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MONOTONE SOLUTIONS FOR MEAN FIELD GAMES MASTER

EQUATIONS : CONTINUOUS STATE SPACE AND COMMON

NOISE

CHARLES BERTUCCI 1

Abstract. We present the notion of monotone solution of mean field games
master equations in the case of a continuous state space. We establish the ex-
istence, uniqueness and stability of such solutions under standard assumptions.
This notion allows us to work with solutions which are merely continuous in
the measure argument, in the case of first order master equations. We study
several structures of common noises, in particular ones in which common jumps
(or aggregate shocks) can happen randomly, and ones in which the correlation
of randomness is carried by an additional parameter.
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Introduction

This paper introduces the notion of monotone solution for mean field games
(MFG in short) master equations in the case of a continuous state space. Using
this notion, we establish results of existence and uniqueness for merely continuous
solutions of master equations, which are non-linear first order infinite dimensional
partial differential equations (PDE in short) at the core of the MFG theory. Even
though this paper is self-contained, it is the follow-up of [2] in which we presented
a similar notion in the simpler case of a finite state space.

General introduction. MFG are dynamic games involving a crowd of non-
atomic agents. If such games have a tremendous number of applications in several
fields, they naturally arise in Economics, and they actually did so in the eighties
and nineties. A general mathematical framework to study such games (as well
as the terminology MFG) has been introduced by J.-M. Lasry and P.-L. Lions in
[19, 20]. We present here some general aspects of this theory, focusing on Nash
Equilibria of such games. The study of the Nash equilibria of a MFG reduces
to the analysis of a PDE called the master equation [20, 6]. This fact may seem
surprising since Nash equilibria are defined as fixed points of certain abstract map-
pings and thus possess in general few properties. The link between those equilibria
and the master equation is a consequence of strong uniqueness properties of this
monotone regime, in which, formally, players are adversarial to one another. The
master equation is generally an infinite dimensional non linear PDE as soon as
the state space of the players is continuous. Another striking property of MFG
is that when the randomness (or noise) affecting the players is distributed in an
i.i.d. fashion among them, Nash equilibria can be characterized with a system of
forward-backward PDE in finite dimension [19, 20, 15, 24]. Let us note that in this
situation, several Nash equilibria can coexist. An important aspect of the MFG
theory is the so-called probabilistic approach [8, 16], which we shall not particu-
larly use in this paper. Finally, we end this general introduction by mentioning
the question, that we do not treat here, of the convergence of N -players games
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toward MFG, which is a possible way to justify the PDE arising in MFG theory
and which has been partially solved at this point [6, 17].

Regularity of the solution of the master equation. In the aforementioned
monotone regime, the uniqueness result established by Lasry and Lions [19] makes
it meaningful to define a value function associated to a MFG. This value function
associates tthe value of the game U(t, x,m) to a player in a state x, when the
remaining time in the game is t and the measure m describes the repartition of the
other players. In this monotone regime, if it is smooth, the value function can be
characterized as the unique solution of the master equation [20, 6]. A natural and
fundamental question in the MFG theory is the following : If the value function
is not smooth, can it still be characterized as the unique weak solution of the
master equation ? The difficulty here lies in the definition of weak solutions one
has to choose. In this paper, we answer positively to this question in the monotone
regime. Namely, to define our monotone solutions, we only need continuity of the
value function in the measure argument for first order master equations and first
order regularity with respect to the measure argument for second order master
equations. This paper is the extension of [2] in which we treated this problem in
the case of a finite state space.

In the last years, the question of the regularity of solutions of master equations
has raised quite a lot of interest. In [6], the authors shew that, under strong
assumptions, the value function turns out to be smooth and, thus, the unique
solution of the master equation. Alternatively, the monotone regime proved to
be regularizing in the finite state space case [20, 3, 4]. More recently, several
teams have addressed the issue of defining weak solutions of master equations in
several context (which are not the monotone regime) : [10, 9] propose ways of
selecting a weak solution in finite state space, particularly in the potential case ;
[22, 13, 14] introduce notions of weak solutions of the master equation which do
not rely on monotonicity assumptions. Up to this point, no general framework has
been proposed.

Modeling of common noise. An objective of this paper is to introduce a no-
tion of weak solution for the MFG master equations (in the monotone regime).
As already mentioned, in the absence of a common noise, the study of the master
equation is not necessary. Hence, it is natural to present our notion of solution
in cases involving a common noise. Up to now, most of the mathematical litera-
ture on MFG [6, 8, 7, 5] is concerned with the following common noise: the state
of all players is affected by a common Brownian motion. This noise has several
specificities: it yields second order terms (with respect to the measure variable) in
the master equation; it is not particularly regularizing (at least this has not been
established up to now and it is quite unlikely since the arising terms are only ”de-
generate elliptic”); it induces a singular behavior for the underlying measure which
describes the repartition of players in the state space. Indeed in this context, this
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measure is randomly pushed with a force which is a Brownian motion. If this type
of noise is certainly helpful to model numerous situations, we here argue that it is
undeniably not the most general situation and that several other models can be
of interest in many applications, and that those models do not raise mathematical
questions as difficult as the one we just mentioned. Let us precise that the sec-
ond to last Section of this paper is concerned with this often-studied common noise.

A first type of common noise we insist on later on in the paper, is a setting
in which the correlation in the randomness affecting the players is carried by an
additional parameter. Typical examples for such kinds of models are MFG involv-
ing players which interact on a market through stochastic environmental variables,
such as price for instance. In such a context, it is natural to expect that the value
of the game depends on this additional parameter, and therefore that the associ-
ated master equation depends on derivatives (possibly second order ones) of the
value function with respect to the price. Clearly, if this additional parameter is
finite dimensional, then the master equation stays a first order PDE (with respect
to the measure variable) despite modeling a MFG with common noise.

A second type of noise we want to model is one similar to the common noise
introduced in [3] in the case of a finite state space. This type of noise consists in
assuming that at random times, which are common to all players, a transformation
is going to affect all players in the game. Such a type of noise is adequate to
model aggregate shocks (to use a terminology from Economics) which may occur
at random times. In addition to its intrinsic (mathematical) interest, this type of
noise is helpful to approximate other types of common noises, such as the one in
which all the players are pushed by the same Brownian motion.

Structure of the paper. In Section 1, we introduce some notation as well as
recall some results concerning derivatives in the space of probability measure. In
Section 2, we present the main MFG model underlying the master equations we
study, as well as some known results concerning MFG master equations. We
proceed by introducing our notion of monotone solution in Section 3. We discuss
the question of the existence of monotone solutions in Section 4. Sections 5 and 6
deal with respectively monotone solutions of master equations of first and second
order, in the presence of a common noise. We conclude this paper and present
perspectives and extensions of this work in Section 7.

1. Notation and derivatives in the space of probability measure

In this somehow introductive section, we present some notations, especially con-
cerning derivatives in a set of probability measures, as well as some basic results
on those derivatives that we shall need later on.
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• We denote by d an integer greater than 1 which refers to the dimension of
the players’ state space.

• We denote by T
d the d dimensional torus whose inner scalar product is

denoted by ·, i.e. x · y denotes the scalar product between x, y ∈ T
d.

• The set of measures on T
d is denoted by M(Td). For m ∈ M(Td), we

denote its support by Supp(m).
• We denote by P(Td) the set of probability measures on T

d. This set is
equipped with the Monge-Kantorovich (or 1-Wasserstein) distance d1 de-
fined with

(1.1) ∀µ, ν ∈ P(Td),d1(µ, ν) = sup
φ

∫

Td

φ(x)(µ− ν)(dx),

where the supremum is taken over all Lipschitz functions φ : T
d → R with

a Lipschitz constant at most one. We recall that
(

P(Td),d1

)

is a compact
metric set.

• We denote by 〈·, ·〉 the scalar product of L2(Td) and by a slight abuse of
notation, all its extensions on functional spaces in duality. That is, if f and
µ are in L2(Td), then 〈f, µ〉 is their L2(Td) scalar product, but if f ∈ C0(Td)
and µ ∈ P(Td), then 〈f, µ〉 is the integral of f against the measure µ ; and
if for instance f ∈ C2(Td) and µ ∈ P(Td), then 〈f,∆µ〉 is the evaluation of
the distribution of second order ∆µ on f .

• For a function of two variables f : (Td)2 → R, we define, whenever it makes
sense

(1.2) 〈µ|f(·, ·)|ν〉 = 〈f1, ν〉,
where f1 : y → 〈f(·, y), µ〉. The important remark is that µ is tested against
the first argument of f whereas ν is tested against its second argument.

• An application f : P(Td) → C0(Td) is said to be monotone if

(1.3) ∀µ, ν ∈ P(Td), 〈f(µ)(·)− f(ν)(·), µ− ν〉 ≥ 0.

• For n ∈ N, α ∈ [0, 1) and a function φ : T
d → R we denote by ‖φ‖n+α its

Cn,α norm.
• For n ∈ N, α ∈ [0, 1) and a function φ : T

d × T
d → R we denote by

‖φ‖(n+α,n+α) its C
n,α norm.

• We introduce the space B of functions U : T
d × P(Td) → R such that U is

globally continuous and

(1.4) sup
m∈P(Td)

‖U(·, m)‖2 <∞.

• We also introduce the space Bt of functions U : [0,∞)× T
d × P(Td) → R

such that U is globally continuous and for all T > 0 :

(1.5) sup
m∈P(Td),t∈[0,T ]

‖U(t, ·, m)‖2 <∞.
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• We also introduce the space B′
t of functions U : [0,∞)×T

d×T
d×P(Td) → R

such that U is globally continuous and for all T > 0 :

(1.6) sup
m∈P(Td),t∈[0,T ]

‖U(t, ·, ·, m)‖2 <∞.

• The usual convolution product in T
d is denoted by ⋆.

• The image measure of a measure m by a map T is denoted T#m.

1.1. Derivatives in the space of probability measures. We say that a func-
tion U : P(Td) → R is derivable at m if there exists a continuous map φ : T

d → R

such that for all µ ∈ P(Td)

(1.7) lim
θ→0,θ>0

U((1 − θ)m+ θµ)− U(m)

θ
= 〈φ, µ−m〉.

Clearly, there is no uniqueness of such a function φ as it is defined up to a constant.
We denote φ = δU

δm
(m) when it is such that 〈φ,m〉 = 0.

We say that U is C1 if the map m→ δU
δm

(m) is continuous.

When δU
δm

(m) is a C1 function of T
d, we denote its gradient by DmU(m, x) :=

∇x
δU
δm

(m)(x). The function DmU is the intrinsic derivative of U at m. It satisfies

(1.8) lim
h→0

U((Id + hφ)#m)− U(m)

h
= 〈DmU(m) · φ,m〉 ,

where φ : T
d → T

d is continuous function and T#m denotes the image measure of
m by the map T .

If it exists, the second order derivatives of U : P(Td) → R at m is a function
ψ : (Td)2 → R such that for any x ∈ T

d, ψ(x, ·) = δ
δm

(

δU
δm

(·, x)
)

(·). We denote by
δ2U
δm2 the map φ such that for any x ∈ T

d,
〈

δ2U
δm2 (m, x, ·), m

〉

= 0.

Let us finally introduce the following norm on functions U : T
d×P(Td) → R for

n ∈ N and α ∈ [0, 1)

(1.9) Lipn+α(U) = sup
µ,ν∈P(Td)

‖U(µ)− U(ν)‖n+α

d1(µ, ν)
.

We define in the same way for U : (Td)2 × P(Td) → R

(1.10) Lipn+α(U) = sup
µ,ν∈P(Td)

‖U(µ)− U(ν)‖(n+α,n+α)

d1(µ, ν)
.
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1.2. First order conditions in P(Td). Consider a C1 function U : P(Td) → R

and m0 ∈ P(Td) such that

(1.11) U(m0) = inf
P(Td)

U(m).

One would like to have that δU
δm

(m0) = 0, however this is not true in general. This

is mainly due to the fact that , formally, P(Td) has many boundaries and that the
optimality conditions associated to (1.11) only yield an inequality in general. We
can establish the following.

Proposition 1.1. Let U be a C1 function on P(Td) which attains its minimum at
m0. Then 0 ≤ δU

δm
(m0) attains its minimum 0 on Supp(m0). Moreover, if δU

δm
(m0)

is C1, then

(1.12) 〈DmU(m0), m0〉 = −
〈

δU

δm
(m0),∇m0

〉

= 0,

if δU
δm

(m0) is C
2, then

(1.13)

〈

δU

δm
(m0),∆m0

〉

≥ 0,

Proof. Let x ∈ T
d and, recalling the definition of δU

δm
(1.7) for µ = δx, we obtain that

δU
δm

(m0, x) ≥ 0. Because we have the normalization condition 〈 δU
δm

(m0), m0〉 = 0,
we deduce that U reaches its minimum 0 on Supp(m0). The rest of the claim
follows quite easily from the optimality conditions in T

d. �

Remark 1.1. The relation (1.12) could have been directly established using (1.8)
for a sufficiently large choice of functions φ.

