# Speckle observations with PISCO in Merate: XIII. Astrometric measurements of visual binaries in 2012, and new orbits for ADS $10786 \mathrm{BC}, 12144,12515,16314$ and 16539 

J.-L. Prieur ${ }^{1,2}$, M. Scardia ${ }^{3}$, L. Pansecchi ${ }^{3}$, R.W. Argyle $^{4}$, A. Zanutta ${ }^{3}$, and E. Aristidi ${ }^{5}$<br>${ }^{1}$ Université de Toulouse - UPS-OMP - IRAP, Toulouse, France<br>${ }^{2}$ CNRS - IRAP, 14 avenue Edouard Belin, 31400 Toulouse, France<br>${ }^{3}$ INAF - Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy<br>${ }_{5}^{4}$ Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, United Kingdom<br>${ }^{5}$ Université de Nice-Sophia Antipolis -Laboratoire Lagrange -CNRS-OCA, Parc Valrose 06108 Nice cedex 2, France

April 13th 2014

Key words Stars: binaries: close - binaries: visual - astrometry - techniques: interferometric - stars: individual (ADS 10786 BC, ADS 12144, ADS 12515, ADS 16314, ADS 16539)


#### Abstract

We present relative astrometric measurements of visual binaries, made in 2012 with the speckle camera PISCO at the $102-\mathrm{cm}$ Zeiss telescope of Brera Astronomical Observatory, in Merate. Our observing list contains orbital couples as well as binaries whose motion is still uncertain. We obtained 355 new measurements of 344 visual binary stars, with angular separations in the range $0^{\prime \prime} .14-6^{\prime \prime} .9$, and an average accuracy of $0^{\prime \prime} .02$. The mean error on the position angles is $0^{\circ} .5$. Most of the position angles were determined without the usual $180^{\circ}$ ambiguity with the application of triple-correlation techniques and/or by inspection of the long integration files. We also present new revised orbits for ADS 10786 BC, 12144, 12515, 16314 and 16539, partly derived from PISCO observations. The corresponding estimated values for the masses of those systems are compatible with the spectral types.


## 1 Introduction

This paper presents the results of speckle observations of visual binary stars made in Merate (Italy) in 2012 with the Pupil Interferometry Speckle camera and COronagraph (PISCO) on the $102-\mathrm{cm}$ Zeiss telescope of INAF - Osservatorio Astronomico di Brera (OAB, Brera Astronomical Observatory). It is the thirteenth of a series whose purpose is to contribute to the determination of binary orbits (Scardia et al. 2005, 2006, 2007, 2008a, Prieur et al. 2008, Scardia et al. 2009, Prieur et al. 2009, Scardia et al. 2010, Prieur et al. 2010, Scardia et al. 2011, Prieur et al. 2012, and Scardia et al. 2013, herein: Papers I to XII). The focal instrument PISCO was developed at Observatoire Midi-Pyrénées (France) and first used at Pic du Midi from 1993 to 1998. It was moved to Merate in 2003 and installed on the INAF Zeiss telescope that has been dedicated to binary star observations since that epoch.

In Sect. 2, we briefly describe our observations. In Sect. 3, we present and discuss the astrometric measurements. We also compare those measurements with the ephemerides computed with the published orbital elements, when available. Finally in Sect. 4 we present the new revised orbits that we have computed for ADS $10786 \mathrm{BC}, 12144,12515,16314$, and 16539, and
discuss the estimated values for the masses of those systems.

## 2 Observations

The observations were carried out with the PISCO speckle camera and the ICCD (Intensified Charge Coupled Device) detector belonging to Nice University (France). This instrumentation is presented in Prieur et al. (1998) and our observing procedure is described in detail in Paper VI.

### 2.1 Observing list

Our observing list basically includes all the visual binaries for which new measurements are needed to improve their orbits, that are accessible with our instrumentation. It consists of a few thousands objects. A detailed description can be found in our previous papers (e.g., Paper VI).

The distribution of the angular separations measured in this paper is displayed in Fig. 1a and shows a maximum for $\rho \approx 0^{\prime \prime} .8$. The largest separation of $6^{\prime \prime} .93$ was obtained for ADS 1670AC. The smallest separation was measured for JCT3Aa, Ab (ADS 6696), with $\rho=0^{\prime \prime} .144$. Let us recall that the diffraction limit is


Fig. 1 Distribution of the angular separations of the 355 measurements of Table 3 (a), the total visual magnitudes of the corresponding binaries (b) and the differences of magnitude between their two components (c).


Fig. 2 HR diagram of the binaries measured in Table 1, for which Hipparcos parallaxes were obtained with a relative error smaller than $50 \%$ (i.e., 276 objects).
$\rho_{d}=\lambda / D \approx 0^{\prime \prime} .13$ for the Zeiss telescope (aperture $D=1.02 \mathrm{~m})$ and the $R$ filter $(\lambda=650 \mathrm{~nm})$.

The distribution of the apparent magnitudes $m_{V}$ and of the difference of magnitudes $\Delta m_{V}$ between the two components are plotted in Figs. 1b and 1c, respectively. The telescope aperture and detector sensitivity led to a limiting magnitude of about $m_{V}=10$ (Fig. 1b) and a maximum $\Delta m_{V}$ for speckle measurements of about 3.8 (Fig. 1c).

Using the Hipparcos parallaxes, we were able to construct the HR diagram of those binaries, which is displayed in Fig. 2. We only plotted the objects for which the relative uncertainty on the parallax was smaller than $50 \%$. This concerned 276 objects only.

## 3 Astrometric measurements

The 355 astrometric measurements obtained with the observations made in 2012 are displayed in Table 1. They concern 344 visual binaries. For each object, we report its WDS name (Washington Double Star Catalogue, Mason et al. 2013, hereafter WDS Catalogue) in Col. 1, the official double star designation in Col. 2 (sequence is "discoverer-number"), and the ADS number in Col. 3 (Aitken, 1932) when available. For each observation, we then give the epoch in Besselian years (Col. 4), the filter (Col. 5), the focal length of the eyepiece used for magnifying the image (Col. 6), the angular separation $\rho$ (Col. 7) with its error (Col. 8) in arcseconds, and the position angle $\theta$ (Col. 9) with its error (Col. 10) in degrees. In Col. 11, we report some notes and some information about the secondary peaks of the auto-correlation files (e.g. diffuse, faint or elongated) or about the power spectrum (NF: no fringes). For the systems with a known orbit, the $(O-C)$ (Observed minus Computed) residuals of the $\rho$ and $\theta$ measurements are displayed in Cols. 13 and 14, respectively. The corresponding authors are given in Col. 12, using the bibliographic style of the "Sixth Catalogue of Orbits of Visual Binary Stars" (Hartkopf \& Mason, 2013, hereafter OC6). When not explicitly specified, the measurements refer to the AB components of those systems. In Col. 14, the symbol ${ }^{Q}$ indicates that there was a quadrant inconsistency between our measures and the positions derived from the orbital elements published for this object.

The characteristics of the $R, R L$, and $I$ filters used for obtaining those measurements are given in Table 2. Some objects were observed without any filter because they were too faint. This is indicated with $W$ (for "white" light) in the filter column (Col. 5 of Table 1).

As for the other papers of this series, position measurements were obtained by an interactive processing of the auto-correlation files computed in real time dur-

Table 1 Table of speckle measurements and O-C residuals with published orbits (begin.)

