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The heterogeneity of field scale soils poses a challenge to predictive large scale flow and transport modeling. The
theory of effective macroscale parameters holds good and is applicable in dealing with such problems. But the va- 
lidity of the analytic stochastic solutions obtained for randomly heterogeneous soils is debatable, as the test cases
under which they are validated are of limited scope due to linearization and perturbation approximations. In this
study, samples of heterogeneous soils are generated using sets of spatially correlated random field parameters
that are either geometrically isotropic, or else, geometrically anisotropic with either horizontal or vertical stratifi- 
cation (perfect or imperfect). Several combinations of ratios of correlation length and capillary dispersion lengths
are considered. Numerical simulations of unsaturated flow are performed on each randomly heterogeneous soil
sample. The principal components K̂ ii (Ψ) of the macroscale effective unsaturated conductivity are then obtained
as a function of the mean suction Ψ of the sample. They are compared to stochastic spectral perturbation theory,
and to a probabilistic semi-empirical Power Average Model (PAM). They are also compared with arithmetic, geo- 
metric and harmonic mean conductivity-suction curves. The numerically upscaled principal conductivity curves
match quite well the PAM, better than the classical means (Arithmetic, Geometric, Harmonic), and also some- 
what better than the curves obtained from stochastic spectral perturbation theory. It is observed that the upscaled
principal components K ii (  ), obtained numerically and with the PAM along directions “i ” orthogonal/parallel to
perfect stratification coincide with the harmonic/arithmetic mean curves at low suctions (i.e., near saturation),
but deviate from it and come closer to the geometric mean at higher suctions. The PAM appears suitable for
generation of approximate upscaled conductivity curves, e.g., for obtaining the mesh-scale or block-scale con- 
ductivity curves in large scale simulation codes. Transient solute transport simulations are then performed on the
detailed random velocity fields obtained from the steady state simulations of unsaturated flow in the randomly
heterogeneous soil samples. Snapshots of solute concentration C(x,z,t) are taken at different times. The temporal
evolution of spatial moments of concentration is analyzed in order to characterize the macroscale advection and
dispersion of the unsaturated concentration plume, and in particular, its macro-dispersion coefficient (D) and dis- 
persivity length scale (A). For the synthetic soil samples considered in this study, the macro-dispersive spreading
of the solute is stronger for flow parallel to vertical stratification, compared to flow perpendicular to horizontal
stratification, and also, compared to flow in statistically isotropic non-stratified soil.

1. Introduction

Field soils are inherently heterogeneous, exhibiting significant spa- 
tial variation of hydraulic properties even within a given type of soil
( Warrick and Nielsen, 1980 ). In recent years, soil scientists are being in- 
creasingly aware of the fact that small-scale heterogeneity affects the
larger-scale flow and transport phenomena. The importance of con- 
sidering spatial variability and assessing flow in the unsaturated zone
has been examined in several theoretical works (eg. Yeh et al., 1985a,
1985b, 1985c ; Mantoglou and Gelhar, 1987a, 1987b, 1987c ). To deal
with these issues, one way is to include the detailed heterogeneity of

the system in numerical simulations of the flow. But obtaining the de- 
tailed hydraulic properties of the geologic formation at many points in
the field is expensive and sometimes impossible. Despite recent progress
in massively parallel Richards flow solvers (e.g. Orgogozo et al., 2014 ),
the computational task may be impossible in practice for large scale /
basin scale simulations, requiring possibly billions of numerical cells.
Thus, even with future progress in computational capabilities, the di- 
rect simulation of subsurface soil processes at basin scales of hundreds
of squared kilometers horizontally and tens of meters vertically seems
out of reach.



Nomenclature

A macro-dispersivity coefficient [m]
� pore size distribution parameter [1/m],

known as Gardner’s parameter
C solute concentration [kg/m3]
D dispersion coefficient [m 2 /s]
h pressure head [m]
K hydraulic conductivity [m/s]
�i correlation length of the random

medium in the “ith ” direction [m]
�CAP capillary dispersion length scale [m]
∇ gradient operator (vectorial)
p i power averaging coefficient for the ith

direction (dimensionless exponent)
q or q i Darcy areal flux density (also known as

“Darcy velocity ”) [m/s]
� cross-correlation between the random

log-parameters (a(x), f(x))
S S specific storage coefficient

[(m 3 /m 3 )/m] or [1/m]
  suction head (-h), positive in the unsat- 

urated zone [m]
Ψ dimensionless suction head
� standard deviation
� volumetric water content, or “moisture ”

[m 3 /m 3 ]
� porosity [m 3 /m 3 ]
Θ effective saturation (dimensionless

scaled version of �)
�v Van-Genuchten / Mualem capillary

shape factor [1/m]
n V and m V = (1 − 1/n V ) Van-Genuchten / Mualem parameters

(dimensionless exponents)
V i tracer velocity in direction “i ” [m/s]
U Z mean effective vertical tracer velocity of

the solute plume [m/s]
Z vertical height from the bottom of the

soil sample [m]
Δx , Δz mesh size in the x and z direction, re- 

spectively [m]

An alternative approach is to define an equivalent homogeneous
medium with the upscaled (effective) flow and transport properties that
represent the heterogeneous medium (e.g., Yeh, 1989 ). In particular, the
stochastic approach requires only a statistical description concerning the
degree of heterogeneity and the spatial structure of the soil. Only a few
statistical parameters are needed for each soil property: mean, variance,
and spatial structure represented by three auto-correlation length scales
(one in each direction). It is expected that upscaled hydrodynamic prop- 
erties can be characterized as functions of these statistical descriptors.

Several authors have analyzed the spatial distribution and het- 
erogeneity of the nonlinear unsaturated conductivity-suction curve
K(  , x ) for soils and shallow sedimentary formations, for exam- 
ple Hills et al. (1991) , Russo (1983) , Warrick and Nielsen (1980) ;
Wierenga et al. (1991) , and many others. It is found generally that the
conductivity-suction curves, or their logarithm, are spatially variable
both in slope and intercept (LnKs). Another thing is that, the slope of
the conductivity-suction curve tends to be positively cross-correlated
with the saturated conductivity Ks or Ln-Ks (the intercept).

Thus, Polmann (1990) determined the cross-correlation coefficient
� between intercept (LnKs) and slope ( �) of log-conductivity vs. suction
curves for two heterogeneous soils, the Zohar soil of Russo (1983) , and
the Maddock soil of Carvallo et al. (1976) . In both the cases, the cross- 

correlation �was found to be significantly positive ( � = + 0.26 for Zohar,
� = + 0.83 for Maddock)., See also Mantoglou and Gelhar, 1987 ), and
Polmann et al., 1988 . To sum up, the cross-correlation � ∈ [0, 1]. Two
special cases can be usefully tested in unsaturated flow-transport sim- 
ulations: the “neutral ” case � ≈ 0 and the perfectly correlated case � ≈

+ 1. In this study, we will assume � ≈ 0 in the numerical experiments.
Yeh et al., 1985a, 1985b, 1985c ) solved the steady state stochastic

flow equation for infiltration in porous media with random field soil
parameters. The stochastic flow solution was obtained for small per- 
turbations, using linearization approximations and Fourier spectral de- 
composition. Then, upscaling was obtained by averaging the resulting
random field solution, hydraulic gradient vector J(x) and the Darcy “ve- 
locity ” (flux density) vector q(x), leading to a macroscale Darcy equation
relating mean flux to mean gradient (from which effective unsaturated
conductivity is deduced). Several additional assumptions were used: in- 
finite domain, small variability, statistical homogeneity and ergodicity.
Due to linearization, the solution is valid only for a limited range of
suction and moisture content.

Several numerical investigations ( Ababou et al., 1988 ; Ababou & Gel- 
har (1988) ; McCord et al. (1991) ; Polmann et al., 1991 ) confirmed the
stochastic solutions qualitatively for unsaturated flow. Though several
of the numerical studies in the literature involve ensemble averaging,
single realization flow simulations can also be conducted. Thus, Ababou
et al., 1989 have shown that the statistical results from single realiza- 
tions of groundwater flow are meaningful if the following criteria are
satisfied: (i) mesh size smaller than spatial correlation scale ( “statistical
resolution ”), and (ii) domain size larger than spatial correlation scales
( “statistical sampling ”). Similar criteria were applied for simulating un- 
saturated moisture plume migration in a 3D domain ( Ababou et al. 1988 ;
Ababou et al., 1992 ). In that way, a single realization can be used, in- 
stead of ensemble averaging over many replicates.

A number of field works and numerical studies have been developed
concerning the applicability of the ADE (Advection-Dispersion Equa- 
tion) to unsaturated solute transport at the field scale and concerning
the effects of soil heterogeneity, and the scale effects on the dispersion
process. In particular, the longitudinal dispersivity length scale (named
“Azz ” if the mean flow is vertical) appears to be scale-dependent, i.e.,
its effective value depends on the space-time scale of interest.

In some studies, the soil parameters were assumed to be purely ran- 
dom variables, constant in space (they can be viewed as uncertain pa- 
rameters). For example, Harter and Yeh (1996) performed Monte Carlo
simulations to analyze the spatial structure and evolution of a solute in
the unsaturated zone, assuming random but spatially constant moisture
content.

But more generally, unsaturated flow-transport phenomena have
been studied by considering soil heterogeneity to be spatially random,
i.e., with some soil parameters being random functions of space, with a
given auto-correlation structure (as will be assumed in this work). Thus,
Russo (1991) analyzed the movement of a conservative tracer in a hy- 
pothetical heterogeneous unsaturated domain for a single realization
of random field of Ks (saturated conductivity). An analytical expression
was obtained for the longitudinal macro-dispersivity, as a function of the
standard deviation of the random Ks. This study, among several others,
showed that longitudinal macro-dispersivity is significantly larger than
transverse macro-dispersivity.

In Russo et al. (2001) , the random soil properties were assumed bi- 
modal: a spatially distributed background soil contained randomly dis- 
persed clay lenses (with same mean and variance but different two-point
covariances). In Khaleel et al. (2002) , effective properties of steady flow
and transient solute transport (non-reactive) were obtained by Monte
Carlo simulations, for the coarse-textured sand of the Hanford site with
van-Genuchten constitutive relations . Interestingly, flow upscaling was
performed for a large range of tensions, up to Ψ ≈ 25 m in their work.

Finally, we note that effects other than heterogeneity can play a role,
such as deformation (which is not considered in this work). Recently,
Wu et al. (2020) introduced a time-variable porosity in Richards’ equa- 



tion to model the deformation (consolidation) in a homogeneous soil. 
Their unsaturated solute transport results are compared to the incom- 
pressible case, indicating similar results except, however, near soil sur- 
face.

Upscaling the unsaturated conductivity to obtain an “effective ” or 
a “macroscale ” conductivity-suction curve has been attempted via vari- 
ous approaches (stochastic or not), sometimes with semi-analytical ap- 
proaches. For example, Warrick (2005) upscaled the pressure-dependent 
hydraulic conductivity K(h,z) for steady vertical infiltration, in a soil 
column with a periodic pattern of N alternating layers of sand & sandy 
loam (an ODE solver was used). Two limiting values of K EFF (h) were ob- 
tained for small and large cell thickness. The results were, respectively: 
harmonic average K H (h), and arithmetic average K A (h). Interestingly, 
these curves are special forms of power averages (to be discussed later 
in this work).

Effective flow theories are potentially very useful in soil hydrology, 
as they allow to focus on soil structure (e.g., stratification) rather than 
fine details. However the test cases under which they are validated are 
limited. There are few studies concerning the validity of stochastic solu- 
tions for infiltration in relatively coarse sandy soils, where gravity takes 
over capillary dispersion at large times or quasi-steady conditions. Nu- 
merical upscaling studies have been developed to justify the theoretical 
results of Yeh et al., 1985a, 1985b, 1985c and others, based on Gelhar’s 
stochastic spectral perturbation approach, but there have not been many 
comparisons with other upscaling theories or models, such as the Power 
Averaging Model (PAM) ( Ababou, 1993) . In this work, we focus on both 
the semi-analytical power average expression of Ababou (1993) and on 
Yeh et al., 1985a, 1985b, 1985c’ s stochastic spectral perturbation solu- 
tion for effective unsaturated conductivity.

Capillary dispersion plays a major role in moisture migration phe- 
nomena. The recent paper by Soraganvi et al., 2017 demonstrates the 
effect of a dimensionless capillary parameter introduced by them (the 
product ��Z ) on the behavior of unsaturated flow in randomly hetero- 
geneous soils with exponential conductivity curve ( � is Gardner’s pa- 
rameter). In their work, � or its mean <�>,  was interpreted as an in- 
verse mean capillary dispersion length scale: � = 1/ �CAP.  The dimension- 
less ratio �Z / �CAP was introduced, where �Z is the vertical correlation 
length of the soil (stratified or not). They used the flow code “UFT2D ” 
( Soraganvi and Mohan Kumar, 2009)  to study unsaturated flow upscal- 
ing at steady-state for randomly heterogeneous soils, for several val- 
ues of ratios. The upscaled soil behaved as an equivalent homogeneous 
medium with suction-dependent anisotropy, depending on parameters 
KS  and �. A recent review of this and other works on nonlinear unsat- 
urated properties in homogeneous as well as layered or heterogeneous 
soils, can be found in Ababou (2018,  Vol.1, Section 5.3.4 & 5.4.8).

In the present paper too, we develop a set of unsaturated flow sim- 
ulations, which are analyzed based on these capillary concepts. The di- 
mensionless product ��Z is denoted here �, and it is named “capillary 
ratio ”. Since the mean Gardner parameter <�> is the inverse capillary 
length scale, � = 1/ �CAP,  the capillary ratio � is also defined here as: 
� = �Z / �CAP.  We will let “�” vary from � ≤ 1 to � > 1, in order to ana- 
lyze its effect on suction and moisture distribution, and on the upscaled, 
effective conductivity curve.

In this work, we will introduce a novel study of unsaturated flow 
and dispersive solute transport in perfectly and imperfectly stratified 
random soils, for various values of the capillary ratio �. Since the mean 
unsaturated flow is predominantly vertical (Z) in soil hydrology, we will 
neglect horizontal flow (Y), to focus essentially on the 2D case (X, Z). 
Thus, flow and transport in imperfectly stratified soils will be studied 
here in 2D vertical cross-sections. The 1D case (Z) is also relevant, as 
it results from the special case of “perfectly stratified ” heterogeneity: 
thus, vertical 1D flow & transport phenomena, orthogonal and parallel 
to layering, will also be studied. Solute transport simulations will be an- 
alyzed through spatial moments, leading to new results on unsaturated 
macro-dispersion.