One could also provide general results for second order conditions in the spirit
of what we just did. Such results are not presented because they are of no need in
the following.

2. Main model and preliminaries

In this section we present the typical master equations we are going to study
as well as the underlying MFG model. We also give the main assumptions for the
rest of the paper and recall an existing result of uniqueness and a variation of a
Lemma form Stegall.

2.1. Mean Field Games and master equations. We recall, on a well known
example, the links between MFG and master equations. We assume that a crowd of
non-atomic agents evolves in T

d during the time interval [0, tf ]. The state (Xt)t≥0

of a player follows

(2.1) dXt = αtdt+
√
2σdWt,
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where (αt)t≥0 is the control of the player and (Wt)t≥0 is a standard d dimensional
Brownian motion on T

d which models individual noise. By individual noise, we
mean that two players’ states are going to evolve according to the previous stochas-
tic differential equation for two independent realizations of (Wt)t≥0. We assume
that the cost of a player whose state and control are given by (Xt)t≥0 and (αt)t≥0

is given by

(2.2)

∫ tf

0

L(Xt, αt) + f(Xt, mt)dt+ U0(Xtf , mtf ),

where L, f and U0 are cost functions and (mt)t≥0 is the process which describes
the evolution of the measure describing the repartition of the players in the state
space. Hence L represents the part of the cost the player pays which depends on
its control, whereas f is the part which depends on the other players. The function
U0 represents a final cost.

Remark 2.1. In this paper we work only on the so-called decoupled case, in which
the dependence on α andm are separated in the previous equation. All the following
is adaptable to the general case in which those dependences can be more intricate,
under some appropriated additional assumptions.

Denoting by U(t, x,m) the value of the game (which is not clearly defined at
this moment) for a player in the state x when it remains t time in the game and
the distribution of the other players in the state space is currently m, we obtain
that U solves (if it smooth enough) the so-called master equation

(2.3)

∂tU − σ∆U +H(x,∇xU)−
〈

δU

δm
(x,m, ·), div (DpH(·,∇U(·, m))m)

〉

− σ

〈

δU

δm
(x,m, ·),∆m

〉

= f(x,m), in (0,∞)× T
d × P(Td)

U(0,x,m) = U0(x,m) in T
d ×P(Td),

where H is the Hamiltonian of the players given by H(x, p) := supα{−α · p −
L(x, α)}.

In the present case, because the noise is only distributed in an i.i.d. fashion
among the players, we can characterize Nash equilibria of the game which lasts
a time tf and starts with an initial distribution of player given by m0, using the
following system of finite dimensional PDE

(2.4)











−∂tu− σ∆u+H(x,∇xu) = f(x,m) in (0, tf)× T
d,

∂tm− σ∆m− div(DpH(x,∇xu)m) = 0 in (0, tf)× T
d,

u(tf , x) = U0(x,m(tf )), m(0, x) = m0(x) in T
d.

In the previous system, a solution (u,m) is associated to a Nash equilibria of the
game in the following way. The distribution of players m evolves according to the
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second equation of (2.4) and under the anticipation that the distribution of players
is indeed going to be m, the value of the game for the players is given by u. A
particular set of MFG are the one called monotone, i.e. for which the following
assumption is satisfied.

Hypothesis 1. The Hamiltonian H is convex in its second argument. The cou-
plings f and U0 are monotone, i.e. they verify for all µ, ν ∈ P(Td)

(2.5) 〈f(·, µ)− f(·, ν), µ− ν〉 ≥ 0,

(2.6) 〈U0(·, µ)− U0(·, ν), µ− ν〉 ≥ 0.

If the previous assumption is satisfied, and that for either (2.5) or (2.6) the
inequality is strict as soon as µ 6= ν, then there exists at most one solution of
(2.4) for any initial condition m0 and any duration of the game tf . Hence we
deduce from this strong uniqueness result for Nash equilibria of the MFG, that
a concept of value of a game can be defined. By this we mean that we can in-
deed talk about the value U(t, x,m) of the MGF for a player in the state x, when
the time remaining in the game is t, and the repartition of players in the state
space is described by m. In this context, the value U obviously satisfies for all
tf ≥ 0, x ∈ T

d, m0 ∈ P(Td), U(tf , x,m0) = u(0, x), where u is such that (u,m) is
the unique solution of (2.4). Clearly if U , defined in this way, is smooth, then it
is a solution of (2.3).

One of the main objectives of this paper is to generalize the previous approach
to a situation in which the use of a system of characteristics such as (2.4) is not
clear, for instance in the presence of common noise (i.e. a noise which is not dis-
tributed in an i.i.d. fashion among the players). Mainly, we are going to establish
that we can characterize, under Hypothesis 1, a value function U for the MFG as
the sole weak solution of the master equation, without needing derivability of U
with respect to the measure argument.

Even though we do not detail the model underlying the following stationary
counterpart of (2.3), it could have been presented in the same manner.

(2.7)

rU − σ∆U +H(x,∇xU)−
〈

δU

δm
(x,m, ·), div (DpH(·,∇U(·, m))m)

〉

− σ

〈

δU

δm
(x,m, ·),∆m

〉

= f(x,m) in T
d × P(Td).

This stationary master equation is also a subject of study for this paper.

Remark 2.2. In the rest of the paper, the presence of the i.i.d. noise between the
players plays a crucial role in our study. In the case in which such a noise is not
present, let us mention what seems to be the most natural way to formulate the
master equation. It is the so-called Hilbertian approach introduced by P.-L. Lions
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in [20]. In this context, the master equation is posed on an Hilbert space and the
problem is closer to the finite dimensional setting introduced in [2].

2.2. Preliminary results. In this section we recall the two main results of exis-
tence and uniqueness on master equations which we can find in [6], as well as a
variant of a Lemma of Stegall on approximated optimization.

The following Theorem of existence of classical solutions is borrowed from [6].
We do not reproduce its rather long proof, but let us mention that it relies on a
precise study of the system (2.4) and its dependence on the initial conditions. In
some sense, a contribution of this paper is to provide another existence result for
master equations, which relies on weaker assumptions.

Theorem 2.1. Assume that there exists C > 0, α ∈ (0, 1) such that :

• The Hamiltonian H satisfies

(2.8) ∀x ∈ T
d, p ∈ R

d, 0 < D2
ppH(x, p) ≤ CId,

in the sense of symmetric matrices.
•

(2.9) sup
m∈P(Td)

(

‖f(·, m)‖2+α +

∥

∥

∥

∥

δf(·, m, ·)
δm

∥

∥

∥

∥

(2+α,2+α)

)

+ Lip2+α

(

δf

δm

)

≤ C.

•

(2.10) sup
m∈P(Td)

(

‖U0(·, m)‖3+α +

∥

∥

∥

∥

δU0(·, m, ·)
δm

∥

∥

∥

∥

(3+α,3+α)

)

+ Lip3+α

(

δU0

δm

)

≤ C.

Then there exists a classical solution U, C1 in all the variables, C2 in the space
variable x, of the master equation (2.3).

The next result is concerned with uniqueness of solutions of master equations.
We present its proof mainly for two reasons, the first one is that it is rarely given
in this form, the second one is that this proof is at the core of the definition of
monotone solutions that we give in the next section.

Proposition 2.1. Under Hypothesis 1 : i) there exists at most one smooth solution
U of (2.3), moreover if it exists, U(t) is monotone for all t ≥ 0 ; ii) there exists
at most one classical solution of (2.7) and if it exists, it is monotone.

Proof. We only detail the proof of the uniqueness property for the stationary equa-
tion, the time dependent being treated using similar arguments. Moreover, we
prove more general results in the next section.
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Let U and V be two smooth solutions of the master equation (2.7). Let us define
the function W on P(Td)2 by

(2.11) W (µ, ν) = 〈U(·, µ)− V (·, ν), µ− ν〉 :=
∫

Td

U(x, µ)− V (x, ν)(µ− ν)(dx).

Using the equations satisfied by both U and V , we deduce that W satisfies on
P(Td)2

(2.12)

rW + 〈H(x,∇xU)−H(x,∇xV ), µ− ν〉 −
〈

δW

δµ
, div (DpH(·,∇U(·, µ))µ)

〉

−σ
〈

δW

δµ
,∆µ

〉

− σ

〈

δW

δν
,∆ν

〉

+ 〈U − V, div (DpH(·,∇U(·, µ))µ−DpH(·,∇V (·, ν))ν)〉

−
〈

δW

δν
, div (DpH(·,∇V (·, ν))ν)

〉

= 〈f(·, µ)− f(·, ν), µ− ν〉.

To establish the previous equation, we have used the relations (which are true up
to a function c : P(Td) → R)
(2.13)

U(x, µ)−V (x, ν)+

〈

δU

δm
(·, µ, x), µ− ν

〉

=
δW

δµ
(µ, ν, x) for all x ∈ T

d, µ, ν ∈ P(Td),

(2.14)

V (x, ν)−U(x, µ)+
〈

δV

δm
(·, ν, x), ν − µ

〉

=
δW

δν
(µ, ν, x) for all x ∈ T

d, µ, ν ∈ P(Td).

The continuous functionW reaches its minimum at some point (µ∗, ν∗) at which
the following holds
(2.15)
rW (µ∗, ν∗) + 〈H(·,∇xU)−H(x,∇xV ), µ

∗ − ν∗〉 − 〈∇x(U − V ) · ∇xDpH(∇xU), µ
∗〉

− 〈∇x(V − U) · ∇xDpH(∇xV ), ν∗〉 ≥ 〈f(·, µ∗)− f(·, ν∗), µ∗ − ν∗〉,
where we have used the optimality conditions given by Proposition 1.1. Hence we
deduce from Hypothesis 1 that rW (µ∗, ν∗) ≥ 0 and thus that W is a non-negative
function. From the non-negativity of W , we obtain that U = V + c(m) for a
function c : P(Td) → R, otherwise W should change sign around the diagonal of
P(T)2. Indeed we have here more or less established that U − V is orthogonal to
the set of measure of mass 0. Evaluating (2.7) for U and V immediately implies
that c(m) = 0 on P(Td). Since U = V , we finally obtain that U is monotone.

�

We end these preliminary results with the following variation of Stegall varia-
tional principle. Although this extension seems to be new, it is a rather immediate
adaptation of existing results the interested could find in the monologue [23] for
instance.
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Lemma 2.1. Let f : P(Td) → R be a continuous function. Take m ∈ N, m > 6d.
For any ǫ > 0, there exists φ in the Sobolev space Hm(Td), ‖φ‖Hm ≤ ǫ such that
µ→ f(µ) + 〈φ, µ〉 has a strict minimum on P(Td).

Proof. Let us consider the multivalued operator A : Hm(Td)→→P(Td) which is de-
fined by A(φ) = argmin{f(µ)+〈φ, µ〉|µ ∈ P(Td)}. By construction −A is cyclically
monotone in the sense that, for finite sequences φ0, φ1, ..., φn = φ0, µi ∈ A(φi),

(2.16)

n
∑

i=1

〈φi − φi−1, µi〉 ≤ 0.

Indeed for such a sequence,

(2.17)

n
∑

i=1

〈φi − φi−1, µi〉 =
n
∑

i=1

〈φi, µi − µi+1〉

≤
n
∑

i=1

f(µi+1)− f(µi)

= 0.

We can take µ0 ∈ A(0) and construct a function ψ : Hm(Td) → R by setting

(2.18) ψ(φ) = sup{〈φ− φn, µn〉+ 〈φn − φn−1, µn−1〉+ ... + 〈φ1, µ0〉},
where the supremum is taken over all finite sequences satisfying −µn ∈ A(φn).
The function ψ is proper, convex and continuous over the separable Hilbert space
Hm(Td). Moreover, defining by ∂ψ the sub-differential of ψ, −A ⊂ ∂ψ by con-
struction. Hence the result is proved since ψ is Fréchet differentiable on a dense
subset of the Hilbert space Hm (since it is convex and continuous). �

Remark 2.3. The result is stated for m > 6d so that C2(Td) ⊂ Hm(Td). This
point will be of use later on in the paper.

2.3. On the choice of writing the master equation in P(Td). Before passing
to the core Section of this paper, we take some time to comment the model-
ing choice we make to write the master equation on P(Td) instead of on {m ∈
M(Td)|m ≥ 0} =: M+(T

d). Because, in the problem we are interested in, the
number or mass of players stays constant, it is natural to consider the master
equation only on P(Td), even if this situation is not the most general one. For
instance, one can think about optimal stopping problem such as in [1, 2]. On the
other hand, it is natural to define a value for the MFG whatever the total mass
of players is. Of course in the situation of interest here, we can write the master
equation on M+(T

d) and only the derivatives in the space of measure in direc-
tions which preserve the mass of the measure are needed. This previous remark
makes the extension from P(Td) to M+(T

d) relatively easy. Moreover, working
on the whole M+(T

d) is easier to treat the question of uniqueness of solutions.
12



For instance, recalling the proof of Proposition 2.1 and its notations, the non-
negativity of the function W on M+(T

d) would have been sufficient to conclude.
(This remark has higher implications later on in the paper.)