| WDS | Name | ADS | Epoch |  | Eyep. <br> (mm) | $\begin{gathered} \rho \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\rho} \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{array}{cc} \theta & \sigma_{\theta} \\ \left({ }^{\circ}\right) & \left({ }^{\circ}\right) \end{array}$ | Notes | Orbit | $\Delta \rho(\mathrm{O}-\mathrm{C})$ <br> (") | $\Delta \theta(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00014+3937 | HLD60 | 17178 | 2012.040 | R | 32 | 1.300 | 0.019 | $167.3^{*} 0.7$ |  | Hrt2011a | 0.01 | -1.2 |
| 00028+0208 | BU281AB | 9 | 2012.041 | RL | 32 | 1.556 | 0.022 | $161.7^{*} 0.7$ |  |  |  |  |
| 00049+4540 | BU997 | 41 | 2012.043 | R | 32 | 3.860 | 0.041 | $336.5^{*} 0.4$ |  |  |  |  |
| $00049+5832$ | STF3057 | 36 | 2012.043 | R | 32 | 3.824 | 0.043 | $297.4^{*} 0.3$ |  |  |  |  |
| $00057+4239$ | A110 | 55 | 2012.043 | R | 32 | 2.094 | 0.032 | 123.0 * 0.4 |  |  |  |  |
| $00059+1805$ | STF3060AB | 60 | 2012.038 | R | 32 | 3.345 | 0.025 | $133.6{ }^{*} 0.3$ |  |  |  |  |
| $00063+5826$ | STF3062 | 61 | 2012.038 | R | 20 | 1.526 | 0.008 | $350.6^{*} 0.3$ |  | Sta1977b | -0.04 | -0.1 |
| 00093+7943 | STF2 | 102 | 2012.038 | R | 20 | 0.858 | 0.008 | $16.9 * 0.7$ |  | Sca1980d | -0.01 | 2.0 |
| $00134+2659$ | STT2AB | 161 | 2012.068 | R | 10 | 0.414 | 0.003 | $158.8{ }^{*} 0.6$ | Elongated | Sca2000b | -0.05 | -2.5 |
| 00209+1059 | BU1093 | 287 | 2012.043 | R | 20 | 0.758 | 0.008 | $117.4^{*} 0.3$ |  | Lin2010c | -0.00 | -1.0 |
| $00209+3259$ | AC1 | 285 | 2012.068 | R | 32 | 1.803 | 0.017 | $287.4^{*} 0.3$ |  |  |  |  |
| $00302+4557$ | A910 | 408 | 2012.071 | R | 32 | 2.604 | 0.019 | $35.5 * 0.5$ |  |  |  |  |
| $00310+3406$ | STF33 | 421 | 2012.071 | R | 32 | 2.767 | 0.016 | 212.30 .6 |  |  |  |  |
| 00455+4324 | BU865AB | 627 | 2012.043 | R | 32 | 1.220 | 0.016 | 192.2* 1.6 |  |  |  |  |
| 00458+5459 | ARG2AB | 630 | 2012.043 | RL | 32 | 2.514 | 0.035 | 49.4* 0.4 |  |  |  |  |
| $00480+5127$ | STF59AB | 659 | 2012.041 | R | 32 | 2.231 | 0.028 | $147.5{ }^{*} 0.4$ |  |  |  |  |
| $00499+2743$ | STF61 | 683 | 2012.041 | R | 32 | 4.236 | 0.021 | $114.6{ }^{*} 0.3$ |  |  |  |  |
| $00548+0926$ | STF74 | 754 | 2012.041 | R | 32 | 3.084 | 0.022 | $298.8{ }^{*} 0.4$ |  |  |  |  |
| $00550+2338$ | STF73AB | 755 | 2012.041 | R | 20 | 1.065 | 0.008 | $325.3{ }^{*} 0.3$ |  | Doc1990b | -0.03 | -0.6 |
| 00551+2811 | A437AB | 758 | 2012.068 | R | 32 | 2.975 | 0.016 | $208.9^{*} 0.3$ |  |  |  |  |
| $00578+3211$ | HO307 | 789 | 2012.068 | W | 32 | 3.046 | 0.038 | $83.8{ }^{*} 0.3$ | Elongated |  |  |  |
| 01095+4715 | STT515AB | 940 | 2012.043 | R | 10 | 0.514 | 0.003 | 118.1* 0.3 | Elongated | Sca2001d | 0.01 | -0.8 |
| 01099+4011 | AG15 | 953 | 2012.068 | W | 32 | 2.789 | 0.019 | $69.7^{*} 0.3$ | Diffuse |  |  |  |
| 01106+5101 | BU235Aa | 963 | 2012.071 | R | 20 | 0.832 | 0.008 | $137.9^{*} 0.3$ | Elongated |  |  |  |
| $01122+5132$ | STF97 | 981 | 2012.071 | R | 32 | 4.506 | 0.052 | $100.5^{*} 0.3$ |  |  |  |  |
| $01149+4815$ | A934 | 1004 | 2012.041 | W | 32 | 3.108 | 0.036 | $183.8{ }^{*} 0.3$ | Elongated |  |  |  |
| $01401+3858$ | STF141 | 1305 | 2012.041 | R | 32 | 1.643 | 0.024 | $301.0^{*} 0.8$ |  |  |  |  |
| 01559+0151 | STF186 | 1538 | 2012.043 | R | 20 | 0.787 | 0.008 | $248.3^{*} 0.4$ |  | USN2007b | -0.02 | $0.2^{\text {a }}$ |
| $02020+0246$ | STF202 | 1615 | 2012.038 | RL | 20 | 1.830 | 0.009 | $265.4^{*} 0.3$ |  | Sca1983f | 0.06 | 2.3 |
| 02091+5104 | STF213AC | 1670 | 2012.071 | R | 32 | 6.933 | 0.038 | $64.2{ }^{*} 0.4$ | Diffuse |  |  |  |
| 02091+5104 | STF213AB | 1670 | 2012.071 | R | 32 | 1.833 | 0.016 | $323.9 * 0.3$ |  |  |  |  |
| $02140+4729$ | STF228 | 1709 | 2012.043 | R | 20 | 0.769 | 0.009 | $294.4^{*} 0.4$ |  | Sta1982b | -0.01 | -2.7 |
| $02176+2214$ | STF244 | 1758 | 2012.071 | R | 32 | 4.429 | 0.024 | 288.80 .3 |  |  |  |  |
| $02262+2105$ | COU258 | - | 2012.068 | W | 32 | 2.296 | 0.016 | $121.5{ }^{*} 0.3$ |  |  |  |  |
| $02282+2952$ | STF269 | 1868 | 2012.043 | RL | 32 | 1.656 | 0.022 | $344.5{ }^{*} 1.8$ |  |  |  |  |
| 02294+5532 | STF268 | 1878 | 2012.071 | R | 32 | 2.803 | 0.022 | $129.7^{*} 0.3$ |  |  |  |  |
| 02309+5311 | HJ2139AB | 1903 | 2012.071 | R | 32 | 3.825 | 0.019 | $297.4^{*} 0.3$ |  |  |  |  |
| 02357+4411 | A1528 | 1962 | 2012.068 | RL | 32 | 1.552 | 0.016 | $193.5{ }^{*} 0.5$ |  |  |  |  |
| $02388+3325$ | STF285 | 2004 | 2012.068 | R | 32 | 1.680 | 0.021 | $162.5{ }^{*} 0.3$ |  |  |  |  |
| 02411+1848 | STF291AB | 2042 | 2012.068 | RL | 32 | 3.342 | 0.017 | $116.8^{*} 0.3$ |  |  |  |  |
| $02446+2928$ | STF300 | 2091 | 2012.043 | R | 32 | 3.090 | 0.030 | $314.3{ }^{*} 0.3$ |  |  |  |  |
| 02475+1922 | STF305AB | 2122 | 2012.044 | R | 32 | 3.595 | 0.044 | $306.5^{*} 0.3$ |  | Rab1961a | -0.13 | -0.1 |
| $03171+4029$ | STF369 | 2443 | 2012.044 | R | 32 | 3.599 | 0.028 | $29.3{ }^{*} 0.3$ |  |  |  |  |
| $03312+1947$ | STF403 | 2584 | 2012.150 | R | 32 | 2.293 | 0.016 | $171.4^{*} 0.3$ |  |  |  |  |
| $03344+2428$ | STF412AB | 2616 | 2012.041 | RL | 20 | 0.721 | 0.008 | 353.60 .4 |  | Sca2002a | -0.02 | 0.9 |
| " | " | " | 2012.142 | R | 10 | 0.744 | 0.004 | 352.70 .3 | Elongated | Sca2002a | 0.01 | 0.1 |
| 03350+6002 | STF400AB | 2612 | 2012.142 | R | 20 | 1.589 | 0.008 | $266.8^{*} 0.3$ |  | USN2000b | 0.08 | -1.5 |
| 03356+3141 | BU533 | 2628 | 2012.150 | R | 20 | 1.053 | 0.008 | $220.9 * 0.3$ |  |  |  |  |
| $03377+4807$ | HLD9AB | 2643 | 2012.142 | R | 32 | 1.335 | 0.016 | 53.9 * 1.5 |  |  |  |  |
| $03401+3407$ | STF425 | 2668 | 2012.071 | R | 32 | 1.926 | 0.016 | $60.3{ }^{*} 0.4$ |  |  |  |  |
| 03466+2728 | COU694 | - | 2012.071 | R | 32 | 2.514 | 0.032 | 134.0 * 0.5 |  |  |  |  |
| $03479+3336$ | STF448 | 2772 | 2012.142 | R | 32 | 3.370 | 0.019 | $13.1{ }^{*} 0.3$ |  |  |  |  |
| $03490+1459$ | HO324 | 2787 | 2012.150 | R | 32 | 1.117 | 0.016 | $330.9^{*} 0.6$ |  |  |  |  |
| $04020+4151$ | STF477 | 2934 | 2012.068 | RL | 32 | 3.072 | 0.016 | $211.3^{*} 0.3$ |  |  |  |  |

Table 1 Table of speckle measurements and O-C residuals with published orbits (cont.)

