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Stability of Open Multi-Agent Systems and Applications to
Dynamic Consensus

Mauro Franceschelli‡ and Paolo Frasca†

Abstract—In this technical note we consider a class of multi-agent
network systems that we refer to as Open Multi-Agent Systems (OMAS):
in these multi-agent systems, an indefinite number of agents may join
or leave the network at any time. Focusing on discrete-time evolutions
of scalar agents, we provide a novel theoretical framework to study the
dynamical properties of OMAS. Specifically, we propose a suitable notion
of stability and derive sufficient conditions for it. Our analysis regards the
arrival/departure of agents as a disturbance; consistently, our stability
conditions require the effect of arrivals/departures to be bounded (in
a precise sense) and the OMAS to be contractive in the absence of
arrivals/departures. In order to provide an example of application for this
theory, we re-formulate the well-known Proportional Dynamic Consensus
for Open Multi-Agent Systems and we study the stability properties of
the resulting Open Proportional Dynamic Consensus algorithm.

I. INTRODUCTION

A multi-agent system is a dynamical model for the behavior
of a possibly large group of agents, e.g., robots, devices, sensors,
oscillators etc., whose pattern of interactions due to sensing, commu-
nication or physical coupling is modeled by a graph that represents
the network structure of the system. Most literature on multi-agent
systems considers networks of fixed size, i.e., number of agents,
and then considers several kinds of scenarios such as time-varying
network topologies. In this paper we explicitly consider a more
radical scenario of open multi-agent systems where the set of agents
is time-varying, i.e., agents may join or leave the network at any
time. This situation is common to numerous applications, including
the Internet of Things, smart power grids [1], [2]; social networks [3],
vehicle platooning and robotic teams [4].

Despite their ubiquity, open multi-agent systems have received
surprisingly little attention in either control or in contiguous fields.
Notions of open systems can be found in the computer science
literature [5], [6], for instance when referring to software agents and
the problem of evaluating reputation in open environments, but not
as dynamical systems. Sometimes, dynamically evolving populations
have also been considered in game theory [7], [8]. Instead, despite
the abundance of works in multi-agent systems from the systems
and control community, openness is rarely explicitly included in a
rigorous analysis, but rather explored by simulations as in [9]. In
multi-robot systems, where adaptivity to addition/removal of robots
is crucial, some architectures accommodate for dynamics teams but
offer no performance guarantees [4]. Indeed, openness implies some
conceptual difficulties in adapting control-theoretic notions such as
state or stability. For this reason, some authors have recently proposed
to circumvent some of the mathematical hurdles by embedding the
time-varying agent set in a time-invariant superset [10]. In a different
perspective, others have aimed to describe the open multi-agent sys-
tem through significant statistical properties: insightful results have
been presented in [11], [12], where the authors study the problem
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of average-consensus by gossiping, and in [13], where the authors
study a max-consensus problem. Recently, some researchers have
been considering continuous approximations of large graphs [14],
[15], [16], which may accommodate for open agent sets.

In comparison with this literature, the contribution of this paper is
twofold, as it covers both theoretical results and concrete examples.
As a theoretical contribution, we introduce an abstract framework for
discrete-time open multi-agent systems with an unbounded number
of agents: this framework is based upon proper definitions of state
evolution, equilibria, and stability, and allows to establish useful
stability criteria for a class of “contractive” open multi-agent sys-
tems. Instrumental to this development is extending the notion of
(Euclidean) distance to apply to vectors that belong to different spaces
and therefore have different length: this goal is achieved by our
definition of open distance function.

In order to provide a concrete example that can be studied
by our analysis tools, we extend the distributed control protocol
of Proportional Dynamic Consensus to the open scenario, thereby
defining the Open Proportional Dynamic Consensus algorithm. In
the classical dynamic consensus problem, each of the nodes receives
an input signal and is tasked to track the average of all inputs over
the network. Our interest in dynamic consensus originates from its
fundamental role in distributed control in general and specifically
in the domain of smart grids. In the latter application, the object
of the distributed estimation can be the time-varying average power
consumption by the network. Thus, by considering the planned power
consumption of each device as an external reference signal for each
agent, a dynamic consensus algorithm can be used to estimate the
time-varying average value of this potentially large set of reference
signals. Since devices login and logout from the network without
notice, the set of reference signals is, in general, time-varying.