However, even though it seems more profitable to work on M+(T
d) than on

P(Td), we prefer the second option as it allows us to use some existing results of
the literature. We apologize for this inconvenience and hope that the interested
reader shall be able to extend quite easily the results of this paper to the case of
M+(T

d).

3. Monotone solutions

In this section, we extend the notion of monotone solution introduced in [2] to
the equations (2.7) and (2.3). We shall not be concerned with the existence of
such solutions here, as we delay this question to the next section. We start this
section with the case of (2.7) before treating (2.3).

3.1. The stationary case. Even though we refer to [2] for more details on why
the notion of monotone solution is natural for MFG master equations, let us briefly
recall the main idea behind this notion.

The proof of Proposition 2.1 clearly suggests that uniqueness of solutions can
be obtained by looking at points of minimum of a function W defined by W =
〈U(µ)−V (ν), µ−ν〉 for U and V two solutions. We then use the information that
one has from the fact that U and V solve a master equation to proceed with the
proof.

An important remark is that, at points of minimum of W , if W is smooth,
we have a relation to express some terms involving the derivatives of U and V ,
uniquely through U and V (without derivatives). This is observed by combining
(2.13) and Proposition 1.1 or formally by taking δW

δµ
= 0 in (2.13).

Hence, from the point of view of U , we only need information at points of
minimum of µ → 〈U(µ) − V, µ − ν〉, for some function V ∈ C2(Td) and measure
ν ∈ P(Td). But at this points of minimum, the terms involving the derivatives
of U with respect to µ in (2.7) can be expressed without using derivatives in the
space of measures. This leads us to the following notion of solution of (2.7).

Definition 3.1. A function U ∈ B is a monotone solution of (2.7) if for any C2

function φ : T
d → R, for any measure ν ∈ M(Td), any point m0 of strict minimum

of m→ 〈U(·, m)− φ,m− ν〉, the following holds

(3.1)
r〈U(·, m0), m0 − ν〉 − 〈σ∆U +H(·,∇xU), m0 − ν〉 ≥ 〈f(·, m0), m0 − ν〉

− 〈U − φ, div(DpH(∇xU)m0)〉 − σ〈∆(U − φ), m0〉.

Remark 3.1. Let us insist on the fact that we take ν ∈ M(Td) and not in
P(Td). Would we not have done so, for any monotone solution U , any func-
tion c : P(Td) → R, U + c would also be a monotone solution. Hence, to prevent
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such situations, we enlarge the choice of ν for which the definition holds. We refer
to the proof of Theorem 3.1 for more on this fact.

Remark 3.2. We only ask for information at points of strict minimum for stability
reasons.

This notion of monotone solution is reminiscent of the notion of viscosity solution
introduced by Crandall and Lions in [11], although the equation (2.7) does not have
a proper comparison principle.

Let us also remark that Definition 3.1 demands regularity in the space variable
x. We shall not comment a lot on this fact except for the fact that, if it may be
possible to consider less regular functions in the space variable, it does not seem
obvious since the notion of solution we propose is not particularly local in the
space variable x.

The two following results justify in some sense the notion of solution we propose.
The first one states that classical solutions are also monotone solutions, and the
second one that there is uniqueness of a monotone solution in the monotone regime.

Proposition 3.1. Assume that U is a classical solution of (2.7), then it is also a
monotone solution of (2.7).

We do not detail the short proof of this result. Let us mention that it is a direct
application of Proposition 1.1.

As the interested reader may have observed at this point, the uniqueness of
a solution of (2.7) may be obtained naturally modulo a function c : P(Td) →
R. Indeed, recalling the proof of Proposition 2.1, proving the non-negativity of
µ, ν → 〈U(µ)−V (ν), µ−ν〉, for U and V two solutions, yields U = V +c. In some
sense, this weak uniqueness result is sufficient to obtain (formally) the uniqueness
of a Nash equilibria. Indeed the optimal strategy, given at the equilibrium by the
solution U of the master equation, only depends on the gradient in the spatial
variable x ∈ T

d of U . Hence the addition of a function c : P(Td) → R does not
alter the induced strategies.

In any case, we give an additional mild assumption on the monotonicity of f
under which the uniqueness of monotone solutions can be established.

Hypothesis 2. The coupling f is monotone and satisfies for all µ, ν ∈ P(Td)

(3.2) 〈f(·, µ)− f(·, ν), µ− ν〉 = 0 ⇒ f(·, µ) = f(·, ν).
We can now prove the

Theorem 3.1. Under Hypothesis 1, two monotone solutions of (2.7) in the sense
of Definition 3.1 only differ by a function c : P(Td) → R. If a monotone solution
exists it is a monotone application. Moreover, if, in addition, Hypothesis 2 is
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satisfied, then there is uniqueness of a monotone solution of (2.7) in the sense of
Definition 3.1.

Proof. Let us assume that there exists two such solutions U and V . Let us define
W : P(Td)2 → R with

(3.3) W (µ, ν) = 〈U(·, µ)− V (·, ν), µ− ν〉 :=
∫

Td

U(x, µ)− V (x, ν)(µ − ν)(dx).

We want to show that W is a non-negative function. Assume that this is not the
case and that there exists (µ1, ν1) such that W (µ1, ν1) < 0. From this we deduce
that there exists ǫ > 0 such that for all φ, ψ ∈ C0(Td), ‖φ‖0 + ‖ψ‖0 ≤ ǫ

(3.4) inf
(µ,ν)∈P(Td)2

{W (µ, ν) + 〈φ, µ〉+ 〈ψ, ν〉} < W (µ1, ν1)

2
< 0.

On the other hand, from Lemma 2.1, we deduce that there exist φ, ψ ∈ C2(Td),
‖φ‖2+‖ψ‖2 ≤ ǫ such that (µ, ν) → W (µ, ν)+ 〈φ, µ〉+ 〈ψ, ν〉 has a strict minimum
at (µ0, ν0) on P(Td)2. Using the definition of monotone solutions for U , we deduce
that
(3.5)
r〈U(·, µ0), µ0 − ν0〉 − 〈σ∆U +H(·,∇xU), µ0 − ν0〉 ≥ 〈f(·, µ0), µ0 − ν0〉

− 〈U(µ0)− V (ν0) + φ, div(DpH(∇xU)µ0)〉 − σ〈∆(U − V + φ), µ0〉,
and the corresponding relation for V :
(3.6)
r〈V (·, ν0), ν0 − µ0〉 − 〈σ∆V +H(·,∇xV ), ν0 − µ0〉 ≥ 〈f(·, ν0), ν0 − µ0〉

− 〈V (ν0)− U(µ0) + ψ, div(DpH(∇xV )ν0)〉 − σ〈∆(V − U + ψ), ν0〉.
Combining the two previous relations, using the convexity of H and the mono-
tonicity of f we deduce that
(3.7)
rW (µ0, ν0) ≥ −〈φ, div(DpH(∇xU)µ0)〉−σ〈∆ψ, ν0〉−〈ψ, div(DpH(∇xV )ν0)〉−σ〈∆φ, µ0〉,
which is a contradiction because φ and ψ can be chosen arbitrary small. Hence, we
obtain that W ≥ 0. This established the first part of the Theorem (the equality
of the spatial gradients of U and V and the monotonicity of U).

Let us now assume that Hypothesis 2 holds and take two monotone solutions
U and V of (2.7). From the first part of the proof, we know that there exists
c : P(Td) → R such that V = U − c. We want to show that c = 0. Consider
ρ ∈ M(Td), ǫ > 0 and define W : P(Td)2 → R by

(3.8) W (µ, ν) = 〈U(µ)− U(ν) + c(ν), µ− ν + ǫρ〉.
Assume first that there exists ν̄ such that c(ν̄)〈1, ρ〉 = −δ0 < 0. In this situation, for

φ and ψ sufficiently small, the minimum of W̃ : µ, ν → W (µ, ν)+ 〈φ, µ〉+ 〈ψ, ν〉 is
15



less that −ǫδ0/2. From Lemma 2.1, for any ǫ > 0, there exists φǫ and ψǫ sufficiently
small such that the previous function has a strict minimum at (µǫ, νǫ) on P(Td)2.
Using the fact that both U and V are monotone solutions, we obtain, using the
convexity of H , that
(3.9)
rW (µǫ, νǫ) ≥〈f(µǫ)− f(νǫ), µǫ − νǫ + ǫρ〉 − 〈φǫ, div(DpH(∇xU)µǫ)〉 − σ〈∆ψǫ, νǫ〉

− 〈ψǫ, div(DpH(∇xV )νǫ)〉 − σ〈∆φǫ, µǫ〉.
Consider an accumulating point (µ0, ν0) of ((µǫ, νǫ))ǫ>0. Taking the limit ǫ→ 0 in
the previous equation (up to the correct subsequence) yields that f(µ0) = f(ν0),
because of Hypothesis 2. From (3.9), we deduce that

(3.10) −ǫδ0
2

≥ rW (µǫ, νǫ) ≥ ǫ〈f(µǫ)− f(νǫ), ρ〉+ o(ǫ),

where we assumed that φǫ and ψǫ were indeed chosen sufficiently small. Dividing
the previous relation by ǫ and letting ǫ → 0, we arrive at a contradiction. Hence
〈c(ν), ρ〉 ≥ 0 for any ν ∈ P(Td). Since ρ was chosen arbitrary in M(Td), we deduce
that c = 0 and thus that U = V .

�

We now give a result of stability of monotone solutions.

Proposition 3.2. Assume that there exist sequences (Hn)n≥0 and (fn)n≥0 in re-
spectively C(Td ×R

d,R) and C(Td ×P(Td),R) which converge locally uniformly to-
ward respectively H and f . Assume that there is a sequence (Un)n≥0 of monotone
solutions of (2.7) (where Un is the solution associated with Hn and fn). Assume
that (Un)≥0 converges locally uniformly toward some function U (for the topology
of B), then U is a monotone solution of (2.7) associated with H and f .

Proof. Let us consider φ ∈ C2, ν ∈ M(Td) and µ∗ a point of strict maximum of
m→ 〈U(·, m)−φ,m−ν〉 on P(Td). From Lemma 2.1, we can consider a sequence
of functions (φn)n≥0 such that ‖φn‖2 → 0 as n → ∞ and m → 〈Un(·, m) − φ +
φn, m − ν〉 admits a strict minimum at µn on P(Td). Because Un is a monotone
solution of (2.7), we obtain that
(3.11)
r〈Un(·, µn), µn − ν〉 − 〈σ∆Un +Hn(·,∇xUn), µn − ν〉 ≥ 〈fn(·, µn), µn − ν〉

− 〈Un − φ+ φn, div(DpHn(∇xUn)µn)〉 − σ〈∆(Un − φ+ φn), µn〉.
Since (µn)n≥0 is a compact sequence, extracting a subsequence if necessary, it
converges toward a measure µ̃. By construction of (µn)n≥0 and convergence of
(Un)n≥0 toward U , we deduce that for any m ∈ P(Td),

(3.12) 〈U(·, µ̃)− φ, µ̃− ν〉 ≤ 〈U(·, m)− φ,m− ν〉.
From which we obtain µ̃ = µ∗ (and the convergence of the whole sequence (µn)n≥0).
Let us now remark that since (Un)n≥0 converges toward U in B, then ‖∆(Un −
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U)‖0 → 0 as n → ∞, thus, we can actually pass to the limit in all the terms in
(3.11) to obtain

(3.13)
r〈U(·, µ∗), µ∗ − ν〉 − 〈σ∆U +H(·,∇xU), µ∗ − ν〉 ≥ 〈f(·, µ∗), µ∗ − ν〉

− 〈U∗ − φ, div(DpH(∇xU)µ∗)〉 − σ〈∆(U − φ), µ∗〉.

Hence U is a monotone solution of (2.7) (associated with H and f). �

We conclude this section on stationary monotone solutions of master equations
by giving a result concerning smooth monotone solutions.

Proposition 3.3. Assume that U is a C1 monotone solution such that δU
δm

is Lip-
schitz continuous and which satisfies for some c > 0

(3.14) 〈U(m)− U(m′), m−m′〉 ≥ c(d1(m,m
′))2.

Then U satisfies (2.7) for all m ∈ P(Td), x ∈
◦

Supp(m) and more generally

(3.15)

rU − σ∆U +H(x,∇xU)−
〈

δU

δm
(x,m, ·), div (DpH(·,∇U(·, m))m)

〉

− σ

〈

δU

δm
(x,m, ·),∆m

〉

≥ f(x,m) in T
d × P(Td).

Remark 3.3. It is a general feature of MFG that the value function may not satisfy
a PDE outside the support of the measure describing the repartition of players [24].

Remark 3.4. The stronger requirements on the monotonicity of U can probably
be weakened while preserving the same result.