| WDS | Name | ADS | Epoch |  | Eyep. <br> (mm) | $\begin{gather*} \rho \\ \left({ }^{\prime \prime}\right) \end{gather*}$ | $\begin{gathered} \sigma_{\rho} \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{array}{cc} \theta & \sigma_{\theta} \\ \left({ }^{\circ}\right) & \left({ }^{\circ}\right) \end{array}$ | Notes | Orbit | $\begin{array}{r} \Delta \rho(\mathrm{O}-\mathrm{C}) \\ \left({ }^{\prime \prime}\right) \end{array}$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $04022+2808$ | STF481AB | 2944 | 2012.150 | RL | 32 | 2.637 | 0.040 | 105.9*0.3 | NF |  |  |  |
| $04045+5544$ | STF480 | 2955 | 2012.150 | R | 32 | 3.291 | 0.016 | 326.5* 0.3 |  |  |  |  |
| $04076+3804$ | STT531AB | 2995 | 2012.142 | R | 32 | 2.591 | 0.016 | $355.6 * 0.4$ |  | Hei1986b | 0.16 | 3.0 |
| 04077+1510 | STF495 | 2999 | 2012.142 | R | 32 | 3.651 | 0.021 | $221.9^{*} 0.3$ |  |  |  |  |
| $04100+8042$ | STF460 | 2963 | 2012.142 | R | 10 | 0.757 | 0.005 | $142.7^{*} 0.3$ | Elongated | Sca2003a | 0.07 | $-5.3$ |
| $04140+4235$ | A1711 | 3062 | 2012.167 | R | 20 | 0.670 | 0.011 | $77.8{ }^{*} 0.4$ | NF |  |  |  |
| $04159+3142$ | STT77AB | 3082 | 2012.145 | R | 20 | 0.491 | 0.009 | 296.70 .5 |  | Sta1985 | -0.05 | -0.3 |
| $04160+0027$ | STF517 | 3095 | 2012.145 | R | 32 | 3.286 | 0.017 | $8.0 * 0.3$ |  |  |  |  |
| 04224+2049 | BU87 | 3158 | 2012.167 | R | 20 | 1.887 | 0.012 | $167.3^{*} 0.4$ |  |  |  |  |
| $04227+1503$ | STT82AB | 3169 | 2012.167 | R | 20 | 1.249 | 0.008 | $332.2 * 0.3$ |  | WSI2004a | 0.02 | -2.1 |
| $04233+1123$ | STF535 | 3174 | 2012.145 | R | 20 | 1.124 | 0.009 | 271.70 .3 |  | Hrt2000c | 0.07 | 1.6 |
| $04268+5539$ | STF531 | 3207 | 2012.191 | R | 20 | 0.963 | 0.011 | $324.4^{*} 0.3$ |  |  |  |  |
| $04301+1538$ | STF554 | 3264 | 2012.205 | R | 20 | 1.538 | 0.008 | $16.3{ }^{*} 0.3$ |  | Baz1980a | -0.08 | 0.8 |
| $04316+3739$ | BU789 | 3275 | 2012.205 | R | 32 | 0.844 | 0.024 | $322.4 * 0.7$ |  |  |  |  |
| $04333+5103$ | STF553 | 3287 | 2012.199 | R | 32 | 3.053 | 0.032 | $134.4 * 0.3$ |  |  |  |  |
| $04335+1801$ | STF559 | 3297 | 2012.199 | R | 32 | 3.062 | 0.016 | $275.7^{*} 0.6$ | Elongated |  |  |  |
| $04367+1930$ | STF567 | 3330 | 2012.142 | R | 32 | 2.046 | 0.033 | $342.8{ }^{*} 0.5$ |  | USN2002 | 0.01 | 0.3 |
| $04381+4207$ | STF565AB | 3338 | 2012.188 | R | 20 | 1.347 | 0.011 | $166.9{ }^{*} 0.5$ |  |  |  |  |
| $04385+2656$ | STF572AB | 3353 | 2012.188 | R | 32 | 4.389 | 0.022 | $9.3{ }^{*} 0.3$ |  |  |  |  |
| $04422+3731$ | STF577 | 3390 | 2012.188 | R | 20 | 0.740 | 0.008 | 338.41 .3 |  | Hei1998 | -0.07 | -3.4 |
| 04518+0115 | STF609 | 3484 | 2012.150 | R | 32 | 2.931 | 0.024 | 69.0 * 0.3 |  |  |  |  |
| $04518+1339$ | BU552AB | 3483 | 2012.169 | R | 20 | 0.715 | 0.008 | $258.0{ }^{*} 0.9$ |  | Hei1984b | 0.02 | -1.5 |
| $04549+0836$ | STT90AB | 3517 | 2012.150 | R | 32 | 1.766 | 0.017 | $339.4 * 0.8$ |  |  |  |  |
| $04573+6145$ | STT88 | 3526 | 2012.169 | R | 20 | 0.764 | 0.014 | 307.3* 0.4 |  |  |  |  |
| $04581+0141$ | STF622 | 3568 | 2012.202 | R | 32 | 2.571 | 0.017 | $161.3^{*} 0.6$ | Diffuse |  |  |  |
| $05000+7003$ | STF604 | 3551 | 2012.150 | R | 32 | 2.149 | 0.016 | $38.2 * 0.4$ | Diffuse |  |  |  |
| $05003+3924$ | STT92AB | 3589 | 2012.202 | RL | 32 | 4.187 | 0.035 | 281.9*0.3 |  | Cve2006e | 0.07 | 0.1 |
| 05005+0506 | STT93 | 3596 | 2012.202 | R | 32 | 1.537 | 0.030 | $244.7^{*} 0.5$ |  | USN1999a | 0.02 | 0.8 |
| $05013+5015$ | STF619 | 3593 | 2012.202 | R | 32 | 4.231 | 0.065 | $158.2^{*} 0.3$ |  | Kis2009 | 0.22 | -0.5 |
| $05026+5450$ | AG84 | 3604 | 2012.202 | R | 32 | 2.487 | 0.046 | $152.2{ }^{*} 0.3$ |  |  |  |  |
| 05055+1948 | STT95 | 3672 | 2012.169 | R | 20 | 0.928 | 0.008 | 296.0*0.3 |  | Jas1996b | -0.03 | -1.1 |
| $05075+5532$ | BU749 | 3683 | 2012.205 | R | 20 | 1.304 | 0.008 | $240.8^{*} 0.3$ |  |  |  |  |
| $05079+0830$ | STT98 | 3711 | 2012.191 | R | 20 | 0.896 | 0.008 | $295.3^{*} 0.3$ |  | Sca2008d | -0.01 | -0.4 |
| $05079+5459$ | STF635 | 3689 | 2012.205 | R | 32 | 1.018 | 0.016 | $303.6{ }^{*} 0.6$ |  |  |  |  |
| 05245-0224 | DA5Aa-B | 4002 | 2012.167 | R | 20 | 1.811 | 0.009 | $76.8^{*} 0.3$ | Elongated |  |  |  |
| 05268+0306 | KNT3AB | 4039 | 2012.167 | R | 20 | 2.979 | 0.015 | $327.6^{*} 0.3$ | Faint |  |  |  |
| $05270+2737$ | HO226AB | 4032 | 2012.167 | R | 20 | 0.672 | 0.008 | $89.5{ }^{*} 0.7$ |  |  |  |  |
| $05290+3746$ | BU890 | 4060 | 2012.145 | R | 32 | 1.231 | 0.016 | 282.80 .4 |  |  |  |  |
| $05301+2933$ | STF719AB | 4086 | 2012.145 | R | 32 | 1.236 | 0.016 | $333.6{ }^{*} 0.7$ |  |  |  |  |
| 05308+0557 | STF728 | 4115 | 2012.142 | R | 20 | 1.264 | 0.008 | $44.7^{*} 0.5$ |  | USN1999b | -0.03 | -0.0 |
| 05309+1015 | STF726 | 4113 | 2012.145 | R | 32 | 1.071 | 0.017 | $262.4^{*} 1.2$ |  |  |  |  |
| 05347-0424 | STF743AB | 4176 | 2012.224 | R | 32 | 1.801 | 0.017 | 282.0* 1.7 |  |  |  |  |
| $05351+0956$ | STF738AB | 4179 | 2012.224 | R | 32 | 4.386 | 0.022 | $43.6{ }^{*} 0.3$ | Diffuse |  |  |  |
| $05364+2200$ | STF742 | 4200 | 2012.142 | R | 32 | 4.078 | 0.020 | 273.7** 0.5 |  | Hop1973b | -0.05 | -1.5 |
| $05371+2655$ | STF749AB | 4208 | 2012.142 | R | 20 | 1.154 | 0.008 | $139.9 * 0.3$ |  | Sca2007a | -0.01 | $-0.8^{\text {Q }}$ |
| $05371+4150$ | STF736 | 4204 | 2012.169 | R | 32 | 2.582 | 0.021 | $359.9 * 0.3$ |  |  |  |  |
| $05399+3757$ | STT112 | 4243 | 2012.169 | R | 20 | 0.887 | 0.008 | $46.8^{*} 0.3$ |  |  |  |  |
| $05474+2939$ | BU560 | 4371 | 2012.145 | R | 20 | 1.702 | 0.009 | $124.5{ }^{*} 0.3$ |  | Sca2008c | 0.03 | -0.6 |
| $05499+3147$ | STF796AB | 4421 | 2012.142 | R | 32 | 3.743 | 0.019 | $61.5^{*} 0.3$ |  |  |  |  |
| $05511+6545$ | STF780AB | 4405 | 2012.145 | R | 32 | 3.846 | 0.019 | $104.2{ }^{*} 0.4$ |  |  |  |  |
| 05525+4009 | STF802AB | 4456 | 2012.202 | R | 32 | 2.441 | 0.016 | $103.6{ }^{*} 1.1$ |  |  |  |  |
| $05529+3427$ | STF807 | 4463 | 2012.202 | R | 32 | 2.477 | 0.035 | 150.8* 0.4 |  |  |  |  |
| $05535+3720$ | BU1053 | 4472 | 2012.145 | R | 32 | 1.852 | 0.016 | $358.9 * 0.5$ |  |  |  |  |
| $05542+1015$ | STT123 | 4491 | 2012.205 | R | 32 | 2.142 | 0.016 | 186.8* 0.5 |  |  |  |  |

