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Many sequences that arise in combinatorics and the analysis of algorithms turn out to
be holonomic (note that some authors prefer the terminology D-finite). In this paper,
we study various basic algorithmic problems for such sequences ( fn)n∈ℕ: how to com-
pute their asymptotics for large n? How to evaluate fn efficiently for large n and/or
large precisions p? How to decide whether fn >0 for all n?

We restrict our study to the case when the generating function f =∑n∈ℕ fn zn sat-
isfies a Fuchsian differential equation (often it suffices that the dominant singularities
of f be Fuchsian). Even in this special case, some of the above questions are related to
long-standing problems in number theory. We will present algorithms that work in
many cases and we carefully analyze what kind of oracles or conjectures are needed
to tackle the more difficult cases.

1. INTRODUCTION

1.1. Statement of the problems
Let 𝕂 be a subfield of ℂ. A sequence ( fn)n∈ℕ∈ℂℕ is said to be holonomic over 𝕂 if it
satisfies a difference equation

Σs(n) fn+s+ ⋅ ⋅ ⋅ +Σ0(n) fn=0, (1.1)

where Σ=Σs𝜎 s+⋅⋅⋅+Σ0∈𝕂[n][𝜎] is a linear difference operator in 𝜎:n↦n+1 with Σs≠0.
(Note that some authors prefer the terminology D-finite or P-finite instead of holonomic.)
Many interesting sequences from combinatorics, the analysis of algorithms, and number
theory are holonomic [42, 11]. We say that ( fn) is 𝕂-holonomic if fn ∈𝕂 for all n ∈ℕ.
We say that the equation (1.1) is non-degenerate if Σs(n)≠ 0 for all n∈ℕ. In that case,
the sequence is entirely determined by its first s coefficients and ( fn) is 𝕂-holonomic
if and only if ( f0, . . . , fs−1)∈𝕂s.

Throughout this paper, we assume that 𝕂=ℚalg is the field of algebraic numbers.
Given a non-degenerate 𝕂-holonomic sequence ( fn)∈𝕂ℕ, one may raise several natural
questions:

Q1. How to compute the asymptotic expansion of fn when n→∞?
Q2. What kind of constants coefficients can occur in the asymptotic expansion of fn?
Q3. How to compute terms fn of the sequence efficiently as a function of n?
Q4. How to decide whether fn >0 or fn ⩾0 for large, all, or infinitely many n ∈ℕ?

(For this question, we assume that fn∈ℚalg∩ℝ for all n.)

∗. This article has been written using GNU TEXMACS [23].
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These questions are related and can be further refined. For instance, it is natural to com-
pute terms fn as elements of 𝕂. However, if n becomes large, then the bit-size of fn is
generally at least proportional to n. When that happens, it may be preferable to switch to
a floating point representation. If we have an asymptotic expansion of fn with suitable
error bounds, then we may exploit that to quickly compute floating point approxima-
tions of the fn for large n. Similarly, if the dominant term of the expansion of fn is positive
and provably dominates the other terms, then we may deduce that fn>0 for large n.

Assuming that the generating function

f (z)≔ �
n∈ℕ

fn zn

is analytic at the origin, it is well known that the asymptotic behavior of the sequence ( fn)
is closely related to the behavior of f near its dominant singularities (i.e. the singularities
of smallest absolute value). As will be recalled in section 2.1, the generating function f
is again holonomic, in the sense that it satisfies a non-trivial linear differential equation
with polynomial coefficients. Holonomic functions can be evaluated extremely efficiently
and their singularities are well understood.

In this paper we will restrict our attention to the special case when at least the dom-
inant singularities of f are Fuchsian (see section 2.2 for a definition). In that case, the
behavior of f near its dominant singularities becomes much simpler and the evaluation
of f near these singularities even more efficient.

In their full generality, the questions Q1, Q3, and Q4 turn out to be very difficult, even
in the Fuchsian case. Indeed, if f is actually a rational function, then the last question Q4
is related to Skolem's problem [30]. More precisely, Skolem's problem asks whether fn=0
for some n∈ℕ. Now if f is a rational function, then so is ∑n∈ℕ fn2 zn, so this question
reduces to testing whether fn >0 for all n ∈ℕ. The hard cases for Skolem's problem
occur when f has several dominant singularities. One archetype example is

fn = 𝜆cos(𝛼n)+𝜇cos(𝛽n)+𝜈 cos(𝛾n), (1.2)

with ei𝛼, ei𝛽, ei𝛾, 𝜆, 𝜇, 𝜈 ∈𝕂∩ℝ. A variant of this problem is also relevant for the ques-
tion Q3: if certain terms of this sequence (1.2) can become “absurdly small”, then the
computation of floating point approximations for these terms may take much longer
than expected, since we need to compute with a precision that exceeds the order of can-
cellation.

On the positive side, examples like (1.2) are fairly pathological, so it remains reason-
able to hope answering our questions for most practical examples from combinatorics
or the analysis of algorithms. One interesting concrete example was studied in [33].
The authors exploit the fact that the then open problem about the uniqueness of the
Canham model for biomembranes reduces to proving the positivity of a certain holonomic
sequence. They solve the latter problem using singularity analysis [11] and techniques
for reliable numerical computations with holonomic functions [8, 18, 19, 34, 35]. In the
present paper, among other things, we will extend this approach to more general holo-
nomic sequences. Note that other approaches to automatically prove the positivity of
sequences were proposed in [15, 29].

In fact, the main purpose of this paper is to provide the best possible answers to ques-
tions Q1–Q4 as long as we do not run into number theoretic trouble. We will also identify
the precise nature of possible trouble, thereby clarifying which problems need to be over-
come if we want to give even better answers. Most of our results rely on well known
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techniques. Our main contribution is therefore a detailed analysis of how to answer the
questions Q1–Q4 as well as possible using these techniques.

1.2. Overview of our contributions
Let us briefly outline the structure of this paper. Section 2 contains reminders about
holonomic functions, Fuchsian singularities, and holonomic constants.

In section 3, we start with questions Q1 and Q2. In order to obtain asymptotic expan-
sions, we use Cauchy's classical contour integral formula for fn and deform the contour
into a finite number of loop integrals around the smallest singularities of f (section 3.1).
Each of these loop integrals is a truncated Mellin-style integral, whose asymptotic expan-
sion can be computed using classical formulas (section 3.2). (In the context of difference
equations, note that some authors use the terminology “Pincherle transform” [39] instead
of “Mellin transform”.) Adding up the contributions from each of the singularities, we
obtain an asymptotic expansion for fn (Theorem 3.2). The coefficients of this asymptotic
expansion can be computed explicitly and expressed in terms of (non-singular) holo-
nomic constants and values of higher derivatives of 𝛾(z)=Γ(z)−1 at points in 𝕂. Using
reliable numeric techniques from [19, 33], one may also compute explicit bounds for the
error of the asymptotic expansion (section 3.3).

Unfortunately, Theorem 3.2 is imperfect in the sense that some of the terms in
the “asymptotic expansion” for fn may cancel out (in which case the bound for the error
becomes larger than the expansion itself). This may actually happen in three different
ways that will be analyzed in detail in section 4.

First of all, consider a holonomic function g that converges on the closed unit disk 𝒟̄1.
Its value g(1) at z=1 is a holonomic constant (and any non-singular holonomic constant
can be obtained in this way). Now f =g/(1−z) is also a holonomic function and the first
term of the asymptotic expansion of fn is given by fn∼g(1) if and only if g(1)≠0. This
shows that we need a zero-test for holonomic constants in order to detect cancellations
of terms in the asymptotic expansion of fn.

A second kind of cancellation may occur between distinct terms in the asymptotic
expansion and only for certain values of n. Consider for example

f (z) = 1
1− z + 1

1+z + 1
1−z/2

fn = 1n+(−1)n+2−n.
Then the dominant terms 1n and (−1)n cancel out for odd values of n. We call this
phenomenon “resonance” and the good news is that it can be entirely eliminated by
considering a finite number of cases in which fn is replaced by a subsequence fΠn+𝜌
with Π∈ℕ> and 𝜌∈{0, . . . ,Π−1} (see section 4.2).

A non-periodic variant of resonance is “quasi-resonance”. Consider for instance the
sequence ( fn)n∈ℕ from (1.2). We say that this sequence is quasi-resonant if, for every
C>0 and 𝜅∈ℝ, there exist an infinite number of n>0 with | fn|>Cn−𝜅. In fact, we con-
jecture that this never happens (Conjecture 4.5), but a proof seems currently out of reach.

Assuming a zero-test for holonomic constants and the absence of quasi-resonance, it
is possible to automatically compute the asymptotic expansion of fn in a strong sense,
without suffering from uncontrolled cancellations (Theorem 4.6). Under these hypotheses,
we also show in section 5 that p-bit floating point approximations for fn can be computed
in smoothly linear time O(p (log p)2 log (n p) log log n): see Theorem 5.2. This bound
is uniform as long as log n=O(p).
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In section 6 we turn to question Q4. Whenever we can compute an asymptotic expan-
sion fnas of fn for which the error | fn− fnas| is strictly smaller than | fn| for n⩾n0, the positivity
of fn can be deduced from the positivity of fnas for n⩾n0 and the positivity of f0, . . ., fn0−1.
However, for a sequence ( fn)n∈ℕ like (1.2) and 𝜅>2, it can be hard decide whether fn+
|𝜆|+ |𝜇|+ |𝜈|>n−𝜅 for all n ⩾n0: what we need here is an even more precise version of
Conjecture 4.5. Nevertheless, this example is fairly pathological. For any 𝜀>0 and 𝜅>0,
we always have fn + |𝜆|+ |𝜇|+ |𝜈| + 𝜀> n−𝜅 for all sufficiently large n. Conversely, if 𝛼,
𝛽, 𝛾, and 2 π are ℚ-linearly independent, then fn + |𝜆| + |𝜇| + |𝜈| − 𝜀< n−𝜅 for infinitely
many n. In section 6, we will show that something similar holds in general, by relying
on sequence counterparts of results from [17].

For our partial answers to questions Q1–Q4, we often only need the dominant sin-
gularities of f to be Fuchsian (except in the case of cancellations in which case we may
also need to consider some of the subdominant singularities). In the last section 7, we
finally mention a few interesting results that hold if f is globally Fuchsian. From bases of
local solutions of the differential equation for f , it is then classical that we may construct
a basis of solutions to the difference equation (1.1) using Mellin transforms based at the
corresponding singularities [39, 36, 13]. We show that this theory can be made fully
effective and also develop a difference counterpart for the concept of transition matrices
from [19]. The Mellin transforms can still be applied in the case when n is replaced with
a complex variable u such that Re u is sufficiently large. This can be used for the con-
struction and efficient evaluation of meromorphic solutions to the difference equation
Σs(u)𝜑(u+ s)+ ⋅ ⋅ ⋅ +Σ0(u)𝜑(s)=0.