The dynamic consensus problem has received significant attention,
as demonstrated by the tutorial [17]. Since the early work in [18],
a fundamental idea to render consensus protocols “dynamic” has
been adding the derivative of each agents’ own reference signal to a
consensus filter that would thus track the time-varying average of the
references. Several algorithms that exploit this mechanism have been
proposed [9], [19], [20]: their main advantages are convergence speed
and accuracy (which can be perfect for constant reference signals),
while their main drawback is their lack of robustness with respect to
errors in their initialization and, consequently, with respect to changes
in the network composition. If the number of agents changes, these
algorithms accumulate estimation errors that can severely deteriorate
the estimation performance. Some algorithms, for instance those in
[21] and [22], [23], [24], [25], have instead shown superior robustness
properties that can be useful to allow for the addition or removal of
agents, even though their analysis has been so far limited to networks
of fixed size.

The recent conference publication [26] contains a preliminary
account of our work and variations of some of the results presented
here. In comparison to [26], the present note explicitly introduces the
notion of contractive OMAS (which was implicitly used in [26]) and
defines a normalized notion of distance, where the distance between
two states is divided by the square root of the number of agents. This
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apparently simple idea allows for a fair comparison between states
of different cardinality and for deriving stability results that do not
depend on the network size.

Structure of the paper: In Section II we introduce the framework
of open multi-agent systems (OMAS) from a theoretical perspective
and present an adaptation of two known distributed control protocols
to this new framework. In Section III we provide theoretical tools for
the stability analysis of discrete-time OMAS and apply the results to
dynamic consensus in Section IV. In Section V we corroborate our
results with numerical examples and, finally, in Section VI we discuss
some concluding remarks.

II. OPEN DYNAMICAL SYSTEMS

For all time k ∈ Z≥0, let Gk = (Vk, Ek) be a time-varying
directed graph with time-varying set of agents (also called nodes)
Vk ⊂ Z and time-varying set of edges Ek ⊆ (Vk × Vk). Set Vk
contains the labels corresponding to the agents that are active at time
k. The cardinality of set Vk, that is, the number of agents that belong
to the network at time k, is denoted as nk = |Vk|. To avoid trivialities,
we assume that nk > 0 for all k. Furthermore, we do not consider
a maximum number of agents known a priori, i.e., as time passes
the number of agents can grow unbounded. Two agents v and w are
said to be neighbors at time k if they share an edge at time k, i.e.,
(v, w) ∈ Ek. Let Nv

k be the set of neighbors of node v at time k, i.e.,
Nv
k = {w ∈ Vk : (v, w) ∈ Ek}. Let ∆v

k = |Nv
k | denote the number

of neighbors of agent v at time k (that is, its degree).
For each time k and each agent v ∈ Vk, we associate a scalar

state variable xvk ∈ R and an input variable uvk ∈ R. Note that these
variables are defined only at time instants such that v ∈ Vk. More
generally, in this paper we shall call open sequence any sequence
{yk : k ∈ Z≥0} where yk ∈ RVk . When appropriate we omit to
specify k ∈ Z≥0 and denote the open sequence simply by {yk}.

With these ingredients we can define laws that describe how the
open sequence {xk : k ∈ Z≥0} evolves. However, we will not be
able in general to write xk+1 as a function solely of xk: therefore,
the evolution of xk does not constitute a “closed” dynamical system.
Instead, we shall take as given the open sequences {Vk : k ∈ Z≥0}
and {Ek : k ∈ Z≥0}, as well as the open sequence of inputs
{uk : k ∈ Z≥0}. Provided the consistency conditions that Ek ⊆
(Vk × Vk) and uk ∈ RVk for all k, we shall define the evolution of
the open sequence {xk} by a law

xk+1 = f(xk, Vk, Vk+1, Ek, Ek+1, uk, uk+1). (1)

Such an update rule should distinguish three kinds of nodes v,
respectively belonging to the sets:

• Rk = Vk ∩ Vk+1, i.e., remaining nodes that belong to both Vk
and Vk+1;

• Dk = Vk \ Vk+1, i.e., departing nodes that belong to Vk but
not to Vk+1;

• Ak = Vk+1 \ Vk, i.e., arriving nodes that belong to Vk+1 but
not to Vk.