Table 1 Table of speckle measurements and O-C residuals with published orbits (cont.)

| WDS | Name | ADS | Epoch |  | Eyep. (mm) | $\begin{gathered} \rho \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\rho} \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{array}{cc} \theta & \sigma_{\theta} \\ \left({ }^{\circ}\right) & \left({ }^{\circ}\right) \end{array}$ | Notes | Orbit | $\begin{array}{r} \Delta \rho(\mathrm{O}-\mathrm{C}) \\ \left({ }^{\prime \prime}\right) \end{array}$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ $\left({ }^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $05544+1854$ | STF813 | 4490 | 2012.205 | R | 32 | 3.021 | 0.016 | $149.5^{*} 0.8$ |  |  |  |  |
| $05589+1248$ | STT124 | 4562 | 2012.224 | R | 10 | 0.594 | 0.005 | 299.1* 0.5 | Elongated | Baz1988d | 0.21 | -4.9 |
| $06041+1101$ | J335 | 4647 | 2012.205 | R | 32 | 1.253 | 0.032 | $270.8^{*} 0.4$ |  | Ole2002a | 0.05 | -4.7 |
| 06074+3616 | STT131 | 4691 | 2012.235 | R | 20 | 1.501 | 0.011 | $276.9^{*} 0.3$ |  |  |  |  |
| $06081+0317$ | STF851 | 4726 | 2012.205 | R | 32 | 2.926 | 0.055 | $33.4 * 0.8$ | Faint |  |  |  |
| $06082+3759$ | STT132 | 4709 | 2012.235 | R | 20 | 1.820 | 0.009 | $332.0 * 0.5$ | NF |  |  |  |
| 06085+1358 | STF848AB | 4728 | 2012.145 | R | 32 | 2.563 | 0.016 | $109.7^{*} 0.3$ |  |  |  |  |
| $06113+3040$ | STF861BC | 4779 | 2012.150 | R | 32 | 1.665 | 0.016 | $314.4 * 0.3$ |  |  |  |  |
| $06117+1723$ | STF867AB | 4789 | 2012.150 | R | 32 | 2.184 | 0.016 | $158.6^{*} 0.3$ |  |  |  |  |
| $06118+0228$ | J52 | 4796 | 2012.238 | R | 32 | 2.095 | 0.016 | $281.6^{*} 0.4$ |  |  |  |  |
| $06128+2426$ | AG107 | 4810 | 2012.235 | R | 32 | 1.485 | 0.033 | 178.80 .3 | Faint |  |  |  |
| $06135+1015$ | HO22 | 4823 | 2012.238 | R | 20 | 0.984 | 0.010 | 208.90 .8 | Faint |  |  |  |
| $06146+1725$ | J683 | 4836 | 2012.238 | R | 32 | 1.351 | 0.016 | $3.6{ }^{*} 0.5$ |  |  |  |  |
| $06192+3947$ | STF883AB | 4905 | 2012.238 | R | 32 | 3.487 | 0.017 | 264.0 * 0.6 |  |  |  |  |
| $06197+2128$ | AG109 | 4933 | 2012.238 | R | 32 | 2.398 | 0.030 | $17.1^{*} 0.3$ |  |  |  |  |
| $06200+2826$ | STF888AB-C | 4929 | 2012.241 | R | 32 | 2.909 | 0.016 | $263.4^{*} 0.5$ |  |  |  |  |
| $06221+5922$ | STF881Aa-B | 4950 | 2012.167 | R | 10 | 0.640 | 0.003 | $147.1^{*} 0.3$ |  |  |  |  |
| 06246+3424 | HU702 | 5014 | 2012.241 | R | 32 | 0.852 | 0.016 | $329.1{ }^{*} 0.4$ |  |  |  |  |
| $06250+4233$ | A2356 | 5016 | 2012.241 | R | 32 | 0.837 | 0.016 | 262.60 .6 |  |  |  |  |
| $06266+1531$ | STT140AB | 5062 | 2012.241 | R | 32 | 2.983 | 0.019 | 119.0 * 0.3 | NF |  |  |  |
| $06344+1445$ | STF932 | 5197 | 2012.202 | R | 32 | 1.662 | 0.028 | 305.4*1.2 |  | Hop1960a | 0.02 | 3.5 |
| $06347+3832$ | STF928AB | 5191 | 2012.202 | R | 32 | 3.465 | 0.024 | $131.0 * 0.3$ |  |  |  |  |
| $06387+4135$ | STF941 | 5269 | 2012.202 | R | 32 | 1.934 | 0.016 | $81.8{ }^{*} 0.8$ |  |  |  |  |
| $06531+5927$ | STF963 | 5514 | 2012.167 | R | 10 | 0.244 | 0.003 | $343.5{ }^{*} 0.6$ |  | Sca2008d | -0.02 | 1.6 |
| $06573+5825$ | STT159 | 5586 | 2012.167 | R | 10 | 0.658 | 0.005 | $231.8^{*} 0.3$ |  | Sod1999 | 0.01 | 1.6 |
| $07028+1305$ | HO342 | 5725 | 2012.170 | R | 20 | 1.170 | 0.008 | $87.7^{*} 0.3$ |  |  |  |  |
| $07128+1511$ | WEI14 | 5875 | 2012.170 | R | 32 | 2.108 | 0.016 | $160.2^{*} 0.3$ |  |  |  |  |
| $07128+2713$ | STF1037 | 5871 | 2012.167 | R | 20 | 0.977 | 0.010 | 306.90 .4 |  | Sca1983e | 0.04 | 0.6 |
| $07148+5233$ | STF1033 | 5896 | 2012.170 | R | 32 | 1.582 | 0.016 | $275.1^{*} 0.3$ |  |  |  |  |
| $07274+1519$ | STF1094 | 6086 | 2012.170 | R | 32 | 2.507 | 0.016 | 95.8* 0.3 |  |  |  |  |
| $07303+4959$ | STF1093 | 6117 | 2012.167 | R | 20 | 0.864 | 0.009 | 203.50 .4 |  | Sca1984d | 0.07 | -0.3 |
| $07345+1218$ | STF1116 | 6180 | 2012.170 | R | 32 | 1.732 | 0.016 | $95.6{ }^{*} 0.3$ |  |  |  |  |
| $07346+3153$ | STF1110 | 6175 | 2012.142 | R | 20 | 4.832 | 0.024 | $56.3 * 0.3$ |  | Hei1988a | -0.01 | -0.2 |
| $07359+4302$ | STT174 | 6191 | 2012.202 | R | 32 | 2.193 | 0.019 | $88.2 * 0.3$ |  |  |  |  |
| $07401+0514$ | STF1126 | 6263 | 2012.170 | R | 20 | 0.840 | 0.008 | $173.9^{*} 0.4$ |  |  |  |  |
| $07486+2308$ | WRH15 | 6378 | 2012.235 | R | 10 | 0.263 | 0.004 | $31.0 * 0.6$ |  | USN2002 | -0.00 | 0.5 |
| 07556+3630 | COU2075 | - | 2012.241 | R | 20 | 0.832 | 0.011 | $141.8{ }^{*} 0.4$ |  |  |  |  |
| $07598+1341$ | STF1170 | 6499 | 2012.205 | R | 32 | 2.373 | 0.016 | $106.4^{*} 0.9$ |  |  |  |  |
| 08024+0409 | STF1175 | 6532 | 2012.202 | R | 32 | 1.406 | 0.021 | 284.0 * 0.6 |  | Ole2001 | 0.03 | -4.9 |
| 08033+2616 | STT186 | 6538 | 2012.205 | R | 20 | 0.994 | 0.014 | $73.7{ }^{*} 0.5$ |  |  |  |  |
| $08041+3302$ | STT187 | 6549 | 2012.238 | R | 10 | 0.420 | 0.003 | 339.10 .9 | Elongated | Msn1999a | 0.01 | 0.1 |
| 08056+2732 | STF1177 | 6569 | 2012.235 | R | 32 | 3.504 | 0.033 | $349.7^{*} 0.4$ |  |  |  |  |
| $08095+3213$ | STF1187 | 6623 | 2012.205 | R | 32 | 3.037 | 0.025 | $21.4^{*} 0.3$ |  | Ole2001 | 0.09 | 0.5 |
| $08122+1739$ | STF1196AB | 6650 | 2012.205 | R | 20 | 1.101 | 0.008 | $31.1{ }^{*} 0.3$ |  | Hrr1992 | 0.00 | 0.9 |
| $08160+1842$ | JCT3Aa,Ab | 6696 | 2012.235 | R | 10 | - | - | - - | Unres |  |  |  |
| $08160+1842$ | JCT3Aa,Ab | 6696 | 2012.205 | W | 10 | 0.144 | 0.011 | $25.7{ }^{*} 3.7$ | Faint |  |  |  |
| 08432+3849 | BU209 | 6946 | 2012.205 | R | 32 | 1.245 | 0.016 | 8.3* 0.7 |  |  |  |  |
| $08468+0625$ | STF1273AC | 6993 | 2012.241 | R | 20 | 2.756 | 0.017 | $303.4 * 0.3$ | NF |  |  |  |
| $08468+0625$ | SP1AB | 6993 | 2012.241 | R | 10 | 0.269 | 0.003 | $176.2^{*} 1.6$ |  | Hrt1996a | -0.00 | 0.2 |
| 08508+3504 | STF1282 | 7034 | 2012.235 | R | 32 | 3.519 | 0.018 | $277.4^{*} 0.9$ |  |  |  |  |
| 08514+5732 | STF1275 | 7033 | 2012.235 | R | 32 | 1.874 | 0.033 | 197.9*0.3 |  |  |  |  |
| $08531+5457$ | A1584 | 7054 | 2012.238 | R | 20 | 0.678 | 0.015 | 86.10 .3 | Faint | Hei1991 | 0.01 | -2.8 |
| $08542+3035$ | STF1291 | 7071 | 2012.241 | R | 20 | 1.526 | 0.008 | $310.0 * 0.3$ |  |  |  |  |
| 08554+7048 | STF1280 | 7067 | 2012.203 | R | 32 | 2.787 | 0.016 | 353.0 * 0.5 |  | Hei1997 | 0.12 | -1.0 |