Proof. Let us fix m̄ ∈ P(Td). If we choose ν sufficiently close to m̄ and define V
by

(3.16) V (x) = U(x, m̄) +

〈

δU

δm
(x, m̄, ·), ν − m̄

〉

,

then W : µ → 〈U(µ) − V, µ − ν〉 has a strict minimum at µ = m̄. Writing the
relation satisfied by monotone solutions for U at m̄, we deduce that it satisfies the
announced properties. �

3.2. The time dependent case. Let us now introduce the definition of monotone
solution in the time dependent setting. The approach is extremely similar except
for the fact that, because we do not want to ask for time regularity outside of
continuity for a solution U , we use technique of viscosity solutions to treat the
time derivative.

Definition 3.2. A function U ∈ Bt is a monotone solution of (2.3) if
17



• for any C2 function φ : T
d → R, for any measure ν ∈ M(Td), for any

smooth function ϑ : [0,∞) → R and any point (t0, m0) ∈ (0,∞) × P(Td)
of strict minimum of (t,m) → 〈U(t, ·, m)− φ,m− ν〉 − ϑ(t), the following
holds

(3.17)

dϑ

dt
(t0)− 〈σ∆U +H(·,∇xU), m0 − ν〉 ≥ 〈f(·, m0), m0 − ν〉

− 〈U − φ, div(DpH(∇xU)m0)〉 − σ〈∆(U − φ), m0〉.

• the initial condition holds

(3.18) U(0, ·, ·) = U0(·, ·).

As we did in the stationary case, we now present results of consistency and
uniqueness of such solutions. The consistency result being straightforward, we do
not prove it. Moreover, let us recall that we postpone the question of existence to
the next section.

Proposition 3.4. Assume that U is a smooth solution of (2.3), then it is also a
monotone solution of (2.3).

Theorem 3.2. Under Hypothesis 1, two monotone solutions of (2.3) in the sense
of Definition 3.2 only differ by a function c : [0,∞)× P(Td) → R. If a monotone
solution U exists, U(t) is a monotone application for all t ≥ 0. Moreover, if,
in addition, Hypothesis 2 is satisfied, then there is uniqueness of the monotone
solutions of (2.3) in the sense of Definition 3.2.

Proof. Let us consider U and V two such solutions. We define W by
(3.19)

W (t, s, µ, ν) = 〈U(t, ·, µ)−V (s, ·, ν), µ−ν〉 :=
∫

Td

U(t, x, µ)−V (s, x, ν)(µ−ν)(dx).

We want to prove thatW (t, t, µ, ν) ≥ 0 for all t ≥ 0, µ, ν ∈ P(Td). Assume it is not
the case, hence there exists t∗, δ, ǭ > 0, such that for all ǫ ∈ (0, ǭ), α > 0, φ, ψ ∈ C2

such that ‖φ‖2 + ‖ψ‖2 ≤ ǫ and γ1, γ2 ∈ ( ǭ
2
, ǭ),

(3.20)

inf
t,s∈[0,t∗],µ,ν∈P(Td)

{

W (t, s, µ, ν) + 〈φ, µ〉+ 〈ψ, ν〉+ 1

2α
(t− s)2 + γ1t+ γ2s

}

≤ −δ.

From Lemma 2.1, we know that there exists (for any value of α) φ, ψ, γ1 and γ2
such that (t, s, µ, ν) →W (t, s, µ, ν) + 〈φ, µ〉+ 〈ψ, ν〉+ 1

2α
(t− s)2 + γ1t+ γ2s has a

strict minimum on [0, t∗]
2 ×P(Td)2 at (t0, s0, µ0, s0).
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We assume first that t0 > 0 and s0 > 0. Using the fact that U is a monotone
solution of (2.3) we obtain that

(3.21)

−γ1 −
t0 − s0
α

− 〈σ∆U(µ0) +H(·,∇xU), µ0 − ν0〉 ≥ 〈f(·, µ0), µ0 − ν0〉
− 〈U(t0, µ0)− V (s0, ν0) + φ, div(DpH(∇xU)µ0)〉
− σ〈∆(U(t0, µ0)− V (s0, ν0) + φ), µ0〉,

and similarly for V :

(3.22)

−γ2 −
s0 − t0
α

− 〈σ∆V (s0, ν0) +H(·,∇xV ), ν0 − µ0〉 ≥ 〈f(·, ν0), ν0 − µ0〉
− 〈V (s0, ν0)− U(t0, µ0) + φ, div(DpH(∇xV )ν0)〉
− σ〈∆(V (s0, ν0)− U(t0, µ0) + φ), ν0〉.

Summing the two previous relations, using the monotonicity of f and the convexity
of H , we deduce that
(3.23)
−γ1−γ2 ≥ −〈φ, div(DpH(∇xU)µ0)〉−σ〈∆ψ, ν0〉−〈ψ, div(DpH(∇xV )ν0)〉−σ〈∆φ, µ0〉.
The previous relation is a contradiction (provided that ǫ had been chosen suffi-
ciently small compared to ǭ).

Let us now turn to the case t0 = 0 (the case s0 = 0 being treated in exactly
the same fashion). By construction s0 satisfies |s0 − t0| ≤ C

√
α for some C > 0

independent of ǫ. Thus choosing α > 0 sufficiently small, we easily manage to
contradict (3.20).

Hence we have proven that W (t, t, µ, ν) ≥ 0 for t ≥ 0, µ, ν ∈ P(Td). This proves
the first part of the claim. Let us now consider c : [0,∞)× P(Td) → R such that
V = U − c. We place ourselves in the case in which Hypothesis 2 is satisfied.
Assume that there exists t∗, ν∗ such that c(t∗, ν∗) = −δ0 < 0 and consider a non-
negative non-zero measure ρ ∈ M(Td). Because the initial condition is satisfied for
both U and V , we know that t∗ > 0. Furthermore, from Lemma 2.1, we know that
for any ǫ > 0 there exists t0, δ, ǭ > 0, such that for all ǫ′ ∈ (0, ǭ), α > 0, φ, ψ ∈ C2

such that ‖φ‖2 + ‖ψ‖2 ≤ ǫ′ and γ1, γ2 ∈ ( ǭ
2
, ǭ),

(3.24)

inf
t,s∈[0,t0],µ,ν∈P(Td)

{

〈U(t, µ)− V (s, ν), µ− ν + ǫρ〉 + 〈φ, µ〉+ 〈ψ, ν〉+ 1

2α
(t− s)2 + γ1t + γ2s

}

≤ −ǫδ0/2.

and the infimum is attained at a unique point (tǫ, sǫ, µǫ, νǫ). Moreover, we can
choose ǭ such that ǭ/ǫ→ κ > 0 as ǫ→ 0. Proceeding as we did in the first part of
the proof in the case sǫ, tǫ > 0 for almost all ǫ > 0, we arrive at the relation

(3.25) −γ1 − γ2 ≥ 〈f(µǫ)− f(νǫ), µǫ − νǫ + ǫρ〉+ o(ǫ).
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Concluding as in the proof of Theorem 3.1, we arrive at a contradiction in this
case. The case where either sǫ or tǫ is equal to 0 for sufficiently many ǫ > 0 can be
treated in a similar way. Thus we have proved that c ≥ 0 and thus by symmetry
that U = V . �

We now give a result of stability of monotone solutions.

Proposition 3.5. Assume that there exist sequences (Hn)n≥0 and (fn)n≥0 in re-
spectively C(Td ×R

d,R) and C(Td ×P(Td),R) which converge locally uniformly to-
ward respectively H and f . Assume that there is a sequence (Un)n≥0 of monotone
solutions of (2.3) (where Un is the solution associated with Hn and fn). Assume
that (Un)≥0 converges locally uniformly toward some function U (for the topology
of Bt), then U is a monotone solution of (2.3) associated with H and f .

Proof. Let us consider T > 0, φ ∈ C2, ν ∈ M(Td) and a smooth function ϑ : R → R.
Consider also (t∗, µ∗) a point of strict maximum of m→ 〈U(·, m)−φ,m−ν〉−ϑ(t)
on [0, T ] × P(Td). From Lemma 2.1, we can consider a sequence of functions
(φn)n≥0 and of real numbers (δn)n≥0 such that ‖φn‖2 + δn → 0 as n → ∞ and
(t,m) → 〈Un(·, m) − φ + φn, m − ν〉 − ϑ(t) − δnt admits a strict minimum at
(tn, µn) on [0, T ]× P(Td). Because Un is a monotone solution of (2.3), we obtain
that
(3.26)
dϑ

dt
(tn) + δn − 〈σ∆Un +Hn(·,∇xUn), µn − ν〉 ≥ 〈fn(·, µn), µn − ν〉

− 〈Un − φ+ φn, div(DpHn(∇xUn)µn)〉 − σ〈∆(Un − φ+ φn), µn〉.
Following the same arguments as in the proof of Proposition 3.2 we obtain first
that (tn, µn) → (t∗, µ∗) and then that

(3.27)

dϑ

dt
(t∗)− 〈σ∆U +H(·,∇xU), µ∗ − ν〉 ≥ 〈f(·, µ∗), µ∗ − ν〉

− 〈U∗ − φ, div(DpH(∇xU)µ∗)〉 − σ〈∆(U − φ), µ∗〉.

Hence U is a monotone solution of (2.3). �

4. Existence of monotone solutions

In this section, we establish the existence of a monotone solution of (2.3), in
cases for which the assumptions of Theorem 2.1 are not satisfied. We first prove
an estimate for classical solutions of (2.3) and then use a stability result to prove
our existence result. Let us insist on the fact that we believe this section to be
more pedagogical than anything else. We want to give an example of how to
establish the existence of monotone solutions ; more than weakening optimally the
assumptions of the existing literature on a priori regularity of solutions of MFG
master equations. We can prove the following
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Proposition 4.1. Assume that U is a classical solution of (2.3) and that there
exists C > 0, α, β ∈ (0, 1) such that

•

(4.1) sup
µ,ν∈P(Td)

‖f(µ)− f(ν)‖α
d1(µ, ν)β

+
‖U0(µ)− U0(ν)‖1+α

d1(µ, ν)β
≤ C.

•
(4.2) sup

m∈P(Td)

‖f(·, m)‖α + ‖U0(·, m)‖2+α ≤ C.

• H satisfies (2.8) with the same C.

Then there exists C ′ > 0 depending only on C, α and β such that

(4.3) |U(t, x,m)− U(t′, x′, m′)| ≤ C ′(|t− t′| γ2 + |x− x′|+ d1(m,m
′)γ),

where γ = (2(β−1 − 1
2
))−1 ∈ (0, 1).

The following proof is largely inspired from a similar result in [6] which estab-
lishes the global Lipschitz regularity of U .

Proof. Lets us take t ≥ 0, µ1, µ2 ∈ P(Td). We define for i ∈ {1; 2}, (ui, mi) ∈
C1,2,α × C([0, T ],P(Td)) the unique solution ([19]) of

(4.4)











−∂tui − σ∆ui +H(x,∇ui) = f(x,mi) in [0, t]× T
d,

∂tmi − σ∆mi − div(DpH(x,∇ui)mi) = 0 in [0, t]× T
d,

mi(0) = µi, ui(t) = U0(mi(t)), in T
d.

Since U is a classical solution of (2.3), it follows that U satisfies

(4.5) ∀x ∈ T
d, U(t, x, µ1) = u1(0, x).

From this and the regularity assumptions on f , H and U0, we deduce that there
exists C > 0, such that for all s ≥ 0, µ ∈ P(Td), ‖U(s, ·, µ)‖2+α ≤ C, from which
we deduce the estimate in the space variable in (4.3).

We now come back to the Hölder estimate in the measure argument. Let us
compute
(4.6)

0 ≤
∫ t

0

∫

Td

[−∂t(u1 − u2)− σ∆(u1 − u2) +H(x,∇u1)−H(x,∇u2)] d(m1(s)−m2(s))ds,

=

∫ t

0

∫

Td

(H(x,∇u1)−H(x,∇u2) +DpH(x,∇u1) · ∇(u1 − u2))dm1ds

+

∫ t

0

∫

Td

(H(x,∇u2)−H(x,∇u1) +DpH(x,∇u2) · ∇(u2 − u1))dm2ds

−
∫

Td

(U0(m1(t))− U0(m2(t)))d(m1(t)−m2(t)) +

∫

Td

(u1(0)− u2(0))d(µ1 − µ2).

21



Here, we have used the monotonicity of f for the inequality. Using the convexity
of H and the monotonicity of U0, we obtain
(4.7)
∫ t

0

∫

Td

|∇(u1−u2)|2d(m1(s)+m2(s))ds ≤ C

∫

Td

(u1(0)−u2(0))d(µ1−µ2) ≤ Cd1(µ1, µ2).