One obvious limitation of the present paper is that we only consider the case when
the dominant singularities of f are Fuchsian. The irregular case has been studied exten-
sively from a theoretical point of view [37, 14, 9, 2, 26, 27, 28]. In a forthcoming work, we
intend to investigate this case from a similar perspective as in this paper.

A minor restriction of this paper is that we assumed 𝕂 to be the field of algebraic
numbers. This enables us to prove a quasi-optimal uniform complexity bound for the
computation of a p-bit floating point approximation of fn. For more general subfields
of ℚ⊆𝕂, the results in this paper still go through, but the uniform complexity bounds
in section 5.3 have to be replaced by Õ(p3/2 log n).

2. PRELIMINARIES

2.1. Holonomic functions
A function f (z) is said to be holonomic over 𝕂 if it satisfies a differential equation

Lr(z) f (r)(z)+ ⋅ ⋅ ⋅ +L0(z) f (z)=0, (2.1)

where L=Lr∂r+⋅⋅⋅+L0∈𝕂[z][∂] is a linear differential operator in ∂=∂/∂z with Lr≠0.
Without loss of generality, we may assume that we normalized L so that gcd(L0,...,Lr)=1.
We say that f is 𝕂-holonomic if F(z)≔( f (z), . . . , f (r−1)(z))∈𝕂r at a certain non-singular
point z∈𝕂.

It is not hard to see that a sequence ( fn)n∈ℕ∈ℂℕ is holonomic over 𝕂 if and only if
its generating function f is holonomic over 𝕂. Indeed, using the dictionary

n ⟷ z∂
𝜎 ⟷ z−1
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and modulo normalization, any non-zero operator Σ∈𝕂[n][𝜎] can be rewritten as a non-
zero operator L∈𝕂[z][∂] and vice versa. Then (1.1) holds if and only if (2.1) holds.

Example 2.1. The harmonic numbers Hn=1+ 1
2 + ⋅ ⋅ ⋅ + 1

n satisfy the difference equation

(n+2)Hn+2−(2n+3)Hn+1+(n+1)Hn=0
for all n∈ℕ and the equation

(n+1)(n+2)Hn+2− (n+1)(2n+3)Hn+1+(n+1)2 Hn=0

for all n∈ℤ. According to the above dictionary, this yields the equation

(z∂+1)((z∂+2)(z−2 H)− (2z∂+3)(z−1H)+(z∂+1)H) = 0

which can be rewritten as

z−1∂((z−1)2∂H+(z−1)H) = 0.

Taking Σ=(n+2)𝜎 2−𝜎 +n+1, we thus get L=(z−1)2∂2+3(z−1)∂+1.

Remark 2.2. In the above example, we multiplied the equation by n+1 to make it hold
for all n∈ℤ instead of all n∈ℕ. In general, given a difference equation (1.1) that holds for
all n∈ℕ, we can transform it into a difference equation that holds for all n∈ℤ through
multiplication by (n+1) ⋅ ⋅ ⋅ (n+ s).

From an analytic perspective, if f is holomorphic at the origin, then we may retrieve
the coefficients fn using the Cauchy integral

fn=
1

2πi �
f (z)
zn+1 dz, (2.2)

where we integrate over a circle with center z=0 and a sufficiently small radius.

2.2. Fuchsian singularities
Consider a holonomic function f that satisfies (2.1). The only possible singularities of f
are located at the roots of Lr or at infinity. Modulo a change of variables z↔ z+𝛼 with
𝛼∈𝕂 or z↔ z−1 (for a singularity at infinity), the study of f near such singularities can
be reduced to the case of a singularity at the origin. If Lr(0)=0 and if (modulo multipli-
cation by a power of z) we can rewrite the equation (2.1) as an equation

(Ar(z)(z∂)r+ ⋅ ⋅ ⋅ +A0(z))( f )=0

with A0, . . . ,Ar ∈𝕂[z] and Ar(0)≠ 0, then we say that L is regular-singular or Fuchsian
at z=0. If this is the case at all singularities (modulo the above changes of variables), then
we say that L is Fuchsian. Sometimes, we will also apply this terminology to solutions f
of the equation Lf =0 or to the sequence ( fn)n∈ℕ instead of L. If f is holomorphic at the
origin and the non-zero singularities of smallest absolute value of f are all Fuchsian2.1,
then we say that f (as well as the sequence ( fn)n∈ℕ) is dominant-Fuchsian.

If L is Fuchsian at the origin, then it is well known [12] that (2.1) has a fundamental
system of local solutions (hi, j)1⩽i⩽p,0⩽ j<𝜈i of the form

hi, j∈z𝜅i ((log z)j+ z𝕂{{z}}[log z]),

2.1. If f has no singularities in ℂ, then the assumption that f is Fuchsian at infinity implies that f is actually a
polynomial. In what follows, we will discard this trivial case and assume that f has at least one singularity in ℂ.
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where 𝜅i ∈𝕂, z𝕂={z𝜆 : 𝜆∈𝕂}, 𝜈1+ ⋅ ⋅ ⋅ + 𝜈p= r, and 𝕂{{z}} denotes the ring of conver-
gent power series in z. Moreover, there exists a unique such system of solutions (up
to a permutation of indices) with the property that the coefficient of z𝜅i (log z)j in hi′, j′
vanishes whenever (i′, j′)≠(i, j). We call it the canonical system of solutions at z=0. We
call z𝜅i (log z)j with j<𝜈i a fundamental monomial for L.

If L is Fuchsian at a point 𝛼∈𝕂, we thus have a corresponding canonical system of
solutions h1

𝛼, . . . ,hr
𝛼 with

hi
𝛼∈(z−𝛼)𝕂𝕂{{z−𝛼}}[log (z−𝛼)].

If L is Fuchsian at infinity, then we also have a corresponding canonical system of solu-
tions h1

∞, . . . ,hr
∞ with

hi
∞∈z𝕂𝕂{{z−1}}[log z].

Let H𝛼 be the row vector with entries h1
𝛼, . . . , hr

∞. Given a local solution f to Lf =0 at
z=𝛼∈𝕂∪{∞}, there exists a unique column vector F(𝛼)∈ℂr such that f =H𝛼F(𝛼). We
call F(𝛼) the initial condition or generalized value of f at z=𝛼. This definition still makes
sense at non-singular points, in which case F(𝛼) is simply the column vector with entries
f (𝛼), f ′(𝛼), . . . , f (r−1)(𝛼)/(r−1)!.

2.3. Holonomic constants
For a precise answer to question Q2, it is important to first introduce various relevant
classes of “holonomic constants” that can be obtained as values of holonomic functions.
We will follow [24, section 4.4 and appendix B], while restricting us to non-singular and
regular-singular holonomic constants.

Let ℒ hol and ℒ shol denote the sets of monic L∈𝕂(z)[∂] whose coefficients are respec-
tively defined on 𝒟̄1≔{z∈ℂ : |z| ⩽ 1} and 𝒟1≔{z ∈ℂ : |z| < 1}. Let ℒ rhol be the set of
L∈ℒ shol such that L is at worst regular-singular at z=1. We also define ℒ hola to be the
set of monic operators L∈𝕂(z)[∂] whose coefficients are defined on 𝒟̄0,1∖{0} and such
that L is at worst regular-singular at z=0.

We define ℱ hol, ℱ rhol, and ℱ hola to be the sets of solutions f ∈𝕂{{z}} to an equation
Lf =0, where L ∈ℒ hol, L ∈ℒ rhol, or L ∈ℒ hola, respectively, and such that limz→1 f (z)
exists. Then we define

𝕂hol ≔ { f (1) : f ∈ℱ hol}
𝕂rhol ≔ {limz→1 f (z) : f ∈ℱ rhol}
𝕂hola ≔ { f (1) : f ∈ℱ hola}

We call 𝕂hol the set of holonomic constants and 𝕂hola the set of Fuchsian holonomic constants.
Each of these three sets actually forms a ring [24, Proposition B.1]. Moreover, these three
rings turn out to be closely related (see also [10]):

THEOREM 2.3. [24, Theorem B.5] We have

𝕂hol⊆𝕂rhol⊆𝕂hola⊆𝒳−1𝕂hol,

where

𝒳 ≔ {(1−e−2πi𝛼1) ⋅ ⋅ ⋅ (1−e−2πi𝛼k) :𝛼1, . . . , 𝛼k∈(𝕂∩ℝ)∖ℚ}.
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𝛼3
ℋ2,R

ℋ3,R

𝒜 2,R

ℋ1,R

𝛼2𝛼1

𝒜1,R

𝒜3,R

Figure 3.1. Deformation of a Cauchy contour into a contour of radius R that avoids a finite number
of singularities. Since 𝛼2 and 𝛼3 are aligned with the origin, we slightly modified the directions of
the corresponding truncated Hankel contours ℋ2,R and ℋ3,R to avoid collisions.

Now consider a holonomic sequence ( fn)n∈ℕ ∈𝕂ℕ whose generating function f
belongs to ℱ hola. So Lf =0 for some L∈ℒ hola. Assume that L has a Fuchsian singularity
at 𝛼∈𝕂≠ and let h1

𝛼, . . . ,hr
𝛼 be the canonical system of local solutions at 𝛼. In particular,

there exist unique 𝜆1,...,𝜆r∈ℂ with f =𝜆1h1
𝛼+⋅⋅⋅+𝜆rhr

𝛼. In fact, we have 𝜆1,...,𝜆r∈𝕂hola

(see [24, Proposition B.3]) and we can compute 𝜆1, . . . ,𝜆r using the algorithms from [19].
Here “computing” is understood in the following sense: for any 𝜀∈ℚ> and i=1, . . . , r,
we can compute an approximation 𝜆̃i ∈ℚ[i] of 𝜆i with |𝜆̃i −𝜆i| ⩽ 𝜀. Note that this does
not imply the existence of a zero-test for the constants 𝜆1, . . . , 𝜆r. The zero-test problem
for holonomic constants will be rediscussed in section 4.4 below.

3. ASYMPTOTIC EXPANSIONS

3.1. Decomposing Cauchy contour integrals into Mellin integrals
The traditional method to determine the asymptotics of a sequence fn whose generating
function f is holomorphic at the origin is based on the Cauchy contour integral (2.2):

fn = 1
2πi �

f (z)
zn+1 dz. (3.1)

If f is holonomic, then f has only a finite number of singularities 𝛼1, . . . , 𝛼ℓ, which are all
in 𝕂≠. For some R>0 and m∈{1, . . . , ℓ}, assume that |𝛼i|<R for i=1, . . .,m and |𝛼i|>R for
i=m+1, . . . , ℓ. Then we may deform the contour from (3.1) into a contour that consists
of m truncated Hankel contours ℋ1,R, . . . ,ℋm,R and m residual arcs 𝒜1,R, . . . ,𝒜m,R on the
circle with center 0 and radius R: see Figure 3.1. Then (3.1) becomes:

fn = 1
2πi (((((((((((((((((�k=1

m

�
ℋk,R

f (z)
zn+1 dz+�

k=1

m

�
𝒞 k,R

f (z)
zn+1 dz))))))))))))))))). (3.2)

We may chose the truncated Hankel contours ℋ i to depart radially from the origin toward
infinity. In the degenerate case when the arguments of certain singularities 𝛼i ≠𝛼j coin-
cide, we turn the contours clockwise by a fixed sufficiently small angle: see Figure 3.1.
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Integrals of the form
1

2πi �ℋk,R

f (z)
zn+1 dz (3.3)

are called truncated Mellin integrals3.1. As to the residual integral on 𝒜≔𝒜1,R∪⋅⋅⋅∪𝒜m,R,
we have

|||||||||||||||||
1

2πi �
k=1

m

�
𝒞 k,R

f (z)
zn+1 dz||||||||||||||||| ⩽ �2πR

2πi ⋅ ‖ f ‖𝒜
Rn+1 � = ‖ f ‖𝒜

Rn ,

where ‖ f ‖𝒜 ≔maxz∈𝒜 | f (z)|. Note that an upper bound for ‖ f ‖𝒜 can be computed effi-
ciently using the algorithms from [18].