Table 1 Table of speckle measurements and O-C residuals with published orbits (cont.)

| WDS | Name | ADS | Epoch |  | Eyep. <br> (mm) | $\begin{gathered} \rho \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\rho} \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{array}{cc} \sigma_{\theta} \\ \left({ }^{\circ}\right) & \left({ }^{\circ}\right) \end{array}$ | Notes | Orbit | $\begin{array}{r} \Delta \rho(\mathrm{O}-\mathrm{C}) \\ \left({ }^{\prime \prime}\right) \end{array}$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ $\left(^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 09036+4709 | A1585 | 7158 | 2012.238 | R | 10 | 0.268 | 0.004 | 289.6** 0.3 |  | SOR2000 | -0.01 | -0.0 |
| 09104+6708 | STF1306 | 7203 | 2012.203 | RL | 32 | 4.342 | 0.030 | $348.6^{*} 0.3$ | NF | Sca1985c | 0.12 | -0.7 |
| $09184+3522$ | STF1333 | 7286 | 2012.238 | R | 20 | 1.944 | 0.010 | $49.6{ }^{*} 0.3$ |  |  |  |  |
| $09210+3643$ | STF1339 | 7308 | 2012.238 | R | 32 | 1.424 | 0.016 | 63.9*0.6 |  |  |  |  |
| $09210+3811$ | STF1338 | 7307 | 2012.235 | R | 20 | 1.094 | 0.008 | $303.9^{*} 0.3$ |  | Sca2002b | 0.09 | -4.2 |
| $09245+0621$ | STF1348 | 7352 | 2012.235 | R | 20 | 1.956 | 0.010 | $134.1^{*} 0.3$ |  |  |  |  |
| $09273+0614$ | STF1355 | 7380 | 2012.238 | R | 32 | 1.782 | 0.030 | $353.2 * 0.6$ |  | Lin2011b | -0.06 | -0.6 |
| $09521+5404$ | STT208 | 7545 | 2012.339 | R | 10 | 0.370 | 0.004 | 298.2*0.4 |  | Hei1996c | -0.03 | -1.2 |
| 10163+1744 | STT215 | 7704 | 2012.369 | R | 20 | 1.469 | 0.008 | $176.5^{*} 0.3$ |  | Zae1984 | -0.08 | -2.3 |
| $10181+2731$ | STF1421 | 7715 | 2012.361 | R | 32 | 4.543 | 0.023 | $330.9^{*} 0.3$ |  |  |  |  |
| $10200+1950$ | STF1424AB | 7724 | 2012.356 | R | 32 | 4.727 | 0.041 | $125.2^{*} 0.5$ |  | WSI2006b | 0.11 | -0.8 |
| $10234+2630$ | A1990 | 7747 | 2012.361 | R | 32 | 1.420 | 0.017 | 288.70 .4 |  |  |  |  |
| $10236+2617$ | A1991 | 7748 | 2012.361 | R | 32 | 1.466 | 0.038 | 189.2*0.3 |  |  |  |  |
| $10256+0847$ | STF1431 | 7764 | 2012.361 | R | 32 | 3.569 | 0.018 | $73.7{ }^{*} 0.3$ |  |  |  |  |
| $10260+5237$ | STF1428 | 7762 | 2012.380 | R | 32 | 2.784 | 0.016 | $87.4^{*} 0.3$ |  |  |  |  |
| 10269+1713 | STT217 | 7775 | 2012.380 | R | 20 | 0.770 | 0.008 | $148.4^{*} 0.3$ |  | Sca2013b | -0.00 | 0.2 |
| 10279+3642 | HU879 | 7780 | 2012.380 | R | 10 | 0.541 | 0.003 | $224.5{ }^{*} 0.3$ |  | Msn2001c | -0.01 | 0.3 |
| 10493-0401 | STF1476 | 7936 | 2012.378 | R | 32 | 2.441 | 0.019 | $16.4 * *$ |  |  |  |  |
| $11037+6145$ | BU1077 | 8035 | 2012.339 | R | 10 | 0.668 | 0.003 | $4.7{ }^{*} 0.3$ |  | Sca2011a | 0.00 | -2.0 |
| $11182+3132$ | STF1523AB | 8119 | 2012.339 | R | 20 | 1.627 | 0.008 | 193.5* 0.3 |  | Msn1995 | -0.01 | -0.9 |
| $11190+1416$ | STF1527 | 8128 | 2012.339 | R | 10 | 0.312 | 0.005 | 209.40 .3 | NF | Tok2012b | -0.00 | -0.9 |
| " |  | " | 2012.356 | R | 10 | 0.308 | 0.003 | 211.40 .3 |  | Tok2012b | -0.01 | 0.9 |
| " | " | " | 2012.378 | R | 10 | 0.312 | 0.003 | 212.00 .4 | NF | Tok2012b | -0.00 | 1.2 |
| " | " | " | 2012.413 | R | 10 | 0.306 | 0.004 | 211.80 .3 |  | Tok2012b | -0.01 | 0.5 |
| 11239+1032 | STF1536 | 8148 | 2012.356 | R | 20 | 2.066 | 0.010 | 98.6** 0.3 |  | Hei1986a | -0.01 | 1.8 |
| $11279+4434$ | STF1542 | 8171 | 2012.361 | R | 32 | 3.467 | 0.017 | 264.8* 0.3 | NF |  |  |  |
| $11308+4117$ | STT234 | 8189 | 2012.356 | R | 10 | 0.470 | 0.004 | 175.00 .3 | NF | Doc2009g | 0.01 | -0.4 |
| $11323+6105$ | STT235 | 8197 | 2012.356 | R | 20 | 0.813 | 0.011 | $29.2{ }^{*} 0.5$ |  | Hei1990c | -0.03 | 1.2 |
| $11328+6004$ | KR38 | 8203 | 2012.361 | R | 32 | 2.812 | 0.016 | 52.90 .4 |  |  |  |  |
| $11347+1648$ | STF1552 | 8220 | 2012.339 | R | 32 | 3.525 | 0.018 | 207.9*0.5 |  |  |  |  |
| $11363+2747$ | STF1555 | 8231 | 2012.339 | R | 20 | 0.728 | 0.008 | $148.7^{*} 0.3$ |  | Doc2007i | 0.04 | -1.0 |
| $11390+4109$ | STT237 | 8252 | 2012.378 | R | 32 | 2.041 | 0.016 | $243.2^{*} 0.3$ |  | USN2002 | 0.02 | -1.5 |
| $11547+0944$ | BRT1276 | - | 2012.380 | W | 32 | 2.861 | 0.016 | 357.9*0.8 |  |  |  |  |
| $11551+4629$ | STF1579AB-C | 8347 | 2012.378 | R | 32 | 3.901 | 0.020 | $41.9 * 0.3$ |  |  |  |  |
| $11561+4533$ | STF1581 | 8354 | 2012.380 | W | 32 | 2.386 | 0.016 | 169.9*0.3 |  |  |  |  |
| $12060+6842$ | STF3123 | 8419 | 2012.378 | R | 10 | 0.284 | 0.003 | 201.91 .1 | NF | Hrt1996a | -0.00 | -1.1 |
| $12108+3953$ | STF1606 | 8446 | 2012.356 | R | 10 | 0.506 | 0.004 | $151.3^{*} 0.5$ |  | Msn1999a | -0.00 | 1.5 |
| $12244+2535$ | STF1639 | 8539 | 2012.339 | R | 20 | 1.803 | 0.009 | $323.7^{*} 0.3$ |  | Ole2000b | -0.00 | 0.3 |
| $12257+4444$ | STF1642 | 8546 | 2012.408 | R | 32 | 2.530 | 0.022 | $179.4 * 0.3$ |  |  |  |  |
| $12272+2701$ | STF1643 | 8553 | 2012.356 | R | 32 | 2.823 | 0.028 | $5.0^{*} 0.3$ |  | WSI2004a | 0.09 | 0.4 |
| $12306+0943$ | STF1647 | 8575 | 2012.356 | R | 20 | 1.328 | 0.008 | 248.10 .3 |  | Hop1970 | 0.08 | -2.6 |
| $12360+1124$ | STF1661 | 8606 | 2012.380 | W | 32 | 2.218 | 0.030 | $251.7^{*} 0.4$ |  |  |  |  |
| 12417-0127 | STF1670 | 8630 | 2012.356 | R | 20 | 1.816 | 0.009 | 13.0 * 0.3 |  | Sca2007c | -0.02 | -0.2 |
| " | " | " | 2012.380 | R | 20 | 1.817 | 0.009 | $12.9 * 0.3$ |  | Sca2007c | -0.03 | -0.2 |
| $12563+5406$ | STF1695 | 8710 | 2012.413 | R | 32 | 3.828 | 0.025 | $279.7^{*} 0.3$ |  |  |  |  |
| $12587+2728$ | STF1699 | 8721 | 2012.361 | R | 32 | 1.659 | 0.021 | 8.50 .3 |  |  |  |  |
| $13007+5622$ | BU1082 | 8739 | 2012.356 | RL | 20 | 0.992 | 0.008 | $108.0^{*} 0.3$ |  | Sca2012c | -0.03 | 1.1 |
| " | " | " | 2012.413 | R | 20 | 0.992 | 0.008 | $107.7^{*} 0.3$ |  | Sca2012c | -0.03 | 0.7 |
| $13025+2330$ | STF1709 | 8749 | 2012.361 | R | 32 | 2.727 | 0.016 | $250.7^{*} 0.3$ |  |  |  |  |
| $13064+2109$ | COU11Aa-B | - | 2012.361 | I | 32 | 1.716 | 0.016 | $314.4^{*} 0.3$ |  |  |  |  |
| 13084+1529 | STF1722 | 8796 | 2012.361 | R | 32 | 2.651 | 0.016 | $335.7^{*} 0.3$ |  |  |  |  |
| $13128+4030$ | A1606 | 8820 | 2012.460 | R | 32 | 1.267 | 0.022 | 16.80 .6 |  |  |  |  |
| $13189+0030$ | A2585 | 8855 | 2012.463 | R | 32 | 0.839 | 0.016 | 216.71 .9 |  |  |  |  |
| $13235+2914$ | HO260 | 8887 | 2012.463 | R | 32 | 1.618 | 0.016 | $86.0^{*} 0.4$ |  | WSI2004a | -0.05 | 0.8 |