Let us remark that since ∇xui is indeed uniformly bounded, we can use a strict-like
convexity of H to obtain the previous inequality. The estimate (4.7) is extremely
helpful to establish the next estimate on the trajectories m1 and m2 that we now
provide using a coupling argument. Let X1 and X2 be two random variables of law
µ1 and µ2 such that E[|X1−X2|] = d1(µ1, µ2). Let us define (Xi,s)s≥0 for i ∈ {1; 2}
the strong solutions of

(4.8)

{

dXi,s = −DpH(Xi,s,∇ui(Xi,s))ds+
√
2σdBs,

Xi,0 = Xi,

for (Bs)s≥0 a standard Brownian motion. We now compute using Itô’s Lemma
(4.9)

E[|X1,s −X2,s|] ≤ E[|X1 −X2|] + E

[
∫ s

0

|DpH(X1,s,∇u1(X1,s))−DpH(X2,s,∇u1(X2,s))|ds
]

+E

[
∫ s

0

|DpH(X2,s,∇u1(X2,s))−DpH(X2,s,∇u2(X2,s))|ds
]

.

We now deduce, using the Lipschitz continuity ofDpH and the Lipschitz continuity
of ∇u1 for the second term and (4.7) for the third term, that
(4.10)

E[|X1,s−X2,s|] ≤ E[|X1−X2|]+C
∫ s

0

E[|X1,s−X2,s|]ds+C
(
∫

Td

(u1(0)− u2(0))d(µ1 − µ2)

)
1

2

.

From which we deduce using Gronwall’s Lemma that
(4.11)

sup
s∈[t,T ]

d1(m1(s), m2(s)) ≤ C

(

d1(µ1, µ2) +

(
∫

Td

(u1(0)− u2(0))d(µ1 − µ2)

)
1

2

)

.

Let us now remark that, using Lemma 3.2.2 in [6], we deduce that
(4.12)

sup
s∈[0,t]

‖(u1−u2)(s)‖1+α ≤ C

(

sup
s∈[0,t]

‖f(m1(s))− f(m2(s))‖α + ‖U0(m1(t))− U0(m2(t))‖1+α

)

.

Hence we deduce, using (4.11) and the assumptions on f and U0 that, that there
exists C > 0 such that

(4.13) sup
s∈[0,t]

‖(u1−u2)(s)‖1+α ≤ C
(

d1(µ1, µ2) + ‖(u1 − u2)(0)‖
1

2

1+αd1(µ1, µ2)
1

2

)β

.
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We now easily obtain that

(4.14) |U(t, x, µ1)− U(t, x, µ2)| = |u1(0, x)− u2(0, x)| ≤ Cd1(µ1, µ2)
γ ,

for γ = (2(β−1 − 1
2
))−1 ∈ (0, 1). Let us now recall that in view of the Lipschitz

continuity of DpH , we have the classical estimate for the solution of the Fokker-
Planck equation :

(4.15) ∀s, s′ ∈ [t, T ], d1(m1(s), m1(s
′)) ≤ C

√

|s− s′|,
where C is a constant independent of µ1 and t ≥ 0. Moreover, the following
relation holds

(4.16) ∀s ∈ [t, T ], U(s, x,m1(s)) = u1(s, x).

Recalling (4.11), we finally obtain that there exists C > 0 such that for any
t, s ∈ [0, T ], x ∈ T

d, µ ∈ P(Td)

(4.17) |U(t, x,m)− U(s, x,m)| ≤ C|t− s| γ2 ,
which concludes the proof. �

Remark 4.1. The extension of this result to value function being defined on
M+(T

d) := {m ∈ M(Td)|m ≥ 0} is straightforward when equipping the previ-

ous convex set with the metric d̃1(µ, ν) := sup〈φ, µ − ν〉 where the supremum is
taken over Lipschitz functions on T

d whose Lipschitz constant is at most 1 and
which verify φ(0) = 0.

Remark 4.2. Let us remark, following exactly the proof of Proposition 3.2 in [6],
that, assuming

(4.18) Lipα(f) + Lip1+α(U0) ≤ C,

instead of the Hölder continuity estimates in the previous proposition, one arrives
at the conclusion that for some C ′ > 0 and any (t, x,m), (t′, x′, m′) ∈ [0,∞)×T

d×
P(Td)

(4.19) |U(t, x,m)− U(t′, x′, m′)| ≤ C ′(|t− t′| 12 + |x− x′|+ d1(m,m
′)).

Having established this a priori estimate, we are now in position to prove the
existence of monotone solutions which are not necessary classical solutions.

Theorem 4.1. Assume that Hypothesis 1 holds and that

• The Hamiltonian H satisfies (2.8).
• f and U0 satisfy the assumption of Proposition 4.1 for some β > 0 and f
and U0 are in the closure (with respect to the uniform convergence) of the
set of couplings f and U0 satisfying the assumptions of Theorem 2.1.

Then, there exists a (unique) monotone solution of the master equation (2.3) in
the sense of Definition 3.2.
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Remark 4.3. As we do not want to enter into the problem of regularization of
functions on P(Td), we add the assumption that f and U0 have to be in the closure
of more regular functions. This assumption seems necessary. Furthermore, such
a set of couplings is not trivial. Indeed, consider for instance a coupling f defined
on T

d ×P(Td) by

(4.20) f(x,m) :=

∫

Td

φ(z, (m ⋆ ρ)(z))ρ(x − z)dz,

where φ : R
2 → R is a continuous function, smooth in its first argument and

Hölder continuous in its second one, with ρ a smooth non-negative even function.
By regularizing φ, one obtain a regularization of f . Hence such a coupling f is
the closure of couplings satisfying the assumptions of Theorem 2.1. Moreover it
satisfies the required assumptions.

Proof. Let us consider sequences (fn)n≥0 and (U0,n)n≥0 which approximate f and
U0. For any n ≥ 0, thanks to Theorem 2.1, there exists a (unique) solution Un of
(2.3) associated to fn and U0,n. Using Proposition 4.1, we obtain that the sequence
(Un)n≥0 is a uniformly continuous sequence of functions. Since it is bounded
uniformly for t = 0, we deduce from Ascoli-Arzela Theorem that (Un)n≥0 is a
compact sequence for the uniform convergence. Hence, extracting a subsequence
if necessary, it converges toward a limit U∗. Since for all n ≥ 0, Un is a classical
solution of (2.3) (associated to fn and U0,n) we deduce that it is also a monotone
solution of the same equation. We finally conclude using Proposition 3.5 that U∗

is a monotone solution of (2.3). �

5. First order master equations with common noise

The interest of this section is twosome. First we want to present some structures
of common noise in MFG, which, despite being entirely new, have attracted little
attention in the literature even though they cover a wide range of applications.
Secondly, we explain, without entering into the same amount of details as we did
for (2.7) or (2.3), how the notion of monotone solution is helpful for such cases.
We mainly look at two situations. The first one in which an additional parameter
is added which is stochastic and which affects all the players in the same way (like
a price on a market for instance). The second one is a situation in which players
jump in a coordinated manner at random times, as the one introduced in [3]. For
pedagogical reasons, we introduce first a case in which the additional parameter
has only two states.

As most of the following analysis does not rely on the fact that we are in a time
dependent or a stationary situation, we choose here to focus on the time dependent
setting.

Finally, let us state that this section is not particularly concerned with the exis-
tence of monotone or classical solutions of the master equations we shall introduce.
We present in subsection 5.4 an a priori estimate which is valid in all the cases we
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shall introduce and only detail a proof of existence of monotone solutions in the
case of common jumps.

5.1. Additional two-state stochastic parameter. Consider a MFG which is
similar to the one presented in section 2 except for the fact that there is an addi-
tional parameter p, totally exogenous from the rest of the game, which can take two
values p1 and p2. We assume that this parameter affects the player in the following
way : when p = pi the running cost of the player is a function fi : T

d×P(Td) → R.
We assume that p is a random process which jump from p1 to p2 with a transition
rate λ1 > 0, and from p2 to p1 with a transition rate λ2. In such a situation, the
associated master equation is in fact the system of two master equations
(5.1)

∂tUi − σ∆Ui +H(x,∇xUi)−
〈

δUi

δm
(x,m, ·), div (DpH(·,∇Ui(·, m))m)

〉

− σ

〈

δUi

δm
(x,m, ·),∆m

〉

+ λi(Ui − Uj) = fi(x,m) in (0,∞)× T
d ×P(Td),

Ui(0,x,m) = U0(x,m)Td × P(Td),

where i, j{1; 2}, i 6= j.

Remark 5.1. Not only f , but H, σ and U0 could have depended on i, without
changing any of the following. We only restricted ourselves to the case of f to
lighten the notation.

Following section 3, we naturally propose the following definition of monotone
solution for (5.1).

Definition 5.1. A pair of functions U1, U2 ∈ Bt is a monotone solution of (5.1)
if

• for any C2 functions φ1, φ2 : T
d → R, for any measure ν ∈ M(Td), for any

smooth function ϑ : [0,∞) → R and any point (i0, t0, m0) ∈ {1; 2}×(0,∞)×
P(Td) of strict minimum of (i, t,m) → 〈Ui(t, ·, m)− φi, m− ν〉 − ϑ(t), the
following holds

(5.2)

dϑ

dt
(t0)− 〈σ∆Ui0 +H(·,∇xUi0), m0 − ν〉 + λi0〈Ui0 − Uj0, m0 − ν〉
≥〈fi0(·, m0), m0 − ν〉 − 〈Ui0 − φi0, div(DpH(∇xUi0)m0)〉
− σ〈∆(Ui0 − φi0), m0〉,

where j0 6= i0.
• the initial condition holds

(5.3) U1(0, ·, ·) = U2(0, ·, ·) = U0(·, ·).
We now present a result of uniqueness of monotone solutions of (5.1), which

does not rely on any particular assumption on the evolution of the process p. This
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is not surprising since the uniqueness of solutions arises from monotonicity prop-
erties which models a sort of competition between the players, and this additional
parameter does not perturb the competition between the players.

Theorem 5.1. Under Hypothesis 1, two pairs of functions U1, U2 monotone so-
lution of (5.1) in the sense of Definition 5.1 only differ by a constant pair of
functions c1, c2 : [0,∞)× P(Td) → R. Under Hypothesis 2, there is uniqueness of
such a pair of functions.

Remark 5.2. We here understand Hypotheses 1 and 2 in the sense that f(·, p1)
and f(·, p2) both satisfy the monotonicity assumptions.

Proof. The proof of this result is very similar to the one of Theorem 3.2. Let us
take two solutions (U1, U2) and (V1, V2) and define W : {1; 2}× [0, T ]2×P(Td)2 by

(5.4) Wi(t, s, µ, ν) = 〈Ui(t, µ)− Vi(s, ν), µ− ν〉.

Let us now remark, following the same argument as in the proof of Theorem 3.2,
that at a point (i0, t0, s0, µ0, ν0) of strict minimum of W (up to the addition small
perturbations using Lemma 2.1), the term arising in the relation of monotone
solutions from the additional term in λi0 is of the form

(5.5) λi0(Wi0(t0, s0, µ0, ν0)−Wj0(t0, s0, µ0, ν0))

for j0 6= i0. Because we are at a point of minimum of W , this term has a sign and
the rest of the proof follows quite easily. �

Remark 5.3. Even though they are true, we do not write once again precise
results of stability or consistency for this particular master equation because they
are merely trivial adaptations of the ones we already gave.

5.2. Additional stochastic parameter following a stochastic differential

equation. We now place ourselves in the same framework as in the previous sec-
tion, except for the fact that now the parameter p is supposed to evolve according
to

(5.6) dpt = b(pt)dt+
√
2σ′dBt

where (Bt)t≥0 is a standard k dimensional Brownian motion and b : R
k → R

k

a smooth function. For simplicity, we assume that p is valued in T
k (using the

classical quotient T
k = R

k/Zk). This simplification does not play a role if for the
fact that it simplifies the notation and the formulation of some results. Following
the previous subsection on the two states case, we want to define the value function
of the MFG as a function of p (in addition to the other variables). Assuming now
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that f is also a function of p, we naturally arrive at the master equation
(5.7)

∂tU − σ∆xU +H(x,∇xU)− σ′∆pU − b · ∇pU − σ

〈

δU

δm
(x,m, p, ·),∆m

〉

−
〈

δU

δm
(x,m, p, ·), div (DpH(·,∇xU(·, m, p))m)

〉

= f(x,m, p) in (0,∞)× T
d × P(Td),

U(0, x,m, p) = U0(x,m, p) in T
d ×P(Td).

In the following, we are not going to enter into much details about the regularity
of U with respect to p. Let us only remark that if f and U0 are smooth functions
of p, satisfying, uniformly in p, the assumptions of Theorem 2.1, then we expect
that there exists a classical solution of the master equation (5.7). The following
definition should by now seems natural to the reader.

