	1	H6
12	1998	17 465	1	16
13	1998	2 248	1	16
14	1000	2.240	1	
15	1990	2.919	1	110
16	1998	1.030	1	L4
17	1998	1.659	1	L6
18	1998	2.300	1	L6
19	1998	2.548	1	L6
20	1998	2.370	1	H4
21	1998	2.423	1	CR2
22	1998	1 336	1	H4
23	1008	2 113	1	Н6
23	1008	1 095	1	16
27	1990	1.900	1	LO
25	1998	1.101	1	Ho
20	1998	2.037	1	H6
27	1998	2.819	1	H6
28	1998	3.100	1	L5
29	1998	2.627	1	H5
30	1998	2.533	1	H4
31	1998	2 281	1	H5
32	1998	2.063	1	14
33	1000	1 707		
34	1990	1.707	1	
35	1990	2.301		
36	1998	1.212	1	H4
37	1998	6.419	1	LL6
38	1998	1.184	1	H3
39	1998	1.257	1	L6
40	1998	2.803	1	L5
41	1998	1.175	1	H6
42	1998	2 070	1	16
43	1998	2 697	1	H5
44	1008	2.007	1	H5
15	1990	2.104	1	
45 46	1998	1.206	1	LLO
40	1998	2.625	1	LO
47	1998	1.137	1	L6
48	1998	1.071	1	H6
49	1998	2.568	1	L6
50	1998	2.093	1	LL6
51	1998	1.336	1	H5
52	1998	2 1 1 6	1	H6
53	1008	1 014	1	16
54	1990	1.014	1	
55	1990	1.494	1	
56	1998	1.651	1	H5
57	1998	1.714	1	L6
58	1998	1.956	1	L6
59	1998	1.190	1	H4
60	1998	3.994	1	CM2

1				
2				
3	1998	1.071	1	H6
4	1998	6.631	1	H4
5	1998	1 458	1	16
6	1998	2 792	1	16
7	1009	2.792	1	
8	1990	2.200	1	
9	1998	1.075	1	H4
10	1998	2.088	1	H4
11	1998	4.579	1	H3
12	1998	2.476	1	H5
12	1998	1.088	1	H4
1/	1998	1.030	1	H5
15	1998	1.039	1	H4
15	1998	1.665	1	H5
10	1998	1,711	1	H5
17	1998	1 504	1	H5
10	1998	2 678	1	16
19	1008	1 1 1 2	1	
20	1990	1.112	1	115
21	1998	1.103	1	HD
22	1998	1.082	1	H4
23	1998	2.093	1	H4
24	1998	3.478	1	H4
25	1998	2.853	1	H4
26	1998	2.475	1	H4
27	1998	1.959	1	H4
28	1998	1.022	1	H4
29	1998	2.603	1	H4
30	1998	1 937	1	H4
31	1008	2 764	1	H4
32	1008	2.704	1	Ц5
33	1009	2.233	4	
34	1990	2.101	1	
35	1990	2.100		
36	1998	2.211		H4
37	1998	1.160	1	H4
38	1998	1.925	1	H4
39	1998	1.345	1	H4
40	1998	1.080	1	H4
41	1998	1.102	1	H4
42	1998	1.123	1	H5
43	1998	4.630	1	H5
44	1998	2.651	1	L6
45	1998	1.01	1	H5
46	1998	2.22	1	H4
47	1998	1.83	1	H6
48	1998	21	1	H6
49	1998	5.81	1	H6
50	1008	6.78	1	Не
51	1990	0.76	1	
52	1990	2.15	1	
53	1990	1.03	1	LLO
54	1998	2.12	1	H4
55	1998	1.13	1	H6
56	1998	2.05	1	H5
57	1998	4.614	1	H5
58	1998	2.824	1	H4
59	1998	1.38	1	H5
60	1998	1.12	1	H4

Runn	ina	Head
num	my	rieau

1					
2					
3	1998	1.5	559 ⁻	1 L4	
4	1998	1.7	742 [·]	1 H5	
5	1998	1.3	371 [·]	1 L3	
6	1998	1.5	552 [·]	1 H5	
7	1998	2.1	107 [·]	1 L6	
8	1998	2.0	519 ⁻	1 H4	
9	1998	2.0	043 ·	1 L4	
10	1998	1.4	491 [·]	1 H4	
11	1998	2.3	339 ·	1 H4	
12	1998	1.1	186	1 H4	
13	1998	1.()29	1 H4	
14	1998	2:	360 ·	1 H4	
15	1998	28	324 ·	1 H5	
10	1998	14	460 ·	т не 1 Н6	
17	1998	18	35	1 H3	
10	1008	20	22 20	т пе 1 Н4	
20	1008		500	т П4 1 Н4	
20	1990	24	500 576	т п т 1 Ци	
21	1990	2.0	138 .	1 114 1 115	
22	1990	2	+50	1 115 1 115	
23	1990	2	762	то 1 Ци	
24	1996		204	I ∏4 4 II4	
25	1998	2	384		
20	1998	1.0	541	1 H5	
28	1998	1.4	19	1 H5	
20	1998	1.4	123 ·	1 H5	
30	1998	1.5	58	1 H5	
31	1998	1.0	J07	1 H4	
32	1998	1.0)35	1 H4	
33	1998	1.0)9	1 H4	
34	1998	1.7	790	1 H5	
35	1998	1.3	322 •	1 H5	
36	1998	2.3	366 ·	1 H3	
37	1998	1.7	189 [·]	1 H5	
38	1998	1.5	576 ⁻	1 H5	
39	1998	1.2	243 [·]	1 H4	
40	1998	2.4	441 [·]	1 H4	
41	1998	2.3	329 ⁻	1 L5	
42	1998	1.3	307 [·]	1 H5	
43	1998	2.6	333 ⁻	1 H4	
44	1998	2.8	335 ⁻	1 H5 🗸	
45	1998	1.4	446 [·]	1 L6 🛀	
46	1998	2.0	. 88C	1 H4	
47	1998	2.2	276 ⁻	1 H4	
48	1998	2.2	172 [·]	1 H4	
49	1998	2.8	325 ·	1 H4	
50	1998	1.3	393 ·	1 H5	
51	1998	2.7	119 [·]	1 Wino	naite
52	1998	2.0)48 ·	1 L6	-
53	1998	1.3	325 ·	1 H6	
54	1998	2.9	912 ·	1 H4	
55	1998	2	770 ·	1 H5	
50	1998	28	380 -	1 H4	
5/	1998	1 6	306	1 H6	
20 50	1998	1 /	530	1 H6	
59 60	1998	2 ·	329	1 16	
00	1000	2.0		. LV	

1				
2				
3	1998	2.33	4 1	H4
4	1998	2.55	4 1	H5
5	1998	2.05	91	H5
6	1998	2.37	6 1	H5
7	1998	2 23	5 1	16
8	1998	2.20	5 1 1	He
9	1009	2.1	י ר 1	
10	1990	2.20	9 1	115
11	1998	2.18		Но
12	1998	2.48	J 1	H5
13	1998	2.90	8 1	H4
14	1998	2.41	2 1	H4
15	1998	2.39	3 1	H4
16	1998	2.15	4 1	H4
17	1998	2.57	2 1	H4
18	1998	2.8	1	H4
10	1998	1 80	3 1	H4
20	1998	1.75	3 1	НЗ
20	1008	2.24	7 1	Це
21	1990	2.34	/ I 1 1	
22	1998	2.22		HD
23	1998	2.73	1 1	H6
24	1998	1.57	3 1	L6
25	1998	1.12	D 1	L6
26	1998	3.59	5 1	H5
27	1998	2.29	5 1	H6
28	1998	1.99	0 🔨 1	H4
29	1998	1.25	5 1	H5
30	1998	1 49	3 1	H5
31	1008	1.13		H5
32	1008	2 2 2		
33	1000	2.00		
34	1990	1.99		
35	1998	1.72	4 1	СНЭ
36	1998	1.52	2 1	H4
37	1998	1.07	D 1	H5
38	1998	1.24	3 1	H5
39	1998	2.202	2 1	H4
40	1998	2.78	1 1	H4
41	1998	1.09	D 1	H6
42	1998	1.34	2 1	H6
43	1998	2.87	D 1	L6
44	1998	2.82	0 1	H6
45	1008	15.0	15 1	Не
46	1008	2.00	5 1	
47	1990	2.00		110
48	1998	4.05		CH
40	1998	2.01	3 1	Ho
50	1998	1.78	3 1	H6
50	1998	2.26	3 1	H6
51	1998	1.31	9 1	L6
52	1998	1.07	1 1	H5
53	1998	1.36	1 1	L5
54 55	1998	1.12	2 1	L6
55 57	1998	6 23	4 1	16
50	1998	1 24	. 1 2 1	16
5/	1008	2.46	 51	
58	1008	J.40	5 4	
59	1990	1.14	ບ 1 ຄໍ	
60	1998	3.21	y 1	L5

~		
Ru	nnina	Head
nu	mmy	ncuu

1						
2	1009			1 512	1	116
4	1990			1.010	1	
5	1990			1.010	1	
6	1990			1.023	1	
7	1990			2.503	1	
8	1998			1.204	1	LL6
9	1998			1.128	1	LL6
10	1998			1.083	1	Lo
11	1998			1.358	1	L5
12	1998			1.190	1	L5
13	1998			1.567	1	L5
14	1998			1.572	1	L6
15	1998			1.956	1	H6
16	1998			3.455	1	H6
17	1998			1.538	1	H6
18	1998			8.053	1	LL6
19	1998			5.179	1	LL6
20	1998			6.154	1	LL6
21	1998			3205.000	1	H6
22	1998			3639.000	1	H6
23	1998			2150.000	1	L6
24	1998			270.45	1	H6
25	1998			244.33	1	H6
26	1998			113.5	1	H6
27	1998			10.631	1	CO3
28	1998			904.74	1	H6
29	1998			17.604	1	L6
30	1998			19.666	1	16
31	1998			10 493	1	16
32	1998			9 830	1	H6
33	1998			250 23	1	H5
34	2000			842.6	1	Iron IIIAR
35	2000			517.4		Iron IAR-ung
36	2000			24 16	1	Iron IAB ung
37	2000			106.8	1	Iron IAB ung
38	2000			212.9	1	Iron IAB ung
39	2000			212.0	1	
40	2000			224.3	1	Iron, IIIAD
41	2000	04 70007°N	EE 24000°E	4202	1	IION, IAB-UNG
4Z 42	2018	31./008/ N	55.31202°E	1800	4	
43 44	1982	40°47'34"N	124°27'58"E	17 Kg	1	пр S2
44 15	2020 Jan 9	31°22'N	69°34'E	18964	4	H3-4 S2
40 46	June 2019			803.0	1	Eucrite-melt b
40						

3	tbl_weath	tbl_fa	tbl_fs	tbl_wo	tbl_magsus	tbl_typespec	tbl_typespec
4	W4	4.2± 4.8 (n=24	42.2± 1.0 (n=1(23.9	lfP
5	W3	18.35	16.95	2.05		300	IST-USTHB
6	W3	24 82	21.05	1 27		200	IST-USTHB
7	W4	18 22	16 45	1 10		100	IST-USTHB
8	W5	18 11	16.72	1.04		200	IST-USTHB
9	W1	25 39	21 70	1.01		50	
10	W5	20.00	16.27	3.14		30	
11	\\/1	21.00	21.08	1 35		50	
12	VV I \\//1	24.20	21.90	1.00		50 00	
13	minimal	20.00	21.20	1.50	5 11	02	
14		10.0±0.2 (II=3		Wat CLO D	J.11	4.0	
15		25.3±0.4	21.3±0.1	VV01.0±0.2	4.94	41.3	FSAC, UNIVI
16	VV1.0	26.4± 1.4 (n=	119.1± 4.0 (n=8	:1.2± 1.1 (n=8:		2288.7	
17						95.8	NIPR
18						2/6.1	NIPR
19		24.1±0.1 (n=8	323.3±0.6 (n=4	1.5+0.2		1302.65	AuckMus
20	low		63.2-63.8; 29.	2.3-2.4; 6.1-7.		22.9	UWB
21	W2	31.8 (n=1)	25.9±0.2 (n=3	1.9±0.2	3.65	29	CEREGE
22	moderate					311	UAz
23	low					261	UAb
24	W2	27	22.4	1.7		1725.34	WAM
25	W1	0.2±0.1 (n=19	0.3±0.1 (n=6)	1.4±0.3	5.45	20.4	Kiel
26	W4				4.37	21.3	Kiel
27	W3					5.5	UCLA
28	W3					2.2	UCLA
29	W3	18.6±0.5	16.3±0.4	1.0±0.1		1.1	UCLA
30	W3	18.4±0.3 (n =	16.2±0.4 (n =	1.5±0.2 (n = 1		20.2	lfP
31	W2	,	,		4.45	30.8	CEREGE
32	medium					21	UPC
33	minimal					39	UPC
34	W3	23.6+0.4 (N=	120.0+0.2 (N=1	1.5+0.2 (N=13	3	7.6	Vernad
35	W1	17 9+0 3 (N=1	116 1+0 3 (N=1	1 1+0 1 (N=11		23.9	Vernad
36	W2	18.3+0.2 (N=1	115 7+0 3 (N=1	1 41+0 22 (N=		26.4	Vernad
3/	W2	24 4+1 1 (N=1	120 2+0 26 (N=	:0 47+0 14 (N=		185	Vernad
38	W1	24.0+0.24 (N=	=20 1+0 63 (N=	1 64+0 28 (N=		4	Vernad
39	W2	10 6+1 87 (N=	=15 9+0 98 (N=	1.04±0.20 (N :1 21+0 31 (N=		44.2	Vernad
40	minor	10.011.07 (11-	22 5+0 7 (n=7	1.21±0.01 (11=	3.63	20.00	CEREGE
41	\W/1	20+0 5 (N=23	22.5 ± 0.7 (N=14)	1.0 ± 0.0	0.00	175 26	
42	VV I \\/\2/3	20 ± 0.5 (N=23	22±0 4 (N=14	(1 ± 0.2) (N=14)		1686.00	
45 44	W2/5	21 ± 0.5 (N=17	,2210.4 (IN-II) 117.810.8 (N-1	, 1±0.2 (IN=11) 11 2±0 2 (NI=14	1	1000.00	
45	VV3	20.3 ± 0.0 (N=	117.0±0.0 (N=1 117.7±1.0 (N=1	11.2±0.2 (N=14	r)	44.04	
46		20.7±0.4 (IN-	-15 6±0 4 (N=1	11.4±0.3 (IN=13		130.23	Vornad
47	VV3	17.3±0.10 (N-	-15.0±0.4 (IN=1	10.9±0.5 (IN=12		0.0	Vernau
48	14/0	47 4 0 0 (1)				564.3	Vernad
40	VV2	17.4±0.2 (N=	115.6±0.4 (N=1	11.6±0.8 (N=12		42.7	Vernad
50	VV2	17.2±0.2 (N=	115.4±0.3 (N=1	11.0±0.2 (N=12		23.4	Vernad
51	W3	20.3±7.8 (N=3	320.0±2.6 (N=1	1.3±0.5 (N=15	5	1486	Ur⊢U
52	W2	18.8±0.18 (N=	=16.7±0.6 (N=1	1.24±0.18 (N=	:	21	Vernad
53	moderate				4.45	7.6	CEREGE
54	W1	17.9±0.2 (N=1	115.9±0.6 (N=1	1.3±0.1 (N=14	ļ	13.3	Vernad.
55	W2	23.7±0.3 (N=1	120.3±0.7 (N=1	1.3±0.2 (N=12	2	14.5	Vernad.
56	W1				4.59	21.8	CEREGE
57	W2	19.1±0.3 (N=1	116.8±0.4 (N=1	1.5±0.3 (N=12	2	26	UPC
58	W2	19.2±0.3 (N=1	116.9±0.4 (N=1	1.5±0.3 (N=13	3	23	UPC
59	W1	18.5±0.4 (N=2	115.6±0.5 (N=1	1.1±0.4 (N=13	}	20	UPC
60	W2	25.2±1.8 (N=2	121.8±1.6 (N=1	1.6±1.1	4.72	17	UPC

1				
2				
3	W2	18.2±0.4 (N=115.5±0.5 (N=11.0±0.4 (N=14	37	UPC
4	W1	18.6±0.4 (N=117.0±0.5 (N=11.0±0.4 (N=14	11	UPC
5	W2	25.2±0.4 (N=121.3±0.4 (N=11.4±0.3 (N=10	8	UPC
6	W2	18.7±0.5 (N=116.0±0.5 (N=21.2±0.4 (N=20	22	UPC
/	W4	24.0±0.15 (N=19.8±1.3 (N=11.5±0.3 (N=13	16.3	Vernad
8	W3	23.9±0.32 (N=20.0±0.2 (N=11.5±0.1 (N=12	33.6	Vernad
9 10	W3	17.9±0.3 (N=115.7±0.3 (N=11.3±0.2 (N=13	8.8	Vernad
10	W1	24.7±0.5 (N=120.7±0.3 (N=11.3±0.2 (N=13	6	Vernad
12	W1	18.1±0.3 (N=116.0±0.4 (N=11.3±0.3 (N=13	2.9	Vernad
13	W1	24.6±0.3 (N=120.6±0.4 (N=11.4±0.3 (N+11	4.1	Vernad
14	W1	15.8±7.3 (N=313.5±6.0 (N=10.9±0.5 (N=18	3.8	Vernad
15	W2	24.5±0.4 (N=120.6±0.7 (N=11.5±0.2 (N=14	12	Vernad
16	W3	23.7±0.3 (N=120.4±0.7 (N=11.2±0.2 (N=13	39.5	Vernad.
17	W3	18.4±0.3 (N=116.0±0.2 (N=11.3±0.1 (N=12	107	Vernad.
18	W2	17.9±0.2 (N=115.9±0.2 (N=11.2±0.1 (N=12	153.4	Vernad.
19	W2	27.1±1.0 (N=122.0±0.44 (N=1.7±0.5 (N=15	10.9	Vernad.
20	W2	18.1±0.4 (N=116.4±0.6 (N=11.3±0.1 (N=16	12.2	Vernad
21	W3	24.8±0.3 (N=121.1±0.4 (N=11.4±0.3 (N=14	6	Vernad
22	W1	23.9±0.2 (N=120.0±0.2 (N=11.2±0.2 (N=11	15.4	Vernad
23	W2	24.2±0.3 (N=120.4±0.4 (N=11.4±0.1 (N=12	67.5	Vernad
24	W1	18.2±0.4 (N=116.0±0.2 (N=11.6±0.2 (N=12	2.7	Vernad
25	W3	18.1±0.2 (N=115.6±0.2 (N=11.2±0.1 (N=12	0.78	Vernad
26	W1	18.9±0.5 (N=116.4±0.2 (N=11.3±0.2 (N=13	13.4	Vernad
27	W2	23.8±0.3 (N=120.0±0.3 (N=11.3±0.2 (N=12	140.1	Vernad
28	W1	17.9±0.4 (N=115.9±0.6 (N=11.2±0.1 (N=12	500.7	Vernad
29	W2	17.9±0.2 (N=115.8±0.4 (N=11.1±0.2 (N=12	3.1	Vernad
30 21	W2	23.0±0.1 (N=119.3±0.2 (N=11.9±0.8 (N=12	19.3	Vernad
31 22	W2	24.2±0.5 (N=120.3±0.4 (N=11.5±0.3 (N=12	25.8	Vernad
22 22	W1	17.9±0.2 (N=116.0±0.6 (N=11.1±0.1 (N=12	66.0	Vernad
37	W1	16.6±0.9 (N=114.6±0.2 (N=10.9±0.2 (N=12	15.8	Vernad
35	W2	24.0±0.3 (N=120.1±0.2 (N=11.3±0.2 (N=12	15.0	Vernad
36	W2	23.6±0.4 (N=119.8±0.2 (N=11.5±0.2 (N=12	3.0	Vernad
37	W1	18.1±0.3 (N=115.9±0.3 (N=10.8±0.1 (N=10	28.5	Vernad
38	W2	17.2±0.3 (N=115.1±0.4 (N=10.9±0.1 (N=12	24.8	Vernad
39	W3	18.0±0.4 (N=115.7±0.2 (N=11.1±0.1 (N=12	13.1	Vernad
40	W3	17.4±0.1 (N=115.5±0.5 (N=11.3±0.2 (N=12	40.8	Vernad
41	W3	19.0±0.2 (N=116.3±0.2 (N=11.3±0.2 (N=11	16.2	Vernad
42	W2	24.0±0.1 (N=120.1±0.4 (N=11.6±0.2 (N=13	2.2	Vernad
43	W5	24.4±0.5 (N=120.1±0.35 (N=1.3±0.1 (N=12	24.6	Vernad
44	W2	17.2±0.1 (N=115.1±0.3 (N=11.1±0.1 (N=12	4.5	Vernad
45	W4	17.7±0.3 (N=115.7±0.2 (N=11.4±0.2 (N=12	9.8	Vernad
46	W4	16.6±0.3 (N=114.9±0.5 (N=11.0±0.2 (N=13	2.9	Vernad
47	W3	17.4±0.2 (N=115.6±0.2 (N=11.4±0.2 (N=13	13.9	Vernad.
48	W3	17.1±0.2 (N=115.0±0.3 (N=11.2±0.5 (N=15	16.1	Vernad.
49	W3	24.0±0.5 (N=120.0±0.2 (N=11.4±0.2 (N=12	1.06	Vernad.
50	W4	17.7±0.4 (N=115.6±0.3 (N=11.2±0.2 (N=13	6.37	Vernad.
51	W3	23.9±0.26 (N=20.1±0.38 (N=1.68±0.83 (N=	1.66	Vernad
52 53	W4	24.3±0.2 (N=120.4±0.3 (N=11.7±0.3 (N=12	3.1	Vernad
55 54	W2	30.0±0.6 (N=123.9±0.5 (N=12.4±0.1 (N=11	1.6	Vernad
5 -1 55	W4	24.2±0.4 (N=120.2±0.3 (N=12.0±0.3 (N=12	0.65	Vernad
56	W4	24.1±0.3 (N=120.1±0.2 (N=11.9±0.3 (N=12	0.6	Vernad
57	W1	24.5 (n=1) 22.5 (n=1) 1.3 4.9	9 31.5	CEREGE
58	W3	4.0	9 42.4	CEREGE
59	W3	4.3	6 53.1	CEREGE
60	W2	5.1	1 101	CEREGE

2							
3	W1	24.5±5.3 (n=5	17.0±2.3 (n=4	0.9±0.6	4.70	76.7	CEREGE
4	low	, ,	5.8±0.2 (n=4)	2.3±0.1	4.67	34	CEREGE
5	W4	20.1	17.6	2.3	-	47.28	WAM
6	W3	17.9±0.2	15.7±0.1	1.3±0.1	4.55	38.90	App
7	W1				5 36	13.9	MNHNP
8	W1				4 84	17.7	MNHNP
9	W2				5.09	29.9	MNHNP
10	W2	24 96+0 51 (N	121 42+0 55 (N	0 00+1 /0 (N=	4.67	12	
11	W2	24.00±0.01 (1	21.4210.00 (14	0.00±1.40 (14-	5 17	1/ 3	
12	W2				4.02	150	CEDECE
13	W2	18 0+1 0 (n-1	12 8+3 8 (n-1	1 3+1 3	4.02	26	CERECE
14	W/2	10.911.0 (11-1	12.0±0.0 (II= I	1.0±1.0	4.06	20 1 15	CERECE
15	VV3 \\/1				4.90	4.40	CEREGE
16					5.39	20.0	CEREGE
17					5.20	22	CEREGE
18					5.10	23	CEREGE
19	VV1				5.21	33	CEREGE
20	VV2				4.94	31	CEREGE
21	W1				5.08	69	CEREGE
22	W2				5.02	34	CEREGE
23	W2				4.92	5	CEREGE
24	WO	23.8±0.2 (n=3	19.8±0.2 (n=1	1.3±0.1 (#1); 1	1	55.3	MSN-FI
25	W3	23.6±0.2 (N=1	119.7±0.2 (N=1	1.5±0.2 (N=12	2	177.6	Vernad
26	W1	18.6±0.3 (N=1	116.4±0.2 (N=1	1.2±0.2 (N=12	2	19.2	Vernad
27	W1	20.3±0.2 (N=1	115.7±2.0 (N=1	2.1±1.1 (N=14	ļ	12.5	Vernad
28	W3	10.2±0.28 (N=	=11.6±4.44 (N=	0.64±0.47 (N=	:	1.54	Vernad
29	W2	30.3±0.4 (N=1	124.7±0.2 (N=1	1.9±0.1 (N=10]	40.3	Vernad
50 21	W3	28.6±0.6 (N=1	123.7±1.7 (N=1	1.46±0.29 (N=	:	50.6	Vernad
27	W1	22.7±8.28 (N=	=14.5±7.61 (N=	1.17±0.79 (N=		2.8	Vernad
32	W1	18.1±0.48	15.6±0.24 (N=	1.2±0.18 (N=1		4.1	Vernad
34	W1				4.69	11	CEREGE
35	W1	17.9±0.56 (N=	=15.6±0.3 (N=1	0.9±0.2 (N=12	2	34.1	Vernad
36	W1	18.6±0.5 (N=1	115.4±0.4 (N=1	1.3±0.2 (N=12	2	64.6	Vernad
37	W2	17.8±0.2 (N=1	115.7±0.2 (N=1	1.1±0.1 (N=12		99.0	Vernad
38	W1	17.6±0.9 (N=1	115.6±0.2 (N=1	1.5±0.1 (N=1)		64.2	Vernad
39	W1	23.6±0.5 (N=1	119.9±0.4 (N=1	1.3±0.2 (N=17	,	7.4	Vernad
40	W2	18.2±0.4 (N=1	116.0±0.1 (N=1	1.4±0.1 (N=12	2	211.4	Vernad
41	W1	17.9±0.32 (N=	=16.0±0.4 (N=1	1.3±0.3 (N=14	L V	290.1	Vernad
42	W3	18.1±0.2 (N=1	116.0±0.4 (N=1	1.2±0.3 (N=18	3	90.1	Vernad
43	W2	24.1±0.4 (N=1	120.2±0.2 (N=1	1.5±0.2 (N=11		22.9	Vernad
44	W2	24.5±0.25 (N=	=20.4±0.18 (N=	1.5±0.18 (N=1		429.3	Vernad
45	W1	24.1±0.23 (N=	=20.0±0.14 (N=	1.43±0.19 (N=	:	10.4	Vernad
46	W1	18.7±0.47 (N=	=16.4±0.18 (N=	1.24±0.14 (N=	:	17.58	Vernad
47	W1	((- (4.75	2.08	CEREGE
48	W1				4.63	21	CEREGE
49	W1	17.5+0.25 (N=	=15.8+0.54 (N=	1.5+0.12 (N=1		17.8	Vernad
50	W2	16 5+0 24 (N=	=14 5+0 5 (N=1	1 11+0 50 (N=		9 17	Vernad
51	W3	18 4+0 46 (N=	=16 0+0 22 (N=	1 27+0 18 (N=		37.48	Vernad
52	W2	23 8+0 3 (N=1	119 9+0 2 (N=1	1.3+0.1 (N=12)	216	Vernad
53	W4	20.0±0.0 (1	110.0±0.2 (11	1.0±0.1 (11 12	3.61	3.0	CEREGE
54	W/1	25 3+1 41 /NI-	12 6+5 5 (N-2	1 00+0 01 (NI-		62	FMMR
55	\\/1	18 8+0 22 /NI-	16 5+0 5 (N-1	1 2+0 2 /N-12	2	67.9	Verned
56	\\\/1	24 0+0 24 (N-	- 10.0±0.0 (IN− I =20 2±0 3 (N−1	1 5+0 1 (N=13		30.1	Vernad
57	νν I \Λ/1	24.010.24 (IN-	-20.2±0.3 (IN-I 120 8±0 6 /N-4	1 /±0 2 /N=11		0	Verned
58	VV I \A/1	24.1 IU.3 (IN=	120.0±0.0 (IN= I	1.4±0.2 (IN=10		5 5 9	Verned
59		$10.0 \pm 0.0 \text{ (N} = 10.0 $	1 10. I ±0.7 (IN= I 120. 2+0.4 (N=4	1.2 ± 0.2 (N=10		0.0 400	Verned
60	٧٧∠	∠4.∪±0.5 (IN=1	ເ∠∪.3±∪.4 (N=1	1.4±0.∠ (N=12	1	490	vernad.

1							
2							
3	W2	18.4±3.4 (N=1	18.1±7.6 (N=1	1.6±1.4 (N=13	}	510.5	Vernad.
4	W2	24.3±0.3 (N=2	120.3±0.3 (N=1	1.4±0.2 (N=15	5	11.4	Vernad.
5	W2	24.6±0.3 (N=2	120.6±0.3 (N=1	1.5±0.1 (N=12	2	5.2	Vernad.
6	W3	23.5±0.5 (N=2	19.9±0.5 (N=1	2.1±0.3 (N=15	5	11.7	Vernad.
/	W2	24.7±0.7 (N=1	120.3±0.5 (N=1	1.4±0.2 (N=14	ļ.	4.29	Vernad.
8	W2	18.7±0.4 (N=1	16.3±0.2 (N=1	1.4±0.2 (N=12	2	1.95	Vernad
9	W1	18.4±0.7 (N=1	15.8±0.3 (N=1	1.1±0.2 (N=12	2	12.7	Vernad
10	W2	24.3±0.3 (N=2	120.2±0.3 (N=1	1.7±0.3 (N=12		4.7	Vernad
11	W2	18.5±0.3 (N=1	16.2±0.2 (N=1	1.3±0.2 (N=12		8.4	Vernad
12	W1	23.3±0.3 (N=	19.4±0.2 (N=1	2.2±0.3 (N=12	2	17.1	Vernad
13	W1	18.0±0.4 (N=	15.9±0.3 (N=1	1.4±0.3 (N=13	}	16	Vernad
14	W2	24.7±0.3 (N=	120.9±0.4 (N=1	1.4±0.2 (N=15	5	16	Vernad
15	W1	17.7±0.9 (N=1	115.5±0.5 (N=1	1.1±0.3 (N=14	ļ	12.9	Vernad
17	W1	22.6±0.8 (N=1	12.0±3.8 (N=1	1.0±1.0 (N=14	ļ	14.4	Vernad
18	W1	20.6±4.6 (N=2	211.5±9.8 (N=2	1.1±0.8 (N=26	5	17.3	Vernad
10	W1	18.0±0.3 (N=1	15.9±0.2 (N=1	1.3±0.2 (N=12		345	Vernad
20	W2	24.0±0.3 (N=	20.3±0.3 (N=1	1.3±0.2 (N=12		315	Vernad
21	W1	16.5+0.2 (N=1	14.9+0.7 (N=1	0.9+0.1 (N=13	}	654	Vernad
22	W1	23.4+0.3 (N=1	19.6+0.4 (N=1	1.3+2.0 (N=13	}	13.6	Vernad
23	W1	24 2+0 6 (N=1	120 2+0 2 (N=1	1 2+0 2 (N=12)	12.8	Vernad
24	W1	23.8+0.2 (N=1	120.2±0.2 (N=1	1 5+0 2 (N=12	-	15.9	Vernad
25	W1	17 4+7 9 (N=1	14 8+4 0 (N=2	1.8+0.4 (N=20	-	37.8	Vernad
26	W/2	16 3+7 8 (N=2	29.4+6.5 (N=20	1.5±0.4 (N=20		31.5	Vernad
27	W2	24 0+0 2 (N=2)	120 1+0 1 (N=1	1 9+0 2 (N=11		7 1	Vernad
28	\\/1	187+04 (N=	120.1±0.1 (N=1 116 5+0 2 (N=1	1.5 ± 0.2 (N=11		11.1	Vernad
29	W/3	18.6 ± 0.5 (N=	116.3±0.2 (N=1	1.7 ± 0.0 (N=13	l Q	76	Vernad
30	W3 W/1	10.0 ± 0.3 (N=	110.0±0.3 (N=1	2.7 ± 0.3 (N=12		53.8	Vernad
31	W/2	23.0 ± 0.2 (N=	179.4±0.3 (N=1	1 6+0 4 (N=12	-	53	Vernad
32	VVZ \//1	24.1 ± 0.1 (N= 18.4+0.4 (N=	120.1±0.2 (N=1	1.0 ± 0.4 (N=12		17.8	Vernad
33	W/2	17 8±0 3 (N=	115.8±0.2 (N=1	1.5 ± 0.1 (N=12		22	Vernad
34	VVZ \//1	17.0 ± 0.3 (N=	110.0±0.2 (N=1	1.1 ± 0.2 (N=12	_	0.8	Vernad
35	VV I \//1	23.1 ± 0.2 (N=	115.0±0.3 (N=1	2.3 ± 0.2 (N=12		3.0	Vernad
36		17.0 ± 0.2 (N=	115.0±0.2 (IN=1	1.2 ± 0.2 (N=12	-	202.0	Vernad
37	modorato	17.0 ± 0.2 (IN-	113.0 ± 0.3 (IN-I) 2 1+2 0 (n-4)	1.1 ± 0.1 ($11-12$	1 39	204.5	
38	high	37.0±10.7 (II-	4 7±2 0	0.0 ± 0.3	4.30	39.2	
39	modorato	22.5 ± 10.0	4.7 ± 3.0	1.2 ± 1.0 0.7±0.1 p=12	4.92	23.55	мир
40		21.4 ± 0.2 , II=1	17.0±0.1, II=1.	$9.7 \pm 0.1, 11 = 12$	4.01	24.4	
41	VV4	0.7-44.3	1.2-29.9	0.2-3.9 1 6+0 2 (N=10	4.01	40	Vornad
4Z	VV3	17.0±0.5 (N=	115.0±0.3 (IN=1	1.0 ± 0.2 (N=12		20.1	Vernad
43		10.0±0.4 (IN-	16 4 10 7	1.2±0.2 (IN-12		0.97	
44	VV3	10.0±0.0	10.4±0.7	1.1±0.1		0.07	
46	CVV	18.0±0.5	10.9±0.8	1.1±0.2	4.04	1.7	
40	VV3	07	00		4.91	33.7	LEREGE
48	A/B	27	23		4.7	44.69	120
49	A/B	19	04 5:0 4 (- 0	4.4.0.0 (*	5.14	1.38	J2C
50	VV4	25.7±0.2 (n=2	21.5±0.1 (n=2	1.4±0.3 (n=2)		20	00
51	W3	23.2±0.3, n=1	20.2±0.7, n=1	1.8±0.3, n=10		42.1	MNB
52	W3	23.8±0.3 (n=1	19.9±0.2 (n=1	1.7±0.1 (n=11		27.3	MNB
53	W1	18.6±1.4 (n=1	15.2±3.4 (n=9	1.5±0.4 (n=9)		9.9	MNB
54	vv3	18.2±0.1 (n=7	16.6±0.5 (n=7	1.2±0.1 (n=7)		30.4	MNB
55	low	17.0±19.0 (0.1	/5.3±1.9 (2.0-7	3.1±0.2 (2.7-3		1.3	MNB
56	VV2	24.6±0.4 (n=7	20.9±0.1 (n=7	1.5±0.3 (n=7)		44.7	MNB
57	VV4	25.1±0.3 (n=5	21.1±0.4 (n=5	1.5±0.4 (n=5)		27.5	IfP
58	A/B	1-44	1-7		4.64	52.791	JSC
59	A/B	1-41			4.73	35.9	JSC
60	A	3			4.81	63.445	JSC

3	A/B		31-52		4.28	15.92	JSC
4	A/R		20-64		42	25.065	JSC
5	л. Л		20 63		2.2	20.000	
6	A M/A	04.0+0.5 (=-0		4 7 . 0 0	2.07	0.33	JSC
7	VV4	24.2±0.5 (n=3	20.9±1.3 (n=9	1.7±0.2	4.02	0.9	Kiel
, 8	VV4	18.9±0.1 (n=5	17.1±0.4 (n=5	1.19±0.16 (n=		195	IGCAS
0	low		57.8-59.0; 26.	5.3-4.1; 42.5-	2	20.3	UWB
9 10	W2				4.47	39.5	MNHNP
10	W3	26.31±1.9 (N=	20.70±0.47 (N	1.66±0.21 (N	=4.58	36.3	MNHNP
11	W2				5.21	27.9	MNHNP
12	W1				5.12	118.1	MNHNP
13	W3	18 78+0 05 (N	116 56+0 41 (N	1 16+0 33 (Ni	=4.80	82	MNHNP
14	\//1	10.10±0.00 (1	10.00±0.11 (1	11.10±0.00 (11	5.47	14.6	MNHND
15		24.2610.4 (N-	-20 77 10 21 /N	1 E7 10 10 /N	- 4 96	07.7	
16	VVZ	24.20±0.1 (IN-	-20.77±0.21 (N	11.57±0.19 (N	-4.00	07.7	
17	VV2				4.92	43.9	MINHNP
18	W1				5.25	125	MNHNP
19	W3	25.25±0.48 (N	121.06±0.27 (N	l1.87±0.04 (N∶	=4.57	35.7	MNHNP
20	W3	17.11±0.56 (N	115.77±0.27 (N	1.07±0.27 (N	=4.73	27.6	MNHNP
21	W2	18.57±0.17 (N	16.34±0.26 (N	1.50±0.21 (N	=5.13	18.4	MNHNP
22	W3	25.24±0.44 (N	21.30±0.26 (N	1.56±0.35 (N	=4.40	2	MNHNP
23	W1	,		,	5.25	24	MNHNP
24	W1				5 12	13.3	MNHNP
25	W/2				5.01	13	MNHND
26	VV2				5.01	10	
27	VVZ	40.00.07.0			5.04 - 4.04	22.0	
28	VVZ	19.03±0.07 (N	116.60±0.66 (N	1.14±0.10 (N	=4.81	14.3	MINHNP
20	W3	19.03±0.00 (N	16.52±0.16 (N	1.31±0.31 (N	=4.67	19.5	MNHNP
29					4.62	15	MNHNP
21	W2				4.42	16.2	CEREGE
21	W2		0.39 ± 0.15 (N	1.53 ± 0.07 (N	5.24	135	MNHNP
5Z	W2				4.18	400	CEREGE
33	W1				4.57	12	CEREGE
34	W1				4.53	15.7	CEREGE
35	W3				4 97	24.6	CEREGE
36	W2				4.06	54.9	CERECE
37	VVZ				4.50	10	CEREGE
38					4.50	19	CEREGE
39	VV 1				5.33	21	CEREGE
40	VV1				5.36	33.5	CEREGE
41	W2				4.55	6	CEREGE
42	W1				4.59	7.1	CEREGE
43	W2				4.66	12.3	CEREGE
44	W1				4.70	3.7	CEREGE
45	W1				4.55	7	CEREGE
46	W1				5.05	22	CEREGE
47	W/2	18 4+0 1 (n=7	16 3+0 1 (n=7	1.5+0.1 (n=7)		22.3	MNR
48	W2	18 7±0.3 (n=7	16.0±0.1 (n 7	1.0 ± 0.1 (n 7)		22.0	MNB
49	VV2	10.7 ± 0.3 (11–7	10.2±0.2 (n=7	1.0 ± 0.1 (n=7)		20.4	
50	VVZ	23.9±0.1 (II=7	20.3±0.3 (II=7	2.0 ± 0.2 (II=7)		0.1	
51	VV1				5.14	28	CEREGE
52		19.2±14.5 (n=	1.9 (n=2)	1.4	4.42	96	CEREGE
53	low	22.7±12.9 (n=	1.6 (n=2)	0.7	4.43	86	CEREGE
54	moderate	27.1±16.5 (n=	1.5±0.1 (n=7)	1.5±0.8	4.40	34	CEREGE
55	A/B	25	21		4.47	181.58	JSC
56	B/C	17	15		5.34	220.52	JSC
57	В	25	21		4.78	265.32	JSC
57	A/B	25	21		4.75	251.98	JSC
50	B	28	22		4 43	84 05	JSC
22	 Δ/Β	25	 21		4 52	90 47	ISC
00		20	<u>~ </u>		7.04	50.77	000

1						
2						
3	A/B	25	21	4 55	105 74	JSC
4	R	18	16	5.18	114 33	ISC
5		25	21	4 77	00.90	100
6	A/D	20	21	4.77	90.09	100
3 7	A/B	24	21	4.79	102.81	120
, 8	A/B	25	21	4.75	/9.//	JSC
0	В	26	22	4.66	82.66	JSC
10	A/B	24	20	4.51	52.06	JSC
10	A/B	25	21	4.66	110.69	JSC
11	A/B	25	21	4.64	55.65	JSC
12	В	25	21	4.8	60.59	JSC
15	A/B	25	21	4.81	217.32	JSC
14	A/B	25	20	4.68	337.63	JSC
15	B/C	20	18	5 18	160 72	JSC
10	Δ/R	25	21	4 5	122.28	ISC
17	R	25	21	4.5	01 50	
18	D	25	21	4.55	50.49	100
19		25	22	4.00	09.40	120
20	A/B	25	21	4.72	60.46	120
21	A/B	25	22	4.6	24.7	JSC
22	A/B	25	21	4.54	22.92	JSC
23	A/B	26	21	4.61	31.92	JSC
24	A/B	25	21	4.69	17.63	JSC
25	A/B	25	21	4.49	55.68	JSC
26	A/B	25	21	4.66	28.11	JSC
27	A/B	25	21	4.63	27.7	JSC
28	A/B	25	21	4.61	18.35	JSC
29	A/B	24	21	4 65	30.53	JSC
30	R	10	17	4 55	70 57	ISC
31		26	22	4.55	20.67	1900
32		20	17	4.00	20.07	190
33	A/D	19	17	5.23	30.030	120
34	A/B	25	21	4.6	28.222	JSC
35	A/B	25	21	4.56	42.693	JSC
36	A/B	26	22	4.69	25.317	JSC
37	A/B	25	21	4.72	17.719	JSC
38	A/B	25	21	4.73	36.684	JSC
39	В	20	19	5.15	46.706	JSC
40	A/B	25	21	4.37	24.66	JSC
41	A/B	25	21	4.64	61.273	JSC
42	A/B	26	22	4.58	11.545	JSC
43	A/B	25	21	4.91	13.26	JSC
44	A/B		22	4 72	12 474	JSC
45	R	21		5.23	14.85	ISC
46	Δ/R	24	21	4 7	14.542	
47		24	21	4.7 4.50	25 960	100
48	A/D	24	21	4.00	20.009	120
49	A/D	25	00	4.04	29.730	120
50	A/B	26	22	4.64	19.483	JSC
51	В	25	20	4.6	22.846	JSC
52	В	25	21	4.66	16.473	JSC
53	A/B	25	21	4.71	17.56	JSC
54	A/B	25	21	4.72	22.67	JSC
55	A/B	25	23	4.6	23.33	JSC
55	A/B	26	22	4.68	18.08	JSC
50 57	A/B	24	22	4.67	19.77	JSC
5/ E0	A/B	25	21	4.72	23.58	JSC
50 50	B	25	20	4 65	20.28	JSC
59 60	B	20		5.08	17 77	1900
60	U	20		0.00	11.11	130

1						
2						
3	В	21	18	5.22	6.7	JSC
4	A/B	25	22	4.62	8.282	JSC
5	A/B	25		4.72	10.314	JSC
6	В	24	21	4.88	9.71	JSC
7	A/B	25	22	4.8	5.645	JSC
8	В	28	24	4.48	14.145	JSC
9	В	20	18	5.13	16.205	JSC
10	В	20	18	5.19	7.617	JSC
11	A/B	25	22	4.62	21.465	JSC
12	B	25	21	4.58	25,194	JSC
13	A/B	25	22	4.59	7.645	JSC
14	В	20	18	5.02	32.38	JSC
15	B	25	21	4.6	20.46	JSC
10	A/B	25	22	4 51	32.2	JSC
17	R	28	25	4 46	9 99	JSC
10	B	25	21	4 74	11 26	JSC
19	B/C	19	18	5 27	9.25	ISC
20	Δ/R	24	21	4 65	9.20	ISC
21	B/C	25	22	4.00	10.4	ISC
22	B/C	26	22	4.37	10.4	1900
23	Δ/R	17	16	51	16.10	1900
25	A/B	25	21	4.60	18.00	1900
26	A/D	25	21	4.09	12.03	190
27		20	21	4.00	15.97	190
28		20	22	4.55	10.01	190
29	A/B	25	21	4.00	12.07	120
30	A/D	20	21	4.07	17.44	120
31	A/D	20	22	4.72	12.41	120
32	A/B	25	21	4.03	9.84	120
33	A/B	25	22	4.7	10.51	120
34	A/B	25	21	4.00	0.475	120
35	A/B	25	22	4.93	4.541	120
36	A/B	25	21	4.69	14.865	120
37	A/B	25	22	4.56	12.85	JSC
38	В	20	18	5.2	29.755	120
39	A/B	25	21	4.73	8.725	120
40	A/B	25	20	4.5	18.058	JSC
41	A/B	25	22	4.74	10.325	JSC
42	A/B	25	22	4.68	12.604	JSC
43	B/C	20	18	5.04	4.65	JSC
44	В	26	23	4.65	3.72	JSC
45 46	A/B	25	21	5.06	5.48	JSC
40	В	20	18	5.32	3.86	JSC
47	B/C	20	19	5.28	8.2	JSC
40	В	25	22	4.52	2.53	JSC
50	B/C	25	22	4.67	4.24	JSC
51	A/B	26	24	4.59	4.22	JSC
52	В	25	22	4.6	4.47	JSC
53	B/C	20	18	5.06	2.87	JSC
54	B/C	20	18	4.98	3.76	JSC
55	В	20	19	5.1	3.13	JSC
56	В	25		4.9	4.03	JSC
57	A/B	25	22	4.69	3.48	JSC
58	В	25	22	4.47	2.47	JSC
59	B/C	20	18	5.06	2.46	JSC
60	A/B	25	21	4.68	4.15	JSC

3	B/C	20	18	5.01	1.48	JSC
4	B/C	19	17	5.04	1.2	JSC
5	В	25	13-29	4.57	1.67	JSC
6	B/C	25	20	4 69	2.05	JSC
7	∆/R	31	27	3.57	2.00	
8	A/D D/C	20	19	5.57	2.24	130
9	B/C	20	10	5.03	3.17	120
10	B/C	20	18	5.02	2.15	JSC
11	A/B	25	20	4.49	2.26	JSC
12	B/C	20	17	5.19	1.36	JSC
13	B/C	20	18	4.99	2.49	JSC
14	В	25	21	4.71	3.619	JSC
15	A/B	25	22	4.74	6.48	JSC
15	A/B	25	22	4.68	5.754	JSC
17	A/B	25	21	4.81	4.757	JSC
12	A/B	1-26	9-22	4 44	6 409	JSC
10	A/B	25	21	4 55	8 468	
19	//B	25		4.00	5.460 5.456	
20		25		4.75	2.450	100
21		20	00	4.04	3.205	120
22	A/B	27	23	4.8	4.067	JSC
23	A/B	26	22	4.65	3.869	JSC
24	В	26	22	4.61	3.63	JSC
25	B/C	20	18	5.02	1.9	JSC
26	В	25	21	4.67	2.43	JSC
27	B/C	20	18	4.93	3.5	JSC
28	B/C	19	17	5.06	2.58	JSC
29	С	24		4.56	1.41	JSC
30	A/B	24	13-20	4.68	3.97	JSC
31	C.	19	17	5.2	2 42	
32	B/C	7	3_8	5.17	2.42	
33	DIC	25	21	1.95	4.40	
34		20	21	4.00	4.49	130
35		20	10	5.05	2.93	120
36	A/B	25	21	4.7	2.39	JSC
37	B/C	20	18	5.15	1.56	JSC
38	A/B	30	25	4.78	1.52	JSC
39	A/B	26	23	4.61	1.07	JSC
40		20	19	5.03	1.14	JSC
41	B/C	20	18	5.03	2.26	JSC
42		26	22	4.55	1.14	JSC
43	B/C	16	15	5.06	1.27	JSC
44	B/C	20	18	5.04	2.13	JSC
45	B/C	25	20	4.55	1.31	JSC
46	B/C	21	19	5	1 47	JSC
47	B/C	20	18	5 01	2 75	ISC
48	B/C	20	18	5.01	1 /0	
49	D/C	20	18	J.04 4 69	1.49	100
50	D D/O	29	40	4.00	1.30	120
51	B/C	20	18	5.06	4.72	JSC
52	B/C	21	19	5.03	2.02	JSC
53	B/C	27	22	4.56	2.84	JSC
54	B/C	22	20	5.02	1.5	JSC
55	A/B	26	22	4.63	3.86	JSC
55	B/C	20	18	5.06	1.24	JSC
57	W3			4.90	21.1	Kiel
58	W2	25.1±0.6 (n=	521.4±0.7 (n=51.43±0.26 (n=	=:	2250	IGCAS
50	low	(14.4-22.8: 20.2.2-3.3: 7.0: 3	3:3.06	50.1	UWB
50 27	moderate	1 2+0 2 (n=3)	47 (n=2) 22	5 17	21.3	CEREGE
00	moderate	1. <u>2</u> ±0.2 (11=0)	, (,	5.17	21.0	

3	W0				6.7	lfP
4	W2	25.0±0.5 (n=3	20.6±0.4 (n=2 1.3±0.9	4.43	25.27	CEREGE
5	low	,	23 4-23 7. 67 32 3-30 4. 20	!	20.1	UWB
6	W3	16 0+1 0 (N=3	14.2+0.7 (N=11.1+0.2 (N=17)	7	200.80	
7	W2	17.9 ± 1.0 (N=3	14.2 ± 0.7 (N=11.1±0.2 (N=17)	1	70 75	
8	VV3	17.0±1.0 (N=3	15.0±0.8 (N=11.1±0.3 (N=14	1 1 00 E 00	70.75	
9	VV1			4.99 - 5.09	21.1	KIEI
10	VV1			4.95	21.0	Kiel
10	W1			4.88	20.4	Kiel
17	W1			4.75	20.4	Kiel
12	W0	24.8±0.1 (n=5	21.0±0.2 (n=5 1.6±0.1	4.71	89.5	UWB/ASU
13	low	40.9±0.3	30.5±6.2 12.7±11.4		20.6	UNM
14	W3	18 1+0 2 (N=5	16 0+0 2 (N=31 1+0 4 (N=31	l	37	UA7
15		245+03 (n=8	21 3+1 1 (n=8 1 5		27	Kirkl I
16	W 2	25.09±0.48 (n=0	21.0 ± 1.1 (II-0 1.0 21.24±1.28 (p.1.74±0.23 (p-		25	
17	VV3	20.4+0.4 (n=1	21.24 ± 1.20 (111.74±0.25 (11-		20 5	
18	VV4	39.4±0.4 (n=1	20.3±4.8 (II=9 1.2±0.9 (II=9)		20.5	
19	IOW		51.5±1.9, 50.74.9±0.7, 7.4±1	13.02	20.21	UNM
20	B/C	18	16	5.16	6.74	JSC
21	B/C	20	17	5.19	99.35	JSC
22	B/C	19	17	4.59	10.06	JSC
23	B/C	19	17	4.9	35.07	JSC
24	B/C	19	17	5.19	39.26	JSC
25	в	6-23	3-24	4 39	44 56	JSC
26	B	20	18	5 167	17 600	
27	D	25	21	1 129	12 412	
28	D	20	21	4.430	12.412	120
29	В	20	17	5.13	9.290	51
30	В	25	21	4.43	16.///	JSC
31	В	20	18	5.14	11.145	JSC
37	В	19	17	5.3	11.136	JSC
32	В	19	17	4.84	30.45	JSC
27	B/C	17	15	5.039	23.653	JSC
24 25	В	25	22	4.648	12.656	JSC
35	В	25	21	4.637	3.204	JSC
30	B/C	20		5 26	59.83	
3/	B	10	17	5.13	116 54	
38		20	10	5.15	27.02	100
39	B/C	20	10	5	37.92	120
40	B/C	20	18	5.04	71.04	JSC
41	B/Ce	20	17	5.1	52.73	JSC
42	В	6-26	3-17	3.78	92.43	JSC
43	B/C	26	21	4.68	87.93	JSC
44	В	25	21	4.66	80.95	JSC
45	B/C	20	17	5.28	363.69	JSC
46	A/B	24	20	4.717	20.694	JSC
47	В	19	16	4.857	25.246	JSC
48	A/R	25	21	4.6	35 919	JSC
49	R	10	17	1.0	26 680	
50	D	25	21	4.57	16 600	100
51		20	21	4.04	10.099	120
52	A/B	20	18	4.82	25.572	120
53	В	29	6-25	3.768	19.203	JSC
54	A/B	25	21	4.56	40.973	JSC
55	B/C	20	18	5.06	195.164	JSC
56	B/Ce	19	17	5.15	186.291	JSC
57	В	20	18	5.14	133.935	JSC
58	В	19	17	5.31	175.33	JSC
50	A/Be	19	17	4.98	154,461	JSC
22	B/Ce	20	18	5 15	158 66	
00	0/06	20	10	0.10	100.00	000

1						
2						
3	B/C	20		5.18	79.87	JSC
4	B/C	21	19	5.08	60.39	JSC
5	B	19	3-17	5 12	954 2	JSC
6	B/Ce	25	21	4 69	1578.3	JSC
7	A/Re	25	20	4 91	2502.8	ISC
8	A/Be	25	20	4.76	1168 61	ISC
9		20	27	4.70	3102.09	1900
10		20	21	4.21	5192.00	190
11	A/De	20	21	4.75	0144.29	120
12	A/Be	25	21	4.00	2144.7	120
13	A/Be	25	22	4.92	9485	JSC
14	B/Ce	20	18	5.15	219.386	JSC
15	В	19	17	5.09	388.56	JSC
16	Be	20	19	4.97	268.96	JSC
17	В	21	19	5.2	142.33	JSC
18	В	19	19	5.3	275.54	JSC
19	В	20	18	5.17	174.84	JSC
20	Be		18	4.42	114.85	JSC
21	B/Ce	19	17	5.14	184.077	JSC
22	A/B	20	18	5.17	71.59	JSC
23	B/C	20	17	5.06	287.54	JSC
24	B/Ce	20	17	5.17	436.73	JSC
25	B	18	16	5.07	109 77	JSC
26	B/C	20	17	5.04	150 23	JSC
27	A/B	24	13-20	4 88	101.7	JSC
28	B/C	10	17	5 14	101.7	1900
29	B/C	20	17	5.14	111 / 8	1900
30		20	17	J.1Z	111.40	190
31	A/D	20	23	4.77	130.07	120
32	A/B	20	24	4.72	277.19	12C
33	B/C	20	18	5.2	309.88	JSC
34	B/C	21	19	5.1	166.37	JSC
35	Ве	20		5.05	121.27	JSC
36	В	25	21	4.797	40.839	JSC
37	Be	20	18	5.122	109.798	JSC
38	A/B	25	21	4.88	41.982	JSC
39	A/Be	19	17	4.978	57.111	JSC
40	Be	20	17	4.968	40.471	JSC
41	A/B	25	21	4.52	18.591	JSC
42	B/C	19	17	4.73	10.428	JSC
43	B/C		18	5.03	11.488	JSC
44	B/C	18	16	4.78	5.676	JSC
45	B/C	19	17	4.86	5.03	JSC
46	B/C	20	18	5.04	18.315	JSC
47	B/C	26	21	4.22	30.262	JSC
48	B	19	17	5.26	13,995	JSC
49	= B/Ce	25	21	4 85	1168 46	JSC
50	B/Ce	20	18	5.26	2811 74	ISC
51	B/Ce	20	18	5.20	2703.04	1900
52	DICC	25	22	1 790	699 30	1900
53		20	22	4.709	604.22	190
54		20	17	4.09	094.32	100
55		20	17	0.100	200.70	190
56	А/Ве	21	23	4.00	564.73	12C
57	ве		18	5.14	467.59	JSC
58	B/C	20	1/	5.1	6.71	JSC
59	B/C	25	21	4.49	8.5	JSC
60	B/C	0.5	0-1	4.95	16.32	JSC

1						
2						
3	В	26	21	3.93	32.07	JSC
4	B/C	18	16	5.24	22.96	JSC
5	В	24	21	4.75	15.66	JSC
6	B/C	25	23	4.36	32.86	JSC
/	B/C	19	17	4.89	11.03	JSC
8	B/C	25	21	4.5	17	JSC
9 10	Be	24	20	4.71	91.43	JSC
10	B/C	21	20	5.25	101.87	JSC
12	В	28	24	4.62	136.2	JSC
13	B/C	21	19	5.04	70.14	JSC
14	B/C	26	21	4.49	24.21	JSC
15	B/C	21	19	5.07	39.64	JSC
16	В	21	19	5.04	32.94	JSC
17	B/C	25	21	4.53	25.96	JSC
18	В	25	21	4.71	26.95	JSC
19	B/C	20	18	4.96	7.78	JSC
20	B/C	26	22	4.23	14.59	JSC
21	B/C	19	17	4.79	8.51	JSC
22	В	20	18	5.14	14.01	JSC
23	B/C	20	18	4.81	14.02	JSC
24	A/B	27	12-27	4.32	9.75	JSC
25	B/C	21	18	4.74	18.34	JSC
20	В	18	16	4.69	11.57	JSC
27	В	25	22	4.9	728.43	JSC
20	Be	25	22	4.75	1188.99	JSC
30	A/Be	25	21	4.82	697.48	JSC
31	A/B	25	21	4.46	160.67	JSC
32	A/B	25	21	4.73	186.24	JSC
33	A/B	25	22	4.88	290.11	JSC
34	Be	25	22	5	250.31	JSC
35	A/B	19	17	5.18	189.84	JSC
36	B/C	19	17	4.97	136.28	JSC
37	B/C	20	18	4.92	64.88	JSC
38	B/C	25	21	4.64	59.36	JSC
39	B/Ce	19	17	5.02	48.64	JSC
40	B/C	20	18	5.17	82.36	JSC
41	Be	25	21	4.7	50.32	120
42	B/C	20	18	5.11	55.22	120
43	B D/Ca	24	20	4.04	40.94	120
44	B/Ce	21	18	4.99	09.3	120
45 46	Be	19	17	4.92	97.35	120
40	B/C	25	21	4.09	85.52	120
48	B/C	19	17	5.18	70.0 65.6	120
49	A/D D	25	22	4.01	02.00	120
50	B	24	20	4.08	93.83	120
51	B/C	20	18	4.93	01.77	120
52	B/Ce	19	19	5.04	110.10	120
53	B/C	20	10	J.24 4 50	100.40	120
54	D	20 1.25	22 5 10	4.09	174.11	120
55		1-30	0-12 17	4.00 5.22	121.00 202.20	100
56		19 10	10	5.23	JUZ.29	100
57		19 20	19	J.20 5.25	JZ 1.34	120
58	D/Ce	∠U 20	10	0.∠0 5.25	219.30	120
59	B/Ce	2U 10	19	0.∠0 5.05	4/3.9	120
60	в/се	19	17	CU.C	94.16	120
2						
----------	-------	-----------	------------------------------	---------------	---------	------
3	B/Ce	5-36	3-17	4.33	65.77	JSC
4	B/C	20	18	4.12	89.41	JSC
5	B/C	20	18	5.078	93.28	JSC
6	A/B	25	21	5.02	17.766	JSC
/	В	20	17	5.26	8.77	JSC
8	В	25	21	3.71	118.514	JSC
9	A/B	24	20	4.86	25.328	JSC
10	B/Ce	20	19	4.98	29.47	JSC
11 10	B/Ce	20	19	5.05	45.995	JSC
12	B/C	21	18	5.04	25.604	JSC
13	B/C	20	17	5.17	38.739	JSC
14	B/C	20	18	5.22	51.408	JSC
16	B/Ce	20	17	4.83	19.48	JSC
17	B/Ce	20	18	4.92	34.771	JSC
18	B/Ce	19	17	4.98	32.036	JSC
19	A/B	20	18	5.21	87.154	JSC
20	A/B	19	17	5.226	74.281	JSC
21	Be	26	22	4.7	81.269	JSC
22	Be	20	18	4.809	18.968	JSC
23	Be	20	17	5.201	48.284	JSC
24	Be	20	18	4.967	19.622	JSC
25	В	20	17	5.062	6.535	JSC
26	Be	20	17	4.908	8.19	JSC
27	A/B	28		4.435	10.254	JSC
28	W2	18.65±0.2	23 (n 16.18±0.42 (n 1.	20±0.32 (n=	0.67	PRIC
29	W2	19.34±0.1	5 (n 17.09±0.27 (n 1.	.14±0.08 (n=	0.95	PRIC
30	W2	18.57±0.2	26 (n 18.84±0.61 (n 0.	.53±0.75 (n=	1.66	PRIC
31	W2	17.82±0.2	23 (n 15.79±0.22 (n 1.	25±0.18 (n=	2.04	PRIC
32	W2	18.39±0.4	2 (n 16.3±0.51 (n= 1.	.38±0.07 (n=	1.27	PRIC
33	W3	18.06+0.2	26 (n 16.39+0.37 (n 1.	16+0.10 (n=	0.12	PRIC
34	W2	18.93±0.5	56 (n 17.63±0.17 (n 1.	.10±0.11 (n=	2.37	PRIC
35	W2	18.15+0.1	3 (n 15.86+0.01 (n 1.	49+0.13 (n=	10.70	PRIC
30 27	W2	25.32+0.5	57 (n 21.06+0.56 (n 1.	46+0.19 (n=	5.00	PRIC
57 20	W1	18.95+0.7	73 (n:16.09+0.25 (n:1.	.00+0.15 (n=	3.04	PRIC
30	W2	18.54+0.6	6 (n 16.69+0.37 (n 0.	.82+0.06 (n=	0.42	PRIC
40	W3	18.18+0.5	59 (n 15.91+0.32 (n 1.	27+0.09 (n=	0.29	PRIC
41	W1	18.24+0.1	6 (n:15.9+0.47 (n=2.	11+2.04 (n=	2.92	PRIC
42	W2	18 13+0 8	32 (n:19 35+0 08 (n:1	21+0 27 (n=	2 26	PRIC
43	W2	17.94±0.2	28 (n 15.26±0.67 (n 1.	.55±0.79 (n=	1.71	PRIC
44	W3	18.71+0.3	37 (n 15.9+0.67 (n= 1.	.18+0.13 (n=	1.26	PRIC
45	W2	19 03+0 5	51 (n:17 11+0 64 (n:1	12+0 09 (n=	0.75	PRIC
46	W2	18.53+0.8	3 (n = 15.6 + 0.32 (n = 0.1)	.93+0.11 (n=	0.53	PRIC
47	W2	18 35+0 0)1 (n:18 77+0 12 (n:1	30+0 04 (n=	0.34	PRIC
48	W3	18.31+0.3	31 (n:16.03+0.65 (n:1.	.08+0.26 (n=	0.49	PRIC
49	W3	18 39+0 5	59 (n 16 66+0 07 (n 1	27+0 15 (n=	0.39	PRIC
50	W2	18 85+0 8	37 (n:17 99+0 5 (n=0	78+0 12 (n=	0.22	PRIC
51	W3	18 61+0 2	21 (n 16 94+0 49 (n 1	41+0 65 (n=	0.18	PRIC
52	W3	18.32+0.6	67 (n 16 39+0 55 (n 1	14+0 24 (n=	0.18	PRIC
53	W3	19 14+0 7	/2 (n 17 88+0 74 (n 1	13+0.05 (n=	0.10	PRIC
54	W3	17 69+0 1	_ (n 16 74+0 77 (n 1	09+0 33 (n=	0.07	PRIC
55	W/3	17 75+0 2	21 (n:17 86+0 74 (n:1	11+0 15 (n=	0.06	PRIC
56	W/3	18 08+0 3	37 (n:16 28+0 53 (n:1	25+0 10 (n=	3.61	PRIC
5/	W/1	17 85+0 1	6 (n:15 72+0 00 (n:1	55+0 07 (n=	4 79	PRIC
58 50	W2	27 01+1 2	26 (n:21 26+0 24 (n:1	24+0 25 (n=	1.04	PRIC
59 60	W/2	23 53+0 1	18 (n:20 21+0 88 (n:1	24+0 26 (n=	7.34	PRIC
00	v v Z	20.00±0.1	10 (1120.2 1±0.00 (111.	.2710.20 (11-	1.04	FRIC