The paper is organized as follows.

In the first part, we try to address some of the issues mentioned
above, by implementing numerical experiments considering different
combinations, or different capillary ratios (correlation length / capil- 
lary dispersion length). Samples of heterogeneous soils are generated
using sets of spatially correlated random field parameters that are ei- 
ther geometrically isotropic or else, geometrically anisotropic, the latter
with either perfect or imperfect stratification. Unsaturated flow simula- 
tions are performed on the 2D or 1D soil samples, and the numerically
upscaled, equivalent unsaturated conductivity of the samples, are ana- 
lyzed in terms of capillary ratio and statistical anisotropy. The effective
conductivity curve seems well captured by the semi-empirical Power
Average Model, and also to some extent, by the theoretical spectral per- 
turbation solutions.

Transient solute transport simulations are then performed using the
detailed, steady-state, unsaturated random velocity fields obtained nu- 
merically from the previous randomly heterogeneous soil samples. Snap- 
shots of solute concentration C(x,z,t) are taken at different times. The
temporal evolution of spatial moments of concentration is analyzed, to
characterize the mean advection and dispersion of the unsaturated con- 
centration plume, and in particular, its macro-dispersion coefficient and
macro-dispersivity length scale.

2. Theory

2.1. Effective flow equations

Infiltration through a heterogeneous unsaturated medium is gov- 
erned locally by Darcy’s law with pressure dependent, spatially variable
hydraulic conductivity K(h,x):

q( x ) = − K( ℎ, x )∇ ( ℎ ( x ) + z ) (1) 

where q is Darcy velocity or flux density vector [m/s], K is unsaturated
hydraulic conductivity [m/s], h is pressure head [m], z is the vertical
elevation (height) directed upwards, and the symbol ∇ ( “nabla ”) applied
to a scalar field, represents the gradient operator.

The steady-state mass conservation equation for the heterogeneous
soil is then, locally:

−∇ q( x ) = ∇ { K ( ℎ, x ) ∇ ( ℎ ( x ) + z ) } = 0 (2) 

where the symbol ∇ ( “nabla ”), applied to a vector field, represents the
“divergence ” operator. Note that the pressure head formulation ( “h ”)
can be replaced by a suction head formulation ( “ ”) by letting   = -h
everywhere.

The heterogeneous unsaturated conductivity curve K(h,x) is repre- 
sented by a few spatially variable parameters p 1 (x), p 2 (x), etc., that is:
K = K( ℎ ; p 1 ( x ) , p 2 ( x ) , …) . If each parameter p i (x) is considered to be a
random function of space, Eqs. (1) and (2) form a system of stochastic
PDE’s with random field coefficients, which are nonlinear because “K ”
is not only variable in space but also pressure dependent at each point
in space.

The random curves K ( h, x ) can be “averaged ” (homogenized) as
a single “effective ” conductivity curve K eff (h) representing the com- 
bined effects of the random curves K ( h, x ) distributed throughout
the soil domain. The pressure “h ” in K eff (h) stands for mean pres- 
sure ⟨h ⟩. If the soil structure is geometrically anisotropic, K eff (h)
turns out to be a tensor function of pressure, as indicated in sev- 
eral above-discussed works ( Gelhar (1993) ., Yeh et al., 1985a, 1985b,
1985c )., Mantoglou (1992) ; Mantoglou and Gelhar, 1987 a, Mantoglou
and Gelhar, 1987 b), Polmann et al., 1991 ). In addition, Bear and Bach- 
mat (1986) discuss the anisotropic and the tensorial character of unsat- 
urated permeability based on averaging flow over a bundle of capillary
tubes, where tubes represent “pores ”. They find that the absolute con- 
ductivity K eff (h) (rather than the “relative conductivity ” K eff (h)/Ks)
should be considered as the effective tensorial quantity. The tensorial
effective K eff (h) will also be denoted K ̲̲ 

e (h) below.



Accordingly, the “effective ” or “macroscale ” Darcy equation is writ- 
ten as follows, in terms of mean flux ⟨q⟩ and the mean pressure 

⟨h⟩ :

⟨q ⟩ = − K e ( ⟨ℎ ⟩) ∇ ( ⟨ℎ ⟩ + z ) (3) 

where K ̲̲ e ( ⟨h ⟩) is the second rank tensorial, anisotropic, pressure- 
dependent effective unsaturated hydraulic conductivity (sometimes
named “permeability ” for short). For steady flow, ensuring mass con- 
servation at the macroscale (or in the mean sense) yields the following
mean conservation equation:

−∇ ⟨q⟩ = ∇
{
K e ( ⟨ℎ ⟩) ∇ ( ⟨ℎ ⟩ + z )

}
= 0 (4) 

Note: the brackets ⟨…⟩ designate mean quantities (ensemble averages
or spatial averages depending on context); however, we will later drop
these brackets to alleviate notations.

The previous equations can all be expressed in terms of suction   = -
h, rather than pressure h. Large suctions correspond to very dry me- 
dia. Various interpretations of suction, and the physical meaning of
very large suctions (   ≈ 10 m or much more), are discussed in Ababou
(2018 ).

Eqs. (3) and (4) , together, constitute the system of PDE’s to be solved
for unsaturated flow at the macroscale. The spatially variable coeffi- 
cients have “disappeared ” in this upscaled version, but the effective
“permeability ” tensor function K ̲̲ e ( ⟨h ⟩) now needs to be characterized
quantitatively in terms of the geometry and variability of local soil pa- 
rameters. That is the purpose of upscaling theories.

2.1.1. Spectral perturbation approach
In this method the effective unsaturated conductivity is obtained

in two steps. First, perturbation and linearization approximations are
implemented for Eqs. (3) and (4) , and these are solved approximately
for the zero-mean fluctuations of the stochastic suction field in Fourier
space (using the Wiener-Khinchine spectral representation of random
fields). Secondly, averages are calculated to relate the mean flux to the
mean suction gradient, from which an approximate effective conduc- 
tivity is finally obtained (using inverse Fourier transforms for the final
results). The analytical expressions derived by Yeh et al., 1985 , Yeh et
al., 1985 ) concern steady flow in spatially correlated random media,
assuming “perfectly stratified layering ”, i.e., with correlation lengths
�X → ∞ and �Y → ∞ in horizontal directions (X and Y). The final re- 
sults do not depend on �X and �Y , but they depend on the finite verti- 
cal correlation scale �Z < ∞, which can be viewed as a statistical layer
thickness (although the random field description of vertical heterogene- 
ity is not based on discrete layers). Gardner’s (1958) relation is used
for the nonlinear local unsaturated conductivity, assuming that the two
random field parameters LnK S and � are statistically independent (not
cross-correlated). Under these assumptions, the effective conductivity
along the principal directions, vertical (V) and horizontal (H), are given
by ( Khaleel et al. (2002) )

K V = exp

[
F − 

�2
f 

2(1 + B �z )
− 

(
B − 

(2 �z + |H |)
2(1 + B �z ) 

�2 
�

)
|H |

]
(5) 

K H = exp

[
F + 

�2
f 

2(1 + B �z )
− 

(
B − 

(2 �z − |H |)
2(1 + B �z ) 

�2 
�

)
|H |

]
(6) 

where F is the mean and �2
f 
the variance of Ln K S ( ⃗x ) ; B is the mean and

�2 
�
is the variance of β( ⃗x ) , and |H| is the mean “tension ” or mean suction

(also expressed as ⟨ ⟩ elsewhere).
A major drawback of this spectral perturbation method is that the

results, like Eqs. (5) and (6) , are valid only for small standard deviations
of the log-parameters ( �f ≤ 1, �� ≪ 1), and then, only for a limited range
of mean suctions (|H| or ⟨ ⟩ ), up to suctions not much greater than 1/B
or so, where B is the mean value of the � parameter. A piecewise linear
approach was suggested by Soraganvi et al., 2017 for upscaling high
tension ranges up to 25 m (for a coarse sand) using the van Genuchten
conductivity model, with (K S, �v, n v ) as random parameters.

2.1.2. Power averaging theory
The Power Averaging theory, called “PAM ” for Power Averaging

Model (or sometimes called “RA model ”) was developed around 1991
by R. Ababou and collaborators, based on a probabilistic theory of ran- 
dom conductivity curves. The theory was described in detail in Ababou,
1991b ) and Ababou et al., 1993 also contains early numerical verifica- 
tion tests, and Bagtzoglou et al. (1994) contains a review of analytical
and probabilistic approaches, as well as numerical tests on unsaturated
fractured materials.

The probabilistic theory leading to the Power Average Model was
framed in ensemble space rather than Euclidian space. It was assumed
that the local conductivity-suction curves of the random medium are of
exponential form (Gardner’s model):

K (  ; x ) = K S ( x ) exp { − �( x )   } ⇔ LnK (  , x ) = Ln K s ( x ) − ( �( x )   ) (7) 

where K S ( x ) and �( x ) are random positive coefficients, considered as
random variables (rather than random fields), and   is the local suction
head in meters (the lower case letter   is used for the local suction). The
coefficients K S ( x ) and �( x ) may have a log-normal distribution, or any
other positive distribution. In the analytical developments below, they
are assumed log-normal, so that f(x) = Ln{Ks(x)} and b(x) = Ln{ �(x)} are
Gaussian random variables, which can be taken cross-correlated to each
other. Thus, � is the cross-correlation coefficient between Ln{Ks(x)} and
Ln{ �(x)} at any point (as discussed earlier, we expect �∈[0, 1] for most
soils).

In the Power Averaging Model “PAM ”, the effective conductivity- 
suction curve is obtained by calculating the ensemble power average
( “PA ”):

K̂ PA 
ii (   ) = ⟨K (  ; x ) p i ⟩

1 ∕ pi (8a) 

The effective “PA ” conductivity function on the left-hand side was
obtained from probabilistic ensemble averaging calculations, exploit- 
ing the properties of Gaussian and log-normal variables. Explicit results
were obtained for Gardner’s exponential model ( Eq. (7 )), and LogNor- 
mal distributions of {K S (x), �(x)}. Euclidian space (x) plays the role of
ensemble space in these probabilistic calculations. The resulting power
average conductivity curve can be expressed as:

K i (Ψ) = K G exp 
{ 
1

2 
( A i Ψ

2 + B i Ψ + C i )
}

(8b) 

where: A i = p i �
2 
a ; B i = − 2(1 + p i ��a �f ); C i = p i �

2 
f 
; and: Ψ = �G ⟨ ⟩ is

the dimensionless mean suction head (capital letter Ψ).
Equivalently, (Eq. ( 8b )) can be expressed as follows, in terms of the

“naïve ” curve K 0 ( Ψ) ≡ K G exp( − Ψ):

K̂ PA 
ii ( Ψ) = K G exp [ −Ψ] exp

[ 

1 

2 
p i

( 
��

2 

⟨�⟩2
Ψ2 − 2 �

��

⟨�⟩�ln K S Ψ + �2 
ln K S 

) ]

(8c) 

Note that the second exponential expression is a multiplicative correc- 
tion of the “naïve ” curve K 0 ( Ψ) ≡ K G exp( − Ψ), where Ψ is the dimen- 
sionless mean suction.

In Eqs. (8 a,b,c), the curve K ii ( Ψ) is the principal effective conduc- 
tivity component along the direction X i . The parameter p i is the power
averaging exponent used for obtaining the effective conductivity along
the direction X i .This power exponent, p i , may be treated at this point as
a semi-empirical adjustable parameter.

In addition, the statistical parameters in Eqs. (8) and (9) are defined
as follows:

� = − 
)LnK(  ,x )

)  
is the slope of the log-conductivity / suction curve,

�G is the geometric mean of �( x ), that is, �G = exp { E (ln �( x ))}.
�b is the standard deviation of log-coefficient b(x) = Ln{ �(x)};
�f is the standard deviation of saturated log-conductivity

f(x) = Ln{K S (x)};
� is the cross-correlation coefficient between the random log- 

parameters ( b( ⃗x ) , f ( ⃗x ) ) .



The averaging powers pi  can be chosen tentatively as follows (a 
more complete conjecture is available for some random spatial struc- 
tures ( Ababou 1996,  Appendix B)):

• p i = 0 (geometric mean) in each direction X i if the medium is per- 
fectly isotropic;

• p i = -1 (harmonic mean) in the direction orthogonal to layers (e.g.
vertically);

• p i = + 1 (arithmetic mean) in the direction parallel to layers (e.g.
horizontally).

However, in this work, we will calculate the p i ’s from the numerical
experiments by numerically fitting the power averaged curves (instead
of applying the above averaging powers).

Compared to the above-described Power Average Model, the stochas- 
tic spectral perturbation results reviewed earlier Eqs. (5 ) and (6) can
also be expressed, similarly, as a function of a direction-dependent pa- 
rameter which is analogous to p i . This new parameter is denoted as p ∗

i 
(p i with a “star ”), by analogy with the power exponent p i of the PAM
model. With this, it can be seen that the spectral perturbation result of
Eqs. (5), (6) can be expressed equivalently as:

K ii ( Ψ) = K G exp
{[
p ∗ 
i σ

2 
b Ψ

2 − 2
(
1 + p ∗ 

i ρσb σf
)
Ψ + p ∗ 

i σ
2 
f 

]
∕2 

}
(9) 

where p ∗
i 
is now the directional parameter of the spectral perturbation

theory. Remarkably, the Power Averaging Model of Eqs. (8) yields an
effective conductivity curve K ii ( Ψ) of the same form as the spectral per- 
turbation theory (Eq. (9)), although the coefficients of the quadratic
Ψ-polynomial are somewhat different (e.g., comparing Eq. (8b) and Eq.
(9)).

In the general case of 3D statistically anisotropic soils, the semi- 
empirical parameters of “PAM ” are the 3 averaging powers p i ( i = 1,
2, 3) which can be taken different horizontally and vertically. For a
horizontally stratified medium, taking p i = + 1 horizontally and p i = -
1 vertically, yields the arithmetic and harmonic means of the nonlinear
K(  ,x) curves. With this choice, the PAM becomes similar (although not
exactly identical) to the effective conductivity model initially proposed
in Mualem (1984) , and further investigated by McCord (1991) , . How- 
ever, Mualem (1984) did not include the cross-correlation parameter �,
which is physically meaningful, and can play an important role on the
results.