Most of the remainder of this section is dedicated to determining the asymptotics of
integrals of the form (3.3) in the case when f is Fuchsian at 𝛼k. The integrals for which |𝛼k|
is smallest typically dominate the other ones, but cancellations may sometimes occur, in
which case we will also need to examine the subdominant singularities. Let us consider
one simple example of this phenomenon.

Example 3.1. The rational function

f = 1
1− z2 + 1

2− z
is certainly holonomic, with singularities at 𝛼1=−1, 𝛼2=1, and 𝛼3=2. We have

fn = (−1)n+1n+ 1
2n+1 ,

where we note that (−1)n+1n=0 for odd values of n. In other words, the asymptotics
of fn depends on the parity of n:

fn ≈ 2+O(2−n) (n∈2ℕ)
fn ≈ 1

2n+1 (n∈2ℕ+1)

3.2. Elementary Mellin integrals
Let us first study the very special case when

f = (𝛼−z)−𝜅 (log (𝛼−z))m

with 𝛼∈𝕂≠, 𝜅∈𝕂, and m∈ℕ. Explicit formulas for the asymptotics of the Taylor coef-
ficients fn are well known in this case, but it is convenient to recall the details of this
computation. Modulo a change of variables z=𝛼z′, we may assume assume without loss
of generality that 𝛼=1.

In this special case, for n>−Re 𝜅, the contour integral (3.1) can rewritten into the full
Mellin integral

fn = 1
2πi �ℋ1

+∞

(1− z)−𝜅(log (1−z))m

zn+1 dz,

3.1. The classical Mellin transform uses a straight integration path from z=0 to +∞ instead of a Hankel contours
around 𝛼k. We will say that our Mellin integral is “based at 𝛼k”. The use of a Hankel contours extends the definition to the
case when f is not integrable at 𝛼k. In the context of difference equations, certain authors prefer the terminology “Laplace
transform”, “Pincherle transform”, or “Nörlund transform” instead of “Mellin transform”.
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where ℋ1
+∞ is a Hankel contour from z =+∞ around z =1 and then back to z =+∞.

Setting z=e−𝜁, this formula becomes

fn = 1
2πi �ℋ0

−∞

(1−e−𝜁)−𝜅 (log (1−e−𝜁))m

e−𝜁n d𝜁,

where ℋ0
−∞ is a Hankel contour from 𝜁 = −∞ around 𝜁 = 0 and then back to 𝜁 = −∞.

We regard (1−e−𝜁)−𝜅 (log (1−e−𝜁))m as an element of 𝜁 −𝜅 ((log 𝜁)m+𝜁 ℚ{{𝜁}}[log 𝜁]<m),
where ℚ{{𝜁}}[log 𝜁]<m denotes the set of polynomials in ℚ{{𝜁}}[log 𝜁] of degree <m
in log 𝜁 :

(1−e−𝜁)−𝜅(log (1−e−𝜁))m = 𝜁 −𝜅 �
j⩽m

�
i∈ℕ

𝜓i, j 𝜁 i (log 𝜁)j,

with 𝜓0, j=𝛿j,m (Kronecker delta) and 𝜓i,m=0 for all i>0. Then

fn = 1
2πi �ℋ0

−∞ �
j⩽m

�
i∈ℕ

𝜓i, j𝜁 i−𝜅(log 𝜁)je𝜁nd𝜁. (3.4)

Let

𝛾(𝜆) ≔ 1
Γ(𝜆)

From the classical formula

𝛾(𝜆) = 1
2πi �ℋ0

−∞ 𝜁 −𝜆e𝜁 d𝜁,

we deduce

𝛾 (j)(𝜆) = (−1)j

2πi �
ℋ0

−∞ (log 𝜁)j 𝜁 −𝜆e𝜁 d𝜁,

whence

1
2πi �ℋ0

−∞ (log 𝜁)j𝜁 −𝜆e𝜁nd𝜁 = �
i=0

j (−1)j−i

2πi �j
i�(log n)j−i n𝜆−1�

ℋ0
−∞ (log 𝜁)i 𝜁 −𝜆e𝜁 d𝜁

= �
i=0

j

(−1)j�j
i�(log n)j−i n𝜆−1𝛾 (i)(𝜆). (3.5)

When plugging this identity into (3.4), we obtain an asymptotic expansion

fn ≈ (−1)m

Γ(𝜅) n𝜅−1 (log n)m+ �
j<m

�
i∈ℕ

ci, j n𝜅−1−i (log n)j,

where ci, j ∈𝕂[𝛾(𝜅), 𝛾 ′(𝜅), . . . , 𝛾 (m)(𝜅)] can be computed explicitly. Note that the series
that underlies this expansion usually diverges. It will be useful to introduce

𝕂[𝛾 (ℕ)(𝜅)] ≔ 𝕂[𝛾(𝜅),𝛾 ′(𝜅),𝛾 ′′(𝜅), . . . ]
𝕂[𝛾 (ℕ)(𝕂)] ≔ �

𝜅∈𝕂
𝕂[𝛾 (ℕ)(𝜅)].

3.3. Effective local error bounds
Assume now that L has a Fuchsian singularity at z=𝛼∈𝕂≠ and consider a local solu-
tion f of the form

f ∈ (𝛼− z)−𝜅𝕂{{z−𝛼}}[log (z−𝛼)],
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where 𝛼∈𝕂≠, 𝜅∈𝕂. We recall that general local solutions to Lf =0 are linear combina-
tions of local solutions of this special form. For some 𝜀>0 sufficiently small, consider

fn
𝛼,𝜀 ≔ 1

2πi �ℋ𝛼
𝛼(1+𝜀)

f (z)
zn+1 dz,

where ℋ𝛼
𝛼(1+𝜀) is a Hankel contour from z=𝛼(1+𝜀) around z=1 and then back to z=

𝛼(1+𝜀). Our aim is to determine both the asymptotics of fn
𝛼,𝜀 and an effective bound for

the remainder.
As in section 3.2, we first reduce to the case when 𝛼=1 and then perform the change

of variables z=e−𝜁. Let 𝜓(𝜁)= f (e−𝜁)∈𝜁 −𝜅𝕂{{𝜁}}[log 𝜁] and 𝜚≔log(1+𝜀), so that
1

2πi �ℋ1
1+𝜀

f (z)
zn+1 dz = 1

2πi �ℋ0
−𝜚 𝜓(𝜁)e𝜁nd𝜁

Let T ∈ℕ be a truncation order with T >Re 𝜅 and let

𝜓̃ = 𝜁 −𝜅 (𝜓0(𝜁)+ ⋅ ⋅ ⋅ +𝜓T−1(𝜁)𝜁 T−1)

be the truncation of 𝜓 modulo o(𝜁 T−𝜅), with 𝜓0, . . . , 𝜓T−1∈𝕂[log 𝜁]. Using (3.5), we can
explicitly compute

f̃n
1,∞ ≔ 1

2πi �ℋ0
−∞ 𝜓̃(𝜁)e𝜁nd𝜁

as an element of n𝜅−1𝕂[𝛾 (ℕ)(𝜅)][n−1][log n], whenever n>−Re 𝜅.
Given i, j∈ℕ, let us now study the difference

Δ ≔ 1
2πi �ℋ0

−∞ 𝜁 i−𝜅(log 𝜁)je𝜁nd𝜁 − 1
2πi �ℋ0

−𝜚 𝜁 i−𝜅 (log 𝜁)j e𝜁nd𝜁.

We have

Δ ⩽ eπ|Im𝜅|

π �
𝜚

∞
𝜁 i−Re𝜅(π+|log 𝜁|)j e−𝜁nd𝜁.

Moreover, assuming that 𝜀⩽1, we have |𝜁 e−𝜁|⩽e−1 and |(π+ |log 𝜁|) e−𝜁|⩽5+ |log 𝜀| for
𝜁 ∈[𝜚,∞), so

Δ ⩽ 1
πn eπ|Im𝜅|+Re𝜅−i (5+ |log 𝜀|)j (1+𝜀)−n−Re𝜅+i+ j.

Since 𝜓̃ is a linear combination of functions 𝜁 i−𝜅 (log 𝜁)j with i, j∈ℕ, this allows us to
compute an explicit bound

� 1
2πi �ℋ0

−∞ 𝜓(𝜁)e𝜁nd𝜁 − 1
2πi �ℋ0

−𝜚 𝜓̃(𝜁)e𝜁nd𝜁� ⩽ C (1+𝜀)−n,

for a suitable constant C>0.
Since f is Fuchsian at z=1, by taking 𝜀 sufficiently small, we can use the algorithms

from [19] to compute a bound

|𝜓(𝜁)− 𝜓̃(𝜁)| ⩽ B |𝜁 |T−Re𝜅

on the compact disk with center 0 and radius 𝜚, Consequently,

� 1
2πi �ℋ0

−𝜚 (𝜓(𝜁)− 𝜓̃(𝜁))e𝜁nd𝜁� ⩽ B
π �

0

𝜚
𝜁 T−Re𝜅e−𝜁nd𝜁

⩽ B
π Γ(T −Re 𝜅+1)nRe𝜅−T−1.
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Altogether, we may compute constants B ′, C > 0 and polynomials c0, . . . , cT−1 ∈
𝕂[𝛾 (ℕ)(𝜅)][log n] such that

� fn1,𝜀− (c0(log n)+ ⋅ ⋅ ⋅ + cT−1(log n)n−(T−1))n−𝜅−1� ⩽ B′nRe𝜅−T−1+C(1+𝜀)−n,

for all n>−Re 𝜅.
To conclude this section, let us finally consider a solution f to Lf =0 with fn∈𝕂 for

all n∈ℕ. Let h1
𝛼, . . . ,hr

𝛼 be the fundamental system of local solutions to Lh=0 with

hi
𝛼 ∈ (𝛼− z)−𝜅i𝕂{{z−𝛼}}[log (z−𝛼)]

for i=1, . . . , r. Using the algorithms from [19], we may compute the unique constants
𝜆1, . . . , 𝜆r∈𝕂hola such that f =𝜆1h1

𝛼+ ⋅ ⋅ ⋅ +𝜆r hr
𝛼. Let 𝜈∈ℝ with 𝜈⩾max{Re 𝜅1, . . . ,Re 𝜅r}

be fixed. Given i∈{1, . . . , r} and Ti ≔⌈𝜈 −Re 𝜅i +1⌉∈ℕ, we have shown above how to
compute polynomials ci,0, . . . ,ci,T−1∈𝕂[𝛾 (ℕ)(𝜅i)][log n] and constants Bi,Ci such that

|(hi
𝛼)n

𝛼,𝜀−(ci,0(log n)+ ⋅ ⋅ ⋅ + ci,Ti−1(log n)n−(Ti−1))n𝜅i−1𝛼−n| ⩽ Bi n−𝜈 |𝛼|−n+Ci |𝛼+𝜀𝛼|−n,

for all n>𝜈. Setting B∗=|𝜆1|B1+ ⋅ ⋅ ⋅ + |𝜆r|Br and C∗=|𝜆1|C1+ ⋅ ⋅ ⋅ + |𝜆r|Cr, it follows that

||||||||||||||||| fn
𝛼,𝜀− �

i, j<Ti

ci, j(log n)n𝜅i−1− j𝛼−n

||||||||||||||||| ⩽ B∗n−𝜈 |𝛼|−n+C∗ |𝛼+𝜀𝛼|−n,

for all n>𝜈.