2				
3	W3	24.43±0.18 (n 19.92±0.35 (n 1.99±0.90 (n=	3.76	PRIC
4	W2	24.6±0.38 (n= 20.8±0.89 (n= 1.36±0.20 (n=	1.46	PRIC
5	W3	24.27+0.77 (n 20.05+0.91 (n 1.34+0.18 (n=	0.95	PRIC
6	W2	23 5+0 37 (n=19 72+0 51 (n 1 28+0 12 (n=	1 93	PRIC
7	W2	23 89+0 3 (n=21 1+0 81 (n=1 51+0 21 (n=	1 49	PRIC
8	W3	25.06±0.31 (n:21.37±0.73 (n:1.61±0.17 (n=	1.40	PRIC
9	W2	23.7+0.71 (n=10.64+0.22 (n 1.36+0.10 (n=	2.22	PRIC
10	VVZ \\/1	23.7 ± 0.71 (n= 19.04±0.22 (n 1.30±0.10 (n=	2.22	
11	\\/\?	23.29 ± 0.4 (1 – 19.40±0.03 (111.70±0.00 (1 –	2.23	
12	VVZ	24.76 ± 0.36 (H20.06±0.05 (H1.30±0.30 (H-	1.07	
13		23.55 ± 0.37 (II 19.00±0.49 (II 1.45±0.24 (II -	1.47	
14	VVZ	24.5 ± 0.72 (II= 20.55±0.24 (II 1.55±0.30 (II=	1.95	
15	VVZ	24.00±0.32 (1120.76±0.53 (111.09±0.48 (11=	1.42	PRIC
16	W2	18.92±0.67 (n 16.29±0.42 (n 1.27±0.26 (n=	1.60	PRIC
17	VV2	23.48±1.08 (n 19.31±0.27 (n 1.43±0.31 (n=	1.10	PRIC
18	W2	24.07±0.73 (n 22.54±0.4 (n= 1.47±0.23 (n=	1.02	PRIC
19	W2	23.79±0.21 (n 20.22±0.26 (n 1.36±0.19 (n=	1.22	PRIC
20	W3	24.23±0.2 (n= 20.59±0.83 (n 1.50±0.44 (n=	1.02	PRIC
21	W2	25.52±0.65 (n 21.35±0.78 (n 1.64±0.16 (n=	0.93	PRIC
22	W3	24.43±0.44 (n20.8±0.31 (n=1.36±0.24 (n=	0.93	PRIC
23	W3	24.13±0.74 (n 20.61±0.65 (n 1.28±0.29 (n=	0.72	PRIC
24	W2	23.89±0.85 (n 20.17±0.51 (n 1.23±0.14 (n=	0.93	PRIC
25	W2	24.17±0.54 (n 19.89±0.72 (n 1.37±0.38 (n=	0.73	PRIC
26	W3	23.99±0.34 (n 20.04±0.46 (n 1.49±0.24 (n=	0.85	PRIC
27	W3	23.45±0.79 (n 20.03±0.96 (n 1.37±0.45 (n=	0.56	PRIC
28	W2	23.42±0.39 (n 21.3±0.75 (n= 1.41±0.31 (n=	0.61	PRIC
29	W2	25.18±0.4 (n=21.01±0.29 (n 1.57±0.18 (n=	0.66	PRIC
30	W2	20.93±0.7 (n=18.35±0.64 (n1.37±0.26 (n=	0.61	PRIC
31	W2	12.93±0.16 (n 11.98±0.37 (n 1.08±0.08 (n=	0.74	PRIC
32 22	W2	24.09±0.35 (n 20.00±0.67 (n 1.70±0.11 (n=	0.77	PRIC
27	W1	24.1±0.17 (n=20.28±0.22 (n 1.46±0.11 (n=	0.71	PRIC
25	W3	24.29±0.86 (n 20.47±0.73 (n 1.81±0.14 (n=	0.56	PRIC
36	W2	24.37±0.12 (n 20.1±0.34 (n= 1.58±0.17 (n=	0.50	PRIC
37	W2	23.67±0.49 (n 20.23±0.37 (n 1.40±0.28 (n=	0.51	PRIC
38	W2	23.31±0.3 (n= 19.52±0.58 (n 1.46±0.27 (n=	0.33	PRIC
39	W2	23.66±0.24 (n 20.17±0.85 (n 1.38±0.25 (n=	0.34	PRIC
40	W1	23.31±0.61 (n 19.43±0.42 (n 1.70±0.15 (n=	0.49	PRIC
41	W1	24.1±0.85 (n=20.20±0.25 (n 1.21±0.24 (n=	0.25	PRIC
42	W3	24.15±0.54 (n 20.01±0.43 (n 1.51±0.35 (n=	0.41	PRIC
43	W3	24.03+0.07 (n 21.08+1.05 (n 1.52+0.36 (n=	0.50	PRIC
44	W2	22 88+0 25 (n 19 88+0 17 (n 1 01+0 37 (n=	0.34	PRIC
45	W2	24 28+0 42 (n 20 13+0 37 (n 1 53+0 14 (n=	0.43	PRIC
46	W2	23 87+0 57 (n:19 85+0 51 (n:1 82+0 33 (n=	0.40	PRIC
47	W2	24.25 ± 0.17 (n 10.00±0.01 (n 1.02±0.00 (n -	0.07	
48	W2	24.06 ± 0.49 (n:20.57\pm0.5) (n=1.76\pm0.14 (n=	0.41	
49	VVZ \\/1	24.00 ± 0.43 (n 20.07±0.3 (n = 1.70±0.14 (n = 24.10±0.14 (n = 24.14 (n =	0.02	
50		22.09+0.56 (n 20.20+0.56 (n 1.30±0.13 (n $-$	0.43	
51		23.96 ± 0.30 (II 20.39 ±0.30 (II 1.79 ±0.19 (II -	0.34	
52		24.04 ± 0.31 (11 19.80±0.23 (11 1.45±0.46 (11-	0.33	
53		24.14 \pm 0.31 (1121.91 \pm 0.23 (111.34 \pm 0.42 (11-	0.20	
54	VVZ	22.33U.23 (11-13.20122 (11= 1.2410.25) (11= 24.16.40 (n= 24.16))))))))))))))))))))))))))))))))))))	0.55	
55	VVZ	24.15 \pm 0.59 (II/20.55 \pm 0.35 (II/1.34 \pm 0.18 (II=	0.50	
56	VVZ	23.9 ± 0.43 (II= 19.83 ±0.07 (II= 19.83 ±0.07 (II= 19.83 ±0.02 (II= 19.83)	0.00	PRIC
57	VVZ	23.02 ± 0.37 (n°19.45±0.18 (n°1.44±0.25 (n=	U.32	PRIC
58	VV2	23.25±0.31 (n19.25±0.79 (n1.42±0.25 (n=	0.30	PRIC
59	VV2	23.98±0.58 (n/20.55±0.62 (n/1.39±0.21 (n=	0.38	PRIC
60	W2	24.31±0.32 (n 20.29±0.26 (n 1.55±0.13 (n=	0.58	PRIC

1				
2				
3	W3	24.1±0.22 (n= 19.77±0.3 (n= 1.35±0.31 (n=	0.31	PRIC
4	W2	23.59±0.12 (n 19.85±0.43 (n 1.96±0.75 (n=	0.35	PRIC
5	W2	24.2±0.35 (n=20.17±0.31 (n 1.38±0.10 (n=	0.38	PRIC
6	W2	23.98±0.23 (n 20.09±0.12 (n 1.63±0.24 (n=	0.28	PRIC
7	W1	23.8±0.34 (n=20.11±0.37 (n 1.59±0.35 (n=	0.36	PRIC
8	W3	14.4+0.48 (n=11.56+0.08 (n 1.19+0.20 (n=	0.28	PRIC
9	W2	19 78+0 53 (n 16 70+0 63 (n 1 26+0 39 (n=	0.06	PRIC
10	W2	23 96+0 19 (n 20 56+0 87 (n 1 67+0 37 (n=	0.32	PRIC
11	W2	24 14+0 9 (n= 19 68+0 37 (n 1 36+0 30 (n=	0.41	PRIC
12	W2	24 59+0 48 (n:20 93+0 69 (n:1 60+0 23 (n=	0.34	PRIC
13	W2	23.41+0.2 (n=10.70+0.20 (n=1.25+0.23 (n=	0.04	PRIC
14	W2	22 37+0.32 (n 18.61+0.48 (n 1.49+0.29 (n	0.20	PRIC
15	W2	22.57 ± 0.52 (n 10.01±0.40 (n 1.45±0.23 (n -	0.23	
16	W2	23.31 ± 0.43 (120.03 ± 0.44 (11.00 ± 0.33 ($1-$	0.37	
1/	W2	24.2010.00 (n 20.2110.00 (n 1.0910.27 (n=	0.30	
18	W2	24.40 ± 0.39 (120.01±0.03 (111.47±0.22 (11- 21.02±0.46 (p.18.46±0.42 (p.1.48±0.20 (p-	0.24	
19		21.93 ± 0.40 (1110.40±0.42 (111.40±0.20 (11-	0.33	
20	VVZ	24.20±0.20 (II 20.75±0.30 (II 1.05±0.25 (II=	0.34	
21	VVZ	24.06±0.37 (n 20.53±0.96 (n 2.76±2.15 (n=	0.40	PRIC
22	VV1	23.9 ± 0.39 (n=20.17±0.28 (n=1.42±0.31 (n=	0.32	PRIC
23	W3	24.53±0.75 (n 20.24±0.32 (n 1.64±0.29 (n=	0.35	PRIC
24	VV2	24.49±0.7 (n=21.22±0.58 (n 1.55±0.25 (n=	0.31	PRIC
25	W2	24.12±0.41 (n 20.10±0.29 (n 1.77±0.28 (n=	0.42	PRIC
20	W2	23.57±0.18 (n 19.95±0.33 (n 1.38±0.23 (n=	0.29	PRIC
27	W2	19.89±0.22 (n 16.54±0.33 (n 1.27±0.19 (n=	0.23	PRIC
20	W3	23.69±0.44 (n 19.82±0.31 (n 1.55±0.39 (n=	0.26	PRIC
30	W2	23.85±0.14 (n 20.08±0.77 (n 1.62±0.03 (n=	0.23	PRIC
31	W2	23.43±0.15 (n 20.14±0.36 (n 1.39±0.45 (n=	0.21	PRIC
32	W2	23.49±0.45 (n 20.84±1.03 (n 1.58±0.28 (n=	0.23	PRIC
33	W2	23.83±0.44 (n 19.95±0.17 (n 1.76±0.18 (n=	0.22	PRIC
34	W1	23.98±0.33 (n 20.08±0.45 (n 1.50±0.11 (n=	0.25	PRIC
35	W2	23.04±0.36 (n 18.85±0.27 (n 1.65±0.15 (n=	0.24	PRIC
36	W3	24.26±0.46 (n 20.59±0.6 (n= 1.62±0.29 (n=	0.18	PRIC
37	W2	24.47±0.24 (n 20.30±0.18 (n 1.50±0.23 (n=	0.21	PRIC
38	W3	24.16±1.07 (n 20.26±0.27 (n 1.29±0.18 (n=	0.23	PRIC
39	W3	23.02±0.3 (n= 19.78±0.98 (n 1.31±0.18 (n=	0.25	PRIC
40	W2	23.39±0.5 (n=19.79±0.26 (n 1.62±0.10 (n=	0.26	PRIC
41	W2	24.31±0.28 (n 19.91±0.25 (n 1.46±0.36 (n=	0.18	PRIC
42	W3	23.81±0.34 (n 20.08±0.34 (n 1.70±0.35 (n=	0.18	PRIC
43	W2	22.87±0.22 (n 18.90±0.11 (n 1.28±0.33 (n=	0.27	PRIC
44	W3	23.62±0.2 (n= 19.91±0.35 (n 1.61±0.35 (n=	0.21	PRIC
45	W2	24.03±0.18 (n 20.78±1.00 (n 1.36±0.31 (n=	0.20	PRIC
46	W2	23.95±0.57 (n 20.67±0.62 (n 1.32±0.28 (n=	0.19	PRIC
47	W2	23.75±0.53 (n 21.07±1.03 (n 1.58±0.35 (n=	0.29	PRIC
48	W2	23.79±0.5 (n= 20.08±0.33 (n 1.48±0.16 (n=	0.23	PRIC
49	W2	23.08±0.16 (n 19.24±0.29 (n 1.25±0.18 (n=	0.22	PRIC
50	W3	23.98±0.25 (n 20.47±0.47 (n 1.56±0.12 (n=	0.18	PRIC
51	W2	23.42±0.66 (n 19.74±0.52 (n 1.72±0.12 (n=	0.13	PRIC
52	W2	18.72±0.51 (n 14.92±0.40 (n 1.20±0.13 (n=	0.17	PRIC
53	W3	23.06±0.6 (n= 19.76±0.36 (n 1.23±0.17 (n=	0.21	PRIC
54	W2	20.96±0.48 (n 16.8±0.43 (n=1.68±1.05 (n=	0.24	PRIC
55	W2	24.01±0.51 (n 20.59±0.21 (n 1.38+0.20 (n=	0.21	PRIC
20 57	W3	24.09±0.49 (n 20.31±0.37 (n 1.61±0.30 (n=	0.15	PRIC
5/	W1	22 33+0 52 (n 18 64+0 25 (n 1 26+0 29 (n=	0.26	PRIC
20 50	W2	22 29+0 37 (n 19 29+0 48 (n 1 49+0 20 (n=	0.21	PRIC
29 29	W3	22 61+0 12 (n 18 97+0 54 (n 1 66+0 14 (n=	0.24	PRIC
00				

2				
3	W2	23.79±0.4 (n=19.78±0.45 (n 1.54±0.05 (n=	0.15	PRIC
4	W2	23.82±0.43 (n 20.47±0.58 (n 1.24±0.20 (n=	0.17	PRIC
5	W2	23.56±0.24 (n 20.08±0.74 (n 1.56±0.35 (n=	0.21	PRIC
6	W2	23.93±0.56 (n 19.86±0.13 (n 1.72±0.20 (n=	0.18	PRIC
7	W2	24.1+0.47 (n=20.38+0.89 (n 1.53+0.15 (n=	0.20	PRIC
8	W2	23.58+0.83 (n 20.23+0.79 (n 1.52+0.43 (n=	0.23	PRIC
9	W2	22 3+0 22 (n=18 88+0 32 (n 1 49+0 06 (n=	0.13	PRIC
10	W1	24 32+0 87 (n 19 65+0 43 (n 1 54+0 27 (n=	0.12	PRIC
11	W2	24 08+0 36 (n 20 26+0 33 (n 1 72+0 39 (n=	0.12	PRIC
12	W2	24 14+0 83 (n:20 55+0 72 (n 1 29+0 19 (n=	0.22	PRIC
13	W2	24.05+0.32 (n:20.25+0.87 (n:1.45+0.05 (n=	0.15	PRIC
14	W3	24.02+0.23 (n:20.47+0.71 (n:1.64+0.24 (n=	0.10	PRIC
15	W/1	23.41+0.31 (n:10.77+0.02 (n:1.69+0.07 (n=	0.14	
16	W2	24.48 ± 0.6 (n= 20.41\pm0.52 (n 1.65\pm0.07 (n=	0.13	PRIC
17	W2	22.97 ± 0.36 (n 18.85±0.46 (n 1.63±0.17 (n=	0.12	
18	\V/1	22.97 ± 0.30 (n 10.03±0.40 (n 1.03±0.17 (n=	0.10	
19	\\/1	25.3 ± 0.76 (n= 20.17±0.15 (n 1.03±0.30 (n=	0.23	
20	\\/\?	23.3 ± 0.76 (n = 20.17±0.15 (n 1.47±0.54 (n = 23.1±0.28 (n = 10.23±0.89 (n 1.00±0.21 (n = 10.23±0.89 (n = 10.23±0.89))))))))))))))))))))))))))))))))))))	0.24	
21	W2	23.1 ± 0.20 (1 – 19.23±0.03 (111.00±0.21 (1 – 24.02±0.15 (n – 24.02±0.15 (n – 20.46±0.57 (n 1.40±0.09 (n –	0.14	
22	\\/2 \\//2	23.57 ± 0.78 (n 20.15±0.07 (n 1.34±0.18 (n=	0.30	
23	W2	23.8+0.40 (n=20.49+0.44 (n 1.33+0.30 (n=	0.20	
25	W2	23.8 ± 0.15 (n=20.17±0.30 (n 1.42±0.33 (n=	0.24	
26	VVZ	23.0 ± 0.13 (1 = 20.17±0.30 (11.42±0.33 (1 = 23.25±0.22 (n = 23.25±0.22 (n = 23.25±0.22 (n = 23.25±0.24 (n = 23.25)))))))))))))))))))))))))))))))))))	0.10	
27		23.23 ± 0.22 (1119.03±0.00 (111.30±0.24 (11– 24.02±0.30 (p.10.08±0.20 (p.1.30±0.27 (p–	0.13	
28	W2	24.0210.39 (1113.9010.20 (111.3910.27 (11-	0.10	
29	W2	27.37 ± 0.34 (1117.42±0.23 (111.37±0.23 (11-	0.20	
30	W2 W3	23.16 ± 0.35 (n 19.32 ±0.35 (n 1.05 ±0.00 (n =	0.17	
31	W2	23.16 ± 0.33 (m 19.31 ±0.70 (m 1.23 ±0.34 (m -	0.17	
32	W2	8 98+0 39 (n=7 39+0 28 (n=0 88+0 14 (n=))	0.10	PRIC
33	W2	24.26 ± 0.45 (n=7.33±0.20 (n=0.00±0.14 (n=-	0.22	
34	W2	23 9+0 23 (n=20 68+0 19 (n 1 21+0 32 (n=	0.20	PRIC
35	W2	23 75+0 21 (n 20 21+0 31 (n 1 41+0 19 (n=	0.16	PRIC
36	W2	24.22+0.49 (n:20.05+0.26 (n:1.52+0.08 (n=	0.10	PRIC
3/	W2	23 32+0 49 (n/20 15+1 10 (n 1 72+0 06 (n=	0.10	PRIC
38	W/1	24 32+0 12 (n:20 18+0 29 (n:1 53+0 29 (n=	0.24	
39	\N/2	23.71 ± 0.26 (n 20.11\pm0.40 (n 2.04\pm0.03 (n -	0.14	
40	W2	23.71 ± 0.20 (1120.1110.40 (112.0410.93 (11- 23.77+0.35 (n.10.44+0.18 (n.1.55+0.06 (n=	0.14	
41 //2	W2	24.61+0.56 (n 20.12+0.16 (n 1.48+0.06 (n=	0.17	
42	W2	24.01 ± 0.00 (n 20.12±0.10 (n 1.40±0.00 (n = 24.12+0.48 (n 20.46+0.28 (n 1.76+0.24 (n = 24.12+0.48 (n 20.46+0.28 (n 1.76+0.24 (n = 24.12+0.12))))))))))))))))))))))))))))))))))))	0.17	
44	W2	23.38 ± 0.31 (n:10.07±0.20 (n 1.70±0.24 (n=	0.16	
45	W2	24 18+0 48 (n:20 61+0 64 (n 1 27+0 18 (n=	0.10	PRIC
46	W3	24.10 ± 0.40 (m20.01±0.04 (m1.27±0.10 (m=	0.10	PRIC
47	W/1	23.9+0.25 (n=20.94+0.57 (n 1.21+0.37 (n=	0.16	
48	W2	23 92+0 08 (n:19 85+0 37 (n:1 41+0 35 (n=	0.10	PRIC
49	W2	23.86 ± 0.77 (n 19.28\pm0.37 (n 1.43\pm0.19 (n=	0.16	PRIC
50	W2	24.43+0.36 (n 20.42+0.52 (n 1.61+0.22 (n=	0.10	
51	W2	21.29+0.73 (n:16.63+0.13 (n:1.10+0.07 (n=	0.10	PRIC
52	W3	21.2010.70 (n $10.0010.10$ (n $1.1010.07$ (n $21.2010.70$ (n $1.1010.07$ (n $21.2010.70$ (n $21.2010.700$ (n $21.2010.700)$ (n $21.2010.700$ (n $21.2010.700)$ (n $21.2010.700$ (n $21.2010.700)$ (n $21.2010.700$ (n $21.2010.700)$ (n $21.2010.700)$ (n 21.201000 (n $21.201000)$ (n 21.2	0.05	PRIC
53	W2	23.71+0.17 (n 19.90+0.29 (n 1.53+0.07 (n=	0.00	PRIC
54	W1	23 68+0 22 (n:20 83+0 85 (n:1 46+0 33 (n=	0.12	PRIC
55	W2	24 21+0 62 (n:20 42+0 01 (n:1 10+0 48 (n=	0.12	PRIC
56	W2	23 79+0 25 (n:20 31+0 78 (n:1 65+0 31 (n=	0.19	PRIC
5/	W2	24 25+0 83 (n:20 12+0 40 (n:1 50+0 16 (n=	0.14	PRIC
20 50	W1	24.06+0.33 (n:21.3+0.39 (n=1.57+0.40 (n=	0.13	PRIC
59 79	W2	24,26+0.39 (n 19,96+0 10 (n 1 57+0 37 (n=	0.10	PRIC
00				

1				
2				
3	W1	24.81±0.73 (n 20.39±0.49 (n 1.42±0.10 (n=	0.16	PRIC
4	W2	24±0.74 (n=3)20.12±0.65 (n 1.67±0.13 (n=	0.12	PRIC
5	W1	24.57±0.52 (n ² 25.25±21.61 (74.75±21.61 (0.14	PRIC
6	W3	24.54±0.53 (n 20.13±0.31 (n 1.36±0.22 (n=	0.08	PRIC
7	W1	24±0.38 (n=3)20.75±1.03 (n 1.60±0.25 (n=	0.13	PRIC
8	W2	23.6+0.7 (n=4.19.84+0.29 (n 1.44+0.28 (n=	0.08	PRIC
9	W2	24 31+0 54 (n 20 37+0 15 (n 1 45+0 44 (n=	0.13	PRIC
10	W2	23 78+0 35 (n 20 47+0 62 (n 1 60+0 11 (n=	0.13	PRIC
11	W2	24 19+0 2 (n=20 18+0 38 (n 1 50+0 22 (n=	0.09	PRIC
12	W2	23.89 ± 0.28 (n 20.02±0.02 (n 1.00±0.22 (n 2.00±0.02 (n 2.00±0.22 (n	0.06	PRIC
13	W2	24 23+0 63 (n:21 18+0 95 (n:1 38+0 06 (n=	0.00	PRIC
14	W2	24+0.49 (n=4)20 37+0.94 (n 1.34+0.13 (n=	0.15	
15	\\/1	23 8740 20 (n 10.6640 44 (n 1.1840 18 (n -	0.10	
16	\//2	23.07 ± 0.29 (1119.00±0.44 (111.10±0.10 (11-	0.10	
1/	W2	24.4010.40 (120.4010.20 (11.0010.00 (11-	0.10	
18	VVZ	23.33 ± 0.24 (1119.43 ± 0.20 (111.30 ± 0.13 (11-	0.07	
19	VVZ	23.04 ± 0.75 (120.30±0.36 (111.01±0.13 (11-	0.10	
20	VVZ	23.97±0.75 (n20.00±0.84 (n 1.43±0.13 (n=	0.08	PRIC
21	VVZ	23.99±0.27 (n 20.84±0.29 (n 1.38±0.21 (n=	0.06	PRIC
22	VVZ	23.18±0.62 (n 19.81±0.4 (n= 1.46±0.22 (n=	0.09	PRIC
23	W2	24.06±0.48 (n 20.54±0.39 (n 1.52±0.29 (n=	0.09	PRIC
24	W2	24.24±0.24 (n 20.41±0.20 (n 1.51±0.23 (n=	0.09	PRIC
25	W2	18.84±0.21 (n 16.63±0.21 (n 1.41±0.12 (n=	0.07	PRIC
20	W2	24.39±0.11 (n 20.11±0.28 (n 1.46±0.53 (n=	0.09	PRIC
27	W2	23.97±0.2 (n= 19.67±0.37 (n 2.16±1.52 (n=	0.07	PRIC
20	W2	23.97±0.4 (n=20.22±0.13 (n 1.63±0.20 (n=	0.10	PRIC
30	W2	23.64±0.7 (n= 19.78±0.28 (n 1.45±0.37 (n=	0.14	PRIC
31	W2	24.17±0.4 (n= 19.75±0.23 (n 1.40±0.14 (n=	0.10	PRIC
32	W2	23.86±0.39 (n 20.15±0.06 (n 1.69±0.09 (n=	0.08	PRIC
33	W2	23.88±0.4 (n= 19.89±0.41 (n 1.46±0.27 (n=	0.09	PRIC
34	W2	24.6±0.46 (n= 19.92±0.35 (n 1.53±0.12 (n=	0.08	PRIC
35	W2	24.85±0.4 (n=20.91±0.49 (n 1.47±0.09 (n=	0.10	PRIC
36	W2	24.33±0.38 (n 20.24±0.26 (n 1.20±0.44 (n=	0.09	PRIC
37	W2	25.69±0.92 (n 20.73±1.03 (n 1.49±0.10 (n=	0.10	PRIC
38	W2	24.42±0.8 (n= 19.96±0.63 (n 1.26±0.23 (n=	0.06	PRIC
39	W2	23.65±0.1 (n=20.46±0.30 (n 1.70±0.05 (n=	0.07	PRIC
40	W3	25.14±0.45 (n 20.66±0.14 (n 1.89±0.05 (n=	0.07	PRIC
41	W3	23.86±0.29 (n 20.00±0.23 (n 1.53±0.25 (n=	0.06	PRIC
42	W2	23.26±0.21 (n 19.96±0.66 (n 1.60±0.17 (n=	0.06	PRIC
43	W2	24.04±0.36 (n 19.98±0.21 (n 1.35±0.35 (n=	0.06	PRIC
44	W2	24.12±0.53 (n 20.48±0.74 (n 1.17±0.18 (n=	0.07	PRIC
45	W2	24±0.96 (n=3)20.53±0.31 (n 1.66±0.16 (n=	0.06	PRIC
46	W2	23.86±0.1 (n= 20.00±0.37 (n 1.44±0.29 (n=	0.07	PRIC
47	W1	24.64±0.55 (n 21.11±0.86 (n 1.61±0.33 (n=	0.06	PRIC
48	W2	24.1±0.47 (n=20.70±0.24 (n 1.04±0.94 (n=	0.05	PRIC
49	W1	23.58+0.34 (n 20.46+0.95 (n 1.36+0.21 (n=	0.08	PRIC
50	W2	24 01+0 6 (n= 19 64+0 41 (n 1 57+0 20 (n=	0.05	PRIC
51	W2	23 61+0 19 (n 20 19+0 32 (n 1 65+0 15 (n=	0.06	PRIC
52	W2	23 71+0 5 (n=20 32+0 23 (n 1 25+0 23 (n=	0.07	PRIC
53	W2	23.98+0.37 (n 20.26+0.52 (n 1.52+0.10 (n=	0.06	PRIC
54	W2	23 32+0 29 (n:19 56+0 46 (n:1 22+0 22 (n=	0.07	PRIC
55	W/1	24 83+0 2 (n=20 64+0 16 (n 1 44+0 23 (n=	0.07	
56	W/2	24 02+1 05 (n:20 13+0 68 (n:1 52+0 36 (n=	0.05	
57	W/2	23 98+0 2 (n=19 88+0 13 (n 1 7/+0 05 (n=	0.05	
58	W/2	20.0010.2 (II- 10.0010.10 (II 1.7410.00 (II- 24 12+0 81 (n 10 60+0 00 (n 1 2010 20 /n-	0.03	
59	۷۷ <i>۲</i> ۱۸/2	24.12±0.01 (1113.03±0.00 (111.00±0.28 (11- 24.52±0.71 (n.20.52±0.58 (n.1.05±0.14 (n-	0.04	
60	v v Z	24.32±0.71 (II20.32±0.30 (II1.03±0.14 (II-	0.04	

2				
3	W2	23.55±0.17 (n 20.43±0.64 (n 1.46±0.36 (n=	0.08	PRIC
4	W2	24.01±0.19 (n 20.73±0.73 (n 1.41±0.36 (n=	0.05	PRIC
5	W2	24.17±0.44 (n 20.40±0.17 (n 1.60±0.19 (n=	0.05	PRIC
6	W2	22.53±0.36 (n17.51±0.25 (n1.54±0.85 (n=	7.55	PRIC
7	W2	24 04+0 21 (n 20 32+0 27 (n 1 56+0 28 (n=	1 65	PRIC
8	W2	23 74+0 29 (n:19 70+0 19 (n:1 59+0 08 (n=	3 70	PRIC
9	W2	24 64+1 04 (n:19 81+0 59 (n:1 49+0 32 (n=	4 76	PRIC
10	W2	24 43+0 18 (n:20 49+0 54 (n:1 56+0 28 (n=	3 77	PRIC
11	W2	24 39+0 42 (n 20 75+0 86 (n 1 34+0 34 (n=	3.65	PRIC
12	W2	18 23+0.6 (n = 16.9+0.85 (n = 1.45+0.24 (n = 1.45	3.87	PRIC
13	W/1	24 15+0 61 (n:19 51+0 31 (n:1 79+0 74 (n=	2.03	PRIC
14	W/2	23.9+0.26 (n=20.22+0.67 (n 1.61+0.49 (n=	1.04	
15	W2	24 12+0 20 (n=20.22±0.07 (n+1.01±0.49 (n=	0.74	
16	W2	24.12 \pm 0.35 (1120.35 \pm 0.35 (111.37 \pm 0.26 (11-	0.74	
17	VVZ	23.76 ± 0.20 (120.32 ±0.27 (111.02 ±0.30 (1-	0.74	
18		24.21 ± 0.75 (1120.21 \pm 0.49 (111.47 \pm 0.33 (11=	0.72	
19		24.11 ± 0.39 (120.27±0.33) (11.32±0.33) (11-	0.00	
20	VV3	24.54±0.40 (1120.24±0.52 (111.51±0.27 (11=	0.00	
21	VVZ	23.08±0.21 (fi20.20±0.34 (fi 1.57±0.11 (fi=	0.78	
22	VV3	23.94±0.46 (n/20.30±0.43 (n 1.39±0.37 (n=	0.77	PRIC
25 24	VV2	24.11 ± 0.34 (n 20.11 ±0.69 (n 1.53 ±0.37 (n=	0.40	PRIC
24	VV2	23.96±0.63 (n°19.75±0.3 (n°1.33±0.36 (n°	0.56	PRIC
25	W2	23.8±0.53 (n= 19.86±0.67 (n 1.28±0.36 (n=	0.37	PRIC
20	W2	23.81±0.3 (n= 19.88±0.27 (n 1.48±0.25 (n=	0.34	PRIC
27	W2	23.84±0.21 (n 20.08±0.37 (n 1.46±0.15 (n=	0.30	PRIC
20	W3	22.39±0.29 (n 19.2±0.53 (n= 1.44±0.16 (n=	0.30	PRIC
30	W1	24.03±0.22 (n 20.12±0.37 (n 1.58±0.16 (n=	0.25	PRIC
31	W2	24.08±0.48 (n 20.20±0.2 (n= 1.64±0.24 (n=	0.32	PRIC
32	W3	24.4±0.4 (n=320.24±0.61 (n 1.33±0.25 (n=	0.50	PRIC
33	W2	24.13±0.47 (n 20.13±0.57 (n 1.66±0.13 (n=	0.38	PRIC
34	W3	24.12±0.55 (n 19.73±0.31 (n 1.67±0.21 (n=	0.56	PRIC
35	W2	24.11±0.37 (n20.13±0.22 (n1.53±0.41 (n=	0.32	PRIC
36	W2	24.08±1.03 (n 20.37±0.33 (n 1.48±0.33 (n=	0.38	PRIC
37	W2	23.4±0.71 (n=20.39±0.42 (n 1.54±0.28 (n=	0.34	PRIC
38	W3	24±0.47 (n=4)20.26±0.12 (n 1.57±0.17 (n=	0.26	PRIC
39	W2	23.73±0.34 (n 19.99±0.21 (n 1.49±0.16 (n=	0.49	PRIC
40	W2	23.22±0.17 (n 19.61±0.13 (n 1.38±0.25 (n=	0.23	PRIC
41	W2	24.58±0.81 (n 19.70±0.28 (n 1.57±0.08 (n=	0.23	PRIC
42	W1	24.18±0.54 (n 20.53±0.34 (n 1.58±0.16 (n=	0.24	PRIC
43	W2	24.05±0.27 (n 20.21±0.46 (n 1.36±0.32 (n=	0.27	PRIC
44	W2	18.03±0.19 (n 15.82±0.33 (n 1.18±0.10 (n=	0.26	PRIC
45	W2	23.27±0.24 (n 20.03±0.09 (n 1.43±0.22 (n=	0.23	PRIC
46	W2	23.66±0.74 (n 21.61±0.68 (n 1.54±0.49 (n=	0.32	PRIC
47	W3	23.75±0.14 (n 20.09±0.41 (n 1.49±0.39 (n=	0.30	PRIC
48	W2	23.77±0.52 (n 20.12±1.19 (n 1.46±0.25 (n=	0.31	PRIC
49	W3	24.25±0.21 (n 20.09±0.16 (n 1.64±0.16 (n=	0.26	PRIC
50	W2	23.35±0.4 (n=20.08±0.23 (n 1.57±0.15 (n=	0.24	PRIC
51	W3	23.91±0.27 (n 20.36±0.80 (n 1.67±0.24 (n=	0.27	PRIC
52	W2	23.77±0.42 (n 19.78±0.24 (n 1.41±0.35 (n=	0.30	PRIC
55 54	W3	24.33±0.6 (n=20.03±0.14 (n 1.59±0.12 (n=	0.29	PRIC
55	W1	23.9±0.3 (n=220.31±0.23 (n 1.58±0.19 (n=	0.17	PRIC
56	W2	24.02±0.26 (n 20.51±0.08 (n 1.59±0.17 (n=	0.19	PRIC
57	W2	24.03±0.33 (n 20.77±0.91 (n 1.65±0.24 (n=	0.14	PRIC
58	W2	24.07±0.81 (n 19.98±0.21 (n 1.54±0.2 (n=3	0.17	PRIC
59	W2	23.97±0.5 (n=20.48±0.42 (n 2.22±0.68 (n=	0.25	PRIC
60	W2	24.1±0.38 (n=19.76±0.67 (n 1.34±0.36 (n=	0.23	PRIC

1				
2				
3	W2	23.67±0.53 (n 19.63±0.36 (n 1.59±0.34 (n=	0.25	PRIC
4	W2	24.19±0.99 (n 20.13±0.25 (n 1.57±0.15 (n=	0.24	PRIC
5	W2	24.16±0.73 (n 20.30±0.30 (n 1.37±0.28 (n=	0.22	PRIC
6	W2	23.63±0.41 (n 19.12±0.25 (n 1.10±0.28 (n=	0.11	PRIC
7	W2	24.05±0.38 (n 20.23±0.12 (n 1.55±0.29 (n=	0.23	PRIC
8	W2	24.35+0.22 (n:20.19+0.11 (n:1.38+0.10 (n=	0.10	PRIC
9	W2	24 03+1 02 (n 19 88+0 14 (n 1 49+0 14 (n=	0.23	PRIC
10	W2	23 54+0 35 (n 20 12+0 21 (n 1 59+0 21 (n=	0.18	PRIC
11	W3	23 36+0 47 (n:19 49+0 45 (n:1 41+0 20 (n=	0.14	PRIC
12	W3	23 69+0 33 (n:19 89+0 30 (n:1 48+0 20 (n=	0.15	PRIC
13	W3	23 01+0 27 (n:22 20+1 07 (n:1 27+0 33 (n=	0.10	PRIC
14	W2	24.02 ± 0.52 (n 12.20±1.07 (n 1.21±0.00 (n -	0.20	
15	W2	23.85 ± 0.32 (n 10.04±0.00 (n 1.03±0.21 (n -	0.20	
16	VVZ	23.03 ± 0.33 (120.33±0.03 (11.33±0.36 (11- 22.42±0.00 (n=10.24±0.14 (n=1.79±0.11 (n=	0.24	
17	W2	22.43 ± 0.09 (11 19.24±0.14 (11 1.70±0.11 (11-	0.10	
18		24.2 ± 0.10 (II= 21.09±0.02 (II 1.30±0.13 (II=	0.10	
19	VVZ	23.05±0.16 (n 19.82±0.27 (n 1.44±0.38 (n=	0.15	PRIC
20	VV2	23.97±0.64 (n 20.13±0.69 (n 1.15±0.77 (n=	0.15	PRIC
21	W2	23.85±0.23 (n 20.02±0.30 (n 1.34±0.13 (n=	0.16	PRIC
22	W2	24.19±0.2 (n=20.48±0.71 (n 1.33±0.19 (n=	0.22	PRIC
23	W2	23.66±0.74 (n 20.05±0.16 (n 1.57±0.22 (n=	0.13	PRIC
24	W1	24.33±0.66 (n 20.45±0.82 (n 1.28±0.20 (n=	0.16	PRIC
25	W2	24.04±0.35 (n 20.52±0.55 (n 1.43±0.32 (n=	0.12	PRIC
26	W2	23.7±0.3 (n=320.20±0.73 (n 1.45±0.25 (n=	0.18	PRIC
27	W2	24.31±0.65 (n 20.36±0.41 (n 1.32±0.32 (n=	0.15	PRIC
28	W2	23.33±0.31 (n19.84±0.07 (n1.33±0.30 (n=	0.17	PRIC
29	W2	23.62±0.66 (n 20.75±0.79 (n 1.15±0.21 (n=	0.16	PRIC
30	W3	23.22±0.33 (n 21.31±0.78 (n 1.55±0.16 (n=	0.14	PRIC
31	W2	23.52±0.13 (n 18.53±0.22 (n 1.38±0.31 (n=	0.18	PRIC
2∠ 22	W2	23.48±0.5 (n=19.53±0.56 (n 1.6±0.21 (n=4	0.18	PRIC
27	W1	23.21±0.51 (n 18.84±0.20 (n 1.49±0.31 (n=	0.14	PRIC
25	W2	24.8±0.44 (n=20.16±0.15 (n 1.56±0.30 (n=	0.09	PRIC
36	W3	23.14±0.53 (n 19.73±0.23 (n 1.41±0.18 (n=	0.06	PRIC
37	W3	24.29±0.88 (n 20.18±0.37 (n 1.42±0.32 (n=	0.13	PRIC
38	W3	23.61±0.06 (n 19.65±0.24 (n 1.67±0.26 (n=	0.12	PRIC
30	W2	23.56±0.27 (n 19.31±0.27 (n 1.53±0.24 (n=	0.06	PRIC
40	W3	23.49+0.83 (n 20.16+0.68 (n 1.66+0.17 (n=	0.16	PRIC
40	W2	24 41+0 62 (n 20 19+0 43 (n 1 50+0 38 (n=	0.17	PRIC
42	W3	24 87+0 37 (n 20 97+1 04 (n 1 33+0 37 (n=	0.07	PRIC
43	W3	19 15+0 95 (n:15 65+0 30 (n:1 46+0 08 (n=	0.09	PRIC
44	W2	22 71+0 91 (n:19 35+0 57 (n:1 25+0 08 (n=	0.00	PRIC
45	W2	23.61+0.46 (n 10.50±0.57 (n 1.25±0.00 (n=	0.10	
46	W3	23.01 ± 0.40 (n 19.04±0.01 (n 1.10±0.09 (n -	0.00	
47	W2	24.25 ± 0.3 (n= 20.00±0.30 (n= 31±0.25 (n=	0.14	
48		23.43 ± 0.3 (II- 20.02±0.22 (II 1.31±0.23 (II-	0.13	
49		23.21 ± 0.23 (1119.09±0.34 (111.43±0.39 (11-	0.14	
50	VVZ	22.70 ± 0.02 (11 19.45±0.07 (11 1.42±0.06 (11=	0.00	
51	VVZ	22.02±0.21 (1119.48±0.04 (111.33±0.15 (1=	0.14	
52	VV3	23.2010.40 (11/20.1/10.1/1 (11.1.30±0.1/1 (11=)	0.14	
53	VVZ	22.58±0.29 (n°18.79±0.37 (n°1.28±0.64 (n=	0.15	PRIC
54	VVZ	24.4 ± 0.40 (n=21.1/±1.05 (n=1.54±0.27 (n=	0.13	PRIC
55	VV3	23.93±0.35 (n19.39±0.67 (n2.04±0.12 (n=	0.04	PRIC
56	W2	22.33±0.23 (n 19.25±0.47 (n 1.22±0.33 (n=	0.10	PRIC
57	W2	23.3±0.33 (n=19.36±0.61 (n 2.17±0.96 (n=	0.14	PRIC
58	W2	23.75±0.31 (n19.87±0.29 (n1.14±0.11 (n=	0.08	PRIC
59	W2	24.43±0.69 (n 19.97±0.34 (n 1.71±0.19 (n=	0.07	PRIC
60	W2	22.89±0.54 (n 18.75±0.24 (n 1.54±0.23 (n=	0.07	PRIC

2				
3	W3	22.64±0.26 (n 19.31±0.26 (n 1.8±0.41 (n=4	0.06	PRIC
4	W2	23.65±0.36 (n 19.66±0.52 (n 1.25±0.33 (n=	0.06	PRIC
5	W2	24.21±0.16 (n 20.13±0.62 (n 1.50±0.14 (n=	0.54	PRIC
6	W3	24.54±0.62 (n 19.72±0.13 (n 1.38±0.11 (n=	0.12	PRIC
7	W3	17.33+0.5 (n= 18.0+0.42 (n= 1.37+0.31 (n=	0.11	PRIC
8	W2	23 83+0 23 (n 20 49+0 94 (n 1 23+0 21 (n=	0.08	PRIC
9	W3	23 53+0 88 (n:19 78+0 22 (n:1 42+0 34 (n=	0.08	PRIC
10	W1	23 21+0 56 (n:19 44+0 27 (n:1 23+0 26 (n=	0.11	PRIC
11	W3	23 25+0 23 (n 19 67+0 45 (n 1 37+0 27 (n=	0.07	PRIC
12	W2	24 28+0 56 (n:20 53+0 93 (n:1 55+0 17 (n=	0.15	PRIC
13	W2	23 36+0 2 (n=19 71+0 39 (n 1 71+0 28 (n=	0.10	PRIC
14	W2	22 69+0 31 (n:20 10+0 82 (n:1 68+0 39 (n=	0.00	PRIC
15	\\/2 \\//2	23.87 ± 0.37 (n 20.26±0.32 (n 1.00±0.33 (n -	0.10	
16	W2	23.07 ± 0.27 (120.20 ± 0.70 (11.41 ± 0.42 ($1-$	0.10	
17	\N/2	22.71 ± 0.3 (n = 10.02±0.13 (n 1.45±0.20 (n = 22.71\pm0.3 (n = 10.02±0.12 (n = 10.02))))))))))))	0.07	
18	W2	22.71 ± 0.3 (n= 19.90±0.12 (n 1.00±0.31 (n= 24.42±0.38 (n= 20.00±0.26 (n= 24.42±0.38 (n= 20.00±0.26 (n= 24.42±0.38 (n= 24.42\pm0.38 (n= 24.42\pm0.38))))))))))))	0.10	
19	W2	22.52 ± 0.30 (n 20.00±0.20 (n 1.35±0.10 (n=	0.11	
20	W2	22.03 ± 0.29 (1119.04±0.10 (111.10±0.10 (11-	0.10	
21	W2	22.94 ± 0.05 (n 10.04±0.36 (n 1.30±0.15 (n -	0.08	
22	W2	23.54 ± 0.32 (n 19.09 ±0.12 (n 1.35 ±0.11 (n -	0.00	
23	W2	24.52 ± 0.22 (1120.05±0.34 (111.57±0.16 (11-)	0.11	
25	W2	23.05 ± 0.05 (n 19.24±0.29 (n 1.39±0.33 (n -	0.04	
26		23.70 ± 0.23 (II 19.00±0.00 (II 1.30±0.13 (II	0.00	
27		23.30 ± 0.27 (1120.03±0.00 (111.41±0.20 (11-	0.10	
28	W2	24.43 ± 0.4 (1-20.13±0.32 (11.47±0.10 (1-	0.04	
29	VVZ	24.50 ± 0.52 (1120.79±0.01 (111.05±0.54 (11– 21.07±0.25 (p.18.64±0.42 (p.1.16±0.12 (p–	0.00	
30	W2	21.97 ± 0.25 (1110.04±0.45 (111.10±0.15 (11-	0.07	
31	W2	24. 110.04 (11-20.3310.34 (111.2410.07 (11-	0.03	
32	VVZ	23.39 ± 0.39 (121.25±0.05 (11.34±0.30 (11-)	0.14	
33	W2	24.05 ± 0.17 (1120.00±0.43 (111.32±0.13 (11-	0.15	
34	W2	23.70 ± 0.43 (120.30±0.09 (111.02±0.10 (11-	0.08	
35	W2	24.27 ± 0.21 (1119.34 ± 0.32 (111.37 ± 0.22 (11- 23.71 ± 0.53 (p.10.62 ± 0.06 (p.1.33 ± 0.12 (p-	0.00	
36	W2	23.71 ± 0.35 (n 19.02±0.00 (n 1.35±0.12 (n=	0.09	
37	W3	24.3±0.92 (II-20.19±0.11 (II 1.20±0.23 (II-	0.04	
38	W2	24.1511.09 (1120.1610.04 (111.4910.27 (11-	0.08	
39	VVZ	23.80 ± 0.24 (H \ge 1.00 ±0.09 (H 1.39 ±0.16 (H $=$ 24.22 ±0.4 (n $=$ 20.22 ±0.52 (n 1.46 ±0.24 (n $=$	0.14	
40	W2	24.22±0.4 (II-20.32±0.32 (II 1.40±0.24 (II-	0.10	
41		24.22 ± 0.04 (1120.02±0.72 (111.30±0.41 (11–	0.09	
42	VVZ	23.92 ± 0.94 (1119.20 ±0.30 (111.35 ±0.10 (11-	0.12	
45 44	W2	23.03 ± 0.41 (1119.73±0.72 (111.02±0.17) (11-	0.12	
45	W2	24.31 ± 0.43 (120.22±0.23 (111.70±0.11 (11-	0.09	
46	VVZ	24.11±0.46 (120.20±0.40 (111.30±0.25 (11– 23.24±0.27 (p :10.52±0.38 (p :1.41±0.25 (p =	0.10	
47	W2	23.24 ± 0.27 (11 19.32 ±0.36 (11 1.4 1 ±0.23 (11-	0.03	
48	VV3	24.32 ± 0.30 (1120.30 ±0.41 (111.33 ±0.14 (11-	0.04	
49	W2	23.72 ± 0.19 (1119.77±0.40 (111.27±0.19 (11–	0.05	
50		24.19 ± 0.24 (1120.22±0.52 (111.30±0.55 (11=)	0.06	
51	VV3	24.20 ± 0.79 (II 20.02±0.32 (II 1.35±0.49 (II=	0.05	
52	VVZ	23.25 ± 0.23 (1120.00±1.03 (111.31±0.19 (11-	0.05	
53		23.20 ± 0.31 (1119.00±0.40 (111.20±0.23 (11=	0.11	
54	vv∠ \\/2	23.03 ± 0.10 (1120.00 \pm 0.30 (111.04 \pm 0.03 (11 - 0.32 \pm 0.10 \pm 0.10 \pm 0.20 (n + 1.04 \pm 0.10 \pm 0.	0.15	
55	vv∠ \\/2	20.7 LU.20 (11 13 00 LU 01 (11 140 LU 01 (11	0.10	
56	VVZ	22.31 IU.30 (11 13.32IU.44 (11 1.4 IIU.32 (11=) 23.5510 83 (n 10.0210 67 (n 1.0010 10 (n=	0.12	
57	VV3	23.0510.03 (II-13.3210.07 (II-1.0010.10 (II=) 23.0510.03 (n -10.8010.96 (n -1.6510.40 (n =)	0.05	
58	۷۷۵ ۱۸/۵	23.03±0.03 (II-19.00±0.00 (II-1.03±0.10 (II= 22.23±0.56 (n:10.19±0.15 (n:1.25±0.24 (n=	0.10	
59	VVZ	22.2010.00 (11 13. 1010. 10 (11 1.0010.34 (11=)	0.10	
60	٧٧∠	23.32II.03 (1120.02I0.04 (111.29I0.29 (11=	0.21	FRIC

1				
2				
3	W2	25.41±0.45 (n 21.14±0.34 (n 1.38±0.36 (n=	0.15	PRIC
4	W2	24.56±0.22 (n 19.65±0.71 (n 1.41±0.19 (n=	0.15	PRIC
5	W2	24.05±0.87 (n 19.43±0.54 (n 1.63±0.24 (n=	0.09	PRIC
6	W2	23.09±0.64 (n 19.59±0.91 (n 1.50±0.12 (n=	0.09	PRIC
7	W3	23.89+0.85 (n 20.34+0.82 (n 1.49+0.35 (n=	0.05	PRIC
8	W2	24.3+0.57 (n=20.39+0.69 (n 1.38+0.19 (n=	0.08	PRIC
9	W2	23 13+0 47 (n 19 74+0 31 (n 1 27+0 33 (n=	0.05	PRIC
10	W2	23 05+0 48 (n 20 03+0 64 (n 1 24+0 19 (n=	0.09	PRIC
11	W2	23.95 ± 0.42 (n 20.00±0.04 (n 1.24±0.10 (n 4	0.00	PRIC
12	W3	24.28+1.13 (n/20.15+0.67 (n/1.31+0.47 (n=	0.07	
13	W2	24.20 ± 1.10 (120.10±0.07 (11.01±0.47 (11-	0.04	
14	\\/2 \\/2	23.48 ± 0.27 (n 10.49±0.24 (n 1.69±0.27 (n -	0.00	
15	VVZ \//2	23.4010.27 (1119.4210.73 (111.0010.31 (11-	0.05	
16	VVZ	25.5 ± 0.46 (II=20.12±0.35 (II=1.50±0.16 (II= 25.26±1.16 (n=20.55±0.45 (n=1.26±0.08 (n=	0.00	
17	VV3	23.20 ± 1.10 (120.35±0.45 (111.20±0.08 (11-	0.04	
18	VV3	23.97 ± 0.4 (II= 20.15±0.33 (II 1.45±0.22 (II=	0.03	
19		23.80 ± 0.17 (120.09 ± 0.27 (11.43 ± 0.30 ($1=$	0.04	PRIC
20	VVZ	23.52±0.3 (n= 20.75±0.74 (n 1.30±0.21 (n=	0.18	PRIC
21	W3	22.43±0.37 (n 19.15±0.27 (n 1.35±0.16 (n=	0.26	PRIC
22	W3	23.95±0.41 (n 20.44±0.61 (n 1.45±0.13 (n=	0.42	PRIC
23	W2	23.87±0.61 (n 22.74±0.04 (n 1.22±0.28 (n=	0.38	PRIC
24	W1	24.42±0.72 (n 21.41±0.74 (n 1.24±0.03 (n=	0.34	PRIC
25	W2	24.77±0.64 (n 21.53±0.23 (n 1.45±0.03 (n=	0.26	PRIC
26	W3	23.12±0.28 (n 18.88±0.18 (n 1.60±0.26 (n=	0.35	PRIC
27	W3	23.99±0.56 (n 19.95±0.25 (n 1.49±0.48 (n=	0.38	PRIC
28	W2	23.64±0.43 (n 19.80±0.27 (n 1.62±0.06 (n=	0.37	PRIC
29	W3	23.76±0.61 (n 19.62±0.57 (n 1.4±0.08 (n=2	0.29	PRIC
30	W2	23.78±0.27 (n 20.38±0.47 (n 1.5±0.23 (n=4	0.26	PRIC
27	W1	24.07±0.39 (n 19.58±0.44 (n 1.52±0.09 (n=	0.30	PRIC
32	W3	23.99±0.3 (n=20.39±0.41 (n 1.53±0.20 (n=	0.41	PRIC
34	W2	23.58±0.55 (n 19.84±0.55 (n 1.63±0.53 (n=	0.29	PRIC
35	W1	23.23±0.71 (n 19.49±0.19 (n 1.46±0.31 (n=	0.34	PRIC
36	W1	24.21±0.59 (n 20.02±0.37 (n 1.20±0.28 (n=	0.26	PRIC
37	W1	23.68±0.36 (n 20.25±0.80 (n 1.53±0.08 (n=	0.16	PRIC
38	W2	23.89±0.69 (n 19.52±0.37 (n 1.35±0.07 (n=	0.18	PRIC
39	W3	23.86±0.03 (n 20.21±0.74 (n 1.54±0.09 (n=	0.23	PRIC
40	W2	23.38±0.92 (n 19.34±0.58 (n 1.47±0.11 (n=	0.24	PRIC
41	W2	24.01±0.94 (n 19.68±0.34 (n 2.05±0.66 (n=	0.31	PRIC
42	W2	23.6±0.51 (n= 20.38±0.59 (n 1.45±0.17 (n=	0.21	PRIC
43	W2	23.62±0.45 (n 20.26±0.66 (n 1.57±0.18 (n=	0.16	PRIC
44	W3	24.16±0.78 (n 20.11±0.34 (n 1.38±0.31 (n=	0.16	PRIC
45	W2	23.82+0.44 (n 19.96+0.50 (n 1.56+0.07 (n=	2.78	PRIC
46	W2	24 03+0 24 (n 20 39+0 39 (n 1 40+0 11 (n=	1 89	PRIC
47	W2	23 77+0 46 (n:19 67+0 35 (n:1 43+0 12 (n=	1.00	PRIC
48	W3	22 83+0 11 (n:19 33+0 56 (n:1 52+0 26 (n=	0.57	PRIC
49	W2	23.74 ± 0.85 (n 20.33\pm0.49 (n 1.26\pm0.17 (n =	0.43	PRIC
50	W2 W2	1876+0.31 (n:17.15+0.82 (n:1.36+0.22 (n=	1 88	
51	VVZ \//1	24.46 ± 0.41 (n·21.28±0.50 (n·1.70±0.42 (n=	2.00	
52	\N/2	23.40 ± 0.9 (n= 10.53±0.30 (n 1.7 ±0.42 (n=	1.00	
53	VVZ \//2	23.49 ± 0.5 (n= 19.33±0.27 (n 1.00±0.20 (n= 22.34±0.52 (n= 22.34\pm0.52 (n= 22.34\pm0.52)))))))))))	0.74	
54	VVZ \\//2	20.0710.02 (IF13.2110.40 (IF1.0010.03 (IF 22.8010.26 (p.10.0010.55 (p.1.4610.25 (p-	0.74	
55	VVZ	22.0300000 (1113.0300000000000000000000000000000000	0.00	
56	VV3	23.13 \pm 0.1 (II= 19.34 \pm 0.1 (II= 1.10 \pm 0.13 (II= 22.52 \pm 0.15 (n.10.91 \pm 0.91 (n.0.05 \pm 0.22 (n.	0.90	
57	VVZ	23.52±0.15 (119.81±0.81 (110.95±0.22 (1=)	0.79	PRIC
58		23.3 ± 0.25 (n= 19.80±0.59 (n 1.52±0.20 (n= 2.2.48) 0.22 (m= 2.2.48) 0.22 (m= 4.57) 0.44 (m= 2.2.48) 0.22 (m= 4.57) 0.2	0.70	PRIC
59	VV3	23.18 ± 0.22 (n°19.77±0.17 (n°1.57±0.41 (n=	0.51	PRIC
60	VV2	23.63±0.34 (n 19.99±0.66 (n 1.24±0.23 (n=	0.94	PRIC

2				
3	W2	22.29±0.52 (n 18.93±0.20 (n 1.26±0.08 (n=	0.35	PRIC
4	W2	23.79±0.2 (n= 20.32±0.36 (n 1.28±0.18 (n=	0.50	PRIC
5	W2	23.04±0.21 (n 21.76±0.86 (n 1.65±0.28 (n=	0.37	PRIC
6	W2	24.34±0.18 (n 20.70±0.46 (n 1.61±0.41 (n=	0.37	PRIC
7	W2	23.86+1.01 (n 20.19+0.65 (n 1.38+0.16 (n=	0.37	PRIC
8	W3	23 6+0 43 (n=20 70+0 21 (n 1 65+0 43 (n=	0.39	PRIC
9	W2	23 55+0 25 (n 21 15+0 70 (n 1 19+0 28 (n=	0.28	PRIC
10	W1	23 39+0 22 (n:19 35+0 11 (n:1 59+0 09 (n=	0.29	PRIC
11	W3	23 32+0 43 (n:19 52+0 33 (n:1 42+0 24 (n=	0.37	PRIC
12	W1	23 62+0 2 (n= 19 58+0 20 (n 1 37+0 12 (n=	0.24	PRIC
13	W3	23 34+0 23 (n:19 90+0 37 (n:1 69+0 16 (n=	0.24	PRIC
14	W2	23.21 ± 0.5 (n = 20.34±0.89 (n 1.95±1.44 (n=	0.20	PRIC
15	W/1	24.02 ± 0.26 (n=20.04±0.03 (n=1.03±1.44 (n=	0.24	
16	W3	23.42+0.4 (n=20.01+0.26 (n 1.31+0.28 (n=	0.00	PRIC
17	W2	23.13 ± 0.25 (n 20.01 ± 0.25 (n 1.01 ± 0.25 (n $=$	0.27	
18	W2	24.50+1.13 (n:10.66+0.31 (n:1.49+0.28 (n=	0.30	
19	\V/1	23.4+0.81 (n=20.41+0.71 (n 1.17+0.13 (n=	0.27	
20	\\/\?	23.83 ± 0.36 (n 18.81±0.17 (n 1.08±0.42 (n=	0.20	
21	W2	23.03 ± 0.30 (1110.01±0.14 (111.00±0.42 (11- 10.12+0.2 (n=16.23+0.37 (n.1.22+0.34 (n=	0.30	
22	W2	20.63 ± 0.71 (n 17.77 ±0.65 (n 1.17 ±0.23 (n=	0.22	
23	W2 W3	23.71+0.36 (n:20.77+0.75 (n 1.05+0.21 (n=	0.20	
25	W3 W/1	23.92 ± 0.24 (n:20.28±0.29 (n 1.52±0.27 (n=	0.20	
26	\\/1	23.92 ± 0.24 (1120.20±0.29 (111.02±0.07 (11-	0.20	
27		23.03 ± 0.31 (1121.95±0.39 (111.05±0.20 (11- 24.23±0.74 (p.20.76±1.32 (p.1.48±0.18 (p-	0.10	
28	W2	24.2510.74 (1120.7011.32 (111.4010.10 (11-	0.15	
29	W2	20.31 ± 0.48 (n 17.70\pm0.34 (n 0.05\pm0.13) (n =	0.23	
30	W2 W3	24 4+0 28 (n=20 83+0 20 (n 1 51+0 08 (n=	0.24	
31	W3	$22 \cdot 32 + 0.41$ (n 19.21+0.21 (n 1.15+0.01 (n=	0.21	
32	W3	25.52 ± 0.41 (m 13.21 ± 0.21 (m 1.15 ± 0.01 (m $-$	0.21	PRIC
33	W3	23.86 ± 0.71 (n 10.86\pm0.70 (n 1.17\pm0.05 (n=	0.30	
34	W2	23.29+0.25 (n:20.78+0.68 (n:1.25+0.31 (n=	0.21	PRIC
35	W2	22 16+0 73 (n/23 68+0 15 (n/1 26+0 18 (n=	0.21	PRIC
36	W2	20 65+0 37 (n17 13+0 55 (n1 21+0 15 (n=	0.21	PRIC
3/	W/1	33 94+0 21 (n:29 68+1 15 (n:2 11+0 27 (n=	0.13	PRIC
38	\W/2	23 00+0 76 (n:10 40+0 24 (n:1 45+0 26 (n=	0.17	
39	W2 W3	23.03 ± 0.70 (n 19.43±0.24 (n 1.43±0.20 (n -	0.22	
40	W2	22.04 ± 0.10 (1113.00±0.44 (111.75±0.22 (11- 23.04±0.36 (n.10.78±0.76 (n.2.29±1.67 (n=	0.22	
41	VVZ \\/1	23.04 ± 0.30 (113.70±0.70 (112.29±1.07 (11-	0.15	
42	\W/2	20.74 ± 0.1 (n=10.14\pm0.61 (n=1.50\pm0.33 (n=	0.25	
44	W/1	23.88 ± 0.08 (n 20.34±0.43 (n 1.67±0.23 (n=	0.23	
45	\W/2	24.63 ± 0.87 (n 10.86 ±0.51 (n 1.46 ±0.25 (n=	0.17	
46	W2	24.05 ± 0.07 (m 19.00±0.01 (m 1.40±0.20 (m - 21.16+0.32 (m -	0.19	
47	W2 W3	$23 23 \pm 0.44$ (n 10.46 \pm 0.32 (n 1.70 \pm 0.80 (n -	0.13	
48	W2	23.23 ± 0.44 (m 13.40±0.32 (m 1.79±0.00 (m - 23.33+0.2 (n - 12.66+0.72 (n - 1.28+0.03 (n - 24.00))))	0.12	
49	W2	23.05 ± 0.2 (II = 13.00±0.72 (II 1.20±0.03 (II = 23.06±0.18 (p.10.58±0.86 (p.1.43±0.27 (p=	0.14	
50	W2	23.00 ± 0.16 (II 19.30±0.00 (II 1.43±0.27 (II –	0.22	
51	VV3 \\/1	22.04 ± 0.13 (n 19.33 ±0.11 (n 1.42 ±0.33 (n -	0.12	
52	\\/\?	23.03 ± 0.37 (1113.43 ±0.33 (111.34 ±0.22 (11-	0.12	
53	W2	23.83 ± 0.03 (1119.04±0.03 (111.19±0.29 (11-	0.14	
54	vv∠ \\/3	20.00±0.14 (1113.04±0.07 (111.07±0.04 (11- 22.80±0.63 (n:10.73±0.82 (n:1.75±0.20 (n-	0.12	
55	W/3	16 02+0 51 (n:15 57+0 67 /n:0 60+0 01 /n-	0.12	
56	VV3 \//1	2/ 18+0 61 (n:20 87+0 7/ (n:1 /14+0 5/ (n=	0.20	
57	۷۷ I \\\/2	23 23+0 AA (n:20 56+0 3A (n:1 20:04 (11- 23 23+0 AA (n:20 56+0 3A (n:1 20:027 (n-	0.14	
58	۷۷ <i>۲</i> \\\/1	23.25±0.44 (1120.30±0.34 (111.22±0.37 (11- 23.96+0.5 (n=.19.76+0.57 (n.1.35+0.26 (n-	0.03	
59	\\/2	23.30±0.3 (n= 13.70±0.37 (n 1.30±0.20 (n= 23.30±0.21 (n:21.03±0.11 (n:1.15±0.11 (n=	0.12	
00	v v 🗠	20.0010.21 (II21.0010.11 (II1.1010.11 (II-	0.00	1110