Definition 5.2. A function U in B′
t is a monotone solution of (5.7) if

• for any C2 function φ : T
d × T

k → R
d, for any measure ν ∈ M(Td), for

any smooth function ϑ : [0,∞) → R and any point (t0, m0, p0) ∈ (0,∞)×
P(Td)× T

k of strict minimum of

(5.8) (t,m, p) → 〈U(t, ·, m, p)− φ(·, p), m− ν〉 − ϑ(t),

the following holds
(5.9)
dϑ

dt
(t0) + 〈−σ∆xU − b · ∇pU − σ′∆pU +H(·,∇xU), m0 − ν〉
≥〈f(·, m0, p0), m0 − ν〉 − 〈U − φ, div(DpH(∇xU)m0)〉 − σ〈∆x(U − φ), m0〉.
• The initial condition holds

(5.10) U(0, ·, ·, ·) = U0(·, ·, ·).
As it was the case in the two states model, a result of uniqueness can be estab-

lished without much assumptions on the evolution of the stochastic process (pt)t≥0

or on the dependence of f on it.

Theorem 5.2. Under Hypothesis 1, two monotone solutions of (5.7) in the sense
of Definition 5.2 differ only by a function c : [0,∞) × P(Td) × T

k → R. If such
a solution U exists, for any t ≥ 0, p ∈ T

k, U(t, ·, ·, p) is monotone. Furthermore,
if, in addition, Hypothesis 2 is satisfied, then there exists at most one monotone
solution of (5.7).

Remark 5.4. We here understand Hypotheses 1 and 2 in the sense that f(·, p)
satisfies the monotonicity assumptions for any value of p.

Proof. The proof of this result is once again very similar to the one of Theorem
3.2. Let us take two solutions U and V and define W : [0, T ]2 × P(Td)2 × T

k by

(5.11) W (t, s, µ, ν, p) = 〈U(t, ·, µ, p)− V (s, ·, ν, p), µ− ν〉.
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Let us now remark, following the same argument as in the proof of Theorem 3.2,
that at a point (t0, s0, µ0, ν0, p0) of strict minimum of W (up to the addition small
perturbations using Lemma 2.1), the term arising in the relation of monotone
solutions from the additional terms in p is of the form

(5.12) −b(p0) · ∇pW (t0, s0, µ0, ν0, p0)− σ′∆pW (t0, s0, µ0, ν0, p0).

Because we are at a point of minimum of W (in particular it is also a minimum
in p), this term has a sign and the rest of the proof follows quite easily. �

Remark 5.5. Because few information is needed for the regularity in p of W in
the previous proof, it is very likely that continuity with respect to p and viscosity
solution like information are sufficient to characterize monotone solution of (5.7),
although we do not claim that such results are trivially in the scope of this paper.

5.3. Common jumps. We now introduce, in the continuous state space frame-
work, a type of common noise similar to the one introduced in [3]. More precisely,
we want to model situations in which, at random times which are given by a
Poisson process of intensity λ > 0, all the players in the game are affected by a
common transformation. This transformation can be deterministic, for instance all
the players in the state x are transported in a state Λ(x). It can also carry a form
of randomness which is distributed in an i.i.d. fashion among the players. In such
a situation, all the players in a state x are going to be transported to a new state
which is drawn according to a distribution on the state space K(·, x), indepen-
dently from one another. So that if before the jumps, the players are distributed
according to m ∈ P(Td), they are distributed according to

∫

Td K(x, y)m(dy) im-
mediately after the jump. We refer to [3] for more details on this type of noise (in
the finite state space case).

In the following we assume that K is a non-negative smooth function on (Td)2

such that for all y ∈ T
d,
∫

Td K(x, y)dx = 1. We define the operator T by

(5.13) ∀m ∈ P(Td), x ∈ T
d, T (m)(x) =

∫

Td

K(x, y)m(dy).

Let us recall that the adjoint T ∗ of T is given by

(5.14) ∀φ ∈ C0(Td), y ∈ T
d, T ∗(φ)(y) =

∫

Td

K(x, y)φ(x)dx.
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Because the players anticipate the noise and the fact that they are going to be
transported to another state, the associated master equation is given by
(5.15)

∂tU − σ∆U +H(x,∇xU)−
〈

δU

δm
(x,m, ·), div (DpH(·,∇U(·, m))m)

〉

+ λ

(

U − T ∗(U(t, ·, T (m), p))

)

− σ

〈

δU

δm
(x,m, ·),∆m

〉

= f(x,m) in (0,∞)× T
d × P(Td),

U(0, x,m) = U0(x,m) in T
d ×P(Td).

This master equation is obviously reminiscent of the one studied in [2] (in the finite
state space case). Once again we state an appropriate notion of solution for this
equation.

Definition 5.3. A function U ∈ Bt is a monotone solution of (5.15) if

• For any C2 function φ : T
d → R, for any measure ν ∈ M(Td), for any

smooth function ϑ : [0,∞) → R and any point (t0, m0) ∈ (0,∞) × P(Td)
of strict minimum of (t,m) → 〈U(t, ·, m)− φ,m− ν〉 − ϑ(t), the following
holds

(5.16)
dϑ

dt
(t0) +

〈

−σ∆U +H(·,∇xU) + λ

(

U − T ∗(U(t, ·, T (m)))

)

, m0 − ν

〉

≥〈f(·, m0), m0 − ν〉 − 〈U − φ, div(DpH(∇xU)m0)〉 − σ〈∆(U − φ), m0〉.
• The initial condition holds

(5.17) U(0, ·, ·) = U0(·, ·).

As we did in the previous cases, we can establish the following uniqueness result.

Theorem 5.3. Under Hypothesis 1, two monotone solutions of (5.15) in the sense
of Definition 5.3 only differ by a function c : [0,∞) × P(Td) → R. If such a
monotone solution U exists, then U(t) is actually monotone for all time t ≥ 0.
If, in addition, Hypothesis 2 is satisfied, then there is uniqueness of monotone
solutions of (5.15).

Proof. The proof of this result is once again very similar to the one of Theorem
3.2. For the first part of the claim, let us take two solutions U and V and define
W : [0, T ]2 × P(Td)2 : R by

(5.18) W (t, s, µ, ν) = 〈U(t, ·, µ)− V (s, ·, ν), µ− ν〉.
Let us now remark, following the same argument as in the proof of Theorem 3.2,
that at a point (t0, s0, µ0, ν0) of strict minimum of W (up to the addition small
perturbations using Lemma 2.1), the relation of monotone solutions one obtains is
similar to the classical one except for the addition of a term in λ. When combining
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the relation from U and the one from V , one obtain the same relation except for
the addition of the term

(5.19) λ

(

W (t0, s0, µ0, ν0)−W (t0, s0, T (µ0), T (ν0))

)

.

Because we are at a point of minimum of W , this term has a sign and the rest of
the first part of the proof follows quite easily. Concerning the second part of the
proof, i.e. when we assume that Hypothesis 2 holds, the proof is once again very
similar to the proof of Theorem 3.2, although one has to be careful with the choice
of the measure ρ (we reuse the same notations as in the aforementioned proof).
Indeed, because an extra term may arise from the jump operator T , one has to
choose ρ ∈ P(Td) such that T ρ = ρ. For such a measure (which always exists
under the standing assumptions on T ), the argument can be made exactly as in
the case without common noise. �

Remark 5.6. In fact the previous result is still valid if T is any continuous linear
mapping on P(Td) which posses a fixed point.

5.4. An a priori estimate for the solution of the master equation with

common noise. We now show an a priori estimate which is essentially valid for
all the master equations we have written up to now. We only state (and prove) it
in the case of (5.15) and we leave its generalization to the other master equations
to the interested reader. Although it is not sufficient to establish general result of
existence, we believe that it may be a good starting point for such results. This a
priori estimate is valid only under additional monotonicity assumptions on f and
U0. Namely we assume that f and U0 are differentiable with respect to the measure
argument and that there exists α > 0 such that for all µ ∈ P(Td), ν ∈ L2(Td)

(5.20)

〈

ν

∣

∣

∣

∣

δf

δm
(·, µ, ·)

∣

∣

∣

∣

ν

〉

≥ α

∥

∥

∥

∥

〈

δf

δm
(·, µ), ν

〉
∥

∥

∥

∥

2

L2

,

(5.21)

〈

ν

∣

∣

∣

∣

δU0

δm
(·, µ, ·)

∣

∣

∣

∣

ν

〉

≥ α

∥

∥

∥

∥

〈

δU0

δm
(·, µ), ν

〉
∥

∥

∥

∥

2

L2

.

This assumption is a sort of strong monotonicity assumption on f and U0. For
instance for α = 0 this assumption reduces to usual monotonicity. Furthermore,
this assumption is weaker than α monotonicity. Indeed, if f is smooth and satisfies
for all ν ∈ L2(Td),

(5.22)

〈

ν

∣

∣

∣

∣

δf

δm
(·, µ, ·)

∣

∣

∣

∣

ν

〉

≥ α ‖ν‖2L2 ,

for some α > 0, then it satisfies (5.20) for all ν ∈ L2(Td) (possibly for another
α > 0). Let us remark that such a requirement is satisfied for functions f defined
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by

(5.23) ∀x ∈ T
d, m ∈ P(Td), f(x,m) =

∫

Td

Ψ(z,m ⋆ ρ(z))ρ(x− z)dz,

for a smooth non negative function ρ and a smooth function Ψ : T
d×R

d → R whose
derivative with respect to the second argument ∂yΨ satisfies C−1 ≤ ∂yΨ ≤ C for
some constant C. We can now state the a priori estimate.

Proposition 5.1. Under Hypothesis 1, the assumption that T is continuous and
linear and the stronger requirements (5.20) and (5.21), for any tf > 0, there exists
C > 0 such that a classical solution U of (5.15) satisfies for t ∈ (0, tf), ν, ν

′ ∈
L2(Td) :

(5.24)

∣

∣

∣

∣

〈

ν

∣

∣

∣

∣

δU

δm
(t, ·, µ, ·)

∣

∣

∣

∣

ν ′
〉
∣

∣

∣

∣

≤ C‖ν‖L2‖ν ′‖L2,

where C depends only on α, λ and T . If T is non expansive in L2, then C only
depends on α.

Proof. Let us define W,Zβ : [0, tf ]× P(Td)× L2(Td) → R by

(5.25) W (t, µ, ν) = 〈U(t, ·, µ), ν〉,

(5.26) Zβ(t, µ, ν) =

〈

δW

δµ
(t, µ, ν), ν

〉

− β(t)

〈

δW

δµ
(t, µ, ν),

δW

δµ
(t, µ, ν)

〉

,

for β : [0,∞) → R to be defined later on. Let us remark that Zβ is a quadratic

and smooth function of ν. We denote by
δZβ

δν
the gradient of Zβ in ν ∈ L2(Td)

(since L2(Td) is an Hilbert space, this is a usual gradient). The chain rule yields
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that Zβ is a solution on (0,∞)×P(Td)× L2(Td) of
(5.27)

∂tZβ +

〈

−div

(

DppH(·,∇xU(·, µ))∇x
δZβ

δν
(t, µ, ν, ·)µ

)

,
δW

δµ
(t, µ, ν)

〉

+

〈

−div (DpH(·,∇U(·, µ))µ)− σ∆µ,
δZβ

δµ

〉

+ λ (Zβ − Zβ(t, T µ, T ν))

−
〈

∆
δZβ

δν
(t, µ, ν, ·)−DpH(·,∇U)∇δZβ

δν
(t, µ, ν, ·), ν

〉

=

〈

ν

∣

∣

∣

∣

δf

δm
(·, µ, ·)

∣

∣

∣

∣

ν

〉

+

〈

−div

(

DppH(·,∇xU(·, µ))∇x
δW

δµ
(t, µ, ν, ·)µ

)

,
δW

δµ
(t, µ, ν)

〉

−
〈

−σ∆δW
δµ

− div

(

DpH(·,∇U)δW
δµ

)

, ν

〉

−
〈

σ∆
δW

δµ
(t, µ, ν, ·)−DpH(·,∇U)∇δW

δµ
(t, µ, ν, ·), ν

〉

− 2β

〈

ν

∣

∣

∣

∣

δf

δm
(·, µ, ·)

∣

∣

∣

∣

δW

δµ

〉

+ 2β

〈

−σ∆δW
δµ

− div

(

DpH(·,∇U)δW
δµ

)

,
δW

δµ

〉

+ βλ

(

∥

∥

∥

∥

δW

δµ

∥

∥

∥

∥

2

+

∥

∥

∥

∥

δW

δµ
(t, T µ, T ν)

∥

∥

∥

∥

2

− 2

〈

T δW
δµ

,
δW

δµ
(t, T µ, T ν)

〉

)

− dβ

dt

∥

∥

∥

∥

δW

δµ

∥

∥

∥

∥

2

.