Since xk must take values in RVk for all k, the components corre-
sponding to Dk are simply left out from xk+1. Instead, components
in Ak need to be “initialized” according to some rule. Finally, for all
v ∈ Rk there shall be a causal evolution law in the form

xvk+1 = f̄v(xk, Vk, Ek, uk). (2)

We observe that if Vk = Vk+1, that is, the set of agents does not
change, then we can write in vector form

xk+1 = f̄(xk, Vk, Ek, uk).

For concreteness, we now describe an example of such a map,
which we call Open Proportional Dynamic Consensus (OPDC).

Dynamics 1 (Open Proportional Dynamic Consensus (OPCD))
Let ε > 0 and α ∈ (0, 0.5). At each time k ∈ Z≥0, each agent
v ∈ Vk measures a reference signal uvk and updates its state xvk as
follows:

xvk+1 =


xvk − α(xvk − uvk)− ε

∑
w∈Nv

k

(xvk − xwk ) if v ∈ Rk

uvk+1 if v ∈ Ak

(3a)

(3b)

We observe that if Vk+1 = Vk, i.e., the set of agents does not
change, the OPDC reduces to what is called Proportional Dynamic
Consensus. Namely, it reduces to the update (3a), which can be
written in vector form as

xk+1 = xk − α(xk − uk)− εLkxk
=
(
(1− α)I − εLk

)
xk + αuk

= Pkxk + αuk (4)

where matrix Pk = (1− α)I − εLk.

III. STABILITY OF OPEN MULTI-AGENT SYSTEMS

In our general study of the stability of OMAS, we introduce our
instruments in three steps: (i) we define suitable (sequences of) points
that play the role of equilibria and define a notion of stability that
is suitable for them; (ii) we extend the notion of distance to operate
on vectors of unequal length; (iii) we give sufficient conditions for
stability.

A. Points of interest and their stability

We now define the concept of trajectory of points of interest, which
will take the role of the concept of equilibrium in the considered
scenario of open multi-agent system.

Definition 3.1 (Trajectory of Points of Interest (TPI)) Consider
an open multi-agent system (1). Assume that for every k ≥ 0, the
equation

y = f̄(y, Vk, Ek, uk)

has a unique solution y and denote that solution as xek. Then, the open
sequence {xek : k ∈ Z≥0} is called trajectory of points of interest
of the open multi-agent system.

The existence of a TPI is guaranteed for some classes of OMAS.

Definition 3.2 (Contractive OMAS) Consider the open multi-agent
system in (1). The OMAS is said to be contractive if there exists
γ ∈ [0, 1) such that for all x, y ∈ RVk and for all k ≥ 0

||f̄(x, Vk, Ek, uk)− f̄(y, Vk, , Ek, uk)|| ≤ γ||x− y||. (5)

By Banach Fixed Point Theorem, every contractive OMAS has a
TPI. As an example, consider system (3). Under Assumption 4.1, the
OPDC is a contractive OMAS and

xek = (I − Pk)−1αuk =
(
I +

ε

α
Lk
)−1

uk. (6)

The next definition introduces a notion akin to a weak form of
Lyapunov stability for open multi-agent systems.

Definition 3.3 (Open Stability of a Trajectory of Points of Interest)
Let xk be the evolution of an open multi-agent system. A trajectory of
points of interest xek is said to be open stable if there exists a stability
radius R ≥ 0 with the following property: for every ε > R, there
exists δ > 0 such that if 1√

n0
||x0−xe0|| < δ, then 1√

nk
||xk−xek|| < ε

for every k ≥ 0.
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In this definition, distances are normalized by the number of agents.
This normalization, which is trivial when the set of agents is invariant,
is crucial here because it allows for a fair comparison of distances
evaluated in spaces of different dimension. Therefore, it allows for
making the stability radius independent of the number of agents.
Without the normalization, for instance, a system where the number
of agents increases with time (and thus the state norm increases as
well) does not have a bounded stability radius, despite the fact that the
distance between each new agent and its corresponding component
in the trajectory of points of interest is bounded.

B. Open distance

We now define a so-called “open” distance which is used to
evaluate the distance between two points with labeled components
that belong to Euclidean spaces of different dimensions.

Definition 3.4 (Open distance) Let V1 and V2 be two finite sets of
node indices. Let d : RV1 × RV2 → R≥0 be defined as

d(x, y) =

√ ∑
v∈V1∩V2

(xv − yv)2 +
∑

v∈V1\V2

(xv)2 +
∑

v∈V2\V1

(yv)2

for any x ∈ RV1 and y ∈ RV2 .