1				
2				
3	W2	23.28±0.52 (n 19.04±0.30 (n 2.31±0.81 (n=	0.15	PRIC
4	W2	23.94±0.28 (n 20.25±0.38 (n 1.51±0.15 (n=	0.09	PRIC
5	W2	23.47+0.38 (n 19.29+0.32 (n 1.43+0.20 (n=	0.14	PRIC
6	W2	23 09+0 42 (n 19 84+0 45 (n 1 41+0 23 (n=	0.10	PRIC
7	W3	23 1+0 02 (n= 19 05+0 84 (n 1 36+0 43 (n=	0.13	PRIC
8	W3	23. 1 ± 0.02 (1 – 19.03±0.04 (111.00±0.43 (1 – 23. 70±0.34 (n – 20.06±0.80 (n 1.66±0.42 (n –	0.13	
9	W3	23.7910.34 (1120.0010.00 (111.0010.42 (11-	0.12	
10	VV3	23.04±0.38 (fi20.36±0.05 (fi 1.7 1±0.36 (fi=	0.11	PRIC
11	VV2	23.2±0.1 (n=220.62±0.16 (n 1.94±0.23 (n=	0.08	PRIC
12	W2	24.56±0.89 (n 19.54±0.83 (n 1.37±0.10 (n=	0.06	PRIC
13	W2	22.98±0.46 (n 19.43±0.64 (n 1.73±0.43 (n=	0.10	PRIC
14	W3	23.86±0.24 (n 20.01±0.21 (n 1.30±0.28 (n=	0.08	PRIC
15	W2	23.67±0.6 (n=20.70±0.24 (n 1.54±0.18 (n=	0.10	PRIC
16	W3	24.84±0.93 (n 19.94±0.77 (n 1.29±0.30 (n=	0.12	PRIC
17	W3	23.79±0.95 (n 19.60±0.78 (n 1.35±0.06 (n=	0.10	PRIC
18	W3	23.95±0.42 (n 19.86±0.64 (n 1.48±0.06 (n=	0.09	PRIC
19	W2	23.86±0.44 (n 20.23±0.39 (n 1.47±0.14 (n=	0.09	PRIC
20	W2	22 95+1 (n=4) 19 29+0 16 (n 0 49+0 69 (n=	0.05	PRIC
20	W2	2653 ± 0.3 (n=21.09±0.41 (n 1.68±0.36 (n=	0.07	
21	W2 W3	23.73 ± 0.61 (n 20.06 ± 0.35 (n 1.36 ± 0.10 (n $-$	0.07	
22	W3	23.73 ± 0.01 (120.00 ± 0.33 (11.30 ± 0.10 ($1-$	0.08	
23	VV3	23.40 ± 0.31 (1110.97 ±0.30 (111.35 ±0.09 (11-	0.04	
24	VVZ	23.47±0.48 (n 19.70±0.03 (n 1.20±0.28 (n=	0.08	PRIC
25	W3	23.69±0.22 (n 19.85±0.24 (n 1.56±0.27 (n=	0.06	PRIC
20	W2	22.45±0.4 (n=18.45±0.62 (n 1.30±0.27 (n=	0.06	PRIC
27	W2	22.89±0.57 (n 19.68±0.54 (n 1.28±0.12 (n=	0.07	PRIC
28	W2	22.82±0.08 (n 19.61±0.29 (n 1.42±0.24 (n=	0.05	PRIC
29	W2	23.3±0.3 (n=420.16±0.48 (n 1.00±0.10 (n=	0.07	PRIC
30	W2	22.99±0.32 (n 19.67±0.65 (n 1.35±0.19 (n=	0.06	PRIC
31	W2	23.91±0.41 (n 20.73±0.96 (n 1.58±0.15 (n=	0.04	PRIC
32	W1	23.4±0.25 (n=20.94±0.49 (n 1.14±0.06 (n=	0.06	PRIC
33	W3	23.9+0.53 (n= 19.56+0.30 (n 1.44+0.14 (n=	0.05	PRIC
34	W2	23 56+0 24 (n 20 51+0 77 (n 1 19+0 23 (n=	0.07	PRIC
35	W2	24 13+0 51 (n:20 44+0 62 (n:1 50+0 12 (n=	0.07	PRIC
36	W2	23 01+0 25 (n 21 06+1 32 (n 1 40+0 21 (n=	0.07	
37	VV3	23.91±0.25 (n/21.00±1.32 (n/1.40±0.21 (n=	0.00	
38	VV3	23.4 1±0.32 (11 19.74±0.30 (11 1.49±0.19 (11-	0.00	
39	VV3	23.37±0.12 (n/20.45±0.84 (n 1.88±0.51 (n=	0.04	PRIC
40	VV2	24.74±0.64 (n 20.86±0.94 (n 1.30±0.26 (n=	1.61	PRIC
41	W2	22.63±0.3 (n=19.21±0.62 (n 1.43±0.76 (n=	1.92	PRIC
42	W2	23.55±0.48 (n 20.12±0.66 (n 1.42±0.06 (n=	1.10	PRIC
43	W2	22.99±0.16 (n 19.15±0.57 (n 2.43±1.86 (n=	0.71	PRIC
44	W2	23.29±0.29 (n 19.84±0.88 (n 1.37±0.08 (n=	0.73	PRIC
45	W2	23.78±0.44 (n 19.96±0.08 (n 1.49±0.50 (n=	0.71	PRIC
46	W2	23.28±0.3 (n= 19.88±0.88 (n 1.54±0.09 (n=	0.49	PRIC
47	W1	23.74±0.4 (n=20.55±0.37 (n1.22±0.17 (n=	0.56	PRIC
48	W2	23.92±0.45 (n 19.64±0.33 (n 1.51±0.29 (n=	0.51	PRIC
49	W2	23.64±0.48 (n 21.40±0.93 (n 1.14±0.03 (n=	0.40	PRIC
50	W2	22.65+0.45 (n 19.32+0.52 (n 1.80+0.41 (n=	0.42	PRIC
51	W3	23 45+0 23 (n 20 08+0 55 (n 1 54+0 12 (n=	0.32	PRIC
52	W1	23 64+0 47 (n 20 29+0 86 (n 1 72+0 94 (n=	0.36	PRIC
53	\M/2	23 11+0 82 (n:23 81+0 /6 (n:0.22±0.304 (n=	0.00	
54	VVZ	20.11110.02 (1120.0110.40 (110.2210.08 (11- 22.24+0.17 (p.10.72+0.51 (p.1.25+0.51 (p-	0.20	
55	VVZ	23.04 ± 0.17 (II-13.73U.31 (II-1.33U.31) (II-1.33U.31) (II=	0.33	
56	VVZ	23.32 ± 0.23 ($\Pi^{2}0.05\pm0.46$ ($\Pi^{-1}.25\pm0.31$ (Π^{-1}	0.38	PRIC
57	VV2	24.22±0.41 (n20.42±0.37 (n1.42±0.12 (n=	0.43	PRIC
58	W2	23.45±0.51 (n18.88±0.49 (n1.34±0.57 (n=	0.24	PRIC
59	W2	20.47±0.28 (n 18.89±0.73 (n 0.40±0.69 (n=	0.32	PRIC
60	W2	22.46±0.22 (n 19.69±0.67 (n 1.51±0.22 (n=	0.29	PRIC

1							
2	14/0	22 44 10 22 (m	20 22 0 72 (m	1 07 0 29 (2-	_	0.24	
5 4	VVZ	23.41±0.32 (II	20.32±0.72 (1	11.27±0.38 (n=	=.	0.34	
5	VVZ	24.19±0.19 (II	20.33±0.41 (1	11.30±0.20 (11-	=, 	0.31	
6	VV I \\\/1	23.77 ± 0.3 (II=	20.70±0.00 (I	1 1.13±0.31 (II- 1 20+0 22 (n-	=, _	0.20	
7		23.11 ± 0.2 (II=	19.52±0.66 (I	11.30±0.33 (II-	=. 	0.31	
8	VVZ	24.2±0.30 (II=	19.90±0.07 (I	1 1.00±0.06 (11- 1 44+0 40 (n-	-	0.19	
9	VVZ	23.45±0.13 (II	19.87±0.21 (f)	11.44±0.40 (n=	= ,	0.20	
10	VV3	23.51±0.41 (n	20.00±0.55 (n	11.51±0.31 (n=	=,	0.22	
11	VV3	23.22±0.54 (n	19.66±0.53 (n	11.16±0.19 (n=	=,	0.26	PRIC
12	VV2	23.87±0.47 (n	20.27±0.56 (n	11.35±0.33 (n=	=,	0.26	PRIC
13						0	Mars
14						0	Mars
15	high					1004	UAb
16	moderate	16.48±0.14	14.15±0.14	8.8±0.1		1.1	UCLA
17	moderate	28.9; 31.0; 25	.23.7	2.8	2.98	21.3	MNB
18	W0/1	27.0±0.2	21.5±0.8	2.2±1.6	4.58	24.1	UWB
19	W3				4.84	22.3	Kiel
20	W4	26.5±0.2 (n=2	19.3±3.9 (n=2	20.8±0.8	4.65	23.0	Kiel
21						300	IGCAS
22	W3	18.6	15.6			32.9	WAM
23	W3	19.5	17.5	1.0		39.3	WAM
24	W3	18.9	17.0	1.24		220	WAM
25	W1	16.9±5.6 (N=1	11.3±6.4 (N=4	40.9±0.6 (N=4	8	48.1	UAz
26	W2	18.9±0.2	16.3±0.2 (N=	11.47±0.17 (N	=	22.2	Vernad
27	W3	24.3±0.42	20.2±0.3 (N=	11.47±0.29 (N	=	54.2	Vernad.
28	W2				4.58	1100	CEREGE
29	W1				5.23	196	CEREGE
30	W2				4.53	329	CEREGE
31	W2				4.54	774	CEREGE
32	W1				4.88	101	CEREGE
33 24	W1				4.94	321	CEREGE
24 25	W2				5.19	46.5	CEREGE
36	W2				4.96	156	CEREGE
30	W2				4.07	451	CEREGE
38	W1	25.1±0.2 (N=1	121.0±0.2 (N= ⁻	11.6±0.2 (N=1)	2	24.1	Cascadia
30		, ,	58.0±2.8 (n=6	6.0±3.3	3.33	4.6	CEREGE
40	W3	17.1±0.2. n=1	14.7±0.1. n=1	1.5±0.1. n=10)	26.2	MNB
41	W2	29.8±0.5 (n=1	23.9±0.1 (n=1	1.8±0.2 (n=12	2	20	MNB
42	W3	18.8±0.1 (n=7	16.6±0.4 (n=9) 1.2±0.2 (n=9))	29.3	MNB
43	W3	24.9±0.3 (n=8	20.9±0.2 (n=8	3 1.8±0.1 (n=8))	31.8	MNB
44	W3	19.0+0.6 (N=9	16.0+0.6 (N=	51.4+0.1		21.07	MSN-FI
45	W2	20 6+0 5 (N=7	18 0+0 5 (N=6	51 2+0 1		9 27	MSN-FI
46	W3	19 3+0 7 (N=7	717 3+0 7 (N=9	914+01		2 10	MSN-FI
47	W2	20 8+0 6 (N=1	118 3+0 6 (N=9	915+01		13 16	MSN-FI
48	W/4	20.8±0.5 (N=8	118.5 ± 0.5 (N=6)	51.5±0.1		30.90	MSN-FI
49	W3	20.8±0.0 (N=7	17 9+0 6 (N=	717+01		20.10	MSN-FI
50	W3	20.8±0.7 (N=9	16.3 ± 0.5 (N=	113+01		18 52	MSN_FI
51	W3	20.0±0.4 (N=0	18.4 ± 0.6 (N= ⁻	113+01		42 71	MSN_FI
52	W3	20.7±0.5 (N=3	717.3+0.7 (N=	715+01		6 01	MSN_FI
53	W3	20.0 ± 0.0 (N=7	17.3±0.7 (N=1	7 1.3±0.1 51 3+0 1		6.71	MSN_FI
54	W3	20.1±0.5 (N=1	110.0 ± 0.0 (N=0	71 1±0 1		12 15	
55	W3	10 3±0 5 (N=6	516 8±0 6 (N=4	5 1 5±0.1		6 70	
56	VV3 \//3	20 5±0 6 (N=5	710.0±0.0 (N=3			0.70	MON EI
57	VV3	20.0 ± 0.0 (N=7	13.0±0.7 (IN=0	5 1. 4 ±0.1		3.14 2.72	
58	VV3 \\/2	19.0±0.7 (IN=5	19 5±0 5 (N=0			৩.10 ০.10	IVIOIN-FI MONI FI
59	10/2	20.0±0.0 (N=8	17510.0 ± 0.0 (N=	5 1.1±0.1		2.12 0.52	
60	vv3	∠0.0±0.0 (IN=/	ידע.ס±ט.זיי (וא=נ	J 1.4±U.I		0.00	IVISIN-FI

Runn	ina	hcoH
Num	my	neau

1							
2							
3	W3	19.9±0.4 (N=6	617.7±0.7 (N=5	1.1±0.1		10.16	MSN-FI
4	W3	20.6±0.6 (N=1		1.8±0.1		89.56	MSN-FI
5	W3	20.2±0.5 (N=6	317.7±0.6 (N=5	2.0±0.1		3.65	MSN-FI
6	W3	19.8±0.6 (N=5	17.7±0.5 (N=8	2.1±0.1		2.10	MSN-FI
7	W3	20 8+0 7 (N=7	717 8+0 6 (N=6	1 4+0 1		3.88	MSN-FI
8	W2	18 4+0 5 (N=7	716 0+0 6 (N=6	1 4+0 1		180 10	MSN-FI
9	W2	12 5+5 7/N=1	8 8+4 4(N=10	`0 0+0 1		754 31	MSN_FI
10	W3	20.3 ± 0.6 (N=1	117 5±0 6 (N=7	0.0 ± 0.1		125.00	
11	10/2	20.3 ± 0.0 (N=	117.5 ± 0.0 (N=7	0.9 ± 0.1		2 4 4	
12	VV3	20.2 ± 0.3 (N=0	517.4±0.7 (N=0			5.44	
13		25.0±0.7 (N=:	1120 + 100 (N - 0)	1.0 ± 0.1		09.00	
14	VV3	15.4 ± 7.3 (N=	113.0±4.9 (N=1	10.8±0.1		330.20	MON FI
15	VV3	19.4±0.6 (N=6	17.1 ± 0.5 (N=7	1.5±0.1		3.46	MSN-FI
16	W3	19.3±0.5 (N=6	517.0±0.6 (N=5	1.4±0.1		35.63	MSN-FI
17	W3	19.7±0.6 (N=9	917.1±0.7 (N=8	1.4±0.1		74.50	MSN-FI
18	W3	19.2±0.5 (N=7	716.7±0.6 (N=5	1.4±0.1		45.70	MSN-FI
19	W3	19.1±0.6 (N=6	617.9±0.5 (N=6	1.2±0.1		54.67	MSN-FI
20	W3	19.7±0.7 (N=7	716.8±0.6 (N=6	1.3±0.1		12.17	MSN-FI
21	W3	25.7±0.7 (N=2	121.3±0.7 (N=1	1.5±0.1		76.90	MSN-FI
22	W3	20.0±0.5 (N=2	117.4±0.6 (N=1	1.5±0.1		3.13	MSN-FI
23	W3	20.7±0.6 (N=6	619.0±0.6 (N=7	'1.0±0.1		12.08	MSN-FI
24	W3	19.5±0.5 (N=5	517.8±0.5 (N=6	1.1±0.1		198.30	MSN-FI
25	W3	20.8±0.6 (N=8	318.0±0.6 (N=9	1.5±0.1		9.98	MSN-FI
26	W3	20.0±0.7 (N=9	17.4±0.6 (N=6	1.3±0.1		56.70	MSN-FI
27	W3	20.8±0.6 (N=6	618.7±0.7 (N=5	1.3±0.1		12.30	MSN-FI
28	W3	23.6±1.0 (N=7	, 721.3±0.6 (N=6	1.5±0.1		8.17	MSN-FI
29	W3	19.2±0.6 (N=9	316.7±0.6 (N=7	'1.2±0.1		72.24	MSN-FI
30	W3	20.2±0.5 (N=6	317.8±0.5 (N=6	1.6±0.1		16.60	MSN-FI
31	W3	20.8+0.7 (N=	18.9+0.6 (N=5	1.2+0.1		1.25	MSN-FI
32	W3	26.0+0.6 (N=6	22.6+0.7 (N=6	1.3+0.1		10.50	MSN-FI
33	W2-3	19 51+0 13 (N	17 37+0 38 (N	1 29+0 15 (N		14 7	UrFU
34	W3-4	19 32+0 19 (N	17 29+0 28 (N	1 45+0 21 (N		521 54	UrFU
35	W2	19 68+0 20 (N	117 03+0 23 (N	1 42+0 22 (N		24 7	
36	112	0.5_{1} 5 (n=1)	417.00±0.20 (I\	···.+∠±0.22 (I \		29.7	
3/	W/3	17 9+0 2 (N=2	、 216.0+0.3 (N=1	1 3+0 2 (N=1)	85.28	20.7 45	
38	W3	17.5±0.2 (11-2	10.0±0.0 (I I =	11.0±0.2 (I I =I	5.00	11 0	Kiel
39	W3	22 0+0 7 (p=2	20 3+0 6 (n=0	2 0+0 4	1 71	22.2	Kiol
40	VVZ	23.9 ± 0.7 (II=2	20.3±0.0 (II-9 210 1±0 2 (n=5	2.0 ± 0.4	4.71	22.5	Kiel
41		23.0 ± 0.5 (II=2	19.1 ± 0.3 (II-3)	1.0±1.1	4.00	22.0	Kiel
42	VV4	25.0±0.4 (II-2	20 0+0 6	1.0	4.00	21.3	
45	10/4	35.5 ± 0.4	20.0 ± 0.0	2.7 ± 1.0	_	40	IGCAS
44	VV4	25.0 ± 0.2 (II=3	20.7±0.2 (II=4	2.02±0.16 (II=		400	IGCAS
45	VV4	17.4 ± 0.3 (n=5	014.7±0.3 (n=5	0.23±0.03 (n=	=	27	IGCAS
40	VV3	25.1±0.3 (n=5	21.0±0.2 (n=5	1.28±0.16 (n=	=	30	IGCAS
47	VV1	18.8 (19.2-18	. 16.5 (16.7-16.	1.5 (1.7-0.98;	-	21	USI
40	VV2-3	25.1±1.5 (n=3	514.1±5.7 (n=2	0.6±0.5 (n=25		21.3	ITP
50	VV1	19.0	16.9	1.06		23.68	WAM
51	W4				4.87	22.1	Kiel
52	wi-1	30.9±0.26 (N=				1.23	Vernad
53	W1				4.74	12.3	CEREGE
54	W1	18.2±0.3 (N=1	116.3±0.6 (N=1	1.1±0.1 (N=1	3	1.8	Vernad
55	W1				4.68	10.26	Kiel
56	W1	18.4 (n=1)	16.4 (n=1)	1.0	5.32	150	CEREGE
57		19.4 (n=1)	17.6±0.1 (n=2	1.6±0.3	4.69	3.8	CEREGE
58	W3	19.1 (n=1)	17.0±0.5 (n=3	1.3±0.2	4.66	7.5	CEREGE
59	W3	19.7 (n=1)	17.4±0.2 (n=3	1.4±0.1	4.79	276.2	CEREGE
60	W1	19.0 (n=2)	18.0 (n=2)	0.95	5.04	22.6	CEREGE

2							
3	W2	18.5±0.1 (n=3	317.1±0.5 (n=3	1.6±0.7	4.96	22.7	CEREGE
4	W2	27.7±0.8	16.1±7.4	0.9±0.6	4.11	25.57	App
5	W1				5.25	21.5	CEREGE
6	W2-3	17.9±0.5 (n=4	16.1±0.4 (n=6	1.1±0.2 (n=6)) 5.1	5.8	lfP
7	W3	25.2±0.8 (N=2	220.6±0.3 (N=2	1.64±0.25 (N	=	14	UrFU
8	low		58.7+0.2: 29.7	6.2+0.6: 41.7	+2.76	20.88	App
9	W3		,	00.0,	4 40	15	CEREGE
10	W1				5.22	25.7	CEREGE
11	W2				4 69	22.7	CEREGE
12	W2	28 0+0 5	18 1+5 0	0 0+0 8	4.00	22.0	
13	W0/1	20.010.0	10.110.0	0.310.0	4.11	30.8	
14	W0/1				5.03	31	CERECE
15	VVZ				5.05	26	CEREGE
16					4.44	3.0	CEREGE
17					J.ZZ	43.7	CEREGE
18	VVZ				4.61	22	CEREGE
19	VV3				4.09	2.5	CEREGE
20	W3				4.75	31.2	CEREGE
21	W1				4.70	31.2	CEREGE
22	W1				4.82	12.5	CEREGE
23	W1				5.15	15.5	CEREGE
24	W3	19.0±0.3 (n=4	16.4±0.4 (n=5	1.0±0.2	5.01	23	CEREGE
25	W3	25.8 (n=1)	21.8±0.2 (n=3	1.7±0.2	4.60	25	CEREGE
26	W3	25.2 (n=1)	20.9 (n=1)	1.8	4.66	5.88	CEREGE
27	W3	25.6 (n=1)	21.7±0.2 (n=3	1.6±0.0	4.29	20.3	CEREGE
28	low	58.4 (n=2)			3.69	20.5	CEREGE
29	low				3.32	23.2	CEREGE
30		18.5±0.2 (n=3	5		4.15	14	CEREGE
31	high		60.0±2.3 (n=5	3.6±1.9	2.81	38	CEREGE
32	W1	18.8±0.2 (n=5	517.4±1.9 (n=6	0.9±0.4	4.93	6.58	CEREGE
22 24	W2	25.8 (n=1)	21.5 (n=1)	1.3	4.70	7.75	CEREGE
54 25	W2	· · · ·	()		5.10	22	CEREGE
22 26	W3	24.6±0.5 (n=1	20.4±0.3 (n=1	1.5±0.3	4.58	12.4	Kiel
30		21.6±0.7 (n=2			4.45	20.2	Kiel
37	W4	18.3±0.3 (n=4	16.1±0.3 (n=2	1.1±0.2	4.98	20.2	Kiel
30	W2				3.23	26.0	Kiel
40	W4				4 55	12 65	Kiel
40	W2				5.02	2 70	Kiel
42	W2	25 2+0 6 (n=6	20 8+0 5 (n=5	1.7+0.2 (n=5)	0.01	20	IGCAS
43	W4	24 9+0 2 (n=5	20.0±0.0 (n 0	1.63+0.15 (n =	, =	1700	IGCAS
44	W1	21.020.2 (11 0	20.010.2 (11 0	1.00±0.10 (11	4 75	43	CEREGE
45	\\/1				4.73	22	CERECE
46	\//2				4 .71 5.12	50	CEREGE
47	VVZ				J.1Z	21	CEREGE
48		10.2	17 6 10 2	1622	4.70	21	
49	VVU \\\\2	19.3	17.0-19.3	1.0-3.2	n	100	
50	VV3	18.2 ± 0.7 (N=	116.0±0.5 (N=1	1.2 ± 0.2 (N=12)	2	80	Vernad
51	VV3	17.2 ± 0.4 (N=	115.4±0.4 (N=1	1.0 ± 0.1 (N=1.	2	3.8	Vernad
52	VV3	16.8±0.3 (N=	114.9±0.2 (N=1	1.0 ± 0.4 (N=12	2	14.9	vernad
53	W3	18.3±0.3 (N=	116.1±0.4 (N=1	1.4±0.1 (N=12	2	2.1	Vernad
54	VV3	17.8±0.2 (N=	115.8±0.3 (N=1	1.3±0.2 (N=1	۲ •	2.6	vernad
55	VVO	24.3±0.3 (23.	20.5±0.2 (20.1	11.5±0.2 (1.1-1	1	22.2	NMBE
56	W3	39.2±0.8 (N=2	211.5±0.9 (N=1	45.0±1.1 (N=	1	20	UPC
57						0	Mars
58						0	Mars
59						0	Mars
60						0	Mars

Running Head

1							
2							
3						0	Mars
4						0	Mars
5						0	Mars
6	W2	18.6±0.6 (n=1	16.7±0.6 (n=1	1.1±0.5		25	MNRJ
7	W1	19.1	16.8	1.12		12.65	WAM
8	A/B	26	22		2.4	27.72	JSC
9	B/C	26			4.91	49.47	JSC
10	В	25	21		4.71	96.69	JSC
11	A/B	19	18		5.19	121.86	JSC
12	W2	20.2	17.8	13		64 32	WAM
13		17 7 (16 9-18	15.8 (15.4-16	15 (11-20	٢	63	NMNS
14	A/B	25	20		5.23	2 277	JSC
15	R	26	22		4 44	1 583	JSC
16	A/R	20	18		53	7 578	JSC
17	B	20	18		5 286	6.069	1900
18	ΔR	18	16		53	0.000 1 07	1900
19	R	10	15		5.282	10 044	100
20		20	10		5.202	7 066	190
21		20	19		5.100 5.107	1.000	190
22	AVD D	20	10		5.107	4.770	190
23	B A/D	17	15		5.28	12.020	120
24	A/B	21	19		5.201	5.255	120
25	B	29	24		4.579	4.71	120
20	A/B	20	18		5.32	4.22	JSC
28	B/C		19		5.25	3.97	JSC
20	B/C	21	18		5.31	2.89	JSC
30	B/C	21	19		5.27	1.6	JSC
31	A/B	25	22		4.66	0.94	JSC
32	B/C	20	17		5.21	10.17	JSC
33	B/C	20	18		5.35	7.01	JSC
34	B/C	20	18		5.29	4.35	JSC
35	B/C	20	18		5.24	7.78	JSC
36	В	21	20		5.215	7.641	JSC
37	В	20	18		5.157	6.801	JSC
38	В	21	19		5.22	4.178	JSC
39	В	21	19		5.27	12.314	JSC
40	В	19	18		5.23	6.7 <mark>8</mark> 5	JSC
41	В	21	19		5.29	18.535	JSC
42	В	19	18		5.24	18.23	JSC
43	A/B	17	15		5.06	32.864	JSC
44	В	20	18		5.14	24.379	JSC
45	B/C	20	17		5.32	4.8	JSC
46	В	20	17		5.28	4.26	JSC
47	B/C	20	18		5.28	2.22	JSC
48	В	21	19		5.14	5.47	JSC
49	B/C	21	19		5.24	7.14	JSC
50	B/C	20	19		5.29	3.69	JSC
51	B/C	20	18		5.29	7.61	JSC
52	A/B	27	23		4.6	30.15	JSC
53	A/B	19	17		4.58	81.01	JSC
54	B	26	22		5 26	30.87	JSC
55	W1	24.4+0 3 (n=1	20.6+0.2 (n=9	1.5+0.3		2438	UCLA
56	low		20.6-25 7:37	35.9-27 9 12	-	22.7	UWR
5/	low	32 1+11 5	18 8+9 9	1 2+0 5	•	43.4	UWR
20 50	low	02.1211.0	28 4-31 8 21	10 4-12 1.35		21.1	UWR
27 27	W2	19 6+11 4	12 5+6 6	1 1+1 2	4 63	21.7	UWR
00		10.0±11.T	0 ± 0 . 0		1.00		0.110

2							
3	low	33.9-39.3	17.7-18.5;36.7	0.9-1.1; 8.4-1	1	30.8	UWB
4	low	21.0-23.5	28.4-31.0; 36.	3.1-3.3; 9.3; 2	2		
5	low	30.9-38.7	7.4-12.4	24.6-30.7		24.1	UWB
6	low	32.8-40.4	15.2-28.0: 48.	1.2-3.4: 7.7-9		23.8	22.8 g UCLA/(
7	W2	24.5+0.1	21.0+0.2	1.2+0.1		22.7	21 a UCLA/1.7
8	W2	19 6+0 8	17 3+0 9	1 5+0 1		21.7	20 a UCL A/1 7
9		20 3+13 3	13 8+11 4	1.0±0.1		26.2	PSF
10	\W/1	27 9+9 3	10.0±11.4	0.7+0.5		20.2 47 4	PSF
11		21.010.0	55 9-57 8. 26	2 6-4 6.38 2-	2	28.0	PSF
12	low	22 0+10 3	2 3+2 0	2.0-4.0, 00.2- 2.6+1.4	-	20.0	20 a AMNH/1
13	10W	22.9119.5	2.5 <u>1</u> 2.0	2.0±1.4 1.4±0.0		20.5	20 9 AMINIT/T.
14	VVJ \//1	10 4+0 1	16 0+0 2	1.410.0		29.5	20.5 y 000, e
15	wodoroto	19.4±0.1	10.9±0.2	1.3±0.2		22	
16	moderate	15.3±17.3	1.0±0.2	1.0 ± 0.1		20.2	PSF
17	IOW	18.7±17.3	1.5±0.5	0.7 ± 0.2		0.0	PSF
18	IOW	/5.8	23.6-32.1; 54.	1.9-3.6; 1.5-4	•	20.9	PSF
19	VV2	18.7±0.4	16.4±0.2	3.7±0.4		26.3	PSF
20	moderate	30.3	29.6	4.6		20	MNB
21	moderate	28.3	9.5	43.6		21	MNB
22	W2	13.1±16.6 (0.	82.3±0.7 (1.2-3	0.9±0.6 (0.3-2	2	23.7	MNB
23	moderate	30.0	25.4	2.7		20.2	MNB
24	high	6.9±0.1, n=11				1.6	MNB
25	moderate	4.6	6.8; 2.6	1.8; 45.6		1.3	MNB
26	moderate	4.0	6.0; 2.2	1.7; 46.4		14.6	MNB
27	moderate	7.5				3.4	MNB
28	low	31.1; 21.1	7.9; 1.2	1.4; 42.3		9.6	MNB
29	W1	0.9-44.3	1.8-19.7	1.4-0.9	4.47	22.7	PSF
30	low	15.4±20.3	6.8±5.1	2.8±1.9		21.0	PSF
31	moderate		3.13±2.24; 42	1.06±0.30; 1.6	6	20	ROM
32	low	31.4±0.2	26.0±0.1	1.0±0.1		15.4	PSF
33	low	33.4±0.3	27.3±0.3	1.4±0.1		21.4	PSF
34	moderate		34.3±1.1 (low-	2.9±0.6 (low-0		24	UCLA
35	moderate		24.9±0.4	3.46±0.24		22	UCLA
30	moderate	65 0+1 1				35	UCLA
27 20	W2	15.9+8.5	7.9+6.7	0.8+0.7		20	lfP
20	W1	17 8+12 7	7 7+6 9	0.9+1.1		20	lfP
39	moderate	5 92+10 59 (r	u3 07+0 92 (n=	0.0111		82	
40	W2	20 0 (19 1-21	19 1 (17 8-21	15(09-28 N		99	SI
41	W2	25.8 (25.2-26	24 2 (24 1-26	1.0(0.02.0, 1)		5.6	SI
42	W2	18 <i>I</i> +11 7	. 24.2 (24.1-20. 11 0+9 1	1 7+1 0	N N	23.05	
43		14 4 14 5. 0 4	11.0±0.1	8180		25.35	
45	10 00	14.4-14.5, 5.	5 1±2 0	0.1-0.0	1 72	20.2	
46		22.0±9.1	0.1±0.0	0.4 ± 0.2	4.73	23.41	
47		24.2±7.3	11.7±13.0	1.0±1.0	4.65	193.1	
48	VVZ	27.8±3.9	20.0±0.3	1.0±1.0	4.05	87.04	PSF
49	VVZ	28.9±5.0	21.4±0.8	1.9±0.1	4 57	40.54	PSF
50	VV2/3	19.1±14.2	8.3±9.0	0.7±0.8	4.57	35.7	UWB
51		18.4 (0.2-36.5	9.4±6.7 (n=11	0.6±0.5	3.43	10.2	Kiel
52	VV4	16.0±1.2 (n=1	14.8±2.8 (n=1	0.8±0.7	4.99	14.8 + 5.9 g	Kiel + IfP
53	_	23.1 (L5); 22.	121.7 (L5)	2.1 (L5)		40	IGCAS
54	low	73.8±6.5 (N=2	267.7±1.6 (n=6	3.1±1.3		38.2	UWB
55	W1	19.7±8.0	12.9±8.7	0.9±1.1		249	PSF
56	W1	18.9±2.4 (13.	116.3±1.7 (n=3	1.2±0.6	5.55	26.1	Kiel
57	W0	18.5±0.6 (17.	£15.8±0.2 (n=5	1.7±0.2	5.44	23.9	Kiel
58		37.5±10.6 (8.2	214.2±10.6 (n=	1.8±4.0	3.52	16.3	Kiel
59	W1	25.4±7.3	10.1±9.9	1.0±0.6		193	PSF
60	W2	7.8-39.1 (n=8)1.8-20.7 (n=3)	0.3-3.9		55	UWB

1							
2							
3	W0/1	30.8-31.2	25.1-25.5	2.2-1.6		83.5	UWB
4	moderate	13.5±8.3 (N=	71.7 (N=1)	1.3	3.81	21	CEREGE
5	moderate	32.0±0.2 (n=4	1		4.58	22.0	CEREGE
6		11.4±1.5 (N=4	410.6±0.2 (N=1	14.7±0.3 (N=18	3	27.7	Vernad.
7	W2	14.5±9.5 (n=3	311.1±7.0 (n=1	0.9±0.1;1.9±0		21.7	MSN-FI
8		33.6±0.2 (n=4	27.1±0.1 (n=3	1.9±0.2	3.24	23.3	CEREGE
9	low	12.2±0.6 (n=6	610.9±0.2 (n=5	4.7±0.1 (n=5)	4.23	2.27	CEREGE
10		31.1±0.4 (n=1	l 25.8±1.2 (n=3	3.5±0.9	3.31	1.73	Kiel
11		14.2 (1.1-22.6	66.7 (2.2-18.6;	0.9 (0.2-3.5)	3.83	6.9	Kiel
12		10.2 (0.8-16.2	212.1 (1.5-25.7	1.4 (0.3-4.4)	3.40	20.0	Kiel
13	W2	24.2±0.9 (n=1	20.2±6.2 (n=7	′ 1.5±0.2 ′́	4.57	21.9	Kiel
14	W5	16.3±4.9 (n=2	218.8±5.0 (n=1	0.9±0.8	5.06	22.3	Kiel
15	W5	23.4±0.4 (n=1	19.5±0.3 (n=6	1.1±0.2	3.54	12.3	Kiel
10	W1	24.0±1.9 (n=1	18.4±1.7 (n=1	3.2±1.4 (n=18		2.1	lfP
17	low	10.6+4.2 (N=	212.6+0.2 (N=2	9.9+0.1 (N=25	1	23.84	ROM
10	W4	23.6+2.3 (n=1	13.5+8.6 (n=9	0.7+0.5	4.43	23.1	Kiel
20	W1	17 8+0 3 (N=	612 6+1 1 (N=1	10 5+0 2		21	MSN-FI
20	W2	17 8+0 2 (N=	815 7+0 3 (N=6	513+03		21	MSN-FI
22	moderate	11.010.2 (11	62 1+0 3 (N=8	2 8+0 2.44 0+	(24	MSN-FI
23	W3	19 2+0 3 (N=	616 3+0 3 (N=7	712+01		20	MSN-FI
24	W4	24 7+0 4 (N=	720 7+0 2 (N=8	1.2±0.1		20	MSN-FI
25	moderate	20.0+2.6	21 6+0 5 22 6	3.0+0.2 24.1+	L.	20.4	
26	low	20.012.0	40 68+13 81	1 35+0 42	-	0.42	ROM
27	moderate		43 66+14 83	4 90+3 19		20	ROM
28	low		42.00±14.00	+.30±3.13		6.53	ROM
29	low to m		42.90 ± 14.07 ,	·0.3914.74, 20	•	20	ROM
30	modorato		41.05±0.20, 5	19 20+2 25: 20	•	20	
31	low	24 3+20 8 (n-	-9.9 ± 12.7 (n-1	1 5+0 8		0.02	
32	low	24.3±20.0 (II-	-0.0±12.7 (II-1	1.5 ± 0.0	4.44	22.5	
33	low	1.0±0.0	0.4-0.7, 0.3	0.9-1.1, 30.0		22.5	
34	now		52 7±0 0 51 /			20.0	
35		20.0	$33.7\pm 2.0, 31.4$	10.4±0.4, 0.7±2		20	
36	VVZ	30.0	25.4, 15.1	0.7, 44.0		9.2	
37	strong	13.0 ± 0.1 (II=	[) [-			13.0	
38	strong	13.3 ± 0.1 (II=	- 10 0 0 1 (m-1	70101/2-12		23	
39	IOW	21.4±0.5 (n=	1 18.0±0.1 (n=1	7.0±0.1 (n=13		20	
40	moderate	0 7 7 0 /4 0 /	58.7; 27.0	4.2; 42.4		22.9	MINB
41	moderate	8.7±7.6 (1.2-2	21.8±1.0 (0.8-3	1.6±1.3 (0.5-3		21.3	MINB
42	IOW	10.8±16.0 (0.	31.7±0.7 (1.3-4	1.6±0.8 (1.0-3)	7.5	MINB
43	moderate	14.8±15.3 (U.	20.8±0.1 (0.7-1	1.1±0.1 (1.0-1		22.3	
44 15	IOW	34.5-35.8	20.5; 24.7-28.	3.2; 8.5-10.4;		20.1	
45	IOW		18.3; 24.3-25.	2.0; 1.5-2.5; 1		26	UWB
40	low to m	04.0.0.0	60.7-63.6; 25.	1.9-3.8; 43.2-4	<u>-</u>	27	UWB
47	low	31.8±0.2	26.2±0.2	0.8±0.1		21	UWB
40	low	26.9-36.8	17.4-18.4; 23.	3.4-5.1; 20.3		21.6	UWB
50	low		26.1-28.3; 20.	6.7-11.9; 34.1		25.3	UWB
51	W4				4.06	21.2	Kiel
52	W2				4.45	20.9	Kiel
53	W1				4.98	10.8	Kiel
54	VV2				4.81	20.5	Kiel
55	W1				5.17	1.5	Kiel
56	moderate	8.6±8.9 (0.6-2	22.9±3.6 (1.5-1	0.7±0.1 (0.4-0		21.7	MNB
57	W3	15.7±10.6 (0.	411.0±6.9 (1.7-	0.8±0.4 (0.3-1	3.40	20	MNB
58	W3	18.4±0.2 (n=1	I 16.8±0.2 (n=1	1.6±0.1 (n=11		38.0	MNB
59	W3	17.8±0.1 (n=1	l 16.1±0.5 (n=1	0.7±0.1 (n=15		14.1	MNB
60	moderate	19.0±19.9 (2.	C2.1±0.8 (1.3-4	1.2±0.2 (0.9-1		12.4	MNB

2						
3	strong	19.8±25.6 (0.3	3.0±2.0 (1.2-5	50.8±0.2 (0.5-1	20	MNB
4	W2	24.9	16.7	0.7	26.5	MNB
5	moderate	8.7±0.1 (n=11	8.0±0.1 (n=11	8.2±0.1 (n=11	11	MNB
6	W3	24.7±0.2 (n=1	20.9±0.2 (n=1	1.5±0.1 (n=11	2.8	MNB
7	moderate	9.4+14.3 (0.5-	7.6+9.2 (1.2-2	21.0+0.3 (0.8-1	12.3	MNB
8	moderate		57 4. 25 2	2 7. 43 3	26.9	MNB
9	moderate		57 7: 25 6	2 7: 43 0	27	MNB
10	low	17 9+19 7 (1 1	57.1, <u>20.0</u> 51.4+0 5 (1.0-2	2.7, 10.0 20.8+0.1 (0.7-1	21.2	MNB
11	low	17.0±10.7 (1.0	37 5· 48 4	7 6. 23 4	14 4	MNB
12		15 6+17 0 (0 6	67.5, 40.4 61.7±0.1 (1.5.2	7.0, 20.4	17.7	MNB
13	10 W	285 ± 0.2 (0.0	20 1+3 1 (1.3-2	$(0.9\pm0.1)(0.0\pm1)$	24.0	MNB
14	VV I \A/1	20.0 ± 0.2 (II= I	11 0±0 2 (1 6		24.9	
15		14.1 ± 10.1 (3.0	LTT.9±0.3 (T.0-	-1.2 ± 0.0 (0.2-14.70	20.3	
16		17.7±19.0 (1.	12.0±1.0 (1.1-0	$02.0\pm1.1(1.0-3)$	24.0	
17	IOW	44 0140 4 14 1	40.5, 54.3, 20	0.2.1, 2.0, 31.1	20.0	
18		14.0±10.1 (1.8	EIZ. I±7.3 (Z.9-	-0.7±0.7 (0.3-3 4.66	30.1	
19	VV I	28.9	24.7; 8.7		9.1	
20	VV2	23.5±0.1 (n=5	19.7±0.3 (n=5	0.6±0.1 (n=5)	269	MNB
21	VV2	24.6±0.1 (n=4	20.4±0.1 (n=5	5 1.4±0.1 (n=5)	497	MNB
22	W2	38.7±0.7	29.6±0.3	1.5±0.4	14.2	UCLA
23	W3	25.6±0.4 (N=6	22.3±0.4 (N=7	71.5±0.1	21.0	MSN-FI
24	W3	18.6±0.5 (N=7	716.3±0.5 (N=6	51.6±0.1	20.5	MSN-FI
25	W2	18.8±0.4 (N=6	616.5±0.4 (N=6	51.5±0.1	20.3	MSN-FI
26	W3	26.6±0.5 (N=7	720.6±0.5 (N=7	71.2±0.1	20.1	MSN-FI
27	W2	18.7±0.4 (N=6	616.7±0.4 (N=6	51.5±0.1	21.1	MSN-FI
28	W3	19.1±0.4 (N=6	616.5±0.5 (N=7	71.3±0.1	20.1	MSN-FI
29	W4	25.1±0.5 (N=7	720.9±0.4 (N=´	11.6±0.1	21.1	MSN-FI
30 21	W4	24.4±0.4 (N=6	621.0±0.5 (N=6	61.5±0.1	22.0	MSN-FI
ו כ כי	A		49.3±11.3 (28	319.3±12.0 (3.8	30	MNHNP.
32	W3	17.7±10.7 (N=	=11.5±10.1 (N=	=1.0±1.1 (N=82	90.3	Cascadia
37	W2	29.0±0.2 (N=3	323.7±0.3 (N=2	21.4±0.4 (N=26	24.3	Cascadia
35	W1	25.3±9.0 (N=1	112.8±9.5 (N=3	30.9±0.8 (N=33	33.0	Cascadia
36	W2	25.3±0.7 (N=8	321.1±0.2 (N=8	31.6±0.2 (N=8)	43.7	UAz
37	W2	18.9±0.2	16.8±0.4	1.7±0.1	22.4	UAz
38	W2	25.4±1.2 n=10	20.8±0.3 n=1	1.6±0.3 n=10	3 1	UAz
39	W3	18.7±0.2 (n=1	16.5±0.2 (n=1	0.99±0.11 (n=	41.6	UAz
40	W3	25.2±1.0 (N=1		11.6±0.3 (N=10	27.4	UAz
41	W3	19.1±0.3	16.7±0.2	1.74±0.06	31.6	UAz
42	W3	24.9±0.3	20.9±0.5	1.6±0.3	20.8	UAz
43	W3	19.1±0.3	16.9±0.3	1.76±0.05	32.6	UAz
44	W2	18.1±0.2 (n=1	15.4±0.6 (n=1	0.52±0.33 (n=	32.1	UAz
45	W1	30.3+0.5	25.6+0.3	2.3+0.4	22.3	UWB
46	low	21.5-47.7	38.5-43.0	7.1-5.3	24.9	UWB
47	low	16 6-16 8 34	17 6-37 5	0.9-3.5	20.1	UWB
48	W2	24 4+0 3	20 6+0 2	1 4+0 2	221	UWB
49	low	21.120.0	60 7-62 0· 26	.3 4-1 9 44 2-4	20.2	UWB
50	W/1	22 9+0 2	19 5+0 1	3 7+0 7	28.2	
51		22.910.2	33 0-33 1.24	15 0 14 2 24	20.2	
52	\\\/1	27 7+0 4	22 8±0 1	2 1+0 0	20.0	
53	W/3	21.110.4	22.0 ± 0.1	1 4+0 0	20.0	
54	VVJ M/2/2	25 1+1 2	0.1 ± 0.0	1.4 ± 0.0	23.0	
55	VVZ/J	20.111.0	20.910.4		200	
56			10.4-24.0, 59.	. U. O-Z. U, 4. I, Z	9.0 220	
57	VVZ	10.0±U.J	10.1 ±U.Z	1.4IU.1	220	
58		37.8-49.1	33.8-37.2; 12.	2.5-1.8, 45.7-4	20.5	
59	VV I	∠3.4±U.3	19.8±0.4	1./±U.2	04.5	UVVB
60	moderate	22.9±16.6	0.5±0.1	U./±U.1	66	OWR

Running Head

2							
3	low	87.5-88.8	32.0-32.4; 24.	11.3-12.0; 32.	;	21.0	UWB
4	W1/2	19.7±0.2	17.3±0.3	1.4±0.2		199	UWB
5	low		59.9-61.9; 26.	1.7-3.8; 41.7-4	4	20.4	UWB
6	W1/2	25.1±0.4	21.5±0.9	2.1±0.1		44.3	PSF
/	moderate	25.6±10.7	24.4±8.9; 16.8	10.1±2.0; 31.7	,	28.7	UNM
8						20	GUT
9 10	W2	23.0±0.7 (n=2	22.1±7.7 (n=1	1.3±1.0 (n=18		24.58	ROM
10	W2	31.4±1.1 (n=1	24.1±0.8 (n=1	2.1±0.4 (n=13		29.22	ROM
17	W1	24.5±2.2 (n=2	20.0±1.3 (n=3	1.4±0.9 (n=33		20.47	ROM
12	moderate	5.5±6.3 (0.6-1	1.1±0.1 (0.8-1	1.0±0.1 (0.8-1		21.2	MNB
14	W1	18.4	16.1	1.4		160	IGGCAS
15	W2	25.4	21.5	1.5		402	IGGCAS
16	W4		0.5	1.4		618	IGGCAS
17	moderate		30-56, 58-21	11-15, 17-36		3	UCLA
18	low	19.5±0.13 (N=	16.1±0.3 (N=1	111.6±0.3 (N=1		13.6	FMMR
19	W2	28.8±8.8 (n=3	15.6±9.1 (n=6	1.0±0.5	4.76	21.78	UCLA
20	W2	18.0±0.6	16.4±0.6	1.1±0.2	5.57	58.72	UCLA
21	minor				2.94	3.5	CEREGE
22	W2				4.78	18	CEREGE
23	W3	18.3 (n=1)	16.8 (n=2)	1.3	4.78	2	CEREGE
24	minor	. ,				23	CEREGE
25	W3				4.94	125	CEREGE
26					3.52	23	CEREGE
27	W1	25.0±0.2 (n=3	21.8±0.9 (n=2	1.2±0.1	4.84	21	CEREGE
28	W4	24.8±9.6 (n=5	13.2±8.4 (n=4	1.6±1.1	4.27	34	CEREGE
29	minor	(-	(3.71	27.69	CEREGE
30	W2	24.6±1.1 (n=1	17.6±4.4 (n=5	1.6±1.2	4.88	29.87	CEREGE
31		- (61.0±1.8 (n=6	3.7±1.8	3.42	22.10	CEREGE
32			62.2±0.8 (n=3	3.3±1.0	2.67	21.64	CEREGE
33		8.2±10.2 (n=1	1.9 (n=2)	1.0	4.20	1.20	CEREGE
34 25	W1	30.6 (n=1)	25.7 (n=2)	2.5	4.25	21.60	CEREGE
35	W1		- ()	-	4.50	18.04	CEREGE
30 27	W1	30.6 (n=2)	24.7±0.2 (n=4	2.5±0.1	3.30	4.57	CEREGE
20	W1	19.2 (n=1)	17.4 (n=1)	1.4	5.37	20.1	CEREGE
20	moderate	21.5±0.1 (n=3			4.64	27	CEREGE
40		32.9+1.2 (n=3	25.9 (n=2)	2.9	4.51	21	CEREGE
41	minor	11.2+0.2 (n=3				30	CEREGE
42	W3	14.8+9.9 (0.3-	12.1+7.7 (1.4-	0.9+0.6 (0.3-2	4.79	20	MNB
43	W1	23.4±0.2 (n=1	20±0.6 (n=13))1.7±0.1 (n=13		23.4	MNB
44	low		41.0: 34.4	5.8: 36.7		23.8	MNB
45	W1	15 8+10 5 (0 9	11 0+7 9 (2 4-	0 6+0 6 (0 2-3	4 69	36.1	MNB
46	moderate	23.5:36.6	11 8. 10 7	13.436		34.6	MNB
47	low	20.0, 00.0	24.9	29		21.4	MNB
48	low		57 6 [.] 24 9	2.5 2 5 44 2		24.9	MNR
49	W2	23 0+0 1 (n=1	19 2+0 1 (n=1	1.5+0.1 (n=11		204.2	MNB
50		20.010.1 (11-1	50 2· 25 7	2 2· /3 8		204.2	MNR
51		21 5+21 3 (1 /	10 7+0 2 (0 5-0	2.2, 4 0.0 0	<i>A</i> 17	20.0	MNR
52	\M/2	$27.0\pm27.0(12)$	10.1±0.2 (0.0=0	1 6+0 2 (n=11	7.17	25.6	MNR
53	W2 W2	26.0 ± 0.2 (n=1)	13.1 ± 0.2 (n=1 23.3+0.2 (n=1	1.0 ± 0.2 (n=11		27.0	MNR
54	strong	20.7 ± 0.1 (II=1	23.3±0.2 (II= I	1.910.1 (11-11	3 69	15	
55	3001g W/1	21 Q16 2 (N-7	10 3±7 8 /N-	3+2 0 (NI-17)	0.00	100	GUT
56	W/3	21.3±0.2 (IN=	21 A±0 2	J⊥∠.3 (IN-I/)	4.46	17.5	Ann
57	VV-3 \\\/1	20.0±0.2	21.4±0.2	1.4±0.7 2.5±1.0	4.40 1 92	0.5	Vpp
58	VV I \//1	19.1±0.4 20.1±0.0	10.7 ±0.4	2.0±1.9 1.5±0.1	3.67	9.0 16.6	Vpp
59		29.11U.U	23.91U.2	1.0±0.1	J.U/	20	vhh
60	VV3	19.1±0.1	17.0±0.1	1.2±0.1	4./	∠∪	нрр

3	low		24.1±0.2; 7.8±	2.0±0.5; 45.8±2	.93	20.97	Арр
4	W1	22.7±3.4; 24.7	714.8±7.0; 18.1	1.4±2.0; 2.7±44	.69	28.75	Арр
5	low	30.5±16.1	2.0±1.8	2.5±1.5		27.6	UWB
6	low	17.7-30.3	14.7-14.9; 20.	1.2-1.4: 4.0-12		20.4	UWB
7	W2	24.7+0.1	20.8+0.2	1.6+0.2		47.8	UWB
8	low	•	52.9-57.1:26	2.4-3.8: 38.6-4		6.2	UWB
9	W1	23 6+13 7	15 8+7 1	0.8+1.1		16.7	UWB
10	\\/1	18 1+0 2	16.0±7.1	1 1+0 /		55.9	DSE
11	\//1	24 4+0 5	10.4±0.4	1.1±0.4		40.5	PSE
12		29.745.9	13.012.2	1.7 ±0.5		-0.0	
13	1000	20.2-40.0	20 6+0 2	1 7+0 1		20.5	
14		20.0±0.5	20.0±0.2	1.7 ±0.1		40.5	
15	10 W		20.3-23.3, 52.	·30.2-32.0, 14.	60	20.1	
16			25.4±0.0 (II=5	8.3±0.7 3	.08	24.4	CEREGE
17	strong		36.8±1.7 (n=3	7.1±3.0 5	.48	20.8	CEREGE
18	IOW		52.7±8.5, 32.3	214.4±2.3, 30.73	.53	10.02	UCLA
19						20	GUI
20	W3	26.1±0.5 (n=2	21.9±0.2 (n=2			59	SQU
21	W2	25.2±0.2 (n=2	21.1±0.3 (n=2			9	SQU
22	W2	26.1±0.3 (n=2	22.3±0.9 (n=2			52.2	SQU
23	W2	26.1±0.4 (n=2	21.9±0.3 (n=2			45.3	SQU
24	W2	26.2±0.5 (n=2	22.3±0.6 (n=2			57.3	SQU
25	W2	18.0±0.2 (N=3	315±1 (N=3)	4±1 (N=3)		64.3	UBayr
26	W2	31.4±1.6 (N=1	123.6±4.5 (N=1	15.7±12.6 (N=1		21.9	UBayr
27	W1	18.2±0.4 (N=1	16.3±0.7 (N=6)	43.9±2.2 (N=6		49.8	UBayr
28	W2	25.1±3.2 (N=1	117.8±3.6 (N=1	10.7±0.5 (N=1:		27.7	UBayr
29	W2	24.7±0.2	20.7±0.2	1.6±0.3		35.5	UWB
30	W0/1	24.6±3.9	15.8±1.4	1.5±0.9		20.0	UWB
31	W2	24.6+0.2	20.6+0.2	1.7+0.1		26.4	UWB
32	low		33 3-37 5 24	9 3-12 2 33 1		15.4	UWB
33	W1/2	17 5+0 4	15 5+0 3	1 1+0 1		27.4	UWB
34	low	24 0. 75 9	23 9-26 5 58	1 8-2 7 6 8-4		20.4	UWB
35	W/1	16.4+0.3 (n=1	13 3+0 1 (n=1)	1.0 ± 0.1 (n=10.5	30	17.5	MNR
36	moderate	10.4 ± 0.0 (n=1	17.6 ± 0.1 (n=1	0.4 ± 0.1 (n=10.0	.00	20.0	MNR
3/		27.2 ± 0.1 (II=1	17.0 ± 0.1 (n=1	3.4 ± 0.1 (n=11		11	MNR
38		17.5±0.5 (II=1	13.4 ± 0.2 (II=1	1.2 ± 0.2 (II=11)		25.4	
39	now		$0.1\pm0.0(11-12)$	1.3 ± 0.1 (II-12		10.5	
40	moderate	<u> </u>	00.0, 20.0 05 0:0 4	2.0, 43.0		12.5	
41		20.0	20.3, 9.4	0.7, 44.5	70	4.9	
42	VV I	13.4±10.8 (0.3	10.5±7.8 (0.9-	· I.2±I.1 (U.2-4 4	.73	25.2	
43	moderale	3.3		45.1		0.5	
44	IOW	04 5 0 0	54.7; 45.4	16.8; 25.4		22.8	MNB
45	moderate	31.5±8.8	36.0±13.7	11.9±9.6		20.4	UNM
40	moderate		57.7±2.8; 27.8	15.1±3.2; 33.0		11	UNM
47	W2	17.2±9.2	9.7±8.7; 12.2±	0.6±0.4; 33.4±		20.6	UNM
40	moderate		36.4±0.7 (low-	-4.3±0.5 (low-C		24.3	UCLA
49 50	W0/1	18.7±3.5	15.9±0.4	0.9±0.7		44.5	PSF
51	W0/1	24.9±0.1	20.3±0.3	2.2±0.7		66.9	UWB
52	W0/1	21.4±6.2	15.4±2.9	1.0±0.3		27.4	PSF
53	low	92.6-96.2	35.7-47.1; 44.	7.5-11.8; 18.6		20.0	UWB
54	W1	29.5±0.5	24.2±0.4	1.8±0.0		56.6	PSF
55	low	37.1; 58.2	17.6-23.3; 25.	2.9-3.1; 8.9; 3		20.4	UWB
56	W0/1	17.9±8.4	15.0±2.3	0.5±0.2		28.0	PSF
57	low	35.5-51.6	25.6-28.2; 21.	5.2-9.3; 31.3-3		21.6	UWB
58	W0/1	19.4±3.2	15.5±0.3	0.8±0.5		21.5	PSF
59	moderate		56.4; 27.4	15.8; 34.7		20.1	MNB
60	high	18.6	11.6	11		29.4	MNB
-	-						