3.4. Asymptotic expansions with effective error bounds
Let us now return to the general setting from subsection 3.1: for some R > 0 and
m∈{1, . . . , ℓ}, we assume that |𝛼i| <R for i=1, . . . ,m and |𝛼i| >R for i=m+1, . . . , ℓ. We
also assume that each of the singularities 𝛼i with i∈{1, . . . ,m} is Fuchsian.

In the previous subsection, we have seen how to compute asymptotic expansions
with effective error bounds for the truncated Hankel integrals

1
2πi �ℋ𝛼i

𝛼i(1+𝜀)

f (z)
zn+1 dz,

for i=1,...,m. Assuming that |𝛼i| (1+𝜀)⩽R, the truncated Hankel contour ℋ i,R consists of
ℋ𝛼i

𝛼i(1+𝜀) and two straight stretches between 𝛼i(1+𝜀) and 𝛼i(R/|𝛼i|). Using the algorithms
from [18], we may compute a bound ‖ f ‖i for | f | on these two stretches. Then we have

|||||||||||||||
1

2πi �ℋ i,R

f (z)
zn+1 dz− 1

2πi �ℋ𝛼i
𝛼i(1+𝜀)

f (z)
zn+1 dz||||||||||||||| ⩽ � 2

2π �
|𝛼i|(1+𝜀)

R ‖ f ‖i

zn+1 dz�

⩽ ‖ f ‖i
π|𝛼i+𝛼i 𝜀|n

.

Combining this with the bounds for the residual integrals, this gives a first answer to
questions Q1 and Q2:

THEOREM 3.2. Let f, m, ℓ, R, 𝜀, and 𝛼1, . . . , 𝛼ℓ be as in the text above. For any 𝜈1, . . . , 𝜈m∈ℝ, we
can compute an asymptotic expansion fnas for fn in 𝕂[𝛾 (ℕ)(𝕂)][(𝕂≠)n,n𝕂, log n] together with
bounds Bi,Ci,E∈ℚ> and n0∈ℕ such that

| fn− fnas| ⩽ �
i=1

m Bi
n𝜈i |𝛼i|n

+�
i=1

m Ci
|𝛼i+𝛼i 𝜀|n

+ E
Rn , (3.6)
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for all n⩾n0.

Remark 3.3. Theoretically speaking, the error at the right hand side of (3.6) can be
replaced by a single term of the form Bn−𝜈 |𝛼i|−n, where |𝛼i| is smallest among |𝛼1|, . . . , |𝛼m|.
However, from a numerical point of view, some of the Bi and Ci may be very small (or
even zero), in which case it may be preferable to use the error bound from the theorem.
We will return to this issue in section 4.4 below. DEEF

4. PERIODIC OR QUASI-PERIODIC CANCELLATIONS

4.1. Classical results for rational functions
In Example 3.1, we have seen that the contributions of more than one dominant sin-
gularity may cancel out in a periodic fashion. Is it possible to predict when this phenom-
enon occurs? As demonstrated by Example 3.1, this is already an interesting question
in the case when f is a rational function. In that case, exact cancellations can actually
be predicted, as we will recall now. In section 4.2, we will deal more generally with
approximate cancellations as in Example 3.1.

So consider a sequence ( fn)n∈ℕ∈𝕂ℕ whose generating function is f is rational. Then
the classical Skolem-Mahler-Lech theorem tells us that the zero-set {n∈ℕ: fn=0} is ulti-
mately periodic. This was first proved by Skolem in the case when 𝕂=ℚ, next by Mahler
for 𝕂=ℚalg, and finally by Lech for general fields 𝕂 of characteristic zero:

THEOREM 4.1. [41, 32, 31] Let 𝕂 be a field of characteristic zero and let ( fn)n∈ℕ ∈𝕂ℕ be
a sequence whose generating function f is rational. Then there exists a period Π∈ℕ> and finite
sets Λ⊆{0, . . . ,Π−1} and Χ⊆ℕ such that

{n∈ℕ: fn=0} = (Ρ+Πℕ)∪Χ. (4.1)

The periodic part Ρ+Πℕ in the above decomposition is actually computable [4],
whereas the computability of the exceptional part Χ is currently an open problem [38].
Let 𝛼1, . . . , 𝛼ℓ be the singularities of f and let 𝕌≔exp (2πiℚ). We say that f is resonant
if 𝛼i/𝛼j∈𝕌 for some i≠ j. Setting

Π ≔ lcm {q : 𝛼i/𝛼j=e2πip/q, i≠ j, gcd(p,q)=1}, (4.2)

this is the case if and only if Π>1. Berstel and Mignotte proved the following:

THEOREM 4.2. [4] Let 𝕂 be a field of characteristic zero and let ( fn)n∈ℕ∈𝕂ℕ be a sequence
whose generating function f is rational. Assume that fn=0 for infinitely many n∈ℕ and let Π
be defined as in (4.2). Then f is resonant and we may compute a finite set Ρ⊆{0, . . . ,Π−1} such
that (4.1) holds for some finite set Χ⊆ℕ.

It is interesting to detail the computability statements. Let 𝕃≔ℚ(𝛼1, . . . , 𝛼ℓ) and d≔
[𝕃 :ℚ]. Consider i ≠ j for which 𝛼i/𝛼j = e2πip/q with gcd (p, q) = 1. Since ℚ(𝛼i/𝛼j) is
a subfield of 𝕃, we must have [ℚ(𝛼i/𝛼j)]=𝜑(q) | d. Using that 𝜑(n)>n/(eγ log log n+
3/log log n) for q >2 [40, Theorem 15], it follows that q ⩽ q̄ ≔6 d ⌈log log max (d, ee)⌉.
This allows us to compute q as the smallest k∈{1, . . . , q̄} with (𝛼i/𝛼j)k=1. We conclude
that Π is computable.

12 FUCHSIAN HOLONOMIC SEQUENCES



Now for every 𝜌∈{0, . . . ,Π−1}, the generating function g[𝜌] of ( fnΠ+𝜌)n∈ℕ satisfies

g[𝜌](zΠ) = �
0⩽i<Π

f (𝜔 i z)𝜔−i𝜌z, (4.3)

where 𝜔=e2πi/Π. This allows us in particular to test whether g[𝜌]=0 and to compute the
set Ρ. If needed, we may also deduce the minimal period Π′ and corresponding Ρ′ for
which (4.1) holds.

4.2. Removing resonance
Let us now consider an arbitrary holonomic sequence ( fn)n∈ℕ∈𝕂ℕ whose generating
function f is convergent at the origin. Let 𝛼1, . . ., 𝛼ℓ be the non-zero singularities of f . We
define Π as in (4.2) and say that f is resonant if Π>1. Note that the arguments at the end
of the previous subsection still allow us to compute Π. As in the algebraic case, the coef-
ficients of a resonant holonomic sequence can vanish in a periodic manner, or become
disproportionally small on a regular basis. This problem can be removed through the
consideration of subsequences and case separation, as in Example 3.1:

PROPOSITION 4.3. With the above notations, the subsequence ( fnΠ+𝜌)n∈ℕ is holonomic and non-
resonant for any 𝜌∈{0, . . . ,Π−1}.

Proof. The generating function g[𝜌] of ( fnΠ+𝜌)n∈ℕ satisfies (4.3). Using standard closure
properties, it follows that ( fnΠ+𝜌)n∈ℕ is holonomic. The singularities of the right-hand
side of (4.3) are contained in the set Α≔{𝛼i 𝜔 j : i∈{1, . . . , ℓ}, j∈{0, . . . ,Π−1}}. Therefore
the singularities of g are contained in the set ΑΠ = {𝛼1

Π, . . . , 𝛼ℓ
Π}. So it suffices to show

that 𝛼i
Π/𝛼j

Π∉𝕌 whenever 𝛼i
Π≠𝛼j

Π. Assume for contradiction that 𝛼i
Π≠𝛼j

Π, but 𝛼i
kΠ=𝛼j

kΠ

for some k⩾2. Without loss of generality, we may assume that k is minimal with this
property. But then we have 𝛼i/𝛼j=e2πip/(kΠ) for some p∈ℕ with gcd(p,kΠ)=1, which
implies kΠ|Π by (4.2): a contradiction. □

The above proposition has an operator counterpart. Let 𝜗≔z∂ and consider a monic
operator L(z, 𝜗)∈𝕂(z)[𝜗] of order r with Lf =0. Let 𝛼1, . . . , 𝛼ℓ now be the singularities
of L (i.e. the zeros of the dominators of its coefficients). We define Π as in (4.2) and say
that f is resonant if Π>1.

Let us show how to compute annihilators for the generating functions g[𝜌]. First
of all, for each i ∈ {0, . . . , Π − 1}, we observe that L{i} f (𝜔 i z)= 0 for the monic oper-
ator L{i}(z, 𝜗)≔ L(𝜔i z, 𝜗). It follows that Λ≔ lcm (L, L{1}, . . . , L{Π−1}) is an annihilator
for g[0](zΠ), . . . , g[Π−1](zΠ). For each i∈ {0, . . . , Π − 1}, we next observe that g[i](zΠ)=
g[i]((𝜔i z)Π), so Γ≔gcd (Λ,Λ{1}, . . . , Λ{Π−1}) is still a monic annihilator of g[i](zΠ). Fur-
thermore, since Γ{1}=gcd (Λ{1}, . . . , Λ{Π})=Γ, we must have Γ∈𝕂(zΠ)[𝜗]. Setting u=
zΠ and 𝜗u =u∂/∂u, we finally note that 𝜗 =Π𝜗u. This allows us to rewrite Γu ≔Π−r Γ
as a monic operator in 𝕂(u)[𝜗u] with Γu g[𝜌](u)=0 for all 𝜌∈{0, . . . ,Π−1}.