It should be recognized that the PAM theory is based on unstruc- 
tured, purely random soil parameters, with a prescribed variability,
but without a prescribed spatial auto-correlation (as opposed to spa- 
tially correlated random fields). In theory, the soil parameters of the
PAM have zero spatial correlation scales. In some other works, on the
contrary, the unsaturated flow/transport parameters are assumed to be
“random constants ”, which is tantamount to having spatially correlated
parameters over long or infinite distances (an example previously cited
in the literature review is Harter and Yeh (1996) , but there are many
others in the literature). The stochastic spectral theory is the more gen- 
eral case, where the soil is spatially correlated over finite distances, but
restrictive assumptions are required (infinite domain, statistical homo- 
geneity, small variability, etc., as already evoked earlier). In a different
approach, Indelman and Dagan (1993) consider the spatial moments
of block conductivities in a numerical flow model, where they relate
theoretically the moments of the block-conductivities to the moments
of the underlying point-wise, continuous random field conductivities.
This leads them to average block conductivities which depend on the
statistics of the underlying K(x,y,z) but also on the size and shapes of
the blocks. Some other methods are more empirical, such as the spatial
power averaging approach by Desbarats (1992) . For a more extensive
survey, see also the upscaling review by Dagan et al., 2013 .

To sum up, it should be recognized that each of the existing methods
is based on some assumptions and has its own limitations. Furthermore,
the nonlinearity of unsaturated flow complicates upscaling methodology
compared to the case of linear saturated flow. The heuristic PAM, above,
depends explicitly on soil variability, but it depends also on statistical

spatial structure with its semi-empirically fitted power exponents. This
makes it a flexible, appealing model, easily applicable to site-specific
problems. In spite of its simplicity, it yields, also, better macroscale
conductivity curves than classical averages like arithmetic or harmonic
mean conductivity curves.

2.2. Flow and transport simulation models

2.2.1. Flow model
In terms of pressure head “h ”, the mixed form of Richards’ equation

( Bear (1979) , Ababou (2018) ) is used for modeling variably saturated
flow through unsaturated and/or saturated zones. In the 2D code used
here (UFT2D “Unsaturated Flow and Transport 2D ”: see Soraganvi and
Mohan Kumar 2009 ), the pressure-based flow equation takes the form,
in vertical cross-section (x, z):

) 

)x 

{ 

K xx ( ℎ ) 
)ℎ 

)x 

}
+ 
) 

)z 

{
K zz ( ℎ ) 

)ℎ 

)z 

}
+ 
) K zz ( ℎ )

)z 
= S s 

�( ℎ ) 

' 

)ℎ 

)t 
+ 
)�

)t 
(10) 

The right-hand side contains a compressibility term which is ne- 
glected here (let Ss = 0), and the transient moisture term ) �/ ) t goes to
zero for steady-state flow (this is the case analyzed here, although time- 
stepping will be used for reaching steady state). In this flow Eq. (10) , the
spatial variability of coefficients is not shown explicitly to alleviate no- 
tations. Coefficients K xx (h) and K zz (h) [m/s] are the pressure-dependent
hydraulic conductivity components in the x and z direction respectively;
h is pressure head [m]; � is volumetric moisture content [m 3 /m 3 ]; � is
porosity [m 3 /m 3 ]; S S is the specific storage coefficient [m − 1 ]; and (x,
z) [m] are the horizontal and vertical coordinates respectively, with z
upwards.

Note also that Eq. (10) can be reformulated in terms of suction head
 = - h [m]. At the local scale, the conductivity curves K xx (h) and K zz (h)
can be assumed equal (local isotropy). On the other hand, the local con- 
ductivity curve can also depend on spatial location (as is the case here).
Thus, we let K xx = K zz = K (h; x, z) for the local conductivity, when
solving for detailed flow in a randomly heterogeneous soil sample.

The flux boundary condition q z = q 0 used at the top soil surface
( z = L ) is expressed as follows using the unsaturated version of Darcy’s
pressure-based flux law, with z upwards:

q z = − K ZZ ( ℎ, z ) 
(
dℎ

dz 
+ 1

)
⇒ q 0 = − K ZZ ( ℎ, L )

(
dℎ 

dz 

||||Z= L
+ 1

)

atz = L, ∀t > 0 

where q 0 is the water flux density [m/s] imposed at the top, which may
be specified as constant (here) or as a function of time.

More generally, in the UFT2D code, several other types of Boundary
Conditions can be considered, such as: Dirichlet (imposed pressure or
suction), Neumann (prescribed flux, and also, gravitational flux), and
Seepage Face (which combines Dirichlet and Neumann). Finally, the
initial condition can be specified as either distributed moisture content
or a distributed pressure head throughout the domain.

Constitutive relations (Hydraulic conductivity and moisture vs. suc- 
tion): The unsaturated constitutive relations are hypothesized as fol- 
lows. The exponential expression of Gardner (1958) is used for the
conductivity-suction curve, expressed here for a heterogeneous soil:

K (  , x ) = exp { − �( x )   } ... for   ≥ 0 (11) 

The empirical relation of van Genuchten (1980) is used for the moisture
retention curve �(  ):

Θ = 
� − �r

�s − �r 
= 

{
1 

1 + �v |  |n v

} m v

(12) 

where:   = - h is suction head (   > 0 in the unsaturated zone); � is vol- 
umetric water content; �r is the residual and �s the saturated moisture
content; Θ(  ) is effective saturation vs. suction; �v is the Van-Genuchten
/ Mualem shape factor [1/m]; n V and m V = (1 − 1/n V ) are the Van-
Genuchten / Mualem exponents (dimensionless).



2.2.2. Transport model
The Advection Dispersion Equation (ADE) for the transport of 

a passive solute (tracer) in the unsaturated zone is given by 
Freeze and Cherry (1979) :

) �c 

)t 
+ 
)( q xx c)

)x 
+ 
)( q zz c)

)z 
= 

) 

)x 

(
�D xx

)c 

)x 

)
+ 
) 

)z 

(
�D zz

)c 

)z 

)
(13) 

where c is the concentration of the solute in the liquid phase, in Kg/m 3

of water. The ADE can also be written alternatively as follows:

)C 

)t 
+ 
)( v x C)

)x 
+ 
)( v z C)

)z 
= 

) 

)x 

( 

�D xx
) ( C∕ �) 

)x 

)
+ 
) 

)z 

(
�D zz

) ( C∕ �) 

)z 

)
(14) 

The concentration C = c �, is the concentration in Kg/m 3 of space, and
� is the volumetric water content (possibly variable in both space and
time). The coefficients D xx and D zz are the diffusion-dispersion coef- 
ficients [L 2 T –1 ] in the x and z direction respectively, and they may
generally depend on moisture content and (in some models) on the un- 
saturated flux density (q). Note that the transport Eqs. (13 ) and (14) can
be considered at two different scales: either at the local scale, with spa- 
tially variable coefficients like moisture content �(x) and Darcy velocity
q(x); or at the macro-scale, where Darcy velocity and dispersion coeffi- 
cients are interpreted as spatially constant macro-scale quantities (mean
Darcy velocity vector, and macro-dispersion coefficients).

For the transient unsaturated transport experiments to be developed
in the present work, we are using the local scale Eqs. (13 ), ( 14 ) with
some simplifications, as explained below.

Neglecting molecular diffusion, the local dispersion coefficients D xx
and D zz [m 2 /s] are assumed to be of the form:

D 
xx = a v x 

b

D zz = a v z 
b (15) 

where, v X and v Z [m/s] are the pore velocity components in the x and
z directions respectively; “b ” is a constant dimensionless exponent; and
“a ” is a constant coefficient similar to the dispersivity length scale (how- 
ever, the units of “a ” are meters only when the exponent b = 1).

In our implementation, D zz is calculated from Eq. (15) , using units of
[cm] and [hours], with D zz = 0.018|v z | 

1.15 cm 2 /h for “large ” velocities
v z z > 1.586 cm/h, and a constant dispersion D zz = 0.036 cm 2 /h for
smaller velocities v z < 1.586 cm/h. The transverse dispersion coefficient
D xx is neglected, as it was found to be small compared to D zz for both
velocity ranges.

The unsaturated Darcy fluxes q x and q z in the x and z directions are
given by Darcy’s law (as before):

q x = − K xx ( �) 
)ℎ

)x 

q z = − K zz ( �)
(
1 + 

)ℎ 

)z 

) (16) 

and the corresponding velocity components of the tracer in the x and z
directions are given by:
{
v X = q X ∕θ

v Z = q Z ∕θ
(17) 

The boundary condition employed at the soil surface is a fixed advective- 
dispersive solute flux:

− �D zz
) C 

) z 
+ q z C = − q o C o ... at z = L, ∀ t > 0 (18) 

where the water flux q o is taken as positive and the minus sign (-q o C o )
forces the advective solute flux downwards

The initial concentration of the solute in the soil at t = 0 is specified
as a constant concentration:

C ( x, z, 0 ) = C o

Concerning the numerical flow and transport model, the reader is
referred to the code UFT2D implemented in Soraganvi and Mohan Ku- 
mar (2009) . The unsaturated flow model is based, numerically, on 2D
implicit finite difference approximation of the mixed form Richards

equation with modified Picard iterations for linearization, solved with
the 2D SIP (Strongly Implicit Procedure) solver. The unsaturated trans- 
port model, on the other hand, is based on finite volume discretization
of the advection-dispersion equation (ADE), with different handling of
the advective and dispersive components, with a flux limiter in the ad- 
vective part. This numerical scheme can handle transport problems with
large Peclet numbers, i.e., high-velocity regions.

3. Methodology

3.1. Numerical flow experiments

Steady-state gravity drainage flow simulations are performed by a
time marching approach, using the 2D numerical model presented in
Soraganvi , 2005 and Soraganvi and Mohan Kumar (2009) . A uniform
infiltration rate q is specified over the top boundary of the domain, and a
unit hydraulic gradient is imposed at the bottom boundary, while lateral
boundaries are impervious. The initial condition is a uniform pressure
head.

The numerical flow simulations are performed for a series of infil- 
tration cases, that is, for different values of infiltration flux “q ” imposed
at the soil surface, using gravity drainage condition at the bottom. Each
transient flow simulation is performed till the steady-state is reached,
i.e. by time marching, using the transient mixed form of Richard’s equa- 
tion presented earlier. To accelerate the time marching procedure, the
initial suction   0 used for each flow experiment was specified by in- 
verting the relation K(   0 ) = q 0 , where q 0 is the imposed flux and K(  )
is the Gardner conductivity curve with mean parameters. Mass balance
errors " ( t ) were checked during each flow experiment.

To sum up, a series of gravitational drainage experiments were per- 
formed using the above-described method, on single realizations of ran- 
domly heterogeneous 2D and 1D soil samples. The stochastic flow fields
thus obtained at steady state were then analyzed to obtain effective con- 
ductivity curves, as follows.

The spatially averaged suction, or “mean ” suction, was calculated
for each imposed flux value q 0 , which is also the mean vertical flux
q Z through the sample. The mean hydraulic gradient through the soil
sample is unity (purely gravitational), and the mean pressure gradient is
zero, due to the imposed gravitational drainage condition at the bottom
( Eq. (3) ). Therefore, at steady state, the effective vertical conductivity
K ZZ ( ⟨Ψ⟩) is equal to the imposed flux q 0 = ⟨q Z ⟩, for the given mean
suction ⟨ ⟩ of the soil sample. That is how the “upscaled ” conductivity
curve is constructed point by point, from the different flow experiments.

Note that the numerical simulations are carried out based on the
single realization approach, with a unique realization of the Gaussian
random fields Ln{K S (x,z)} and { �(x, z) or Ln �(x, z)}. Single realization
simulations are carried out for different water flux rates to obtain the ef- 
fective unsaturated conductivity curve K e vs. mean suction (as explained
just above ) . The macro-conductivity curves K e ( ⟨Ψ⟩) obtained numeri- 
cally are then compared with the analytical results presented earlier,
namely: the stochastic spectral perturbation results of ( Yeh et al., 1985a,
1985b ) given in the previous Eqs. (5) and ( 6 ), and the Power Average
Model “PAM ” of ( Ababou (1993) ) given in the previous Eqn 9

For the heterogeneous soil, the relationship between the hydraulic
conductivity K ( x ) and suction  ( x ), for each grid point x within the dis- 
cretized flow domain, is represented by Gardner’s (1958) model given
by the previous Eqn 11 .

In this study, both parameters (Ks, �) are considered as random fields
(i.e., random functions of space). On the other hand, the moisture re- 
tention curve �(  ) of Van Genuchten (1980 ) is used as the Soil Mois- 
ture Characteristic (SMC), and it is assumed to be uniform throughout
the domain. To sum up, the emphasis here is on the spatial variability
of the conductive properties of the soil (rather than its water retention
properties). Upscaled constitutive relationships (effective K(  )) are then
obtained by repeated numerical flow experiments, for a series of given
infiltration rates, as explained earlier.



3.1.1. Unsaturated flow upscaling
The effective conductivity is calculated numerically by 

interpreting the steady-state flow simulations in terms of global 
quantities: mean flux and mean gradient. The resulting “upscaled ” K 
is plotted versus mean suction ⟨ ⟩ (denoted here   for simplicity), 
and it is then compared with two available analytical results: the 
stochastic spectral perturba- tion solution, and the power-averaging 
results (Power Averaging Model “PAM ”).

In the latter case (PAM), the upscaled numerical conductivity 
curves are fitted to the power averaging formula in Eq. (9) to obtain 
the un- known power exponent pi  using a nonlinear least-squares 
optimization method (Levenberg-Marquardt iterative algorithm, 
implemented with the Matlab function lsqnonlin).  The 
numerically upscaled K(  ) curve is also compared to the Arithmetic, 
Harmonic and Geometric mean K(  ) curves, as well as to the more 
general Power Average Method (PAM).

The “�” parameter plays an important role in the resulting value of 
the averaging powers pi .  It is thought to be related to pore size distribu- 
tion, and its inverse represents a capillary length scale: 1/ � = �CAP.  The 
length scale �CAP is comparable to layer thickness, or to spatial correla- 
tion length �Z.  The cases ��Z ~ 1, ��Z < 1, ��Z > 1 are explored.

3.2. Transport simulations

The two-dimensional steady velocity field, obtained by flow simula- 
tions, is used as input to transport simulations. The simulated contam- 
inant plume is being advected and dispersed in the steady flow field. 
Its space-time distribution is then analyzed in terms of macro-scale mo- 
ments. For unsaturated transport simulations on the randomly hetero- 
geneous soil samples, the local ADE (Advection Dispersion Equation) 
given by Eq. (14) is used. This ADE has two randomly heterogeneous 
coefficients, obtained from the steady flow simulations, namely: (i) the 
2D moisture content field θ( x⃗) ,  and (ii) the 2D Darcy velocity vector q⃗(  x⃗) . 