1							
2							
3	W2	15.3±0.1 (n=1	14.2±2.0 (7.8-	1.4±0.5 (0.3-1	1 4.96	20.3	MNB
4	W2	23.8±0.6 (n=1	20.0±0.7 (n=1	1.8±0.2 (n=11	1	21.5	MNB
5	moderate		52.8	10.0		20.5	MNB
6	W1	31.1±0.2 (n=1	24.9±0.2 (n=1	2.9±0.5 (n=12	2 3.06	29.9	MNB
7	low	49.0	34.3; 59.8; 24	2.0; 1.8; 44.0		25.6	MNB
8	W2	27.9±0.3 (n=5	522.8±0.2 (n=5	2.0±0.2 (n=5))	23.6	MNB
9	low		51.6±6.6; 38.1	14.0±2.0; 32.	7	7.36	UNM
10	W1	32.6±0.1	25.9±0.3	1.6±0.2	3.38	20.4	UWB
11	low	21.3-21.7	10.5-18.1	6.5-14.0		25.0	UWB
12	low	14.6±15.7	0.9±0.8	2.2±1.5		30.2	UWB
13	low	6.4-6.5	2.3-4.1: 1.9-2.	1.3-2.4: 46.4-	2	20.2	UWB
14	W2	23.1±0.9	22.6±4.6	1.2±0.6		51.0	UWB
15	low	27 2+16 6	3 3+3 7	2 2+2 1		20.5	UWB
10	low		60.9-62.6 [.] 27	2 4-4 6: 43 0-	2	23.3	UWB
17	moderate	26 8+11 2	19 5+8 4	1 2+0 5		20.9	UWB
10	low	0 4-2 0	3 3-5 0	0.7-1.9		20.0	UWB
19	W0/1	18 5+0 1	16 1+0 4	1 9+0 2		38.7	LIWB
20		24 4+21 6	10.1 ± 0.4 12.0+13.7	1.910.2		20.1	
21	modorato	24.4121.0	12.0±13.7	1.0±1.0 7 2±2 1 29 5.	1	20.1	
22		34.3 ± 2.4	24.0 ± 2.0 , 10.0	$27.3\pm 2.1, 30.3$	<u>ד</u> >	22.7	
23	VVU.U	24.4±0.9 (II=0	19.2 ± 1.3 (II=4	2.7±1.0 (11=42	4 5 4	20.0	
24	VV4	24.8±1.4	21.4±0.4	1.0±0.2	4.51	20.1	Арр
25	VV3	17.5±0.1	16.2±0.1	1.1±0.1	4.99	20.59	Арр
20	VV1	16.2±11.6	12.6±8.1	1.0±0.7	3.83	24.6	Арр
27	moderate		28.2±0.4, 14.0	4.0±0.3, 41.9	±3.22	65.2	UCLA
20	low	36.3.2±0.2	20.3±3.7, 33.2	3.0±1.8, 11.5	±3.11	20.3	UCLA
30	moderate		51.3±5.7, 34.2	215.0±3.1, 30.9	93.52	21.3	UCLA
31	low	19.1±22.5	1.8±0.7	2.4±1.5	4.63	20.07	UCLA
37		38.4±6.6 (n=1	40.7±19.6 (n=	16.9±7.4 (n=1	1	4.9	lfP
32	W2	17.6±0.4	15.8	1.5		24.5	UNM
34	moderate	32.3±1.0	8.2±1.1	49.5±0.8		21.9	UNM
35	W3/4	16.3±10.4 (n=	7.9±7.4 (n=17	0.5±0.4 (n=17		29.7	23.7 g in ARE
36	low		22.7; 27.7; 64	2.0; 2.7; 7.0; 3	3	22.3	MNB
37	W3	28.0±0.5 (n=1	22.6±0.2 (n=1	1.2±0.4 (n=12	2	26.6	MNB
38	moderate	10.0±8.7 (0.5	-1.8±0.2 (1.5-2	1.4±1.1 (0.7-4	1	22.8	MNB
39	low		0.3	0.3		21	MNB
40	W2	23.4±0.3 (n=1	19.8±0.2 (n=1	1.6±0.2 (n=12	2	47.3	MNB
41	W3	16.81±0.45 (N	√14.90±0.61 (N	1.34±0.20 (N	_	20	CSFK
42	low	(51.0+1.6	2.4+0.7		58.4	UNM
43	W1	18.2±11.1 (N	=9.6±6.2 (N=21	0.5±0.4 (N=2	14.52	7.65	UCLA
44	W2	17.1+8.3 (N=4	411.5+6.1 (N=1	0.8+0.6 (N=1	73.94	4.25	UCLA
45	low to m	24 0-29 5	17 9-19 0 18	2 0-3 8 7 2-9		22.1	UWB
46	W2	24 8+0 3	20 8+0 2	1 3+0 3	•	54.0	PSF
47		72 1-82 0	62 2-63 6· 34	6 3-6 8 38 1-	<u>.</u>	20.7	
48	\\\/1	72.1-02.0 24.9+0.6	20 7+0 2	1 5+0 2	、	20.7	DSE
49		24.910.0	20.7 ±0.2	1.J±0.2	<u>,</u>	29.9	
50		35.1-57.1	21.0-22.0, 10.	22104		21.5	
51		25.4±3.0	22.2 ± 0.2	3.2 ± 0.4	,	20.1	
52	low	0.0 ± 0.0	0.0-0.1, 0.0-0.	0.9-1.1, 44.4-	4	24.7	
53	IOW	11.8±14.2	7.7±0.0	2.2±1.3		20.9	UVVB
54	IOW	15.3	24.3-27.8, 34.	2.7-4.1; 4.5-8		21.2	UWB
55		00 0 0 0 0	040 E 0 0 '''' '		11/1/01	55 /3	
55	W2	22.8±0.3 (N=3	319.5±0.3 (N=3	31.3±0.2 (N=30	04.01	00.70	
56	W2 W1	22.8±0.3 (N=3 22.1±5.7 (N=3	319.5±0.3 (N=3 214.0±5.8 (N=1	1.3±0.2 (N=30 10.8±0.5 (N=10	64.94	22.25	UCLA
56 57	W2 W1 low	22.8±0.3 (N= 22.1±5.7 (N= 9.5-53.6	319.5±0.3 (N=3 214.0±5.8 (N=1 26.4-54.2; 30.	1.3±0.2 (N=30) 10.8±0.5 (N=10) 2.0-4.7; 7.6-1	64.94 {2.86	22.25 20.1	UCLA App
56 57 58	W2 W1 Iow W1	22.8±0.3 (N=2 22.1±5.7 (N=2 9.5-53.6	319.5±0.3 (N=3 214.0±5.8 (N=1 26.4-54.2; 30.	1.3±0.2 (N=30) 10.8±0.5 (N=16) 2.0-4.7; 7.6-1	64.94 82.86 5.17	22.25 20.1 22	UCLA App CEREGE
56 57 58 59	W2 W1 low W1 W1	22.8±0.3 (N=3 22.1±5.7 (N=3 9.5-53.6	319.5±0.3 (N=3 214.0±5.8 (N=1 26.4-54.2; 30.	1.3±0.2 (N=30) 10.8±0.5 (N=10) 2.0-4.7; 7.6-1	64.94 82.86 5.17 4.77	22.25 20.1 22 23.4	UCLA App CEREGE CEREGE
56 57 58 59 60	W2 W1 low W1 W1 moderate	22.8±0.3 (N= 22.1±5.7 (N= 9.5-53.6	319.5±0.3 (N=3 214.0±5.8 (N=1 26.4-54.2; 30. 27.7±4.4; 49.8	31.3±0.2 (N=30 10.8±0.5 (N=16 2.0-4.7; 7.6-1 22.5±0.9; 3.6±2	64.94 {2.86 5.17 4.77 23.43	22.25 20.1 22 23.4 20.1	UCLA App CEREGE CEREGE App

3	low		60.3±0.4; 27.7	2.7±0.5; 42.4±3	3.79	26.2	Арр
4	low	43	34.2±4.1; 40.2	13.4±0.6; 16.3±2	2.72	21.9	Арр
5	low		48.2±7.9; 48.2	215.2±3.6; 32.33	3.15	21.87	App
6	W2	18.8±0.3 (N=2	216.3±0.2 (N=8	1.2±0.2 (N=8)	5.33	20.62	UCLA
7	W2	18.0+0.3 (N=	215.9+0.2 (N=5	1.1+0.2 (N=5) 5	5.31	38.3	UCLA
8	W4	17 2+3 6 (N=:	313 9+3 9 (N=3	31 1+0 5 (N=33	5 17	22 41	
9	W2	18 3+10 8 (N	=18 5+6 5 (N=1	11 2+0 7 (N=153	3.77	20.08	
10		10.5±10.0 (14-	60 7±1 0 53 (11.2 ± 0.7 ($11-13.3$	5.74	5 35	
11		20 01 21 2 /N	$00.7 \pm 1.9, 00.2$	$(2.0\pm0.0, 12.1\pm)$	0 = 1	0.00	
12	low	30.0 ± 21.2 (N=	-4.2±1.5 (IN=0)) 2.4±0.9 (N=0) 3	0.04	21.21	
13	IOW	80.1 (N=1)	60.5±1.1, 54.0	2.1±0.5, 10.8±3	3.24	22.51	UCLA
14	VV1-3	16.7±10.2	12.9±10.1	0.9±0.7 2	1.33	130.3	Арр
15	W2	16.8±11.9; 14	.16.2±13.6; 15	.1.0±0.6; 1.3; 03	3.46	36.43	Арр
16	W2	0.6±0.2	4.1±4.3	0.6±0.5 5	5.60	31.27	Арр
17	W3	25.2±1.3	21.6±0.3	1.4±0.1 4	1.43	4.37	Арр
18	low	36.1±1.4	30.6±4.5; 17.2	22.0±0.5; 38.8 5	5.72	33.9	Арр
19	moderate	21.1±0.1	17.7±0.4	3.8±0.0		9	UNM
20	low		0.1±0.1, 0.0±0	1.3±0.3, 42.1±		20.1	UNM
21	W0/1	17.4±0.2 (n=1	15.3±0.3 (n=1	2.9±0.7		20	lfP
22	moderate	20.2±0.9	25.3±0.8	5.6±0.5		20	UPC
23	low		0.2+0.0.01+0	1 7-4 5 39 7-4		22.2	UWB
24	low	84 6-87 8	57 8-60 0 25	2 5-4 8: 43 3-4		20.3	UWB
25	W/1/2	16 2+8 3	14 4+5 0	1 5+1 8		38.2	
26	low to m	66 1 66 5	50 4 61 8. 26	1717:420/		27.0	
27		21 4 14 2	00102	4.7-1.7, 43.0-4		21.0	
28	low	31.4±14.3	0.9±0.3	0.9±0.2		39.3	
29	IOW	20.4-35.1	11.8-14.2; 23.	0.2-0.3; 2.0-4.		9.7	UVVB
30	VV1/2	25.6±5.6	21.6±3.1	1.3±0.1		29.2	UVVB
31	low		58.5-59.7; 25.	3.1-7.0; 43.2-4		50.6	UWB
32	W4	23.2±5.0 (n=1	17.0±6.7 (n=1	0.9±0.4 (n=12		21.2	lfP
33	W1	29.7±0.5 (n=1	23.5±1.0 (n=1	2.5±1.4 (n=15		22.1	lfP
34	W3-4	22.9±0.3 (n=9)19.3±0.2 (n=8	1.6±0.3 (n=8)		20.6	lfP
35	W4	18.8±0.8 (n=1	16.0±0.8 (n=1	1.1±0.2 (n=19		20.9	lfP
36	W2-3	3.7± 4.6 (n=2	31.6± 0.7 (n=12	20.9± 0.1 (n=12		22.4	lfP
37	W4	3.7± 2.7 (n=2	32.0± 1.4 (n=12	22.1± 1.6 (n=12		24.3	lfP
38	low	17.9±18.4	3.6±5.0	2.0±2.4		20.2	UWB
39	W2	14.2±9.1	16.4±6.7	1.3±1.4 4	1.01	33.5	UWB
40	low		56.8-58.3: 28	4.8-7.0:40.1-4		212	UWB
40	W0/1	27 0+11 3	16 5+8 1	12+0.9 4	1 39	39.6	UWB
42	low	21.0211.0	20 1-27 3.45	29 1-33 0 30		20.5	UWB
43	\\/1	29 2+0 8	23.8+0.8	1 6+0 4		34.1	
45		20.210.0	0.7:25.6	0.9.1.7		24.5	
45	iuw moderate	J4.J±J0.0	0.7, 20.0	0.0, 1.7		24.0	
45 46		40.0.0.4	43.9-49.3, 51.	9.4-10.0, 11.2		33.3	POF
40	VV1/2	16.3±0.1	14.4±0.2	2.3±0.8		27	UVVB
47	nign	36.2±20.2	27.2±17.6	0.6±0.1		17.8	PSF
40	VV2	22.5±6.6	14.3±8.3	1./±2.8 4	1.43	957	Арр
49 50	moderate	18.8 (cores), 2	z 16.3	6.3		24 g	UCLA
50	W2		59.8±1.5 (n=6	2.3±1.7 (n=69		21.2	lfP
51	W2	1.3; 28.3	2.8	0.5		20	MNB
52	low		24.0; 39.3; 17	1.4; 3.1; 42.9		21.5	MNB
55	W2	19.2±0.1 (n=1	17.0±0.3 (n=1	1.5±0.1 (n=10		36	MNB
55 55	W2	14.9±10.4 (0.	713.0±7.2 (1.1-	1.1±0.7 (0.2-34	1.13	22.8	MNB
56	W2	18.8±0.1 (n=7	16.6±0.4 (n=9	1.2±0.2 (n=9)		29.3	MNB
50	W1	18.1±0.1 (n=7	'16.3±0.2 (n=7	(1.6±0.1 (n=7)		20.7	MNB
5/	W1	30.9+0.2 (n=9	25.3+0 3 (n=9	1.9+0.2 (n=9)		22.4	MNR
20	low		63 2. 27 6	2 3 44 1		23.3	MNR
59 60			50 0. 28 5	2.0, 44.1		1 55	MNR
00	10 10		JJ.J, 20.J	2.0, 71.0		1.00	

1							
2							
3	low		58.3; 27.3; 27	5.4; 43.3; 3.3;		27.6	MNB
4	low	22.2-45.3; 92.	29.2; 32.6-60.	3.9; 17.2-23.0		10.0	UWB
5	low		23.4-24.3	2.8-1.3		21.5	UWB
6	W1	17.5±15.5	9.4±9.7	2.9±2.0	5.34	14.1	UWB
/	low		40.1-45.2; 56.	4.0-11.5; 4.9-3		36.8	UWB
8	W1/2	25.6±0.2	21.3±0.3	1.3±0.4		26.2	PSF
9	low	23.9-26.7	17.3-18.0; 18.	1.2-2.3; 13.8-8	:	25.5	UWB
10	low		58.9-60.1; 25.	2.4-3.0; 43.0-4	4	42.2	UWB
17	low	19.9±15.0	4.3±3.2	2.1±1.8		20.4	UWB
12	low	6.6-8.0	10.5-10.7; 5.1	2.9-3.2; 40.8-4	<u> </u>	25.2	UWB
14	low		49.6-53.2; 23.	1.8-3.0; 39.6-4	4	23.0	UWB
15	W3	28.6±0.3	23.2±0.5	2.5±1.2	3.24	28.6	UWB
16	low	34.4±2.1	27.3±0.1	0.9±0.0		8.3	UWB
17	W3	24.9±0.2	20.8±0.1	1.5±0.2	4.15	51.5	UWB
18	low	27.1-34.5	26.6-33.6; 51.	1.8-3.8; 5.1-8.		20.6	UWB
19	low	35.0±1.8	21.3±0.4, 25.5	4.1±0.6, 9.2±2	3.65	20.05	UCLA
20	W4	24.7±0.2 (n =	21.0±0.3 (n =	1.4±0.1 (n = 4		21.5	lfP
21	low		66.4±12.6, 41	16.4±3.2, 30.1		1	Арр
22	low	50.6±15.1 (N=	=30.9±12.1 (N=	51.1±0.9 (N=1	3.18	11.2	UCLA
23	moderate	6.0±5.7	1.1±0.2	0.9±0.2	4.62	31.57	Арр
24	low		27.5±0.2; 10.7	3.4±0.5; 45.2±	3.41	28.13	Арр
25	low	34.5±2.6	24.4±4.6, 16.0	2 <mark>5.9</mark> ±3.8, 35.0±	t	20	UNM
26	low	34.6±2.0	22.5±0.5, 17.2	4.7±0.7, 32.4±	t	20	UNM
27	low	61.5-92.7	22.9-50.2	39.7-33.2	3.95	29	UWB
28	moderate	33.0±3.3	21.3±1.0; 27.9	3.3±0.8; 10.2±	3.7	5.71	Арр
29	low	25.2±14.8	26.0±5.1; 52.7	1.7±1.1; 3.2±1	3.63	29.78	Арр
30	low	25.4±17.2	5.8±9.5	1.2±0.7	4.77	5	Арр
31	W2.0	20.3± 2.3 (n=	£15.1± 4.5 (n=6	1.0± 0.5 (n=6	1	46.1	UAb
3Z 22	W1.0	19.4±0.6 (n=9	17.6±1.2 (n=8	1.0±0.2 (n=81		91.3	UAb
37	W2.0	25.1±0.9 (n=7	21.5±1.0 (n=5	1.3±0.2 (n=50		91.1	UAb
35	W2.0	25.6±1.0 (n=6	22.0±1.0 (n=3	1.4±0.2 (n=39		26.7	UAb
36	W3.0	23.0±10.9 (n=	11.5±7.2 (n=6	0.8±0.6 (n=69		51.8	UAb
37	W2	18.4±0.3	16.3±0.3	1.3±0.2		20	UNM
38	W2	19.1±0.2	17.6±2.3	1.1±0.2		46	UNM
39	W2	28.1±0.5	23.2±2.3	2.1±0.3		25.3	UNM
40	moderate	18.6±0.1	16.6±2.3	2.1±0.3		23.2	UNM
41	low	30.2±15.1	2.0±1.3	2.2±2.2		22.1	UWB
42	W1	24.7±0.8	20.8±1.0	1.6±0.2		47.8	PSF
43	low	20.3-24.5; 9.6	5 11.8-19.5	10.2-12.4		20.7	PSF
44	W2	24.9±1.0	20.8±0.1	1.4±0.1		29.0	PSF
45	moderate	6.4±8.0	1.2±0.4; 1.8	1.8±1.4; 31.1	4.23	37.82	Арр
46	W4	22.9±0.6 (N=2	121.3±0.6 (N=1	1.3±0.2 (N=15	4.64	75.1	UCLA
47	W4	23.7±0.7 (N=1	121.5±0.8 (N=1	1.3±0.1 (N=14	4.58	31.8	UCLA
48	W3	22.8±0.5 (N=1	120.9±0.8 (N=1	1.2±0.3 (N=15	4.89	21.01	UCLA
49	W3	23.1±0.6 (N=1	121.2±0.7 (N=1	1.1±0.2 (N=16	64.91	29.7	UCLA
50	moderate	28.5±5.7	33.3±10.8,25.	13.3±11.5,30.	(20	UNM
51	W3	30.5±0.4 (n=7	′24.8±0.4 (n=7	2.1±0.5 (n=7)		28.3	MNB
52 53	W3	30.3±0.1 (n=1	24.8±0.2 (n=1	2.4±0.2 (n=12		29.8	MNB
54	W3	24.5±0.1 (n=7	′20.6±0.2 (n=7	1.7±0.1 (n=7)		34.6	MNB
55	W1	32.8±0.2 (n=1	26.4±0.3 (n=1	1.7±0.2 (n=10	3.77	31	MNB
56	moderate		59.4; 26.5	2.6; 43.2		31.5	MNB
57	W5				4.70	23	CEREGE
58	W2	18.9±7.5 (n=1	14.4±7.9 (n=6	0.9±0.7	4.37	22	CEREGE
59	W2				5.13	315	CEREGE
60	W1				5.14	216	CEREGE

3	W2/3	14.7±1.3 (n=:	36.6±3.7 (n=2	20 1.0±0.1		20	lfP
4	low		49.2±7.0, 34	.313.9±2.2, 3	0.7	14	UCLA
5	W3				4.73	119	CEREGE
6	W2				4.48	180	CEREGE
7	W2/3				4.50	145	CEREGE
8	W3				4 88	78	CEREGE
9	W3				5 12	36	CEREGE
10	W2				4.55	45	CERECE
11	VVZ	57 4 1 4 G E	267 22012	440 40 413	4.55	40	
12		57.4±10.5	30.7, 32.0±2		.7,	20.01	UCLA
13	VV4	24.7±0.2	21.6±0.2	1.9±0.2	4.24	20	Арр
14	VV3	8.3±0.1	8.5±0.3; 3.4:	±01.1±0.3;46	.9±5.01	25.08	Арр
15	low	5.3±4.6 (0.4-	11.1±0.2 (0.9	-11.3±0.1 (1.0	0-1	1.2	MNB
16	low	38.4	24.2; 25.2; 5	58 2.0; 2.3; 3.1	1; 4	20.1	MNB
17	W2	24.9±0.3 (n=	1.21.0±0.2 (n=	=1.1.6±0.1 (n=	:12	29.2	MNB
18	low		63.1; 32.4	6.9; 42.4		45.4	MNB
19	W2	24.8±0.3	20.7±0.2	1.6±0.2		44.7	PSF
20	W2	26.2±11.3	12.3±3.9	1.2±1.3	5.02	24.7	PSF
21	W1	24.9±0.4	20.5±0.2	1.6±0.1		48.08	PSF
22	low	10.9+1.4 (n=	3 11 1-11 3	1.6-3.2	4.80	10.7	UWB
23	W1	24 5+0 2	21 0+0 4	15+02		23 57	PSF
24	W/1/2	19 3+0 2	17 2+0 5	1.5±0.2		60.68	PSF
25	\\/1	24 7±0 2	20.0+0.6	1 3±0 2		26.44	
26		24.7 ± 0.2	20.9±0.0	1.3±0.2		20.44	
20	VVZ	19.1±0.3	16.9±0.1	1.3±0.2		30.75	PSF
28	VV1	24.2±0.7	20.9±0.8	1.4±0.4		22.34	PSF
20	W2/3	19.4±0.4	17.0±0.8	1.5±0.2	-	33.42	PSF
30	low	30.1±10.0	21.2±2.5; 32	2.43.2±0.2; 11	.6±	21.53	Арр
31	low	26.1-27.7	23.9-25.3; 5	7. 2.1-3.3; 3.3	6.	21.6	UWB
27	W2	25.6±0.8	21.6±0.9	3.4±1.0		61.6	UWB
22	low	70.7-85.6	31.1-33.1; 5	0. 5.6-6.0; 23	.9; :	27.4	UWB
27	W2	18.5±0.1	15.9±0.7	1.0±0.7		32.5	UWB
25	low	3.0-3.3	3.5-3.8; 1.1-	1.1.7-1.9; 44	.8-4	23.8	UWB
26	low		58.3-61.4; 2	7.2.2-4.8;40	.1-4	22.1	UWB
50 77	moderate		57.6: 25.6	4.1:43.7		20.7	MNB
27 20	low		27.6	32		21.3	MNB
20	low		56 4· 22 8	2 2 [.] 45 2		21.0	MNB
39		0 2+7 5 (0 5 4	21 6±0 2 (1 5	2.2, +0.2	8 0	20.3	MNB
40	1000	$3.2\pm7.5(0.0-7)$	21.0±0.2 (1.5 51.0±0.7 (1.1	20.9±0.1 (0.0	D-0 P 1	14.7	
41	VVZ	15.5±15.9 (1.	CI.9±0.7 (I.1	-31.0±0.2 (0.0	1-1 1.1	20.02	Ann
42	IOW		$02.7\pm0.3, 27$.21.9±0.1,44.		20.02	Арр
43	IOW	00.0.0.4.05	38.4±4.3; 27	.511.8±1.7; 3	2.83.13	21.77	Арр
44	IOW	32.8±2.4; 35.	925.7±1.7; 18	3.C9.3±1.1; 33	.5±2.82	16.95	Арр
45	W2	21.9±16.3 (N	=3.6±4.9 (N=	121.2±0.7 (N=	=124.62	20.04	UCLA
46	W2	17.9±15.9 (N	=4.4±5.7 (N=	8) 1.8±1.2 (N	=8) 4.58	20.21	UCLA
4/	W2	23.6±0.2	20.4±1.0	1.3±0.1		27.1	UWB
48	low	19.8±3.7	28.8; 26.6±4	.44.6; 10.4±4	.7;	54.0	UWB
49	W2	14.0±6.5	13.2±3.6	1.8±1.9	5.21	26.8	UWB
50	W2	29.3±13.6	11.0±7.4	1.6±2.0	3.95	22.0	UWB
51	low	33.3±0.3	25.5±1.8	3.2±0.8		20.4	UWB
52	low	42.6-55.8	36.0-52.8: 1	4.2.2-4.6: 39	9-4	24.0	UWB
53	low	27 8+30 2	0 8+0 2	2 2+1 4		23.1	UWB
54	low	39 3+0 2	30 8+0 3	1 4+0 3		21.8	UWR
55		31 0+0 2	0.0±0.0	1.7±0.0 17 0±0 0		21.0	
56		01.91U.Z	9.210.0 21.6±14.0	0.0±0.0 ידו.ש±0.0		20.0	
57		33.0±13.1	21.0114.9		0 4 4 00	21.3	
58	IOW	14.4±10.3 (1.	11.4±0.0 (0.8	-∠ 1.0±0.1 (0.9	9-14.20	20.3	
59	IOW	12.2±17.3 (0.	č10.5±14.2 (1	1.12.5±0.9 (1.0	0-4 3.48	20.3	MNB
60	moderate		52.0; 26.2	7.1; 40.8	2.74	20.3	MNB

2							
3	W1	18.1±0.5 (N=3	14.4±1.0 (N=4	1.7 (1.0-3.5, N		24	UTok
4						6.5	GUT
5						4.01	GUT
6	W4	29.8±0.2 (n=7	24.5±0.1 (n=7	2.4±0.1 (n=7)		21.9	MNB
7	low	· ·	67.4; 24.8	3.3; 41.8		30.4	MNB
8	low	20.1±0.1 (n=1	17.0±0.2 (n=1	7.6±0.1 (n=11		20.6	MNB
9	W3	16.8±20.1 (1.2	1.6±0.6 (1.1-3	1.1±0.2 (0.8-1		24.6	MNB
10	W1	18.5+0.2 (n=7	15.9+0.1 (n=7	1.3+0.1 (n=7)		23.9	MNB
11	moderate	31.5	27 0. 9 4	18.46.3		22.5	MNB
12	low	78.0	42 5	30.3		16.2	MNR
13	moderate	37 9 32 8	28 8· 11 9· 22	1 2. 44 6. 1 1		20.8	MNR
14	low	07.0, 02.0	59.8.26.0	2 4. 44 0		57	MNR
15	moderate		10 7· 58 8· 24	5 0· 1 6· <i>1</i> 2 0		20.0	MNR
16	moderate		61 5· 25 8	2.3, 1.0, 42.3		20.0	MNR
1/		20.2 ± 0.0 (n=1	01.3, 23.0	2.7, 43.0	4	20.0	
18	VV 1.U	29.3± 0.9 (II-	$124.1\pm0.0(11-0)$	1.5± 0.5 (II=04	1	40.9	
19	vv3	19.0±0.2	10.0±0.2	1.0±1.3		17.5	
20	IOW	43.0-45.0	24.0-25.0, 27.	3.5-6.4; 9.2-12	2	20.3	
21	VV1	24.7±0.5	21.1±0.1	1.5±0.3		164	UWB
22	low	18.5±0.2	16.1±0.1	4.8±0.1		22.4	UWB
23	low	21.7±17.1	16.6±0.2	1.6±1.3		22.4	UWB
24	low	23.1-43.4; 97.	19.1-21.1; 60.	7.1-11.5; 20.1		13.5	UWB
25	low	24.1±14.4	3.2±2.8	2.5±2.3		6.1	UWB
26	low	62.6-63.3	48.4-51.5; 26.	5.1-7.3; 32.9-3		37.1	UWB
27	W1	18.8±0.2 (n=5	16.4±0.2 (n=4	1.6±0.4	5.08	5.88	CEREGE
28	minimal				4.48	23	CEREGE
29	low	32.2±1.1 (n=3	23.2 (n=1)	3.5	4.48	24.3	CEREGE
30					3.38	20	CEREGE
31					2.72	23	CEREGE
32					2.95	4.43	CEREGE
33	low		31.3±0.1 (n=2	2.2±0.1	5.96	13	CEREGE
34 25		29.8±0.0 (n=3	,		4.73	7.90	CEREGE
35	hiah	32.5±0.2 (n=7			3.42	20.23	CEREGE
0C 77	hiah	24.9+13.9 (n=	4.3+1.2 (n=3)	1.5+0.0	4.81	22	CEREGE
3/ 20	moderate	20.2+13.7 (n=	1.4 (n=1)	4.9	4.42	26.9	CEREGE
20	mederate	20:22:00:1 (65 5+1 9 (n=5	2 2+0 5	3.21	21.1	CEREGE
39			60.0±0.9 (n=3	2 1+0 1	2.66	20.5	CEREGE
40			63 9+1 8 (n=5	3 1+1 5	3.24	13.2	CERECE
41	high	23 0+16 3 (n-	3.4 ± 1.0 (n=3)	2 2+0 0	3 71	33.0	CEDECE
42	moderate	20.9110.0 (11-	34.8 ± 0.3 (n=3)	2.2±0.3	5.20	21.7	CERECE
44	moderate		113 ± 0.8 (n=4	2.9±0.2 1 0±1 3	3.20	21.7	CEDECE
45	\\/1	17 6+7 9 (n-1	41.3 ± 0.0 (II=4	4.0±1.5	J.24 4 02	12 94	CEDECE
46		17.0±7.0 (II-1	11.2± <i>1</i> .1 (II=1	0.9±0.0	4.92	13.04	
40					2.43	21.2	OFDEOE
48	VV4	11.0.10.1 /	0.0(n-0)		4.17	5.22	CEREGE
49	VV3	11.2±10.1 (n=	8.3 (n=2)	1.1	4.78	21.9	CEREGE
50	VV1	19.6 (n=2)	17.3 (n=2)	1.3	5.37	20.7	CEREGE
51		21.5±8.3 (n=6		/	4.62	22.5	CEREGE
52	W3	20.2±14.3 (n=	14.3±9.9 (n=1	2.0±2.1	4.24	17.6	CEREGE
53	low	31.2±0.2 (n=6			5.42	20.2	CEREGE
54	W0/1	31.2±0.2	25.4±0.1	1.8±0.3		45	UWB
55	W2	25.2±0.3 (n=1	21.3±0.9 (n=1	1.7±0.4 (n=10		50	IGCAS
56	W2	19.1±1.4 (n=1	17.1±0.6 (n=1	1.4±0.3 (n=10		50	IGCAS
57	low		55.1±0.7, 25.8	3.2±0.3, 39.0±	t	20	lfP
58	low	85.4±0.4	22.3±0.8, 56.6	33.4±1.7, 13.8	3	10.2	lfP
59	Low	38.7±0.2; 38.8	19.8±6.7; 29.9	1.0±1.0; 1.3±0]	20	lfP
60	W3	16.9±6.8, 24.5	20.9±0.7	1.7±0.3		20.5	UCLA

2							
3	W2	16.9±6.4	9.4±5.4	1.1±1.2	4.3	28.98	UCLA
4	W3	24.1±0.6	20.5±0.5	1.2±0.2		20.2	UCLA
5	low	14.0±20.6	1.4±0.5	1.0±0.2		4	UCLA
6	moderate		41.1±2.9, 38	3.32.2±1.0, 10	.4±	20.77	UCLA
7	W2	27.5±0.4	23.0±0.6	1.6±0.4		20.3	UCLA
8	W2	30.3±0.3	24.4±0.2	1.8±0.2		20.8	UCLA
9	W3	40.4±0.9	10.0±0.8	46.0±0.8		5.1	UCLA
10	W3	18.1±10.5	13.5±9.3	1.2±0.4	4.06	7.3	UCLA
11	W1	30.1±0.4	26.9±0.3	1.3±0.2		2.1	UCLA
12	W2	17.6±0.3 (N:	=613.5±2.2 (N	=50.47±0.12 (N=	31	FMMR
15 1/I		4.92±7.11 (r	n=1.66±0.38 (r	n= 4.32±3.66		20	IGCAS
15						7.9	Cascadia
16		37.2±0.1 (N:	=430.9±6.2 (N	=32.2±0.8 (N=	=35	22.5	Cascadia
17	W1	24.3±1.0 (N	=721.2±0.9 (N	=21.3±0.4 (N=	=29	457.2	Cascadia
18	W1/2	23.6±1.1	16.7±3.7	0.5±0.2		20	lfP
19	W3	23.3±0.5	19.5±2.9	1.0±1.0		20	lfP
20	W3	17,6±0.1 (n=	= <mark>1 15.3±</mark> 3.6 (5.	7-0.9±0.5 (0.3	3-1	29.3	MNB
21	W1	23.8±0.7 (n=	=1 18.0±4.2 (7.	8-0.6±0.1 (0:3	3-0	83.7	MNB
22	W2	18.5±0.2 (n=	=5 16.8±0.8 (n=	1 1.0±0.3 (n=	:5)	37.7	MNB
23	W1	19.3±0.7 (n=	=5 16.6±0.2 (n=	=5 1.4±0.1 (n=	·5)	59.5	MNB
24	W1	26.9±0.1 (n=	=522.2±0.3 (n=	=5 1.1±0.4 (n=	·5)	42.1	MNB
25	W2	18.3±0.1 (n=	=6 16.4±0.4 (n=	=5 1:2±0.1 (n=	·5)	76.8	MNB
26	moderate	11.0±12.0 (0).€1.2±0.2 (1.0	-11.1±0.4 (0.9)-2	16	MNB
27	moderate	13.3±16.2 (0).51.3±0.3 (1.0	-11.3±0.3 (0.9	9-2	22.8	MNB
28	low	30.2	25.7	0.6		21.6	MNB
29	moderate		58.4: 29.7	6.1: 41.2		21.7	MNB
30	low	21.3: 95.5	49.2: 23.3: 3	38.4.3: 41.0: 2	1.5	21.1	MNB
31	low	12.5±18.5 (0).5		5	3.9	MNB
32	low		60.8: 25.5	2.6: 44.5		23.2	MNB
33	low		55.2: 29.7	7.9: 40.1		5.1	MNB
34		6.28±0.6 (N	=1	,		20.5	MSN-FI
35	W2	17.6±0.1 (n=	=5 16.1±0.2 (n=	=5 1.6±0.3 (n=	:5)	28.1	MNB
30 27	W3	16.9±0.1 (n=	=5 15.0±0.2 (n=	=5 0.7±0.1 (n=	:5)	43.4	MNB
38	W2	23.8±0.2 (n=	=520.4±0.1 (n=	=5 1.6±0.1 (n=	:5)	35.8	MNB
20	W3	17.6±0.1 (n=	=5 16.0±0.1 (n=	=5 1.5±0.2 (n=	:5)	23.6	MNB
40	W1	31.6+0.2 (n=	=7 25.3+0.2 (n=	=6 1.6+0.2 (n=		36.7	MNB
41	W3	30.9+0.2 (n=	=625.1+0.2 (n=	=6 2.3+0.2 (n=		34.1	MNB
42	low	30.0	25.9:16.0	0.9: 48.7	- /	4.1	MNB
43	W3	18.8±0.4 (n=	=5 16.5±0.1 (n=	=5 1.6±0.1 (n=	:5)	34	MNB
44	W2	13.5±17.1 (0).81.9±0.9 (1.2	-41.8±1.1 (1.0)-4	20.7	MNB
45	W2	18.4+0.1 (n=	=5 16.3+0.2 (n=	=5 1.5+0.1 (n=	:5)	21.9	MNB
46	low	10112011 (11	25.8. 45.1. 1	8.3.8: 5.9: 42	.2:	0.32	MNB
47	W2	10 7	10 7 3 7	2 4 45 6	,	18	MNB
48	W2	23 8+0 1 (n=	=520 1+0 1 (n=	=5 1 6+0 1 (n=	:5)	20.5	MNB
49	moderate	11 4+0 1 (n=	=5	0	0)	15.1	MNB
50	low	24 6-31 0	31 8+7 2.48	8 53 9+2 8· 10	5.613	24.5	Ann
51	W1	35 3+0 7	28 0+3 6: 14	1012+05:31	5 4 32	20.1	Ann
52	W3	15 7+11 0	14 6+6 3	1 3+0 9	4 01	26.1	Ann
53	low	26 0+7 1	29 4+11 8.3	1.0±0.0 88.3.3+0.8·13	8+2.98	31.26	Ann
54	moderate	14 6+13 R	17 3+0 3	1 6+0 1	3 04	<u>4</u> Q	Δnn
55		17.0110.0	30 7+1 0.12	14 0+1 1·22	5+2 54	4 R	Δnn
56			61 5+0 6' 5	5 C2 7+0 8· 11	0+2 77	0 12 23	Δpp
57		55 2+6 7	27 8+2 2. 1/	LF3 <u>4</u> +1 0. 2 7	.0±2.11 7+13 15	22.20	- Δnn
58	moderate	5 0+2 0. 22 0	27.0±3.2, 44 0+1 8+1 6	1 3+1 2	3 14	20.3	- Δnn
59		33 5 (Dia).	8000 010 5. 40 01 1.01 1.0	1.3±1.2 8 /2 6±0 7· / 0	0.14 2+23 70	20.J 22 QE	λυμ Δυμ
00	10 00	JJ.J (DIU), (0222.210.0, 40	··¬∠.0±0.1, 4.0	J_2 J.I U	22.00	74V

3 4	low	8.6±10.5 (n=	=1 5.4±4.5 =8 16 6+0 6 (n	1.8±1.0 =1 1 4+1 4 (n=	4.30 :10	30.75 50	App IGCAS
5	moderate	10.0±0.2 (N	=1		10	20 15	
6	low	10.0±0.2 (1	' 31 5+0 7·1	6 (3 7+0 4· 30	5+276	23.89	Ann
7	1010	18 7±1 0 (n-	-2.33 0+2 6 (n	-10.4 ± 1.5 (n-	-16	20.00	
8		40.7 ± 1.0 (II-	-2/33.9±2.0 (II -7.20.0±10.6 (-19.4±1.5 (11-	-10	20	
9		25.4±7.4 (II-	-7 29.9±10.0 (11-4.0±3.4 (11-	-	20	PINIO
10	14/4		64.0±1.6 (N	=82.5±1.6 (n=	=8);	20	PMO
11	VV1				4.56	24.3	Kiel
12	VV1				4.82	23.0	Kiel
13	W2				5.17	25.4	Kiel
14	moderate	24.5-40.6	20.6-24.0; 1	14.5.8-6.8; 37.	.3-4	22.2	UWB
15	moderate		32.9; 19.8	3.8; 39.9		24	MNB
16	low	3.2	3.9; 1.1	1.9; 44.5		25.6	MNB
17	low	23.7; 80.8	19.6; 8.2; 3	8.33.2; 44.1; 1	5.3	10.8	MNB
18	W3	18.0±0.2 (n=	=516.2±0.2 (n	=5 1.5±0.1 (n=	=5)	22.2	MNB
19	W1	15.8±9.5 (5.	6-10.8±8.0 (1	.5-1.2±0.4 (0.1	7-1	23.2	MNB
20	high		33.9; 12.6	2.2; 44.9		13.7	MNB
21	W2	18.0±0.1 (n=	=515.7±0.1 (n	=5 1.3±0.1 (n=	=5)	22	MNB
22	low	35.3	24.5	2.0	,	20.6	MNB
23	W2	2.7: 19.3	3.3	0.8		16.5	MNB
24		,	0 27-1 16 (n=10.93-1.45		72.9	GUT
25	W/2	18 7+9 4	13 7+6 6	1.0+1.4		30	
26	moderate	88 /	27 1+3 1.5	3 13 1+0 1.5	3+3	20.1	
27		19 5±0 1	27.1±3.1, 3	1 5±0 1	010	20.1	
28	modorato	10.510.1	10. <u>31</u> 0.0	15 1+5 0		23.9	
29	moderate	04 4 10 0 (N	00.7±0.0	15. I±5.U	25	21.9	
30	CVV	24.4±0.2 (N	=222.1±0.2 (N	$1=22.0\pm0.1$ (N-	-20	30	UCLA
31	VV5	19.8±0.2 (N	=218.9±0.2 (N	I=21.9±0.1 (N=	=25	4.8	UCLA
32	VV4	19.4±0.2 (N	=218.8±0.2 (N	I=21.9±0.1 (N=	=25	14.3	UCLA
33	W3	24.3±1.5	20.7±1.5	1.3±0.5		39.4	UCLA
34	W0/1	25.1±0.7 (N	=120.5±0.5 (I	N= 1.5±0.2 (N=	=114.85	423.86	SMNH
35	W2-3	21.47±7.10	(1.13.51±7.98	(22.04±2.45 ((0.1	102.72	UrFU
36						20.9	lfP
37						287	CEREGE
38	W0	H6: 19.3±0.	2 (H6: 16.9±0.	.2 (H6: 1.56±0	.21	550	UOslo
39	W2	28.3±0.2	23.4±0.5	1.6±0.3	3.41	54.2	UWB
40	W2	24.2	20.8	1.4		63	IGGCAS
41	W1	16.7±0.4 (n=	=1 15.2±0.8 (n	=8 1.0±0.6 (n=	=8) 5.5	56.0	lfP
42	W2	19.5±0.2 (n=	=5 17.2±0.2 (n	=5 1.3±0.3 (n=	=5) 5.1	70.6	lfP
43	W3	25.2±0.4 (n=	=521.0±0.3 (n	=5 1.2±0.2 (n=	=5) 4.2	3.6	lfP
44	W1	· ·		· ·	4.72	11.06	CEREGE
45	moderate		19.2±0.3 (n	=3 4.8±0.1	4.92	13.72	CEREGE
46	W3	24.9 (n=1)	21.8 (n=1)	1.6	4.66	20	CEREGE
47	W1				5 25	67.5	CEREGE
48	W1				5.25	21	CEREGE
49					0.20	5616.88	Vernad
50	\\/1	24 0±0 1 (N	-120 2±0 2 (N	I-11 4±0 2 (NI-	-12	369 /	Vernad
51		24.0±0.1 (N	$= 120.2 \pm 0.2$ (N	ים, 1 10±0 (א− 11.4±0.2 (א− עמים 1 10±0 10 (-1J (n-	500.4	
52	VV4	10.04±0.00	(11-10.49±0.19	(II I. IO±0. IO (4.	50	IGCAS
53	IOW	28.8-35.2	21.8, 23.7-3	30. 3.8, 8.0-10.	.4,	21	
54	VV4		10 5 0 0 1	-447.40	4.01	21	
55	VV1	17.6 (n=1)	10.5±0.8 (n	=4 1.7±1.2	5.10	23.5	CEREGE
56	VV2	25.1	20.9			181.6	WAM
57	VV2	16.1±7.0 (n=	=210.1±6.2 (n	=20.5±0.3 (n=	=22	30.8	ITP
58	W3	18.6±0.7 (n=	=4 15.9±0.1 (n	=3 1.6±0.1(n=	3)	0.5	IfP
59	W3	27.3±0.1 (n=	=522.5±0.3 (n	=5 1.6±0.2 (n=	=5)	1.5	IfP
60	W3	26.5±0.4 (n=	=521.8±0.7 (n	=5 1.6±0.3 (n=	=5)	2.2	lfP

2				
3	W3	25.1±0.8 (n=521.4±1.1 (n=5 1.4±0.2 (n=5)	0.4	lfP
4	W2-3	$19\ 0+0\ 5\ (n=5\ 16\ 9+0\ 2\ (n=5\ 1\ 3+0\ 2\ (n=5))$	0.8	lfP
5	W3	186+0.4 (n=5163+0.2 (n=513+0.2 (n=5))	27.6	lfP
6	W2	$17 0+4 3 (n=2.12 6+5 1 (n=2.1 6+2 0 (n=2.9 1 1 6+2 1 \text$	21	IfP
7	W2	28.1 ± 0.5 (n=5.23.1±0.9 (n=5.1.6±0.3 (n=5))	5.4	IfD
8	W2 W2 3	27.2 ± 0.5 (n=5.23.1±0.3 (n=5.1.5±0.3 (n=5))	2.8	IfD
9	VVZ-3	27.210.5 (11-525.111.1 (11-4 1.010.5 (11-4))	2.0	
10	VVZ	19.2 ± 0.0 ($11-5$ 10.4 ±0.2 ($11-5$ 1.2 ±0.1 ($11-5$)	10.0	
11	VVZ-3	27.1 ± 0.3 (n=4 22.4±0.3 (n=4 1.7±0.4 (n=4))	2.8	ITP
12	VV2-3	27.5±0.4 (n=523.0±0.9 (n=3 1.9±0.2 (n=3)	2.6	ITP
13	W3	26.9±0.2 (n=4 22.8±0.3 (n=5 1.5±0.5 (n=5)	11.4	IfP
14	W3	19.2±0.3 (n=516.7±0.4 (n=4 1.2±0.3 (n=4)	7.8	IfP
15	W3	18.6±0.3 (n=516.4±0.2 (n=51.3±0.2 (n=5)	9.8	IfP
16	W2	25.1±0.6 (n=521.2±0.7 (n=5 1.3±0.3 (n=5)	21.9	lfP
17	W2	25.2±0.3 (n=520.9±0.2 (n=5 1.6±0.2 (n=5)	7.9	lfP
18	W2	24.9±0.3 (n=421.3±0.6 (n=5 1.4±0.3 (n=5)	11.7	lfP
19	W2-3	26.1±0.6 (n=4 <mark>21.5</mark> ±0.5 (n=6 1.6±0.2 (n=6)	0.9	lfP
20	W3	25.3±0.5 (n=421.5±1.6 (n=51.6±0.3 (n=5)	0.8	lfP
21	W2	17.4±0.4 (n=315.5±0.8 (n=31.3±1.5 (n=30	29.7	lfP
22	W2	16.8±0.4 (n=214.8±0.8 (n=21.4±1.7 (n=29	10.5	lfP
23	W2	17.6±0.9 (n=115.8±0.7 (n=10.9±0.2 (n=13	15.9	lfP
24	W2-3	26.4±0.9 (n=520.7±0.4 (n=5 1.8±0.4 (n=5)	14.6	lfP
25	W2	18.6±3.6 (n=214.7±5.0 (n=21.6±1.7 (n=24	37.4	lfP
26	W2	18.6±2.8 (n=113.9±4.5 (n=11.4±1.2 (n=17	7.2	lfP
27	W2	24.8 ± 0.6 (n=520.7±0.4 (n=41.7±0.1 (n=4))	14.9	lfP
28	W2	23.8+0.3 (n=4.19.7+0.4 (n=5.1.5+0.2 (n=5))	84	lfP
29	W2	18.9+0.4 (n=5.16.4+0.3 (n=4.1.2+0.1 (n=4))	5.8	lfP
30	W1-2	235+04 (n=5201+04 (n=518+05 (n=5))	3.8	IfP
31	W3	187+03 (n=5168+02 (n=512+02 (n=5))	29.7	IfP
32	W3	18.5 ± 0.1 (n=5.16.7±0.2 (n=5.1.2±0.2 (n=5))	13.2	IfD
33	W3	235 ± 0.4 (n=5201±0.4 (n=51.8±0.5 (n=5))	7.2	IfD
34	VV3 \//2	23.3 ± 0.4 (II- 320.1 ± 0.4 (II- 31.0 ± 0.3 (II- $3)$	7.5	
35	VV3	17.2 ± 0.3 (II-115.0±0.7 (II-11.0±1.4 (II-15)	J.7	
36	VVZ	14.4 ± 7.9 (II=5 15.3±5.1 (II=5 1.2±0.5 (II=5))	14.0	
37	VV1-2	19.5 ± 0.8 (n=517.0±0.8 (n=51.5±0.3(n=5))	9.9	ITP
38	VV2	25.9±0.4 (n=521.0±0.7 (n=3 1.5±0.1(n=3)	8.6	ITP
39	W3	16.8±0.6 (n=514.9±0.5 (n=4 1.1±0.1(n=4)	3.3	IfP
40	W1-2	18.8±2.6 (n=115.9±3.9 (n=21.5±1.5 (n=20	9.8	IfP
41	W1	18.8±0.6 (n=516.5±0.6 (n=51.2±0.2(n=5)	19.2	IfP
42	W2	24.3±0.2 (n=520.3±1.1 (n=3 1.7±0.2(n=3)	37.5	lfP
43	W3	24.0±0.2 (n=520.5±0.3 (n=5 1.3±0.2(n=5)	36.5	lfP
44	W2-3	25.3±1.0 (n=420.9±0.3 (n=4 1.3±0.2(n=4)	27.7	lfP
45	W2	24.9±0.9 (n=420.2±0.8 (n=4 1.3±0.2(n=4)	16.1	lfP
46	W1	17.6±0.5 (n=616.0±0.7 (n=4 1.0±0.3(n=4)	18.7	lfP
47	W3	17.8±0.3 (n=4 15.8±0.5 (n=5 1.3±0.2(n=5)	0.4	lfP
48	W2	17.5±0.2 (n=515.7±0.3 (n=51.0±0.1(n=5)	8.2	lfP
49	W2-3	25.2±0.5 (n=520.9±0.2 (n=5 1.5±0.3(n=5)	19.6	lfP
50	W1-2	24.6±0.2 (n=520.6±0.1 (n=5 1.5±0.3(n=5)	29.9	lfP
51	W2	22.9±0.6 (n=519.2±0.7 (n=51.2±0.2(n=5)	22.2	lfP
52	W1-2	20.8±3.6 (n=19.7±7.2 (n=181.7±2.2 (n=18	14.0	lfP
53	W1	17.9±0.8 (n=515.6±0.4 (n=51.1±0.5(n=5)	18.1	lfP
54 55	W2	25.3±1.0 (n=520.9±0.5 (n=4 1.4±0.2(n=4)	25.4	lfP
55 56	W1-2	24.6±0.2 (n=520.6±0.1 (n=51.5±0.3(n=5)	33.9	lfP
50 57	W1	18.3±0.5 (n=516.1±0.4 (n=51.1±0.1(n=5)	27.3	lfP
5/ 50	W2-3	25.2+0.4 (n=5.21.5+0.9 (n=5.1.2+0.2(n=5)	4.2	lfP
50 50	W3	25.2±0.8 (n=4.21.1±0.8 (n=5.1.5±0.3(n=5)	3.2	lfP
59 59	W1-2	17.9 ± 0.7 (n=5.16.5±0.8 (n=4.1.5±1.0(n=4))	16.7	lfP
00	··· —			

2				
3	W1-2	24.7±1.1 (n=520.4±0.3 (n=5 1.4±0.2(n=5)	5.8	lfP
4	W2	24.4±0.2 (n=420.5±0.2 (n=51.4±0.4(n=5)	10.2	lfP
5	W4	24.4±0.2 (n=520.3±0.3 (n=51.2±0.2(n=4)	24.7	lfP
6	W2	18.6±0.6 (n=516.5±0.7 (n=51.6±0.1(n=5)	5.6	lfP
/	W2	18.6±1.5 (n=1 12.5±4.4 (n=1 1.0±0.8 (n=18	19.1	lfP
8	W3	20.2±0.4 (n=517.4±0.3 (n=31.4±0.2(n=3)	31.5	lfP
9	W2	17.8±0.7 (n=915.6±0.6 (n=91.3±1.8(n=9)	19.8	lfP
10	W2-3	23.8±0.2 (n=4 20.3±0.2 (n=3 1.4±0.5(n=3)	32.2	lfP
11	W3	25.9±1.2 (n=621.4±0.5 (n=4 1.1±0.2(n=4)	5.5	lfP
12	W2	18.7±1.0 (n=916.5±0.6 (n=51.0±0.2(n=5)	35.8	lfP
13	W3	18.9±0.5 (n=516.7±0.5 (n=51.3±0.2(n=5)	12.8	lfP
14	W1	25.0±0.1 (n=420.7±0.8 (n=4 1.6±0.2(n=4)	12.5	lfP
16	W3	24.6±0.2 (n=521.0±1.0 (n=5 1.3±0.2(n=5)	32.7	lfP
17	W2	19.2±0.5 (n=516.7±0.4 (n=51.2±0.2(n=5)	8.5	lfP
18	W3	25.4±0.9 (n=421.5±0.3 (n=4 1.5±0.3 (n=5)	14.0	lfP
19	W1	18.2±0.2 (N=116.2±0.2 (N=31.4±0.2 (N=3)	38	LeMans
20	W3	19.0±0.4 (N=217.0±0.8 (N=: 1.3±0.3	45	NHMV
21	W0	18.8±0.4 (n=217.4±0.4 (n=21.22±0.8	40.2	MNRJ
22	W3	4.27	25.13	CEREGE
23	low	36.2±5.1 (N=15.8±9.2 (N=13	463	SQU
24	W2	20±2.1 (N=37)18±0.5 (N=17) 1±0.3 (N=17)	101.73 q	UrFU
25	W4	24.5±0.7 (n=120.8±0.5 (n=11.6±0.2 (n=10	23.1	lfP
26	W2	24.2±0.2 (n=720.7±0.2 (n=7 1.9±0.2 (n=7)	52.4	MNB
27	W3	23.9±0.2, n=5 20.1±0.1, n=5 2.0±0.1, n=5	24.7	MNB
28	W2	16.1±0.2 (N=115.1±4.8 (N=10.8±0.6 (N=16	229.8	Vernad
29	W1	17.9±0.36 (N=16.0±0.24 (N=2.0±0.44 (N=1	7.3	Vernad.
30	W1	21.8+0.24 (N=18.4+0.32 (N=1.37+0.34	3.2	Vernad
31	W3	24.1+0.48 20.3+0.25 (N=1.3+0.19 (N=1	152	Vernad
32	W2	26.6±0.3 (N=122.0±0.7 (N=11.5±0.3 (N=12	375.66	UrFU
33	W1	23 1+0 3 (N=119 6+0 3 (N=12 4+0 4 (N=12	23.7	Vernad
34	W2	24.2+0.3 (N=120.3+0.2 (N=11.4+0.1 (N=13	32.9	Vernad
35	W2	17 8+0 5 (N=116 0+0 7 (N=11 5+0 5 (N=15	64.9	Vernad
30 27	W2	18 2+0 22 (N=16 0+0 2 (N=11 3+0 2 (N=12	149.0	Vernad
3/ 20	W2	4.52	2.5	CEREGE
30	W2	18 6+0 30 (N=16 6+0 30 (N=1 21+0 16 (N=	22.4	Vernad
39 40	W2	18 5+0 7 (N=116 3+0 2 (N=11 2+0 1 (N=12	191.8	Vernad
40	W2	21 1+7 2 (N=38 6+5 7 (N=250 9+0 9 (N=25	18	Vernad
42	W1	22 9+0 3 (N=119 3+0 4 (N=12 2+0 2 (N=12	23.4	Vernad
43	W1	23 3+0 4 (N=119 6+0 4 (N=12 2+0 1 (N=12	23.8	Vernad
44	W1	23 4+0 3 (N=119 7+0 4 (N=12 2+0 2 (N=12	14	Vernad
45	W1	24 1+0 3 (N=120 0+0 2 (N=11 5+0 2 (N=12	52.6	Vernad
46	W/1	23 1+0 2 (N=119 5+0 3 (N=12 7+0 3 (N=13	21.3	Vernad
47	W/2	19 3+3 0 (N=117 7+2 5 (N=11 7+0 4 (N=11	88.03	
48	W1	23 9+0 5 (n=115 4+6 1 (n=8 0 9+0 3 4 60)	22.9	CEREGE
49	W/2	23 6+0 4 (N=119 6+0 3 (N=12 1+0 3 (N=12	33.6	Vernad
50	W/1	23.2 ± 0.3 (N=119.3±0.5 (N=12.1±0.5 (N=12)) 23.2±0.3 (N=119.3±0.6 (N=12.3±0.5 (N=12))	50.0	Vernad
51	W/1	186+04 (N=1163+02 (N=113+01 (N=12	3 9	Vernad
52	W/0/1	24 9+0 2 20 7+0 3 1 7+0 1	20.3	
53		36 6+7 7 30 8+2 5: 37 52 1+0 7: 3 2+0 5 82	20.0	Ann
54	WO	1 0+0 6· 26 5+1 1+0 1· 1 7 3 2+0 5· <i>A</i> 0 A 02	<u>-</u>	13 a FSAC 2
55	W/1	24 0 + 0 2 n = 1 20 3 + 0 4 n = 1 1 5 + 0 1 4 2 2 + 0 00	23.5	Kiel
56	VV I	20.0110.4 (1-1) 20.011 4 (01-1) 20.010 4 (01-1) 20.010 (01	20.0 04	
57	\\//2	4.20 178 155 11	5. 1 53 5	
58	₩2 0	10.0 10.0 $1.110.4+0.5 (n=0.17.4+1.0 (n=0.1.4+1.0 (n=60.0)$	1/0 0	IIAh
59	moderato	10.1_12.8 (n=2.1_1.1 0.1_1=0.1.4_1.1 0.0_1=0.0 10.1_12.8 (n=2.1_1.1 0.(n=15.1 6_1.1 5.(n=15	125.6	
60	moutralt	13.1±10.0 (II=2.1±1.0 (II=131.0±1.3 (II=13	120.0	IIF, USKD

2				
3	W1	5.20	21	CEREGE
4	W0	64.7±0.6 (n=939.8±11.5 (n=6.3±1.8 (n=36	80	MNRJ
5	moderate	18.2-32.1 16.0-46.2: 18.1.7-3.7: 12.4-4	37.6	UWB
6	W2	19.4±12.3 (N=8.3±7.6 (N=301.2±1.2 (N=30	158	Vernad.
7	W3	23.9±0.3 (N=120.3±0.4 (N=11.6±0.3 (N=13	4.8	Vernad.
8	W1	17 8+0 4 (N=115 2+0 3 (N=11 3+1 1 (N=17	1 99	Vernad
9	W3	17 4+0.2 (N=115 4+0.2 (N=11 5+0.1 (N=12))	14 4	Vernad
10	W2	24 1+0 5 (N=120 3+0 2 (N=11 3+0 2 (N=12	30.2	Vernad
11		35.9+2.1 (n=7.22.8 + 2.0 (n=8.0 + 3.4 (n=1)	20.2	lfP
12	moderate	36 7+10 1 28 2+5 0 18 75 6+3 1 43 2+	25.8	
13	moderate	30.7±10.1 20.2±3.3, 10.73.0±3.1, 43.2±	20.0	IfD
14	\ <i>\\</i> / <i>A</i>	18 6±0 4 (N=016 5±0 5 (N=11 3±0 3 (N=13	10.3	
15	VV 4	10.0 ± 0.4 (N=116.5±0.3 (N=11.3±0.3 (N=13)	7	
16	VV4 \\//	$19.0\pm0.8 (N-116.3\pm0.7 (N-11.3\pm0.2 (N-17)))$	7	
17	VV 4	10.7 ± 0.9 (N=110.7 \pm 0.7 (N=21.4 \pm 0.2 (N=20	27.9	
18	VV4	18.7 ± 0.4 (N=110.3 ± 0.4 (N=11.3 ± 0.2 (N=13	9.9	
19	VV4	$19.1 \pm 0.6 \text{ (N} = 110.8 \pm 0.6 \text{ (N} = 11.3 \pm 0.1 \text{ (N} = 16)$	32.1	UCLA
20	VV4	19.0±0.7 (N=216.9±0.9 (N=11.3±0.1 (N=16	10.1	UCLA
21	VV4	18.7±0.6 (N=216.6±0.3 (N=11.3±0.2 (N=14	16	UCLA
22	W4	19.3±0.5 (N=916.8±0.7 (N=21.2±0.2 (N=20	26.2	UCLA
23	W4	18.9±0.5 (N=116.9±0.8 (N=71.1±0.2 (N=7)	12.7	UCLA
24	W4	18.8±0.5 (N=116.6±0.6 (N=11.2±0.1 (N=12	5.3	UCLA
25	W4	18.7±0.8 (N=216.4±0.7 (N=11.0±0.3 (N=12	1	UCLA
26	W2	24.2 20.3 1.9	21	UCLA
27	W2	23.9±0.2 (n=720.2±0.1 (n=7 1.6±0.1 (n=7)	22.1	MNB
28	W4	17.8±0.2 16.1±0.4 1.2±0.2	27.2	UCLA
29	W0/1	18.2±0.4 (n=316.1±0.3 (n=31.6±0.4 (n=36	4700	UOslo
30	W2/3	19.1±0.2 16.7±0.2 1.5±0.2 4.88	24.1	PSF
3 I 2 2	W0	18.6±0.3 (n=916.4±0.1 (n=71.6±0.1 🚺 5.29	45.5	FSAC, UNM
2∠ 22	W3	16.4±8.6; 18.414.8±9.3 1.3±1.3	22.2	UWB
27	W0-1	14.1±7.7 (n=3 8.7±5.7 (n=8) 0.7±0.7 4.82	17.8 + 4.7	Kiel + UGött
25	В	19.7 (18.7-21.17.3 (16.3-19.	1.952	NIPR
36	В	25.5 (24.1-28.21.8 (20.5-22.	0.477	NIPR
37	В	25.7 (24.7-28.22.0 (20.8-25.	1.987	NIPR
38	В	26.0 (24.7-29.21.6 (19.8-24.	0.567	NIPR
39	В	19.1 (17.1-21.16.9 (15.1-19.	0.377	NIPR
40	B	18.5 (17.2-19.16.8 (15.6-17.	2.156	NIPR
41	B	25.6 (19.0-28.16.0 (6.9-21.7	1.256	NIPR
42	B	18 9 (18 4-20 16 5 (13 9-17	1 473	NIPR
43	B	19.1 (17.6-20.16.9 (15.7-17.	1410.150	NIPR
44	A	28 6 (26 8-30 23 7 (22 4-25	1 1 1 0	NIPR
45	C	18 8 (18 3-19 16 8 (16 0-17	1.390	NIPR
46	B	18 9 (17 9-20 16 7 (15 6-17	0.566	NIPR
47	B	30 6 (20 6-32 24 9 (23 3-26	2 863	
48	Δ	10 1 (18 2-22 17 2 (15 7-18	2.003	
49		30.0 (20.4.32.25.0 (23.0.26	2.447	
50	D	30.9 (29.4-32.23.0 (23.9-20.	2.225	
51	D	19.5 (10.5-20.17.0 (15.7-19.	0.30	
52	D	19.0 (10.3-20.10.0 (13.3-17.	0.902	
53	В	25.5 (24.1-27.21.3 (20.3-22.	1.000	
54	D	20.2 (10.0-24.17.4 (10.4-21.	1.00	
55	В	23.9 (23.8-27.21.7 (20.4-22.	0.428	
56	A	20.4 (24.0-30.16.1 (5.9-21.0	U./bb	
57	A	29.0 (27.8-30.24.0 (23.4-24.	3.214	NIPK
58	A	29.0 (27.8-31.24.0 (23.6-24.	4.481	NIPR
59	A	25.5 (18.7-29.21.6 (3.6-36.5	19.821	NIPR
60	С	19.3 (18.2-23.16.9 (15.6-18.	0.69	NIPR