We note that the sets of non-zero singularities of Λ and Γ (i.e. the zeros of their denom-
inators) both coincide with the set Α from the proof of Proposition 4.3. Consequently,
the set of non-zero singularities of Γu is ΑΠ. In other words, Γu is non-resonant.

Remark 4.4. We may regard the transformation that maps L to Γu as a differential coun-
terpart of the Graeffe transform [25]. Indeed, if f =P/Q is a rational function, then the
denominator of g[𝜌] must be the Π-fold Graeffe transform of Q for each 𝜌∈{0, . . . ,Π−1},
up to constant multiples.
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4.3. Quasi-resonance
Even for a non-resonant holonomic sequence, the contributions of the dominant singular-
ities to its asymptotics may occasionally cancel out. For instance, theoretically speaking,
the sequence fn from (1.2) might occasionally become small, although this would nec-
essarily happen in a non-periodic manner.

Let us make this unlikely phenomenon more precise in the case when ( fn)n∈ℕ is dom-
inant-Fuchsian. Let 𝛼1, . . .,𝛼m be the dominant singularities for this sequence (we assume
that m⩾1). We say that ( fn)n∈ℕ is quasi-resonant if for any constants M >0 and 𝜅∈ℝ,
there exist infinitely many n>0 with

| fn| < M
|𝛼1|n n𝜅 . (4.4)

In fact, we conjecture that quasi-resonance never happens:

CONJECTURE 4.5. (QUASI-RESONANCE CONJECTURE) Assume that ( fn)n∈ℕ is a non-resonant
dominant-Fuchsian holonomic sequence. Then ( fn)n∈ℕ is not quasi-resonant.

Although Conjecture 4.5 is far beyond the current state of knowledge in number
theory, let us provide some meager evidence why we believe that it might hold. The
conjecture is already interesting in the case when f =∑n∈ℕ fn zn is a rational function.
Even more specifically, assume that

fn = 𝜆𝛼n−𝜇𝛽n,

where 𝛼,𝛽, 𝜆,𝜇∈𝕂≠ are such that |𝛼|= |𝛽|, but 𝛼/𝛽∉𝕌. If |𝜆|≠ |𝜇|, then we clearly have
| fn|⩾||𝜇|− |𝜆|| ⋅ |𝛼|n for all n. Assume that |𝜆|=|𝜇| and that log (𝜆/𝜇) and log (𝛼/𝛽) are ℚ-lin-
early independent. Then Baker's theorem [1] implies the existence of a (computable)
constant C>0 such that

�n log 𝛼
𝛽 +log 𝜆

𝜇� > n−C

for all but a finite number of n∈ℕ. Taking exponentials, it follows that

� 𝜆𝛼n

𝜇𝛽n −1� > n−C

2
and

| fn| > |𝜇|
2nC |𝛼|n

for all but a finite number of n∈ℕ. If log (𝜆/𝜇)=𝜙log (𝛼/𝛽) with 𝜙∈ℚ, then Baker's
theorem implies the existence of a constant C>0 with

�(n+𝜙)log 𝛼
𝛽� > n−C

for all but a finite number of n∈ℕ. Using a similar reasoning as above, we deduce that
our conjecture again holds in this particular case.

Of course, our general conjecture is far more ambitious and we have no convincing
further evidence for it yet. It may be interesting to consider the slightly weaker conjec-
ture for which (4.4) is replaced by

| fn| < M
|𝛼1|ne𝜅(logn)𝜏 (4.5)
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for some fixed constant 𝜏⩾1.

4.4. Asymptotic expansions

Using Proposition 4.3, we can generalize the technique from Example 3.1 and reduce the
determination of the asymptotic expansion of a holonomic sequence ( fn)n∈ℕ∈𝕂ℕ to the
non-resonant case, modulo a finite number of case separations.

In order to detect periodic cancellations we still need a way to decide whether a par-
ticular solution f to the equation Lf =0 in section 3.1 is actually analytic at a given regular
singularity 𝛼 of L. Now we may write f =𝜆1h1

𝛼+⋅⋅⋅+𝜆rhr
𝛼 as a 𝕂hola-linear combination of

the canonical basis of local solutions h1
𝛼,...,hr

𝛼 at 𝛼. Let I⊆{1,...,r} be the subset of indices i
for which hi

𝛼 is singular at 𝛼. Then f is analytic at 𝛼 if and only if 𝜆i=0 for every i∈ I.
In other words, if we have a way to decide whether a given Fuchsian holonomic

constant 𝕂hola is zero, then can determine the actual dominant singularity of f . By The-
orem 2.3, it actually suffices to be able to decide whether a holonomic constant in 𝕂hol is
zero. We will denote by Hol an oracle to do this. Here we assume an exact representation
for elements as 𝕂hol as the value at 1 of a holonomic function in ℱ hol that is given via
a vanishing operator in 𝕂(z)[∂] and a finite number of initial conditions in 𝕂.

It is interesting to point out that if we can determine the dominant singularity of
a holonomic function that is analytic at the origin, then we also have an algorithm to test
whether holonomic constants in 𝕂hol are zero. Indeed, given c∈𝕂hol, let g∈ℱ hol be such
that c = g(1). Then 1 is the dominant singularity of the holonomic function g/(1− z) if
and only if c=0.

The above considerations lead to the following variant of Theorem 3.2:

THEOREM 4.6. Let f, m, ℓ, R, 𝜀, and 𝛼1, . . . , 𝛼ℓ be as in section 2.3. Assume that we have an
oracle Hol, that f is non-resonant, and that f is singular at 𝛼k for some k∈{1, . . .,m}. Modulo re-
ordering indices, assume that k=1, |𝛼1|= ⋅ ⋅ ⋅ = |𝛼p|, and |𝛼i|≠ |𝛼1| for i>p. Then, for any 𝜈∈ℝ,
we can compute an asymptotic expansion fnas for fn in 𝕂[𝛾 (ℕ)(𝕂)][𝛼1

−n, . . . , 𝛼p
−n, n𝕂, log n]

together with B∈ℚ> and n0∈ℕ such that

| fn − fnas| ⩽ B
n𝜈 |𝛼1|n

, (4.6)

for all n⩾n0. Moreover, if Conjecture 4.5 holds, then we may require in addition that

| fn| > B
2n𝜈 |𝛼1|n

for all sufficiently large n.

5. UNIFORMLY FAST EVALUATION

In this section, we investigate question Q3. We assume that ( fn)n∈ℕ∈𝕂ℕ satisfies the
difference equation (1.1). We also assume that its generating function f is convergent at
the origin and that it satisfies a holonomic equation (2.1) that is Fuchsian at the origin.
Our goal is to compute fn for large n using a precision of p bits, with a good uniform
complexity in both n and p.

JORIS VAN DER HOEVEN 15



5.1. Preliminaries
Before we proceed, let us briefly recall some notations and basic facts about fast arith-
metic. We define M(p) to be the time that is needed to multiply two p-bit integers and we
make that customary assumption that M(p)/p is non-decreasing. It was shown recently
in [16] that we may take M(p)=O(p log p).

Approximate computations with real and complex numbers can be done using either
fixed point or floating point arithmetic. Let 𝔻≔ℤ2ℤ be the set of dyadic numbers. A p-bit
fixed point approximation of a complex number x∈ℝ is a number z̃∈𝔻 with |z̃ − z|⩽2−p.
A p-bit floating point approximation of z∈ℂ is a number z̃=m2e with m∈ℤ[i]2−p, e∈ℤ,
|z̃−z|⩽2e−p, |m|⩽1, and either |z|⩾2e−1 or |z|=0.

It is well known [7] that p-bit approximations of bounded exponentials and loga-
rithms can be computed in time O(M(p) log p), both for fixed point and floating point
representations. Here a bounded exponential is a number ez with z∈𝔻[i] and |z| ⩽B
for some fixed constant B >0. Similarly, a bounded logarithm is a number log z with
B−1⩽ |z| ⩽B. For non-zero z∈ℂ, this allows us to convert between p-bit floating point
approximations of z and p-bit fixed point approximations of log z.

We also observe that, given 𝛼∈ℤ2−p with |𝛼| ⩽2p, we can compute a p-bit approx-
imation of e𝛼i in time O(M(p) log p). Indeed, it suffices to compute k≔⌊𝛼/(2π)⌉ and
𝛽≔𝛼−2πk with |𝛽|⩽π and then use the fact that e𝛼i=e𝛽i.

We will finally need the following result that was essentially proved in [19].

PROPOSITION 5.1. Let L = ∂r + Lr−1 ∂r−1 + ⋅ ⋅ ⋅ + L0 ∈𝕂(z)[∂] be Fuchsian at the origin.
Let (hi, j)1⩽i⩽𝜇,0⩽ j<𝜈i be the canonical solutions of Lf =0 at the origin and let z𝜅i (log z)j be the
dominant monomial of hi, j. Let 𝛼1,...,𝛼ℓ be the non-zero singularities of L, let 𝜌<min {|𝛼1|,..., |𝛼ℓ|},
and let M ≔maxi, j,t max|z|⩽𝜌 |hi, j,k(z)|, where hi, j z−𝜅i =hi, j,0+ ⋅ ⋅ ⋅ +hi, j, j (log z)j. Let 𝜎 be the
total bit-size of the operator L and let z∈ℤ[i] 2−p with |z| ⩽ 𝜌. Then we may compute a p-bit
fixed point approximation of hi, j(z) using O(M((𝜎 + log p)p log p)) bit-operations, for all i, j.
This complexity is uniform in p and 𝜎, provided that 𝛼1, . . . , 𝛼ℓ, 𝜅1, . . . , 𝜅𝜇, 𝜈1, . . . , 𝜈𝜇 remain
fixed and M=O(1).

Proof. We approximate f (z) using the technique from [19, section 3]. The matrices Ak
from (3.10) and (3.12) in that section have size O(𝜎+log k). Since M=O(1), it suffices to
evaluate Ak ⋅⋅⋅A1 for k=O(p) in order to obtain p-bit approximations for the values hi, j,t(z).
Using binary splitting, this requires O(M((𝜎 + log p) p log p)) bit operations. Since p-
bit approximations of z𝜅i (log z)t can be computed using O(M(p) log p) bit operations
for all t <𝜈i, this allows us to compute a p-bit fixed point approximation of hi, j(z) in
time O(M((𝜎 +log p)p log p)). □

5.2. Exact computation of the terms of a holonomic sequence
If n=O(p), then the most efficient strategy is to compute fn exactly as an element of 𝕂 and
convert the result into a fixed point or floating point approximation. In fact, as in [18, 19],
it suffices to compute in the algebraic number field 𝕃 generated by the coefficients of Σ
and the initial conditions f0, . . . , ft with t=max (k∈ℕ: k ⩾ s ∨Σs(k)= 0). Let us recall
from [8, 19] how to compute fn using binary splitting.