In the particular case in which the two points have components
with the same labels, i.e., the two OMAS have the same agents,
then the open distance reduces to the Euclidean distance. Variants
of Definition 3.4 can be given based on norms different from the
2-norm. The open distance in Definition 3.4 satisfies several natural
properties, which we summarize in the next statement.

Proposition 3.5 (Properties of open distance functions) Function
d(x, y) in Definition 3.4 is such that for any vectors x, y, and z of
possibly different dimensions:

1) d(x, y) ≥ 0;
2) d(x, y) = d(y, x);
3) If x = y, then d(x, y) = 0;
4) d(x, z) ≤ d(x, y) + d(y, z)

Proof: Properties 1), 2), and 3) being evident, we now prove
property 4), i.e., the triangle inequality. Consider sets Vx, Vy , Vz and
define the union set R = Vx

⋃
Vy
⋃
Vz and new vectors x̄, ȳ, z̄ ∈ RR

where their generic component is defined as x̄v = xv if i ∈ Vx and
x̄v = 0 otherwise. Since x̄, ȳ, z̄ belong to the same space RR, it
follows that the triangle inequality

d(x̄, ȳ) ≤ d(x̄, z̄) + d(z̄, ȳ)

holds true since the open distance reduces to the ordinary Euclidean
one. The result follows because one can readily verify that d(x̄, ȳ) =
d(x, y). �

Note that the converse of the third implication (identity of indis-
cernibles) does not hold. Indeed, consider x ∈ R{1,2} to be x = [1, 0]
and y ∈ R{1} to be [1]. Then, d(x, y) = 0 despite the two vectors
being different.

Having this open distance available, we can naturally use it on
open sequences to give the following definition.

Definition 3.6 (Open sequence of bounded variation) An open
sequence {yk} of points yk ∈ RVk is said to have bounded variation
if there exists a constant B ≥ 0 such that d(yk+1, yk) ≤

√
|Vk+1|B

for all k ∈ Z≥0.

Note that this definition in fact normalizes the open distance by
the number of components of the vectors, consistently with Defi-
nition 3.3. An important special case of sequence is the trajectory
of points of interest of an open multi-agent system: we will say

that a TPI {xek} has bounded variation if there exists B such that
d(xek+1, x

e
k) ≤

√
|Vk+1|B for all k ∈ Z≥0.

C. Stability: sufficient conditions

In order to provide a sufficient condition to ensure stability in
the above sense, we will need to combine assumptions on both the
associated TPI and on its arrival process, that is, on the process by
which agents join the OMAS during time. The latter assumption will
take the following form.

Definition 3.7 (Bounded arrival process) An arrival process is said
to be bounded if there exists H ≥ 0 such that each agent joins the
OMAS with a state value such that√∑

v∈Ak

(
xvk+1 − x

e,v
k+1

)2 ≤√|Vk+1|H ∀k ∈ Z≥0

where xe,vk denotes the v-th component of xek.

We are now ready to state our main stability result.

Theorem 3.8 (Stability of Open Multi-Agent Systems) Consider an
open multi-agent system as in (1) with state trajectory {xk}. Assume
that

1) the OMAS is contractive with parameter γ ∈ [0, 1);
2) its TPI {xek} has bounded variation with constant B;
3) the arrival process is bounded with constant H;
4) |Vk+1| ≥ β2|Vk| for all k with β > γ.

Then, the trajectory of points of interest is open stable (Definition
3.3) with stability radius

R =
B +H

1− γ
β

Proof: At each iteration k the agents first update their state,
then some new agents may join and some may leave. By considering
the open distance function, it holds

d(xk+1, x
e
k+1) =

√ ∑
v∈Vk+1∩Vk

(xvk+1 − x
e,v
k+1)2

+
∑

v∈Vk+1\Vk

(xvk+1 − x
e,v
k+1)2

≤
√ ∑
v∈Vk+1∩Vk

(xvk+1 − x
e,v
k+1)2

+

√ ∑
v∈Vk+1\Vk

(xvk+1 − x
e,v
k+1)2

≤
√ ∑
v∈Vk+1∩Vk

(xvk+1 − x
e,v
k )2

+

√ ∑
v∈Vk+1∩Vk

(xe,vk+1 − x
e,v
k )2

+

√ ∑
v∈Vk+1\Vk

(xvk+1 − x
e,v
k+1)2. (7)