1				
2				
3	В	18.9 (17.8-24.16.4 (14.7-17.	1.619	NIPR
4	В	20.4 (18.4-23.18.2 (16.9-22.	2.016	NIPR
5	В	15.9 (0.7-44.811.3 (2.5-31.6	4.822	NIPR
6	В	25.2 (23.5-26.21.2 (20.6-21.	0.551	NIPR
7	В	19.4 (18.7-22.17.0 (14.8-18.	2.365	NIPR
8	Ā	31.0 (29.9-32.25.3 (24.0-27.	3.034	NIPR
9	В	19.0 (18.1-20. 16.9 (15.7-18.	1.543	NIPR
10	B	18 7 (17 5-21 16 7 (15 2-19	1 17	NIPR
11	B	24.9 (23.9-26.21.1 (19.3-21.	2.07	NIPR
12	B	25 2 (24 5-27 21 1 (19 9-21	3 245	NIPR
13	Ċ	19.9 (18.1-20.17.7 (16.1-19)	1 39	NIPR
14	B	18 5 (17 8-19 16 5 (15 4-17	1 528	NIPR
15	Δ	5 9 (0 4-35 3) 3 8 (0 7-10 4)	2 379	NIPR
10	Δ	30 4 (28 8-35 25 2 (24 0-28	2.010	NIPR
1/	R	30 2 (29 4-31 24 1 (21 9-25	3 035	NIPR
10	B	25 4 (23 6-27 22 0 (20 5-24	0.000	NIPR
19	B	10 0 (10 0-21 17 4 (16 7-10	4 301	
20	B	10.8 (18.7 21.17.8 (16.0 20	0.431	
21	B	25 2 (22 4 28 22 0 (20 6 25	0.318	
22	D	20.2 (22.4-20.22.0 (20.0-20.	1 771	
23	D	19.0 (10.0-19.17.0 (10.3-19. 26 8 (24 8 21 22 4 (10 3 24	0.001	
25	D	20.0 (24.0-31.22.4 (19.3-24.	0.901	
26	D	18.8 (10.4-20. 10.7 (15.9-18.	0.935	
27	D	10.7 (17.2-20. 10.0 (14.0-10.	4.704	
28	D	25.3 (23.9-27.21.3 (20.3-22.	2.231	
29	В	25.7 (23.8-27.22.0 (20.3-20.	3.05	
30		18.5 (17.7-20. 16.6 (15.7-17.	2.231	
31	В	25.3 (24.3-28.21.2 (20.0-22.	2.380	
32	В	19.3 (17.8-21.17.4 (16.2-19.	2.473	
33	В	17.9 (17.1-19.15.8 (14.0-16.	2.38	NIPR
34	В	3.5(0.7-9.8) $1.4(0.7-2.7)$	0.467	
35	В	25.6 (24.0-27.21.4 (20.5-22.	1.938	NIPR
36	В	18.7 (17.9-20.16.8 (14.5-17.	2.717	NIPR
37	В	7.2 (0.5-39.1) 3.1 (1.0-12.5)	2.807	NIPR
38	A	11.1 (0.7-51.0 2.9 (0.6-6.0)	1.211	NIPR
39	В	18.9 (18.2-20. 16.6 (15.8-18.	0.51	NIPR
40	В	19.2 (18.0-20.17.3 (16.6-20.	1.515	NIPR
41	В	19.6 (18.6-21.17.2 (16.2-21.	2.05	NIPR
42	В	19.6 (18.7-22.17.5 (15.2-20.	0.77	NIPR
43	В	19.5 (17.8-23.16.6 (16.3-17.	0.810	NIPR
44	A	25.3 (24.1-27.21.5 (20.5-23.	0.287	NIPR
45	В	19.4 (17.9-23.16.5 (16.2-17.	0.661	NIPR
40	В	19.4 (18.4-22.16.9 (16.3-18.	1.150	NIPR
47 70	В	19.0 (17.7-20.16.6 (14.8-18.	0.561	NIPR
40 70	В	19.7 (18.5-20.17.2 (15.6-17.	0.636	NIPR
49 50	В	18.7 (17.9-19.16.7 (15.7-17.	1.524	NIPR
51	В	18.9 (17.4-21.16.9 (15.8-18.	2.067	NIPR
52	В	18.6 (17.7-19.16.6 (14.7-18.	3.064	NIPR
53	В	19.1 (18.2-21.16.7 (15.5-17.	2.671	NIPR
54	В	19.1 (18.4-22.16.6 (15.5-17.	3.385	NIPR
55	В	18.9 (18.2-20. 16.8 (15.9-17.	0.805	NIPR
56	В	19.5 (18.4-22.17.2 (15.7-20.	2.189	NIPR
57	В	25.6 (24.1-28.21.7 (20.3-23.	0.484	NIPR
58	В	25.9 (24.3-30.21.4 (20.1-23.	1.510	NIPR
59	В	25.3 (24.2-27.21.7 (20.2-23.	0.916	NIPR
60	В	19.0 (17.6-22.16.6 (14.3-20.	1.808	NIPR

2				
3	В	18.8 (17.6-19. 16.8 (15.6-18.	2.469	NIPR
4	В	19.7 (18.1-23.17.5 (15.4-20.	2.442	NIPR
5	В	19.7 (18.4-22.16.9 (16.2-17.	0.795	NIPR
6	В	25.3 (23.9-27.21.0 (18.0-22.	1.410	NIPR
7	В	25.3 (24.2-27.21.2 (20.6-21.	0.538	NIPR
8	С	18.9 (18.0-21.16.6 (15.3-17.	2.821	NIPR
9	В	19.5 (18.1-22.17.6 (16.3-19.	2.317	NIPR
10	В	18.1 (17.3-18.16.3 (14.7-17.	1.931	NIPR
11	С	18.7 (17.6-19.17.0 (16.0-19.	2.742	NIPR
12	В	19.0 (16.4-25. 16.3 (9.1-21.2	2.334	NIPR
13	B	19.2 (17.9-22, 16.6 (15.3-18,	1.058	NIPR
14 15	В	25.3 (24.3-27.21.5 (19.9-24.	2.710	NIPR
15	B	23.1 (22.0-25. 19.7 (17.9-21.	2.706	NIPR
10	B	25.5 (24.7-30.21.6 (21.0-24.	1.925	NIPR
12	В	19.0 (17.7-22.17.1 (15.8-21.	0.815	NIPR
10	B	19.1 (17.8-20.17.2 (16.1-19.	8.365	NIPR
20	B	18.4 (17.4-19.16.3 (15.1-19.	1.490	NIPR
21	B	25.2 (23.6-27.21.3 (20.5-22.	2,307	NIPR
22	B	19.4 (17.7-21.17.1 (16.2-19.	1.575	NIPR
23	B	25.0 (23.5-26.21.4 (20.4-23	1 844	NIPR
24	B	19.8 (18.6-23, 17.3 (16.2-19)	2.349	NIPR
25	B	19 8 (18 0-20 17 6 (16 4-19	1 314	NIPR
26	C	19.4 (18.8-20, 17.3 (16.4-18	1 013	NIPR
27	B	25 0 (23 5-27 21 4 (19 4-24	2 144	NIPR
28	A	18 6 (17 5-19 16 4 (14 9-18	1.326	NIPR
29	B	19.3 (18.4-20.17.1 (15.9-20	0.696	NIPR
30	B	18 9 (18 1-20 16 8 (16 2-17	2 833	NIPR
31	B	19 2 (18 4-20, 16 9 (15 7-19	1 306	NIPR
32	C	24 0 (22 8-25 20 5 (17 8-22)	2 745	NIPR
33	B	25.0 (23.2-26.21.3 (18.9-24)	0.532	NIPR
34	B	19 1 (17 8-21 16 9 (16 2-17	1 455	NIPR
35	B	19.3 (18.5-21.16.8 (16.0-18	0.89	NIPR
30	B	19.3 (18.1-21.16.4 (15.1-17	0.695	NIPR
3/	C	18.6 (17.4-20, 16.8 (15.9-19	1 087	NIPR
38 20	B	19.0 (18.0-20.16.9 (15.7-19	1 928	NIPR
29 40	B	25 4 (24 5-27 21 2 (19 7-21	0.488	NIPR
40 //1	B	18 3 (15 7-20 16 3 (14 8-20	1 014	NIPR
47 47	B	19 3 (18 2-20 16 6 (15 6-17	0.730	NIPR
43	Δ	24 9 (23 5-26 21 0 (20 4-21	0.330	NIPR
44	B	19 6 (17 6-24 16 7 (15 9-17	1 292	NIPR
45	B	19.2 (17.4-22, 17.0 (15.6-18)	2 371	NIPR
46	Δ	19.5 (18.9-20.16.9 (15.8-17	0.624	NIPR
47	B	19 1 (17 2-20 16 8 (14 7-19	1 102	NIPR
48	B	19.4 (17.9-22.16.5 (16.1-16	1 767	NIPR
49	Δ	4 4 (0 4-32 8) 2 9 (1 1-6 4)	0.461	NIPR
50	B	25 A (2A 2-26 21 A (20 A-23))	0.565	
51	B	25.4 (24.2-20.21.4 (20.4-23.	1 322	
52	B	25.0 (23.3-27.21.2 (13.0-23.	0.574	
53	B	20.2 (24.1-20.21.4 (20.2-23.	1 335	
54	Δ	20.0 (10.7-22.17.4 (14.9-20. 30 7 (20 5-21 25 0 (27 3 27	0.784	NIDD
55		10 5 (18 3.22 16 0 (16 2 17	0.704	
56	B	19.5 (10.5-22. 10.9 (10.2-17. 25 Q (24 5-28 22 5 (20 Q 25	0.074	
57	D R	20.9 (27.0-20.22.0 (20.9-20. 10 8 (18 5.00 17 5 (16 5 00	0.667	
58	ь С	19.0 (10.3-22. 17.3 (10.3-20. 20 1 (10 2.22 10 0 (16 7 20		
59		20.4 (13.2-22.10.0 (10.1-20. 26 0 (24 9 20 22 4 (20 5 24	0.009	
60	D	20.0 (24.0-20.22.1 (20.0-24.	9.420	INIPR

1				
2				
3	В	19.8 (18.7-21.17.5 (16.1-18.	2.402	NIPR
4	В	19.3 (18.7-20.17.2 (15.7-21.	1.922	NIPR
5	В	18.9 (17.8-19.16.8 (15.9-19.	2.315	NIPR
6	В	19.4 (18.4-21.16.8 (15.4-18.	1.396	NIPR
7	А	18.8 (17.5-19.16.6 (14.8-17.	2.131	NIPR
8	В	19.0 (18.6-19, 16.8 (15.4-19.	2.047	NIPR
9	Ā	25.1 (24.2-26.21.2 (20.4-23.	1.967	NIPR
10	A	25.0 (23.1-26.21.2 (20.1-22	88 560	NIPR
11	B	25 2 (22 6-26 21 3 (19 9-23	1 761	NIPR
12	A	25 2 (23 4-28 21 3 (18 6-23	61 210	NIPR
13	A	24 9 (23 1-26 21 1 (19 5-23	50 064	NIPR
14	B	17 2 (16 1-19 15 3 (14 7-15	2 352	NIPR
15	B	17 5 (15 9-18 15 9 (14 5-17	1 012	NIPR
16	B	19 1 (18 0-20 16 6 (16 0-17	1.012	NIPR
17	B	19 1 (18 1-21 17 2 (16 5-18	2 662	NIPR
18	B	19.2 (17.4-21.16.1 (15.4-16	1 385	NIPR
19	B	28 2 (27 0.34 23 2 (22 4.24	2 605	
20	B	25.3 (24.0.26.21.3 (10.7.23)	0.480	
21	B	25.5 (24.0-20.21.5 (19.1-25.	2 050	
22	B	25.5(22.6-21.22.0(19.2-25.2))	2.939	
23	D	20.4 (24.3-20.21.9 (19.4-23.	2.217	
25	D	19.7 (10.0-20.17.1 (10.2-20.	2.900	
26		25.1(25.0-27.21.5(19.5-24.))	2.131	
27	A	25.0 (24.3-27.21.4 (21.1-21.	0.700	
28	D	19.1 (17.5-20.17.5 (10.0-10. 16.5 (2.6.20.246.2 (6.8.20.7	2.005	
29	В	10.5 (2.0-20.2 10.2 (0.8-20.7	0.309	
30		19.2 (10.1-22.10.9 (10.0-10.	1.104	
31	В	18.8 (17.5-20.10.0 (15.0-18.	1.234	
32	В	19.0 (17.8-21.10.4 (15.0-17.	1.120	
33	A	25.5 (23.9-27.21.4 (20.0-25.	2.083	
34	B	25.4 (23.6-27.21.3 (19.4-24.	2.423	NIPR
35	A/B		2.219	
36	В	18.1 (10.9-20.15.9 (15.0-16.	1.990	
37	В	19.1 (18.0-20. 10.0 (15.9-17.	0.514	
38	B	19.2 (18.0-21.17.0 (16.2-18.	1.004	
39	B/C	19.4 (18.5-22.17.0 (15.9-20.	2.428	
40	В	19.3 (17.7-21.17.3 (16.5-18.	0.805	NIPR
41	В	18.1 (16.5-18.16.2 (14.9-16.	2.199	NIPR
42	В	19.3 (17.9-24.16.8 (15.9-17.	0.927	NIPR
43	A	25.3 (23.9-28.21.8 (20.0-24.	2.502	NIPR
44	В	19.5 (18.2-23.17.0 (16.2-17.	0.963	NIPR
45	В	25.4 (24.5-26.22.1 (20.7-25.	2.559	NIPR
40 47	C	16.2 (3.3-35.813.1 (2.4-38.1	1.046	NIPR
47 78	B/C	19.3 (18.4-20.17.2 (15.4-20.	0.714	NIPR
40 40	С	20.3 (19.6-21.18.1 (16.9-22.	0.431	NIPR
50	С	18.8 (17.9-19.16.5 (15.1-18.	0.606	NIPR
51	В	19.2 (17.8-20.17.1 (16.0-19.	0.478	NIPR
52	C	19.0 (17.3-22.16.9 (16.3-17.	0.544	NIPR
53	В	19.5 (17.9-24. 16.6 (15.7-17.	1.240	NIPR
54	В	19.4 (18.0-22. 16.9 (16.2-18.	2.842	NIPR
55	В	20.1 (19.2-21.17.4 (16.2-18.	2.427	NIPR
56	В	20.0 (18.4-21.17.3 (15.8-20.	2.158	NIPR
57	В	19.6 (18.6-20.17.3 (16.1-19.	1.049	NIPR
58	В	19.3 (17.7-22. 16.5 (15.2-17.	2.933	NIPR
59	В	19.3 (18.6-22.17.0 (15.9-19.	1.798	NIPR
60	В	19.3 (17.5-21.16.9 (15.8-17.	2.424	NIPR

1				
2				
3	В	19.5 (18.1-24.17.4 (15.2-20.	2.508	NIPR
4	В	19.2 (18.0-20.16.9 (15.7-19.	2.875	NIPR
5	В	19.6 (18.0-23.17.2 (14.6-21.	1.988	NIPR
7	В	19.2 (17.2-23.16.5 (15.8-18.	1.032	NIPR
8	В	19.2 (17.8-20.17.1 (16.0-21.	1.365	NIPR
9	В	19.6 (18.2-23.16.9 (15.4-20.	1.442	NIPR
10	В	19.9 (18.3-23.17.3 (15.9-19.	2.436	NIPR
11	В	19.4 (17.8-21.16.9 (16.1-18.	2.062	NIPR
12	В	19.1 (17.8-21.16.8 (15.8-17.	2.439	NIPR
13	В	19.4 (18.0-22.16.5 (15.9-17.	2.158	NIPR
14	В	19.4 (18.4-23.17.1 (16.3-19.	1.079	NIPR
15	В	19.3 (18.1-22.17.4 (16.2-21.	1.447	NIPR
16	В	18.0 (16.4-19.16.2 (14.6-19.	2.382	NIPR
17	В	17.9 (16.8-19.16.3 (14.9-18.	1.215	NIPR
18	В	17.9 (17.2-18.15.9 (14.6-17.	1.343	NIPR
19	В	25.0 (23.8-27.21.5 (19.7-24.	1.783	NIPR
20	В	25.1 (24.1-26.21.3 (20.2-23.	1.751	NIPR
21	В	19.3 (18.7-19.17.5 (15.9-22.	1.756	NIPR
22	В	25.2 (23.7-28.20.8 (18.9-23.	2.162	NIPR
23	В	19.0 (18.2-19.16.9 (16.0-18.	2.842	NIPR
24	В	19.0 (18.1-20.16.8 (14.7-19.	1.785	NIPR
25 26	В	25.5 (23.9-29.21.4 (20.1-23.	2.019	NIPR
20 27	В	25.2 (23.7-27.21.4 (20.1-23.	1.902	NIPR
27	С	19.4 (17.3-22.17.1 (15.9-20.	1.228	NIPR
20	A	3.1 (0.6-8.6) 2.1 (0.8-5.4)	16.417	NIPR
30	В	19.6 (18.9-21.17.3 (16.4-18.	1.897	NIPR
31	С	23.9 (12.2-34.	1.711	NIPR
32	С	19.2 (18.1-20.16.9 (15.0-17.	2.084	NIPR
33	В	19.1 (17.8-22.17.0 (15.1-20.	12.1/3	NIPR
34	В	18.8 (17.7-20.17.0 (14.3-18.	13.623	NIPR
35	С	18.8 (16.6-20.16.5 (15.7-17.	1.988	NIPR
36	В	19.7 (18.5-21.17.4 (15.4-19.	1.438	NIPR
37	С	19.7 (18.0-21.17.2 (15.8-18.	2.250	NIPR
38	В	19.6 (18.5-24. 16.8 (14.9-18.	1.75	NIPR
39	В	19.4 (18.1-22.17.1 (16.0-19.	1.78	NIPR
40	В	19.6 (18.2-22.16.8 (15.2-18.	1.85	NIPR
41	С	19.6 (17.3-22.16.9 (16.1-17.	2.32	NIPR
42	В	19.1 (17.6-22.16.7 (13.8-18.	2.9	NIPR
43	В	19.2 (18.1-22.16.5 (15.3-19.	2.43	NIPR
44 45	В	19.1 (17.0-22.17.0 (16.0-21.	2.0	NIPR
45 46	В	19.2 (17.4-21.16.6 (16.1-17.	2.80	NIPR
40 17	В	19.3 (18.1-21.16.7 (14.5-18.	1.84	NIPR
47 /18	В	19.5 (18.3-24.17.6 (16.6-20.	6.61	NIPR
40 49	В	19.8 (18.4-22.17.0 (14.8-20.	2.195	NIPR
50	В	18.7 (17.1-20.16.5 (15.4-18.	45.80	NIPR
51	В	19.3 (18.0-22.16.8 (14.5-19.	1.692	NIPR
52	В	19.7 (17.7-23.16.6 (15.8-18.	1.841	NIPR
53	В	26.1 (23.9-29.21.8 (20.5-25.	1.28	NIPR
54	В	19.9 (18.5-23.17.6 (15.5-20.	2.957	NIPR
55	В	25.1 (23.7-26.20.9 (19.0-22.	2.505	NIPR
56	В	19.6 (18.5-22. 17.2 (15.8-22.	1.418	NIPR
57	В	8.1 (0.6-36.8) 3.5 (1.2-7.6)	1.725	NIPR
58	В	19.9 (18.3-23. 18.2 (16.5-19.	1.613	NIPR
59	В	19.8 (18.3-22. 17.0 (16.2-19.	1.593	NIPR
60	В	19.2 (17.7-21.16.9 (16.2-18.	1.045	NIPR

1				
2				
3	В	19.2 (18.0-23.16.9 (14.8-20.	2.41	NIPR
4	В	19.5 (17.8-21.17.0 (16.2-19.	1.354	NIPR
5	В	19.3 (17.9-22.16.6 (15.0-18.	1.47	NIPR
6	В	19.2 (18.1-21.16.9 (15.8-18.	1.822	NIPR
7	В	19.3 (18.0-23.17.0 (16.0-19.	1.274	NIPR
8	С	18.4 (17.4-19.16.3 (15.8-16.	2.122	NIPR
9	В	19.3 (18.2-21.17.1 (16.0-21.	1.15	NIPR
10	В	19.4 (18.3-22.16.8 (15.2-18.	1.529	NIPR
11	В	19.5 (18.2-22.16.9 (15.7-19.	2.217	NIPR
12	В	19.7 (17.7-25.16.2 (9.1-18.2	2.609	NIPR
14	В	18.3 (16.5-19.16.4 (15.8-17.	567.58	NIPR
15	В	18.2 (17.1-22.15.8 (14.6-16.	2.293	NIPR
16	В	26.2 (21.9-28.21.3 (18.4-23.	1.71	NIPR
17	В	3.3 (0.4-28.2) 1.4 (0.7-4.0)	1.267	NIPR
18	В	7.7 (0.3-42.2) 2.7 (0.8-6.8)	3.968	NIPR
19	В	6.2 (0.2-30.3) 2.4 (0.7-6.4)	1.80	NIPR
20	В	17.2 (0.4-52.5 2.8 (0.7-11.6)	2.528	NIPR
21	В	25.6 (24.2-28.21.8 (20.8-24.	1.129	NIPR
22	В	9.1 (0.3-52.3) 1.5 (1. <mark>5-</mark> 1.5)	1.622	NIPR
23	В	2.5 (0.4-25.2) 2.5 (1.2-8.0)	12.731	NIPR
24	В	5.7 (0.2-44.6) 2.8 (1.0-8.7)	1.254	NIPR
25	В	6.5 (0.3-36.1) 2.3 (0.9-4.9)	2.860	NIPR
26	В	5.0 (0.4-30.7) 2.4 (0.8-5.8)	1.117	NIPR
27	С	18.5 (17.1-19.16.4 (15.7-17.	2.609	NIPR
28	В	19.3 (18.2-22. 16.8 (15.6-18.	1.251	NIPR
29	В	19.3 (18.4-24.17.4 (15.2-20.	1.348	NIPR
30	В	19.1 (18.5-20. 16.6 (15.1-18.	1.118	NIPR
31 22	В	18.4 (17.3-23.16.8 (14.9-19.	1.868	NIPR
32 22	В	25.8 (23.9-29.21.9 (20.6-25.	2.827	NIPR
27	В	25.3 (24.0-29.21.3 (20.2-22.	2.395	NIPR
34	В	24.7 (22.0-26.21.7 (20.5-24.	16.655	NIPR
36	В	25.4 (24.4-29.21.3 (19.2-23.	1.188	NIPR
37	В	25.6 (24.9-26.21.4 (20.7-22.	1.210	NIPR
38	В	25.3 (24.4-25.21.4 (20.2-23.	1.016	NIPR
39	В	25.6 (25.0-26.21.5 (20.4-23.	1.465	NIPR
40	В	19.5 (18.3-24.17.0 (15.9-17.	1.063	NIPR
41	В	22.8 (21.1-24.19.7 (18.4-21.	2.349	NIPR
42	В	25.3 (23.9-28.22.0 (20.8-24.	5.512	NIPR
43	В	25.4 (23.3-30.21.6 (19.5-24.	2.102	NIPR
44	С	19.6 (18.3-25.16.9 (15.4-17.	1.809	NIPR
45	В	18.1 (16.7-23.16.4 (15.5-18.	2.091	NIPR
46	В	19.6 (18.1-22.17.4 (15.8-21.	2.404	NIPR
47	В	18.2 (16.6-22.16.7 (15.3-19.	2.122	NIPR
48	В	24.8 (22.9-27.20.6 (18.4-22.	1.717	NIPR
49	В	25.1 (23.7-28.20.9 (19.7-22.	1.663	NIPR
50	В	25.5 (24.4-26.21.3 (19.9-22.	1.537	NIPR
51	В	19.2 (17.9-23.16.9 (16.3-17.	1.362	NIPR
52 52	В	18.9 (18.1-19.16.8 (15.5-19.	2.535	NIPR
53	В	19.2 (18.1-21.16.5 (14.9-20.	1.523	NIPR
54	В	19.2 (18.1-21.16.9 (15.9-18.	1.227	NIPR
56	В	19.3 (18.1-22.16.7 (15.0-20.	1.183	NIPR
57	В	18.9 (17.8-19.16.7 (14.8-19.	1.891	NIPR
58	В	25.5 (24.3-28.21.0 (20.1-21.	1.753	NIPR
59	В	24.7 (22.7-27.20.7 (20.0-22.	1.697	NIPR
60	С	19.4 (18.4-21.17.2 (16.1-19.	2.517	NIPR

1				
2	_			
3 1	В	25.5 (24.4-27.21.6 (19.0-23.	1.365	NIPR
4	В	24.4 (22.3-27.17.3 (4.3-42.7	1.8	NIPR
5	В	25.5 (24.0-28.21.6 (20.1-23.	1.019	NIPR
7	В	25.2 (22.9-29.21.5 (20.5-24.	1.472	NIPR
, 8	В	25.2 (24.1-27.21.1 (19.6-22.	1.600	NIPR
9	В	25.9 (24.5-30.22.1 (20.3-27.	1.529	NIPR
10	В	18.5 (17.0-21.16.2 (14.8-17.	1.432	NIPR
11	В	19.8 (18.2-22. 17.4 (16.2-19.	1.043	NIPR
12	В	19.8 (17.9-22.17.5 (16.2-18.	1.973	NIPR
13	В	25.4 (23.9-28.21.2 (20.0-23.	17.465	NIPR
14	В	25.3 (24.1-28.21.7 (20.2-25.	2.248	NIPR
15	С	18.6 (17.7-19.16.5 (15.3-17.	2.919	NIPR
16	В	24.7 (23.8-26.21.2 (19.6-24.	1.030	NIPR
17	A	25.3 (24.2-27.21.9 (20.9-24.	1.659	NIPR
18	A	25.6 (24.4-26.22.0 (20.4-25.	2.300	NIPR
19	В	25.5 (24.4-27 <mark>.21.5</mark> (20.2-24.	2.548	NIPR
20	В	19.2 (18.2-21.16.9 (15.9-18.	2.370	NIPR
21	В	5.5 (1.0-51.1) 2.7 (1.2-7.2)	2.423	NIPR
22	В	19.1 (17.2-20. 17.1 (16. <mark>2-19</mark> .	1.336	NIPR
23	В	20.0 (19.0-22. 17.4 (15.2-21.	2.113	NIPR
24	В	25.7 (23.6-29.22.2 (20.7-27.	1.985	NIPR
25	В	20.3 (19.1-22.18.3 (16.8-22.	1.101	NIPR
26	С	20.4 (19.0-22. 18.4 (17.3-22.	2.037	NIPR
27	С	18.9 (17.8-21.16.6 (15.4-17.	2.819	NIPR
28	В	25.0 (23.6-27.21.1 (19.5-23.	3.100	NIPR
29	В	18.1 (16.5-21.17.0 (15.4-19.	2.627	NIPR
30	В	18.1 (16.7-21.16.2 (15.2-19.	2.533	NIPR
31	В	18.1 (16.3-19.16.6 (15.1-18.	2.281	NIPR
3Z	В	23.5 (22.2-26.20.0 (19.1-22.	2.063	NIPR
55 24	В	19.5 (17.7-22.17.4 (15.6-19.	1.787	NIPR
25	В	19.8 (19.0-20. 17.5 (16.3-20.	2.361	NIPR
36	С	19.3 (18.4-20.17.2 (15.7-21.	1.212	NIPR
37	А	28.9 (28.2-30.23.8 (23.0-25.	6.419	NIPR
38	В	18.0 (13.5-21.15.7 (7.8-20.5	1.184	NIPR
39	А	24.8 (23.9-25.21.5 (20.3-25.	1.257	NIPR
40	В	25.5 (24.3-28.21.4 (20.3-23.	2.803	NIPR
41	А	19.5 (18.9-20. 17.2 (16.5-17.	1.175	NIPR
42	В	25.0 (22.1-26.21.7 (19.3-24.	2.070	NIPR
43	B/C	19.6 (18.5-24.17.4 (16.4-19.	2.697	NIPR
44	A/B	19.4 (18.1-22.16.9 (15.8-19.	2.104	NIPR
45	В	31.5 (30.6-33.25.4 (24.0-27.	1.206	NIPR
46	Ā	25.6 (24.5-27.21.5 (20.3-23.	2.625	NIPR
47	В	25.4 (24.5-26.21.6 (20.8-23.	1.137	NIPR
48	B	20.8 (18.1-24.17.9 (16.7-19.	1.071	NIPR
49	B	25.3 (22.8-28.21.4 (20.7-23.	2,568	NIPR
50	B	29 2 (28 2-32 24 0 (21 0-25	2 093	NIPR
51	B	19 4 (18 4-20 17 0 (15 7-18	1.336	NIPR
52	B	18 8 (17 9-21, 16 6 (15 5-17)	2 116	NIPR
53	B	25.6 (24.5-26.21.5 (20.5-23	1 014	NIPR
54	B	20 6 (19 2-24 17 5 (15 4-18	1 494	NIPR
55	R	19 5 (18 1-23 17 2 /13 7-21	1 651	NIPR
56	R	25 8 (24 5-29 21 9 (19 9-23	1 714	NIPR
5/	R	25 1 (22 5-26 21 5 (20 0-23	1 056	NIPR
58	B	19 5 (18 2-23, 17 1 (15 4-20)	1 100	NIPP
59	R	$6 \circ (0 \circ 2.5 \circ 2) \land 6 \circ (1 \circ 4.5 \circ 2)$	2 00/	NIDD
60	U	0.3 (0.2-33.2) 4.0 (1.1-13.2)	J.334	INF K
1				
----------	---	-------------------------------	-------	------
2				
3	В	19.6 (18.3-25.16.5 (15.7-17.	1.071	NIPR
4	В	19.0 (17.1-23.17.0 (15.4-22.	6.631	NIPR
5	В	25.2 (24.2-28.21.9 (20.5-26.	1.458	NIPR
6	В	25.5 (24.5-29.21.9 (20.8-23.	2.792	NIPR
7	В	25.8 (24.1-28.21.5 (19.4-23.	2.285	NIPR
8	В	19.6 (18.6-23.17.1 (16.2-20.	1.075	NIPR
9	В	19.4 (18.4-21.16.7 (14.5-19.	2.088	NIPR
10	В	19.2 (11.9-26.15.7 (8.0-23.2	4.579	NIPR
11	В	19.4 (18.5-21.16.8 (15.2-19.	2.476	NIPR
12	В	19.7 (18.1-22.17.5 (16.7-20.	1.088	NIPR
13	В	19.4 (18.1-24.17.0 (15.2-19.	1.030	NIPR
14	В	19.3 (18.7-20. 16.8 (15.6-18.	1.039	NIPR
15	В	19.1 (17.2-20.17.0 (16.4-18.	1.665	NIPR
10	B	19.3 (17.9-21.17.3 (15.8-20.	1.711	NIPR
17	B	19.5 (18.7-21, 16.9 (15.8-19.	1.504	NIPR
10	B	25 1 (23 3-28 21 7 (19 7-25	2 678	NIPR
20	B	19.6 (17.8-23, 17.6 (16.3-21	1 112	NIPR
20	B	19 5 (17 3-23 16 6 (15 7-17	1 103	NIPR
27	B	19 2 (17 8-21 16 7 (14 7-17	1 082	NIPR
23	B	19.5 (17.8-24.17.1 (15.4-20)	2 093	NIPR
23	B	10.3 (18.3-23.16.8 (16.1-18)	3 478	
25	B	19.5 (17.4-22.16.9 (16.2-19	2 853	
26	D	10.1 (18.3 20.16.6 (15.4.17	2.000	
27	D	19.1 (18.3-20. 10.0 (15.4-17.	2.475	
28	D		1.909	
29	D	19.5 (10.5-25.10.0 (15.7-17.	1.022	
30		19.2 (10.4-21.10.9 (15.0-10.	2.003	
31	D	19.1 (10.0-21.10.0 (15.0-17.	1.937	
32	D	19.2 (10.4-20.17.0 (10.3-19.	2.704	
33		19.2 (10.1-21.17.2 (10.4-20.	2.295	
34	D	19.1 (17.7-20.17.0 (10.2-21.	2.101	
35		19.2 (17.0-20.17.1 (10.3-20.	2.100	
36	D	19.2 (10.3-20.17.0 (15.9-10.	2.211	
37	В	19.2 (18.4-20.17.0 (16.1-19.	1.100	
38	В	19.4 (18.2-21.17.0 (16.5-18.	1.925	
39		19.4 (18.3-20. 16.9 (15.3-18.	1.345	
40	В	19.4 (17.9-21.16.7 (15.0-18.	1.080	
41	В	19.2 (17.2-23.16.8 (15.9-18.	1.102	NIPR
42	В	19.0 (18.5-20.17.1 (16.1-19.	1.123	
43	В	18.7 (17.6-20.16.9 (16.0-18.	4.630	NIPR
44 45	В	25.0 (23.7-28.21.5 (20.7-23.	2.651	NIPR
45	В	19.2 (17.8-20.17.2 (16.4-19.	1.01	NIPR
40	В	18.5 (17.7-20.16.4 (15.4-18.	2.22	NIPR
47 78	В	19.0 (17.5-21.16.9 (16.0-19.	1.83	NIPR
40 40	В	19.1 (17.8-21.17.0 (16.2-18.	2.1	NIPR
	В	19.1 (18.1-21.17.3 (16.1-19.	5.81	NIPR
51	В	19.0 (18.0-20.17.2 (15.8-19.	6.78	NIPR
52	В	19.3 (18.3-20.17.3 (15.5-19.	2.15	NIPR
53	A	30.5 (29.3-31.24.7 (23.3-25.	1.03	NIPR
54	В	18.6 (17.6-20.16.6 (15.1-18.	2.12	NIPR
55	A	19.7 (18.3-20.17.3 (16.4-18.	1.13	NIPR
56	В	19.8 (19.0-22.17.5 (16.2-19.	2.05	NIPR
57	В	19.1 (18.4-20.17.0 (15.7-18.	4.614	NIPR
58	В	19.4 (16.7-21.17.0 (15.2-20.	2.824	NIPR
59	В	19.8 (17.7-22.17.4 (16.3-20.	1.38	NIPR
60	A	19.2 (17.9-20.17.1 (16.0-18.	1.12	NIPR

1				
2				
3	В	25.5 (24.4-26.21.6 (20.0-23.	1.559	NIPR
4	В	19.7 (17.2-22.17.3 (16.6-18.	1.742	NIPR
5	В	25.3 (14.6-29.14.8 (3.8-32.4	1.371	NIPR
6 7	В	19.7 (18.5-21.17.5 (15.9-20.	1.552	NIPR
/ 0	В	25.8 (24.2-29.21.6 (19.2-23.	2.107	NIPR
0	В	19.1 (16.7-22.16.9 (9.4-33.0	2.619	NIPR
9 10	В	24.7 (22.8-27.21.3 (20.3-23.	2.043	NIPR
10	В	19.4 (18.4-21.17.3 (15.5-20.	1.491	NIPR
12	В	19.6 (18.8-20.17.3 (16.1-19.	2.339	NIPR
13	В	19.5 (18.2-22.17.5 (16.3-20.	1.186	NIPR
14	В	19.5 (18.0-21.17.4 (16.3-19.	1.029	NIPR
15	В	19.6 (18.8-21.17.4 (15.6-19.	2.360	NIPR
16	В	19.8 (17.4-23.17.7 (16.1-19.	2.824	NIPR
17	В	19.8 (18.7-21.17.6 (16.6-20.	1.460	NIPR
18	С	16.9 (15.8-18. 14.8 (11.1-21.	1.85	NIPR
19	В	19.8 (18.2-22.17.3 (15.4-19.	2.93	NIPR
20	В	19.5 (18.2-21.17.1 (16.2-18.	1.500	NIPR
21	В	19.7 (18.4-21.17.5 (16.6-20.	2.676	NIPR
22	В	19.7 (18.5-23.17.2 (16.4-18.	2.438	NIPR
23	В	19.9 (19.0-22.17.4 (16.2-18.	2.354	NIPR
24	В	19.7 (18.4-21.17.6 (15.6-21.	1.763	NIPR
25	В	19.8 (19.1-21.17.3 (15.9-20.	2.384	NIPR
26	В	19.8 (18.9-21.17.4 (16.2-19.	1.641	NIPR
27	В	19.5 (18.7-22.17.0 (16.4-18.	1.49	NIPR
28	В	19.7 (18.4-21.17.2 (16.0-18.	1.423	NIPR
29	В	19.9 (18.5-22.17.4 (16.2-20.	1.58	NIPR
30	В	19.5 (18.6-23.17.2 (15.7-20.	1.007	NIPR
31	В	19.6 (18.2-21.17.4 (16.6-19.	1.035	NIPR
32	В	19.9 (19.3-20.17.4 (15.9-20.	1.09	NIPR
33	В	19.5 (18.4-20.17.2 (16.0-20.	1.790	NIPR
34 25	В	19.5 (18.4-22.17.0 (15.7-18.	1.322	NIPR
36	В	18.0 (8.1-21.916.2 (2.8-28.0	2.366	NIPR
30	В	19.4 (17.9-22.17.3 (16.7-18.	1.189	NIPR
38	В	19.9 (18.9-22.17.3 (16.4-19.	1.576	NIPR
39	В	19.7 (18.5-22.17.1 (15.8-18.	1.243	NIPR
40	В	19.5 (18.7-21, 17.3 (16.3-20.	2.441	NIPR
41	В	25.9 (24.0-30.21.8 (20.6-25.	2.329	NIPR
42	В	19.5 (17.1-22.17.5 (16.1-22.	1.307	NIPR
43	В	19.5 (18.5-22.17.6 (16.3-20.	2.633	NIPR
44	В	19.9 (18.5-22.17.3 (15.1-19.	2.835	NIPR
45	А	25.7 (24.4-26.21.7 (20.0-23.	1.446	NIPR
46	В	19.5 (18.4-23.17.0 (15.1-18.	2.088	NIPR
47	В	19.5 (17.6-22.17.3 (16.1-18.	2.276	NIPR
48	В	19.3 (18.4-20.17.1 (15.6-20.	2.172	NIPR
49	В	19.4 (18.0-20.17.1 (15.8-21.	2.825	NIPR
50	В	19.8 (18.5-21.17.4 (16.0-20.	1.393	NIPR
51	В	3.2 (2.8-3.6) 3.8 (3.3-7.0)	2.119	NIPR
52	В	25.6 (24.8-26.22.0 (20.2-24.	2.048	NIPR
53	В	20.0 (18.5-23.17.5 (16.4-19.	1.325	NIPR
54	С	17.8 (16.8-18.16.0 (15.1-16	2.912	NIPR
55	В	18.9 (17.7-20. 16.9 (15.4-18	2.770	NIPR
50 57	В	19.3 (16.2-23. 16.9 (14.0-19.	2.880	NIPR
57 50	B	20.3 (19.4-21.17.7 (16.5-18.	1.606	NIPR
50	B	20.5 (19.7-23. 17.8 (17.0-18.	1.530	NIPR
60	B	25.5 (23.5-30.21.7 (19.8-22	2.329	NIPR
55		· · · · · · · · · · · · · · · · · · ·		

1				
2				
3	С	18.5 (17.3-19.16.1 (15.2-17.	2.334	NIPR
4	В	19.5 (18.8-21.17.0 (16.3-17.	2.554	NIPR
5	В	19.4 (18.7-20.17.2 (16.3-18.	2.059	NIPR
6	В	19.3 (18.9-20.17.3 (16.1-18.	2.376	NIPR
7	В	25.2 (24.3-26.21.1 (19.9-22.	2.235	NIPR
8	В	18.8 (17.8-20.16.7 (16.2-18.	2.1	NIPR
9	В	19.2 (18.4-20.15.2 (9.1-20.1	2.289	NIPR
10	В	19.5 (18.3-20.17.5 (16.4-20.	2.181	NIPR
17	В	19.5 (18.6-21.17.0 (15.7-18.	2.480	NIPR
12	В	19.6 (18.4-23. 17.1 (15.0-19.	2.908	NIPR
14	В	19.4 (17.3-22.17.2 (16.0-19.	2.412	NIPR
15	В	19.0 (17.7-21.16.9 (15.5-18.	2.393	NIPR
16	В	19.6 (18.5-21.17.1 (16.3-20.	2.154	NIPR
17	В	19.2 (17.8-19.17.3 (16.1-19.	2.572	NIPR
18	В	19.4 (18.4-21.17.1 (16.2-18.	2.8	NIPR
19	В	19.2 (18.1-21 <mark>.17.2</mark> (16.2-19.	1.803	NIPR
20	В	16.8 (14.7-17.15.9 (10.5-20.	1.753	NIPR
21	В	19.5 (18.8-20.17.3 (16.2-18.	2.347	NIPR
22	В	19.3 (17.7-20.16.9 (15. <mark>9-1</mark> 7.	2.221	NIPR
23	В	19.3 (17.6-21.18.1 (16.1-21.	2.731	NIPR
24	В	25.5 (23.5-27.22.2 (20. <mark>8-24</mark> .	1.573	NIPR
25	В	25.8 (24.5-27.21.5 (20.6-22.	1.120	NIPR
26	В	16.2 (15.2-18.14.7 (12.8-16.	3.595	NIPR
27	В	18.8 (17.7-20.17.2 (15.8-20.	2.295	NIPR
28	В	18.6 (17.2-20.16.6 (16.0-17.	1.990	NIPR
29	В	19.5 (17.9-21.17.2 (15.8-19.	1.255	NIPR
30	В	17.5 (16.5-18.15.3 (13.2-16.	1.493	NIPR
32	В	17.5 (16.4-18.15.2 (14.0-16.	1.786	NIPR
33	В	17.5 (16.2-19.15.3 (14.0-17.	2.338	NIPR
34	В	17.2 (15.8-18.15.2 (14.5-16.	1.997	NIPR
35	В	17.6 (16.2-18.15.5 (13.9-17.	1.724	NIPR
36	В	17.5 (15.9-18.15.6 (13.5-18.	1.522	NIPR
37	В	19.6 (17.3-21.17.4 (15.5-19.	1.070	NIPR
38	В	17.5 (16.0-18.15.3 (14.5-16.	1.243	NIPR
39	В	17.4 (16.2-18.15.5 (13.6-17.	2.202	NIPR
40	В	17.7 (16.7-18.15.8 (14.0-16.	2.781	NIPR
41	В	19.2 (18.0-20. 17.2 (15.2-19.	1.090	NIPR
42	В	19.3 (17.9-22.17.4 (15.9-20.	1.342	NIPR
43	В	25.3 (24.1-26.21.7 (20.8-23.	2.870	NIPR
44	В	20.5 (19.1-21.17.8 (16.3-18.	2.820	NIPR
45	В	19.4 (18.4-20. 16.9 (15.3-18.	15.015	NIPR
40	В	19.0 (18.2-20. 17.2 (16.0-20.	2.005	NIPR
47 78	В	19.1 (17.7-21.17.1 (15.9-18.	4.656	NIPR
40 40	В	19.4 (18.6-20. 17.2 (16.6-18.	2.013	NIPR
5 0	В	19.8 (18.5-23. 17.3 (16.2-19.	1.783	NIPR
51	В	18.7 (18.0-20. 16.3 (13.5-18.	2.263	NIPR
52	В	25.1 (24.1-26.21.0 (18.8-22.	1.319	NIPR
53	В	19.5 (18.5-21.17.5 (16.6-21.	1.071	NIPR
54	ъ В	25.6 (24.9-27.21.2 (20.4-22.	1.361	NIPR
55	A	25.6 (24.7-26.21.7 (19.1-24.	1.122	NIPR
56	В	26.5 (24.8-31.22.2 (21.3-23.	6.234	NIPR
57	В	25.8 (25.1-26.21.9 (19.4-24.	1.242	NIPR
58	В	28.5 (27.2-33.23.5 (22.5-24.	3.465	NIPR
59	В	18.3 (10.3-19.16.4 (15.2-19.	1.145	NIPR
60	В	25.9 (23.9-30.21.5 (20.0-23.	3.219	NIPR

1				
2				
3	В	28.2 (27.3-30.23.9 (22.1-26.	1.513	NIPR
4	В	19.3 (18.0-21.17.3 (16.5-19.	1.010	NIPR
5	В	28.3 (26.9-30.23.6 (22.6-24.	1.623	NIPR
6	B	20.0 (19.0-22, 17.4 (16.6-19.	2.503	NIPR
7	B	28.6 (27.4-30.23.7 (22.3-25.	1.204	NIPR
8	B	28.5 (27.2-30.23.7 (22.2-27.	1.128	NIPR
9	Ā	25.7 (24.1-27.22.2 (21.1-25.	1.083	NIPR
10	B	25.7 (24.9-28.21.7 (20.3-24.	1.358	NIPR
11	B	25.6 (24.7-27.21.8 (20.2-25.	1,190	NIPR
12	B	25 6 (23 9-30 21 7 (20 4-22	1.567	NIPR
13	B	25.6 (24.0-28.21.5 (20.4-22	1.572	NIPR
14	B	20 1 (18 9-21 18 0 (16 9-20	1.956	NIPR
15	C	19 6 (18 3-20 17 9 (16 9-20	3 4 5 5	NIPR
16	C	17 7 (16 9-18 16 0 (15 3-17	1 538	NIPR
1/	B	28 2 (27 0-30 23 3 (22 0-25	8 053	NIPR
18	B	28.1 (25.6-29.23.2 (21.7-24	5 179	NIPR
20	B	28.8 (26.4-31.23.6 (22.7-24	6 154	NIPR
20	C	10.4 (18.5-20.17.2) (16.1-18)	3205 000	
21	B	19.5 (18.5-20.16.9 (15.2-18	3639.000	
22	Δ	26.0 (24.8-26.22.0 (21.2-23	2150.000	
23	C C	19 7 (18 9-20 17 3 (16 6-18	270.45	NIPR
25	C	10.0 (18.0-21.17.2 (15.4-18	2/0.43	
26	C	19.5 (18.5 20 17 1 (15 7 17	113.5	
27	Δ	13.3 (10.3-20.17.1 (13.7-17.)	10.631	NIPR
28	R	10.6 (18.5 22 17.2 (14.0 21))	904 74	
29		25 6 (23 8 27 22 2 (20 8 24	904.74 17 604	
30		25.0 (23.6-27.22.2 (20.6-24.	10.666	
31		25.2 (22.0-30.21.1 (20.2-22.	19.000	
32	A D	25.0 (25.5-27.21.5 (20.7-25.	10.495	
33	D	19.0 (10.4-22.17.1 (10.1-19.	9.030	
34	D	19.5 (16.1-22.17.3 (16.6-19.	200.20	
35			042.0 517.4	
36			017.4 04.46	
37			24.10	
38			100.8	
39			313.8	NIPR
40			224.3	NIPR
41	14/4		4202	NIPR
42	VV4	$25.5 (n=1)$ $21.4\pm0.8 (n=21.7\pm0.1$ 4.61	21	CEREGE
43	VV2	19.4±0.3 (n=1 17.2±0.5 (n=1 1.6±0.5 5.01	20.8	KIEI
44 45	VVO	H3 17.2±6.6, IH3 13.8±5.3, IH3 1.3±1.1, H	54	ASU
45 46		60.2±2.0; 27.23.0±1.8; 41.6±	22.8	ITP
40 17				
47 70				

1			
2			
3	tbl_mainmas	stbl_classifier tbl_finder	tblcomment
4	Decker Meteo	oK. Klemm, A. Ianonymous	Working No.: De-06 submitted by K. Klemm, IfP; submitted by
5	Algiers Lab	Imene Kerraoi	Submitted by Imene Kerraouch
6	Algiers Lab	Imene Kerraoi	Submitted by Imene Kerraouch
7	Algiers Lab	Imene Kerraou	Submitted by Imene Kerraouch
8	Algiers Lab	Imene Kerraou	Submitted by Imene Kerraouch
9	Algiers Lab	Imene Kerraou	Submitted by Imene Kerraouch
10	Algiers Lab	Imene Kerraou	Submitted by Imene Kerraouch
11	Algiers Lab	Imene Kerraou	Submitted by Imene Kerraouch
12	Algiers Lab	Imene Kerraoi	Submitted by Imene Kerraouch
13	J. Bassemon	J. Gattacceca	work name CM56; submitted by Jérôme Gattacceca
14 15	Vincent Jacqu	uC. Agee. UNMMoroccan hur	Submitted by H. Chennaoui Aoudiehane
15	UAb	C. Herd, UAb	Field numbers A1 and A2: submitted by C. Herd
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
17	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
10	AuckMus	J. Scott. Otag(Phil and Bren	(AWMM: Auckland War Memorial Museum, Geology Collectio
20	University of	A Irving UWS	Work name JAP19-1: submitted by A Irving
20	Jean Redelsr	oul Gattacceca Esmail Elquira	work name IR079 Highly recrystallized. Single crusted stone
27	Aerolite Mete	cD Hill UAz N Jose Rosa Ao	Submitted by D. Hill
23	Mahamed Nu	In C. Herd and I	Submitted by C. Herd
24	WAM	A W R Beva M Jefferson	Submitted by U. V. Forman (Curtin University, WAM)
25	Zivao Wang	R Bartoschew lianming War	working name W792: submitted by R. Bartoschewitz
26	Weichao Li a	nR BartoschewXueming Tan	working name WZ172: submitted by R. Bartoschewitz
27	Verish	D Sheikh ES Robert Verish	Fieldname = $N150808$: lab ID# = V-BB01: submitted by Danie
28	Verieh	D Sheikh ES Robert Verish	r Fieldname = N150800; lab ID# = V-BB01; submitted by Dank
29	Verich	D. Sheikh, FS Pobert Verish	Fieldname – N180003, lab $ID\#$ – V-DD02, submitted by Dank
30	Findor	K Klomm A	Submitted by Klomm K
31	Mohomodroz	R. Riemin, A. I	Submitted by Klemin K.
32		e Llorea LIPCion Ander Lar	Field Name: Mot 2016b 001: submitted by David Allenuz
33			Field Name: ALE001: submitted by David Allenuz
34	Mr. L. Kryoobl	J. LIOICA, OFCAIEXIA Sampe	Field Name. ALEOUT, Submitted by David Allepuz
35	Mr. I. Knyach	CLOICHZ C. A., MILL Riyachk	Field name is Calama 5-241, analyst T. Kryachko (Technograc
36	Mr. M. Noron		sfield name is Calama 5-201, analyst T. Kryachko (Technograc
37		LOIENZ C. A., WILL KRYACHK	r field name is Calama 5-121, analyst T. Kryachko (Technograc
38	Mr. I. Kryach		Field name is Calama 5-131; analyst T. Kryachko (Technograc
39	Mr. I. Kryach	CLORENZ C. A., WIF. I. Kryachk	Tield name is Calama 4-241; analyst T. Kryachko (Technograc
40	Mr. I. Kryach	ILORENZ C. A., WIF. T. Kryach	Fileid name is Calama 6-18; analyst 1. Kryachko (Technograd
41	Kuntz	J. Gattacceca, Jimmy Pizarro	Dwork name K453; submitted by Jerome Gattacceca
42	UrFU		Field name Kol-4; submitted by Kseniya Dugushkina, RAS-U
43	UrFU		Field name Lar-2; submitted by Kseniya Dugushkina (IGG UE
44 4	UrFU	K. DugushkingUrFU meteori	t Field name Past-7; submitted by Kseniya Dugushkina (UB R/
45 46	UrFU	K. DugushkinaUrFU meteori	t Field name Past-10; submitted by Kseniya Dugushkina (UB F
40	I. Chaplygin,	Lorenz C. A., 'Chaplygin Ilya	a field name is 031, analyst T. Kryachko (Technograd, Moscov
47 10	Mr. I. Chaply	gLorenz C. A., 'Chaplygin Ilya	Analysts: N. N. Kononkova, Vernad; T. Kryachko (Technogra
40 40	Mr. I. Chaply	gLorenz C. A., 'Chaplygin Ilya	a Field name is 069; Analyst T. Kryachko (Technograd, Mosco
49 50	Mr. I. Chaply	gLorenz C. A., 'Chaplygin Ilya	a Field name is 071; Analyst T. Kryachko (Technograd, Mosco
51	UrFU	K. DugushkinaUrFU meteori	t Field name Krug5; submitted by Kseniya Dugushkina (UB RA
52	Mr. T. Kryach	ILorenz C. A., 'Mr. T. Kryach	Field name is 6-85; analyst T. Kryachko (Technograd, Mosco
53	Mr. Evgeny T	sJ. Gattacceca Mr. Evgeny T	swork name KY55; submitted by Jérôme Gattacceca
54	Mr. T. Kryach	ILorenz C. A., 'Mr. T. Kryach	Field name is 6-20; analyst T. Kryachko (Technograd, Mosco
55	Mr. I. Kryachł	<lorenz 'mr.="" a.,="" c.="" i.="" kryachk<="" td=""><td>Field name is 6-83; analyst T. Kryachko (Technograd, Mosco</td></lorenz>	Field name is 6-83; analyst T. Kryachko (Technograd, Mosco
56	Mr. Evgeny T	sJ. Gattacceca Mr. Evgeny Te	swork name KY46; submitted by Jérôme Gattacceca
57	Alfonso Viera	a J. Llorca, UPC Alfonso Viera	Submitted by Jordi Llorca (UPC)
58	Alfonso Viera	a J. Llorca, UPC Alfonso Viera	Submitted by Jordi Llorca (UPC)
59	Alfonso Viera	a J. Llorca, UPC Alfonso Viera	Submitted by Jordi Llorca (UPC)
60	Alfonso Viera	a Jordi Llorca, L Alfonso Viera	Submitted by Jordi Llorca (UPC)

3 Alfonso Viera J. Llorca, UPC Alfonso Viera Submitted by Jordi Llorca (UPC) 4 Alfonso Viera J. Llorca, UPC Alfonso Viera Submitted by Jordi Llorca (UPC) 5 Alfonso Viera J. Llorca, UPC Alfonso Viera Submitted by Jordi Llorca (UPC) 6 Alfonso Viera J. Llorca, UPC Alfonso Viera Submitted by Jordi Llorca (UPC) 7 I. Chaplygin, icLorenz C. A., 'Chaplygin Ilya field name is 072, analyst T. Kryachko (Technograd, Moscov 8 I. Chaplygin, i/Lorenz C. A., 'Chaplygin Ilya field name is 083, analyst T. Kryachko (Technograd, Moscov 9 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A009; analyst A. Agakhanov (Fersman Minera 10 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A004; analyst A. Agakhanov (Fersman Minera 11 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A001; analyst A. Agakhanov (Fersman Minera 12 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A005; analyst A. Agakhanov (Fersman Minera 13 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A006; analyst A. Agakhanov (Fersman Minera 14 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A007; analyst A. Agakhanov (Fersman Minera 15 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is 3-62; analyst T. Kryachko (Technograd, Mosco 16 Mr. I. Kryachk Lorenz C. A., Mr. I. Kryachk Field name is I4-16; analyst T. Kryachko (Technograd, Mosco 17 Mr. I. Kryachk Lorenz C. A., Mr. I. Kryachk Field name is I5-22; analyst T. Kryachko (Technograd, Mosco 18 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A010; analyst A. Agakhanov (Fersman Minera 19 Mr. Atali Agak Ivanova M. A. Mr. Atali Agak Field name is A008; analyst A. Agakhanov (Fersman Minera 20 Mr. Atali Agak Ivanova M. A. Mr. Atali Agak Field name is A033; analyst A. Agakhanov (Fersman Minera 21 22 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M4-21; analyst T. Kryachko (Technograd, Mose 23 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M2-61; analyst T. Kryachko (Technograd, Mose 24 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M3-2; analyst T. Kryachko (Technograd, Mosco 25 I. Chaplygin, i Lorenz C. A., 'Chaplygin Ilya field name is 070, analyst T. Kryachko (Technograd, Moscov 26 I. Chaplygin, icLorenz C. A., 'Chaplygin Ilya field name is 074, analyst T. Kryachko (Technograd, Moscov 27 I. Chaplygin, icLorenz C. A., 'Chaplygin Ilya field name is 080, analyst T. Kryachko (Technograd, Moscov 28 I. Chaplygin, i Lorenz C. A., 'Chaplygin Ilya field name is 081, analyst T. Kryachko (Technograd, Moscov 29 I. Chaplygin, i Ryazantsev K Chaplygin Ilya field name is 066, analyst T. Kryachko (Technograd, Moscov 30 I. Chaplygin, i Ryazantsev K Chaplygin Ilya field name is 067, analyst T. Kryachko (Technograd, Moscov 31 I. Chaplygin, i Ryazantsev K Chaplygin Ilya field name is 075, analyst T. Kryachko (Technograd, Moscov 32 I. Chaplygin, irRyazantsev K Chaplygin Ilya field name is 082, analyst T. Kryachko (Technograd, Moscov 33 I. Chaplygin, irRyazantsev K Chaplygin Ilya field name is 087, analyst T. Kryachko (Technograd, Moscov 34 I. Chaplygin, iLorenz C. A., 'Ilya Chaplygin field name is 060, analyst T. Kryachko (Technograd, Moscov 35 I. Chaplygin, iLorenz C. A., 'Ilya Chaplygin field name is 061, analyst T. Kryachko (Technograd, Moscov 36 I. Chaplygin, iLorenz C. A., 'Ilya Chaplygin field name is 062, analyst T. Kryachko (Technograd, Moscov 37 I. Chaplygin, i Lorenz C. A., 'Ilya Chaplygin field name is 063, analyst T. Kryachko (Technograd, Moscov 38 I. Chaplygin, i Lorenz C. A., 'Ilya Chaplygin field name is 068, analyst T. Kryachko (Technograd, Moscov 39 I. Chaplygin, i Lorenz C. A., 'Ilya Chaplygin field name is 073, analyst T. Kryachko (Technograd, Moscov 40 I. Chaplygin, iLorenz C. A., 'Ilya Chaplygin field name is 086, analyst T. Kryachko (Technograd, Moscov 41 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł field name is Calate 1-6; analyst T. Kryachko (Technograd, N 42 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł field name is Calate 1-9; analyst T. Kryachko (Technograd, N 43 44 Mr. T. Kryachl Lorenz C. A., 'Mr. T. Kryachl field name is Calate 1-15; analyst T. Kryachko (Technograd, 45 Mr. T. Kryachl Lorenz C. A., 'Mr. T. Kryachl field name is Calate 1-17; analyst T. Kryachko (Technograd, 46 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł field name is Calate 1-18; analyst T. Kryachko (Technograd, 47 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł field name is Calate 1-4; analyst T. Kryachko (Technograd, N 48 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł field name is Calate 1-7; analyst T. Kryachko (Technograd, N 49 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł field name is Calate 1-8; analyst T. Kryachko (Technograd, N 50 Mr. T. Kryachl Lorenz C. A., 'Mr. T. Kryachl field name is Calate 1-14; analyst T. Kryachko (Technograd, 51 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is 1-29; analyst T. Kryachko (Technograd, Mosco 52 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is ATA-23; analyst T. Kryachko (Technograd, Mo 53 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is ATA-28; analyst T. Kryachko (Technograd, Mo 54 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is ATA-37; analyst T. Kryachko (Technograd, Mo 55 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is ATA-43; analyst T. Kryachko (Technograd, Mo 56 ArtMet collectiJ. Gattacceca anonymous work name LM86/F33; Shock darkened chondrite with abund 57 ArtMet collectiJ. Gattacceca. work name LM83/F22; submitted by Jérôme Gattacceca 58 ArtMet collectiJ. Gattacceca, work name LM87/F34; submitted by Jérôme Gattacceca 59 MMC J. Gattacceca Rodrigo Martir work name RM648; submitted by Jérôme Gattacceca 60

3 ArtMet collectiJ. Gattacceca anonymous work name LM91/F43; submitted by Jérôme Gattacceca 4 MMC J. Gattacceca Rodrigo Martir work name RM714; submitted by Jérôme Gattacceca 5 WAM Submitted by L. V. Forman (Curtin University, WAM) A. W. R. Beva K. Hicks 6 Jake Jacobs A. Love, App Frank Jacobs Submitted by Anthony Love 7 **MNHNP** E. Jacquet, B. Pierre Beck Field name: DM209; chromite/plagioclase intergrowths. Mose 8 **MNHNP** E. Jacquet, B. Matthieu Gour Field name: DM210; submitted by B. Doisneau 9 E. Jacquet, B. Pierre Beck Field name: JG59; submitted by B. Doisneau **MNHNP** 10 **MNHNP** E. Jacquet, B. Millarca Valen Field name: MV112FLAT; Shock veins; submitted by B. Doisi 11 E. Jacquet, B. Mathieu Rosk Field name: DM207; Shock veins; submitted by B. Doisneau **MNHNP** 12 CEREGE J. Gattacceca.Audrey Bouvie work name MA191; submitted by Jérôme Gattacceca 13 J. Gattacceca Rodrigo Martir work name RM564; submitted by Jérôme Gattacceca MMC 14 Michael Warn(J. Gattacceca Michael Warn(work name MW32; submitted by Jérôme Gattacceca 15 MMC J. Gattacceca Rodrigo Martir work name RM645; submitted by Jérôme Gattacceca 16 Eric Christens J. Gattacceca Eric Christens work name EJ711; submitted by Jérôme Gattacceca 17 Eric Christens J. Gattacceca Eric Christens work name EJ713; submitted by Jérôme Gattacceca 18 Michael Warn J. Gattacceca Michael Warn Oriented shield with flow lines. Work name MW21; submitted 19 MCL J. Gattacceca Rodrigo Martir work name RM660; submitted by Jérôme Gattacceca 20 J. Gattacceca.Rodrigo Martir work name RM688; submitted by Jérôme Gattacceca 21 MCL 22 MCL J. Gattacceca.Rodrigo Martir work name RM689; submitted by Jérôme Gattacceca 23 J. Gattacceca Rodrigo Martir work name RM693; submitted by Jérôme Gattacceca MCL 24 MSN-FI V. Moggi Cecc Davide Gaddi Submitted by Vanni Moggi Cecchi 25 Mr. I. Kryachk Lorenz C. A., 'Mr. I. Kryachk field name is Calama 3-241; analyst T. Kryachko (Technograc 26 Mr. T. Kryachl Lorenz C. A., 'Mr. T. Kryachl The meteorite is monomict breccia; field name is Calama 4-3 27 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł field name is Calama 5-79; analyst T. Kryachko (Technograd 28 Vernad M. A. Ivanova Mr. T. V. Krya Submitted by Marina Ivanova 29 Mr. M. NepomLorenz C. A., 'Mr. M. Nepomfield name is Calama 6-37M; analyst T. Kryachko (Technogra 30 Mr. M. NepomLorenz C. A., 'Mr. M. Nepomfield name is Calama 6-55M; analyst T. Kryachko (Technogra 31 Mr. T. Kryachl Lorenz C. A., 'Mr. T. Kryachl field name is Calama 6-36; analyst T. Kryachko (Technograd 32 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł field name is Calama 6-37; analyst T. Kryachko (Technograd 33 Mr. Evgeny TsJ. Gattacceca. work name KY05; submitted by Jérôme Gattacceca 34 I. Chaplygin, iLorenz C. A., 'Chaplygin Ilya field name is 001, analyst T. Kryachko (Technograd, Moscov 35 I. Chaplygin, iLorenz C. A., 'Chaplygin Ilya field name is 005, analyst T. Kryachko (Technograd, Moscov 36 I. Chaplygin, icLorenz C. A., 'Chaplygin Ilya field name is 010, analyst T. Kryachko (Technograd, Moscov 37 I. Chaplygin, i Lorenz C. A., 'Chaplygin Ilya field name is 019, analyst T. Kryachko (Technograd, Moscov 38 I. Chaplygin, i Lorenz C. A., 'Chaplygin Ilya field name is 037, analyst T. Kryachko (Technograd, Moscov 39 I. Chaplygin, i Lorenz C. A., 'Chaplygin Ilya field name is 041, analyst T. Kryachko (Technograd, Moscov 40 I. Chaplygin, icLorenz C. A., 'Chaplygin Ilya field name is 043, analyst T. Kryachko (Technograd, Moscov 41 I. Chaplygin, icLorenz C. A., 'Chaplygin Ilya field name is 047, analyst T. Kryachko (Technograd, Moscov 42 Mr. I. Chaplyg Lorenz C. A., 'Chaplygin Ilya Field name is 088; Analyst T. Kryachko (Technograd, Moscov 43 44 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is 6-84; analyst T. Kryachko (Technograd, Mosco 45 Mr. T. Kryachl Lorenz C. A., 'Mr. T. Kryachl Field name is 6-81; analyst T. Kryachko (Technograd, Mosco 46 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is 6-78; analyst T. Kryachko (Technograd, Mosco 47 Mr. Evgeny TsJ. Gattacceca Evgeny Tsys, work name KY03; submitted by J. Gattacceca 48 Mr. Evgeny TsJ. Gattacceca. Evgeny Tsys, work name KY35; submitted by J. Gattacceca 49 I. Chaplygin, icLorenz C. A., 'Chaplygin Ilya field name is 006, analyst T. Kryachko (Technograd, Moscov 50 I. Chaplygin, icLorenz C. A., 'Chaplygin Ilya field name is 017, analyst T. Kryachko (Technograd, Moscov 51 I. Chaplygin, i Lorenz C. A., 'Chaplygin Ilya field name is 034, analyst T. Kryachko (Technograd, Moscov 52 Mr. I. Kryachk Lorenz C. A., 'Mr. I. Kryachk Field name is I4-27; analyst T. Kryachko (Technograd, Mosco 53 Mr. Evgeny TsJ. Gattacceca, Mr. Evgeny Tswork name KY25; submitted by Jérôme Gattacceca 54 Ilya ChaplyginPavel Yu. PlecIlya Chaplygin field name 008i; submitted by Pavel Yu. Plechov, pplechov@ 55 I. Chaplygin, i(Lorenz C. A., 'Chaplygin Ilva field) name is 076, analyst T. Kryachko (Technograd, Moscov 56 I. Chaplygin, i Lorenz C. A., 'Chaplygin Ilya field name is 089, analyst T. Kryachko (Technograd, Moscov 57 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A014; analyst A. Agakhanov (Fersman Minera 58 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A002; analyst A. Agakhanov (Fersman Minera 59 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is 3-41; analyst T. Kryachko (Technograd, Mosco 60