Table 1 Table of speckle measurements and O-C residuals with published orbits (cont.)

|  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |

Table 1 Table of speckle measurements and O-C residuals with published orbits (cont.)

|  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 1 Table of speckle measurements and O-C residuals with published orbits (cont.)

| WDS | Name | ADS | Epoch |  | Eyep. <br> (mm) | $\begin{gathered} \rho \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\rho} \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{array}{cc} \theta & \sigma_{\theta} \\ \left({ }^{\circ}\right) & \left({ }^{\circ}\right) \end{array}$ | Notes | Orbit | $\begin{array}{r} \Delta \rho(\mathrm{O}-\mathrm{C}) \\ \left({ }^{\prime \prime}\right) \end{array}$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ $\left(^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19579+4216 | STF2607AB-C | 13186 | 2012.810 | R | 32 | 2.978 | 0.122 | 289.1*1.2 | NF |  |  |  |
| 19584-0214 | AC12 | 13178 | 2012.815 | R | 32 | 1.488 | 0.022 | 298.5* 0.8 |  |  |  |  |
| 19585+3317 | STF2606 | 13196 | 2012.815 | R | 20 | 0.687 | 0.008 | $146.5{ }^{*} 0.6$ |  |  |  |  |
| 19594+3206 | A378 | 13212 | 2012.854 | R | 32 | 0.811 | 0.024 | $290.5{ }^{*} 0.7$ |  |  |  |  |
| 20010+3742 | BU1289AB | 13262 | 2012.889 | R | 20 | 0.666 | 0.020 | $54.2{ }^{*} 1.1$ |  |  |  |  |
| 20014+1045 | STF2613 | 13256 | 2012.810 | R | 32 | 3.550 | 0.077 | $354.4 * *$ |  | Hop1973b | -0.61 | 2.5 |
| $20028+1435$ | STF2616 | 13290 | 2012.878 | R | 32 | 3.492 | 0.040 | $266.6{ }^{*} 0.3$ | NF |  |  |  |
| $20040+1221$ | A1194 | 13314 | 2012.690 | W | 32 | 0.904 | 0.074 | 314.50 .4 |  |  |  |  |
| $20043+3033$ | STF2626 | 13329 | 2012.815 | W | 20 | 0.952 | 0.013 | $127.8^{*} 0.8$ | Elongated |  |  |  |
| 20051-0418 | BU56 | 13334 | 2012.878 | R | 32 | 1.326 | 0.016 | $187.4^{*} 0.6$ |  |  |  |  |
| 20056+6342 | STF2642 | 13392 | 2012.712 | R | 32 | 1.759 | 0.047 | 190.40 .7 |  |  |  |  |
| $20074+3543$ | STT398 | 13405 | 2012.889 | R | 20 | 0.992 | 0.022 | $80.6 * * .8$ |  |  |  |  |
| $20080+4223$ | A382 | 13415 | 2012.889 | R | 20 | 1.712 | 0.009 | $95.6 * 0.3$ |  |  |  |  |
| $20262+3712$ | HO130 | 13856 | 2012.810 | W | 32 | 1.852 | 0.019 | $287.7^{*} 0.3$ | Elongated |  |  |  |
| $20337+3835$ | A1431 | 14007 | 2012.813 | R | 32 | 0.901 | 0.016 | $25.4^{*} 1.1$ |  |  |  |  |
| $20370+1203$ | STF2701 | 14063 | 2012.709 | R | 32 | 2.122 | 0.019 | $220.5{ }^{*} 0.3$ |  |  |  |  |
| 20396+4035 | STT410 | 14126 | 2012.813 | R | 20 | 0.862 | 0.024 | 3.90 .7 |  | Hrt2011a | -0.00 | -0.1 |
| $20397+6325$ | DOB15 | 14155 | 2012.813 | W | 32 | 3.139 | 0.019 | 88.60 .5 | Elongated |  |  |  |
| $20445+2356$ | STF2724 | 14227 | 2012.810 | R | 32 | 2.465 | 0.022 | 149.51 .2 |  |  |  |  |
| $20595+5013$ | BU68 | 14520 | 2012.878 | R | 32 | 1.901 | 0.033 | 148.9*1.4 |  |  |  |  |
| $20598+2004$ | STF2739 | 14515 | 2012.878 | R | 32 | 3.297 | 0.022 | $253.0^{*} 0.3$ | Faint |  |  |  |
| 21105+1958 | STF2767 | 14708 | 2012.810 | R | 32 | 2.492 | 0.028 | $28.4^{*} 0.3$ |  |  |  |  |
| $21186+1134$ | BU163 | 14839 | 2012.889 | R | 20 | 0.829 | 0.010 | $257.8^{*} 0.7$ |  | Fek1997 | -0.02 | $-0.4{ }^{\text {a }}$ |
| $21208+3227$ | STT437AB | 14889 | 2012.889 | R | 32 | 2.444 | 0.055 | $19.8{ }^{*} 0.8$ |  | Hrt2011a | 0.02 | 0.7 |
| $21318+3349$ | STF2802 | 15060 | 2012.813 | R | 32 | 3.732 | 0.021 | $9.1{ }^{*} 0.4$ |  |  |  |  |
| $22110+6324$ | STF2879AB | 15712 | 2012.889 | R | 20 | 0.780 | 0.017 | $233.8{ }^{*} 0.9$ |  |  |  |  |
| $22136+5234$ | BU991 | 15756 | 2012.889 | R | 20 | 0.699 | 0.011 | 134.5* 1.0 | Faint |  |  |  |
| $23244+6917$ | A789 | 16738 | 2012.890 | R | 32 | 1.958 | 0.049 | $82.8^{*} 0.6$ |  |  |  |  |
| $23256+3326$ | AG292 | 16744 | 2012.890 | W | 32 | 3.760 | 0.071 | $233.7^{*} 0.3$ | Elongated |  |  |  |
| $23375+4426$ | STT500AB | 16877 | 2012.890 | R | 10 | 0.460 | 0.007 | 11.51 .0 |  | Zul1981 | 0.04 | -5.1 |
| $23439+0715$ | STF3033 | 16958 | 2012.890 | R | 32 | 3.042 | 0.036 | 183.20 .3 |  |  |  |  |
| $23516+4205$ | STT510AB | 17050 | 2012.890 | R | 20 | 0.611 | 0.023 | 118.71 .1 | NF | Nov2005 | 0.02 | $-1.7^{Q}$ |

Note: In column 9, the exponent ${ }^{*}$ indicates that the position angle $\theta$ could be determined without the $180^{\circ}$ ambiguity. In column 14, the exponent ${ }^{Q}$ indicates discrepant quadrants between our measurements and the published orbits.

Table 2 Characteristics of the filters used for the measurements of Table 1.

| Name | Identification | $\lambda_{c}$ <br> $(\mathrm{~nm})$ | $\Delta_{\lambda}$ <br> $(\mathrm{nm})$ |
| :---: | :---: | :---: | :---: |
| R | ORIEL/57621 | 644 | 70 |
| W | ICCD alone | 650 | 420 |
| RL | ORIEL/57661 | 743 | 69 |
| I | ORIEL/57701 | 855 | 74 |

ing the observations. This processing led to a series of measurements with different background estimates and simulated noise, from which we derived the mean values and the standard deviation of those multiple measurements (see Paper III for more details). The final measures and their errors are displayed in Table 1. The average error values of the measurements reported in
this table are $0^{\prime \prime} .020 \pm 0^{\prime \prime} .014$ and $0^{\circ} .5 \pm 1^{\circ} .4$ for $\rho$ and $\theta$, respectively.