For each N∈ℕ, let FN be the column vector with entries fN, . . . , fN+s−1. If N⩾ t, then

FN+1 = ΔN→N+1FN,
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where

ΔN→N+1 =

(((((((((((((((((
(((((((((((((((((
((((((((((((((

(

( 1
⋅⋅ ⋅

1
−Σ0(N)

Σs(N) −Σ1(N)
Σs(N) ⋅ ⋅ ⋅ −Σs−1(N)

Σs(N) )))))))))))))))))
)))))))))))))))))
))))))))))))))

)

)
. (5.1)

More generally, for k∈ℕ and ΔN→N+k≔ΔN+k−1→N+k ⋅ ⋅ ⋅ ΔN→N+1, we have

FN+k = ΔN→N+k FN

and ΔN→N+k can be computed efficiently using binary splitting:

ΔN→N+k = ΔN+⌊k/2⌋→N+kΔN→N+⌊k/2⌋.

Since f is Fuchsian at the origin, the bit-size of the entries of ΔN→N+k is bounded by
O(k log(N + k)). Using a classical complexity analysis [8, 19], it follows that ΔN→N+k
can be computed in time O(M(k log (N + k)) log k). In particular, we may compute fn
in time O(M(n log2 n)). Converting the result into p-bit fixed point or floating point nota-
tion can be done in time O(M(p)).

5.3. Fast computation of floating point approximations
Having dealt with the case when n=O(p) in the previous subsection, let us now assume
that p=o(n) and logn=O(p). If f has a dominant singularity at 𝛼, then fn typically grows
like 𝛼−n, in first approximation. Consequently, a p-bit fixed point approximation of fn
typically requires Θ(n) bits if |𝛼| < 1. In particular, unless n= Õ(p), then it is hopeless
to compute such approximations in quasi-linear time in p. From now on, we will focus
on the computation of a p-bit floating point approximation of fn. Under the assumption
that ( fn)n∈ℕ is not quasi-resonant, we will show that such an approximation can be com-
puted in uniform smoothly linear time.

So assume that ( fn)n∈ℕ is not quasi-resonant and let 𝛼1, . . . , 𝛼ℓ be the singularities
of f . Assume that 𝛼1, . . . , 𝛼m are the dominant singularities of f with m⩾1. We com-
pute fn using

fn = 1
2πi �ℋ1∪𝒞1∪⋅ ⋅ ⋅∪ℋm∪𝒞m

f (z)
zn+1 dz,

where ℋ i is an axial truncated Hankel contour around z=𝛼i until z=(1+𝛿)𝛼i and 𝒞 i is
a circular arc around 0 from (1+𝛿)𝛼i to (1+𝛿)𝛼i+1 (or to (1+𝛿)𝛼1 if i=m), for i=1,...,m.
Let q⩾p be a temporarily increased working precision with logn=O(q) and q=O(p). We
will specify q later. For some sufficiently small 𝜖>0 with 𝜖< /1 2 and any n⩾q/𝜖, we take

𝛿 ≔ q
n .

Since f is Fuchsian at 𝛼1, . . .,𝛼m, we may compute positive constants 𝜌, C, and 𝜇 such that

| f (z)| ⩽ C𝛿−𝜇

for all z∈𝒞1∪ ⋅ ⋅ ⋅ ∪𝒞m (uniformly, for all 𝛿⩽𝜖). It follows that

� 1
2πi �𝒞1∪⋅ ⋅ ⋅∪𝒞m

f (z)
zn+1 dz� ⩽ C 𝛿−𝜇(1+𝛿)−n

|𝛼1|n
⩽ 2C 𝛿−𝜇e−q

|𝛼1|n
.
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For i=1, . . . ,m, we have
1

2πi �ℋ i

f (z)
zn+1 dz = (𝜓i(𝛿)−𝜓i(𝛿 e−2πi))𝛼i

−n = −𝜓i(𝛿 e−2πi)𝛼i
−n,

where

𝜓i(w) ≔ 1
2πi �𝛿

w f ((1+w)𝛼i)
(1+w)n+1 dw.

We note that the integrand f ((1 + w) 𝛼i) (1 + w)−(n+1) satisfies a holonomic equation
whose total size is bounded by O(log n). Consequently, the same holds for 𝜓i. Since
(1+w)−(n+1) is analytic at w=0 and bounded for |w|⩽𝛿, the uniformity assumptions of
Proposition 5.1 are satisfied. It follows that we may compute a q-bit fixed point approx-
imation of 𝜓i(𝛿 e−2πi) using O(M(q log n log q)) bit operations. We may also compute
a q-bit fixed point approximation of (𝛼1/𝛼i)−n using O(M(q log q)) bit operations. Alto-
gether, this allows us to compute a number vi∈ℤ[i]2ℤ with

|vi −𝜓1(𝛿 e−2πi)(𝛼1/𝛼i)−n| < 2−q

using O(M(q log n log q)) bit operations. By construction, it follows that

| fn𝛼1
n− (v1+ ⋅ ⋅ ⋅ +vm)| ⩽ m2−q+2C𝛿−𝜇e−q,

provided that n ⩾ q/𝜖. Since ( fn)n∈ℕ is not quasi-resonant, there also exist constants
M>0, 𝜅∈ℝ, and n0>0 such that

| fn𝛼1
n| > Mn−𝜅

for all n⩾n0. In order to obtain p-bit floating point approximations of fn𝛼1
n and then fn,

it suffices to chose q in such a way that

m2−q+2C𝛿−𝜇e−q ⩽ 1
2 Mn−𝜅2−p.

Using that m2−q+2C𝛿−𝜇e−q⩽2(m+C)n𝜇2−q, this is certainly the case if we take

q ≔ p+(𝜅+𝜇)log2 n+log2
m+C

M +2.

Note that we have indeed have q∼p=o(n) for this choice of q.
In combination with the results from section 5.2, we have proved the following:

THEOREM 5.2. Let ( fn)n∈ℕ be a dominant-Fuchsian holonomic sequence that is not quasi-res-
onant. Then there exists an algorithm to compute a p-bit floating point approximation of fn
using O(M(p log p log (n p))) bit operations. This bound is uniform in p and n, provided
that log n=O(p).

COROLLARY 5.3. Let ( fn)n∈ℕ be a holonomic sequence and assume Conjecture 4.5. Then
there exists an algorithm to compute a p-bit floating point approximation of fn using
O(M(p log p log (n p))) bit operations. This bound is uniform in p and n, provided
that log n=O(p).

Remark 5.4. Note that the operator L with Lf =0 may have singularities 𝛽 with |𝛽|< |𝛼1|,
as long as the particular solution f remains analytic at 𝛽. Assuming that ( fn)n∈ℕ is Fuch-
sian and that we have an oracle Hol, we may verify whether this is the case by checking
that the coefficients of the singular canonical solutions hi

𝛽 in f all vanish. Note that our
theorem and its corollary only claim the existence of an efficient algorithm to compute fn;
for this, we do not need the oracle Hol.
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Remark 5.5. In practice, for the fast evaluation of a Fuchsian holonomic sequence ( fn)n∈ℕ,
we first make it non-resonant using the pre-treatment from section 4.2, then apply the
algorithm from the previous subsection for the evaluation of fn, while falling back on
the slower algorithm from section 5.2 whenever we detect massive cancellation. In par-
ticular, this mixed strategy takes care of exceptional values of n for which fn vanishes.
Whenever this algorithm does not run in time O(M(p log p log (n p))) when n→∞, we
note that ( fn)n∈ℕ would actually provide an explicit counterexample to Conjecture 4.5.

Remark 5.6. If we replace (4.4) by (4.5) for some fixed constant 𝜏⩾1, then the theorem
and its corollary still hold, but the complexity bound becomes O(M(p(log p)𝜏 log (np))).

6. POSITIVITY TESTING

In this section, we study question Q4. We assume that ( fn)n∈ℕ∈(𝕂∩ℝ)ℕ is a holo-
nomic sequence whose generating function f is convergent at the origin. Modulo the
pre-treatment from section 4.2, we may assume without loss of generality that ( fn)n∈ℕ
is non-resonant. We also assume that f is dominant-Fuchsian. Our aim is to decide
whether fn⩾0 or fn>0 for all n∈ℕ or for all sufficiently large n.

6.1. A density theorem for sequences
Our positivity test will rely on a way to compute limsups and liminfs of certain oscil-
lating sequences. For this, we will adapt a result from [17]. Recall that a Hardy field is a
field of germs of differentiable real functions at infinity that is closed under differentia-
tion [6]. In particular, ℝ(x, log x) and ℝ(xℝ∩𝕂, log x) are Hardy fields. The following is
a direct consequence of [17, Theorem 3].

THEOREM 6.1. Let g1, . . .,gk be real functions whose germs at infinity belong to a Hardy field and
such that g1≺ ⋅ ⋅ ⋅≺gk, i.e. g1= o(g2), . . . ,gk−1=o(gk). For each i∈{1, . . . ,k}, let 𝜆i,1, . . . ,𝜆i,ri be
ℚ-linearly independent numbers in ℝ. Consider the function

𝜓(x) ≔ �eg1(𝜆1,1x)i, . . . , eg1(𝜆1,r1x)i, . . . , egk(𝜆k,1x)i, . . . , egk(𝜆k,rkx)i�

from ℝ into the torus 𝕋D ≔(eℝi)D of dimension D= r1+ ⋅ ⋅ ⋅ + rk. Then 𝜓([x0,∞)) is dense
in 𝕋D for any x0∈ℝ.

What we really need is a counterpart of this theorem for sequences:

COROLLARY 6.2. With the notations of the theorem, assume that gk(x) = x and that
𝜆k,1, . . . , 𝜆k,rk, 2 π are ℚ-linearly independent. Then 𝜓({n0,n0+1, . . . }) is dense in 𝕋D for all
n0∈ℕ.

Proof. For w=(w1, . . . ,wD),w′=(w1′, . . . ,wD′ )∈𝕋D, let

|w′−w| ≔ max (|w1′ −w1|, . . . , |wD′ −wD|).