3 Mr. I. Kryachk Lorenz C. A., 'Mr. I. Kryachk Field name is I4-25; analyst T. Kryachko (Technograd, Mosco 4 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A013; analyst A. Agakhanov (Fersman Minera 5 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A015; analyst A. Agakhanov (Fersman Minera 6 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A017; analyst A. Agakhanov (Fersman Minera 7 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A023; analyst A. Agakhanov (Fersman Minera 8 Mr. T. Kryachl Ivanova M. A. Mr. T. Kryachl Field name is 6-46; analyst T. Kryachko (Technograd, Mosco 9 Mr. T. Kryachl Ivanova M. A., Mr. T. Kryachl Field name is 6-47; analyst T. Kryachko (Technograd, Mosco 10 Mr. T. Kryachlivanova M. A. Mr. T. Kryachl Field name is 6-48; analyst T. Kryachko (Technograd, Mosco 11 Mr. T. Kryachl Ivanova M. A., Mr. T. Kryachl Field name is 6-49; analyst T. Kryachko (Technograd, Mosco 12 Mr. M. NepomIvanova M. A. Mr. M. Nepom Field name is M3-13; analyst T. Kryachko (Technograd, Mose 13 Mr. Atali Agak Ivanova M. A., Mr. Atali Agak Field name is A016; analyst A. Agakhanov (Fersman Minera 14 Mr. Atali Agak Ivanova M. A. Mr. Atali Agak Field name is A018; analyst A. Agakhanov (Fersman Minera 15 Mr. Atali Agak Ivanova M. A., Mr. Atali Agak Field name is A022; analyst A. Agakhanov (Fersman Minera 16 Mr. M. NepomLorenz C. A., Mr. M. Nepom PMD Fa=3.7%; Field name is M3-38; analyst T. Kryachko (T€ 17 Mr. M. NepomLorenz C. A., Mr. M. Nepom PMD Fa=22.6%; Field name is M2-8; analyst T. Kryachko (T€ 18 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M2-3; analyst T. Kryachko (Technograd, Mosco 19 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M2-2; analyst T. Kryachko (Technograd, Mosco 20 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M2-14; analyst T. Kryachko (Technograd, Mose 21 22 Mr. T. Kryachl Lorenz C. A., 'Mr. T. Kryachl Field name is 6-6; analyst T. Kryachko (Technograd, Moscow 23 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is 6-7; analyst T. Kryachko (Technograd, Moscow 24 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M4-15; analyst T. Kryachko (Technograd, Mose 25 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom PMD Fa is 45%; Field name is M2-46; analyst T. Kryachko (T 26 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom PMD Fa=47%; Field name is M3-62; analyst T. Kryachko (Te 27 Mr. T. Kryachl Ivanova M. A. Mr. T. Kryachl Field name is 6-29; analyst T. Kryachko (Technograd, Mosco 28 Mr. T. Kryachl Ivanova M. A. Mr. T. Kryachl Field name is 6-31; analyst T. Kryachko (Technograd, Mosco 29 Mr. T. Kryachl Ivanova M. A., Mr. T. Kryachl Field name is 6-35; analyst T. Kryachko (Technograd, Mosco 30 Mr. M. NepomIvanova M. A., Mr. M. Nepom Field name is M3-42; analyst T. Kryachko (Technograd, Mos 31 Mr. T. Kryachl Ryazantsev K Mr. T. Kryachl Field name is 6-30; analyst T. Kryachko (Technograd, Mosco 32 Mr. T. Kryachl Ryazantsev K Mr. T. Kryachl Field name is 6-55; analyst T. Kryachko (Technograd, Mosco 33 Mr. T. Kryachl Ryazantsev K Mr. T. Kryachl Field name is 6-59; analyst T. Kryachko (Technograd, Mosco 34 Mr. M. NepomRyazantsev K Mr. M. Nepom Field name is M3-30; analyst T. Kryachko (Technograd, Mos 35 I. Chaplygin, i Ryazantsev K Chaplygin Ilya field name is 053, analyst T. Kryachko (Technograd, Moscov 36 I. Chaplygin, i Ryazantsev K Chaplygin Ilya field name is 064, analyst T. Kryachko (Technograd, Moscov 37 Jean Redelsp J. Gattacceca, Elho Sbiti work name JR058/NA006-SP6; submitted by Jérôme Gattacc 38 John Higgins A. Love, App Iken Mohame Submitted by Anthony Love 39 Fabien Kuntz A. Greshake, I Submitted by Ansgar Greshake 40 D. Sheikh, FS Robert Verish Field ID = C180513-clustr ; Lab ID = Dead1; submitted by Da Verish 41 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M5-23A; analyst T. Kryachko (Technograd, Mo 42 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom Field name is M5-4; analyst T. Kryachko (Technograd, Mosco 43 44 D. Sheikh, FS Robert Verish Fieldname = N131008; lab ID# = V-CV01; submitted by Dani Verish 45 D. Sheikh, FS Robert Verish Fieldname = N131022; lab ID# = V-CV02; submitted by Danie Verish 46 Amirali Kamal J. Gattacceca Amirali Kamal work name Kerman 3500; submitted by Jérôme Gattacceca 47 JSC SI ANSMET Submitted by AMN 48 SI ANSMET JSC Submitted by AMN 49 Graham Enso R. GreenwoocGraham Enso Submitted by Richard Greenwood 50 anonymous A. Greshake, I Submitted by Ansgar Greshake 51 Dark brownish individual lacking fusion crust; plagioclase gra anonymous A. Greshake, I 52 anonymous A. Greshake, I Submitted by Ansgar Greshake 53 anonymous A. Greshake, I Brownish fragment with some fusion crust. The plagioclase g 54 anonymous A. Greshake, I Submitted by Ansgar Greshake 55 Many brownish fragments some partly covered by fusion crus anonymous A. Greshake. 56 Decker Meteo K .Klemm, A. I Working No.: De-11; submitted by K. Klemm, IfP; submitted t 57 SI ANSMET Submitted by AMN JSC 58 JSC SI ANSMET Submitted by AMN 59 JSC SI ANSMET Submitted by AMN 60

1				
2				
3	JSC	SI	ANSMET	Submitted by AMN
4	JSC	SI	ANSMET	Submitted by AMN
5	JSC	SI	ANSMET	Submitted by AMN
6	R. Bartoschev	R. Bartoschev	Peng Zhenho	r donation of Ziyao Wang. Working name WZD#01; non-hygro
7	Binghan Liu	Li Shijie and F	Binghan Liu 8	Submitted by Li shijie
8	M. Brahim Su	A. Irving, UW	Ę	Work name MN X01; submitted by A. Irving
9	MNHNP	E. Jacquet. B	. Nicolas Amen	Field name: MV036: submitted by B. Doisneau
10	MNHNP	E. Jacquet, B	Alex Corane	Field name: MV027: submitted by B. Doisneau
11	MNHNP	E. Jacquet, B	Matthieu Gou	r Field name: DM95: submitted by B. Doisneau
12	MNHNP	E Jacquet B	l vdie Bonal	Field name: DM94: One large clast visible : submitted by B
13	MNHNP	E Jacquet B	Matthieu Gou	r Field name: DM54; submitted by B. Doisneau
14	MNHNP	E Jacquet B	Pierre Beck	Field name: JG109: submitted by B. Doisneau
15	MNHNP	E Jacquet B	Matthieu Gou	r Field name: DM44: submitted by B. Doisneau
16	MNHNP	E Jacquet B	Nicolas Amen	Field name: MV030: submitted by B. Doisneau
17	MNHND	E lacquet B	Romain Tarte	Field name: IG124: submitted by B. Doisneau
18	MNHNP	E lacquet B	Vdie Ronal	Field name: DM84: submitted by B. Doisneau
19		E. Jacquet, B	Lydie Bonal	Field name: DM04, submitted by B. Doisneau
20		E lacquet B	lárôme Catta	Field name: IG75: submitted by B. Doisneau
21 22		E. Jacquet, B	Matthiou Cou	Field name: DM063: submitted by B. Doisneau
22		E lacquet B	Kathoring Joy	Field name: DM069; Shock voing, Two types of groes; one is
23		E. Jacquet, B	Matthiou Cou	Field name: DM060; submitted by R. Doisnoou
25		E. Jacquet, B	Matthieu Gou	Field name: DM009, submitted by B. Doisneau
26		E. Jacquet, B	Katharina la	Field name: DM073, submitted by B. Doisneau
27		E. Jacquet, B	Katherine Joy	Field name. DM077: Chromite/Disciplese intergrowth visible
28		E. Jacquet, B	. Kathenne Joy	Field name. DM077, Chromite/Plagioclase intergrowth visible
29		E. Jacquet, B	. Matthieu Gou	Field name: DM061; submitted by B. Doisneau
30	MINHINP	E. Jacquet, B	. Katherine Joy	Field name: DM078; submitted by B. Doisneau
31	MMC	J. Gattacceca		Work name RM617; submitted by Jerome Gattacceca
32	MNHNP	E. Jacquet, B	. J. Gattacceca	Field name JG67; submitted by E. Jacquet
33	CEREGE	J. Gattacceca	Lydie Bonai	work name MA160; submitted by Jerome Gattacceca
34	MMC	J. Gattacceca	Rodrigo Marti	r work name RM601; submitted by Jerôme Gattacceca
35	MMC	J. Gattacceca	Rodrigo Marti	r work name RM636. Abundant shock veins. Likely paired with
36	MMC	J. Gattacceca	Rodrigo Marti	r work name RM627; submitted by J. Gattacceca
37	MMC	J. Gattacceca	Rodrigo Marti	rwork name RM599; submitted by J. Gattacceca
38	MMC	J. Gattacceca	Rodrigo Marti	r work name RM633. Likely paired with LV 014.; submitted by
39	MMC	J. Gattacceca	Rodrigo Marti	r work name RM602; submitted by Jérôme Gattacceca
40	MMC	J. Gattacceca	Rodrigo Marti	rwork name RM603; submitted by Jérôme Gattacceca
41	MMC	J. Gattacceca	Rodrigo Marti	Work name RM605a. Shock veins and melt pockets. Plagiocl
42	MMC	J. Gattacceca	Rodrigo Marti	Work name RM605b. Shock veins and melt pockets. Plagiocl
43	MMC	J. Gattacceca	Rodrigo Marti	Work name RM609. Shock veins. Likely paired with El MA©d
44	MMC	J. Gattacceca	Rodrigo Marti	Work name RM621. Shock veins and melt pockets. Plagiocla
45	MMC	J. Gattacceca	Rodrigo Marti	Work name RM640. Shock veins and melt pockets. Plagiocla
46	MMC	J. Gattacceca	Rodrigo Marti	rwork name RM668; submitted by Jérôme Gattacceca
47	Philippe Schn	A. Greshake,	Philippe Schn	Brownish individual lacking fusion crust. The plagioclase grai
48	Philippe Schn	A. Greshake,	Philippe Schn	Brownish individual lacking fusion crust. The plagioclase grai
49	Philippe Schn	A. Greshake,	Philippe Schm	Brownish individual lacking fusion crust. The plagioclase grai
50	MCL	J. Gattacceca	Rodrigo Marti	rwork name RM666; submitted by Jérôme Gattacceca
51	Pierre-Marie F	J. Gattacceca	Rodrigo Marti	rwork name RM568; submitted by Jérôme Gattacceca
52 52	MMC	J. Gattacceca	Rodrigo Marti	rwork name RM664; submitted by Jérôme Gattacceca
55 57	MMC	J. Gattacceca	Rodrigo Marti	work name RM667; submitted by Jérôme Gattacceca
54 55	JSC	SI	ANSMET	Submitted by AMN
55	JSC	SI	ANSMET	Submitted by AMN
57	JSC	SI	ANSMET	Submitted by AMN
58	JSC	SI	ANSMET	Submitted by AMN
59	JSC	SI	ANSMET	Submitted by AMN
60	JSC	SI	ANSMET	Submitted by AMN

2					
3	JSC	SI	ANSMET	Submitted by AMN	
4	JSC	SI	ANSMET	Submitted by AMN	
5	JSC	SI	ANSMET	Submitted by AMN	
6	JSC	SI	ANSMET	Submitted by AMN	
7	JSC	SI	ANSMET	Submitted by AMN	
8	JSC	SI	ANSMET	Submitted by AMN	
9	JSC	SI	ANSMET	Submitted by AMN	
10	JSC	SI	ANSMET	Submitted by AMN	
11	JSC	SI	ANSMET	Submitted by AMN	
12	JSC	SI	ANSMET	Submitted by AMN	
13	JSC	SI	ANSMET	Submitted by AMN	
14 15	JSC	SI	ANSMET	Submitted by AMN	
15	JSC	SI	ANSMET	Submitted by AMN	
10	JSC	SI	ANSMET	Submitted by AMN	
18	JSC	SI	ANSMET	Submitted by AMN	
10	JSC	SI	ANSMET	Submitted by AMN	
20	JSC	SI	ANSMET	Submitted by AMN	
21	JSC	SI	ANSMET	Submitted by AMN	
22	JSC	SI	ANSMET	Submitted by AMN	
23	JSC	SI	ANSMET	Submitted by AMN	
24	JSC	SI	ANSMET	Submitted by AMN	
25	JSC	SI	ANSMET	Submitted by AMN	
26	JSC	SI	ANSMET	Submitted by AMN	
27	JSC	SI	ANSMET	Submitted by AMN	
28	JSC	SI	ANSMET	Submitted by AMN	
29	JSC	SI	ANSMET	Submitted by AMN	
30	JSC	SI	ANSMET	Submitted by AMN	
31	JSC	SI	ANSMET	Submitted by AMN	
32	JSC	SI	ANSMET	Submitted by AMN	
33	JSC	SI	ANSMET	Submitted by AMN	
34	JSC	SI	ANSMET	Submitted by AMN	
35	JSC	SI	ANSMET	Submitted by AMN	
36	ISC	SI		Submitted by AMN	
3/		SI		Submitted by AMN	
38		SI		Submitted by AMN	
39 40		SI		Submitted by AMN	
40 41		SI		Submitted by AMN	
41		SI		Submitted by AMN	
43	JSC	SI	ANSMET	Submitted by AMN	
44	JSC	SI	ANSMET	Submitted by AMN	
45	ISC	SI		Submitted by AMN	
46		SI		Submitted by AMN	
47		SI		Submitted by AMN	
48		SI		Submitted by AMN	
49	190	SI		Submitted by AMN	
50	190	SI		Submitted by AMN	
51	130	SI		Submitted by AMN	
52	190	51		Submitted by AMN	
53	130	51		Submitted by AMN	
54	190	01 01		Submitted by AMN	
55	130	ତା ତା		Submitted by AMN	
56	120	01 01		Submitted by AMN	
57	130	ତ। ତା		Submitted by AMN	
58	120	01 01		Submitted by AMN	
59	120	21		Submitted by AIVIN	
60	120	51	ANSIVIET		

2				
3	JSC	SI	ANSMET	Submitted by AMN
4	JSC	SI	ANSMET	Submitted by AMN
5	JSC	SI	ANSMET	Submitted by AMN
6	JSC	SI	ANSMET	Submitted by AMN
7	JSC	SI	ANSMET	Submitted by AMN
8		SI	ANSMET	Submitted by AMN
9		SI		Submitted by AMN
10	100	SI		Submitted by AMN
11	190		ANSMET	Submitted by AMN
12	120			Submitted by AMN
13	120	51		Submitted by AMN
14	120	51		Submitted by AMN
15	JSC	SI	ANSMET	Submitted by Alvin
16	JSC	SI	ANSMET	Submitted by AMN
17	JSC	SI	ANSMET	Submitted by AMN
18	JSC	SI	ANSMET	Submitted by AMN
19	JSC	SI	ANSMET	Submitted by AMN
20	JSC	SI	ANSMET	Submitted by AMN
21	JSC	SI	ANSMET	Submitted by AMN
22	JSC	SI	ANSMET	Submitted by AMN
23	JSC	SI	ANSMET	Submitted by AMN
24	JSC	SI	ANSMET	Submitted by AMN
25	JSC	SI	ANSMET	Submitted by AMN
26	JSC	SI	ANSMET	Submitted by AMN
27	JSC	SI	ANSMET	Submitted by AMN
28	JSC	SI	ANSMET	Submitted by AMN
29	JSC	SI	ANSMET	Submitted by AMN
30	JSC	SI	ANSMET	Submitted by AMN
31	JSC	SI	ANSMET	Submitted by AMN
32	JSC	SI	ANSMET	Submitted by AMN
33	ISC	SI		Submitted by AMN
34		SI		Submitted by AMN
35	180	SI		Submitted by AMN
36	190		ANSMET	Submitted by AMN
37	120	51		Submitted by AMN
38	120	51		Submitted by AMN
39	JSC	51	ANSMET	Submitted by Alvin
40	JSC	SI	ANSMET	Submitted by AIVIN
41	JSC	SI	ANSMET	Submitted by AMN
42	JSC	SI	ANSMET	Submitted by AMN
43	JSC	SI	ANSMET	Submitted by AMN
44	JSC	SI	ANSMET	Submitted by AMN
45	JSC	SI	ANSMET	Submitted by AMN
46	JSC	SI	ANSMET	Submitted by AMN
47	JSC	SI	ANSMET	Submitted by AMN
48	JSC	SI	ANSMET	Submitted by AMN
49	JSC	SI	ANSMET	Submitted by AMN
50	JSC	SI	ANSMET	Submitted by AMN
51	JSC	SI	ANSMET	Submitted by AMN
52 53	JSC	SI	ANSMET	Submitted by AMN
55 54	JSC	SI	ANSMET	Submitted by AMN
54 55	JSC	SI	ANSMET	Submitted by AMN
55 56	JSC	SI	ANSMET	Submitted by AMN
50 57	JSC	SI	ANSMET	Submitted by AMN
5/ 50	JSC	SI	ANSMET	Submitted by AMN
50	JSC	SI	ANSMET	Submitted by AMN
59 60		SI		Submitted by AMN
00		51		Sabringed by Alvin

2				
3	JSC	SI	ANSMET	Submitted by AMN
4	JSC	SI	ANSMET	Submitted by AMN
5	JSC	SI	ANSMET	Submitted by AMN
6	JSC	SI	ANSMET	Submitted by AMN
7		SI	ANSMET	Submitted by AMN
8		SI		Submitted by AMN
9		SI		Submitted by AMN
10	190	SI		Submitted by AMN
11	190	SI		Submitted by AMN
12	100	51		Submitted by AMN
13	120	31 SI		Submitted by AMN
14	120	51		Submitted by AMN
15	120	51		Submitted by AMN
16	JSC	51		Submitted by AMN
17	JSC	SI	ANSMET	
18	JSC	SI	ANSMET	Submitted by AMN
19	JSC	SI	ANSMET	Submitted by AMN
20	JSC	SI	ANSMET	Submitted by AMN
21	JSC	SI	ANSMET	Submitted by AMN
22	JSC	SI	ANSMET	Submitted by AMN
23	JSC	SI	ANSMET	Submitted by AMN
24	JSC	SI	ANSMET	Submitted by AMN
25	JSC	SI	ANSMET	Submitted by AMN
26	JSC	SI	ANSMET	Submitted by AMN
27	JSC	SI	ANSMET	Submitted by AMN
28	JSC	SI	ANSMET	Submitted by AMN
29	JSC	SI	ANSMET	Submitted by AMN
30	JSC	SI	ANSMET	Submitted by AMN
31	JSC	SI	ANSMET	Submitted by AMN
32	JSC	SI	ANSMET	Submitted by AMN
33	JSC	SI	ANSMET	Submitted by AMN
34	JSC	SI	ANSMET	Submitted by AMN
35 26	JSC	SI	ANSMET	Submitted by AMN
30 27	JSC	SI	ANSMET	Submitted by AMN
30	JSC	SI	ANSMET	Submitted by AMN
30	JSC	SI	ANSMET	Submitted by AMN
39 40		SI	ANSMET	Submitted by AMN
40		SI	ANSMET	Submitted by AMN
42		SI	ANSMET	Submitted by AMN
43		SI		Submitted by AMN
44		SI		Submitted by AMN
45		SI		Submitted by AMN
46	190	SI		Submitted by AMN
47	190	51 S1		Submitted by AMN
48	190	51 S1		Submitted by AMN
49	120	31 SI		Submitted by AMN
50	120	51		Submitted by AMN
51	120	51		Submitted by AMN
52	120	51		Submitted by AMN
53	JSC	SI	ANSMET	Submitted by AMN
54	JSC	SI	ANSMET	Submitted by AMN
55	120	SI	ANSMET	Sudmitted by ANN
56	JSC	SI .	ANSMET	Submitted by AMN
57	∠iyao Wang	a R. Bartosche	w anonymous	working name W∠156; submitted by R. Bartoschewitz
58	Tejiri Garat	Li shijie and I	⊢⊧Jirigalatu, Wa	I Submitted by Li shijie
59	B. Hoefnage	IsA. Irving, UW		Work name RC131.1; submitted by A. Irving
60	Kuntz	J. Gattacceca	a,	work name K482; submitted by Jérôme Gattacceca

1				
2				
3	lfP	M. Patzek and	Erik Due-Han	Submitted by A.Bischoff
4	Kuntz	J. Gattacceca		work name K440; submitted by Jérôme Gattacceca
5	A. Habibi	A. Irvina, UWS		Work name AH 777: submitted by A. Irving
6	UrFU	Kseniva Dugu	UrFU meteorit	t Field name Past-1: analysts - Kseniva Dugushkina (RAS-UB)
7	UrFU	K. Dugushkina	UrFU meteori	Field name Past-2: analysts - Kseniya Dugushkina (RAS-UB)
8	Liu Binghan	R Bartoschev	l iu Binghan	working name Gang A (#1/#4/#5/#6/#8); submitted by R Bar
9	Liu Binghan	R Bartoschev	Liu Binghan	working name Gang B (#3): most probably paired to "Gang A
10	R Bartoschev	R Bartoschev	Liu Binghan	working name Gang C (#7); most probably paired to "Gang A
11	Liu Binghan	R Bartoschev	Liu Binghan	working name Gang D (#0); submitted by R Bartoschewitz
12			Liu Dingnan Li Kakere/M N	Working hame UH20 3: submitted by A. Inving
13	Abdelbadi Aitl			Field name BD 15: submitted by C. Ages LINM
14	Ingrid "Twink"	D Hill and K	Ingrid "Twink"	Field name was "Trash Elat". Not paired with other meteorited
15	with finder	D. Hill and K.	Mohmot Cünc	Submitted by Mohmet Vesiltee
16		Li obijio opd		Submitted by Meninel resilids
17	Desli vu			Submitted by Li Shijie
18	Decker welec	D. Chailth EO		Working No.: De-05; submitted by K. Klemm, IIP; submitted L.
19	Backman and	D. Sneikn, FS		Submitted by Daniel Sneikn
20	JSC	SI	ANSMET	
21	JSC	SI	ANSMET	Submitted by AMN
22	JSC	SI	ANSMET	Submitted by AMN
23	JSC	SI	ANSMET	Submitted by AMN
24	JSC	SI	ANSMET	Submitted by AMN
25	JSC	SI	ANSMET	Submitted by AMN
26	JSC	SI	ANSMET	Submitted by AMN
27	JSC	SI	ANSMET	Submitted by AMN
28	SI	SI	ANSMET	Submitted by AMN
29	JSC	SI	ANSMET	Submitted by AMN
30	JSC	SI	ANSMET	Submitted by AMN
3 I 2 2	JSC	SI	ANSMET	Submitted by AMN
2∠ 22	JSC	SI	ANSMET	Submitted by AMN
37	JSC	SI	ANSMET	Submitted by AMN
35	JSC	SI	ANSMET	Submitted by AMN
36	JSC	SI	ANSMET	Submitted by AMN
37	JSC	SI	ANSMET	Submitted by AMN
38	JSC	SI	ANSMET	Submitted by AMN
30	JSC	SI	ANSMET	Submitted by AMN
40	JSC	SI	ANSMET	Submitted by AMN
41	JSC	SI	ANSMET	Submitted by AMN
42	JSC	SI	ANSMET	Submitted by AMN
43	JSC	SI	ANSMET	Submitted by AMN
44		SI	ANSMET	Submitted by AMN
45		SI		Submitted by AMN
46		SI		Submitted by AMN
47	190	SI		Submitted by AMN
48	190	01 01		Submitted by AMN
49	190	0		Submitted by AMN
50	120			Submitted by AMN
51	120	51		
52	120	51		
53	JSC	51	ANSMET	
54	120	51		
55	JSC	SI	ANSMEI	Submitted by AMN
56	JSC	SI	ANSMET	Submitted by AMN
57	JSC	SI	ANSMET	Submitted by AMN
58	JSC	SI	ANSMET	Submitted by AMN
59	JSC	SI	ANSMET	Submitted by AMN
60	JSC	SI	ANSMET	Submitted by AMN

2					
3	JSC	SI	ANSMET	Submitted by AMN	
4	JSC	SI	ANSMET	Submitted by AMN	
5	JSC	SI	ANSMET	Submitted by AMN	
6	JSC	SI	ANSMET	Submitted by AMN	
7	JSC	SI	ANSMET	Submitted by AMN	
8	JSC	SI	ANSMET	Submitted by AMN	
9	JSC	SI	ANSMET	Submitted by AMN	
10	JSC	SI	ANSMET	Submitted by AMN	
11	JSC	SI	ANSMET	Submitted by AMN	
12	JSC	SI	ANSMET	Submitted by AMN	
13	JSC	SI	ANSMET	Submitted by AMN	
14 15	JSC	SI	ANSMET	Submitted by AMN	
15 16	JSC	SI	ANSMET	Submitted by AMN	
10	JSC	SI	ANSMET	Submitted by AMN	
18	JSC	SI	ANSMET	Submitted by AMN	
10	JSC	SI	ANSMET	Submitted by AMN	
20	JSC	SI	ANSMET	Submitted by AMN	
21	JSC	SI	ANSMET	Submitted by AMN	
22	JSC	SI	ANSMET	Submitted by AMN	
23	JSC	SI	ANSMET	Submitted by AMN	
24	JSC	SI	ANSMET	Submitted by AMN	
25	JSC	SI	ANSMET	Submitted by AMN	
26	JSC	SI	ANSMET	Submitted by AMN	
27	JSC	SI	ANSMET	Submitted by AMN	
28	JSC	SI	ANSMET	Submitted by AMN	
29	JSC	SI	ANSMET	Submitted by AMN	
30	JSC	SI	ANSMET	Submitted by AMN	
31	JSC	SI	ANSMET	Submitted by AMN	
32	JSC	SI	ANSMET	Submitted by AMN	
33	JSC	SI	ANSMET	Submitted by AMN	
34	JSC	SI	ANSMET	Submitted by AMN	
35	JSC	SI	ANSMET	Submitted by AMN	
36	ISC	SI		Submitted by AMN	
3/		SI		Submitted by AMN	
38		SI		Submitted by AMN	
39 40		SI		Submitted by AMN	
40 41	ISC	SI		Submitted by AMN	
41		SI		Submitted by AMN	
43	JSC	SI	ANSMET	Submitted by AMN	
44	JSC	SI	ANSMET	Submitted by AMN	
45	ISC	SI		Submitted by AMN	
46		SI		Submitted by AMN	
47		SI		Submitted by AMN	
48		SI		Submitted by AMN	
49	190	SI		Submitted by AMN	
50	190	SI		Submitted by AMN	
51	130	SI		Submitted by AMN	
52	190	51		Submitted by AMN	
53	130	51		Submitted by AMN	
54	190	01 01		Submitted by AMN	
55	130	ତା ତା		Submitted by AMN	
56	120	01 01		Submitted by AMN	
57	130	ତ। ତା		Submitted by AMN	
58	120	01 01		Submitted by AMN	
59	120	21		Submitted by AIVIN	
60	120	51	ANSIVIET		

2				
3	JSC	SI	ANSMET	Submitted by AMN
4	JSC	SI	ANSMET	Submitted by AMN
5	JSC	SI	ANSMET	Submitted by AMN
6	JSC	SI	ANSMET	Submitted by AMN
7	JSC	SI	ANSMET	Submitted by AMN
8	JSC	SI	ANSMET	Submitted by AMN
9	JSC	SI	ANSMET	Submitted by AMN
10	JSC	SI	ANSMET	Submitted by AMN
11	JSC	SI	ANSMET	Submitted by AMN
12	JSC	SI	ANSMET	Submitted by AMN
13	JSC	SI	ANSMET	Submitted by AMN
14	JSC	SI	ANSMET	Submitted by AMN
15		SI	ANSMET	Submitted by AMN
16		SI	ANSMET	Submitted by AMN
17	ISC	SI	ANSMET	Submitted by AMN
18	ISC	SI	ANSMET	Submitted by AMN
19		SI	ANSMET	Submitted by AMN
20	1900	SI	ANSMET	Submitted by AMN
21	190	51 S1		Submitted by AMN
22	190	51	ANSMET	Submitted by AMN
23	120	51 61		Submitted by AMN
25	120	3I SI		Submitted by AMN
25	120	51	ANSMET	Submitted by AMN
20	JSC	51	ANSMET	Submitted by Alvin
28	JSC	SI	ANSMET	Submitted by Alvin
29	JSC	SI	ANSMET	Submitted by Alvin
30	JSC	SI	ANSMET	Submitted by Alvin
31	JSC	SI	ANSMET	Submitted by AMN
32	JSC	SI	ANSMET	Submitted by AMN
33	JSC	SI	ANSMET	Submitted by AMN
34	JSC	SI	ANSMET	Submitted by AMN
35	JSC	SI	ANSMET	Submitted by AMN
36	JSC	SI	ANSMET	Submitted by AMN
37	JSC	SI	ANSMET	Submitted by AMN
38	JSC	SI	ANSMET	Submitted by AMN
39	JSC	SI	ANSMET	Submitted by AMN
40	JSC	SI	ANSMET	Submitted by AMN
41	JSC	SI	ANSMET	Submitted by AMN
42	JSC	SI	ANSMET	Submitted by AMN
43	JSC	SI	ANSMET	Submitted by AMN
44	JSC	SI	ANSMET	Submitted by AMN
45	JSC	SI	ANSMET	Submitted by AMN
46	JSC	SI	ANSMET	Submitted by AMN
4/	JSC	SI	ANSMET	Submitted by AMN
48	JSC	SI	ANSMET	Submitted by AMN
49	JSC	SI	ANSMET	Submitted by AMN
50	JSC	SI	ANSMET	Submitted by AMN
51	JSC	SI	ANSMET	Submitted by AMN
52	JSC	SI	ANSMET	Submitted by AMN
54	JSC	SI	ANSMET	Submitted by AMN
55	JSC	SI	ANSMET	Submitted by AMN
56	JSC	SI	ANSMET	Submitted by AMN
57	JSC	SI	ANSMET	Submitted by AMN
58	JSC	SI	ANSMET	Submitted by AMN
59	JSC	SI	ANSMET	Submitted by AMN
60	JSC	SI	ANSMET	Submitted by AMN

-				
Dii	nn	ina		hor
nu		II I'U	110	au

Page	556	of	686
------	-----	----	-----

2				
3	JSC	SI	ANSMET	Submitted by AMN
4	JSC	SI	ANSMET	Submitted by AMN
5	JSC	SI	ANSMET	Submitted by AMN
6	JSC	SI	ANSMET	Submitted by AMN
7		SI		Submitted by AMN
8	100	0		Submitted by AMN
9	120			Submitted by AMN
10	120	SI	ANSMET	Submitted by AMN
11	JSC	SI	ANSMET	Submitted by AMN
12	JSC	SI	ANSMET	Submitted by AMN
13	JSC	SI	ANSMET	Submitted by AMN
14	JSC	SI	ANSMET	Submitted by AMN
15	JSC	SI	ANSMET	Submitted by AMN
16	JSC	SI	ANSMET	Submitted by AMN
17	JSC	SI	ANSMET	Submitted by AMN
18	JSC	SI	ANSMET	Submitted by AMN
19	JSC	SI	ANSMET	Submitted by AMN
20	JSC	SI	ANSMET	Submitted by AMN
20	ISC	SI	ANSMET	Submitted by AMN
21		SI		Submitted by AMN
22		SI	ANGMET	Submitted by AMN
23	190	51 S1		Submitted by AMN
25	190	51		Submitted by AMN
25	120	51		Submitted by AMN
20	JSC	SI		Submitted by AMN
28	JSC	SI	ANSMET	Submitted by AMIN
20	PRIC	B. Miao, Z. Z		Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. 2	Xia CHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. 2	Xia CHINARE	Submitted by Bingkui Miao
32	PRIC	B. Miao, Z. 2	Xi& CHINARE	Submitted by Bingkui Miao
33	PRIC	B. Miao, Z. 2	XiℓCHINARE	Submitted by Bingkui Miao
34	PRIC	B. Miao, Z. 2	Xi& CHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. 2	Xi& CHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. X	Xi& CHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. 2	XiaCHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. 2	Xi& CHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. 2	Xi& CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. X	Xia CHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. 2	XiaCHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. 2	XiaCHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. 2	XiaCHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. X	Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B Miao Z X	XicCHINARE	Submitted by Bingkui Miao
46	PRIC	B Miao Z	XizCHINARE	Submitted by Bingkui Miao
47	PRIC	B Miao Z		Submitted by Bingkui Miao
48	PRIC	B. Miao, Z. Z		Submitted by Bingkui Miao
49		B. Miao, Z. Z		Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. Z		Submitted by Bingkui Miao
51		D. IVIIdU, Z. Z		Submitted by Bingkui Miao
52		D. IVIIdO, Z. λ		Submitted by Dingkui Mice
53		B. IVIIAO, Z. Z		Submitted by Bingkul Miao
54				
55	PRIC	B. Miao, Z. Z		Submitted by Bingkui Miao
56	PRIC	B. Miao, Z. Z		Submitted by Bingkui Miao
57	PRIC	B. Miao, Z. 2		Submitted by Bingkui Miao
58	PRIC	B. Miao, Z. X		Submitted by Bingkui Miao
59	PRIC	B. Miao, Z. 2	Xia CHINARE	Submitted by Bingkui Miao
60	PRIC	B. Miao, Z. 3	Xia CHINARE	Submitted by Bingkui Miao

2			
3	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
5	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
6	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
7	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
8	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
9	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
10	PRIC	B Miao Z Xi; CHINARE	Submitted by Bingkui Miao
11	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
12	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
13	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
14	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
15	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
16	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
17		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
18		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
19		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
20		D. Miao, Z. ARCHINARE	Submitted by Bingkui Mido
21		B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
22	PRIC	B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
25	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
24	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
25	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
20	PRIC	B. Miao, Z. XieCHINARE	Submitted by Bingkui Miao
27	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
20	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
32	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
33	PRIC	B. Miao, Z. XiεCHINARE	Submitted by Bingkui Miao
34	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
46	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
47	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
48	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
49	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
51	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
52	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
53	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
54 55	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
22 56	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
50 57	PRIC	B. Miao, Z. Xic CHINARE	Submitted by Bingkui Miao
57 50	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
60	PRIC	B. Miao, Z. Xi: CHINARF	Submitted by Bingkui Miao
00			

2			
3	PRIC	B. Miao. Z. XicCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
5	PRIC	B Miao Z Xi; CHINARE	Submitted by Bingkui Miao
6	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
7	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
8	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
9	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
10	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
11	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
12		B. Migo Z. XicCHINARE	Submitted by Bingkui Miao
13		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
14		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
15		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
16		D. MIRO, Z. ARCHINARE	Submitted by Bingkui Miao
17	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
18	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
19	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
20	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
21	PRIC	B. Miao, Z. XieCHINARE	Submitted by Bingkui Miao
22	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
23	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
24	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
25	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
26	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
27	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
28	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
29	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
3 I 2 2	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
2∠ 22	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. Xie CHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
46	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
47	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
48	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
49	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
50		B. Migo Z. XicCHINARE	Submitted by Bingkui Miao
51		B. Migo Z. XICHINARE	Submitted by Bingkui Miao
52		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
53	PRIC	B Miao 7 VicCUINARE	Submitted by Bingkui Miao
54		D. MIRO, Z. AKOTIMARE	Submitted by Dingkui Miao
55		D. WIIDU, Z. ARUTINARE	Submitted by Dingkul Midd
56		D. IVIIAU, Z. ARUMINAKE	Submitted by Dingkul Wildo
57		D. IVIIAU, Z. ARUMINAKE	Submitted by Dingkul Miac
58			Submitted by Bingkul Miao
59			
60	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao

2			
3	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
5	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
6	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
7	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
8	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
9	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
10	PRIC	B Miao Z Xi; CHINARE	Submitted by Bingkui Miao
11	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
12	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
13	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
14	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
15	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
16	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
17		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
18		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
19		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
20		D. Miao, Z. ARCHINARE	Submitted by Bingkui Mido
21		B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
22	PRIC	B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
25	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
24	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
25	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
20	PRIC	B. Miao, Z. XieCHINARE	Submitted by Bingkui Miao
27	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
20	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
32	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
33	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
34	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
46	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
47	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
48	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
49	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
51	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
52	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
53	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
54 55	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
22 56	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
50 57	PRIC	B. Miao, Z. Xic CHINARE	Submitted by Bingkui Miao
57 50	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
60	PRIC	B. Miao, Z. Xi: CHINARF	Submitted by Bingkui Miao
00			

2			
3	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
5	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
6	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
7	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
8	PRIC	B Miao Z Xi/CHINARE	Submitted by Bingkui Miao
9	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
10		B Miao Z XicCHINARE	Submitted by Bingkui Miao
11	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
12		B. Migo Z. XicCHINARE	Submitted by Bingkui Miao
13		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
14		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
15		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
16		D. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
17	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
18	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
19	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
20	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
21	PRIC	B. Miao, Z. XieCHINARE	Submitted by Bingkui Miao
22	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
23	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
24	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
25	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
26	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
27	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
28	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
29	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
2∠ 22	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
46	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
47	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
48	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
49	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
50		B. Migo Z. XicCHINARE	Submitted by Bingkui Miao
51		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
52		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
53		B Miao 7 VICUMARE	Submitted by Bingkul Mido
54		D. Miao, Z. AKUIIINARE	Submitted by Dingkui Miao
55		D. WIND, Z. ARUNINARE	Submitted by Dingkul Midu
56		D. WIAU, Z. ARUMINAKE	Submitted by Dingkui Miao
57			Submitted by Direkti Miac
58			Submitted by Bingkul Miao
59			
60	PRIC	B. MIAO, Z. XI&CHINARE	Submitted by Bingkui Miao

2			
3	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
5	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
6	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
7	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
8	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
9	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
10	PRIC	B. Miao, Z. Xi; CHINARE	Submitted by Bingkui Miao
11	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
12	PRIC	B Miao Z Xi/CHINARE	Submitted by Bingkui Miao
13	PRIC	B Miao Z Xi/CHINARE	Submitted by Bingkui Miao
14	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
15	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
16	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
17		B Migo Z XicCHINARE	Submitted by Bingkui Miao
18		B Migo 7 XicCHINARE	Submitted by Bingkui Miao
19		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
20		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
21		B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
22		B. Miao, Z. ARCHINARE	Submitted by Dingkui Mido
23		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
24	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
25	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
20	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
28	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
20	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. XieCHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
32	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
33	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
34	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
46	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
47	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
48	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
49	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
51	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
52	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
53	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
54 55	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
55 56	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
58	PRIC	B. Miao, Z. Xic CHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
60	PRIC	B. Miao, Z. Xia CHINARF	Submitted by Bingkui Miao
00			,,,,,,,,,

2			
3	PRIC	B. Miao. Z. XiaCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
5	PRIC	B Miao Z Xi; CHINARE	Submitted by Bingkui Miao
6	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
7	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
8	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
9	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
10		B Miao Z XicCHINARE	Submitted by Bingkui Miao
11	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
12		B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
13		B Miao 7 XicCHINARE	Submitted by Bingkui Miao
14		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
15		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
16		B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
17		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
18		B. MIRO, Z. ARCHINARE	Submitted by Bingkui Miao
19		D. Miao, Z. XICHINARE	Submitted by Bingkui Miao
20	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
21	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
22	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
23	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
24	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
25	PRIC	B. MIao, Z. XIECHINARE	Submitted by Bingkui Miao
20	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
27	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
20	PRIC	B. Miao, Z. XieCHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. XieCHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
32	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
33	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
34	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
45	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
46	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
47	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
49 50	PRIC	B. Miao, Z. XiɛCHINARE	Submitted by Bingkui Miao
51	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
52	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
53	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
54	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
55	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
56	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
57	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
58	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
59	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
60	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao

2			
3	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
5	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
6	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
7	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
8	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
9	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
10	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
11	PRIC	B Miao Z Xi; CHINARE	Submitted by Bingkui Miao
12	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
13	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
14	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
15	PRIC	B. Miao, Z. Xiconinvare	Submitted by Bingkui Miao
16	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
17		P Migo 7 VicCHINARE	Submitted by Bingkui Miao
18		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
19		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
20		D. Miao, Z. XICHINARE	Submitted by Dingkui Miao
21		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
22	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
23	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
24	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
25	PRIC	B. MIao, Z. XIECHINARE	Submitted by Bingkul Miao
20	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
27	PRIC	B. MIAO, Z. XI&CHINARE	Submitted by Bingkui Miao
20	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
32	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
33	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
34	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
46	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
47	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
48	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
49	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
51	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
52	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
53	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
54	PRIC	B. Miao, Z. Xi: CHINARF	Submitted by Bingkui Miao
55	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. Xi: CHINARF	Submitted by Bingkui Miao
5/ E0	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
50 50	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
27 27	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
00		B. MIGO, Z. AROTHNAIL	

2			
3	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
5	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
6	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
7	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
8	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
9	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
10		B Miao Z XicCHINARE	Submitted by Bingkui Miao
11	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
12		B. Migo Z. XicCHINARE	Submitted by Bingkui Miao
13		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
14		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
15		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
16		D. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
17	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
18	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
19	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
20	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
21	PRIC	B. Miao, Z. XieCHINARE	Submitted by Bingkui Miao
22	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
23	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
24	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
25	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
26	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
27	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
28	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
29	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
2∠ 22	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
35	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
46	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
47	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
48	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
49	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
50		B. Migo Z. XicCHINARE	Submitted by Bingkui Miao
51		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
52		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
53		B Miao 7 VICUMARE	Submitted by Bingkul Mido
54		D. Miao, Z. AKUIIINARE	Submitted by Dingkui Miao
55		D. WIND, Z. ARUNINARE	Submitted by Dingkul Midu
56		D. WIAU, Z. ARUMINAKE	Submitted by Dingkui Miao
57			Submitted by Direkti Miac
58			Submitted by Bingkul Miao
59			
60	PRIC	B. MIAO, Z. XI&CHINARE	Submitted by Bingkui Miao

2			
3	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
5	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
6	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
7	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
8	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
9	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
10	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
11	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
12	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
13	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
14	PRIC	B Miao Z Xi; CHINARE	Submitted by Bingkui Miao
15	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
10	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
17	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
10	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
20	PRIC	B Miao Z Xiz CHINARE	Submitted by Bingkui Miao
20	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
21	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
23	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
24	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
25	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
26	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
27	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
28		B Miao Z XicCHINARE	Submitted by Bingkui Miao
29		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
30		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
31		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
32		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
33		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
34		B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
35		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
36		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
37		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
38		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
39		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
40		B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
41		D. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
4Z 42		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
43		B. Miao, Z. ARCHINARE	Submitted by Bingkui Miao
44		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
46		B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
40	PRIC	B. MIAO, Z. XICHINARE	Submitted by Bingkui Miao
48	PRIC	B. MIAO, Z. XICHINARE	Submitted by Bingkui Miao
49	PRIC	B. MIAO, Z. XICHINARE	Submitted by Bingkui Miao
50	PRIC	B. Miao, Z. XICHINARE	Submitted by Bingkul Miao
51	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
52	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
53	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkul Miao
54			Submitted by BINGKUI MIRO
55			Submitted by Bingkui Miao
56			Submitted by BingKul Miao
57			
58			Submitted by BingKul Miao
59			
60	PRIC	B. MIAO, Z. XIECHINARE	Submitted by BINGKUI MIAO

2			
3	PRIC	B. Miao. Z. XiεCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. Xi: CHINARE	Submitted by Bingkui Miao
5	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
6	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
7	PRIC	B Miao Z XizCHINARE	Submitted by Bingkui Miao
8	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
9	PRIC	B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
10		P Migo 7 Vic CHINARE	Submitted by Bingkui Miao
11		P Migo 7 Vic CHINARE	Submitted by Bingkui Miao
12		P Migo 7 Vic CHINARE	Submitted by Bingkui Miao
13		B. MIAO, Z. ARCHINARE	Submitted by Bingkui Miao
14	PRIC	D. Miao, Z. XICHINARE	Submitted by Bingkui Miao
15	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
16	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
17	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
18	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
19	PRIC	B. MIAO, Z. XIECHINARE	Submitted by Bingkui Miao
20	PRIC	B. Miao, Z. XiaCHINARE	Submitted by Bingkui Miao
21	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
22	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
23	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
24	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
25	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
26	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
27	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
28	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
29	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
30	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
31	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
2∠ 22	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
34	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
36	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
37	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
38	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
39	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
40	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
41	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
42	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
43	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
44	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
45	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
46	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
47	PRIC	B Miao Z Xi: CHINARE	Submitted by Bingkui Miao
48	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
49	PRIC	B Miao Z XicCHINARE	Submitted by Bingkui Miao
50		B. Miao, Z. XicCHINARE	Submitted by Bingkui Miao
51		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
52		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
53	PRIC	B Miao 7 VICUINARE	Submitted by Bingkui Mico
54		D. MIAO, Z. ARGITINARE	Submitted by Dingkui Mice
55		D. WIND, Z. ARUNINARE	Submitted by Dingkui Mide
56		D. WIAU, Z. ARUMINAKE	Submitted by Dingkul Miao
57		D. WILL, Z. ARUMINAKE	Submitted by DingKUI Mid
58			Submitted by Bingkul Miao
59			Submitted by BingKUI Miao
60	PRIC	B. MIAO, Z. XI& CHINARE	Submitted by Bingkui Miao

1			
2			
3	PRIC	B. Miao. Z. XicCHINARE	Submitted by Bingkui Miao
4	PRIC	B. Miao, Z. Xia CHINARE	Submitted by Bingkui Miao
5	PRIC	B Miao Z Xiz CHINARE	Submitted by Bingkui Miao
6	PRIC	B Miao Z Xiz CHINARE	Submitted by Bingkui Miao
7		B Miao Z Xir CHINARE	Submitted by Bingkui Miao
8		B. Miao, Z. XICHINARE	Submitted by Bingkui Miao
9		D. Miao, Z. ARCHINARE	Submitted by Dingkui Mido
10	PRIC	B. MIAO, Z. XICHINARE	
11	PRIC	B. Miao, Z. Xič CHINARE	Submitted by Bingkui Miao
12	PRIC	B. Miao, Z. Xie CHINARE	Submitted by Bingkui Miao
13	Mars	B. Cohen, GS Spirit rover	Submitted by B. Cohen, GSFC
14	Mars	B. Cohen, GS Spirit rover	Submitted by B. Cohen, GSFC
15	Peter Goldy	C. Herd, UAb	Submitted by C. Herd
16	Robert Verish	P Warren, UC Robert Verish	Fieldname = USA150806; lab ID# = V-HF-A. Verish's addres:
17	Said Yousfi	A. Greshake,	Submitted by Ansgar Greshake
18	N. Ben Faraii	A. Irving & P.	Work name NBF MN40: submitted by A. Irving
10	Zivao Wang	R. Bartoschev Ba Gena	working name WZ151; submitted by R. Bartoschewitz
20	Zivao Wang	R BartoschewWentao Yang	working name WZ111: submitted by R. Bartoschewitz
20	Gao iie	Peng H Zhar Gao ije	Submitted by Li Shijie
21			Submitted by L. V. Forman (Curtin University, WAM)
22		A. W. R. Deva J. Cionessy	Submitted by L. V. Formen (Curtin University, WAM)
23		A. W. R. Beva A. J. Carlisle	Submitted by L. V. Forman (Curtin University, WAW)
24		A. W. R. Beva A. J. Carlisle	Submitted by L. V. Forman (Curtin University, VVAIVI)
25	Jerry Spiker	K. Domanik arHarold L. Spi	Jerry Spiker (holder) contact information: New England Meter
20	Vernad	Lorenz C. A., 'Mr. A. Razum	Analyst S.E. Borisovsky (IGEM RAS); submitted by Lorenz C
27	Vernad.	Lorenz C. A., 'Mr. V. Hausto	Analyst S.E. Borisovsky (IGEM RAS); submitted by Lorenz C
28	Mehdi Zarrab	iJ. Gattacceca, anonymous	work name MZ-M; submitted by Jérôme Gattacceca
29	Mehdi Zarrab	iJ. Gattacceca anonymous	work name MZ62; submitted by Jérôme Gattacceca
30	Mehdi Zarrab	iJ. Gattacceca, anonymous	work name MZA10; submitted by Jérôme Gattacceca
31	Mehdi Zarrab	iJ. Gattacceca anonymous	work name MZAA01; submitted by Jérôme Gattacceca
32	Mehdi Zarrab	iJ. Gattacceca anonymous	work name MZAA05; submitted by Jérôme Gattacceca
33	Mehdi Zarrab	iJ. Gattacceca anonymous	work name MZAA06: submitted by Jérôme Gattacceca
34	Mehdi Zarrab	iJ. Gattacceca anonymous	work name MZAA07; submitted by Jérôme Gattacceca
35	Mehdi Zarrah	i.I. Gattacceca anonymous	work name MZAA09: submitted by Jérôme Gattacceca
36	Mehdi Zarrab	i L Gattacceca	work name MZA12: has shock-darkened, more recrystallized
3/	John Shea	M Hutson an Aadel Bouzad	Lab number CML 0077: submitted by Melinda Hutson
38	John Dedeler		wark name ID000; submitted by Jérême Cettessee
39	Jean Redeisp		Cubreitted by Assess Oreshelts
40	anonymous	Ansgar Gresn	Submitted by Ansgar Gresnake
41	anonymous	A. Greshake, I	Submitted by Ansgar Gresnake
42	anonymous	A. Greshake, I	Many brownish fragments without fusion crust. The plagioclas
43	Jens Bäumer	A. Greshake, I	Submitted by Ansgar Greshake
44	OAM	V. Moggi CeccRomano Serra	MSN-FI # I3297; Specific gravity 3.322; provisional Kerman 2
45	MSN-FI	V. Moggi Cecc Majid Nemati	MSN-FI # I3298; Specific gravity 3.323; provisional Kerman 2
46	University of	V. Moggi CeccGabriele Giuli	MSN-FI # I3299; Specific gravity 3.333; provisional Kerman 2
47	MSN-FI	V. Moggi Cecc Majid Nemati	MSN-FI # I3300; Specific gravity 3.354; provisional Kerman 2
48	MSN-FI	V. Moggi CeccLorenzo Cecc	MSN-FI # I3301; Specific gravity 3.342; provisional Kerman 2
49	MSN-FI	V. Moggi Cecc Hojat Kamali	MSN-FI # 13302: Specific gravity 3.317: provisional Kerman 2
50	MSN-FI	V. Moggi Cecc Maiid Nemati	MSN-FI # 13303: Specific gravity 3.377: provisional Kerman 2
51	MSN-FI	V. Moggi CeccGiovanni Prat	MSN-FI # 13304: Specific gravity 3 287: provisional Kerman 2
52	MSN-FI	V Moggi CeccGiovanni Prat	MSN-FI # 13305: Specific gravity 3 224: provisional Kerman 2
53	Liniversity of (V Mongi Cec Cabriele Ciuli	MSN-FI # 13306: Specific gravity 3 334: provisional Kerman 2
54		W Moggi Cox Cabriele Giuli	MSN EI # 13307: Specific gravity 3.307, provisional Kerman 2
55			MON EL# 12209, Specific gravity 2.200, provisional Kerman 2
56			MON FL# 10000, Specific gravity 0.298; provisional Kerman 2
57			IVISIN-FI # 13309; Specific gravity 3.307 ; provisional Kerman 2
58	UAM	v. Moggi CeccRomano Serra	INISIN-FI # 13310; Specific gravity 3.426; provisional Kerman 2
59	Di Martino	v. Moggi CeccMario Di Marti	MSN-FI # 13311; Specific gravity 3.310; provisional Kerman 2
60	Di Martino	V. Moggi CeccMario Di Marti	MSN-FI # I3312; Specific gravity 3.262; provisional Kerman 2

2 3 MSN-FI V. Moggi Cec(Majid Nemati MSN-FI # I3313; Specific gravity 3.253; provisional Kerman 2 4 MSN-FI V. Moggi Cec(Majid Nemati (MSN-FI # I3314; Specific gravity 3.200; provisional Kerman 2 5 V. Moggi Cec(Majid Nemati MSN-FI # I3315; Specific gravity 3.324; provisional Kerman 2 MSN-FI 6 V. Moggi Cec(Majid Nemati MSN-FI # I3316; Specific gravity 3.344; provisional Kerman 2 MSN-FI 7 University of CV. Moggi CeccGabriele Giuli MSN-FI # I3317; Specific gravity 3.346; provisional Kerman 2 8 V. Moggi Cec(Hojat Kamali MSN-FI # I3318; Specific gravity 3.455; provisional Kerman 2 MSN-FI 9 MSN-FI V. Moggi Cecc Saeed Soltani MSN-FI # 13319; Specific gravity 3.232; provisional Kerman 2 10 V. Moggi Cec(Giovanni Prat(MSN-FI # I3320; Specific gravity 3.315; provisional Kerman 2 MSN-FI 11 MSN-FI V. Moggi Cec(Majid Nemati MSN-FI # 13340; Specific gravity 3.404; provisional Kerman 2 12 University of CV. Moggi CeccGabriele Giuli MSN-FI # 13321; Specific gravity 3.361; provisional Kerman 2 13 MSN-FI V. Moggi Cec(Majid Nemati MSN-FI # 13322; Specific gravity 3.396; provisional Kerman 2 14 V. Moggi Cec(Majid Nemati MSN-FI # I3341; Specific gravity 3.297; provisional Kerman 2 MSN-FI 15 University of CV. Moggi CeccGabriele Giuli MSN-FI # 13323; Specific gravity 3.315; provisional Kerman 2 16 University of CV. Moggi Cecc Gabriele Giuli MSN-FI # 13324; Specific gravity 3.379; provisional Kerman 2 17 V. Moggi Cec(Mario Di Marti MSN-FI # 13325; Specific gravity 3.648; provisional Kerman 2 Di Martino 18 MSN-FI V. Moggi Cec(Giovanni Prat(MSN-FI # I3326; Specific gravity 3.390; provisional Kerman 2 19 V. Moggi CeccGiovanni Prat(MSN-FI # 13327; Specific gravity 3.276; provisional Kerman 2 MSN-FI 20 V. Moggi Cec(Majid Nemati MSN-FI # 13328; Specific gravity 3.343; provisional Kerman 2 21 MSN-FI 22 University of CV. Moggi CeccGabriele Giuli MSN-FI # 13329; Specific gravity 3.362; provisional Kerman 2 23 V. Moggi CeccGiovanni Prati MSN-FI # I3330; Specific gravity 3.367; provisional Kerman 2 MSN-FI 24 V. Moggi Cecc Moien Afzali MSN-FI # 13331; Specific gravity 3.360; provisional Kerman 2 MSN-FI 25 V. Moggi CeccRomano Serra MSN-FI # 13332; Specific gravity 3.372; provisional Kerman 2 OAM 26 MSN-FI V. Moggi Cec(Lorenzo Cecc MSN-FI # I3333; Specific gravity 3.358; provisional Kerman 2 27 V. Moggi Cec(Lorenzo Cecc MSN-FI # I3334; Specific gravity 3.354; provisional Kerman 2 MSN-FI 28 V. Moggi Cec(Vanni Moggi (MSN-FI # 13335; Specific gravity 3.311; provisional Kerman 2 MSN-FI 29 V. Moggi CeccGiovanni Pratr MSN-FI # I3336; Specific gravity 3.386; provisional Kerman 2 MSN-FI 30 University of CV. Moggi CeccGabriele Giuli MSN-FI # I3337; Specific gravity 3.410; provisional Kerman 2 31 University of CV. Moggi CeccGabriele Giuli MSN-FI # 13338; Specific gravity 3.250; provisional Kerman 2 32 V. Moggi Cecc Moien Afzali MSN-FI # 13339; Specific gravity 3.312; provisional Kerman 2 MSN-FI 33 UrFU, SIGM. Victor V. Shar UrFU meteorit Submitted by Victor V. Sharygin, SIGM and UrFU 34 UrFU, SIGM. Victor V. Shar UrFU meteorit Field name Madj-1-2; submitted by Victor V. Sharygin, SIGM 35 UrFU, SIGM. Victor V. Shar UrFU meteorit Field name Nick-3ST-2; submitted by Victor V. Sharygin, SIG 36 Jay Piatek L. Garvie, ASL see karmaka.de for photographs of the fall site etc.; submitter 37 D. Sheikh, FS Corey Kuo Submitted by Daniel Sheikh 38 Ziyao Wang R. BartoschewJianming Wanworking name WZ46; submitted by R. Bartoschewitz 39 Ziyao Wang R. BartoschewJianming Wanworking name WZ55; submitted by R. Bartoschewitz 40 Ziyao Wang R. BartoschewWentao Yang working name WZ128; submitted by R. Bartoschewitz 41 Zivao Wang R. BartoschewJianming Wanworking name WZ141; submitted by R. Bartoschewitz 42 43 Wang Zijian aLi shijie and FWang Zijian & Submitted by Li shijie 44 Yuxian Zhao Li shijie and F.Peng Wang, Y Submitted by Li shijie 45 Pengli Chen Li shijie and F Zijian Wang & Submitted by Li shijie 46 Yuxian Zhao Li Shijie and FPeng Wang, Y Submitted by Li shijie 47 M. Wozniak (pL. Karwowski Jacek Szcepa Submitted by Lukasz Karwowski and Krzysztof Szopa 48 Decker Meteo K. Klemm, A. I Working No.: De-02; submitted by K. Klemm, IfP; Abundant c 49 In possession A. W. R. Beva R. Gadd Submitted by L. V. Forman (Curtin University, WAM) 50 Ziyao Wang R. Bartoschew Yonglu Ma working name WZ150; submitted by R. Bartoschewitz 51 Mr. M. NepomLorenz C. A., 'Mr. M. Nepom field name is Calama 6-24M; submitted by Lorenz C.A., Vern 52 MMC J. Gattacceca Rodrigo Martir work name RM594. Likely paired with Machuca 005.; submitt 53 Mr. Atali Agak Lorenz C. A., 'Mr. Atali Agak Field name is A012; analyst A. Agakhanov (Fersman Minera 54 Ziyao Wang R. BartoschewJianming Wanworking name WZ154; submitted by R. Bartoschewitz 55 CEREGE J. Gattacceca Vinciane Debawork name MA110: submitted by Jérôme Gattacceca 56 Peter Buhl J. Gattacceca Peter Buhl work name PB06/07; submitted by Jérôme Gattacceca 57 Peter Buhl J. Gattacceca Peter Buhl work name PB11/12; Found on granodiorite pediment surface 58 MMC J. Gattacceca, Rodrigo Martir work name RM670; 1470 fragments, the largest 111 kg.; sub 59 Svend Buhl J. Gattacceca, Svend Buhl work name SB018; Found on granodiorite pediment surface I 60