The transient transport simulations are carried out on the 2D unsatu- 
rated velocity fields that were generated by the steady flow simulations. 
The transient concentration field C(x,z,t) is thus obtained numerically, 
and it is then analyzed and “upscaled ” using spatial averages and spatial 
moments. An equivalent homogenized ADE (or macroscale ADE) gov- 
erning the mean concentration ⟨C⟩ is hypothesized to be of the form:

∇ ·
{
D e∇ C 

}
− ( V ) · ∇ C = ) C∕ ) t (19) 

where ⟨C ⟩ is mean concentration; ⟨V ⟩ is mean velocity [m/s]; and D e

stands for the “effective ” or macroscale dispersion coefficient [m 2 /s],
which represents the mean tensorial hydrodynamic dispersion caused
by spatial variations of the velocity field. Note that the mean pore veloc- 
ity is vertical, V = [ ⟨V X ⟩, ⟨V Z ⟩] = [0, ⟨V Z ⟩], and we are interested here
essentially in vertical longitudinal macro-dispersion, D e 

ZZ 
. This longi- 

tudinal macro-dispersion coefficient (renamed simply “D ”) is assumed
proportional to the mean absolute vertical velocity |V|, that is D = A
|V|. The proportionality constant “A ” is the so-called macro-dispersivity
length scale.

In this solute transport study, we aim at (i) analyzing the migration
of the unsaturated solute plume in the randomly heterogeneous soil;
and (ii) upscaling the dispersion process (macro-dispersion “D ”, macro- 
dispersivity “A ”).

3.2.1. Moments of concentration plume, and macro-dispersivity analysis
The mean concentration and variance of the solute plume for a slug

tracer are analyzed at different times after the release of the slug at the
top of the soil (vertical cross-section). Average solute concentration pro- 
files C(z,t) are obtained as a function of depth, by averaging horizontally
along the x-direction. The average concentrations C(x,z,t) are then used
to analyze the spatial moments of the concentration plume C(x,z,t). The
plume is analyzed only with respect to the Z-direction, as it is the dom- 
inating flow direction. The average concentration C(z,t) is the average

concentration of the row given by:

C( z, t ) = 

i max∑

i =1 

c( x i , t ) �( x i )Δx Δz

The spatial moments are then defined as follows:

M o ( t ) =

j max∑

j=1 

c( x i , t ) �( x i )Δx Δz (20) 

M Z ( t ) =
1 

M o

j max∑

j=1 

c( x i , t ) �( x i )Δx Δz ( z i ) (21) 

M zz ( t ) =

[
1 

M o

j max∑

j=1 

c( x i , t ) �( x i )Δx Δz ( z i ) 
2

]
− 
(
M z ( t )

)2
(22) 

where M o ( t ) is the total mass of the solute residing in the flow domain,
which consists of imax rows and jmax columns, with length and depth
as Δx and Δz respectively.

Recall that “c ” (lower case) is the mass concentration per volume of
solvent (water), while C ( x i ,t ) = c ( x i ,t ) �( x i ) is the mass concentration per
volume of space (i.e., per volume of porous medium). The zeroth mo- 
ment M 0 (t) is the total mass of the solute in the domain. The first mo- 
ment, M Z (t), is the vertical position of the center of mass of the plume
with respect to the reference frame. The second moment M ZZ (t) can be
viewed as the vertical moment of inertia of the plume: it measures its
mean square spread around its center of mass in the vertical direction.
The time evolution of these moments, M 0 (t), M Z (t), M ZZ (t), is then stud- 
ied for each transient simulation of unsaturated solute transport. The dif- 
ferent cases involve 2D samples of statistically isotropic and anisotropic,
randomly heterogeneous soils.

In practice, the moments are calculated in that order: M 0 (t), M Z (t),
M ZZ (t). Since the zero-order moment is the total mass of resident solute
in the domain, it can be used as an indicator of mass balance error by
comparing it to the net solute flux through all boundaries, cumulated
over time. The first moment M Z (t), normalized by mass M 0 (t), provides
the mean plume displacement Z(t):

Z ( t ) = M ZZ ( t ) ∕ M o ( t )
(23) 

The time derivative of Z(t) indicates, therefore, the mean effective
Lagrangian velocity Uz(t) of the center of mass of the plume:

U ( t ) = U Z ( t ) = dZ ∕ dt (24) 

There is no reason that the calculated velocity Uz = dZ/dt be con- 
stant in time from the numerical simulations. However, a constant av- 
erage velocity U 0 = ⟨U z (t) ⟩ can be obtained by averaging the calculated
Lagrangian velocity U z (t) over time. Another constant average velocity
V o = ⟨V z (z) ⟩ can also be obtained by averaging the Eulerian velocity
V z (z) in space (vertically).

Finally, the second moment M ZZ (t) represents the spatial spreading
of the plume. After normalization by the resident mass M 0 (t), it can be
considered as the dispersion variance of the plume in the “z ” direction
( �zz 

2 (t)):

σ2 ZZ ( t ) = M ZZ ( t ) ∕ M o ( t )
(25) 

This leads to a natural evaluation of the macro-dispersion coefficient
“D ” [m 2 /s] by analogy with Fickian diffusion, as follows:

D ( t ) = D zz ( t ) = 
1 

2 

dσ2 ZZ
dt 

(26) 

The calculated macro-dispersion D(t) in (Eq. (26) may not be con- 
stant in time (unlike the ideal case of Fickian dispersion). However, a
constant average value of the macro-dispersion coefficient, D o = ⟨D(t) ⟩,
can be obtained by taking the time average of the macro-dispersion co- 
efficient D(t) defined just above. Finally, the vertical macro-dispersivity



Table 1 
Statistical Parameters of Gardner’s exponential conductivity-suction curve (note: the dimensionless number �� is defined in terms of the vertical scale �Z ).

Parameters: Mean 
Standard 
deviation 

Horizontal 
Correl. length 
�X (m)

Vertical 
Correl. length 
�Z (m) Δx (m) Δz (m) Lx (m) Lz (m) 

1. Perfectly stratified “1D ” random field; �X >>�Z ; ��Z = 0.8133

LnK S ( 
∗ ) 0.253 0.771 ∞ 0.10 – 0.01 – 10 

� (1/m) 8.133 1.493 ∞ 0.10 – 0.01 – 10 

2. Imperfectly stratified “2D ” random field; �X >�Z ; ��z = 1.6266

LnK S ( 
∗ ) 0.253 0.771 2.0 0.20 0.05 0.10 25 50 

� (1/m) 8.133 1.493 2.0 0.20 0.05 0.10 25 50 

3. Isotropic “2D ” random field; �X >>�Z ; ��z = 8.133

LnK S ( 
∗ ) 0.253 0.771 1.0 1.0 0.01 0.01 10 10 

� (1/m) 8.133 1.493 1.0 1.0 0.01 0.01 10 10 

∗ where Ks is in (m/d) units.

Table 2 
Parameters of the moisture retention curve, based on the van Genuchten’s moisture- 
suction model (assumed constant in space).

�s ( m 3 / m 3 ) �r ( m 3 / m 3 ) �
v ( m 

−1 ) n 
v (dimensionless) 

Saturated moisture Residual moisture Scaling factor (1/m) Exponent 

0.397 0.027 4.306 1.82212 

coefficient “A ” [m] is defined from the above-defined macro-dispersion
D, as follows:

A ( t ) = A zz ( t ) =
D ( t ) 

U ( t ) 
= 

1 
2 

dσ2 
ZZ

dt 

dZ ∕ dt

(27) 

where U(t) is again the Lagrangian vertical velocity of the center of
mass of the plume. Again, the calculated A(t), above, depends generally
on time if macro-dispersion is non-Fickian. However, a constant mean
macro-dispersivity “A 0 ” may be defined using the constant mean diffu- 
sion coefficient Do (above), and the constant mean Eulerian velocity V 0
(vertically averaged flow field velocity). This yields finally the constant
macro-dispersivity length scale A 0 [m], defined by:

A 0 = A zz 0 =
D 0

U 0
= 

∫ Tmax 
Tmin D ( t ) dt 

∫ Tmax 
Tmin U ( t ) dt 

(28) 

where: D(t) = 
1

2 

dσ2 
ZZ 
dt 
; and U(t) = dZ ∕ dt .

Note: the spatial moments obtained numerically at early times and
at large times are ignored in order to avoid the possible boundary effects
at the top and bottom of the soil sample.

4. Results and discussion

4.1. Statistical representation of the soil parameters

In this subsection, we present the parameters of the soils in terms
of their spatial and statistical distribution. These parameters are to be
used for the flow simulations in this section, and also for the transport
simulations in the next section.

In this work, we perform flow and transport experiments on single
realizations of randomly heterogeneous soil samples. Therefore, we gen- 
erate single realizations of the spatially distributed parameters (Ln-Ks
and �) of the permeability-suction curve. The means and standard de- 
viations of the parameters are taken from Khaleel et al. (2002) , corre- 
sponding to coarse-textured sand from the Upper Hanford formation at
the Hanford site, Washington, USA ( Tables 1 and 2 ). The Ks parameter
is taken lognormal in all the cases; the � parameter is taken Gaussian or,
also, lognormal in a few cases (the difference between these two choices
becomes significant only for high variability of �). The two random pa- 
rameters, {Ln(Ks), �} or {Ln(Ks), Ln( �)}, are generated independently.
The 2-point spatial correlation structures and correlation lengths of the

two parameters are the same. The moisture curve ( ϴ-  ) is assumed to
be spatially uniform, as per the constant parameters shown in Table 2 .

Three types of statistical spatial structures will be generated for the
pair of random fields {LnKs, �}, and one type of spatial structure for the
pair {LnKs, Ln �}. The four types of randomly heterogeneous samples
(single realizations) are as follows:

• First type: perfectly layered “1D ” random field, with �X >> �Z , or
equivalently, �X → ∞ and �Z finite, in a domain of size 10 m dis- 
cretized into 1001 nodes. (Ks is lognormal, � is Gaussian).

• Second type: imperfectly stratified "2D" anisotropic field with �X >
�Z , in a domain of size 25 m × 50 m, discretized into 501 × 501 grid
points. (Ks is lognormal, � is Gaussian).

• Third type: "1D and 2D" anisotropic fields with perfect and imper- 
fect random stratification. (Both Ks and � are taken to be lognormal
random fields).

• Fourth type: 2D isotropic field ( �X = �Z ), generated in a domain of
size 10 m × 10 m, discretized into 1001 × 1001 grid points. (Ks is
lognormal, � is Gaussian).

In each case, the 2-point covariance function of the single realization
soil sample was calculated numerically, then plotted and compared with
the theoretically prescribed exponential function. The results were in
agreement for a reasonable range of separation distances.

Once the unsaturated flow is computed and analyzed on each single
realization sample, transient tracer transport simulations are performed
and analyzed in terms of concentrations and spatial moments. These
solute plume transport simulations are implemented for 2D anisotropic
and 2D isotropic soil samples.

4.2. Flow simulation results

4.2.1. Flow through perfectly stratified “1D ” soils ( � x = ∞)
One-dimensional (1D) parameter fields, LnK s (z) and Gardner’s pa- 

rameter �(z), are generated in space for the statistical parameters shown
in Table 1 , over a grid of 1001 nodes. Though the two parameters are
assumed to be uncorrelated to each other, each parameter is spatially
correlated. The two-point correlation length is �Z = 0.10 m, which gives
a spatial resolution �Z / ΔZ of 1/10 on the numerical grid. A replicate
of the generated random field LnK s (z) is shown in Fig. 1 The com- 
puted (empirical) auto-covariances of the generated fields match quite
well the theoretical covariances plotted versus the separation distance
between the two-points ( “also known as lag ”): see Fig. 2 for that of the



Fig. 1. Replicate of the 1D random field parameter Ln(Ks).

saturated log conductivity random field (LnKs); the covariance structure
is similar for the � random field (not shown). In Fig. 2 , the numerically
estimated covariance function, calculated for a single replicate of LnKs,
is compared to the theoretically prescribed covariance functions (expo- 
nentially decreasing with separation distance).

Two principal flow directions will be considered below: flow perpen- 
dicular to bedding and flow parallel to bedding. In the first case (per- 
pendicular) the strata are horizontal and flow is vertical, aligned with
gravity. In the second case, flow parallel to bedding is obtained by ro- 
tating the stratified soil sample by 90° while keeping gravity vertical. In
this way, the flow direction remains aligned with the direction of grav- 
ity in both the cases. The resulting set of flow fields is used to upscale
the hydraulic conductivity against the mean suction. Anisotropy effects
are studied and compared with theoretical results on suction-dependent
effective conductivity.

Flow experiments perpendicular to stratification : For the generated
1D soil samples of 1001 nodes (each with mesh size Δz = 0.01 m), a set
of numerical simulations are carried out with a constant flux at the top
of the domain, time marching till the flow reaches a steady state. The
steady pressure fields obtained for a series of experiments with different
flux rates are shown in Fig. 3 . During our simulations, we come across
some cases where internal ponding has occurred locally in some parts of
the sample (this is for higher flux rates, not shown here). Since stochastic
theory cannot be applied stricto sensuto to partially saturated flow, the
high flux cases (q ≥ 0.5 m/d), are not considered for upscaling in this
paper. It has been observed that in such cases, it took a long time to reach
steady-state, compared to the cases with lower fluxes where saturation
was never reached.

Plots of pressure head profiles (not shown here) indicate the sta- 
bilization of the pressure head as the constant infiltration rate contin- 
ues for some time (an example of transient pressure profile evolution
is shown in Fig. 13 further below). It has been observed that for some
values of infiltration flux, the steady-state is reached very fast, and for
some other values, it takes a longer simulation time. The pressure head
variation range is broader for lower infiltration fluxes and is narrower
for higher fluxes.

Based on the steady flow simulations, the upscaled conductivity
curve is plotted point by point vs. mean suction  , in terms of K(  )/K g
and Ln{K(  )/Kg} as well. The point-by-point curves are then compared
graphically with the spectral perturbation results of Yeh et al., 1985 a,
Yeh et al., 1985 b & Yeh et al., 1985 c) and with the Power Average Model
of Ababou (1991a , 1993 ).