### 3.1 Quadrant determination

As our astrometric measurements were obtained from the symmetric auto-correlation files, the $\theta$ values first presented a $180^{\circ}$ ambiguity. To resolve this ambiguity and determine the quadrant containing the companion, Aristidi et al. (1997) have proposed a method that can be considered as a restricted triple correlation (RTC hereafter). The quadrants of the measurements indicated in Table 1 were mostly derived from the RTC files that were computed in real time during the observations, However, for the couples with the largest separations, a straightforward determination was done

Table 3 Objects with discrepant quadrants

| Name | Q | Filter | $\Delta m_{V}$ | Spectral type |
| :--- | :---: | :---: | :---: | :---: |
| ADS 758 AB | 3 | R | 0.11 | F8 |
| ADS 3353 AB | 1 | R | 0.15 | F0 |
| ADS 4208 AB | 2 | R | 0.01 | B8IV |
| ADS 7352 AB | 2 | R | 0.12 | F5 |

when the companions could be directly spotted on the long integration files.

As a result, in Table 1, we are able to give the unambiguous (i.e. "absolute") position angles of 305 out of 355 measurements, i.e. $86 \%$ of the total. They are marked with an asterisk in Col 9 . When our quadrant determination procedure failed, the angular measurement was reduced to the quadrant reported in the WDS catalogue, which is extracted from the Fourth Catalogue of Interferometric Measurements of Binary Stars (Hartkopf et al. 2013, hereafter IC4).

Our "absolute" $\theta$ values are consistent with the values tabulated in WDS for all objects except for ADS 758, 3353, 4208 and 7352. We display some information about those objects in Table 3. In Col. 2, we indicate the quadrant ( Q ) that we obtained from our observations, using the usual convention of numbering it from 1 to 4 to indicate the North-East, South-East, South-West and North-West quadrants, respectively. In Col. 3 we indicate which filter we have used. We report the difference of magnitude between the two components from the IC4 in Col. 4, and the global spectral type found in the SIMBAD astronomical data base in Col. 5. For all those objects, the small value and the uncertainty in the magnitude difference $\Delta m_{V}$ account for the discrepancy.

### 3.2 Comparison with published ephemerides

The ( $O-C$ ) (Observed minus Computed) residuals of the measurements for the 112 systems with a known orbit in Table 1 are displayed in Cols. 13 and 14 for the separation $\rho$ and position angle $\theta$, respectively. Those residuals were obtained with a selection of valid orbits found in the OC6 catalogue. We did not always use the most recent orbits since sometimes older orbits led to equivalent or even smaller residuals. For ADS 10786 BC we also reported the residuals obtained with our revised orbit presented in Sect. 4.

Fig. 3 shows that the residuals have a rather large scatter. This scatter is not indicative of the overall quality of the measures presented. It is naturally explained by the (old) age of many orbits that need revision. The mean values computed with the residuals of Table 1 are $\left\langle\Delta \rho_{O-C}>=-0^{\prime \prime} .001 \pm 0^{\prime \prime} .081\right.$ and $<\Delta \theta_{O-C}>=-0^{\circ} .4 \pm 1^{\circ} .6$. The small values obtained for those offsets provide a good validation of our calibration (see Paper XII).


Fig. 3 Residuals of the measurements of Table1 computed with the published orbits.

In the following, we examine the cases of ADS 4562, and 13256 , that appear with the largest residuals in Fig. 3. This is not surprising since those two binaries have a Grade 5 orbit (i.e. "indeterminate") in the OC6 catalogue.
ADS 4562: the residuals with the orbit of Baize (1988) begin to be rather large. A new orbit will be needed in the future, when a larger part of the orbit is monitored. ADS 13256: this object has the largest residual in Table 1 of $\left(\Delta_{\rho}=-0^{\prime \prime} .607, \Delta \theta=2^{\circ} .5\right)$ with Hopmann (1973)'s orbit. This orbit was computed a long time ago, with insufficient data. The arc of the monitored orbit was very short in 1973, but has not increased very much since. It cannot be excluded that the motion is rectilinear.

## 4 Revised orbits of ADS 10786 BC, $12144,12515,16314$, and 16539

In this section we present the new revised orbits, partly deduced from PISCO observations, that we have computed for ADS $10786 \mathrm{BC}, 12144,12515,16314$, and 16539.

We have followed the same method for those five objects. Using our last measurements with PISCO and the other available observations contained in the data base maintained by the United States Naval Observatory (USNO), we first computed the preliminary orbital elements with the analytical method of Kowalsky (1873). We then used them as initial values for the least-squares method of Hellerich (1925). When convergence was achieved, Hellerich's method led to an improvement of the orbital elements (with the exception
of the major axis) and to an estimation of the corresponding errors. The final value of the major axis was then set to the value that minimized the residuals in separation of Hellerich's solution.

The final orbital elements are presented in Table 4. The errors reported in this table were obtained by Hellerich's least-squares method. For ADS 12515, the errors could not be estimated since Hellerich's method did not converge. The format of the tables contained in this section is self-explanatory, but a detailed description of those formats can be found in Papers VI and VII.
[h]
The $(O-C)$ residuals of the new orbits, restricted to the last observations for reasons of space, are given in Tables 5, 6, 7, 8, and 9, for ADS 10786 BC, 12144, 12515,16314 , and 16539 , respectively. The name of the observer is reported in the last column, using the US Naval Observatory convention.

The ephemerides for 2014-2023 are presented in Table 10. The apparent orbits are shown in Fig. 4 as solid lines. The observational data used for the calculation of the orbital elements are plotted as small crosses or, in the case of PISCO observations, as filled circles (that appear in red in the electronic version). The orientation of the graphs conforms to the convention adopted by the observers of visual binary stars. For each object, the location of the primary component is indicated with a big cross. The straight line going through this point is the line of apsides. An arrow shows the sense of rotation of the companion.

In Table 11, we present some physical parameters of those systems. The (total) visual magnitudes (Col. 3), the difference of magnitude between the components (Col. 4) and the spectral types (Col. 5) were extracted from the IC4 and the SIMBAD data bases. The dynamical parallaxes are presented in Col. 6. Those parallaxes were derived from our orbital elements using Baize \& Romani (1946)'s method, with our revised formulae presented in Scardia et al. (2008b). In Col. 7, we report the Hipparcos parallaxes from ESA (1997) or the revised values from van Leeuwen (2007), as indicated in Col. 11. In Cols. 8, 9 and 10, we give the corresponding angular and linear sizes of the semi-major axis $a$ and the total mass $\mathfrak{M}_{\text {total }}$, respectively, that were computed from our orbital elements and the Hipparcos parallaxes.

### 4.1 New orbit of ADS 10786 BC

WDS 17465+2743 - AC 7 BC - ADS 10786 BC
This couple belongs to the wide system STF 2220 ABC, and was discovered by Alvan Clark in July 1856 with a 19.7 cm refractor (Dawes, 1857). Dawes noticed that this faint star was not resolved by F.G.W Struve with the Dorpat $25-\mathrm{cm}$ refractor in 1829, 1832 and 1836, and with the $38-\mathrm{cm}$ Merz-Mahler Poulkova refractor in 1851 . Dawes added "... it is, therefore, truly
astonishing that Mr. Alvan Clark should have detected its unsuspected duplicity with an object-glass whose aperture is only 7.75 inches!...".

This couple is one of the faintest systems that has been observed in Merate: the primary is a red dwarf (M4V spectral type) with a visual magnitude of 10.2 only. It is also known as GJ 695 C or $\mu$ Her C. It is very close from the sun, with an estimated distance of 8.3 pc only (see Table 11, where we reported the parallax of ADS 10786 A).

The orbital period of AC 7 BC is rather short, close to 43 yr , which explains why many orbits have been computed until now. The first orbit was proposed by Doberck (1879). The last one, from Starikova (1976) leads to systematic residuals both for $\rho$ and $\theta$, whereas the previous orbit, from Couteau (1959), is still valid.

Couteau's orbit is nevertheless very old, with observations made before 1957. Taking profit of more than 55 years of new and precise observations, which represents about 1.3 orbital revolutions, we recomputed an orbit to improve the accuracy of the orbital elements. Our new orbit of AC 7 BC was calculated by fitting the set of all the 353 observations, made since its discovery. Using the procedure described above, we obtained a straightforward convergence. On the second iteration, we discarded the bad measurements that led to very large residuals (more than $5^{\circ} .6$ and $0^{\prime \prime} .20$ for $\theta$ and $\rho$, respectively). The orbital elements reported in Table 4 fit the observations well (see Fig. 4), with mean residuals of $\Delta \rho_{O-C}=0^{\prime \prime} .079$ and $\Delta \theta_{O-C}=1^{\circ} .9$. The uncertainties of the orbital elements are very small and this orbit is close to being definitive, since 3.7 orbital revolutions have been well monitored by the observations.

The dynamic parallax obtained with the formula of Scardia et al. (2008b) is close to the Hipparcos parallax of van Leeuwen (2007) and the sum of the masses is in good agreement with theoretical values (see Table 11).