Since the OMAS is contractive, we observe that√ ∑
v∈Vk+1∩Vk

(xvk+1 − x
e,v
k )2 ≤γ

√ ∑
v∈Vk+1∩Vk

(xvk − x
e,v
k )2

≤γd(xk, x
e
k). (8)

Now, note that the trajectory of points of interest is of bounded
variation, implying√ ∑

v∈Vk+1∩Vk

(xe,vk+1 − x
e,v
k )2 ≤ d(xek+1, x

e
k) ≤

√
|Vk+1|B, (9)
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and that the arrival process is bounded as per Definition 3.7, implying√ ∑
v∈Vk+1\Vk

(xvk+1 − x
e,v
k+1) ≤

√
|Vk+1|H. (10)

Thus, by upper bounding the righthand side of (7) by (8)-(9)-(10),
we can write

d(xk+1, x
e
k+1) ≤ γd(xk, x

e
k) +

√
|Vk+1|B +

√
|Vk+1|H. (11)

Let us now divide both sides of (11) by the square root of the
cardinality of |Vk+1|

d(xk+1, x
e
k+1)√

|Vk+1|
≤ γ d(xk, x

e
k)√

|Vk+1|
+B +H.

By assumption, |Vk+1| ≥ β2|Vk| where β > γ, thus we can write

d(xk+1, x
e
k+1)√

|Vk+1|
≤ γ

β

d(xk, x
e
k)√

|Vk|
+B +H.

By this inequality, the TPI is open stable with stability radius R. �

IV. APPLICATION: OPEN PROPORTIONAL DYNAMIC CONSENSUS

We now apply the result of Theorem 3.8 to study the convergence
properties of the Open Proportional Dynamic Consensus protocol.
Convergence will require that the arrival/departure process guarantees
some good behavior of the sequence of graphs.

Assumption 4.1 (Graphs for OPDC) Consider the open dynam-
ics (3) and assume that for every k ∈ Z≥0:

1) graph Gk is undirected, that is, (u, v) ∈ Ek if and only if
(v, u) ∈ Ek;

2) maxv∈Vk ∆v
k ≤ 1

2ε
for all v ∈ Vk;

3) β2 ≤ |Vk+1|
|Vk|

for some positive scalar β.

This assumption simply requires that the graph be undirected, the
degrees of the agents be not too large, and the number of agents in the
OMAS do not decrease too rapidly. This assumption does not require
any global property of the network such as connectivity. Even though
Theorem 3.8 does not assume kind any graph structure, undirected
graphs are a convenient assumption for the OPDC example. Indeed,
the OPDC dynamics turns out to be a contraction on undirected
graphs.

Theorem 4.2 (Stability of Open Proportional Dynamic Consen-
sus) Consider the Open Proportional Dynamic Consensus algorithm
(OPDC) under Assumption 4.1 and assume that β > 1− α.

Let λk be the algebraic connectivity of the Laplacian matrix Lk
corresponding to graph Gk, and let λ ≥ 0 be such that 1 λ ≤ λk.

Let ūk = 1T uk
n

1, ûk = uk − ūk. If the sequence of reference
signals {uk} satisfies

‖ûk‖∞ ≤ Π, Π ≥ 0 (12)

and
d(ūk+1, ūk) ≤

√
|Vk+1|U, U ≥ 0, (13)

then the OPDC is open stable with stability radius

R =

(
1 + 2

1+ ε
α
λ

+ 1
β

1
1+ ε

α
λ

)
Π + U

1− 1−α
β

Proof: The proof is divided into four steps which lead to the
application of Theorem 3.8.

1Constant λ is a uniform lower bound on the algebraic connectivities at all
times. Such a constant always exists (since we allow it to be zero): when it
is positive, it implies that all graphs are connected and that connectivity is
uniformly good.

Step 1: As we have already observed right before (6), system (3)
under Assumption 4.1 is a contractive OMAS with γ = 1− α.

Step 2: We claim that if the sequence of reference signals uk
satisfies (12) and (13), then the TPI is of bounded variation with
constant

B =
1

1 + ε
α
λ

(
1 +

1

β

)
Π + U.

We start the proof of this claim by exploiting the triangle inequality
property of the open distance function

d(xek+1, x
e
k) ≤ d(xek+1, ūk+1) + d(xek, ūk) + d(ūk+1, ūk). (14)

The points of interest are

xek = (I − Pk)−1αuk = (αI + εLk)−1α(ūk + ûk).