We also define

𝜓♯(x) ≔ �eg1(𝜆1,1x)i, . . . , eg1(𝜆1,r1x)i, . . . , egk(𝜆k,1x)i, . . . , egk(𝜆k,rkx)i, e2πxi�.
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Let n0∈ℕ and let Λ be any constant with Λ>max (|𝜆k,1|, . . . , |𝜆k,rk|, 2 π). If n0 is suffi-
ciently large, then |𝜓♯(x′)−𝜓♯(x)|⩽Λ|x′−x| for all x⩾x′⩾n0. By the theorem, the image
𝜓♯([n0,∞)) is dense in 𝕋D+1. Given 𝜀>0 and w∈𝕋D, we may thus find an x⩾n0 such
that

|𝜓♯(x)−w♯| < 𝜀
2Λ,

where w♯≔(w,1). Let n⩾n0 be an integer with minimal distance to x. Since |𝜓♯(x)−w♯|<
𝜀/(2 Λ), we have in particular �𝜓♯(x)D+1 − wD+1

♯ � = |𝜓♯(x)D+1 − 1| = |e2πxi − 1| < 𝜀/(2Λ),
whence |x−n|<𝜀/(2Λ). It follows that

|𝜓♯(x)−𝜓♯(n)| ⩽ Λ|x−n| < 𝜀
2,

whence

|𝜓(n)−w| ⩽ |𝜓♯(n)−w♯|
⩽ |𝜓♯(n)−𝜓♯(x)|+ |𝜓♯(x)−w♯|
< 𝜀

2 + 𝜀
2Λ < 𝜀.

This shows that 𝜓({n0,n0+1, . . . }) is indeed dense in 𝕋D. □

We will also need the following counterpart of [17, Theorem 5]:

THEOREM 6.3. Let g1, . . . ,gk∈(𝕂∩ℝ)(x𝕂∩ℝ, log x) be real functions with g1≺ ⋅ ⋅ ⋅ ≺gk. For
each i∈{1, . . . ,k}, let 𝜆i,1, . . . ,𝜆i,ri ∈𝕂∩ℝ. Consider the function

𝜓(x) ≔ �eg1(𝜆1,1x)i, . . . , eg1(𝜆1,r1x)i, . . . , egk(𝜆k,1x)i, . . . , egk(𝜆k,rkx)i�

from ℝ> into the torus 𝕋D≔(eℝi)D of dimension D= r1+ ⋅ ⋅ ⋅ + rk. Let

P∈𝕂[Z1,1
ℤ , . . . ,Z1,r1

ℤ , . . . ,Zk,1
ℤ , . . . ,Zk,rk

ℤ ]

be a Laurent polynomial that takes only real values on 𝕋D. Then limsupn→∞ P(𝜓(n)) and
limsupn→∞ P(𝜓(n)) are both computable numbers in 𝕂∩ℝ.

Proof. Using the rewriting techniques from the proof of [17, Theorem 5], we first reduce
the general case to the case when 𝜆i,1, . . . , 𝜆i,ri are ℚ-linearly independent for i=1, . . . ,k.
(Note that there exists an algorithm to find ℚ-linear dependencies between algebraic
numbers, so we do not need the general oracle to find ℚ-linear dependencies between
exp-log constants.)

We next reduce to the case when 𝜆k,1,...,𝜆k,rk,2π are ℚ-linearly independent. Assume
on the contrary that c1𝜆k,1+ ⋅⋅ ⋅+ crk𝜆k,rk +2πc0=0 with c0, . . . ,crk ∈ℤ and c0≠0. Without
loss of generality, we may assume that crk ≠0. Taking 𝜆k,i′ = 𝜆k,i/crk for i=1, . . . , rk − 1,
the numbers 𝜆k,1′ , . . . , 𝜆k,rk−1′ , 2π are ℚ-linearly independent and we may rewrite e𝜆k,ixi=
�e𝜆k ,i′ xi�crk and e𝜆k,rkxi = e−c02πi/crk �e𝜆k,1′ xi�−c1 ⋅ ⋅ ⋅ �e𝜆k,rk−1′ xi�−crk−1 as Laurent polynomials in
𝕂�e𝜆k,1′ xi, . . . , e𝜆k,rk−1′ xi�. We complete our reduction by carrying out the corresponding
substitutions in P.

After the above reductions, we are in a position to apply Corollary 7.5. This yields

limsup
n→∞

P(𝜓(n)) = sup
z∈𝕋D

P(z)

liminf
n→∞

P(𝜓(n)) = inf
z∈𝕋D

P(z).
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Now supz∈𝕋D P(z)∈𝕂 and infz∈𝕋D P(z)∈𝕂 can be computed using classical algorithms
from effective real algebraic geometry [3]. □

6.2. Positivity testing
Let 𝛼1, . . . , 𝛼m∈𝕂 be the dominant singularities of f . By Theorem 4.6, we may compute
constants t1, . . . , tm∈ℕ, ci, j∈𝕂∩ℝ, 𝜅i, j∈𝕂, 𝜈∈ℕ, B>0, n0∈ℕ, and 𝜅∈𝕂∩ℝ such that

||||||||||||||||| fn− �
1⩽i⩽m

�
1⩽ j⩽ti

ci, j n𝜅i,j 𝛼i
−n(log n)𝜈||||||||||||||||| ⩽ Bn𝜅𝛼1

−n (log n)𝜈−1 (6.1)

for all n⩾n0 and Re 𝜅i, j=Re 𝜅 for all i, j. Setting

𝜙n = �
1⩽i⩽m

�
1⩽ j⩽ti

ci, j n𝜅i,j−𝜅� 𝛼i
|𝛼i|

�
−n

,

we may rewrite (6.1) as

| fn−𝜙n |𝛼1|−nn𝜅(log n)𝜈| ⩽ Bn𝜅𝛼1
−n(log n)𝜈−1. (6.2)

Now observe that 𝜙n can be interpreted as a polynomial

𝜙n ∈ 𝕂��e(𝜅i,j−𝜅)(logn)i�i, j, (e
arg𝛼ini)i�.

Since 𝜙n ∈ℝ for all n ∈ℕ, this allows us to apply Theorem 6.3 and compute 𝜙∗ ≔
limsupn→∞ 𝜙n and 𝜙∗≔liminfn→∞ 𝜙n. If 𝜙∗>0, then (6.2) yields fn>0 for all n>eB/𝜙∗.
If 𝜙∗<0, then 𝜙n <𝜙∗/2 for infinitely many n. For any n>e−2B/𝜙∗ with 𝜙n <𝜙∗/2, the
relation (6.2) thus yields fn<0.

The only remaining case is when 𝜙∗ = 0. In lucky cases, we may look at the next
subdominant term of the asymptotic expansion of fn and prove the positivity of fn −
𝜙n |𝛼1|−nn𝜅(logn)𝜈 in a similar way as above. However, in general, the positivity of fn can
be hard to decide. In fact, a general decision procedure would allow us to answer diffi-
cult questions about diophantine approximability. For instance, given a real algebraic
number 𝛼, the positivity of the holonomic sequence

log2 n−cos(n log 𝛼) log2 n− 1
n2

is related to a rate of diophantine approximability of 𝛼 by p/q∈ℚ of the form

∀p,q∈ℤ≠, �𝛼− p
q � > c

q2 log q
.

We do not know of a general decision procedure for this kind of inequalities.

7. FUCHSIAN HOLONOMIC SEQUENCES

Let f be the generating function of a holonomic sequence ( fn)n∈ℕ. So far, we have mainly
been interested in the case when f is convergent at the origin and dominant-Fuchsian
(possibly modulo a reduction to the non-resonant case as in section 4.2). This is indeed
sufficient for obtaining information about ( fn)n∈ℕ through its asymptotic properties. In
this section, we assume that f is globally Fuchsian and study nice additional proper-
ties that hold in this case.
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For simplicity, we assume that ( fn)n∈ℕ satisfies a non-degenerate difference equa-
tion (1.1). We normalize Σ to make it divisible by (n+1) ⋅⋅⋅(n+s) and we let L=Lr∂r+⋅⋅⋅+
L0∈𝕂(z)[∂] be the corresponding differential operator with Lf =0, as constructed in
section 2.1. We let 𝛼1, . . . , 𝛼ℓ be the singularities of L.

7.1. Full Mellin integrals
First of all, for Fuchsian L, the truncated Mellin integrals from (3.3) tend to a limit

1
2πi �ℋk

f (z)
zn+1 dz (7.1)

when R tends to infinity and n is sufficiently large. This leads to the exact representation

f = 1
2πi �

k=1

ℓ

�
ℋ k

f (z)
zn+1 dz. (7.2)

We call (7.1) a full Mellin integral that is based at 𝛼k.

Remark 7.1. We may take ℋ k to be the contours from infinity to a point 𝛼̃k close to 𝛼k,
which next performs a complete circular turn around 𝛼k, and then goes back to infinity
along the same direction where it came from. Then we have

1
2πi �ℋ k

f (z)
zn+1 dz = 1

2πi �𝒞 k

f (z)
zn+1 dz+ 1

2πi �𝛼̃k

∞ (Δ𝛼k f )(z)
zn+1 dz, (7.3)

where 𝒞 k denotes the circle around 𝛼k and Δ𝛼k f denotes the difference between the ana-
lytic continuations of f that get around 𝛼k on the left and right, respectively. Note that
Δ𝛼k f is a solution of the same differential equation as f , i.e. LΔ𝛼k f =0. The formula (7.3)
is convenient for machine computations due to the fact that we only have a single stretch
going to infinity.

More generally, for an analytic function 𝜑 on ℋk and with 𝜑(z)=O(|z|O(1)) at infinity,
we define

(ℳ k 𝜑)n ≔ 1
2πi �ℋk

𝜑(z)
zn+1 dz.

Then we note that

(ℳk 𝜑)n+1 = (ℳk (z−1𝜑))n

n(ℳ k 𝜑)n = (ℳk (z𝜑′))n,

where the second relation is proved using integration by parts. Consequently, the
sequence ((ℳk f )n)n∈ℕ satisfies the same recurrence relation (1.1) as ( fn)n∈ℕ.

7.2. Canonical solutions via Mellin transforms
We observe that (7.1) only depends on the behavior of f at the singularity 𝛼k. Expressing f
in terms of the canonical basis h1

𝛼k, . . . ,hr
𝛼k of local solutions to Lh=0 at 𝛼k,

f = c1h1
𝛼k + ⋅ ⋅ ⋅ + crhr

𝛼k, c1, . . . ,cr∈𝕂rhol,

and setting

𝜙i
𝛼k ≔ ℳk hi

𝛼k, i=1, . . . , r,
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it follows that

ℳk f = c1𝜙1
𝛼k + ⋅ ⋅ ⋅ + cr𝜙r

𝛼k. (7.4)

Here we note that 𝜙i
𝛼k =0 whenever hi

𝛼k is analytic at 𝛼k. Moreover, we recall that

hi
𝛼k ∈(z−𝛼k)−𝜅((log (z−𝛼k))j+z𝕂{{z−𝛼k}}[log (z−𝛼k)]),

for some 𝜅∈𝕂 and j∈ℕ. If 𝜅∉ℕ or j≠0, then the sequence 𝜙i
𝛼k has a non-zero formal

transseries in 𝛼k
−n n𝜅−1𝕂[𝛾 (ℕ)(𝜅)] [[n−1]][log n] as its asymptotic expansion, by the for-

mulas from subsection 3.2. We will sometimes identify 𝜙i
𝛼k with this transseries.

Let 𝜙1
∗, . . . ,𝜙s′

∗ be the collection of all non-zero 𝜙i
𝛼k with k∈{1, . . . , ℓ} and i∈{1, . . . , r}.