The comparisons are shown for flow perpendicular to perfect stratifi- 
cation (1D) in Fig. 4 a and b, exhibiting a good match between theoreti- 
cal and numerical upscaling. The best-fitted curve for the Power Average
Model is obtained for with the power p i = − 0.0484 for the Ln(K/Kg) fit,

Fig. 2. Two-point auto-covariance function of the random field parameter
Ln(Ks), plotted vs. separation distance.

and p i = − 0.0634 for the (K/Kg) fit. It is seen from this figure that the
numerical K(  ) curve matches with the harmonic mean at low suctions
(wet range), as could be anticipated, but remarkably, the curve moves
away from the harmonic mean and closer to geometric mean at higher
suctions (dry range).

Note: choosing a linear fit of Ln(K(  )/Kg) favors low suctions (wet
range of moistures), while choosing instead a power fit of K(  )/Kg fa- 
vors the higher suctions (dryer range of moistures); this will appear more
clearly in the next case below (parallel flow).

Flow experiments parallel to stratification : Recall that the case of
flow parallel to bedding ( “parallel flow ”) is obtained by rotating the
strata from horizontal to vertical direction. In this way, “parallel flow ”
is vertical and aligned with gravity. As anticipated, the parallel flow
reaches the steady state very fast, and the resulting pressure and mois- 
ture fields are not variable along the flow direction.

In comparison, when the flow is perpendicular to perfect horizon- 
tal stratification, the flow field is variable across the direction of flow,
in that case, it takes more time to reach the steady-state. The pressure
head contours for “parallel flow ” will be a set of vertical straight lines,
as shown in Fig. 5 . Comparing Fig.5 (parallel flow) to Fig. 3 (for perpen- 
dicular flow), we can clearly see the different structures of the pressure
fields: there is a drastic variation of pressure vertically in the case of
flow perpendicular to bedding ( Fig. 3 ). The flow parallel to bedding

Fig. 3. Steady pressure heads plotted across depth. Each vertical pressure pro- 
file h(z) corresponds to a different flux rate imposed at the top of the soil column.



Fig. 4. Effective conductivity vs. normalized suction: numerical results compared with spectral perturbation results and with best-fitted power averaging expression
(PAM), for flow perpendicular to perfect stratification. (a) Ln(K/Kg) best fit p i = − 0.0484. (b) (K/Kg) best fit p i = − 0.0634.

Fig. 5. Pressure head contours at steady state, for 1D flow, parallel to perfect
strata, at mean pressure ⟨h ⟩ = − 0.35 m.

( Fig.5 ) reaches steady state faster, and also the pressure head does not
vary across the depth since the field is homogeneous in the direction of
flow.

Again, the series of simulations performed for “parallel flow ” is
used to obtain the upscaled K(  ) relation point-by-point. The numer- 
ical points K(  ) are compared with the spectral perturbation theory of
Yeh et al., 1985 a, Yeh et al., 1985 b, Yeh et al., 1985 ), and with the best
fitted Power Averaging Model (PAM). These comparisons are shown in
Fig. 6 (a, b), along with three special curves, the arithmetic, harmonic
and geometric mean curves (these three curves are also computed with
the PAM formula, by inserting exponents + 1, 0, − 1 respectively).

The best-fitted power average parameter is p i = − 0.1749 for the
Ln(K/Kg) fit, and p i = + 0.9640 for the (K/Kg) fit. Indeed, it can be seen
that the numerical points K(  ) coincide with the arithmetic mean curves
for low suctions (wet range), but deviate somewhat from it (in favor of
the geometric mean) for higher suctions (dry range). This observation
confirms that, when estimating the effective K curve, choosing a linear
fit of Ln(K(  )/Kg) implies favoring low suctions (wet range of mois- 
tures) while choosing instead a power fit of K(  )/Kg implies favoring
more the higher suctions (dryer range of moistures).

4.2.2. Flow through imperfectly stratified field ( � x >> � z ; �� z = 1.6266)
Here, the case of flow in an imperfectly stratified 2D medium is ex- 

plored. The hydraulic properties of the soil remain the same as in Tables
1 and 2 , with the horizontal correlation length chosen much greater than
the vertical one ( �x >> �z ). This yields horizontally elongated strips of
soil, or imperfect layers (hence generalizing the 1D case of perfect lay- 
ers). The generated random field of saturated hydraulic conductivity is
shown in Fig. 7 , the Gardner’s scaling parameter is also generated and
looks the same; thus not shown here. Numerical flow experiments are
performed in two directions, perpendicular and parallel to stratification,
by rotating the field by 90 0 , keeping the main flow direction vertical, as
explained earlier.
Flow Perpendicular to imperfect stratification : Fig. 8 a and b show

the steady-state suction fields for flow perpendicular and parallel to
stratification, respectively (flow is vertical and aligned with gravity in
both the cases). The effect of stratification is clearly seen in the dis- 
tribution of suction, as it follows the pattern of stratification. In both
the cases, the mean flow direction is vertical, and the streamlines (not
shown here) are vertical on average.

Fig. 9 shows the comparison of numerical results obtained for flow
perpendicular to imperfect stratification with the Power Average Model
and with the spectral perturbation theory: both match quite well the
point-by-point numerical conductivity curve (numerically upscaled).
The figure plots, in particular, the upscaled conductivity curve obtained
from PAM with best-fitted power averaging parameter “p i ”yield the re- 
sult as p i = -0.0015 for the Ln(K(  )/Kg) linear fit, and p i = - 0.864 for
the K(  )/Kg power fit.

As anticipated, the effective unsaturated conductivity, in this case,
does not really correspond to a harmonic mean conductivity curve. Some
more tests would be needed to explore the mean behavior of the imper- 
fectly stratified soil near saturation (near zero suctions). Note, however,
that the mean suction, mean moisture, and effective conductivity con- 
cepts, all become less relevant when the flow regime becomes partially
saturated. Our simulations demonstrate that this partial saturation oc- 
curs, indeed, when flux rates are increased to higher ranges, q ≈ 1 m/d
and above.

Flow parallel to imperfect stratification : Fig. 10 shows the com- 
parison of numerical results with the PAM and with Yeh’s spectral
perturbation results, which both match quite well the numerically up- 
scaled point-by-point curves. The figures plot the best fit of the upscaled
power average conductivity curve: the resulting best fitted power is
p i = + +0.0636 for the linear fit of Ln{K(  )/Kg}, and p i = - 0.0777
for the power fit of K(  )/Kg. These results, for this case of “parallel ”
flow, indicate that the effective conductivity is not the arithmetic mean



Fig. 6. Effective conductivity vs. normalized suction: numerical results compared with spectral perturbation results and with best-fitted power averaging expression
(PAM), for flow parallel to perfect stratification. (a) Ln(K/Kg) best fit p i = − 0.1749. (b) (K/Kg) best fit p i = 0.9640.

Fig. 7. Replicate of 2D anisotropic random field parameter Log-saturated hy- 
draulic conductivity Ln K S (x,z).

conductivity curve: it is in fact closer to a geometric mean conductivity
curve. This is probably due to the imperfect stratification (as opposed
to perfect layers) but also, to the nonlinear nature of unsaturated flow.

More suction points could be tested in the wet range of suctions;
however, see the previous remarks on the difficulty of interpreting the
mean behavior in the wet range (especially if the soil becomes partially
saturated). The dependence of suction variance on the mean suction is
shown in Fig. 11 , based on the flow simulation results. This is analyzed
just below in relation with theoretical results.

Variance of the suction field  (x,z) : The dependence of suction
variance on mean suction is shown in Fig. 11 a and b, based on the
flow simulation results, for flow perpendicular and parallel to stratifica- 
tion, respectively. It can be seen from these plots that suction variance
�  

2 is a non-monotonic function of mean suction ⟨ ⟩ (also denoted “ ”
for convenience). Suction variance first decreases towards a minimum
around   ≈ 0.60 m, and then increases again for larger suctions. This
matches with the results of Ababou et al. (1988 ) and Yeh (1989 ), who
observed that the suction variance can approach zero and then increase.
Also, according to Yeh et al., 1985 a, Yeh et al., 1985 b), Harter and Yeh
(1996 ), and many other investigators, suction variance increases with
suction for sufficiently high suctions (sufficiently away from the state of
total saturation) as occurs here.

Fig. 8. Steady state suction fields for two flow configurations: a) flow perpendicular, and b) flow parallel to imperfect strata.



Fig. 9. . Effective conductivity vs. normalized suction: numerical results compared with spectral perturbation results and with best-fitted power averaging expression
(PAM), for flow perpendicular to imperfect stratification. (a) Ln(K/Kg) best fit p i = − 0.0015 (b) (K/Kg) best fit p i = − 0.864.

Fig. 10. Effective conductivity vs. normalized suction: numerical results compared with spectral perturbation results and with best-fitted power averaging expression
(PAM), for flow parallel to imperfect stratification. (a) Left: Ln(K/Kg) best fit p i = + +0.0636. (b) Right: (K/Kg) best fit p i = − 0.0777.

Fig. 11. Suction variance �2 (  ) [m 2 ], obtained from numerical simulations for the case of perfectly stratified anisotropic soil. a) the case of flow perpendicular to
bedding. b) the case of flow parallel to bedding.



This behavior can be compared qualitatively with that observed 
the- oretically for steady flow by Yeh et al., 1985 a, Yeh et al., 
1985 b), also summarized in Gelhar (1993)  (Chap. 4.5: Unsaturated 
flow in heteroge- neous soils: Steady flow results, pp. 166-175). 
Thus, for 3D random soil structure, with zero cross-correlation 
between LnKs and � (as we have here), the suction variance is 
theoretically of the form (given below us- ing our notations):

�2 
  = ( �2

LnKs 
+ �2

�
  2 ) �2

Z 
g( ��Z , �X ∕ �Z ) (cf. Gelhar’s 1993 Eq.

[4.5.21]) where g( •, •) is a function plotted numerically in
Gelhar 1993 (Fig. 4.38, p. 168), decreasing with ( �� z ) and in- 
creasing with ( � x / � z ). In comparison, for the imperfectly stratified
case at hand, and given the statistics of our parameters (shown earlier
in Table 1 ), we have here:

�LnKs = 0 . 771 ; �� = 1 . 493 m −1 ; ⟨�⟩ = � = 8 . 133 m −1 ;
(
�X , �Z

)

= ( 2 . 0 m, 0 . 20 m ) 

Taking now the case of vertical flow orthogonal to bedding, we set ��
z = 1.6266 and � x / �z = 10 in Gelhar’s Eq.[4.5.21] above. For these
values, Gelhar’s function “g ” is roughly equal to 0.5, and we obtain the- 
oretically for our case:

�2 
  ≈ 0 . 02 ×

(
0 . 5944 + 2 . 2290   2 

)
........ 

[
m 2 

]
(29) 

This theoretical result would yield a suction variance �  
2 ≈ 0.0279

and standard deviation �  ≈ 0.167 m for   ≈ 0.60 m, �  
2 ≈ 0.0337 and

�  ≈ 0.184 m for   ≈ 0.70 m, and �  
2 ≈ 0.0761 and �  ≈ 0.276 m for

 ≈ 1.20 m. At first sight, these values do not match our experimental
values of suction variance in Fig. 11 ; however, the fit of �  

2 (  ) may be
off by only a multiplicative constant (the function “g ”), perhaps due to
the fact that Gelhar and Yeh’s results are for an infinite domain, while
we are using here finite soil samples (single realizations).

4.2.3. Randomly heterogeneous samples with both Ks and � as lognormal
random fields

In all the previous cases, the flow simulations involved a LogNormal
random field for Ks and a Gaussian random field for the � parameter
(Gardner’s parameter). In contrast, in this section, the � parameter is
considered as LogNormal rather than Gaussian, which is, in fact, more
realistic. The relations between Gaussian and Log-Normal random fields
at single points in space will be addressed, briefly, further below. Fig. 12
shows the generated random field parameters of heterogeneous samples
on which unsaturated flow experiments are conducted.

This new set of experiments with LogNormal � is justified by the fact
that the parameters like Ks and � must be positive, therefore they should
follow a probability law that constrains them to remain positive. This is
the case of the LogNormal law. Thus we take here both Ks and � to be
Log-Normal; or equivalently, we take both LnKs and Ln � to be Gaussian
random fields.

The relations between Gaussian and Log-Normal random fields at
single points in space are now briefly summarized. For a positive ran- 
dom parameter like �, it can be shown that, for moderate variability,
the Gaussian and LogNormal distributions are approximately equiva- 
lent. Also, in that case, the degree of variability of the parameter can be
measured equivalently from the Coeffificent of Variation C � or from the
standard deviation �Ln � . This is because of the approximate equivalence
formula C � = ��/m � ≈ �Ln �. Other relations can be developed to relate
explicitly the 2-point spatial covariance of the random field �(x) to that
of its logarithm Ln �(x).

Fig. 13 shows a set of multiple transient flow experiments (converg- 
ing to steady state) for the randomly stratified sample, with vertical flow
orthogonal to strata induced by unsaturated gravitational boundary con- 
ditions. The figure shows intermediate transient pressure profiles h(z,t)
during the sequential multi-simulation procedure. Unsaturated zones
have negative pressure (h(z,t) < 0). Internal ponding phenomena with
h(z,t) > 0 can be seen to occur for this particular experiment. The final

steady-state used in this study for K( Ψ) upscaling still has some ponded
zones, but much less so than during the transient phase. Interestingly,
looking at the steady state pressure profile h(z) in . Figure 13 , we can
see that the soil sample has less saturated zones ( h > 0) than unsatu- 
rated zones ( h < 0). However, the pressure h(z) is higher in positive
zones compared to negative zones (in absolute value). As a result, the
mean pressure ⟨h ⟩ is positive (straight line), even though there are more
unsaturated zones than saturated zones.

Simulations with such saturated pockets, called internal ponding,
were presented in Soraganvi et al., 2017 . The phenomenon was ana- 
lyzed in the form of a ponding ratio, which increases gradually as the
unsaturated field evolves towards saturation. We have also developed
upscaled conductivity curves for such cases (which are not presented
here in this work).

As will be seen below, it is found that the perfectly stratified unsat- 
urated soils can behave like saturated media, with arithmetically aver- 
aged K(  ) for parallel flow, and harmonically averaged K(  ) for per- 
pendicular flow. However in some cases, depending on the flow regime
and on layer thickness, this classical behavior does not hold good.