Since (αI + εLk)−1ūk = ūk for any Lk we can write

xek − ūk = α(αI + εLk)−1ûk.

Now, since the eigenvector corresponding to the largest eigenvalue
of (αI + εLk)−1 is 1 and 1T ûk = 0, it holds

‖xek − ūk‖2 = ‖α(αI + εLk)−1ûk‖2 ≤
1

1 + ελk
α

‖ûk‖2, (15)

where
(
1 + ελk

α

)−1 is the second largest eigenvalue of
α (αI + εLk)−1. Then, the distance between the point of interest
and the reference signal at time k satisfies

d(xek, ūk) = ‖xek − ūk‖2 ≤
α

α+ ελk
‖ûk‖2

≤ 1

1 + ε
α
λk

√
|Vk|‖ûk‖∞.

By noting that |Vk+1|
β2 ≥ |Vk|, ‖ûk‖∞ ≤ Π and d(ūk+1, ūk) ≤√

|Vk+1|U for some U ≥ 0, it follows from (14) that

d(xek+1, x
e
k) ≤

√
|Vk+1|

(
1

1 + ε
α
λ

(
1 +

1

β

)
Π + U

)
=
√
|Vk+1|B.

Step 3: The arrival process of the OPCD is bounded according to
Definition 3.7 with

H =

(
1 +

1

1 + ελ
α

)
Π.

In the OPDC algorithm new agents join with a state value equal
to their reference signal. Since from (15) at time k + 1,

‖xek+1 − ūk+1‖2 ≤
α

α+ ελk
‖ûk+1‖2,

and |uvk+1 − ūk+1| ≤ Π by assumption, by recalling that Ak+1 =
Vk+1\Vk, it holds√ ∑

v∈Ak+1

(
xvk+1 − x

e,v
k+1

)2 ≤√|Vk+1\Vk|(1 +
α

α+ ελk+1
)Π

≤
√
|Vk+1|(1 +

1

1 + ελ
α

)Π

Thus, the arrival process of the OPCD algorithm is bounded according
to Definition 3.3 with H =

(
1 + 1

1+
ελ
α

)
Π.

Step 4: By Theorem 3.8, the TPI of the OPCD algorithm is open
stable with stability radius R = B+H

1− γ
β
. �

When λ = 0, that is, the arrival process does not guarantee a
uniform connectivity, then the stability radius in Theorem 4.2 takes
the simpler form

R0 =
(3β + 1)Π + βU

α+ β − 1
.
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This bound also holds true in the extreme case where the network
is always completely disconnected. Clearly, for positive λ we have
that R < R0. This simple remark is consistent with the intuition that
better connectivity is beneficial to OPDC, just like it is beneficial in
the non-open case.

Both expressions of R and R0 make evident that if the inputs
have large variations, that is if U is large, then the stability radius
can become arbitrarily large. This behavior is not an artifact of
our analysis but is a drawback that is inherited from the original
Proportional Dynamic Consensus algorithm [17].

Finally, we find useful to further discuss some consequences of the
demands of Assumption 4.1:

1) Undirected networks. Our general Open Multi-Agent framework
is defined for the more general case of directed graphs. However,
the application to Dynamic Consensus is done for undirected
graphs, because this assumption guarantees the OPDC to be a
contractive OMAS.

2) Bounded degrees. Limiting the degrees of the agents may
be detrimental to the connectivity and therefore increase the
stability radius.

3) Bounded rate of departure. Due to this assumption, if the rate
of departure is large, then β cannot be chosen too large, which
makes the radius larger.

All these conditions are stated for all times: this uniformity makes
the result of Theorem 4.2 rather conservative, as will be apparent in
the simulations that we propose in the next section.

V. NUMERICAL EXAMPLES

In this section we show a numerical example of the OPCD
algorithm. Our simulations are performed as follows. We considered
as tuning parameters ε = 0.01, α = 0.1. The simulated scenario
consists of a network of 200 agents at the initial time, with initial
values chosen uniformly at random in the interval [−5000, 5000].
The initial graph is generated as an Erdős-Rényi graph with edge
probability p = 0.05. At each iteration, with probability 0.1 one
random agent leaves and with probability 0.7 one new agent arrives:
the arriving agent creates random edges with probability 0.05 with
all other agents. Input reference signals are constant and randomly
sampled in the interval [0, 1] when agents join the network.