The convexity of H and calculus on the term in λ yields

(5.28)

∂tZβ +

〈

−div

(

DppH(·,∇xU(·, µ))∇x
δZβ

δν
(t, µ, ν, ·)µ

)

,
δW

δµ
(t, µ, ν)

〉

+

〈

−div (DpH(·,∇U(·, µ))µ)− σ∆µ,
δZβ

δµ

〉

+ λ (Zβ − Zβ(t, T µ, T ν))

−
〈

∆
δZβ

δν
(t, µ, ν, ·)−DpH(·,∇U)∇δZβ

δν
(t, µ, ν, ·), ν

〉

≥
〈

ν

∣

∣

∣

∣

δf

δm
(·, µ, ·)

∣

∣

∣

∣

ν

〉

− 2β

〈

ν

∣

∣

∣

∣

δf

δm
(·, µ, ·)

∣

∣

∣

∣

δW

δµ

〉

+ βλ

(

∥

∥

∥

∥

δW

δµ

∥

∥

∥

∥

2

−
∥

∥

∥

∥

T δW
δµ

∥

∥

∥

∥

2
)

− dβ

dt

∥

∥

∥

∥

δW

δµ

∥

∥

∥

∥

2

.

Using the assumption on f , we deduce that
(5.29)
〈

ν

∣

∣

∣

∣

δf

δm
(·, µ, ·)

∣

∣

∣

∣

ν

〉

− 2β

〈

ν

∣

∣

∣

∣

δf

δm
(·, µ, ·)

∣

∣

∣

∣

δW

δµ

〉

+ βλ

(

∥

∥

∥

∥

δW

δµ

∥

∥

∥

∥

2

−
∥

∥

∥

∥

T δW
δµ

∥

∥

∥

∥

2
)

− dβ

dt

∥

∥

∥

∥

δW

δµ

∥

∥

∥

∥

2

≥
(

−α−2β2 + λ
(

1− ‖T ‖
L(L2)

)

β − dβ

dt

)
∥

∥

∥

∥

δW

δµ

∥

∥

∥

∥

2

.
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From the assumption on U0, we deduce that for any β(0) ∈ (0, α), Zβ is non-
negative at t = 0. Hence we deduce that there exists β such that

• β is defined on [0, tf ].
• The right hand side of (5.28) is non negative for t ∈ (0, tf)
• Zβ is non-negative at t = 0
• There exists C > 0 depending only on α, λ and T such that for t ∈ (0, tf),
β(t) ≥ C−1.

From the first two points of the previous list, we obtain, using a maximum prin-
ciple like result that we do not detail but only sketch, that Zβ is non-negative
for t ∈ [0, tf). The maximum principle result we do not detail can be obtained
by arguing by contradiction and considering t∗, the infimum of times t for which
Zβ ≥ 0 is not true. Because Zβ is smooth, quadratic in ν and P(Td) is compact, we
can consider a point of minimum (µ∗, ν∗) ∈ P(Td)× L2(Td) of Zβ(t

∗). Evaluating
(5.28) at this point we easily arrive at a contradiction.

Rewriting the non-negativity of Zβ, we obtain for any t ∈ (0, tf), ν ∈ L2, µ ∈
P(Td)

(5.30)

∥

∥

∥

∥

〈

δU

δm
(·, µ), ν

〉
∥

∥

∥

∥

2

L2

≤ C

〈

ν

∣

∣

∣

∣

δU

δm
(t, ·, µ, ·)

∣

∣

∣

∣

ν

〉

.

From Cauchy-Schwarz inequality we deduce that

(5.31)

∥

∥

∥

∥

〈

δU

δm
(·, µ), ν

〉
∥

∥

∥

∥

L2

≤ C ‖ν‖L2 .

The requited estimate then easily follows. The fact that when T is non expansive
for the L2 norm, then C does not depend on λ nor T can be easily observed at
the level of (5.28). �

Remark 5.7. Let us insist that the a priori estimate we just presented is also valid
for the master equations (5.1) and (5.7), the proofs of these facts follow exactly
the same argument as the one we presented.

5.5. Existence of solutions of first order master equations with common

noise. As we already said, the question of existence of solutions of the previous
master equations is not the main interest of this paper. However, in this section, we
take some time to explain how the previous a priori estimate is helpful to establish
the existence of a monotone solution of (5.15) under some additional assumptions
on the jump operator T . We also explain briefly afterwards how such a result can
be generalized.

Theorem 5.4. Assume that T is given by (5.13) for some smooth non negative
function K and that the assumption of Theorem 2.1 and Proposition 5.1 are sat-
isfied. Then there exists a (unique) monotone solution of (5.15) in the sense of
definition 5.3.
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Proof. Let us define the operator A which associates to a function V the solution
U := A(V ) of the master equation
(5.32)

∂tU − σ∆U +H(x,∇xU)−
〈

δU

δm
(x,m, ·), div (DpH(·,∇U(·, m))m)

〉

+ λU − σ

〈

δU

δm
(x,m, ·),∆m

〉

= f(x,m) + λT ∗(V (t, ·, T (m))) in (0,∞)× T
d ×P(Td),

U(0, x,m) = U0(x,m) in T
d × P(Td).

Considering T ∗(V (t, ·, T (m))) in the same way as f , the previous equation falls in
the scope of the previous analysis (Theorem 2.1 and Proposition 4.1) except for
the presence of the term λU which does not play any sort of role in the previous
result. Thus, we admit that they extend to this situation.

From this we deduce that the operator A is well defined from the set of func-
tions V which are monotone and satisfies the assumptions (for f) of Theorem 2.1.
Moreover, if V (t) is C Lipschitz, uniformly in t, seen as an operator from L2(Td)
into itself, then from the regularity of the kernel K that we assumed (the kernel of
the operator T ), then T ∗(V (t, ·, T (·))) is in fact (uniformly in t) Lipschitz contin-
uous from P(Td) to C2(Td). From this we deduce that the operator A is compact
(Proposition 4.1).

Moreover, the a priori estimate of Proposition 5.1 yields that {U, ∃θ ∈ [0, 1], θA(U) =
U} is bounded in the set of Lipschitz continuous functions [0, tf ]×L2(Td) → L2(Td)
for any tf > 0. Hence it is a uniformly continuous family of functions over
[0, tf ] × T

d × P(Td) thanks to Proposition 4.1. Hence it is bounded in Bt. Fi-
nally let us recall that from Proposition 3.5, we know that A is continuous for the
topology of Bt. Hence we deduce that A has a fixed point. �

Let us comment on extensions of this result. First, concerning master equations
involving additional stochastic parameters, it is clear that the case of (5.1) can
be treated in a similar fashion whereas the case of (5.7) requires an additional a
priori estimate on the regularity of the solution with respect to p.

Moreover, it also seems possible to extend the previous result to more general
jump operators T . We now briefly explain how this should be possible. Let us
recall that the a priori estimate of Proposition 5.1 only requires the L2 Lipschitz
continuity of T whereas the assumptions of Theorem 5.4 require strong regulariza-
tion properties of T . Let us now recall that obviously the presence of the i.i.d. noise
in the MFG induces a regularization properties of the underlying Fokker-Planck
equation. In other words, if at a time t the repartition of players is characterized
by a measure m(t) and if all the players play the Nash equilibrium, then instantly
the measure describing the repartition of players has a density in L2(Td) (even
much more regular than L2 under the standing assumptions in fact). Then we
could use the L2 a priori estimate of Proposition 5.1 to gain additional regularity
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for solutions of (5.15) with bootstrapping techniques and ideas from Proposition
4.1 (or more precisely from Section 3 in [6]).

5.6. Asymptotic differential operators from common jumps. Another in-
teresting features of the kind of common noise of Section 5.3 is that one can
obtained differential terms in the m variable by taking limits of such noises. We
briefly extend the results and ideas from [3] to this continuous state space case.
Let us first mention, that the particular form of the operator T was of no interest
in the previous section. We only used its linearity (more precisely the existence of
an adjoint...). Hence, we shall only assume here that T is a linear operator from
the space of measures on T

d into itself which maps P(Td) into itself. Let us remark
that we do not establish precise result of convergence in this section but rather
present the natural asymptotics one can obtain from common jumps.

5.6.1. General case. In a first time, let us assume that T is of the form

(5.33) T = Id+ λ−1S,

for a linear operator S which maps P(Td) into the set of measure of mass zero.
The previous study can be extended for such an operator T , in particular the
associated master equation is still (5.15). Observe that, at least formally,
(5.34)

λ(U(t, x,m)− T ∗U(t, x, T (m))) −→
λ→∞

−
〈

δU

δm
(t, x,m, ·),S(m)

〉

− S∗(U(t, x,m)).

As one can guess, the limit master equation
(5.35)

∂tU − σ∆U +H(x,∇xU)−
〈

δU

δm
(x,m, ·), div (DpH(·,∇U(·, m))m)

〉

− S∗(U(t, x,m)))

−
〈

δU

δm
(t, x,m, ·),S(m)

〉

− σ

〈

δU

δm
(x,m, ·),∆m

〉

= f(x,m) in (0,∞)× T
d ×P(Td),

U(0, x,m) = U0(x,m) in T
d ×P(Td),

also propagates monotonicity and is thus adequate for a notion of monotone solu-
tion which can be stated in this situation with

Definition 5.4. A function U ∈ Bt is a monotone solution of (5.15) if

• For any C2 function φ : T
d → R, for any measure ν ∈ M(Td), for any

smooth function ϑ : [0,∞) → R and any point (t0, m0) ∈ (0,∞) × P(Td)
of strict minimum of (t,m) → 〈U(t, ·, m)− φ,m− ν〉 − ϑ(t), the following
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holds
(5.36)

dϑ

dt
(t0) + 〈−σ∆U +H(·,∇xU), m0 − ν〉 − 〈S∗φ,m0〉+ 〈S∗U, ν〉
≥〈f(·, m0), m0 − ν〉 − 〈U − φ, div(DpH(∇xU)m0)〉 − σ〈∆(U − φ), m0〉.

• The initial condition holds

(5.37) U(0, ·, ·) = U0(·, ·).
We do not detail another uniqueness result for such a case. Following [3], we

could also obtained second order terms in a similar fashion. Because we detail
such a fact on a specific example below, we do not focus on this asymptotic right
now.

5.6.2. Asymptotic terms associated to translations. An important case of common
jumps is the one in which T (m) is the image measure of m by some application
B : T

d → T
d. In such a case, at the random times at which the jumps occur, all

the players in x are transported to B(x). Let us assume that B is of the form

B = Id + λ−1B̃ for some smooth B̃ : T
d → T

d. In this context, formally, one
obtain that
(5.38)

λ(U(t, x,m)−T ∗U(t, x, T (m))) −→
λ→∞

−〈DmU(t, x,m, ·)B̃(·), m〉−B̃(x)·∇xU(t, x,m).

Following [3], the addition of several terms modeling common jumps does not raise
any particular issue and can be treated in a similar way. By doing so, we are able
to obtain higher order asymptotic terms in the master equation as we now explain.
Let us define T+(m) the image measure of m by Id+λ−1/2B̃ and T−(m) the image

measure of m by Id − λ−1/2B̃. In such a situation, we can remark the following
asymptotic
(5.39)
λ(2U(t, x,m)− T ∗

+U(t, x, T+(m))− T ∗
−U(t, x, T−(m)))

−→
λ→∞

− B̃(x) ·D2
xxU(t, x,m) · B̃(x)− 2B̃(x) · ∇x〈B̃(·)DmU(t, x,m, ·), m〉

−
∫

Td

∫

Td

B̃(y)D2
mmU(t, x,m, y, z)B̃(z)m(dy)m(dz)

− 〈B̃(·)D2
yy

δU

δm
(t, x,m, ·)B̃(·), m〉,

whereD2
mm := Dm(DmU). This gives us another way to derive the master equation

with common noise studied in [6], which is written below as equation (6.1). Indeed
to recover (6.1), one has to sum such terms as in (5.39) for the constant maps
B̃(y) = (0, ..., 0,

√
β, 0, ...0) where the

√
β varies from position i = 1 to i = d.

Even though the proper study of such an asymptotic is not the subject of this
paper (and thus we do not it here), we believe that such an approach can be
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insightful in many ways for the study of (6.1). Moreover this justifies in some
sense the generality of the noise of the form of Section 5.3.

6. Master equations of second order

We now turn to the case of second order master equations such as the one
studied in [6]. We are here interested in the equation
(6.1)

∂tU − (σ + β)∆U +H(x,∇xU)−
〈

δU

δm
(x,m, ·), div (DpH(·,∇U(·, m))m)

〉

− (σ + β)

〈

δU

δm
(x,m, ·),∆m

〉

+ 2β∇x ·
〈

δU

δm
(x,m, ·),∇m

〉

− β

〈

∇m
∣

∣

∣

∣

δ2U

δm2
(x,m, ·, ·)

∣

∣

∣

∣

∇m
〉

= f(x,m),

U(0, x,m) = U0(x,m).

Let us precise that the last term of the left hand side of (6.1) is understood as

−β
∑d

i=1〈∂im| δ2U
δm2 |∂im〉. As we did for (2.3), we now state a uniqueness result for

(6.1) for which we give a different proof than in [6], where it originates from.

Proposition 6.1. Under Hypothesis 1, there exists at most one classical solution
of (6.1).