The numerically upscaled K ii ( 	) curves : As mentioned earlier, the
numerically upscaled K ii ( Ψ) curves are constructed point-by-point (K n ,
Ψn ). In some cases, under relatively "wet" flow regimes, internal satura- 
tion and ponding could occur and remain stable at steady state, which
is an interesting phenomenon and not covered by the various upscaling
theories known to us.We choose to show here an example of a numer- 
ically constructed curve where the "saturation/ponding" phenomenon
did occur at low values of mean suction shown in Fig. 14 .

It is interesting to see how such curves compare to the PAM theory,
and to find out the best-fitted value of the power average exponent (p i )
in different cases. For that purpose, we choose to focus on the optimal fit
of the Power Average exponent in terms of ln(K/Kg) rather than (K/Kg).

Firstly, we choose to fit the single parameter “p ” based on Eqn 30 ,
which we prefer for theoretical reasons This choice is made in spite of
the fact that the best fit p i was usually better with (A, B, C) than with
the single (p), as it should.

Secondly, we have found differences in the p-fitted in terms of K( Ψ)
vs. ln K( Ψ). The ln(K/Kg) fit was finally chosen because it provides a
better-fitted curve over a broader range of suctions. This choice is also
based on the fact that, considering all the test cases, the behavior of the
fitted exponent (p) obtained with ln K( Ψ) seemed more consistent than
that obtained with K( Ψ).

Optimization results: the fitted power average exponent p : Table. 3
summarizes the best-fitted values of the PAM exponent (p) obtained for
the vertical flow experiments in the randomly stratified samples with
mean flow orthogonal to strata. Other results are not shown and not
discussed here. The different columns of Table 3 correspond to different
values of the mean scaling factor � and, equivalently, of the capillary
ratio �. The saturated conductivity Ks(z) is a spatially correlated lognor- 
mal random field. The scaling factor �(z) is perfectly cross-correlated to
Ks(z) in the first column, or constant in the other columns.

Behavior of the power exponent vs. capillary / geometric scales :
As discussed earlier the numerical experiments on heterogeneous sam- 
ples were used to obtain upscaled unsaturated K ii ( Ψ) curves described
point by point. Parameter LnKs(x,z) is randomly stratified with vertical
correlation scale �z = 0.10 m and standard deviation �(LnKs) = 0.771.
Parameter � is constant here, and is equal to 8.133 m -1 (this yields a
capillary length scale 1/ � = 0.13 m). The Power Average exponent "p i "
was then identified by a best fit procedure. The results are now used to
confirm a previously formulated conjecture concerning the behavior of
the Power Average exponent "p i " vs. capillary effects.

The numerically upscaled curve is presented in Fig. 15 in di- 
mensionless variables: dimensionless conductivity K/Kg where Kg
≡ exp( ⟨LnKs ⟩> ), and dimensionless suction Ψ ≡ �. ⟨ ⟩ , or Ψ ≡

⟨�⟩ ⟨ ⟩ more generally if � is variable. Each point in Fig. 15 represents
the steady-state solution of a flow simulation experiment. The rectangle
in the plot indicates the results obtained in the "wet" flow regime with



Fig. 12. Random permeability field K S ( ⃗x ) [m/day]: (a) perfectly stratified medium, and (b) imperfectly stratified medium. Comparisons of vertical profiles of K S (z)
and �(z) through the 2D medium at two horizontal positions: (c) at x = 2 m, and (d) at x = 25 m.

Table 3 
Optimal values of p obtained by fitting the Power Average model to the numerically upscaled K( Ψ) curves [ln(K) fit].
Note: � = �HET � = �HET / �CAP where �CAP = 1/ �, and �HET is the correlation scale in the direction of flow (thus �HET = �X
if flow // Ox, or �HET = �Z if flow // Oz as here).

P 1D ⊥(flow//Oz) 1D ⊥(flow//Oz) 1D ⊥(flow//Oz) 1D ⊥(flow//Oz) 1D ⊥(flow//Oz) 1D ⊥(flow//Oz) 

� ⟨�( z ) ⟩= 8.133 0.640 1.60 8.133 40.000 100.000 

H 0.8133 0.064 0.160 0.8133 4.000 10.000 

Power p − 4.478E − 01 − 6.368E − 01 − 3.978E − 01 − 4.882E − 02 + 2.001E − 01 + 3.388E − 01

internal ponding in some regions, resulting in a negative mean suction
(positive mean pressure) even though the sample is not saturated every- 
where.

At this point, we seek essentially a formulation of the (fitted) expo- 
nent "p i " in relation to the capillary/geometry scale ratio which charac- 
terizes the heterogeneous unsaturated medium. Accordingly, the fitted
exponent "p i " was studied as a function of a dimensionless capillary ra- 
tio � defined earlier (we write here " �ii " because of the dependence on
flow direction "i"):

�
ii 
= �HE T ii 

� ≈ �HE T ii 
∕ �CAP (30) 

This capillary ratio, �ii , can be interpreted as the ratio of a geometric
scale of heterogeneity (characteristic layer thickness) versus a capillary
length scale �CAP = 1/ ⟨�⟩ . The capillary ratio is directional because the
geometric heterogeneity length scale is directional ( �HET . characterizes
heterogeneity along the direction of mean flow). Following these ideas,
the results of Table 3 are plotted in Fig. 15 , as p OPT = f ( �ii ). Further- 
more, the numerical relation p = f ( �) is rather well fitted by the follow- 
ing analytical function (subscript “i ” indicates principal direction, e.g.
horizontal for i = 1, vertical for i = 3):

p ii = f
(
�ii
)
≈

2 
(
�ii
)1∕3

1 + 
(
�ii
)1∕3 − 1 (31)



Fig. 13. Transient numerical simulations: evolution of vertical pressure profiles
h(z,t), along the mean flow direction with flow orthogonal to layers. Each graph
shows the profiles h(z) between an "initial" time t 0 and a "max" time t MAX for
one "iteration" of time marching.

Fig. 14. Numerically upscaled conductivity curve Kzz( Ψ) for 1D vertical flow
orthogonal to strata.

Each point in Fig. 15 represents a numerical flow experiment on the
randomly stratified sample with flow direction orthogonal to the strata.
The curve shows results for � as constant in space. The isolated point
"o" corresponds to � as random and perfectly cross-correlated to Ks. The
ordinate value p = 0 corresponds to the geometric mean K( Ψ) curve, the
lower "bound" p = - 1 to the harmonic mean K( Ψ) curve, and the upper
"bound" p = + +1 to the arithmetic mean K( Ψ) curve.

It is important to note that the behavior of the upscaled unsaturated
permeability curve depends not only on flow direction and layer thick- 
ness but also on �CAP = 1/ �. For � ≈ 1 ( �HET ≈ �CAP = 1/ �) we obtain
an exponent p ≈ 0, and therefore, the upscaled permeability curve is
the geometric mean curve, even though the medium is stratified. The
harmonic mean curve appears only as an asymptotic case for �ii → 0,
and our smallest negative exponent was, in fact, p ≈ - 0.64 (between
geometric and harmonic mean). And finally, the arithmetic mean curve
appears as an asymptotic case for �ii →∞ (our largest positive exponent
was, in fact, p ≈ + +0.34).

These results on the effective K( Ψ) curve can be explained as follows:
(i) if �ii ≪ 1, then �HET ≪ �CAP , and any capillary region of diameter �CAP
will contain many layers, resulting into harmonic mean behavior; (ii) if
�ii ≫ 1, then �HET ≫ �CAP , and any capillary region of diameter �CAP

Fig. 15. Optimal power averaging exponent "p", fitted in terms of lnK, and plot- 
ted as a function of the capillary ratio �. Each point represents a numerical
flow experiment on the randomly stratified sample (here, flow is orthogonal to
strata). The green curve shows results for � constant in space. The isolated point
"o" corresponds to � random and perfectly cross-correlated to Ks. The ordinate
value p = 0 corresponds to the geometric mean K( Ψ) curve; the lower "bound"
p = − 1 corresponds to the harmonic mean K( Ψ) curve, and the upper "bound"
p = + 1 corresponds to the arithmetic mean K( Ψ) curve.

Fig. 16. Generated statistically isotropic 2D random field of Ln(Ks(x,z)); Gard- 
ner’s parameter �(x,z) [m − 1 ] also follows the same trend and hence not shown
here. Note: these two random fields are statistically independent here (zero
cross-correlation).

will contain essentially a homogeneous sub-layer, hence the arithmetic
mean behavior.

4.2.4. Flow through statistically isotropic 2D media ( � x = � z )
In this case, the numerical simulations are performed on a 2D sam- 

ple of statistically isotropic random soil, with isotropic auto-covariance
function. The soil sample is of size 10 m × 10 m, with a numerical grid of
size 1000 × 1000 nodes. The statistical parameters given in Table 1 are
used to generate 2D isotropic random fields for two parameters: satu- 
rated hydraulic conductivity Ks(x,z) [LogNormal] and Gardner’s param- 
eter �(x,z) [Gaussian].

Fig. 16 shows the random field of LnKs and �(x,z) also looks the same
and therefore not shown here. Auto covariance functions of the gener- 
ated random fields are found to be isotropic and exponential, coincid- 
ing with the specified auto-covariances. A correlation length of 1.0 m



Fig. 17. Suction field obtained on the statistically isotropic 2D soil sample. (a) The steady-state suction field  (x,z). (b) Suction variance plotted versus mean suction.

Fig.. 18. Numerical results compared with Spectral Perturbation theory for flow through statistically isotropic soil samples. (a) Ln(K/Kg) best fit p i = − 0.0484. (b)
(K/Kg) best fit p i = − 0.1517.

is used in both the directions, with 100 nodes per correlation length
along each direction, offering a good statistical resolution in discrete
space (see statistical criteria for numerical simulations in Ababou et al.,
1989 )). Gravity drainage numerical experiments are carried out for var- 
ious fluxes, till the flow reaches a steady-state for each prescribed flux.
Due to statistical isotropy (i.e., the geometrical isotropy of the random
soil structure), the mean suction averaged over depth is nearly equal to
the mean suction obtained by averaging over the whole 2D domain (the
discrepancy is only 10 − 2 m).

Accordingly, a series of numerical infiltration simulations are per- 
formed, for several infiltration rates (5E-1, 1E-1, 5E-2, 1E-3, 5E-4, 11E-4,
5E-5, and 1E-5 m/d), and the corresponding steady-state pressure field
is obtained in each case.

Fig. 17 a shows such a field for a mean suction of 0.307 m, obtained
with a flux rate of 0.50 m/d. Fig. 17 b shows the dependence of suction
variance on mean suction. This plot is obtained from several numeri- 
cal experiments, with the resulting suction fields having different mean
values.

Fig. 18 shows the best-fitted curve of upscaled conductivity from
power averaging theory (PAM), with a fitted power “p i ” equal to
− 0.0484 for the best Ln(K/Kg) fit, and − 0.1517 for the best K/Kg fit.
Thus, as anticipated, the numerical results, in this case, are quite close
to the geometric mean curve (p i = 0) although the fitted exponent is
slightly negative (p i ≈ - 0.05). The dimensionless capillary length scale

is ��z = 8.133 >> 1, which should indeed yield a result close to the
geometric mean curve (p i = 0).

In summary, the effective conductivity curve is close to the geomet- 
ric mean curve, although somewhat smaller, leaning slightly towards
the harmonic mean curve. Though the numerical effective conductiv- 
ity values in Fig. 18 (a,b) match quite well to those obtained analyt- 
ically, it is seen that the theoretical results diverge from the numeri- 
cal conductivity values for higher suctions. This occurred also in other
cases, 1D as well as 2D. This limitation has been rightly pointed out by
many researchers ( Ababou (1991a , Mantoglou and Gelhar, 1987 ) and
Khaleel et al. (2002) ), namely, that analytical upscaling can only be ap- 
plied to relatively low suction values.

On the other hand, the theoretical results are not expected either to
hold good near saturation (near zero suctions), the reason being that
the theories use the exponential Gardner conductivity curve, which is
easy to handle due to its log-linearity, but which cannot be valid near
saturation (not valid below some low suction value like the bubbling or
air entry suction). Another shortcoming is the limit on soil variability:
the analytical and spectral perturbation results are limited to low vari- 
ability, and may not hold for standard deviations larger than unity in
terms of the log-parameters of the soil. In addition, though in numeri- 
cal upscaling we can increase the variance a bit, a very high variance
has been found to cause convergence problems and large computational
time.



Overall, concerning the set of results obtained in this section for 
the upscaled conductivity curves in different cases, it is interesting to 
note that in all three cases considered, the effective conductivity 
curves ob- tained by numerical simulations match relatively well 
with the analyti- cal results given by Eqs.5 and 6 given earlier from 

spectral perturbation theory ( Yeh et al., 1985 a, Yeh et al., 1985 b 
Gelhar 1993) , and matched even better the best fitted Power 
Average Model of Eqs. (8a), (b), (c)( Ababou (1991 a), Ababou 
(1993),  Bagtzoglou et al. (1994)) ; and also better than Classical 
means.

Another remark is that the variance of tension (suction) for verti- 
cal flow parallel to bedding is smaller than the variance for vertical 
flow perpendicular to bedding. This suggests more tortuous flow paths 
(comparatively) in the case of vertical flow perpendicular to horizontal 
stratification.

4.3. Transport simulation results

4.3.1. Numerical experiments of tracer transport
In this section, the 2D steady flows are used as input “parameters ” 

for the ADE transport equation. The “flow parameters ” are the Darcy ve- 
locity vector field q(x,z) and the moisture content field �(x,z). The tracer 
velocity vector v(x,z), or pore velocity, is obtained from: v(x,z) = q (x,z)/
�(x,z). The solute is released as a slug input from the top of the domain 
during a very short time. For all the cases considered, initial conditions 
and input conditions of the solute are kept the same (as described ear- 
lier).

At each sampling time, the 2D concentration plume is averaged over 
the horizontal width of the flow domain to obtain vertical concentration 
profiles as a function of depth. Recall that the flow was always vertical, 
with either horizontal bedding or vertical bedding; the transverse aver- 
aging of concentration is performed in both cases, resulting in vertical 
profiles C(z,t) in both cases.