Since the dominant monomials of 𝜙1
∗,. . .,𝜙s′

∗ are pairwise distinct when considering them
as transseries, these sequences are ℂ-linearly independent. From (7.2) and (7.4), we
also know that any sequence solution of (1.1) can be written as a ℂ-linear combination
of 𝜙1

∗, . . . , 𝜙s′
∗ . Conversely, we noted at the end of subsection 7.1 that each 𝜙i

∗ is actu-
ally a solution of (1.1). This shows that 𝜙1

∗,...,𝜙s′
∗ forms basis of the solution space of (1.1)

in ℂℕ. Since we assumed Σ to be non-degenerate, this space has dimension s, so s′= s.
We denote by Φ∗ the row vector with entries 𝜙1

∗, . . . ,𝜙s
∗.

7.3. Canonical formal solutions at infinity
We have shown that (1.1) has a basis of formal transseries solutions in

𝜙1
∗, . . . ,𝜙s

∗∈𝕂nn𝕂𝕂[𝛾 (ℕ)(𝕂)][[n−1]][log n].

In fact, it is well known [5] that we may compute a canonical system of formal solutions
in 𝕂n n𝕂𝕂[[n−1]][log n], similar to the ones that we saw in the differential case in sub-
section 2.2. Let us briefly describe how to do this.

We have seen that for any singularity 𝛼k of L, there exists at least one formal solution
of the form (𝜙i

∗)n∈𝛼k
−nn𝕂𝕂[𝛾 (ℕ)(𝕂)][[n−1]][logn]. Modulo a transformation 𝜎↔𝛼k

−1𝜎,
we may assume without loss of generality that 𝛼k=1. We next replace 𝜎 by exp(n−1𝜗n)
in Σ, where 𝜗n = n ∂/∂n. After multiplication by a suitable power of n, this yields an
operator

n𝜇Σ = �
i∈ℕ

n−iΛi(𝜗n) ∈ 𝕂[𝜗n][[n−1]]

with Λ0(𝜗n)≠0. Whenever we have a formal solution 𝜙i
∗ with (𝜙i

∗)n≍n𝜅 (log n)j, then
this implies that Λ0 is divisible by (𝜗n−𝜅)j+1. Inversely, if 𝜅∈𝕂 is a root of multiplicity 𝜈
of Λ0 in 𝜗n, then for any j < 𝜈, there exists a unique formal solution f ∈ n𝜅 (log n)j +
n𝜅−1𝕂[[n−1]][log n] to (1.1). Indeed, writing fn=n𝜅∑j∈ℕ 𝜑j n−j with 𝜑j ∈𝕂[log n], we
have

n𝜇(Σ f )n = n𝜅 �
i, j∈ℕ

n−i− jΛi(𝜗n+𝜅− j)(𝜑j) = 0,

which yields the recurrence relation

Λ0(𝜗n+𝜅−m)(𝜑m) = �
1⩽i⩽m

Λi(𝜗n+𝜅−m+ i)(𝜑m−i) (7.5)

for the computation of the coefficients 𝜑m. The solution is unique when requiring that
𝜑0=(log n)j and that 𝜑m is divisible by (log n)p whenever k−m is a root of multiplicity p
of Λ0 in 𝜗n.
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Let 𝜙1
∞,...,𝜙s

∞ be the collection of all formal solutions of (1.1) in 𝕂nn𝕂𝕂[[n−1]][logn]
that we obtain in the way that we just described, with 𝜙i

∞≍𝜙i
∗. Since the dominant mono-

mials of these solutions are pairwise distinct, this again forms a fundamental system
of solutions; we call it the canonical system of solutions of (1.1) at infinity and we denote
by Φ∞ the row vector with entries 𝜙1

∞, . . . , 𝜙s
∞. Since Φ∗ and Φ∞ are both fundamental

systems of solutions, there exists a matrix Μ∈ℂs×s with

Φ∗ = Φ∞Μ. (7.6)

Since Φ∗ has coefficients in 𝕂[𝛾 (ℕ)(𝕂)] and Φ has coefficients in 𝕂, the matrix Μ must
actually be in 𝕂[𝛾 (ℕ)(𝕂)]r×r.

For machine computations, the recurrence relation (7.5) is not very efficient if we
want to compute a large number of terms. In that case it is better to rewrite the original
equation (1.1) with respect to t=n−1, which transforms the shift operator 𝜎 into t↦ t

1+ t .
Compositions of a power series with t

1+ t can be computed efficiently in a relaxed manner
using the algorithm from [20, section 3.4.2]. The equation (1.1) is not necessarily “recur-
sive”, so it is not always possible to directly solve it using the techniques from [20].
Nevertheless, it can always be rewritten as a recursive equation using the algorithms
from [22]. Altogether, this allows us to compute the first N coefficients of the canon-
ical solutions 𝜙1

∞, . . . , 𝜙s
∞ in time O(M(N2 log3 N)), which is quasi-optimal in the bit-

size of the result.

Remark 7.2. The equation (7.6) can be used to map formal transseries solutions of (1.1)
to actual holonomic sequences. It is interesting to note that this association actually
preserves all difference ring operations, in a similar way as accelero-summation in the
differential setting [21].

7.4. Transition matrices
Let us briefly recall the concept of a transition matrix, which forms an important ingre-
dient for the efficient evaluation of holonomic functions in [8, 18, 19]. We will use the
notations H𝛼 and F(𝛼) from section 2.2 for canonical systems of local solutions and gen-
eralized values at 𝛼.

Given a non-singular path 𝛼↝𝛽 between two non-singular points 𝛼,𝛽∈𝕂∪{∞}, the
analytic continuation of the canonical solutions at 𝛼 can be expressed as linear combina-
tions of the canonical solutions at 𝛽. In other words, there exists a matrix Δ𝛼→𝛽∈ℂr×r with

H𝛼 = H𝛽Δ𝛼↝𝛽.

We call Δ𝛼↝𝛽 the transition matrix along the path 𝛼↝𝛽. We naturally have the relation

Δ𝛼↝𝛽↝𝛾 = Δ𝛽↝𝛾Δ𝛼↝𝛽

for composed paths. In terms of generalized values of a solution f to (2.1), we also obtain

F(𝛽) = Δ𝛼↝𝛽F(𝛼).

These notions extend to the case when the paths start and/or end at singular points,
modulo the precaution that we specify the angles that are used to approach the singular-
ities (in order to determine the branch of the logarithm).
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7.5. Transition matrices for sequences
Let us now study the analogue of transition matrices for sequences. Given N ∈ℕ and
i∈{0,. . .,s−1}, assume that (1.1) has a unique solution ( fn)n∈ℕ with fN+i=1 and fN+ j=0
for j∈{0,...,s−1}∖{i}. Then we will denote this solution by (𝜙i,n

N )n∈ℕ. We denote by ΦN

the row vector with entries 𝜙0
N, . . . , 𝜙s−1

N if these solutions are all defined and call it the
canonical system of solutions at n=N. Given a general solution ( fn)n∈ℕ to (1.1), we call
the column vector FN with entries fN,. .., fN+s−1 the generalized value of ( fn)n∈ℕ at n=N,
so that

f = ΦN FN.

By definition, the FN satisfy a recurrence relation

FN+1 = ΔN→N+1FN,

where ΔN→N+1 was defined in (5.1). More generally, for k ∈ ℕ and ΔN→N+k ≔
ΔN+k−1→N+k ⋅ ⋅ ⋅ ΔN→N+1, we have

FN+k = ΔN→N+k FN.

Setting ΔN→N+k≔ΔN+k→N
−1 , this relation extends to the case when k∈ℤ. Dually, we also

have

ΦN = ΦN+kΔN→N+k.

We call ΔN→N+k the transition matrix between n=N and n=N+ k. We have seen in sec-
tion 5.2 how to compute ΔN→N+k in time O(M(k log (N+k) log k)) using binary splitting.

7.6. Transition matrices at infinity
In section 7.2, we introduced the canonical system of solutions Φ∞ of (1.1) at infinity.
Given a solution ( fn)n∈ℕ of (1.1), this leads to the corresponding notion of generalized
value F∞∈ℂs at infinity with

f = Φ∞F∞. (7.7)

For any N∈ℕ, the matrix ΔN→∞ with

F∞ = ΔN→∞FN,
ΦN = Φ∞ΔN→∞

is called the transition matrix between N and n=∞, whenever it exists.
Using a combination of the techniques so far, we may compute the transition

matrix ΔN→∞ as follows. Consider one of the canonical solutions ( fn)n∈ℕ = (𝜙i,n
N )n∈ℕ

of (1.1) at n=N and the corresponding power series solution f ∈𝕂{{z}} of (2.1) at the
origin. Given one of the singularities 𝛼k of L, we may use the algorithms from [19] to
compute the transition matrix Δ0→𝛼k for L and then re-express f as a 𝕂hola-linear com-
bination of the canonical solutions h1

𝛼k, . . . , hr
𝛼k at z=𝛼k. The collection of these relations

yields f as a 𝕂hola-linear combination of the canonical solutions 𝜙1
∗, . . . , 𝜙s

∗. Using the
methods from sections 7.2 and 7.3, we finally obtain f as a 𝕂hola[𝛾 (ℕ)(𝕂)]-linear com-
bination of 𝜙1

∞, . . . ,𝜙s
∞. Doing this for each 𝜙i

N with i=1, . . . , s, this yields the transition
matrix ΔN→∞∈𝕂hola[𝛾 (ℕ)(𝕂)]s×s. For fixed N and large p, we may compute 2−p-approx-
imations of the entries of ΔN→∞ in time O(M(p log3 p)), using the algorithms from [21].
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7.7. Analytic solutions to the difference equation
Our main focus in this paper is on the study of sequence solutions to holonomic equa-
tions (1.1). Yet, it is interesting to note that the definition of Mellin transforms of the
canonical solutions 𝜑≔hi

𝛼k generalizes to complex numbers u for which zu+1 decreases
sufficiently fast on ℋk:

(ℳk 𝜑)(u) ≔ 1
2πi �ℋ k

𝜑(z)
zu+1 dz. (7.8)

Applying this to the theory from section 7.2, this yields a fundamental system of analytic
solutions to the difference equation

Σs(u) f (u+ s)+ ⋅ ⋅ ⋅ +Σ0(u) f (u)=0

that extends our fundamental system of sequence solutions. For u∈𝕂, we also note that
the integrand of (7.8) is still holonomic over 𝕂 and Fuchsian. Consequently, we may eval-
uate it with a precision of p bits in time O(M(p log2 p)), using the algorithms from [19].
For general u∈ℂ, the evaluation can be done in time Õ(p3/2) using the baby-step-giant-
step technique from [8]. It is also possible to extend the uniform complexity analysis
from section 5 to this setting, but additional care is needed for the treatment of non-
real arguments u. We intend to carry out the detailed analysis in a forthcoming paper.

Acknowledgments. We are grateful to Marc Mezzarobba and Ruiwen Dong for some
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