3 Sergey Vasile J. Gattacceca, S. Vasilev & Swork name SE004; Found on granodiorite pediment surface; 4 Marc Jost (SJ A. Love, App Marc Jost Submitted by Anthony Love 5 J. Gattacceca Rodrigo Martir work name RM574; submitted by Jérôme Gattacceca MMC 6 K. Wimmer K. Klemm, A. I Working name: LoV; submitted by Klemm K. 7 UrFU K. DugushkinaMr. A. Pastukł Field name Past1; submitted by Kseniya Dugushkina (UB-RA 8 Marc Josts (S.A. Love, App Marc Jost (SJ: Submitted by Anthony Love 9 Eric Christens J. Gattacceca Eric Christens work name EJ529; submitted by J. Gattacceca 10 Peter Buhl J. Gattacceca. Peter Buhl work name PB14; submitted by J. Gattacceca 11 J. Gattacceca Rodrigo Martir work name RM643. Abundant shock veins and melt pockets. MMC. 12 Marc Jost (SJ: A. Love, App Marc Jost may be paired with LV360.; submitted by Anthony Love 13 Andreas KoppJ. Gattacceca Andreas Kopp work name AK020; submitted by Jérôme Gattacceca 14 MMC J. Gattacceca Rodrigo Martir work name RM686; submitted by Jérôme Gattacceca 15 Andreas KoppJ. Gattacceca. Andreas Kopp Work name AK015. Brecciated; submitted by Jérôme Gattacc 16 work name MC012; submitted by Jérôme Gattacceca Marc Jost J. Gattacceca Marc Jost 17 Michael Warn J. Gattacceca Michael Warn Shock veins. Likely paired with Los Vientos 014. Work name 18 Michael Warn J. Gattacceca Michael Warn work name MW33; submitted by Jérôme Gattacceca 19 MCL J. Gattacceca Rodrigo Martir work name RM683; submitted by Jérôme Gattacceca 20 J. Gattacceca.Rodrigo Martir work name RM685; submitted by Jérôme Gattacceca 21 MCL 22 MCL J. Gattacceca Rodrigo Martir work name RM687; submitted by Jérôme Gattacceca 23 J. Gattacceca Svend Buhl work name SB013; submitted by Jérôme Gattacceca Svend Buhl Eric Christens J. Gattacceca Eric Christens work name EJ689. Four fragments spread over 1 m.; submitt 24 25 Eric Christens J. Gattacceca Eric Christens work name EJ694; submitted by Jérôme Gattacceca 26 Marc Jost J. Gattacceca Marc Jost work name MC006. Found on granodiorite pediment surface 27 Marc Jost J. Gattacceca, Marc Jost work name MC010-2. Found on granodiorite pediment surfac 28 MMC J. Gattacceca.Rodrigo Martir work name RM682; submitted by Jérôme Gattacceca 29 MMC J. Gattacceca Rodrigo Martir work name RM684; submitted by Jérôme Gattacceca 30 MMC J. Gattacceca Rodrigo Martir work name RM707; submitted by Jérôme Gattacceca 31 MMC J. Gattacceca Rodrigo Martir work name RM708; submitted by Jérôme Gattacceca 32 work name SB008; submitted by Jérôme Gattacceca Svend Buhl J. Gattacceca Svend Buhl 33 Svend Buhl J. Gattacceca, Svend Buhl work name SB011. Found on granodiorite pediment surface I 34 Eric Christens J. Gattacceca Eric Christens work name EJ458; submitted by Jérôme Gattacceca 35 Ziyao Wang R. Bartoschev anonymous working name WZ132; submitted by R. Bartoschewitz 36 Ziyao Wang, NR. BartoschewAikeranmu Jia working name WZ137; submitted by R. Bartoschewitz 37 working name WZ143; submitted by R. Bartoschewitz Ziyao Wang R. Bartoschew anonymous 38 Jiachang Yu aR. BartoschewAikeranmu Jia working name WZ152; submitted by R. Bartoschewitz 39 R. Bartoschev R. Bartoschev Ai Li Kaviti working name WZD#18; submitted by R. Bartoschewitz 40 R. Bartoschev R. Bartoschev Ai Li Kayiti working name WZD#21; submitted by R. Bartoschewitz 41 Yuxian Zhao Li shijie and F.Yuxian Zhao Submitted by Li shijie 42 Xuefeng YangLi shijie and F Xuefeng Yang Submitted by Li shijie 43 44 MMC J. Gattacceca Rodrigo Martir work name RM561; submitted by J. Gattacceca 45 MMC J. Gattacceca Rodrigo Martir Work name RM581. Likely paired with Machuca 005. Troilite 46 MMC J. Gattacceca Rodrigo Martir work name RM563; submitted by Jérôme Gattacceca 47 J. Gattacceca Rodrigo Martir Likely paired with Machuca 007. Work name RM672; submitt MCL 48 Bihar Science D. K. Panda, /Rajkumar Pra: Submitted by A.D. Shukla 49 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is Marsa Alam-T-1; analyst T. Kryachko (Technoc 50 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is Marsa Alam-T-2; analyst T. Kryachko (Technoc 51 Mr. T. Kryachl Lorenz C. A., 'Mr. T. Kryachl Field name is Marsa Alam-T-3; analyst T. Kryachko (Technor 52 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is Marsa Alam-T-4; analyst T. Kryachko (Technos 53 Mr. T. Kryachł Lorenz C. A., 'Mr. T. Kryachł Field name is Marsa Alam-T-5; analyst T. Kryachko (Technoc 54 Beat Booz, FriB. Hofmann, N Submitted by Beda Hofmann 55 MCM J. Llorca, UPC Jose Garcia Submitted by Jose Garcia 56 Mars B. Cohen, GS Opportunity ro Submitted by B. Cohen, GSFC 57 Mars B. Cohen, GS Opportunity ro Submitted by B. Cohen, GSFC 58 B. Cohen, GS Opportunity ro Submitted by B. Cohen, GSFC Mars 59 Mars B. Cohen, GS Opportunity ro Submitted by B. Cohen, GSFC 60

1				
2				
3	Mars	B. Cohen, GS	Opportunity ro	Submitted by B. Cohen, GSFC
4	Mars	B. Cohen, GS	Opportunity ro	Submitted by B. Cohen, GSFC
5	Mars	B. Cohen, GS	Opportunity ro	Submitted by B. Cohen, GSFC
6	Finder	M.E. Zucolotto	Dione Pantale	Submitted by A. Moutinho and A. Tosi; submitted by Andre L.
7	finder	A. W. R. Beva	G. Munro	Submitted by L. V. Forman (Curtin University, WAM)
8	JSC	SI	ANSMET	Submitted by AMN
9	JSC	SI	ANSMET	Submitted by AMN
10	JSC	SI	ANSMET	Submitted by AMN
11	JSC	SI	ANSMET	Submitted by AMN
12	WAM	A. W. R. Beva	G. Kelahar	Submitted by L. V. Forman (Curtin University, WAM)
13	Finders	A. Yamaquchi		Submitted by S. Yoneda, NMNS
14	JSC	SI	ANSMET	Submitted by AMN
15		SI	ANSMET	Submitted by AMN
10	JSC	SI	ANSMET	Submitted by AMN
17	ISC	SI	ANSMET	Submitted by AMN
10	ISC	SI	ANSMET	Submitted by AMN
20		SI		Submitted by AMN
20		SI	ANSMET	Submitted by AMN
21	190	51 S1		
22	190	51 S1		
23	120	31 S1		Submitted by AMN
25	120	31		Submitted by AMN
26	120	51		Submitted by AMN
20	120	51		
28	JSC	SI	ANSMET	
29	JSC	SI	ANSMET	Submitted by AMN
30	JSC	SI	ANSMET	Submitted by AMN
31	JSC	SI	ANSMET	Submitted by AMN
32	JSC	SI	ANSMET	Submitted by AMN
33	JSC	SI	ANSMET	Submitted by AMN
34	JSC	SI	ANSMET	Submitted by AMN
35	JSC	SI	ANSMET	Submitted by AMN
36	JSC	SI	ANSMET	Submitted by AMN
37	JSC	SI	ANSMET	Submitted by AMN
38	JSC	SI	ANSMET	Submitted by AMN
39	JSC	SI	ANSMET	Submitted by AMN
40	JSC	SI	ANSMET	Submitted by AMN
41	JSC	SI	ANSMET	Submitted by AMN
42	JSC	SI	ANSMET	Submitted by AMN
43	JSC	SI	ANSMET	Submitted by AMN
44	JSC	SI	ANSMET	Submitted by AMN
45	JSC	SI	ANSMET	Submitted by AMN
46	JSC	SI	ANSMET	Submitted by AMN
47	JSC	SI	ANSMET	Submitted by AMN
48	JSC	SI	ANSMET	Submitted by AMN
49	JSC	SI	ANSMET	Submitted by AMN
50	JSC	SI	ANSMET	Submitted by AMN
51	JSC	SI	ANSMET	Submitted by AMN
52	JSC	SI	ANSMET	Submitted by AMN
53	JSC	SI	ANSMET	Submitted by AMN
54	JSC	SI	ANSMET	Submitted by AMN
55		Alan Rubin	Mike Brady	Submitted by Alan Rubin
56	M Aridal	A Irving LIWS		Work name Ari 7M0: submitted by A Irving
5/	M Aridal			Work name Ari 7M 224: submitted by A Irving
58	M Aridal	Δ Inving, UVC		Work name Ari A1: submitted by A. Irving
59	M Aridal	Δ Inving, UVC		Work name Ari 7M 271: submitted by A. Inving
60	ivi. Aijuai	A. II VIIIY, UVVC		work name Alj $\angle w \angle r$, submitted by A. Itvilly

ว		
2		
3	T. Boudreaux	A. Irving, Uvve
4		
5	P. Stahura	A. Irving, UWS
6	A. and G. Hup	A. Irving, UW/
/	A. & G. Hupe	A. Irving, UWA
8	A. & G. Hupe	A. Irving, UW/
9	M Farmer	A Irving S K
10		A Inving and S
11	N. Oakes	
12	G. пире	
13	G. Hupe	A. Irving, UVE
14	A. Hupe	A. Irving, UWS
15	N. Oakes	A. Irving, UWA
16	M. Cimala	A. Irving, UWS
17	M. Cimala	A. Irving, UWS
18	T. Boswell	A. Irving, UWS
10	T Boswell	A Irving UWS
20	Fahien Kuntz	A Greshake
20	Stofon Dolow	A. Croshake
21		A. Greshake, I
22	Svend Buni	A. Gresnake, I
23	Svend Buhl	A. Greshake, I
24	FKuntz	A. Greshake, I
25	Fabien Kuntz	A. Greshake, I
26	Fabien Kuntz	A. Greshake, I
27	Fabien Kuntz	A. Greshake, I
28	Stefan Ralew	A. Greshake.
29	B Reed	A Irving and S
30	Kuntz	A Inving and S
31		
32	DI. David Gre	A lating O K
33	A. Aaronson	A. Irving, S. Ki
34	M. Cimala	A. Irving and S
35	Nick Gessler	P Warren, UC
36	Nick Gessler	P Warren, UC
37	Nick Gessler	P Warren, UC
38	anonymous	K. Metzler, IfP
30	Anonymous	K. Metzler, IfP
<i>4</i> 0		
40	SI	M Zolensky a
41	01 01	M Zolonsky a
42	Soon Tutorou	
45		
44		A. Irving and E
45	PSF	A. Irving and S
46	PSF	A. Irving and ξ
4/	PSF	A. Irving and ٤
48	PSF	A. Irving and ٤
49	B. Hoefnagels	A. Irving and S
50	Zivao Wang	R. Bartoschev anonymous
51	Ziyao Wang	R Bartoschevanonymous
52	Xu Denggin	Peng H and Zunknown
53		
54	IVI. AIJUAI	
55	PSF	A. Irving and t
56	Bart	R. Bartoschewanonymous
57	Bart	R. Bartoschew anonymous
58	Ziyao Wang	R. Bartoschev anonymous
59	PSF	A. Irving and S
60	J. Higgins	A. Irving and §
~~		

Work name RC134.1; submitted by A. Irving Work name SY59 Work name MH-Q9; submitted by A. Irving Work name H117; submitted by A. Irving Work name H122; submitted by A. Irving Work name H110; submitted by A. Irving Submitted by A. Irving Submitted by A. Irving Submitted by A. Irving Work name GH-15; submitted by A. Irving Work names NQ6, NQ18, NQ22, NQ24 and NQ26; submittec Submitted by A. Irving Work name MC029; submitted by A. Irving Work name MC031; submitted by A. Irving Submitted by A. Irving Work name #113; submitted by A. Irving Submitted by Ansgar Greshake Submitted by Ansoar Greshake Work name 21853; submitted by A. Irving K151; submitted by A. Irving Submitted by V. Di Cecco, ROM Work name M1313; submitted by A. Irving Work name MC 094; submitted by A. Irving Gessler's address: 2010 Calgary Lane, Los Angeles, CA 900 Gessler's address: 2010 Calgary Lane, Los Angeles, CA 900 Gessler's address: 2010 Calgary Lane, Los Angeles, CA 900 Submitted by K. Metzler, IfP Submitted by K. Metzler, IfP Submitted by J. Utas Remnant chondrules in a largely recrystallized rock, coarse p Remnant chondrules in a largely recrystallized rock, coarse p Field name G672; submitted by C. Agee, UNM Work name MA 201; submitted by A. Irving Work name CHC18014; submitted by A. Irving Work name CHC18023; submitted by A. Irving Work name CHC18028; submitted by A. Irving Work name CHC18029; submitted by A. Irving Work name BH152: submitted by A. Irving working name WZ25; submitted by R. Bartoschewitz working name WZ40.; submitted by R. Bartoschewitz Submitted by Li Shijie Work name Arj18-A10; submitted by A. Irving Work name CHC18045; submitted by A. Irving NWA-RB02: submitted by R. Bartoschewitz NWA-RB10; submitted by R. Bartoschewitz working name WZ86; submitted by R. Bartoschewitz Work name CHC18048; submitted by A. Irving Work name JH18-4; submitted by A. Irving

2 3 A. Habibi Work name AH 702; submitted by A. Irving A. Irving and § 4 Labenne Luc J. Gattacceca. work name LL25; submitted by Jérôme Gattacceca 5 work name LL86; submitted by Jérôme Gattacceca Labenne Luc L. Krämer Ruc 6 DMUH Lorenz C. A., 'anonymous Analyst Kononkova N. N. (Vernad); submitted by Lorenz C.A. 7 Tomelleri V. Moggi Cecc Field label Tagounite; submitted by Vanni Moggi Cecchi 8 Labenne L. Krämer Ruc work name LL84; submitted by Jérôme Gattacceca 9 Pierre-Marie FJ. Gattacceca, anonymous work name PM19U1; submitted by Jérôme Gattacceca 10 Ziyao Wang R. Bartoschev anonymous working name WZ114; submitted by R. Bartoschewitz 11 working name WZ115; submitted by R. Bartoschewitz Ziyao Wang R. Bartoschew anonymous 12 working name WZ116; submitted by R. Bartoschewitz Ziyao Wang R. Bartoschew anonymous 13 Ziyao Wang R. Bartoschev anonymous working name WZ119; submitted by R. Bartoschewitz 14 Wei Jiang R. Bartoschew anonymous working name WZ120; submitted by R. Bartoschewitz 15 R. Bartoschev R. Bartoschev anonymous working name WZD#10; submitted by R. Bartoschewitz 16 Working name SW-6.4g; submitted by Klemm K. Sigrid WengerK.Klemm, Add anonymous 17 Gregory S. Korchinos. Submitted by V. Di Cecco, ROM 18 Haichuan Tan R. Bartoschev anonymous working name WZ138; submitted by R. Bartoschewitz 19 MSN-FI V. Moggi Cecc Anonymous Provisional name NWA 12897; Inventory # G75010; submitte 20 Provisional name NWA 12899; Inventory # G75011; submitte 21 MSN-FI V. Moggi Cecc Anonymous 22 MSN-FI V. Moggi Cecc Anonymous Provisional name NWA 12899; Inventory # G75062; submitte 23 Provisional name NWA 12900; Inventory # G75067; submitte MSN-FI V. Moggi Cecc Anonymous 24 MSN-FI V. Moggi Cecc Anonymous Provisional name NWA 12901; Inventory # G75066; submitte 25 C. Agee, UNN Field name KE-45; submitted by C. Agee Zuokai Ke 26 Dr. Brendt Hy(K. Tait, I. Nick Submitted by V. Di Cecco, ROM 27 Dr. David Gre₁K. Tait, I. Nick Submitted by V. Di Cecco, ROM 28 Dr. David Gre(K. Tait, I. Nick Submitted by V. Di Cecco, ROM 29 Dr. David Gre K. Tait, I. Nick Submitted by V. Di Cecco, ROM 30 Simon De BoeK. Tait, I. Nick Submitted by V. Di Cecco, ROM 31 Isabelle PothieJ. Gattacceca. work name CM28; submitted by Jérôme Gattacceca 32 Work name HN-403; submitted by A. Irving H. Naji A. Irving, UWS 33 Penneff D. Sheikh, FS Submitted by Daniel Sheikh 34 Submitted by Daniel Sheikh Matthew Stread. Sheikh, FS 35 anonymous A. Greshake, I Submitted by Ansgar Greshake 36 anonymous A. Greshake, I Submitted by Ansgar Greshake 37 anonymous A. Greshake, I Submitted by Ansgar Greshake 38 Harald StehlikA. Greshake, I Submitted by Ansgar Greshake 39 Harald StehlikA. Greshake, I Submitted by Ansgar Greshake 40 Said Yousfi A. Greshake, I Submitted by Ansgar Greshake 41 Said Yousfi A. Greshake, I Submitted by Ansgar Greshake 42 43 Said Yousfi A. Greshake, I Submitted by Ansgar Greshake 44 Work name AH 720; submitted by A. Irving A. Habibi A. Irving, UWS 45 Anonymous A. Irving, UWS Work name DL1008; submitted by A. Irving 46 Anonymous A. Irving, UWS Work name DL 1007; submitted by A. Irving 47 Anonymous A. Irving, UWS Work names DL 1006&1009; submitted by A. Irving 48 R. Chaoui/J. CA. Irving, UWS Work names M2221, AB85, RC140.1; submitted by A. Irving 49 M. Aridal A. Irvina, UWS Work name Arj H4; submitted by A. Irving 50 Wei Jiang R. Bartoschew anonymous working name WZ149; submitted by R. Bartoschewitz 51 Ziyao Wang R. Bartoschew anonymous working name WZ157; submitted by R. Bartoschewitz 52 Ziyao Wang R. Bartoschew anonymous working name WZD#G04; submitted by R. Bartoschewitz 53 R. Bartoschev R. Bartoschev anonymous working name WZD#G06; submitted by R. Bartoschewitz 54 working name WZD#G07; submitted by R. Bartoschewitz R. Bartoschev R. Bartoschev anonymous 55 Philippe Schrr A. Greshake, | Submitted by Ansgar Greshake 56 Philippe Schrr A. Greshake, I Submitted by Ansgar Greshake 57 Philippe Schrr A. Greshake, I Brownish rock with some patches of fusion crust. Plagioclase 58 Philippe SchmA. Greshake, I Brownish rock lacking any fusion crust. Plagioclase grain size 59 Philippe Schrr A. Greshake, I Submitted by Ansgar Greshake 60

1		
2		
3	Philippe SchmA. Greshake, I	Submitted by Ansgar Greshake
4	Philippe Schr A. Greshake, I	Submitted by Ansgar Greshake
5	Philippe Schr A. Greshake, I	Submitted by Ansgar Greshake
6	Philippe Schr A. Greshake, I	Small dark brownish rock without fusion crust. Plagioclase gr
7	Philippe Schr A. Greshake, I	Submitted by Ansgar Greshake
8	Mohamed LanA. Greshake.	Submitted by Ansgar Greshake
9	Philippe Schr A. Greshake	Submitted by Ansgar Greshake
10	Philippe Schr A. Greshake	Submitted by Ansgar Greshake
11	Philippe Schr A. Greshake	Submitted by Ansgar Greshake
12	Philippe Schr A. Greshake	Submitted by Ansgar Greshake
13	anonymous A Greshake	Submitted by Ansgar Greshake
14	anonymous A Greshake	Submitted by Ansgar Greshake
15	anonymous A Greshake	Submitted by Ansgar Greshake
16	anonymous A Greshake	Submitted by Ansgar Greshake
1/	anonymous A Grosbake	Submitted by Ansgar Greshake
18	anonymous A. Greshake, I	Submitted by Ansgar Creshake
19	MND A Greebeke	Brownich rock locking one fusion cruet. Discipalose grain size
20	MND A. Greshake,	Brownish rock lacking any fusion crust. Plagioclase grain size
21	MINB A. Gresnake, I	Brownish rock partly covered with fusion crust. Plagloclase gl
22	Roberto VargaD. Sheikh, FS	Submitted by Daniel Sneikn
23	Castellano V. Moggi Cecc Anonymous	Field C223; submitted by Vanni Moggi Cecchi
24	Castellano V. Moggi Cecc Anonymous	Field C224; veined; submitted by vanni Moggi Cecchi
25	Castellano V. Moggi Cecc Anonymous	Field C226; veined; submitted by Vanni Moggi Cecchi
20	Castellano V. Moggi Cecc Anonymous	Field C227; submitted by Vanni Moggi Cecchi
27	Castellano V. Moggi Cecc Anonymous	Field C228; submitted by Vanni Moggi Cecchi
20	Castellano V. Moggi Cecc Anonymous	Field C229; submitted by Vanni Moggi Cecchi
30	Castellano V. Moggi Cecc Anonymous	Field C230; submitted by Vanni Moggi Cecchi
31	Castellano V. Moggi Cecc Anonymous	Field C231; submitted by Vanni Moggi Cecchi
37	Pascal MaugeB. Doisneau, I	Submitted by E. Jacquet
33	Sean Tutorow M. Hutson and	Lab number CML 1005; owner number G718; submitted by N
34	JPhillips and JM. Hutson and	Lab number CML 1169; submitted by Melinda Hutson
35	JPhillips and JM. Hutson and	Lab number CML 1170; submitted by Melinda Hutson
36	Fredric Stepha T. Swindle	Working name FS012; submitted by T. Swindle
37	Fredric Steph: AS Djakaria a	Working name SH1; submitted by T. Swindle
38	Fredric Steph ₂ S. Chapin, K.	Working name SH2.; submitted by T. Swindle
39	Fredric Steph: M. Deci, T. Le	Working name SH3; submitted by T. Swindle
40	Fredric Stephat. Burd and E	Working Name SH7; submitted by T. Swindle
41	Fredric Steph S. Nagumantr	Working Name SH8; submitted by T. Swindle
42	Fredric Steph: A.M. Azman. I	Working name SH12: submitted by T. Swindle
43	Fredric Steph:K. Van Atta. T	Working name SH14: submitted by T. Swindle
44	Fredric Steph D. Cantillo, M.	Working name SH15: submitted by T. Swindle
45	L. Labenne A. Irving, UWS	Work name LAB 100919: submitted by A. Irving
46	DPitt A Irving UWS	Work name MVCH 270C: submitted by A Irving
47	LIAlic A Irving LIWS	Work name JAP19-2: submitted by A Irving
48	A Habibi A Irving LIWS	Work name AH 724: submitted by A Irving
49	A Aaronson A Irving LIWS	Work name M2206: submitted by A Inving
50	A Habibi A Inving LIWS	Work name AH 720; submitted by A. Irving
51	A Habibi A Inving LIWS	Work name AH 1708; submitted by A. Irving
52	A Aprophon A Inving LIM/S	Work name M2117: submitted by A. Irving
53	A. Aalulisuli A. Ilvilly, UVC	Work name IAch S5: submitted by A. Itving
54		Work name CHC19044, submitted by A. IIVIIIY
55		
56		Work name JAP 19-3, Submitted by A. Irving
57		
		Work name I AD OF1140A, submitted by A. Index
58	Theatrum Mur A. Irving, UWS	Work name LAB 051119A; submitted by A. Irving
58 59	Theatrum Mur A. Irving, UWS M. Arjdal A. Irving, UWS	Work name LAB 051119A; submitted by A. Irving Work name Arj ZM 35; submitted by A. Irving

2	A mt A m a i a m t	۸ I			Mark name M2000, automitted by Allming
3	AnAncient	A. I	irving, Uvve		work name M2222, submitted by A. Irving
4	M. Arjdal	A. I	Irving, UWS		Work name Arj ZM 110; submitted by A. Irving
5	UAlic	A. I	Irving, UWS		Work name JAP19-4; submitted by A. Irving
0	PSF	A. I	lrving, UW೪		Work name CHC18050; submitted by A. Irving
/	Phillip Todd	C. /	Agee, UNN		Field name PT-1; submitted by C. Agee, UNM
8	Geological Mu	Z.X	(ia, B.Miao.	Anonymously	The name "C-201901L" was used in Chinese conference bef
9	Gregory	C. E	Beros, UT		Submitted by V. Di Cecco, ROM
10	Greaory	C. E	Beros . UT(Submitted by V. Di Cecco, ROM
11	Gregory	V. [Di Cecco. F		Submitted by V. Di Cecco, ROM
12	Boulaouane T	-A. (Greshake.		Submitted by Ansgar Greshake
13	Wei Jiang	.1.1	li S Hu an		Submitted by Julies Hu and Y Lin IGGCAS
14	Wei liang	1 1	li S. Hu an		Submitted by L Ii S Hu and Y Lin IGGCAS
15	Wei Jiang	0.0			Submitted by J. Ji, S. Hu and Y. Lin, ICCCAS
16	M Morgon M	J. J I V I			Submitted by J. Ji, S. Hu and T. Lin, IGGCAS
17		ו ז.ו רם א			
18	Sergey vasilie	εΡ. 1 - Γ. (Submitted by Pavel Yu. Plechov, pplechov@gmail.com
19	Matthew Strea	ED. 8	Sheikh, FS		Submitted by Daniel Sheikh
20	Juan Aviles Po	(D. 8	Sheikh, FS		Submitted by Daniel Sheikh
21	Jérémy Basse	eJ. G	Gattacceca,		work name CM31; submitted by Jérôme Gattacceca
22	Patrick Rousta	εJ. Θ	Gattacceca,		work name CM36; submitted by Jérôme Gattacceca
23	Patrick Rousta	εJ. Θ	Gattacceca,		work name CM39; submitted by Jérôme Gattacceca
24	George Penne	€J. C	Gattacceca,		work name GP05; submitted by Jérôme Gattacceca
25	George Penne	€J. O	Gattacceca,		work name GP06; submitted by Jérôme Gattacceca
26	George Penne	€J. G	Gattacceca,		work name GP07; submitted by Jérôme Gattacceca
27	Kuntz	J. G	Gattacceca,		work name K429; Melt rock supported breccia. Chondritic cla
28	Kuntz	J. G	Gattacceca		work name K430; submitted by Jérôme Gattacceca
29	Kuntz	J. G	Gattacceca		work name K441: submitted by Jérôme Gattacceca
30	Kuntz	J	Gattacceca		work name K443; submitted by Jérôme Gattacceca
31	Kuntz	.1.6	Sattacceca		work name K444: submitted by Jérôme Gattacceca
32	Kuntz				work name K446: submitted by Jérôme Gattacceca
33	Kuntz				work name K117; submitted by Jérôme Cattacceca
34	Kuntz	J. C			work name K447, submitted by Jerôme Gattacceca
35	Kuntz	J. C			work name K440, submitted by Jerome Gattacceca
36		J. C			work name K450, submitted by Jerome Gattacceca
37	Lucian Cojoca	J. C			work name LCOT; submitted by Jerome Gattacceca
38	Lucian Cojoca	3J. (work name LC05; Crusted stone. Cut surface reveals light br
39	Labenne	J. C	Jattacceca		work name LL87/LAB031219a; submitted by Jerôme Gattacc
40	Labenne	J. C	Gattacceca,		work name LL88/LAB031219b; submitted by Jérôme Gattacc
41	Labenne	J. C	Gattacceca,		work name LL89/LAB031219c; Subrounded olivine with typic
42	Fabien Kuntz	A. (Greshake, I		Submitted by Ansgar Greshake
43	Fabien Kuntz	A. (Greshake, I		Submitted by Ansgar Greshake
44	Fabien Kuntz	A. (Greshake, I		Submitted by Ansgar Greshake
45	Fabien Kuntz	A. (Greshake, I		Submitted by Ansgar Greshake
46	R. Lenssen	A. (Greshake, I		Submitted by Ansgar Greshake
47	R. Lenssen	A. (Greshake, I		Submitted by Ansgar Greshake
48	R. Lenssen	A. (Greshake, I		Submitted by Ansgar Greshake
49	Marcin Cimala	ΞA. (Greshake.		Dark brownish rock partly covered with fusion crust. The plag
50	Marcin Cimala	=A (Greshake		Submitted by Ansgar Greshake
51	Philippe Schr		Greshake		Submitted by Ansgar Greshake
52	Hanno Strufe		Greshake		Dark brownish rock without fusion crust. The meteorite a an L
53	Hanno Strufo		Greshake		Dark gravish rock without fusion crust. The meteorite an LL6
54		1.0	Cicoliane, I		work name 11 2015 50: submitted by Járôma Cattagagas
55		J. C		Anonymays	The name M17000 was used in Chinese conference same
56	Bing-an Miao	ы. Г	wiiao, ∠. Ba	Anonymously	Cubritted by Arthory Leve
57		1 A. I	Love, App	Unknown	Submitted by Anthony Love
58	Dave Lehman	۱A. I	Love, App	Unknown	Submitted by Anthony Love
59	Dave Lehman	۱A. I	Love, App	Unknown	Submitted by Anthony Love
60	Dave Lehman	۱A. I	Love, App	Unknown	Submitted by Anthony Love

1		
2		
3	Dave Lehman A. Love, App Unknown	Submitted by Anthony Love
4	Fabien Kuntz A. Love, App Unknown	Submitted by Anthony Love
5	M. Aridal A. Irving, UWS	Work name Arj ZM 1; submitted by A. Irving
6	B. HoefnagelsA. Irving, UWS	Work name BH212; submitted by A. Irving
7	M. Aridal A. Irving, UWS	Work names Ari ZM 76 and ZM 185: submitted by A. Irving
8	Akuadra Bijou A. Irving, UWS	Work name GSP: submitted by A. Irving
9	M. Aridal A. Irving, UWS	Work name Ari AG1: submitted by A. Irving
10	PSF A Irving UWS	Work name CHC18049 [°] submitted by A Irving
11	PSF A Irving UWS	Work name CHC18051: submitted by A Irving
12	A Habibi A Irving UWS	Work name AH 726: submitted by A Irving
13	PSF A Irving LIWS	Work name CHC18052: submitted by A Irving
14	M I von/M EleA Irving LIWS	Work name I von19-2: submitted by A Irving
15	Albert Jambor I. Gattacceca	work name BA18-01: submitted by Jérôme Gattacceca
16		workn name I C07: submitted by Jérôme Gattacceca
17	Miguel Angel (D. Sheikh ES	Submitted by Daniel Sheikh
18	GUT H Chen 7 Xi Aponymous	Submitted by Bingkui Miao
19		Submitted by Arshad Ali
20		Submitted by Arshad Ali
21		Submitted by Arshad Ali
22		Submitted by Arshad Ali
23		Submitted by Arshad Ali
25	SQU A. All, SQU	Field name C721 : submitted by A. Bouvier, LIBovr
26	S. Tutorow N. Ma, OBayi Ulikilowi	Field name G721, submitted by A. Bouvier, UBayr
27	S. Tutorow V. Sziachia, UUrknown	Field name G722, submitted by A. Bouvier, UBayr
28	S. Tutorow A. Krupp, OBa Unknown	Field name G723., submitted by A. Bouvier, UBayr
29	S. Lutorow D. Souza, UB: Unknown	Field name G724.; submitted by A. Bouvier, UBayr
30	D. Pitt A. Irving, UWS	Work name MVCH 496; submitted by A. Irving
31	M. Lyon A. Irving, Uve	Work name RC128.1; submitted by A. Irving
32	D. Pitt A. Irving, UVS	Work name MVCH 497; submitted by A. Irving
33	L. Labenne A. Irving, UVS	work name LAB 241019; submitted by A. Irving
34	D. Pitt A. Irving, UVS	Work name MVCH 498; submitted by A. Irving
35	1. Boudreaux A. Irving, UVV	Work name TBx19-1; submitted by A. Irving
36	Hanno Strute A. Greshake, I	Submitted by Ansgar Greshake
37	Hanno Strufe A. Greshake,	Submitted by Ansgar Greshake
38	Hanno Strufe A. Greshake,	Brownish rock without fusion crust. The plagioclase grain size
39	Hanno Strufe A. Greshake,	Submitted by Ansgar Greshake
40	Hanno Strufe A. Greshake,	Submitted by Ansgar Greshake
41	Hanno Strufe A. Greshake, I	Submitted by Ansgar Greshake
42	Martin NeukarA. Greshake, I	Submitted by Ansgar Greshake
43	Larbi ChnaouiA. Greshake, I	Submitted by Ansgar Greshake
44	Larbi ChnaouiA. Greshake, I	Submitted by Ansgar Greshake
45	Larry Atkins C. Agee, UNN	Field name LA-101; submitted by C. Agee, UNM
46	Larry Atkins C. Agee, UNN	Field name LA-102; submitted by C. Agee, UNM
47	Larry Atkins C. Agee, UNN	Field name LA-103; submitted by C. Agee, UNM
48	Robert Verish P Warren, UC	Verish's address: R. Verish, Meteorite-Recovery Lab, P.O. Bo
49	Harkness Coll A. Irving, UWS	Work name HC7; submitted by A. Irving
50	M. Arjdal A. Irving, UWS	Work name Arj ZM 136; submitted by A. Irving
51 52	Harkness Coll A. Irving, UWS	Work name HC8; submitted by A. Irving
52 52	A. Habibi A. Irving, UWS	Work name AH 727; submitted by A. Irving
57 57	Harkness Coll A. Irving, UWS	Work name HC9; submitted by A. Irving
55 55	M. Hmani A. Irving, UWS	Work name MH20-Q03; submitted by A. Irving
56	Harkness Coll A. Irving, UWS	Work name HC10; submitted by A. Irving
57	M. Lyon A. Irving, UWS	Work name Lyon19-3; submitted by A. Irving
58	Harkness Coll A. Irving, UWS	Work name HC11; submitted by A. Irving
59	Larbi ChnaouiA. Greshake, I	Submitted by Ansgar Greshake
60	anonymous A. Greshake, I	Submitted by Ansgar Greshake

2		
3	Said Yousfi A. Greshake, I	Submitted by Ansgar Greshake
4	Said Yousfi A. Greshake, I	Dark brownish rock with some fusion crust. The plaqioclase c
5	Said Yousfi A. Greshake.	Submitted by Ansgar Greshake
6	Boulaouane TA, Greshake, I	Submitted by Ansgar Greshake
7	Marcin CimalaA, Greshake, Muhhamad In	Submitted by Ansgar Greshake
8	Marcin CimalaA. Greshake, I	Submitted by Ansgar Greshake
9	John Humphric. Agee UNN	Submitted by C. Agee
10	Anonymous A Irving UWS	Submitted by A Irving
11	M Aridal A Irving UWS	Work name Ari 7M 86: submitted by A Irving
12	R Chaoui and Inving LIWS	Work name $RC126.2$: submitted by A. Irving
13	D Pitt A Irving UWS	Work name MVCH 489: submitted by A . Irving
14	M Aridal A Inving LIWS	Work name Ari 7M 112: submitted by A. Irving
15	A Habibi A Inving LIWS	Work name AH 728: submitted by A. Inving
16	A Habibi A Inving LIWS	Work name AH 738; submitted by A. Inving
17	A. Habibi A. Inving, OWC	Work name K111 50, Submitted by A. Inving
18	P. Ruitz A. Irving, UWS	Work name MVCH 488: submitted by A. Irving
19	A Hebibi A Inving UNC	Work name AH 722: submitted by A. Irving
20		Field name MI/CLI49C: submitted by C. Area, UNM
21	Darryi Pill C. Agee, UNIV	Field name MVCH486; Submitted by C. Agee, UNM
22	DPItt C. Agee, UNIV	Field name MVCH487; submitted by C. Agee, UNM
23	anonymous C. Herd, UAb	Submitted by C. Herd
24	Sergey Vasilie A. Love, App	Submitted by Anthony Love
25	Marc Jost (SJ A. Love, App	Submitted by Anthony Love
20	Marc Jost (SJ'A. Love, App	Submitted by Anthony Love
27	UCLA D. Sheikh, FS	Submitted by Daniel Sheikh
20	Matthew Stread. Sheikh, FS	Submitted by Daniel Sheikh
30	Daoud WabiclD. Sheikh, FS	Submitted by Daniel Sheikh
31	Juan Aviles P(D. Sheikh, FS	Submitted by Daniel Sheikh
32	Jürgen NaubeK.Klemm, Add	Submitted by Klemm K.
33	DPitt C. Agee, UNN	Submitted by C. Agee
34	DPitt C. Agee, UNN	Submitted by C. Agee
35	anonymous firK. Klemm, I. K	Working No. NWA 4-17; submitted by Imene Kerraouch (US1
36	Hanno Strufe A. Greshake, I	Submitted by Ansgar Greshake
37	Hanno Strufe A. Greshake, I	Brownish rock without fusion crust. LL5 breccia. Plagioclase (
38	Hanno Strufe A. Greshake, I	Submitted by Ansgar Greshake
39	Marcin CimalaA. Greshake, I	Submitted by Ansgar Greshake
40	Marcin CimalaA. Greshake, I	Submitted by Ansgar Greshake
41	N. Rezsabek D. Rezes, CSI	Work name: RNNWAx1; submitted by D. Rezes; submitted by
42	Didi Baidari arC. Agee, UNN	Field name DB-7; submitted by C. Agee, UNM
43	Stephen AmaıD. Sheikh, FS	Submitted by Daniel Sheikh
44	Fabien Kuntz D. Sheikh, FS	Submitted by Daniel Sheikh
45	R. Chaoui/J. CA. Irving, UWS	Work name RC126.3; submitted by A. Irving
46	P. Brown A. Irving, UWS	Work name HC19; submitted by A. Irving
47	M. Lyon A. Irving, UWS	Work name Lyon19-4; submitted by A. Irving
48	P. Brown A. Irving, UWS	Work name HC20; submitted by A. Irving
49	A. Habibi/D. GA. Irving, UWS	Work names AH 737 and RC127.2; submitted by A. Irving
50	M. Lyon A. Irving, UWS	Work name Lyon19-6; submitted by A. Irving
51	L. Ouabicha/ZA. Irving, UWS	Work name ZS20-CH1; submitted by A. Irving
52	M. Lyon/C. ShA. Irving, UWS	Work name Lyon19-5; submitted by A. Irving
53	M. Arjdal A. Irving, UWS	Work name Arj ZM 240; submitted by A. Irving
54 55	Jesper Gronn(D. Sheikh, FS	Submitted by Daniel Sheikh
55 56	John Higgins D. Sheikh. FS	Submitted by Daniel Sheikh
50 57	Marc Jost (SJ Anthony Love	Submitted by Anthony Love
58	Andreas GrenL. Krämer Rucunknown	work name AG002; Brown pimpled fragments, some with dar
50	Kuntz J. Gattacceca	work name K467; submitted by J. Gattacceca
60	Thierry Simar(A. Love. App Unknown	Submitted by Anthony Love
	,,	, ,
2		
----------	-------------------------------------	
3	Marc Jost (SJ; A. Love, App Unknown	
4	Marc lost (SI:A Love App Linknown	
5	Mare lost (OHA Love, App Unknown	
6	Marc Jost (SJ; A. Love, App Unknown	
0	Juan Aviles P(D. Sheikh, FS	
/	Juan Aviles P(D. Sheikh, FS	
8	Juan Aviles P(D, Sheikh, FS	
9	Stanban AmarD Shaikh ES	
10		
11	Shawn Kasha D. Sheikh, FS	
12	Stephen AmaıD. Sheikh, FS	
12	Matthew StreaD. Sheikh, FS	
15	John Higgins A. Love. App	
14	Eabien Kuntz A Love Ann	
15	Fabien Kuntz A. Leve, App	
16	Fabien Kuniz A. Love, App	
17	Dave Lehman A. Love, App	
18	Fabien Kuntz A. Love, App	
19	Dustin Dicken C. Agee, UNN	
20	Dustin Dicken C. Agee, UNN	
20	Labbib Alfara K Metzler IfP	
21		
22	Carlos Munec J. Liorca, UPC	
23	L. Labenne A. Irving, UWS	
24	J. Divelbiss A. Irving, UWS	
25	M. Arjdal A. Irving, UWS	
26	D Pitt A Irving UWS	
27	M Aridal A Inving LIMS	
28	M Aridal A Inving, UV/C	
29	M. Arjaal A. Irving, Ove	
30	M. Arjdal A. Irving, UWS	
30 31	D. Pitt A. Irving, UWS	
21	Decker Meteo K. Klemm, A. I	
32	Decker Meteo K. Klemm, A. I	
33	Decker Meteo K Klemm A I	
34	Decker Meteo K Klomm A	
35	Decker Meteo K. Klemm, A. I	
36	Decker Meteok. Klemm and	
37	Decker Meteo K. Klemm and	
38	M. Arjdal A. Irving, UWS	
39	A. Aaronson A. Irving, UWS	
40	M I von A Irving UWS	
40	M Aridal A Inving LIMS	
41	F Twolker A Inving LINK	
42	E. I weiker A. Irving, Uvv	
43	M. Lyon A. Irving, UVV	
44	M. Lyon A. Irving, UWS	
45	S. Kashay A. Irving, UWS	
46	Z. Wang A. Irving, UWS	
47	PSF A Irving UWS	
48	Thierry Simary A. Love, App	
49	Coor Tutoreu D. Marron LLC	
50	Sean TutorowP. Warren, UC	
50	Decker Meteo K. Klemm and	
51	Philippe SchmA. Greshake, I	
5Z	Marcin CimalaA. Greshake, I	
53	Larbi Chnaou A. Greshake	
54	Larhi Chnaoul A Greshake	
55	Larbi ChagouiA. Cresheke	
56	Larbi ChinaoulA. Greshake, I	
57	Lardi ChnaoulA. Greshake, I	
58	Larbi ChnaouiA. Greshake, l	
59	Said Yousfi ar A. Greshake, I	
60	Said Yousfi A. Greshake, I	
	•	

Submitted by Anthony Love Submitted by Anthony Love Submitted by Anthony Love Submitted by Daniel Sheikh Submitted by Anthony Love Field name DD-59; submitted by C. Agee, UNM Field name DD-61; submitted by C. Agee, UNM Submitted by K. Metzler, IfP Submitted by Carlos Muñecas Work name RC130.3; submitted by A. Irving Work name JD20-1; submitted by A. Irving Work name Arj ZM 02; submitted by A. Irving Work name MVCH 492; submitted by A. Irving Work name Arj L1; submitted by A. Irving Work name Arj ZM 205; submitted by A. Irving Work name Arj ZM 214; submitted by A. Irving Work name MVCH 493; submitted by A. Irving Working No.: De-01; submitted by K. Klemm, IfP; submitted t Working No.: De-04; submitted by K. Klemm, IfP; The rock ha Working No.: De-09; submitted by K. Klemm, IfP; submitted t Working No.: De-10; submitted by K. Klemm, IfP; submitted t Working No.: De-08; submitted by K. Klemm, IfP; submitted t Working No.: De-07; submitted by K. Klemm, IfP; submitted t Work name Arj ZM 250; submitted by A. Irving Work name M2246; submitted by A. Irving Work name Lyon20-1; submitted by A. Irving Work name Arj ZM 270; submitted by A. Irving Work name ET20-1; submitted by A. Irving Work name Lyon20-2; submitted by A. Irving Work name Lyon20-3; submitted by A. Irving Work name SK20-1; submitted by A. Irving Work name RC129.3; submitted by A. Irving Work name CHC20001; submitted by A. Irving Submitted by Anthony Love Submitted by Paul Warren Working No.: De-03; submitted by K. Klemm, IfP; submitted t Submitted by Ansgar Greshake Submitted by Ansgar Greshake Dark brownish rock with some fusion crust. The plagioclase c Submitted by Ansgar Greshake Dark brownish rock without fusion crust. The plagioclase grai Dark brownish rock without fusion crust. The plagioclase grai Dark gravish rock largely covered by fusion crust. The plagio Submitted by Ansgar Greshake Submitted by Ansgar Greshake

2	D Langaan A Crashaka I	Cubmitted by Anoner Creebele
2	R. Lenssen A. Gresnake, I	Submitted by Ansgar Gresnake
4	C. Zlimen A. Irving, UWS	Work name ZLI26; submitted by A. Irving
5	R. Chaoui A. Irving, UWS	Work name RC132.1; submitted by A. Irving
6	M. Lyon A. Irving, UWS	Work name ZLI27; submitted by A. Irving
/	H. Naji A. Irving, UWS	Work name HN-416; submitted by A. Irving
8	Harkness Coll A. Irving, UWS	Work name HC-12; submitted by A. Irving
9	R. Chaoui/J. CA. Irving, UWS	Work name RC131.2: submitted by A. Irving
10	M Aridal A Irving UWS	Work name Ari ZM 241 ⁻ submitted by A Irving
11	I Higgins A Irving UWS	Work name IH20-1: submitted by A Irving
12	M Lyon A Irving LIWS	Work name Lyon20-4: submitted by A Trying
13	P Chaqui A Inving LIMS	Work name $PC124.1$; submitted by A. Inving
14	M Aridal A Inving LIMS	Work name Ari 7M 256; submitted by A. Inving
15	IVI. Arjuar A. Inving, OVVC	Work name Al 200 Statkeritted by A. Itving
16	J. Higgins A. Irving, UVE	Work name JH20-2; submitted by A. Irving
17	M. Arjdal A. Irving, UWS	Work name Arj ZM 237; submitted by A. Irving
18	J. Divelbiss A. Irving, UWS	Work name JD20-2; submitted by A. Irving
19	Noreddine Az(D. Sheikh, FS	Submitted by Daniel Sheikh
20	Ralf Brinkschr K. Klemm, A.	(K. Klemm, A. Bischoff, IfP): H4-5; the rock is a brecciated H-
21	Jasper Spenc/Daniel Sheikh	Submitted by Daniel Sheikh
22	Youssef Benn D. Sheikh, FS	Submitted by Daniel Sheikh
23	Marc Jost (SJ: A. Love, App	Submitted by Anthony Love
24	Marc Jost (SJ A. Love, App	Submitted by Anthony Love
25	Dustin Dicken C. Agee, UNN	Field name DD-65; submitted by C. Agee, UNM
26	Marcin CimalaC, Agee, UNIV	Field name MC-178; submitted by C. Agee, UNM
27	B HoefnagelsA Irving UWS	Work name RC134 1: submitted by A Irving
28	Kuntz A Love App	Submitted by Anthony Love
29	Eshien Kuntz A Love Ann	Submitted by Anthony Love
30	Sargov Vasilis A. Love, App	Submitted by Anthony Love
31	Sergey vasile A. Love, App	Submitted by Anthony Love
32	S. Crivello C. Herd, UAD	Submitted by C. Herd
33	UAIIC C. Herd, UAD	Field number 21542; submitted by C. Herd
34	UAlic C. Herd, UAb	Field number 21535; submitted by C. Herd
35	UAlic C. Herd, UAb	Field number 6; submitted by C. Herd
36	UAlic C. Herd, UAb	Field number 15A; submitted by C. Herd
37	Sean TutorowC. Agee, UNN	Field name G727; submitted by C. Agee, UNM
38	Sean TutorowC. Agee, UNN	Field name G728; submitted by C. Agee, UNM
39	Sean TutorowC. Agee, UNN	Field name G729; submitted by C. Agee, UNM
40	Sean TutorowC. Agee, UNN	Field name G730; submitted by C. Agee, UNM
41	R. Chaoui A. Irving, UWS	Work name RC133.6; submitted by A. Irving
42	B. Reed A. Irving, UW/	Work name BR110; submitted by A. Irving
43	B. Reed A. Irving, UW/	Work name BR111: submitted by A. Irving
44	B. Reed A. Irving, UW/	Work name BR112; submitted by A. Irving
45	John Higgins A Love Ann Mohamed Bo	Submitted by Anthony Love
46	Daniel SheikhD, Sheikh, FS	Submitted by Daniel Sheikh
47	Daniel SheikhD, Sheikh, FS	Submitted by Daniel Sheikh
48	Daniel SheikhD, Sheikh, FS	Submitted by Daniel Sheikh
49	Daniel SheikhD, Sheikh, FS	Submitted by Daniel Sheikh
50	Daniel SneiknD. Sneikn, FS	
51	Dustin Dicken D. Dickens	Submitted by Dustin Dickens
52	Boulaouane I A. Greshake,	Brownish rock without fusion crust. The plagloclase grain size
53	Boulaouane TA. Greshake, I	Submitted by Ansgar Greshake
54	Boulaouane TA. Greshake, I	Many brownish fragments with the largest one weighing 186
55	Boulaouane TA. Greshake, I	Submitted by Ansgar Greshake
56	Boulaouane TA. Greshake, I	Submitted by Ansgar Greshake
57	Lucian CojocaJ. Gattacceca, anonymous	work name LC19; submitted by Jérôme Gattacceca
58	anonymous J. Gattacceca anonymous	work name MZ38; submitted by Jérôme Gattacceca
59	anonymous J. Gattacceca anonymous	work name MZA01; submitted by Jérôme Gattacceca
60	anonymous J. Gattacceca anonymous	work name MZA04; submitted by Jérôme Gattacceca
~~	,	,

2		
3	Mirko Graul, E	K. Metzler, IfP
4	Jasper Spence	Daniel Sheikh
5	anonymous	L Gattacceca anonymous
б	anonymous	
7	anonymous	
8	anonymous	J. Gattacceca anonymous
9	anonymous	J. Gattacceca anonymous
10	anonymous	J. Gattacceca, anonymous
11	anonymous	J. Gattacceca, anonymous
17	Matthew Strea	D. Sheikh, FS
12	Dave Lehman	A. Love, App
15	Dave Lehman	A. Love, App
14 1 <i>г</i>	Philippe Schm	A. Greshake.
15	Philippe Schm	A Greshake
16	Hanno Strufe	A Gresbake
17	Solomy Ali	A. Crosbake
18		
19	B. Reed	A. Irving, Uva
20	B. Reed	A. Irving, UVE
21	Harkness Coll	A. Irving, UWS
22	A. Aaronson	A. Irving, UWS
23	Harkness Coll	A. Irving, UWS
24	Harkness Coll	A. Irving, UWS
25	Harkness Coll	A. Irving, UWS
26	Harkness Coll	A Irving UWS
27	Harkness Coll	A Irving LIWS
28	Harkness Coll	
29	Kunt-	
30		
31	N. Gessier	A. Irving, Uve
32	Z. Wang	A. Irving, UWS
33	N. Gessler	A. Irving, UWS
34	J. Divelbiss	A. Irving, UWS
35	D. Pitt	A. Irving, UWS
36	R. Chaoui	A. Irving, UWS
37	Kuntz	A. Greshake, I
38	Kuntz	A. Greshake, I
30	Kuntz	A. Greshake, I
40	Kuntz	A Greshake
40	Kuntz	A Gresbake
41	Thiorny Simor	
4Z 40	Dava Lahman	A Love, App
45	Dave Lenman	A. Love, App
44	Dave Lenman	A. Love, App
45	Fabien Kuntz	D. Sheikh, FS
46	Fabien Kuntz	D. Sheikh, FS
47	J. Divelbiss	A. Irving, UWS
48	H. Naji	A. Irving, UWS
49	J. Divelbiss	A. Irving, UWS
50	M. Aridal	A. Irving, UWS
51	N. Gessler	A. Irving, UWS
52	D Lehman	A Irving UWS
53	N Gessler	A Irving UWS
54	N Gesslor	Δ Inving LIM/S
55	N. Cooder	
56	N. Gessier	
57	IN. Gessier	
58	Philippe Schm	A. Greshake, I
59	Larbi Chnaoui	A. Greshake, I
60	Said Yousfi	A. Greshake, I

Submitted by K. Metzler, IfP Submitted by Daniel Sheikh work name MZA05; submitted by Jérôme Gattacceca work name MZA17; submitted by Jérôme Gattacceca work name MZA19; submitted by Jérôme Gattacceca work name MZAA16; submitted by Jérôme Gattacceca work name MZAA19; Plagioclase to 200 µm; submitted by Je work name MZAA20; submitted by Jérôme Gattacceca; Shoc Submitted by Daniel Sheikh Submitted by Anthony Love Submitted by Anthony Love Submitted by Ansgar Greshake Submitted by Ansgar Greshake Submitted by Ansgar Greshake Submitted by Ansgar Greshake Work name BR109; submitted by A. Irving Work name BR108; submitted by A. Irving Work name HC-13; submitted by A. Irving Work name M847; submitted by A. Irving Work name HC-14; submitted by A. Irving Work name HC-15; submitted by A. Irving Work name HC-17; submitted by A. Irving Work name HC-16; submitted by A. Irving Work name HC-18; submitted by A. Irving Work name HC-21; submitted by A. Irving Submitted by Anthony Love Work name AB; submitted by A. Irving Work name IA-2; submitted by A. Irving Work name E; submitted by A. Irving Work name JD20-3; submitted by A. Irving Work nameMVCH 502; submitted by A. Irving Work name RC136.2; submitted by A. Irving Submitted by Ansgar Greshake Submitted by Anthony Love Submitted by Anthony Love Based on composition and petrography, this sample may be Submitted by Daniel Sheikh Submitted by Daniel Sheikh Work name JD20-4; submitted by A. Irving Work name HN 630; submitted by A. Irving Work name JD20-5; submitted by A. Irving Work name Arj B152; submitted by A. Irving Work name I; submitted by A. Irving Work name DL 1030; submitted by A. Irving Work name J; submitted by A. Irving Work name K; submitted by A. Irving Work name M: submitted by A. Irving Work name Q; submitted by A. Irving Submitted by Ansgar Greshake Submitted by Ansgar Greshake Submitted by Ansgar Greshake

3	T. Niihara (UTT. Mikouchi arAbdellah Afin	i: Submitted by T. Mikouchi (UTok)
4	GUT Z.Xia. B.Miao. Anonymously	v Submitted by Bingkui Miao
5	GUT Z.Xia. B.Miao. Anonymously	v Submitted by Bingkui Miao
6	Andreas ScheA, Greshake,	Submitted by Ansgar Greshake
7	R. Lenssen A. Greshake, I	Submitted by Ansgar Greshake
8	inmczurich A. Greshake, I	Submitted by Ansgar Greshake
9	inmczurich A. Greshake.	Submitted by Ansgar Greshake
10	Hans-Jakob SA. Greshake.	Submitted by Ansgar Greshake
11	Said Yousfi A. Greshake,	Submitted by Ansgar Greshake
12	Said Yousfi A. Greshake.	Submitted by Ansgar Greshake
13	Lucian CoiocaA. Greshake.	Submitted by Ansgar Greshake
14 15	Lucian CojocaA. Greshake, I	Submitted by Ansgar Greshake
15	Lucian CojocaA. Greshake, I	Submitted by Ansgar Greshake
10 17	Lucian CojocaA. Greshake	Submitted by Ansgar Greshake
12	UAlic C Herd UAb	Field number 8: submitted by C. Herd
10	M. Aridal A. Irving, UWS	Ari ZM137: submitted by A. Irving
20	D Lehman A Irving UWS	DL 1034: submitted by A Irving
20	I Higgins A Irving UWS	.IH20-6: submitted by A Irving
27	I Divelbiss A Irving UWS	ID20-6: submitted by A. Irving
22	L Higgins A Inving LIWS	IH20-4: submitted by A. Inving
23	M Lyon A Irving LIWS	1 yon 20-5; submitted by A. Irving
25	R Chaoui A Inving LIWS	RC136 4: submitted by A. Irving
26	T Boudreaux A Inving LIWS	PC136 3: submitted by A. Inving
27	Dierre Marie El Krämer I (work name Chon2C: submitted by Járôme Cattacceca
28	lárámy Basse I. Gattacceca	work name CM05: submitted by Jerôme Cattacceca
29	Isabelle Pothic L Cattacceca	work name CM45, submitted by Jerôme Gattacceca
30		work name CM40; submitted by Jerome Gattacceca
31		work name CM49, submitted by Jerome Gattacceca
32	J. Dassemon J. Cattagaga	work name CM57, submitted by Jerome Gattacceca
33	J. Dassemon J. Gattacceca	work name UD077: submitted by Jérôme Cattasses
34	Jean Redelspij. Gattacceca	work name JR077, submitted by Jerome Gattacceca
35		work name K427; submitted by Jerome Gattacceca
36	Kuntz J. Gattacceca	work name K427, submitted by Jerome Gallacceca
37	Kuntz J. Gattacceca	work name K465; submitted by Jerome Gattacceca
38	Kuntz J. Gattacceca,	work name K471; submitted by Jerome Gattacceca
39	Kuntz J. Gattacceca	work name K4/3; submitted by Jerome Gattacceca
40	Kuntz J. Gattacceca	work name K4/4; submitted by Jerôme Gattacceca
41	Kuntz J. Gattacceca	work name K477; submitted by Jerome Gattacceca
42	Kuntz J. Gattacceca	work name K483; submitted by Jerôme Gattacceca
43	Kuntz J. Gattacceca	work name K484; submitted by Jerôme Gattacceca
44	Kuntz J. Gattacceca	work name K492; submitted by Jérôme Gattacceca
45	Kuntz J. Gattacceca	work name K493; submitted by Jérôme Gattacceca
40	Pierre-Marie FJ. Gattacceca	work name PM20AC1; submitted by Jérôme Gattacceca
47 40	Pierre-Marie FJ. Gattacceca	work name PM20AC2; submitted by Jérôme Gattacceca
40 40	Kuntz J. Gattacceca	work name K435; submitted by Jérôme Gattacceca
49 50	Kuntz J. Gattacceca,	work name K466; submitted by Jérôme Gattacceca
50 51	Kuntz J. Gattacceca,	work name K469; submitted by Jérôme Gattacceca
52	Kuntz J. Gattacceca	work name K472; submitted by Jérôme Gattacceca
53	Kuntz J. Gattacceca	work name K490; submitted by Jérôme Gattacceca
54	J. Higgins A. Irving, UWS	Work name JH20-5; submitted by A. Irving
55	Wang Weiwei Fan yan and E	Submitted by Li shijie
56	Wang Weiwei Fan yan and E	Submitted by Li shijie
57	Salamu Ali, StK. Metzler, IfP	Submitted by K. Metzler, IfP
58	IfP K. Metzler, IfP	Submitted by K. Metzler, IfP
59	Miguel Angel (K. Metzler, IfP	Submitted by K. Metzler, IfP
60	Oz Backman D. Sheikh, FS	Submitted by Daniel Sheikh

1		
2		
3	Pat Brown D. Sheikh, FS	Submitted by Daniel Sheikh
4	Cameron SmilD. Sheikh, FS	Submitted by Daniel Sheikh
5	Matthew StreaD. Sheikh, FS	Submitted by Daniel Sheikh
6	Matthew StreaD. Sheikh, FS	Submitted by Daniel Sheikh
7	Matthew StreaD. Sheikh, FS	Submitted by Daniel Sheikh
8	Abdeltif MechiD. Sheikh, FS	Submitted by Daniel Sheikh
9	Matthew Stread. Sheikh, FS	Submitted by Daniel Sheikh
10	Shawn Kasha D. Sheikh. FS	Submitted by Daniel Sheikh
11	Jasper Spenc D. Sheikh, FS	Submitted by Daniel Sheikh
12	Sergev VasilicPavel Yu.Plec	field name is FN371 and SM1804-24; submitted by Pavel Yu
13	Wang Peng Fan Yan. Du k	Submitted by Li Shiiie
14	Roger Kilchen M. Hutson and	Lab number CML 0929: submitted by Alex Ruzicka
15	Christopher C.M. Hutson and	Lab number CML 0976: submitted by Alex Ruzicka
10	Cascadia K Maccini an	Lab number CML 0995; submitted by Alex Ruzicka
1/ 10	Gregor Pacer K Metzler IfP	Submitted by K Metzler IfP
10	anonymous K Metzler IfP	Shock-darkened: submitted by K Metzler IfP
20	Tomasz Jakuł A Greshake	Submitted by Ansgar Greshake
20	Tomasz lakut A Greshake	Submitted by Ansgar Greshake
21	Tomasz Jakuł A Greshake I	Dark brownish fragment without fusion crust. The plagioclase
22	Tomasz Jakuł A Greshake J	Dark brownish fragment without fusion crust. The plagioclase
23	Tomasz Jakuł A Greshake I	Dark bownish fragment with some fusion crust. The plagociase
25	Marcin Kazimi A Creshake	Dark drawish fragment with some fusion crust. The plagoola
26	Said Yousfi A Greshake I	Submitted by Ansaar Gresbake
27	Said Yousfi A Creshake I	Submitted by Ansgar Greshake
28	Mehammed RA Greshake	Submitted by Ansgar Greshake
29	Soid Yousti A Crosbake	Submitted by Ansgar Creshake
30	Larbi Chaqui A. Greshake, I	Submitted by Anagar Creshoke
31	Larbi ChraquiA. Greshake, I	Submitted by Anagar Crashaka
32	Larbi ChnaoulA. Greshake, I	Submitted by Anagar Crashaka
33	Dhilippo Sobr A. Croshoko I	Submitted by Ansgar Greehake
34	MSN Fi	Submitted by Venni Meggi Geochi
35	NISIN-FI V. Moggi Cect Anonymous	
36	Boulaouane TA. Greshake,	Submitted by Ansgar Greshake
37	Boulaouarie TA. Greshake,	Submitted by Ansgar Greshake
38	Anonymous A. Greshake, I	Submittee by Ansgar Gresnake
39	Monamed All A. Greshake, I	Dark brownish fragment without lusion crusi. The plaglociase
40	Sald Radi A. Greshake, I	Submitted by Ansgar Gresnake
41	anonymous A. Gresnake, I	Submitted by Ansgar Gresnake
42	Philippe Schir A. Greshake, I	Submitted by Ansgar Gresnake
43	Philippe Schir A. Greshake, I	Submitted by Ansgar Greshake
44	Philippe Schir A. Greshake, I	Submitted by Ansgar Greshake
45	Naji Ben FarajA. Gresnake, I	Submitted by Ansgar Gresnake
40	Philippe Schr A. Gresnake, I	Submitted by Ansgar Gresnake
47	Philippe SchmA. Greshake,	Submitted by Ansgar Greshake
40	Philippe SchmA. Greshake, I	Submitted by Ansgar Greshake
50	Philippe Schr A. Greshake, I	Submitted by Ansgar Greshake
51	Carlos Muñec A. Love, App	Submitted by Anthony Love
52	Carlos Muñec A. Love, App	Submitted by Anthony Love
53	Carlos Muñec A. Love, App	Submitted by Anthony Love
54	Adrian Contre A. Love, App	Submitted by Anthony Love
55	Carlos Muñec A. Love, App	Submitted by Anthony Love
56	Sergey Vasilie A. Love, App	Submitted by Anthony Love
57	Sergey Vasilie A. Love, App	Submitted by Anthony Love
58	Carlos Muñec A. Love, App	Submitted by Anthony Love
59	Carlos Muñec A. Love, App	Submitted by Anthony Love
60	Carlos Muñec A. Love, App	Submitted by Anthony Love