4.3.2. Analyses of space-time concentration fields C(x,z,t)
The general procedure for transport simulations is to use the stochas- 

tic unsaturated flow simulations of the previous section in order to gen- 
erate transient simulations of unsaturated transport on the previously 
obtained 2D flow fields in the (x,z) plane. The steady suction fields

 (x) analyzed in the previous section are re-used here. The steady mois- 
ture content field �(x) is deduced from  (x) using the van Genuchten
moisture-suction relationship: �(x) = �(  (x)). The steady pore veloc- 
ity field v(x) is computed from unsaturated Darcy’s law, q = - K(h,x)
∇ ( h + z ), or equivalently, q = + K ( �,x) ∇ (   - z), and from the veloc- 
ity/flux relation, v(x) = q (x)/ �(x), where v is the pore water velocity
( “tracer velocity ”), while q is the so-called Darcy velocity or areal flux
density; suction   is the negative of pressure head h (   = - h), and � is
volumetric water content or “moisture ”.

Firstly, starting with the case of statistically anisotropic 2D random
soil, the solute plume movement is simulated for vertical flow perpen- 
dicular to horizontal stratification. The concentration field is shown in
Fig. 19 a three days after the release of the slug from the top surface, and
Fig. 19 b shows the length averaged concentration distribution plotted
at different times, across the depth. Due to horizontal stratification, the
solute plume moves down like a strip, whose thickness is related to the
duration of the slug and to the dispersion process. At later times, the
plume develops a smooth wave-like form with little lateral spreading,
as can be seen in Fig. 19 a and b. Because the horizontal strata are per- 
pendicular to the direction of flow, there is a possibility that the strat- 
ification is obstructing vertical flow, and obstructing also the vertical
spreading of the plume during its descent.

Solute plume transport is analyzed for 2D anisotropic heterogeneous
soil samples, for the case of steady vertical flow parallel to bedding also
(the strata are now vertical). Fig. 20 a shows snapshots of the solute
plume at five days, after the release of the solute slug at the top of the
flow domain. Fig. 20 b shows the length averaged concentrations at dif- 
ferent times for this case.

The effect of heterogeneity is more significant in the present case
(vertical flow parallel to bedding), compared to the case of vertical flow
perpendicular to bedding. In the present case, the vertical stratification
is parallel to the direction of solute movement. The solute plume tends to
disperse in the form of “fingers ” at low permeability zones, resulting in
more dispersion due to steep velocity gradients. The solute plume seems
to have a somewhat “erratic ” behavior, which increases with time as it
continues to spread laterally.

Secondly, we use a statistically isotropic sample of 2D soil, which
was studied in the previous section in terms of unsaturated flow. A
steady-state suction field of mean suction 0.307 m was previously ob- 
tained from the unsaturated flow simulation ( Fig. 17 a). The correspond- 
ing moisture and velocity fields are used as input for the transient sim- 
ulation of unsaturated solute transport. Fig. 21 a (Left) shows the corre- 
sponding solute plume at t = 1 day, i.e., one day after the release of the
solute at the top of the domain. The concentration values are averaged
in the horizontal direction (normal to the vertical flow), and plotted as
a function of depth at various times. Fig. 21 (b) shows these transversely
averaged concentration profiles as a function of depth, at different times
after the release of the conservative tracer at the top boundary. In com- 
parison with the stratified random medium, the solute shows less dis- 
persion but erratic movements here in the statistically isotropic random
medium. For example, some discontinuous patches of concentration oc- 
cur locally, which can be seen in Fig. 21 a.

Comparing now the different cases, it is observed that the lateral
spreading of the solute was more significant in the anisotropic case
with flow parallel to bedding [Fig. 20] compared to the isotropic case
[Fig. 21] and compared to the case of flow perpendicular to bedding
[Fig. 19]. For the isotropic case and the anisotropic perpendicular flow
case, the width averaged solute plume appears to be Gaussian, even at
large times. This indicates the maintenance of the Fickian dispersion
regime even at late times. On the other hand, in the case of “parallel
flow ”, the concentration profiles seem to lose their initial bell curve
shape as time grows, which indicates that the solute plume does not
disperse according to Fick’s law at later times.

4.3.3. Spatial moments of the solute plume vs. time, and macro-dispersion
The concentration field shows considerable variability in space and

time, which was illustrated in the previous section. This variability can
be attributed to the heterogeneity of the soil, represented by spatially
correlated (auto-correlated) random field parameters. Concentration
plume variability is accompanied by large scale dispersion or macro- 
dispersion. This can be assessed through the analysis of the spatial mo- 
ments of the solute plume vs. time.

For the two-dimensional (2D) flow domains (x,z) considered here, we
have calculated the spatial moments of the unsaturated solute plume, as
a function of time. It has been observed earlier that the variability of the
concentration field is much more important in the direction of the mean
flow than in the direction perpendicular to flow. This occurs when the
medium is stratified horizontally, orthogonally to the mean flow. Thus,
we decide here to analyze the plume moments only in the direction of
the mean flow (z).

The zero-order, first-order, and second-order spatial moments of a
concentration plume were defined earlier in Eq. (20) , (21) & (22) . The
calculated first-order moments of the solute plume, Mz(t), are shown
graphically vs. time for all the three cases considered as follows: (i)
anisotropic field with imperfect stratification: the case of horizontal
strata perpendicular to flow ( Fig. 22a ); (ii) anisotropic field with imper- 
fect stratification: the case of vertical strata parallel to flow ( Fig. 23 a);
and (iii) isotropic soil structure ( Fig. 24 a).

It can be seen from the figures that the mean vertical displacements
Z(t) = Mz(t)/Mo(t) behaves similarly in all the three cases, that is, lin- 
early with time. Since the Lagrangian velocity of the center of mass is
defined as U(t) = dZ/dt, and Z(t) is linear in time, the Lagrangian U(t)
is therefore constant during the movement of the plume, that is, U(t)
≈ Uo constant. Recall also that the numerically simulated Eulerian flow



Fig. 19. (a) Left: Two-dimensional solute plume at t = 3 days, for flow perpendicular to bedding, with mean suction 0.30 m. (b) Width averaged concentration
profiles at different times, for flow perpendicular to the bedding (anisotropic, imperfect stratification).

Fig. 20. Time evolution of two dimensional solute plume for the case of vertical flow parallel to bedding (mean suction 0.30 m). (a) Top Left: concentration plume
C(x,z,t) at t = 5 days. (b) Right: horizontally averaged concentration profiles as a function of depth, C(z,t), shown at three different times ( t = 1 day, t = 5 days, t = 9
days).

Fig. 21. Time evolution of solute plume for flow through a statistically isotropic soil. (a) Relative Concentration distribution after 1 day. (b) Width averaged value
of the same at vertical mid-section of the domain at different times



Fig. 22. (a) First moment Mz(t) and (b) Second-moment Mzz(t) about the center of mass for flow perpendicular to stratification (vertical flow, horizontal strata).

Fig. 23. (a) First moment Mz(t) and (b) Second-moment Mzz(t) about the center of mass for flow to parallel to stratification (vertical flow, vertical strata).

Fig. 24. (a) First Moment Mz(t) and (b): Second Moment Mzz(t) about the center of mass Mz(t) for flow in statistically isotropic soil (vertical flow, no stratification).

field is random in space but steady in time. The vertically averaged Eule- 
rian velocity is 3.56 m/day and 3.66 m/day for flow perpendicular and
parallel to stratification, respectively. This indicates the slightly faster
movement of the plume in the case of vertical stratification, as expected.

The second-moment Mzz(t)is plotted with respect to time in
Figs. 22 (b), 23(b) & 24 (b) for all three cases considered: (i) Vertical flow

perpendicular to strata; (ii) Vertical flow parallel to strata; (iii) Vertical
flow in structurally isotropic soil respectively.

To study further the behavior of second moment M zz (t), or better,
the dispersion variance �zz 

2 (t), we propose to re-analyze its time evolu- 
tion on a log-log plot. Furthermore, we analyze also the time-dependent
quantities D(t) [m 2 /d] and A(t) [m], defined earlier. Recall that D(t)



Table 4 
Macro-dispersion coefficient (D) and macro-dispersivity length scale (A) for solute
transport through different kinds of randomly heterogeneous soil samples.

Upscaled parameters: 
macro-dispersion & 
macro-dispersivity 

Isotropic soil Anisotropic soil 

Perpendicular flow Parallel flow 

D [m 2 /d] 0.006 [m 2 /d] 0.0755 [m 2 /d] 0.8827 [m 2 /d] 

A [m] 0.001 [m] 0.021 [m] 0.2412 [m] 

and A(t) are Lagrangian versions of the vertical macro-dispersion (D)
and macro-dispersivity length (A). As previously noted, these quantities
would be constant in time if the macro-dispersion process behaved like
Fickian diffusion (here we focus on longitudinal, vertical dispersion).

The calculated (fitted) constant transport coefficients, macro- 
dispersion (Do) and macro-dispersivity (Ao), are given in Table 4 .

As can be seen in Table 4 , for flow perpendicular to stratifica- 
tion (horizontal strata), the longitudinal macro-dispersion coefficient is
D o = 0.0755 m 2 /d, and the longitudinal macro-dispersivity length scale
is A = 0.021 m. For the flow parallel to stratification (vertical strata),
the values are D o = 0.8827 m 2 /d and A = 0.2412 m. Thus, vertical
macro-dispersivity is much higher for vertical flow parallel to strata,
compared with vertical flow perpendicular to strata. This explains (or
this is consistent with) the observed stronger vertical spreading of the
plume in the flow direction, parallel to stratification. For the statistically
isotropic random soil (which is not stratified), the longitudinal vertical
macro-dispersion and macro-dispersivity coefficients are even smaller:
Do = 0.006 m 2 /d and A o == 0.001 m. This result indicates that there
is much less vertical spreading of the pollutant in a non-stratified soil,
compared to stratified soils.

For completeness, we note that stochastic solutions for the macro- 
dispersivity through stratified media are given quasi-analytically by
Gelhar and Axness, 1983 for saturated flow. In the present study,
macrodispersion is more complex: the flow is unsaturated, with spa- 
tially variable velocity vector and spatially variable moisture content,
through the randomly heterogeneous soil.

5. Summary and conclusions

Using a single realization approach, upscaling of unsaturated flow
and transport properties of the randomly heterogeneous medium is stud- 
ied by numerical simulations. The effects of perfect layering and im- 
perfect layering (statistical anisotropy) on flow and transport are an- 
alyzed. To study the anisotropy dependence, the mean flow direction
is taken as either perpendicular or parallel to the layering (perfect or
imperfect). For conductivity upscaling, the local conductivity-suction
curve of the heterogeneous soil is assumed to follow Gardner’s ex- 
ponential conductivity-suction model, with two random field parame- 
ters: saturated conductivity Ks, and the slope parameter �. The unsat- 
urated steady flow experiments proposed in this paper are performed
under conditions such that the flow is gravitational on average, with
< d  /dz > = 0 (zero mean suction gradient). However, this is only an
average condition. Since the soil is heterogeneous, there occur small
scale fluctuations of the suction gradient (implying that d  /dz ≠ 0 al- 
most everywhere locally). These local capillary fluctuations influence
the mean suction of the profile, and they generate on average some capil- 
lary effects on the effective conductivity curve, which are difficult to pre- 
dict analytically but are seemingly well captured by the semi-empirical
Power Average Model (and by the theoretical spectral perturbation so- 
lutions with some limitations).

The heterogeneous � parameter of Gardner’s exponential conduc- 
tivity curve plays an important role. It can be interpreted as a pore size
distribution parameter, whose inverse represents a capillary length scale
(1/ � = �CAP ). In the analyses of results, this capillary scale is compared

to layer thickness or correlation length ( �Z ) to produce a dimension- 
less capillary number � �Z . The cases ��Z ~ 1, ��Z < 1, and ��Z ⟩> 1 are
explored.

It was found that perfectly stratified unsaturated soils can (some- 
times) behave like saturated media, with arithmetically averaged K(  )
in parallel flow and harmonically averaged K(  ) in the perpendicular
flow; however in other cases, depending on flow regime and layer thick- 
ness, this classical behavior does not hold good.

The numerically upscaled principal conductivity curves match quite
well the PAM, better than the classical means (Arithmetic, Geometric,
Harmonic), and also somewhat better than the curves obtained from
stochastic spectral perturbation theory. It is observed that the upscaled
principal components K ii (  ), obtained numerically and with the PAM
along directions “i ” perpendicular/parallel to perfect stratification co- 
incide with the harmonic/arithmetic mean curves at low suctions (i.e.,
near saturation), but deviate from it and come closer to the geometric
mean at higher suctions (lower saturation). This motivates the use of
the PAM, and appears suitable for generation of approximate upscaled
conductivity curves to represent the average behavior of heterogeneous
unsaturated soils, especially for instance, the mesh-scale or block-scale
conductivity curves in large scale simulation codes.

Overall, it was shown that the behavior of effective unsaturated con- 
ductivity (nonlinear and anisotropic) can be captured parametrically via
a probabilistic nonlinear ‘Power Average Model’, where the product ��Z
plays a direct role. The latter model was compared to linearized spec- 
tral perturbation theory: the two models are in a way “complementary ”;
they are not exclusive of each other, and they can be made to coincide
totally in some cases.

Numerical simulations of unsaturated solute plume migration, ad- 
vective and dispersive, were also analyzed, based on the single real- 
ization approach. The steady-state unsaturated flow fields computed in
the first part were used for that purpose (with the mean flow direc- 
tion taken vertical in all the cases). The simulated solute plumes exhibit
different types of spreading depending on soil structure (isotropic, hor- 
izontally stratified, and vertically stratified). In the case of statistically
isotropic soil (no strata), lateral and longitudinal spreading is less sig- 
nificant (compared to the other cases), and there will be discontinuous
concentration patches in the flow domain.

In the case of statistically anisotropic soils, the solute plume moves
down as a smooth strip in case of vertical flow perpendicular to strat- 
ification, and the concentration distribution is Gaussian even at later
times, indicating Fickian macro-dispersion. In the case of vertical flow
parallel to stratification, the longitudinal spreading is more significant.
Also, the solute plume is not Gaussian at later times, showing that
the macro-dispersion processes diverge from Fick’s law as time grows.
The upscaled macro-dispersivity length scale (in meters) is found to
be higher for vertical flow parallel to stratification, compared to ver- 
tical flow perpendicular to the stratification. On the other hand, for the
structurally isotropic soil (without stratification), the macro-dispersivity
length scale is much smaller compared to two previous results.