Proof. Let us consider U and V two smooth solutions and define W by

(6.2) W (t, µ, ν) = 〈U(t, ·, µ)− V (t, ·, ν), µ− ν〉.
A simple computation yields that W is a solution of
(6.3)
∂tW − (σ + β)〈∆x(U − V ) +H(·,∇U)−H(·,∇V ), µ− ν〉

−
〈

δW

δµ
(µ, ν), div (DpH(·,∇U(·, µ))µ)

〉

−
〈

δW

δν
(µ, ν), div (DpH(·,∇V (·, ν))ν)

〉

− (σ + β)

〈

δW

δµ
(µ, ν),∆µ

〉

− (σ + β)

〈

δW

δν
(µ, ν),∆ν

〉

− β

(〈

∇µ
∣

∣

∣

∣

δ2W

δµ2
(µ, ν, ·, ·)

∣

∣

∣

∣

∇µ
〉

+

〈

∇ν
∣

∣

∣

∣

δ2W

δν2
(µ, ν, ·, ·)

∣

∣

∣

∣

∇ν
〉

− 2

〈

∇ν
∣

∣

∣

∣

δ2W

δµδν
(µ, ν, ·, ·)

∣

∣

∣

∣

∇µ
〉)

=〈f(·, µ)− f(·, ν), µ− ν〉 − 〈U(·, µ)− V (·, ν), div (DpH(·,∇U(·, µ))µ)〉
− 〈V (·, ν)− U(·, µ), div (DpH(·,∇V (·, ν))ν)〉 − (σ + β)〈∆x(U − V ), µ− ν〉.

Once again, using the monotonicity of f and the convexity of H , we obtain that
the right hand side of the previous equation is non-negative. Using a maximum
principle like result (that we do not detail here), we deduce that W is a non-
negative function, from which the required result easily follows, as in the case
without common noise. Let us briefly observe the, maybe, easiest way to obtain
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that the particular structure of the terms in β indeed behaves as an elliptic term,
which yields maximum principle like result : Those terms can be obtained from
common jumps which satisfy such elliptic property. Indeed, following exactly
what we did in section 5.6.2, we observe that the terms in β are the limits of terms
arising from jumps which verify the property that they are non-negative at a point
of minimum of W . Because we assumed that W is smooth, the passage to the
limit of section 5.6.2 is here correct and thus an elliptic property is proved.

�

Observing the similarity between this equation and the first order one (2.3), it is
very tempting to formulate an adaptation of the definitions of monotone solutions
we gave earlier. Two main difficulties arise at this point. The first one has to do
with the fact that (6.1) is of second order in the measure argument. As mono-
tone solutions are reminiscent of viscosity solutions, similar technical difficulties
naturally arise, we refer to [12] for more details on viscosity solutions of second
order equations in a finite dimensional setting. The second difficulty has to do
with the precise nature of (6.1). More or less, the definition of monotone solution
we give consists in reformulating that W : (t, µ) → 〈U(t, µ) − φ, µ − ν〉 is a sort
of super solution of a certain PDE. The problem is here that in this second order
case, the PDE satisfied by W cannot be expressed solely in terms of W and its
derivatives, there is a term which involves directly the first order derivative of U
which cannot be rewritten withW . Indeed, if U solves (6.1) then W defined above
for φ ∈ C2, ν ∈ P(Td) satisfies
(6.4)

∂tW + 〈−(σ + β)∆U +H(·,∇xU)− f(µ), µ− ν〉 −
〈

δW

δµ
, div(DpH(·,∇U)µ)

〉

+ 〈U − φ, div(DpH(·,∇U)µ)〉 − (σ + β)

〈

δW

δµ
,∆µ

〉

+ (σ + β)〈U − φ,∆µ〉

+ 2β

〈

∇ν
∣

∣

∣

∣

δU

δm
(·, µ, ·)

∣

∣

∣

∣

∇µ
〉

− β

〈

∇µ
∣

∣

∣

∣

δ2W

δµ2
(·, ·)

∣

∣

∣

∣

∇µ
〉

= 0.

A way to define monotone solutions could be to ask W to be a super solution of
this equation. If we do so, the previous proof is still valid, at least formally. The
challenge here is that the second to last term cannot be written without using
derivative (with respect to the measure variable) of U . This difficulty could be
overcome by asking the couple (U,W ) to be a super solution of this equation.
This idea is probably the most general one, for instance in the finite state space
case, it is immediate to verify that it yields uniqueness of solutions by proving
the non-negativity of 〈U − V, µ − ν〉 for U and V two monotone solutions, using
the techniques of [12]. However, because the technical difficulties usually arising
from viscosity solutions of second order are much more difficult to treat in this
infinite dimensional setting we focus on a regime which is more regular than the
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one we adopted up to this point. Formally we restrict ourselves to C1 solution
in the measure argument and we use the limit (5.39) to express the second order
derivatives. This discussion leads us to the following definition.

Definition 6.1. A function U in Bt, which is derivable with respect to the measure
variable at every point, is a monotone solution of (6.1) if

• for any C2 functions φ : T
d → R, ϑ : (0,∞) → R, for any measure ν ∈

M(Td), and (t0, m0) point of strict minimum of the function W defined by
(t,m) → 〈U(t, ·, m)− φ,m− ν〉 − ϑ(t) the following holds

(6.5)
dϑ

dt
(t0) + 〈−σ∆U +H(·,∇xU), m0 − ν〉 + 2β

〈

∇ν
∣

∣

∣

∣

δU

δm
(·, µ, ·)

∣

∣

∣

∣

∇µ
〉

+ β lim inf
h→0

d
∑

i=1

h−2(2W (t0, m0)−W (t0, T
h
+im0)−W (t0, T

h
−im0))

≥〈f(·, m0), m0 − ν〉 − 〈U − φ, div(DpH(∇xU)m0)〉 − σ〈∆(U − φ), m0〉.
• The initial condition holds

(6.6) U(0, ·, ·) = U0(·, ·).
In the previous definition, we used the notation

(6.7) ∀1 ≤ i ≤ d,m ∈ P(Td), T h
±im = (Id± hei)#m,

where for 1 ≤ i ≤ d, ei = (0, ..., 1, ..., 0) and the sole 1 is in position i. For this
notion of solution, we can establish the following result of uniqueness

Theorem 6.1. Under Hypothesis 1, two monotone solutions of (6.1) in the sense
of Definition 6.1 only differ by a function c : [0,∞)×P(Td) → R. If such a solution
U exists, then U(t) is monotone for all time t ≥ 0. If, in addition, Hypothesis 2
is satisfied, then there is at most one monotone solution of (6.1).

Proof. Let us consider U and V two solutions, and define W by

(6.8) W (t, s, µ, ν) = 〈U(t, ·, µ)− V (s, ·, ν), µ− ν〉.
We want to show that W (t, t, ·, ·) ≥ 0 for all t ≥ 0. Once again we argue by
contradiction. Hence, we assume that there exists t∗, δ, ǭ > 0, such that for all
ǫ ∈ (0, ǭ), α > 0, φ, ψ ∈ C2 such that ‖φ‖2 + ‖ψ‖2 ≤ ǫ and γ1, γ2 ∈ ( ǭ

2
, ǭ),

(6.9)

inf
t,s∈[0,t∗],µ,ν∈P(Td)

{

W (t, s, µ, ν) + 〈φ, µ〉+ 〈ψ, ν〉+ 1

2α
(t− s)2 + γ1t+ γ2s

}

≤ −δ.

From Lemma 2.1, we know that there exists (for any value of α) φ, ψ, γ1 and γ2
such that (t, s, µ, ν) →W (t, s, µ, ν) + 〈φ, µ〉+ 〈ψ, ν〉+ 1

2α
(t− s)2 + γ1t+ γ2s has a

strict minimum on [0, t∗]
2 × P(Td)2 at (t0, s0, µ0, s0).
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We now assume that t0, s0 > 0 (the case in which one of the two is zero is treated
exactly as in Theorem 3.2). Let us now remark the following
(6.10)

0 ≥ lim inf
h→0

d
∑

i=1

h−2(2W (t0, s0, µ0, ν0)−W (t0, s0, T
h
+iµ0, T

h
+iν0)−W (t0, w0, T

h
−iµ0, T

h
−iν0))

= lim inf
h→0

d
∑

i=1

h−2(2W (t0, s0, µ0, ν0)−W (t0, s0, T
h
+iµ0, ν0)−W (t0, w0, T

h
−iµ0, ν0))

+ lim inf
h→0

d
∑

i=1

h−2(2W (t0, s0, µ0, ν0)−W (t0, s0, µ0, T
h
+iν0)−W (t0, w0, µ0, T

h
−iν0))

+ 2β

(〈

∇ν0
∣

∣

∣

∣

δU

δm
(·, µ0, ·)

∣

∣

∣

∣

∇µ0

〉

+

〈

∇µ0

∣

∣

∣

∣

δV

δm
(·, ν0, ·)

∣

∣

∣

∣

∇ν0
〉)

Using the definition of monotone solutions of both U and V , we then arrive at a
contradiction following the same argument as in the proof of Theorem 3.2. The
proof of the second part of the claim can also be established by following the same
argument of the proof of Theorem 3.2, namely by choosing the measure ρ as the
Lebesgue measure on the Torus T

d (using the same notation as the aforementioned
proof). �

Remark 6.1. Let us insist on the fact that for two smooth functions U, V : T
d ×

P(Td) → R, the crossed derivative of W (µ, ν) = 〈U(µ)− V (ν), µ− ν〉 is given, up
to a constant, by

(6.11) ∀x, y ∈ T
d,
δ2W

δµδν
(µ, ν, x, y) =

δU

δm
(µ, y, x) +

δV

δm
(ν, x, y).

Remark 6.2. If we were to work in an Hilbert space, then an analogous of Theorem
3.2 in [12] could probably have been established using the properties of semi convex
functions in Hilbert space such as in [18], then allowing us to use a weaker notion
of solutions.

Let us remark that following Section 4, we can obtain a result of existence of
monotone solutions of (6.1) by weakening the assumptions of Theorem 2.11 in [6].
As the approach is very similar to the one of Section 4, we only state the following
without a demonstration.

Theorem 6.2. Assume that the assumptions of Theorem 2.1 hold and that f and
U0 can be approximated uniformly by functions fn and U0,n satisfying for some

40



Cn > 0
(6.12)

sup
m∈P(Td)

(

‖f(·, m)‖2+α +

∥

∥

∥

∥

δf(·, m, ·)
δm

∥

∥

∥

∥

(2+α,2+α)

+

∥

∥

∥

∥

δ2f(·, m, ·, ·)
δm2

∥

∥

∥

∥

(2+α,2+α,2+α)

)

+ Lip2+α

(

δ2f

δm2

)

≤ Cn.

(6.13)

sup
m∈P(Td)

(

‖U0(·, m)‖3+α +

∥

∥

∥

∥

δU0(·, m, ·)
δm

∥

∥

∥

∥

(3+α,3+α)

+

∥

∥

∥

∥

δ2U0(·, m, ·, ·)
δm2

∥

∥

∥

∥

(3+α,3+α,3+α)

)

+ Lip3+α

(

δ2U0

δm2

)

≤ Cn.

Then there exists a monotone solution of 6.1 in the sense of Definition 6.1.

Remark 6.3. As the second order terms in (6.1) can be seen as limits of common
jumps for jump operators which are non expansive in L2(Td) (they are transla-
tions), let us remark that the a priori estimate established in Proposition 5.1 is
also valid for (6.1). This could have been observed by applying directly the same
technique as in the proof of Proposition 5.1 on (6.1).

7. Conclusion and future perspectives

We have presented a notion of solution for MFG master equations which allows
us to work with solutions which are merely continuous for first order equations and
only one time differentiable for second order equations (each time with respect to
the measure argument). This notion is built to enjoy nice uniqueness properties
but it also verifies strong stability properties. Even though we do not treat ex-
haustively the question of existence, the stability properties is of course helpful
to establish such results. Let us mention that the generalization of our results to
master equation which do not model exactly MFG but which have a monotone
structure (such as in [21] in the continuous setting) is of course immediate follow-
ing [2] modulo some technical assumptions on the non-linearities. The extension
to master equations on M+(T

d) := {m ∈ M(Td)|m ≥ 0} is also straightforward.

At this point, we believe worth mentioning several extensions or future direc-
tions to explore, that we believe to be meaningful. Perhaps the most important
one concerns the extension of monotone solutions of second order to merely con-
tinuous functions of the measure argument. In this setting, such an improvement
should probably pass by a better understanding of the derivatives of functions on
P(Td), in order to establish an analogous of Theorem 3.2 in [12]. Another in-
teresting extension is the adaptation of the previous results to MFG of optimal
stopping or other singular controls, as it has been done in [2] in the finite state
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space case. For such problems, a uniqueness result for monotone solutions of the
master equation (which is now posed on the set of non-negative measure and not
on the set of probability measures) follows quite immediately from the the present
study, using a similar formulation such as in [2]. However, existence questions
require key estimates which have not been proven at the moment.

Other extensions of this work include the study of problems on more general
domain than the Torus, thus involving boundary conditions, as well as numerical
methods to approximate monotone solutions.
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