3 Adrian Contre A. Love, App Submitted by Anthony Love 4 Zhu Hao Fan Yan Submitted by Li Shijie 5 Topher Spinn₂D. Sheikh, FS Field ID=GoldenPallasite1; submitted by Daniel Sheikh 6 Submitted by Anthony Love Didi Baidari Anthony Love 7 Bo Zhang Wu Y., PMO Submitted by Hsu W. 8 Wu Y. Submitted by Hsu W. Bo Zhang 9 Bo Zhang Wu Y. Submitted by Hsu W. 10 Fangmei Wan R. Bartoschewanonymous working name WZ161; submitted by R. Bartoschewitz 11 Chengguang IR. Bartoschewanonymous working name WZ163; submitted by R. Bartoschewitz 12 working name WZ165; submitted by R. Bartoschewitz Wei Jiang R. Bartoschew anonymous 13 J. Higgins/D. IA. Irving, UWS Submitted by A. Irving 14 Hanno Strufe A. Greshake, I Submitted by Ansgar Greshake 15 Hanno Strufe A. Greshake, I Submitted by Ansgar Greshake 16 Larbi ChnaouiA. Greshake, Submitted by Ansgar Greshake 17 Dark brownish fragment without fusion crust. The plagioclase Larbi ChnaouiA. Greshake, I 18 Larbi ChnaouiA. Greshake, Submitted by Ansgar Greshake 19 Lucian CojocaA. Greshake, IMuhamad Sal Submitted by Ansgar Greshake 20 Lucian CojocaA. Greshake, Muhamad Sal Submitted by Ansgar Greshake 21 22 Boulaouane TA, Greshake, | Submitted by Ansoar Greshake 23 Submitted by Ansgar Greshake Philippe Schrr A. Greshake, I 24 Ziyao Wang L.F. Xie and HAnonymous Submitted by Bingkui Miao 25 Simon de BoeC. Agee, UNN Field name SB1; submitted by C. Agee, UNM 26 Simon de BoeC. Agee, UNN Field name SB2; submitted by C. Agee, UNM 27 Matthew StreaC. Agee, UNN Field name MAS-4; submitted by C. Agee, UNM 28 John DivelbissC. Agee, UNN Field name MAS-4: submitted by C. Agee, UNM 29 D. Sheikh, FS Robert Verish Fieldname = UU161111X; submitted by Daniel Sheikh; subm Verish 30 Verish D. Sheikh, FS Robert Verish Fieldname = UU161212F; submitted by Daniel Sheikh; subm 31 D. Sheikh, FS Robert Verish Fieldname = UU161213H; submitted by Daniel Sheikh; subm Verish 32 D. Sheikh, FS Robert Verish Fieldname = UU161123H; submitted by Daniel Sheikh; subm Verish 33 SMNH B. Ambrožic, (Gregor Kos (1 Submitted by B. Ambrožic 34 Victor V. Shar UrFU-IAG-MA Submitted by Victor V. Sharyoin, SIGM and UrFU IAG-MAS 35 The main masXiaosong Li, FAnonymous Submitted by D. Heinlein 36 Ivan Ivanov J. Gattacceca Ivan Ivanov, N Submitted by Jérôme Gattacceca 37 UOslo, Steina A. Krzesinska Anne-Margretl Submitted by Henrik Friis 38 M. Aridal A. Irving, UWS Work name Arj ZM 337; submitted by A. Irving 39 Pengli Chen J. Ji, S. Hu an Pengli Chen [Suggested name was Niya]; submitted by J. Ji, S. Hu and Y. 40 E.Wimmer/K.VK. Klemm, A. Working name: Paposo-#1; submitted by Klemm K. 41 K. Wimmer K. Klemm, A. I Working name: Paposo-#; submitted by Klemm K. 42 43 K. Wimmer K. Klemm, A. Working name: Paposo-#3; submitted by Klemm K. 44 Andreas KoppJ. Gattacceca. Andreas Kopp work name AK006; submitted by J. Gattacceca 45 Andreas KoppJ. Gattacceca Andreas Kopp work name AK031; submitted by Jérôme Gattacceca 46 Thomas KurtzJ. Gattacceca. Thomas Kurtz work name ST04. Found on fine gravel hillside from 20 m dis 47 Andreas KoppJ. Gattacceca Andreas Kopp work name AK003-005; submitted by Jérôme Gattacceca 48 Eric Christens J. Gattacceca Eric Christens work name EJ123; submitted by Jérôme Gattacceca 49 DMUH S. N. Teplyak(Mr. Oleg N. R' Submitted by A. M. Abdrakhimov (Vernad) 50 Anonymous Lorenz C. A., 'Mr. Nicolay N. Analyst T. Kryachko (Technograd, Moscow); submitted by Lo 51 Yuxian Zhao Li shijie and F:Yuxian Zhao & Submitted by Li shijie 52 B. HoefnagelsA. Irving, UWS Work names DL1002&1003; BH222; submitted by A. Irving 53 MohamadrezeJ. Gattacceca. Hojat Kamali { work name AP12; submitted by Jérôme Gattacceca 54 Amirali Kamal J. Gattacceca, Amirali Kamal work name K4200/Ravar. Well-delineated packed chondrules 55 A. W. R. Beva M. C. Carlisle Submitted by L. V. Forman (Curtin University, WAM) WAM 56 Labenne K. Klemm and Rock with different lithologies; the equilibrated, type 5 clasts I 57 Labenne K. Klemm and Submitted by Klemm K. 58 K. Klemm and Submitted by Klemm K. Labenne 59 Submitted by Klemm K. Labenne K. Klemm and 60

1			
2			
3	Labenne	K. Klemm and	SV, Br; submitted by Klemm K.
4	Labenne	K. Klemm and	Submitted by Klemm K.
5	Labenne	K. Klemm and	Br; submitted by Klemm K.
6	Labenne	K. Klemm and	Rock with different lithologies; the type 5 clasts have equilibra
7	Labenne	K. Klemm and	Br, IMC; submitted by Klemm K.
8	Labenne	K. Klemm and	Submitted by Klemm K.
9	Labenne	K. Klemm and	Submitted by Klemm K.
10	Labenne	K. Klemm and	Submitted by Klemm K.
11	Labenne	K. Klemm and	Sv; submitted by Klemm K.
12	Labenne	K. Klemm and	Submitted by Klemm K.
13	Labenne	K. Klemm and	Submitted by Klemm K.
14 1 <i>5</i>	Labenne	K. Klemm and	Submitted by Klemm K.
15	Labenne	K. Klemm and	Sv. ringwoodite: submitted by Klemm K.
10	Labenne	K. Klemm and	Sv: submitted by Klemm K.
17	Labenne	K. Klemm and	Sv: submitted by Klemm K.
10	Labenne	K. Klemm and	Submitted by Klemm K.
20	Labenne	K. Klemm and	Sv: submitted by Klemm K.
20	Labenne	K Klemm and	Br. submitted by Klemm K
22	Labenne	K Klemm and	Br. submitted by Klemm K
23	Labenne	K Klemm and	Br: submitted by Klemm K
24	Labenne	K Klemm and	Sv: submitted by Klemm K
25	Labenne	K Klemm and	Rock with different lithologies: the type 6 clasts have equilibration
26	Labenne	K Klemm and	Rock with different lithologies; the type 6 clasts are clearly do
27	Labenne	K Klemm and	Br. Sv: submitted by Klemm K
28	Labenne	K Klemm and	Sv. Br: submitted by Klemm K
29	Labenne	K Klemm and	Submitted by Klemm K
30	Labenne	K Klemm and	Br: submitted by Klemm K
31	Labenne	K Klemm and	Submitted by Klemm K
32	Labenne	K Klemm and	Submitted by Klemm K
33	Labenne	K Klemm and	Br: submitted by Klemm K
34	Labenne	K Klemm and	Submitted by Klemm K
35	Labenne	K Klemm and	Bock with different lithologies: the type 6 clasts have equilibra
36	Labenne	K Klemm and	Sv: submitted by Klemm K
3/	Labenne	K Klemm and	Sv. ringwoodite: submitted by Klemm K
38	Labenne	K Klemm and	Br: submitted by Klemm K
39	Labenne	K Klemm and	The rock contains abundant small chondrules (300,400 µm) :
40	Labenne	K Klemm and	Br: submitted by Klemm K
41	Labenne	K Klemm and	Sy Br: submitted by Klemm K
42	Labenne	K Klemm and	Submitted by Klemm K
43	Labenne	K Klemm and	Submitted by Klemm K
45	Labenne	K Klemm and	Submitted by Klemm K
46	Labenne	K. Klemm and	Br. Sv: submitted by Klemm K
47	Labonno	K. Klomm and	Br; submitted by Klemm K
48	Labonno	K. Klomm and	Br; submitted by Klemm K
49	Labonno	K. Klomm and	Br, submitted by Klemm K
50	Laberne		Sv, Submitted by Klemm K
51		K. Klomm and	Submitted by Klomm K
52		K. Klomm and	Brooia Abundant chandrulas with a size of chaut 500 600
53		K. Klomm and	Diecia. Abunuani chonurules with a size of about 500-600 μΠ Pri submitted by Klomm K
54		K. Klomm and	DI, SUDHIILLEU DY NIEHIIH N.
55			Sv, Submitted by Klemm K
56			Submitted by Klemm K
57			Sv, submitted by Klemm K
58			Sv, Submitted by Klemm K
59		K. Klomm and	Submitted by Klemm K
60	Labenne		DI, SUDITILLEU DY METTITI N.

1			
2			
3	Labenne K	K. Klemm and	Sv; submitted by Klemm K.
4	Labenne K	K. Klemm and	Br; submitted by Klemm K.
5	Labenne K	K. Klemm and	Sv, shock darkened; submitted by Klemm K.
6	Labenne K	K. Klemm and	Submitted by Klemm K.
7	Labenne K	K. Klemm and	The rock contains abundant relatively small chondrules (300-
8	Labenne K	K Klemm and	Submitted by Klemm K.
9	Labenne K	Klemm and	Submitted by Klemm K
10	Labenne K	Klemm and	Br: submitted by Klemm K
11	Labenne K	Klemm and	Submitted by Klemm K
12	Labenne K		Submitted by Klemm K
13	Laberne K		
14	Labenne K		
15	Labenne K	K. Klemm and	Submitted by Klemm K.
16	Labenne K	K. Klemm and	Br; submitted by Klemm K.
17	Labenne K	K. Klemm and	Submitted by Klemm K.
18	Labenne K	K. Klemm and	Submitted by Klemm K.
19	LeMans T	. Shisseh, Ft	Submitted by T.Shisseh
20	The main masL	Ferrière ancRolando Biano	Field name was URU17_Z.; submitted by L. Ferrière
21	Finder M	I.E. Zucolottc Many	Submitted by A. Tosi and A. Moutinho; submitted by Amanda
22	Pierre-Marie FL	. Kraemer, J. Anonymous	work name OM14-001. Found within the SAU 001 strewnfield
23	SQU P	P Hill N BanDr Sobhi Nas	Submitted by P. Hill
24	IAG-MAS K	(seniva Dugu UrFU-IAG-MA	Submitted by Kseniva Dugushkina dugushkina kseniva@mai
25	with finder K	Klemm A	Submitted by Klemm K
26		Croobaka	Submitted by Anager Creebake
27		Croobake	Submitted by Ansger Greeheke
28			Submitted by Ansgar Gresnake
29	Mr. I. Kryachki	orenz C. A., Mr. I. Kryachk	Tield name is Calama 2-181; analyst 1. Kryachko (Technograc
30	Mr. M. NepomL	orenz C. A., 'Mr. M. Nepom	field name is Calama 6-41M; analyst T. Kryachko (Technogra
31	Mr. I. Kryachk L	orenz C. A., 'Mr. I. Kryachk.	field name is Calama 5-17I; analyst T. Kryachko (Technograc
32	Mr. I. Kryachk L	orenz C. A., 'Mr. I. Kryachk.	field name is Calama 4-8I; analyst T. Kryachko (Technograd,
32	UrFU K	C. DugushkinɛUrFU meteorit	Field name Past-8; submitted by Kseniya Dugushkina (UB R/
34	I. Chaplygin, i(L	orenz C. A., 'Chaplygin Ilya.	ifield name is 012, analyst T. Kryachko (Technograd, Moscov
35	I. Chaplygin, i(L	orenz C. A., 'Chaplygin Ilya.	ifield name is 024, analyst T. Kryachko (Technograd, Moscov
36	I. Chaplygin, i(L	orenz C. A., 'Chaplygin Ilya.	ifield name is 050, analyst T. Kryachko (Technograd, Moscov
37	I. Chaplygin, i(L	orenz C. A., 'Chaplygin Ilya	field name is 051, analyst T. Kryachko (Technograd, Moscov
38	Mr. Evgeny TsJ	. Gattacceca Evgeny Tsys,	work name KY41; submitted by J. Gattacceca
30	L Chaplygin, id	orenz C. A., 'Chaplygin Ilva	field name is 014, analyst T. Kryachko (Technograd, Moscov
39 40	Mr I Kryachki	orenz C. A. 'Mr. I. Kryachk	Field name is I4-36: analyst T. Kryachko (Technograd, Mosc
40	Mr. M. Nenomi	orenz C A 'Mr M Nenom	PMD Fa=34%: Field name is M3-71: analyst T. Kryachko (Te
41	Mr. M. Nepoml	orenz C A 'Mr. M. Nepom	Field name is M2 10: analyst T Knyachko (Technograd, Mos
42	Mr. M. Nopoml	oronz C. A., Mr. M. Nepom	Field name is M2-10, analyst T. Kryachko (Technograd, Mos
45	Mr. M. NepomL	orenz C. A., Mr. M. Nepom	Field name is M3-02, analyst T. Kryachko (Technograd, Moso
44		orenz C. A., Mr. M. Nepoli	Field name is 014, analyst T. Kryachko (Technograd, Mosco
45	I. Chapiygin, IL	orenz C. A., Chapiygin Ilya	Tield name is 011, analyst 1. Kryachko (Technograd, Moscov
40	Mr. M. Nepomiv	vanova M. A. Mr. M. Nepom	Field name is M3-10; analyst T. Kryachko (Technograd, Mos
47	UrFU K	K. DugushkinaUrFU meteorit	Field name Past-9; analysts - Kseniya Dugushkina (RAS-UB)
40	Mr. Evgeny TsJ	. Gattacceca Mr. Evgeny Ts	work name KY33; submitted by Jérôme Gattacceca
49	Mr. M. NepomR	Ryazantsev K Mr. M. Nepom	Field name is M3-54; analyst T. Kryachko (Technograd, Mos
5U F1	I. Chaplygin, iR	Ryazantsev K Chaplygin Ilya	field name is 057, analyst T. Kryachko (Technograd, Moscov
51	I. Chaplygin, itL	orenz C. A., 'Ilya Chaplygin.	ifield name is 052, analyst T. Kryachko (Technograd, Moscov
52 52	N. Ben Faraji/A	A. Irving, UWS	Work name NBF-MN47; submitted by A. Irving
55 F 4	Carlos Muñec A	A. Love, App	Submitted by Anthony Love
54	Aaronson C	C. Agee, UNNAlalou Yousse	Work names M2253, DDF01: submitted by H. Chennaoui Aou
55	Wenxi .lin and R	R. Bartoschewanonymous	working name WZ136; submitted by R. Bartoschewitz
50	J Bassemon I	Gattacceca	work name CM58: submitted by Jérôme Gattacceca
5/	Pengli Chen	li S. Hu an Pengli Chen	Submitted by Juli S. Hu and Y. Lin IGGCAS
58		C Hord 114h	Field number 21266: submitted by C. Herd
59		Klomm I K	Marking Name: Deabar: automitted by Uname Karroauch
60	ISI-USIAR K		working Name. Dechar, submitted by Imene Kerraouch

1			
2			
3	Jean Redelsp	J. Gattacceca Lahcen Hamd	work name JR078; submitted by Jérôme Gattacceca
4	Finder	M.E. Zucolottc Mr. Titota	Submitted by A.Tosi and M.E. Zucolotto; submitted by Aman
5	A. Habibi/M. A	A. Irving, UWS	Work names AH 747 and Arj H10; submitted by A. Irving
6	Mr. T. Kryach	Lorenz C. A., 'Mr. T. Kryach	field name is Calama 5-22; analyst T. Kryachko (Technograd
7	Mr. T. Kryach	Lorenz C. A., 'Mr. I. Kryachk	Field name is 6-60; analyst T. Kryachko (Technograd, Mosco
8	Mr. Atali Agal	Lorenz C. A., 'Mr. Atali Agak	Field name is A027: analyst A. Agakhanov (Fersman Minera
9	I. Chaplygin, i	Lorenz C. A., 'Chaplygin Ilva	field name is 092. analyst T. Kryachko (Technograd, Moscov
10	I. Chaplygin, i	Rvazantsev K Chaplygin Ilva	field name is 091, analyst T. Kryachko (Technograd, Moscov
11	Decker Meter	oK. Klemm. A. I	Working No.: De-13, suggested name Adrar004; submitted b
12	Mark I von	C Agee UNM	Field name MI -1: submitted by C. Agee. UNM
13	Decker Meter	K Klemm A	Working No · De-14· submitted by Klemm K
14	Verish	D Sheikh ES Robert Verish	Fieldname = $ECVB01$ lab ID# = V-B01 abbr = TM 054 sub
15	Verish	D Sheikh ES Robert Verish	Fieldname = ECVB02; lab ID# = V-B02; abbr. = TM 055; sub
16	Verish	D Sheikh ES Robert Verish	Fieldname = ECVB02, lab $ID\# = V-B02$, abbr. = TM 056; sub
17	Vorish	D Sheikh ES Robert Verish	P Fieldname = ECVB00; lab ID# = V-B00; abbr. = TM 050; sub-
18	Vorish	D Sheikh ES Robert Verish	\mathbf{F} Fieldname = ECVB05; lab ID# = V-B05; abbr. = TM 057; sub
19	Vorich	D Sheikh ES Babart Varish	r Fieldname = ECVB03, lab ID# = V-B03, abbr. = TM 050, sub
20	Verioh	D. Sheikh, FS Robert Verish	r Fieldname = ECVE07, lab ID# = V-B07, abbr. = TM 060; sub
21	Verish	D. Sheikh, FS Robert Verish	Fieldname = ECVE00, ab ID# = V-B00, abbr. = TM 000, sub
22	Verish	D. Sheikh, FS Robert Verish	∇ Fieldname - ECVD09, IdD ID# - V-B09, IdDI TW 073, SUD
23	Verish	D. Sheikh, FS Robert Verish	∇ Fieldname = ECVB10, lab ID# = V-B10, abbr. = TM 1064, sub
24	Verish	D. Sheikh, FS Robert Verish	Fieldname = ECVB11, Iab ID# = V-B11, Iab I. = TM 121; sub
25	Verisii	D. Sheikh, FS Robert Verish	Cubraitted by Alex Dubin
20	Kansas Meteo	CA. Rubin, UCL	Submitted by Alan Rubin
28	Jens Baumer	A. Gresnake, I	Submitted by Ansgar Gresnake
29	Verisn	D. Sneikn, FS Robert Verish	Pieldname = USA200128; submitted by Daniel Sneikn; submitt
30		Agata Krzesin i erje Fjeldnei	Submitted by Henrik Friis
31	L. Randolph	A. Irving, UVE	Submitted by A. Irving
32	Vincent Jacqu	IC. Agee, UNMoroccan hur	Submitted by H. Chennaoui Aoudjehane
33	P. Allen	A. Irving, UVERodney Miche	Submitted by A. Irving
34	Ziyao Wang	R. Bartoschew Wentao Yang	working name WZ131; submitted by R. Bartoschewitz
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
36	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
39	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
44	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
45	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
47	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
48	NIPR	A. Yamaguchi	Shock vein; submitted by A. Yamaguchi
49	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
51	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
52 52	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
57	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
55	NIPR	A. Yamaguchi	Chromite-plagioclase clast; submitted by A. Yamaguchi
56	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
57	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
58	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
59	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
60	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi

3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
8	NIPR	A. Yamaquchi	Submitted by A. Yamaguchi
9	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
11	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
12	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
13	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
14			Submitted by A. Yamaguchi
15			Submitted by A. Yamaguchi
16			Submitted by A. Yamaguchi
17		A. Vamaguchi	Submitted by A. Yamaguchi
18		A. Yamaguchi	Submitted by A. Yamaguchi
19		A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
21	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
22	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
23	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Large metal; submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
29	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
32	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
34	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
36	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
39	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
44	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
45	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
47	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
48	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
49	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
51	NIPR		Submitted by A. Yamaguchi
52	NIPR		Submitted by A. Yamaguchi
53	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
54	NIPR		Submitted by A. Vamaguchi
55			Submitted by A. Vamaguchi
56			Submitted by A. Vamaguchi
57			Submitted by A. Tarraguchi
58			Submitted by A. Yamaguchi
59			Submitted by A. Yamasuchi
60	NIPK	A. ramaguchi	Submitted by A. Yamaguchi

2			
3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A. Yamaguchi	Darkened; submitted by A. Yamaguchi
8	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
9	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
11	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
12	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
13	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
14	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
15	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
18	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
19	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
21	NIPR	A. Yamaguchi	Shock vein: submitted by A. Yamaguchi
22	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
23	NIPR	A. Yamaguchi	Shock vein: submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Shock vein: submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
26	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Shock vein: submitted by A. Yamaguchi
28	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
29	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
32	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
33	NIPR	A. Yamaguchi	Shock vein: submitted by A. Yamaguchi
34	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20 27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
44	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
45	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
47	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
48	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
49	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
51	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
52	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
53	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
54	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
55	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5/ 50	NIPR	A. Yamaguchi	Submitted by A Yamaguchi
50 50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
59 60	NIPR	A. Yamaguchi	Shock vein: submitted by A Yamaquchi
00	· · · · ·		

3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
8	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
9	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Shock vein; submitted by A. Yamaguchi
11	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
12	NIPR	A. Yamaguchi	Shock vein; submitted by A. Yamaguchi
13	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
14	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
15	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
18	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
19	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
21	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
22	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
23	NIPR	A. Yamaguchi	Shock vein: submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
26	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
28	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
29	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A Yamaguchi	Submitted by A Yamaguchi
32	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
33	NIPR	A. Yamaguchi	Shock vein: submitted by A. Yamaguchi
34	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A Yamaguchi	Submitted by A Yamaguchi
3/ 20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A Yamaguchi	Submitted by A Yamaguchi
40	NIPR	A Yamaguchi	Submitted by A Yamaguchi
40	NIPR	A Yamaguchi	Submitted by A Yamaguchi
42	NIPR	A Yamaguchi	Submitted by A Yamaguchi
43	NIPR	A Yamaguchi	Shock vein: submitted by A Yamaguchi
44	NIPR	A Yamaguchi	Submitted by A Yamaguchi
45	NIPR	A Yamaguchi	Submitted by A Yamaguchi
46	NIPR	A Yamaguchi	Submitted by A Yamaguchi
47	NIPR	A Yamaguchi	Submitted by A Yamaguchi
48	NIPR	A Yamaguchi	Submitted by A Yamaguchi
49	NIPR	A Yamaguchi	Submitted by A Yamaguchi
50	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
51	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
52	NIPR	A. Yamaguchi	Submitted by A Yamaguchi
53	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
54	NIPR	A Yamaguchi	Submitted by A Yamaguchi
55	NIPR	A Yamaquchi	Shock vein: submitted by A. Vamaquebi
56	NIPR	A Yamaquchi	Submitted by A. Yamaquchi
5/	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
58	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
59 60	NIPR		Submitted by A. Yamaguchi
00			Submitted by A. Tumuyuom

1			
2			
3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
8	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
9	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
11	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
12	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
13	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
14		A Yamaquchi	Submitted by A. Yamaguchi
15		A Vamaguchi	Submitted by A. Yamaguchi
16			Submitted by A. Yamaguchi
17			Submitted by A. Vamaguchi
18			Shock voin: submitted by A. Vamaguchi
19			Shock vein, submitted by A. Tamaguchi
20		A. Yamaguchi	Shock vein, submitted by A. Famaguchi
21		A. Yamaguchi	Submitted by A. Yamaguchi Malt packet: submitted by A. Vemeruchi
22		A. Yamaguchi	Submitted by A. Vernegushi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Shock vein; submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Shock vein; submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
32	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
33	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
34	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
36	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
39	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
44	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
45	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
47	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
48	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
49	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
51	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
52	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
53	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
54 55	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
55 56	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
00 57	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
57 50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50 50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
60	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
	-		

2			
3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
8	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
9	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
10			Submitted by A. Vamaguchi
11			Submitted by A. Vamaguchi
12			Submitted by A. Yamaguchi
13			Submitted by A. Yamaguchi
14			Submitted by A. Yamaguchi
15			Submitted by A. Yamaguchi
16		A. Yamaguchi	Submitted by A. Yamaguchi
17		A. Yamaguchi	Submitted by A. Yamaguchi
18		A. Yamaguchi	Submitted by A. Yamaguchi
19		A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
21	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
22	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
23	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
32	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
33	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
34	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
36	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
39	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
44	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
45	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
47	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
48	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
49	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
51	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
52 52	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50 57	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
55	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
56	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
57	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
58	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
59	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
60	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi

1			
2			
3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
8	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
9	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
10		A Yamaquchi	Submitted by A. Yamaguchi
11		A Yamaquchi	Submitted by A. Yamaguchi
12			Submitted by A. Vamaguchi
13			Submitted by A. Yamaguchi
14			Submitted by A. Vamaguchi
15			Submitted by A. Yamaguchi
16			Submitted by A. Yamaguchi
17		A. Yamaguchi	Submitted by A. Yamaguchi
18		A. Yamaguchi	Submitted by A. Yamaguchi
19		A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
21	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
22	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
23	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
29	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
32	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
33	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
34	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
36	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
39	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
44	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
45	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
47	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
48	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
49	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
51	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
52	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
53	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
54	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
55	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
56	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
5/	NIPR		Submitted by A. Yamaguchi
58	NIPR		Submitted by A. Vamaquebi
59			Submitted by A. Vamaguchi
UΟ	INTELX		ousinitied by A. Taniayuun

2			
3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A Yamaguchi	Shock vein: submitted by A Yamaguchi
б	NIPR	A Yamaguchi	Submitted by A Yamaguchi
7	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
8	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
9		A Yamaquchi	Submitted by A. Yamaguchi
10		A Vamaguchi	Breccia: submitted by A. Yamaguchi
11		A Vamaguchi	Submitted by A. Vamaguchi
12			Submitted by A. Vamaguchi
13			Submitted by A. Yamaguchi
14			Submitted by A. Yamaguchi
15		A. Yamaguchi	Submitted by A. Yamaguchi
16		A. Yamaguchi	Submitted by A. Yamaguchi
17		A. Yamaguchi	Submitted by A. Yamaguchi
18		A. Yamaguchi	Submitted by A. Yamaguchi
19		A. Yamaguchi	Submitted by A. Yamaguchi
20		A. Yamaguchi	Submitted by A. Yamaguchi
21		A. Yamaguchi	Submitted by A. Yamaguchi
22		A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
28	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
29	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
32	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
33	NIPR	A. Yamaguchi	Shock vein; submitted by A. Yamaguchi
34	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
36	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
39	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
44	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
45	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4/	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
48	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
49	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
51	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
52	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
54	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
55	NIPR	A. Yamaguchi	Breccia; submitted by A. Yamaguchi
56	NIPR	A. Yamaguchi	Shock vein; submitted by A. Yamaguchi
57	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
58	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
59	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
60	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi

1			
2			
3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A Yamaguchi	Submitted by A Yamaguchi
8	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
9	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
10		A Yamaguchi	Submitted by A. Yamaguchi
11		A Yamaguchi	Submitted by A. Yamaguchi
12		A Vamaguchi	Submitted by A. Yamaguchi
13		A. Yamaguchi	Submitted by A. Vamaguchi
14		A Vamaguchi	Submitted by A. Yamaguchi
15			Submitted by A. Vamaguchi
16			Submitted by A. Vamaguchi
17		A. Yamaguchi	Submitted by A. Vamaguchi
18			Submitted by A. Yamaguchi
19			Submitted by A. Yamaguchi
20		A. Yamaguchi	Submitted by A. Yamaguchi
21	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
22		A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
32	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
33	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
34	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
36	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
39	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
44	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
45	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
47	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
48	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
49	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
51	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
52	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
JJ ⊑4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
54 55	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
55 56	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50 57	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
57 50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
50 50	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
60	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
	-		

2			
3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
8	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
9	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
11	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
12	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
13	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
14	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
15	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
18	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
19	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
21	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
22	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
23	NIPR	A. Yamaguchi	Breccia: submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
26	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
28	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
29	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
32	NIPR	A Yamaguchi	Submitted by A Yamaguchi
33	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
34	NIPR	A Yamaguchi	Submitted by A Yamaguchi
35	NIPR	A Yamaguchi	Submitted by A Yamaguchi
36	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
3/	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
39 40	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A Yamaguchi	Shock vein: submitted by A Yamaguchi
47	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
43	NIPR	A Yamaguchi	Shock vein: submitted by A. Yamaquchi
44	NIPR	A Yamaquchi	Submitted by A Yamaguchi
45	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
46	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
47	NIPR	A Yamaquchi	Submitted by A. Yamaguchi
48	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
49	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
50		A Yamaquchi	Submitted by A. Yamaguchi
51		A Yamaguchi	Submitted by A. Yamaguchi
52		A Yamaguchi	Submitted by A. Yamaguchi
53	NIPR	A Yamaguchi	Submitted by A. Yamaguchi
54	NIPR		Submitted by A. Yamaguchi
55	NIPR		Submitted by A. Vamaguchi
56	NIPR	A Yamaquchi	Submitted by A. Vamaguchi
57			Submitted by A. Vamaguchi
58	NIPR	A Yamaquchi	Submitted by A. Vamaguchi
59			Submitted by A. Vamaquebi
60			Submitted by A. TamayuChi

3	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
4	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
5	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
6	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
7	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
8	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
9	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
11	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
12	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
13	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
14	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
15	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
10	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
18	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
19	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
20	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
21	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
22	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
23	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
24	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
25	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
26	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
27	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
28	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
29	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
30	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
31	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
3Z 22	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
35	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
36	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
37	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
38	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
39	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
40	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
41	NIPR	A. Yamaguchi	Submitted by A. Yamaguchi
42	Mohamadreza	J. Gattacceca, Hojat Kamali	work name AP17; submitted by Jérôme Gattacceca
43	Zhicheng Jin	R. Bartoschev Zhicheng Jin	working name WZ121; submitted by R. Bartoschewitz
44	MFarmer	L. Garvie, A. V	Submitted by L. Garvie
45	Decker Meteo	oK. Klemm, A. I	Working No.: De-12; submitted by K. Klemm, IfP; submitted t
46			
47			

y Klemm K.

ons, Accession number GE15574.; submitted by Dr Hugh Grenfell

e.; submitted by Jérôme Gattacceca

el Sheikh el Sheikh el Sheikh

') 1 d, Moscow); submitted by Lorenz C.A., Vernad d, Moscow); submitted by Lorenz C.A., Vernad

d, Moscow); submitted by Lorenz C.A., Vernad

d, Moscow); submitted by Lorenz C.A., Vernad

d, Moscow); submitted by Lorenz C.A., Vernad

I, Moscow); submitted by Lorenz C.A., Vernad

B; submitted by Kseniya Dugushkina (UB RAS) dugushkina.kseniya@mail.ru

B RAS).; submitted by Kseniya Dugushkina (UB RAS) dugushkina.kseniya@mail.ru

AS) dugushkina.kseniya@mail.ru

RAS) dugushkina.kseniya@mail.ru

w); submitted by Lorenz C.A., Vernad

ad, Moscow); submitted by Lorenz C. A. (Vernad)

w); the meteorite is brecciated; submitted by C. A. Lorenz, Vernad

w); submitted by C. A. Lorenz, Vernad

AS).; submitted by Kseniya Dugushkina (IGG UB RAS) dugushkina.kseniya@mail.ru

bw); submitted by Lorenz C.A., Vernad

bw); submitted by Lorenz C.A., Vernad

bw); submitted by Lorenz C.A., Vernad

3	
4	
5	
6	
7	w): submitted by C. A. Lorenz, Vernad
8	w); submitted by C. A. Lorenz, Vernad
9	w), subinitied by C. A. Lorenz, vernau
10	alogical Museum), T. Kryachko, submitted by Lorenz C.A., Vernad
11	alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad
12	alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad
13	alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad
14	alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad
15	alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad
16	w); submitted by Lorenz C.A., Vernad
17	ow); submitted by Lorenz C.A., Vernad
12	ow); submitted by Lorenz C.A., Vernad
10	alogical Museum) T. Kryachko, submitted by Lorenz C.A. Vernad
20	alogical Museum), T. Kryachko, submitted by Isolona M. A. Vernad
20	alogical Museum), T. Kryachko; submitted by Ivanova M. A., Vernad
21	souv): submitted by Loronz C.A. Vornad
22	cow), submitted by Lorenz C.A., Vernad
23	cow), submitted by Lorenz C.A., Vernad
24	ow); submitted by Lorenz C.A., Vernad
25	w); submitted by Lorenz C.A., Vernad
20	w); submitted by Lorenz C.A., Vernad
27	w); submitted by Lorenz C.A., Vernad
20	w); submitted by Lorenz C.A., Vernad
29	w); submitted by Lorenz C.A., Vernad
21	w); submitted by Lorenz C.A., Vernad
20	w); submitted by Lorenz C.A., Vernad
32	w); submitted by Lorenz C.A., Vernad
31	w); submitted by Lorenz C.A., Vernad
35	w); submitted by Lorenz C.A., Vernad
36	w); submitted by Lorenz C.A., Vernad
37	w); submitted by Lorenz C.A., Vernad
38	w); submitted by Lorenz C.A., Vernad
39	w); submitted by Lorenz C.A., Vernad
40	w): submitted by Lorenz C.A., Vernad
41	w): submitted by Lorenz C.A., Vernad
42	Anscow): submitted by Lorenz C.A. Vernad
43	Aoscow); submitted by Lorenz C.A. Vernad
44	Moscow): submitted by Lorenz C.A. Vernad
45	Moscow); submitted by Lorenz C.A., Vernad
46	Moscow), submitted by Lorenz C.A., Vernad
47	Moscow), submitted by Lorenz C.A., Vernad
48	Assessive submitted by Lorenz C.A., Vernad
40	/loscow); submitted by Lorenz C.A., Vernad
50	loscow); submitted by Lorenz C.A., Vernad
51	Moscow); submitted by Lorenz C.A., Vernad
52	אי); submitted by Lorenz C.A., Vernad
53	scow); submitted by Lorenz C.A., Vernad
54	scow); submitted by Lorenz C.A., Vernad
55	scow); submitted by Lorenz C.A., Vernad
56	scow); submitted by Lorenz C.A., Vernad
57	lant melt pockets and opaque veinlets; submitted by Jérôme Gattacceca
58	
59	

aicity in the sulfides. Shock veins.; submitted by B. Doisneau

neau

I by Jérôme Gattacceca

d, Moscow); submitted by Lorenz C.A., Vernad 30; analyst T. Kryachko (Technograd, Moscow); submitted by Lorenz C.A., Vernad I, Moscow); submitted by Lorenz C.A., Vernad

ad, Moscow); submitted by Lorenz C.A., Vernad ad, Moscow); submitted by Lorenz C.A., Vernad I, Moscow); submitted by Lorenz C.A., Vernad I, Moscow); submitted by Lorenz C.A., Vernad

w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad

w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
w); submitted by Lorenz C.A., Vernad
ow); submitted by Lorenz C.A., Vernad

}gmail.com

- w); submitted by C. A. Lorenz, Vernad
- w); submitted by C. A. Lorenz, Vernad
- alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad
- alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad
- 60 w); submitted by Lorenz C.A., Vernad

2	
3	ow); submitted by Lorenz C.A., Vernad
4	alogical Museum) T. Kryachko: submitted by Lorenz C.A. Vernad
5	alogical Museum), T. Kryachko; submitted by Lorenz C.A. Vernad
6	alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad
7	Nogical Museum), T. Kryachko, submitted by Lorenz C.A., Vernad
8	alogical Museum), T. Kryachko; submitted by Lorenz C.A., Verhad
9	w). Composed of recrystallized chondrite material of shock stage 51 with rare melt pockets of severa
10	bw); submitted by Ivanova M. A., Vernad
11	bw); submitted by Ivanova M. A., Vernad
12	ow); submitted by Ivanova M. A., Vernad
13	cow); submitted by Ivanova M. A., Vernad
14	alogical Museum), T. Kryachko; submitted by Ivanova M. A., Vernad
15	alogical Museum), T. Kryachko; submitted by Ivanova M. A., Vernad
16	alogical Museum), T. Kryachko; submitted by Ivanova M. A., Vernad
10	echnograd, Moscow); submitted by Lorenz C.A., Vernad
12	echnograd, Moscow); submitted by Lorenz C.A., Vernad
10	ow): submitted by Lorenz C.A. Vernad
20	ow): submitted by Lorenz C.A. Vernad
20	cow): submitted by Lorenz C. A. Vernad
21	w): submitted by Lorenz C.A. Vernad
22	w): submitted by Lorenz C.A., Vernad
23	(), Submitted by Lorenz C.A., Vernad
27	Cow), submitted by Lorenz C.A., Vernad
25	recimograd, Moscow), submitted by Lorenz C.A., vernad
20	schnograd, Moscow); submitted by Lorenz C.A., Vernad
27	bw); submitted by Lorenz C.A., Vernad
20	w); submitted by Lorenz C.A., Vernad
30	w); submitted by Lorenz C.A., Vernad
31	cow); submitted by Lorenz C.A., Vernad
37	w); submitted by Lorenz C.A., Vernad
32	ow); submitted by Lorenz C.A., Vernad
34	ow); submitted by Lorenz C.A., Vernad
35	cow); submitted by Lorenz C.A., Vernad
36	w); submitted by Lorenz C.A., Vernad
37	w); submitted by Lorenz C.A., Vernad
38	ceca
30	
40	
40	aniel Sheikh
42	scow): submitted by Lorenz C.A. Vernad
42	ow): submitted by Lorenz C.A. Vernad
4J AA	ol Shoikh
45	
46	
40 47	
48 48	
-10 /10	
イン	

ıin size about 70 μm.; submitted by Ansgar Greshake ırain size is about 20 μm.; submitted by Ansgar Greshake st. The plagioclase grain size is about 30 μm.; submitted by Ansgar Greshake

st. The plagioclase grain size is about 30 μm .; submitted by Ansgar Greshak by Klemm K.

scopic; submitted by R. Bartoschewitz

Doisneau

; dark with shock veins, the other is light without shock veins.; submitted by B. Doisneau

3. Shock veins.; submitted by B. Doisneau

1 El Médano 156.; submitted by Jérôme Gattacceca

J. Gattacceca

lase to 200 µm. Likely paired with El Médano 156.; submitted by Jérôme Gattacceca lase to 200 µm. Likely paired with El Médano 156.; submitted by Jérôme Gattacceca Jano 156.; submitted by Jérôme Gattacceca

ase to 200 µm. Likely paired with El Médano 156.; submitted by Jérôme Gattacceca ase to 200 µm. Likely paired with El Médano 156.; submitted by Jérôme Gattacceca

in size is about 30 μ m.; submitted by Ansgar Greshake in size is about 20 μ m.; submitted by Ansgar Greshake in size is about 70 μ m.; submitted by Ansgar Greshake

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55	

Meteoritics & Planetary Science

For Peer Review Only

Meteoritics & Planetary Science

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	
24 25	
26	
27	
29	
30	
31	
33	
34 35	
36	
37	
38 39	
40	
41	
43	
44	
45	
40	

Running Head

>); submitted by Kseniya Dugushkina (RAS-UB).; submitted by Kseniya Dugushkina (RAS-UB)); submitted by Kseniya Dugushkina (RAS-UB).; submitted by Kseniya Dugushkina (RAS-UB) toschewitz submitted by R. Bartoschewitz

s found nearby .; submitted by Dolores Hill

\; submitted by R. Bartoschewitz

by Klemm K.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
33	
34 35	
36 37	
38	
40	
41	
42 43	
44	
45	
47	

tor peer periew only

5 6 7 8 9 10 11 12 13 14 15 16 17 18	
19	
20	
21	
22	
23	
24	
26	
27	
28	
29	
30	
31	
32	
34	
35	
36	
37	
38	
39 40	
40	
42	
43	
44	
45	
46	
47	

tor peer periew only

Meteoritics & Planetary Science

2	
4	
5	
6	
8	
9	
10	
11	
13	
14	
15	
17	
18	
19	
20	
22	
23	
24 25	
26	
27	
28 29	
30	
31	
32 33	
34	
35	
36 37	
38	
39	
40	
42	
43	
44	
45 46	
47	
48	

to peer periewony

Meteoritics & Planetary Science

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
18 19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	

tor peer Review Only

Meteoritics & Planetary Science
2 3 4		
5 6 7		
8 9		
10 11		
12 12		
13		
15 16		
17 19		
19		
20 21		
22 23		
24		
25 26		
27 28		
29 30		
31		
32 33		
34 35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46 47		
48		

to peer periew only

Meteoritics & Planetary Science

4 5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
20	
21	
22	
23	
24	
25	
26	
27	
20	
30	
31	
32	
33	
34	
35	
36 27	
38	
39	
40	
41	
42	
43	
44	
45	
40 47	
47 48	
U	

to peer periew only

Meteoritics & Planetary Science

3	
5	
6	
/ 8	
9	
10	
11	
13	
14	
15	
17	
18	
19	
20 21	
22	
23	
24	
26	
27	
28	
30	
31	
32	
33 34	
35	
36	
37 38	
39	
40	
41 42	
43	
44	
45 46	
47	
48	
49	
JU	

י ר	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
40 40	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	

s: R. Verish, Meteorite-Recovery Lab, P.O. Box 463084, Escondido, CA 92046; submitted by Paul W

oritical Services, P.O. Box 440, Mendon, MA 01756.; submitted by K. Domanik 2.A., Vernad 2.A., Vernad
I clasts.; submitted by Jérôme Gattacceca
se grain size is about 30 µm.; submitted by Ansgar Greshake
205; field LE1; submitted by Vanni Moggi Cecchi 206; field LE2; submitted by Vanni Moggi Cecchi 207; field LE3; submitted by Vanni Moggi Cecchi 208; field LE4; submitted by Vanni Moggi Cecchi

205; field LE1; submitted by Vanni Moggi Cecchi 206; field LE2; submitted by Vanni Moggi Cecchi 207; field LE3; submitted by Vanni Moggi Cecchi 208; field LE4; submitted by Vanni Moggi Cecchi 209; field LE5; submitted by Vanni Moggi Cecchi 210; field LE6; submitted by Vanni Moggi Cecchi 211; field LE7; submitted by Vanni Moggi Cecchi 212; field LE8; submitted by Vanni Moggi Cecchi 213; field LE9; submitted by Vanni Moggi Cecchi 214; field LE10; submitted by Vanni Moggi Cecchi 215; field LE11; submitted by Vanni Moggi Cecchi 216; field LE12; submitted by Vanni Moggi Cecchi 217; field LE13; submitted by Vanni Moggi Cecchi 218; field LE16; submitted by Vanni Moggi Cecchi 219; field LE17; submitted by Vanni Moggi Cecchi 220; field LE18; submitted by Vanni Moggi Cecchi 60

51

52

53

58

59

60

2	
3	221; field LE19; submitted by Vanni Moggi Cecchi
4	222: field LE20: submitted by Vanni Moggi Cecchi
5	223; field LE21; submitted by Vanni Moggi Cecchi
6	224; field L E22; submitted by Vanni Moggi Cecchi
7	225: field L E24: submitted by Vanni Moggi Cecchi
8	226; field L E25; submitted by Vanni Moggi Cecchi
9	227; field LE26; submitted by Vanni Moggi Cecchi
10	228; field LE20; submitted by Vanni Moggi Cecchi
11	220; field LE27; submitted by Vanni Moggi Cecchi
12	230: field LE27 5, Submitted by Vanni Moggi Cecchi
13	230, field LE20, submitted by Vanni Moggi Cecchi 231: field LE20; submitted by Vanni Moggi Cecchi
14	231; field LE29, Subfilled by Valini Moggi Cecchi
15	232, field LE29/D, submitted by Vanni Moggi Cecchi
16	233, field LE30, Submitted by Vanni Moggi Cecchi
17	234, field LE31, submitted by Vanni Moggi Cecchi
18	235, field LE32, submitted by Vanni Moggi Cecchi
19	236; field LE32/b; submitted by Vanni Moggi Cecchi
20	237; field LE32/c; submitted by Vanni Moggi Cecchi
21	238; field LE32/f; submitted by Vanni Moggi Cecchi
22	239; field LE33; submitted by Vanni Moggi Cecchi
23	240; field LE34; submitted by Vanni Moggi Cecchi
24	241; field LE35; submitted by Vanni Moggi Cecchi
25	242; field LE36; submitted by Vanni Moggi Cecchi
20 27	243; field LE37; submitted by Vanni Moggi Cecchi
27	244; field LE38; submitted by Vanni Moggi Cecchi
20	245; field LE39; submitted by Vanni Moggi Cecchi
29	246; field LE40; submitted by Vanni Moggi Cecchi
31	247; field LE41; submitted by Vanni Moggi Cecchi
32	248; field LE42; submitted by Vanni Moggi Cecchi
33	249; field LE47; submitted by Vanni Moggi Cecchi
34	
35	and UrFU
36	3M and UrFU
37	d by L. Garvie
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	chondrules ~500-600 μm occur and a low metal abundance typical for L chondrites; submitted by Klei
49	
50	

iad ted by Jérôme Gattacceca ilogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad

e by a six-person team.; submitted by Jérôme Gattacceca mitted by Jérôme Gattacceca by a six-person team. Well-delineated chondrules. Plagioclase average size below 50 μm.; submitted **Running Head**

submitted by Jérôme Gattacceca

AS).; submitted by Kseniya Dugushkina (RAS-UB) dugushkina.kseniya@mail.ru

Likely paired with Los Vientos 014.; submitted by J. Gattacceca

ceca

MW23; submitted by Jérôme Gattacceca

ted by Jérôme Gattacceca

by a six-person team.; submitted by Jérôme Gattacceca ce by a six-person team.; submitted by Jérôme Gattacceca

ca by a six-person team.; submitted by Jérôme Gattacceca

is polycrystalline.; submitted by J. Gattacceca

ted by Jérôme Gattacceca

grad, Moscow); submitted by Lorenz C.A., Vernad grad, Moscow); submitted by Lorenz C.A., Vernad

. R. Moutinho and A. Tosi

For Peer Review Only

d by A. Irving

)77; submitted by Paul Warren)77; submitted by Paul Warren

)77; submitted by Paul Warren

*and Jessica Johnson, NA plagioclase is present.; submitted by M. Zolensky and Jessica Johnson, NASA JSC plagioclase and coarse diopside are present.; submitted by M. Zolensky and Jessica Johnson, NASA

1 2	
3 4	
5	
7	., Vernad
8 9	
10 11	
12 13	
14	
15 16	
17 18	
19 20	ad by Vanni Moggi Cecchi
21	by Vanni Moggi Cecchi
22 23	ed by Vanni Moggi Cecchi ed by Vanni Moggi Cecchi
24 25	ed by Vanni Moggi Cecchi
26 27	
28	
29 30	
31 32	
33 34	
35 36	
37	
38 39	
40 41	
42 43	
44 45	
46	
47 48	
49 50	
51 52	
53	
54 55	
56 57	
58	e about 20 μm; submitted by Ansgar Greshake e about 20 μm; submitted by Ansgar Greshake
59 60	

ain size about 80 µm; submitted by Ansgar Greshake

e about 25 µm; submitted by Ansgar Greshake rain size about 60 µm; submitted by Ansgar Greshake

Melinda Hutson

fore this submission.; submitted by Bingkui Miao

asts have small plagioclase (about 5 um) in the matrix. Opaque are metal and sulfides.; submitted by

	· · ·
own interior, with fresh metal; submitted by Jérôme Gattacceca	
jeca jeca	
al size 5 mm set in a Fe,Ni metal matrix. Other minerals: troilite, chromite.; submitte	ed by Jérôme Gat

jioclase grain size is about 70 µm.; submitted by Ansgar Greshake

L6-type breccia crosscut by several black shock melt veins. The plagioclase grain size is about 70 µr -type breccia and the plagioclase grain size is about 80 µm.; submitted by Ansgar Greshake

efore this submission.; submitted by Bingkui Miao

e is about 70 µm.; submitted by Ansgar Greshake

rgar Greshake ox 463084, Escondido, CA 92046; submitted by Paul Warren

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
10
20
20 21
∠ I วว
∠∠ วว
∠3 24
24
25
20
27
28
29
30
31
32
33 24
34 25
35
30
3/
38
39
40
41
42
43
44
45
46
4/
48
49 50
50
51
52
53
54
55
56
57
58
59
60

grain size is about 70 µm.; submitted by Ansgar Greshake

THB) grain size about 30 µm.; submitted by Ansgar Greshake

rk brown fusion crust.; submitted by J. Gattacceca

2
3
4
5
2
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
24
25
26
27
28
29
30
21
31
32
33
34
35
36
27
57
38
39
40
41
42
12
C+
44
45
46
47
48
40
50
50
51
52
53
54
55
55
50
5/
58
59
60

by Klemm K.

by Klemm K. by Klemm K. by Klemm K. by Klemm K.

by Klemm K.

as different equilibrated lithologies.; submitted by Klemm K.

grain size is about 60 µm.; submitted by Ansgar Greshake

in size is about 30 μ m.; submitted by Ansgar Greshake in size is about 30 μ m.; submitted by Ansgar Greshake

1

Meteoritics & Planetary Science

clase grain size is about 60 μ m. Contains shock melt veins.; submitted by Ansgar Greshake

-group ordinary chondrite containing fragments of petrologic type 4 and type 5.; submitted by Klemm

Per Review Only

e is about 40 µm.; submitted by Ansgar Greshake

gram. The plagioclase grain size is about 60 µm.; submitted by Ansgar Greshake

Running Head

érôme Gattacceca ck veins.

• hy Anthony Lov paired with Rafsa 001 (pers. comm. T. Irving, 2020).; submitted by Anthony Love

2	
3	
4 5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
20	
21	
22	
23	
24	
25	
26	
27 28	
29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47	
48 49	
50	

J. Plechov, pplechov@gmail.com

e grain size is about 20 µm.; submitted by Ansgar Greshake fan ... grain size is about 30 μm.; submitted by Ansge.. grain size is about 40 μm.; submitted by Ansge.. e grain size is about 30 μm.; submitted by Ansgar Greshake e grain size is about 60 µm.; submitted by Ansgar Greshake

∍ grain size is about 30 µm.; submitted by Ansgar Greshake
nitted by Daniel Sheikh nitted by Daniel Sheikh nitted by Daniel Sheikh nitted by Daniel Sheikh
. Lin, IGGCAS
stance by a six-person team.; submitted by Jérôme Gattacceca
prenz C.A., Vernad
s. Chondrule mesostatis is devitrified. Opaque are metal and sulfides.; submitted by Jérôme Gattacce have olivine with Fa18.3±0.8.; submitted by Klemm K.

ated olivine with Fa18.6±0.7.; submitted by Klemm K.

ated olivine with Fa19.3±0.4.; submitted by Klemm K. ominant and have equilibrated olivine with Fa18.2±0.4.; submitted by Klemm K.

ated olivine and pyroxene with Fa18.8 and Fs16.7, respectively.; submitted by Klemm K.

and abundant metal, like in H chondrites; submitted by Klemm K.

n occur and the low metal abundance is typical for L chondrites.; submitted by Klemm K.

-400 um) and abundant metal	like in H chondrites: su	bmitted by Klemm K
ree pini) and abandant metal		onnaoa oy naonini na

3 Tosi and Andre L. R. Moutinho d, Many small pieces, most under 1g; submitted by Jérôme Gattacceca

il.ru

d, Moscow); submitted by Lorenz C.A., Vernad ad, Moscow); submitted by Lorenz C.A., Vernad d, Moscow); submitted by Lorenz C.A., Vernad , Moscow); submitted by Lorenz C.A., Vernad AS) dugushkina.kseniya@mail.ru w); submitted by Lorenz C.A., Vernad ow); submitted by Lorenz C.A., Vernad chnograd, Moscow); submitted by Lorenz C.A., Vernad cow); submitted by Lorenz C.A., Vernad cow); submitted by Lorenz C.A., Vernad ow); submitted by Lorenz C.A., Vernad w); submitted by Lorenz C.A., Vernad cow); submitted by Lorenz C.A., Vernad); submitted by Kseniya Dugushkina (RAS-UB).; submitted by Kseniya Dugushkina (RAS-UB)

cow); submitted by Lorenz C.A., Vernad w); submitted by Lorenz C.A., Vernad w); submitted by Lorenz C.A., Vernad

udjehane

Running Head

da Tosi and M. E. Zucolotto I, Moscow); submitted by Lorenz C.A., Vernad w); submitted by Lorenz C.A., Vernad alogical Museum), T. Kryachko; submitted by Lorenz C.A., Vernad w); submitted by Lorenz C.A., Vernad w); submitted by Lorenz C.A., Vernad y Klemm K. in ikh aikh mitted by Daniel Sheikh itted by Daniel Sheikh

3	
4	
5	
6	
7	
8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
23	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40	
41	
42	
45	
44	
45	
46	
47	
48	
49	
50	

to peer periewony

Meteoritics & Planetary Science

to peer periewony

Meteoritics & Planetary Science

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
49	
40	

tor peer Review only

Meteoritics & Planetary Science

2 3	
4	
6	
7	
8	
9	
11	
12	
13	
14	
16	
17	
18	
19	
21	
22	
23	
24 25	
26	
27	
28 29	
30	
31	
32	
34	
35	
36	
37	
39	
40	
41 42	
43	
44	
45	
40 47	
48	

to peer periewony

Meteoritics & Planetary Science

3 4	
5 6	
7	
8 9	
10	
12	
13	
14 15	
16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
30	
31	
33	
34	
36	
37	
39	
40	
42	
43	
45	
46 47	
47 48	
49	

Running Head

 for peer Review Only

by Klemm K.

4 5	
б	
7	
8	
9 10	
11	
12	
13	
14	
15	
16	
1/	
18	
20	
21	
22	
23	
24	
25	
20	
27	
29	
30	
31	
32	
33	
34	
35 36	
37	
38	
39	
40	
41	
42	
45 ΔΔ	
45	
46	
47	
48	

to peer periewony

Meteoritics & Planetary Science
5 6 7 8 9 10 11 12 13	
14 15	
16	
17	
18	
20	
21	
22	
24	
25	
26 27	
28	
29	
30	
32	
33 34	
35	
36	
37	
39	
40	
41 42	
43	
44	
45 46	
47	

Running Head

al mm in size.; submitted by Ivanova M. A., Vernad

, Vernat

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
20	
21 22	
23	
24	
25	
26 27	
28	
29	
30	
32	
33	
34	
35 36	
37	
38	
39	
40 41	
42	
43	
44	
45 46	
47	
48	

tor peer Review only

2 3 4	
5	
6 7	
8	
9 10	
11	
12 13	
14	
15 16	
17	
18 19	
20	
21 22	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35	
37	
38	
40	
41	
43	
44	
45 46	
47	
4ð	

Meteoritics & Planetary Science

to peer perien only

3	
5	
6	
7	
8	
9	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
37	
33	
34	
35	
36	
37	
30 39	
40	
41	
42	
43	
44	
45 46	
47	
48	
49	

to peer periewony

Meteoritics & Planetary Science

3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

Meteoritics & Planetary Science

to peer periew only

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	
38 39 40	
41 42 43	
44 45 46	
47	

-	
4	
С	
6	
7	
ò	
0	
9	
1	С
1	1
1	ว
1	2
1	5
1	4
1	5
1	6
1	7
1	8
1	c
י ר	ر م
2	U
2	1
2	2
2	3
2	Δ
2	-1 F
2	2
2	6
2	7
2	۶
2	č
2	2
3	C
3	1
3	2
ຸ	3
ר ר	2
3	4
3	5
3	6
3	7
2	ç
2	c
3	9
4	C
4	1
4	2
4	3
7	/
4	4
4	5
4	6
4	7
4	8
4	c
-	-

Meteoritics & Planetary Science

for peer periew only

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
29 30	
31	
32	
34	
35	
36 37	
38	
39	
40	
41	
43	
44	
45 46	
47	
48	

For Peer Review Only

Meteoritics & Planetary Science

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
30 31 32	
33 34 35	
36 37	
38 39	
40	
41 42	
43	
44 45	
46	
47	

to peer periewony

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	
40 41 42 43 44 45 46	
47	

-	
4	
С	
6	
7	
ò	
0	
9	
1	С
1	1
1	ว
1	2
1	5
1	4
1	5
1	6
1	7
1	8
1	c
י ר	ر م
2	U
2	1
2	2
2	3
2	Δ
2	-1 F
2	2
2	6
2	7
2	۶
2	č
2	2
3	C
3	1
3	2
ຸ	3
ר ר	2
3	4
3	5
3	6
3	7
2	ç
2	c
3	9
4	C
4	1
4	2
4	3
7	/
4	4
4	5
4	6
4	7
4	8
4	c
-	-

Meteoritics & Planetary Science

For Peer Review Only

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
30 31	
32 33	
34	
35 36	
37	
38	
40	
41	
42 43	
44	
45	
46 47	
47	

-	
4	
5	
6	
7	
1	
8	
۵	
2	~
1	C
1	1
1	2
1	2
1	3
1	4
1	5
1	2
1	6
1	7
1	, ,
I	č
1	ç
2	r
2	ں د
2	1
2	2
2	2
2	2
2	4
2	5
2	2
2	C
2	7
2	ç
~	۰ د
2	9
3	0
2	1
3	1
3	2
3	3
2	2
3	4
3	5
Ş	6
ر -	- -
3	1
3	8
2	č
3	5
4	C
4	1
-	-
4	2
4	3
Δ	Δ
4	-
4	
	5
4	5
4	5
4 4	5 6 7
4 4 4	5 6 7 8
4 4 4 4	5 6 7 8 0

Meteoritics & Planetary Science

for peer periew only

$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\33\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\\35\\36\\37\\38\\39\\40\\41\\42\\43\\44\\5\\46\\47\\48\\49\\50\\51\\52\\53\\54\end{array} $	/arren			
50 51 52 53 54 55 56				
57 58 59 60				

for peer periew only

1 by Jérôme Gattacceca

mm K.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
18	
20	
21	
22	
23	
24	
26	
27	
28	
29 30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45 46	
47	
48	

For Peer Review Only

Meteoritics & Planetary Science

$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ \end{array} $	JSC		
48 49 50 51 52 53 54 55 56 57 58 59 60			

to peer periewony

Meteoritics & Planetary Science

3	
4	
6	
7	
8	
9	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
40 47	
48	
49	

Running Head

1	
2	
3	
4	
5	
6	
/ Q	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
∠1 22	
22	
24	
25	
26	
27 20	Jérôme Gattacceca
20 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	n.; submitted by Ansgar Greshake
53 54	
55	

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

Meteoritics & Planetary Science

to peer periewony

3	
4 5	
6	
7	
8	
9	
11	
12	
13	
14	
15	
16	
17	
19	
20	
21	
22	
23	
24	
26	
27	
28	
29	
30	
3 I 3 2	
33	
34	
35	
36	
37	
38 30	
40	
41	
42	
43	
44	
45 46	
47	
48	
49	

K.

for peer Review Only

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	
20 21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35	
37	
39	
40	
42 43	
44 45	
46 47	
48 49	
50 51	
52	
53 54	

Meteoritics & Planetary Science

to peer peries only

5 6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
28	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
46	
47	

2
R
ر ۸
4
5
6
7
/
8
9
10
10
11
12
13
14
14
15
16
17
10
١ð
19
20
21
Z I
22
23
24
24
25
26
27
20
28
29
30
21
51
32
33
34
25
35
36
37
20
20
39
40
4 1
40
42
43
44
15
45
46
47
<u>1</u> 2
40
49
50
51
57
52
53
54
55
رر
56
57

Meteoritics & Planetary Science

for peer peries only

эса

58
3	
4 5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
19	
20	
21	
22	
23	
24	
25	
27	
28	
29	
30	
31 20	
32	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44	
45 46	
47	
48	
49	

Meteoritics & Planetary Science

tor peer periew only