The results obtained with flow and transport justify the use of sin- 
gle realization simulations, provided that the size of the realization is
much larger than the scale of fluctuations due to heterogeneity. Admit- 
tedly, the relevant fluctuation scales to be considered for satisfying this



“single realization criterion ” may depend on the objectives of the 
anal- ysis, and they may involve a combination of the fluctuation 
scales of material properties (which are given) and of the resulting 
random fields such as suction gradient (which are less well known). 
At any rate, in the absence of other information, this single 
realization approach can be implemented on a domain much larger 
than the known fluctuation scales of material properties, as we have 
done here. With this provision, the single realization approach is 
more convenient and less tedious nu- merically than Monte-Carlo 
simulations. In the latter case, the multiple simulations would deal 
with uncertainty through an ensemble of repli- cates, while the 
present single realization approach deals with a large (representative) 
single heterogeneous sample.

In summary, the effects of heterogeneity on flow and transport, 
and on effective upscaled coefficients, were studied by performing 
single re- alization simulations of flow and transport on randomly 
heterogeneous, auto-correlated soil samples, with various spatial 
structures. In all cases, the hydraulic properties of the coarse sand 
from the Upper Hanford site (Washington state) were used for the 
mean hydraulic properties of the random soil samples. Statistically 
isotropic and anisotropic soils, with steady flow perpendicular and 
parallel to stratification, were consid- ered for the numerical flow 

experiments, from which effective conduc- tivity curves were 
analyzed. Based on the calculated flow fields, two- dimensional 
transient simulations of tracer transport were then per- formed, from 

which spatial moments of the unsaturated solute plume were 
calculated, leading to macro-dispersion analyses.

Funding

This research did not receive any specific grant from funding 
agen- cies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to 
influence the work reported in this paper.

CRediT authorship contribution statement

Veena S. Soraganvi: Software, Validation, Writing - original draft, 
Writing - review & editing. Rachid Ababou: Conceptualization, 
Methodology, Writing - review & editing. M.S. Mohan Kumar: Soft- 
ware, Validation, Writing - review & editing.

Acknowledgments

The authors gratefully acknowledge the useful comments and hints 
by the anonymous reviewers.

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi: 10.1016/j.advwatres.2020.103655. 

References

Ababou, R.,  2018. Capillary Flows in Heterogeneous and Random Porous Media. In: Cap- 
illary Flows in Heterogeneous and Random Porous Media 1, 1. ISTE Ltd and John 
Wiley & Sons, p. 371 Inc. ISBN 978-1-84821-528-3: Vol. 1, First printing, Nov. 2018.  

Ababou, R.,  1991b. Probabilistic Analysis of Unsaturated Conductivity: Anisotropy, Cross- 
ing Point, and Upper Envelope; Section 6.3, Chapter 6. In: Patrick, W.C (Ed.), Stochas- 
tic Analysis of Flow and Transport, ( pp. 6-1 to 6-45) in: Report on Research Activities 
for the Quarter April 1 through June 30, 1991. Report CNWRA 91-02Q, ed.. CNWRA, 
San Antonio TX Aug. 1991 [Later published in 1993 as NUREG report: see Ababou 
1993] . 

Ababou, R. , 1991a. Approaches to large scale unsaturated flow in heterogeneous, strati- 
fied, and fractured geologic media. Report NUREG/CR 5743, U.S. Nuclear Regulatory 
Commission,. Govt. Printing Office, Washington D.C., p. 150 . 

Ababou, R. , 1993. Probabilistic Analysis of Unsaturated Conductivity: Anisotropy, Cross- 
ing Point, and Upper Envelope: Section 6.3, Chapter 6 (Stochastic Analysis of Flow and 
Transport) . In: Patrick, W.C. (Ed.), Report on Research Activities for Calendar Year 
1990, NUREG/CR-5817 (1993) & CNWRA 90-01A (1991), ed. U.S. Nuclear Regul. 
Comm., Washington D.C. . 

Chapter1, pp. 1-25, in: IMA Vol. N°.79 Ababou, R. , 1996. Random porous media flow 
on large 3-D grids: numerics, performance, and application to homogenization. In: 
Wheeler, M.F. (Ed.), Mathematics and Its Applications: Environmental studies - math- 
ematical, Computational and Statistical Analysis, 79. Springer, New York, pp. 1–25 
[cf. Appendix B in this reference] . 

Ababou, R., Gelhar, L.W., et al., 1988. A high-resolution finite difference simulator for 3D 
unsaturated flow in heterogeneous media. In: Celia, M., et al. (Eds.), Proceedings of 
the 7th Conference on Computer Methods in Water Resources 35, 1. Elsevier & Com- 
puter Mechanical Publication, New York. Published in: Development in Water Sci- 
ence 12/1988, pp. 173–178. https://doi.org/10.1016/S0167-5648(08)70334-4 Vol. 
1 June 1988. 

Ababou, R. , Gelhar, L. W. , McLaughlin, D. , 1988. “Three-dimensional flow in random 
porous media ”. Tech. Report No. 318. Ralph Parsons Laboratory For Water Resources 
and Hydrodynamics, 2. Department of Civil Engineering, Massachusetts Institute of 
Technology (MIT), Cambridge, Massachusetts, USA, p. 833 March 1988 . 

Ababou, R. , McLaughlin, D. , Gelhar, L.W. , Tompson, A.F.B. , 1989. “Numerical simulation 
of three dimensional saturated flow in randomly heterogeneous porous media. Transp. 
Porous Media 4 (549–;), 549–565 1989 . 

Ababou, R. , Sagar, B. , Wittmeyer, G. , 1992. “Testing procedures for spatially distributed 
flow models. Adv. Water Resour. 15, 181–198 . 

Bagtzoglou, A.C. , Mohanty, S. , Nedungadi, A. , Yeh, T.-C.J. , Ababou, R. , 1994. Effective 
hydraulic property calculations for unsaturated, fractured rock with semi-analytical 
and direct numerical techniques: review and applications. Monographic Series ISSN 
1547-3023,: Southwest Research Institute, San Antonio TX, p. 178 Report CNWRA 
94-007March 1994, 8 Chapters .

Ababou, R. , T.C.-J., Yeh , Nedungadi, A , 1993. Verification of Effective Continuum Sub- 
models: Section 6.3, Chapter 6 (Stochastic Analysis of Unsaturated Flow and Trans- 
port). In: Patrick, W.C. (Ed.), Report NUREG/CR-5817 & CNWRA 92-01S (NRC High- 
-Level Radioactive Waste Research at CNWRA January-June 1992), ed. U.S. Nuclear
Regul. Comm., Gov. Printing Office, Washington DC 1993 .

Bear J., (1979) “Hydraulics of groundwater ”, Mc.Graw Hill series in Water Resources and 
Environmental Engineering. 

Bear, J. , Bachmat, Y , 1986. “Macroscopic modeling of transport phenomenon in porous 
media. 2: applications to mass, momentum and energy transport. Transp. Porous Me- 
dia 1, 241–269 . 

Carvallo, H.O. , Cassel, D.K. , Hammond, J. , Bauer, A. , 1976. Spatial variability of in situ 
unsaturated hydraulic conductivity of Maddock sandy loam. Soil Sci. 121, 1–8 . 

Dagan, G. , Fiori, A. , Jankovic, I. , 2013. Upscaling of flow in heterogeneous porous for- 
mations: critical examination and issues of principle. Adv. Water Resour. 51 (2013), 
67–85 . 

Desbarats, A.J. , 1992. Spatial averaging of hydraulic conductivity in three-dimensional 
heterogeneous porous media. Math. Geol. 24 (3), 249–267 1992 . 

Freeze, R.A. , Cherry, J.A. , 1979. Groundwater. Prentice Hall, Englewood Cliffs, NJ . 
Gardner, W.R. , 1958. Some steady state solutions of the unsaturated moisture flow equa- 

tion with application to evaporation from a water table. Soil Sci. 85 (4), 228–232 
1958 . 

Gelhar, L.W. , 1993. Stochastic Subsurface Hydrology. Prentice Hall, Englewood Cliffs, 
New Jersey, p. 390 1993 . 

Gelhar W., L. , Axness L., C. , 1983. Three-dimensional stochastic analysis of macrodisper- 
sion in aquifers. Water Resour. Res. 19, 161–180 . 

Harter, T. , Yeh, T.-C.J. , 1996. “Stochastic analysis of solute transport in heterogeneous, 
variably saturated soils. Water Resour. Res 32 (6), 1585–1595 . 

Hills, R.G. , Wierenga, P.J. , Hudson, D.B. , Kirkland, M.R. , 1991. “The second Las Cruces 
Trench experiment: experimental results and two dimensional flow predictions. Water 
Resour. Res. 27 (10), 2707–2718 . 

Indelman, P., Dagan, G., 1993. Upscaling of conductivity of heterogeneous formations: 
general approach and application to isotropic media. Transp. Porous Med. 12, 161–
183. https://doi.org/10.1007/BF00616978 , 1993.

Khaleel, R. , Yeh, T.-C.J. , Lu, Z. , 2002. “Upscaled flow and transport properties for hetero- 
geneous unsaturated media. Water Resour. Res 38 (5), 11 1-11.12 . 

Mantoglou, A. , 1992. “A theoretical approach for modeling unsaturated flow in spatially 
variable soils: effective flow models in finite domains and non stationarity. Water 
Resour. Res. 28 (1), 251–267 . 

Mantoglou, A. , Gelhar, L.W. , 1987a. Stochastic modelling of large scale transient unsatu- 
rated flow systems. Water Resour. Res. 23 (1), 37–46 . 

Mantoglou, A. , Gelhar, L.W. , 1987b. Capillary tension head variance, mean soil moisture 
content, and effective specific moisture capacity of transient unsaturated flow in strat- 
ified soils. Water Resour. Res. 23 (1), 47–56 . 

Mantoglou, A. , Gelhar, L.W. , 1987c. Effective hydraulic conductivities of transient unsat- 
urated flow in stratified soils. Water Resour. Res. 23 (1), 57–68 . 

McCord, J.T. , 1991. “Application of second-type boundaries in unsaturated flow modeling. 
Water Resour. Res. 27 (12), 3257–3260 . 

Mualem, Y. , 1984. A modified dependent domain theory of hysteresis. Soil Sci. 137 (5), 
283–291 1984 . 

Orgogozo L., N. Renon, C. Soulaine, F. Hénon, S.K. Tomer, D. Labat, O.S. Pokrovsky, 
M. Sekhar, R. Ababou, M. Quintard (2014): “An open source massively parallel
solver for Richards equation: mechanistic modelling of water fluxes at the water- 
shed scale ”. Comput. Phys. Commun., Vol. 185, No. 12, Dec.2014, pp. 3358–3371.
http://www.sciencedirect.com/science/article/pii/S0010465514002719



Polmann, D.J. , 1990. Application of Stochastic Methods to Transient Flow and Transport in 
Heterogeneous Unsaturated Soils. Department of Civil Engineering, MIT, Cambridge 
MA Ph.D. thesis . 

Polmann, D.J. , McLaughlin, D. , Gelhar, L.W. , Ababou, R. , 1991. “ Stochastic modeling 
of large scale flow in heterogeneous unsaturated soils. Water Resour. Res. 27 (7), 
1447–1458 1991 . 

Polmann, D.J. , Vomvoris, E.G. , McLaughlin, D. , M.Hamminck, E. , Gelhar, L.W. , 1988. “Ap- 
plication of Stochastic Methods to the Simulation of Large-Scale Unsaturated Flow and 
Transport ”. Report NUREG/CR-5094. Nuclear Regulatory Commission, Washington 
D.C., U.S. Report NUREG/CR-5094 - U.S .

Russo, D. , 1983. “A geostatistical approach to the trickle irrigation (in) heterogeneous 
soil. 1. Theory. Water Resour.Res. 19 (3), 632–642 . 

Russo, D. , 1991. “Stochastic analysis of simulated vadose zone solute transport in avertical 
cross section of heterogeneous soils during nonsteady water flow. Water Resour. Res. 
27 (3), 267–283 . 

Russo, D. , Zaidel, J. , Laufer, A. , 2001. “Numerical analysis of flow and transport in a 
variably saturated bimodal heterogeneous porous media. Water Resour. Res. 37 (8), 
2127–2141 . 

Soraganvi , Veena S. , 2005. Numerical and stochastic modelling of flow and transport 
in the vadose zone Ph.D. Thesis. Civil Engineering dept., Indian Institute of Science, 
Bangalore, India . 

Soraganvi, V.eena S., Ababou, R., Mohan Kumar, M.S., 2017. Analysis and upscaling of 
unsaturated flow through randomly heterogeneous soil. ASCE J. Hydrol. Eng. 22 (4). 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001480 , April 2017. 

Soraganvi Veena, S. , Mohan Kumar, M.S. , 2009. “Modeling of flow and advection dom- 
inant solute transport in variably saturated porous media. ASCE J. Hydrol. Eng. 14 
(1), 1–14 . 

Van Genuchten, M.T. , 1980. “A closed-form equation for predicting the hydraulic conduc- 
tivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 1980 . 

Warrick, A.W. , Nielsen, D.R. , 1980. “Spatial variability of soil physical properties in the 
field. In: Hillel, D. (Ed.), Applications of Soil Physics, edited by. 319-344, Academic 
San Diego, Calif . 

Warrick, A.W. , 2005. Effective unsaturated hydraulic conductivity for one dimensional 
structured heterogeneity. Water Resour. Res. 41 (9), W09406 . 

Wierenga, P.J. , Hills, R.G. , Hudson, D.B. , 1991. “The Las Cruces trench site: experimental 
results and one dimensional flow predictions. Water Resour. Res. 27 (10), 2695–2705 . 

Wu, S. , Jeng, Dd-S. , Seymour, B.R. , 2020. “ Numerical Modelling of consolidation-induced 
solute transport in unsaturated soil with dynamic hydraulic conductivity and degree 
of saturation. Adv. Water Resour. 135, 103466 . 

Yeh, T.-C.J. , Gelhar, L.W. , Gutjahr, A.L. , 1985a. “Stochastic analysis of unsaturated flow 
in heterogeneous soils, 1. Statistically isotropic media. Water Resour. Res. 21 (4), 
447–456 . 

Yeh, T.-C.J. , Gelhar, L.W. , Gutjahr, A.L. , 1985b. “Stochastic analysis of unsaturated flow 
in heterogeneous soils, 2. Statistically anisotropic media. Water Resour. Res. 21 (4), 
457–464 . 

Yeh, T.-C.J. , Gelhar, L.W. , Gutjahr, A.L. , 1985c. “Stochastic analysis of unsaturated flow 
in heterogeneous soils, 3. Observations and applications. Water Resour. Res. 21 (4), 
465–471 . 

Yeh, T.-C.J. , 1989. “One dimensional steady state infiltration in heterogeneous soils ”. Wa- 
ter Resour. Res. 25, 2149–2158 . 