After describing our simulation setup, we present one typical
realization. To begin with, in Figure 1 we show the evolution of
the number of agents. By our choice of the arrival and departure
probabilities, the set of network agents is constantly renewed and the
plot shows its clear trend to increase size (since the arrival probability
is larger than the departure probability). Figure 1 also shows the
normalized open distance between the current point of interest and
the average of the input reference signals given to the agents. The
value of the latter quantity depends on the OPCD parameters, in
particular it could be reduced by decreasing the parameter α.

We then proceed to showcase the stability properties of the OPDC.
To this purpose, Figure 2 shows the evolution of the normalized
open distance |Vk|−1/2d(xk, x

e
k), that is, the distance of the state xk

of the network from the current point of interest xek. This distance
remains bounded after decreasing during a transient phase that leads
to a state of approximate consensus. This behavior is consistent
with the stability analysis given in Theorem 4.2. The transient lasts
approximately 75 time steps and the network size grows during this
time by about 25% of the initial size.

Even though our analysis makes deterministic assumptions and
therefore does not allow a priori conclusions on this randomized evo-
lution, we can a posteriori verify that the simulated arrival/departure
process has satisfied the assumptions of Theorem 4.2 with minimum
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,ū
1
)

√

n

Fig. 1. Evolution of the number of agents |Vk| and of the normal-
ized open distance between average reference input and point of interest
|Vk|−1/2d(xek, ū1).

50 100 150 200 250
Time

10-4

10-2

100

102

104

d
(x

k
,x

e k
)

√
|V

k
|

R

50 100 150 200 250
Time

100

101

102

103

104

105

d
(x

k
,ū
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Fig. 2. Evolution of the normalized open distances between network state and
point of interest |Vk|−1/2d(xk, x

e
k) and between network state and average

reference input |Vk|−1/2d(xk, ū1)).

algebraic connectivity λ = 0.9037, |Vk+1| ≥ β2|Vk| with β =
0.9975, largest degree equal to 20, Π = 0.5139, and U = 0.0001785.
Therefore, the result implies a stability radius equal to R = 17.375,
which appears to be a conservative estimate according to Figure 2.

Figure 2 also shows the evolution of the normalized open distance
|Vk|−1/2d(xk, ū1), which represents the distance between the net-
work state and the average of the input reference signals. Estimating
the latter quantity is the objective of the OPCD protocol. This
estimation error can be seen to converge to a bounded value despite
the open nature of the multi-agent system.

For a useful comparison, in Figure 3 we show a simulation of
the PDC algorithm with a fixed set of agents (n = 200) and constant
reference signals. It can be seen that the network state converges to its
equilibrium point (up to machine precision), in contrast with the finite
error in Figure 2. At the same time, the network state converges to
a steady-state which has a bounded error with respect to the average
reference signals: in comparison with Figure 2, the Open PDC reaches
a similar steady-state error (albeit at slower pace) as its classical PDC
counterpart.
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Fig. 3. Evolution of the normalized open distance between network state and
average reference input |Vk|−1/2d(xk, ū1) and between network state and
point of interest |Vk|−1/2d(xk, x

e
k), in the case of time-invariant number of

agents n = 200.

VI. CONCLUSION

In this paper we proposed a theoretical framework for stability
analysis of discrete-time open multi-agent systems. Standard system-
theoretic tools do not apply directly to OMAS, because of the evolu-
tion of their state space. For this reason, we had to propose several
new definitions, including suitable definitions of state evolution and
of stability. The proposed definition of stability has two features:
(1) it normalizes the distance from the origin by the number of
agents; and (2) it disregards what happens within a certain distance
from the origin (we refer to this distance as to the stability radius).
In order to study the evolution and the stability of OMAS, it is
necessary to compare states that belong to different spaces. To this
purpose, we defined the open distance function and used it to establish
criteria for stability in the proposed open scenario. In particular, we
showed that multi-agent systems whose dynamics (up to arrivals and
departures of agents) can be defined by contraction maps are stable
according to our definition and their stability radius depends upon the
properties of the arrival and departure mechanisms in the network.
Furthermore, we applied our results to an adaptation to OMAS of
the proportional dynamic consensus protocol. Future work should
pursue two complementary direction: building up a more general and
comprehensive theory, thereby also including the possibility to have
endogenous sequences of graphs, and investigating other classes of
open-multi agent systems in order to propose novel open distributed
coordination algorithms.
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