### 4.2 New orbit of ADS 12144

## WDS 19106+5429 - A 1391 - ADS 12144 (HIP 94194)

This couple was discovered by R.G. Aitken (1907) with the $91-\mathrm{cm}$ refractor of Lick Observatory in 1906. It is a faint and close binary with a separation angle always smaller than $0 .^{\prime \prime} 35$, which makes it difficult to observe. We have not yet managed to measure it in Merate, but we resolved it at the Pic du Midi Observatory in 1998, when PISCO was mounted on a 2-meter telescope.

A few orbits have been published for this object. The orbit from Baize (1987) leads to big residuals for the most recent observations. In 2000, we revised this orbit (Scardia et al., 2001), but our orbit now leads to systematic residuals for the position angle. Taking


Fig. 4 New orbits of ADS 10786 BC (a), ADS 12144 (b), ADS 12515 (c), ADS 16314 (d) and ADS 16539 (e). The observations by PISCO are plotted as filled circles which appear in red in the electronic version.

Table 4 New orbital elements of ADS 10786BC, 12144, 12515, 16314, and 16539.

| ADS | $\Omega_{2000}$ <br> $\left({ }^{\circ}\right)$ | $\omega$ <br> $\left({ }^{\circ}\right)$ | $i$ <br> $\left({ }^{\circ}\right)$ | $e$ | $T$ <br> $(\mathrm{yr})$ | $P$ <br> $(\mathrm{yr})$ | $n$ <br> $\left({ }^{\circ} / \mathrm{yr}\right)$ | $a$ <br> $\left({ }^{\prime \prime}\right)$ | A <br> $\left({ }^{\prime \prime}\right)$ | B <br> $\left({ }^{\prime \prime}\right)$ | F <br> $\left({ }^{\prime \prime}\right)$ | G <br> $\left({ }^{\prime \prime}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10786 BC | 60.07 | 172.85 | 66.06 | 0.1796 | 2008.335 | 43.127 | 8.3474 | 1.385 | -0.74628 | -1.15605 | 0.39725 | -0.42762 |
|  | $\pm 0.17$ | $\pm 0.64$ | $\pm 0.15$ | $\pm 0.0009$ | $\pm 0.073$ | $\pm 0.013$ | $\pm 0.002$ | $\pm 0.038$ |  |  |  |  |
| 12144 | 64.4 | 177.4 | 44.9 | 0.401 | 1981.135 | 138.12 | 2.6065 | 0.238 | -0.10963 | -0.21111 | 0.14721 | -0.08250 |
|  | $\pm 6.4$ | $\pm 4.4$ | $\pm 3.8$ | $\pm 0.033$ | $\pm 0.87$ | $\pm 11$ | $\pm 0.198$ | $\pm 0.032$ |  |  |  |  |
| 12515 | 65.8 | 322.4 | 171.5 | 0.073 | 2039.864 | 229.1 | 1.5710 | 0.211 | -0.01153 | 0.21019 | 0.20876 | 0.01336 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16314 | 166.1 | 347.2 | 121.9 | 0.6080 | 1925.180 | 383 | 0.93996 | 0.555 | -0.54097 | 0.06694 | -0.05066 | 0.30716 |
|  | $\pm 1.8$ | $\pm 1.4$ | $\pm 1.4$ | $\pm 0.050$ | $\pm 0.85$ | $\pm 72$ | $\pm 0.176$ | $\pm 0.026$ |  |  |  |  |
| 16539 | 114.3 | 145.7 | 153.5 | 0.2773 | 1963.25 | 72.0 | 5.0006 | 0.247 | 0.19750 | -0.13471 | -0.10915 | -0.20200 |
|  | $\pm 4.8$ | $\pm 5.0$ | $\pm 2.3$ | $\pm 0.005$ | $\pm 0.21$ | $\pm 0.29$ | $\pm 0.020$ | $\pm 0.021$ |  |  |  |  |

Table 5 ADS 10786 BC: O-C residuals of our new orbit (after 2007). The symbol ${ }^{P}$ indicates PISCO measurements.

| Epoch | $\Delta \rho(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\prime \prime}\right)$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\circ}\right)$ | Observer |
| :---: | ---: | ---: | :--- |
| 2008.344 | -0.069 | -0.7 | Ant |
| 2008.369 | 0.000 | 0.1 | Ant |
| 2008.452 | 0.002 | 0.5 | Msn |
| 2008.527 | 0.018 | -2.2 | Gii |
| 2010.511 | 0.027 | 0.5 | Los |
| 2010.681 | -0.003 | -4.0 | Ant |
| 2012.605 | $0.030^{P}$ | $-1.8^{P}$ | Sca |

Table 6 ADS 12144: O-C residuals of our new orbit (after 1990). The symbol ${ }^{P}$ indicates PISCO measurements.

| Epoch | $\Delta \rho(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\prime \prime}\right)$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\circ}\right)$ | Observer |
| :---: | :---: | ---: | :--- |
| 1990.523 | -0.028 | -3.0 | Lin |
| 1996.699 | 0.004 | 1.7 | Hrt |
| 1998.679 | $-0.003^{P}$ | $2.1^{P}$ | Sca |
| 2006.570 | 0.014 | -3.7 | Hrt |
| 2007.602 | 0.007 | 0.2 | Msn |
| 2008.639 | 0.002 | 6.6 | Gii |

profit of the last few precise measurements, we propose here a new revision of the orbital elements.

Using a selection of 22 valid measurements made since 1906, we obtained the orbital elements reported in Table 4. Although the number of available measurements was small, we still had to reject six bad observations whose position angles were clearly erroneous. Our new orbit fit the observations well (see Fig. 4), with mean residuals of $\Delta \rho_{O-C}=0^{\prime \prime} .019$ and $\Delta \theta_{O-C}=3^{\circ} .9$.

The corresponding systemic mass computed with Hipparcos parallax (van Leeuwen, 2007) is larger than what is expected from theory for an F8 couple (see Table 11), but the agreement is reasonable when considering the large uncertainties. Furthermore, the luminosity class of this object may have been badly determined. The dynamic parallax computed with our

Table 7 ADS 12515: O-C residuals of our new orbit (after 1985). The symbol ${ }^{P}$ indicates PISCO measurements.

| Epoch | $\Delta \rho(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\prime \prime}\right)$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\circ}\right)$ | Observer |
| :---: | ---: | ---: | :--- |
| 1987.720 | -0.009 | -2.4 | LBu |
| 1989.680 | 0.022 | -7.0 | LBu |
| 1991.250 | 0.013 | -9.4 | HIP |
| 1996.660 | -0.014 | -12.6 | Hei |
| 1998.673 | $0.010^{P}$ | $-6.2^{P}$ | Sca |
| 2007.601 | -0.002 | -8.1 | Msn |

Table 8 ADS 16314: O-C residuals of our new orbit (after 2003). The symbol ${ }^{P}$ indicates PISCO measurements.

| Epoch | $\Delta \rho(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\prime \prime}\right)$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\circ}\right)$ | Observer |
| :---: | :---: | :---: | :--- |
| 2004.878 | $-0.015^{P}$ | $0.4^{P}$ | Sca |
| 2005.745 | -0.044 | 1.3 | WSI |
| 2006.717 | -0.000 | 1.1 | Slm |
| 2007.707 | -0.026 | 0.4 | Gii |
| 2007.972 | $-0.019^{P}$ | $-0.4^{P}$ | Sca |
| 2009.808 | -0.029 | -0.2 | WSI |
| 2011.907 | $-0.029^{P}$ | $0.5^{P}$ | Sca |

Table 9 ADS 16539: O-C residuals of our new orbit (after 1996). The symbol ${ }^{P}$ indicates PISCO measurements.

| Epoch | $\Delta \rho(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\prime \prime}\right)$ | $\Delta \theta(\mathrm{O}-\mathrm{C})$ <br> $\left({ }^{\circ}\right)$ | Observer |
| :---: | ---: | ---: | :--- |
| 1998.679 | $-0.005^{P}$ | $0.5^{P}$ | Sca |
| 1999.869 | 0.004 | -0.7 | WSI |
| 2001.685 | 0.002 | 4.0 | WSI |
| 2002.700 | 0.002 | 3.4 | WSI |
| 2005.861 | -0.009 | -1.0 | Msn |
| 2007.588 | -0.007 | -2.1 | Msn |
| 2008.887 | 0.010 | -0.3 | Orl |

Table 10 New ephemerides of ADS 10786BC, 12144, 12515, 16314, and 16539.

| Epoch | ADS 10786BC |  | ADS 12144 |  | ADS 12515 |  | ADS 16314 |  | ADS 16539 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\rho$ | $\theta$ | $\rho$ | $\theta$ |  | $\theta$ |  | $\theta$ |  | $\theta$ |
|  | ( ${ }^{\prime \prime}$ ) | $\left({ }^{\circ}\right.$ ) | ( ${ }^{\prime \prime}$ ) | $\left({ }^{\circ}\right)$ | ( ${ }^{\prime \prime}$ ) | $\left({ }^{\circ}\right)$ | ( ${ }^{\prime \prime}$ ) | $\left({ }^{\circ}\right)$ | ( ${ }^{\prime \prime}$ ) | $\left({ }^{\circ}\right.$ ) |
| 2014.0 | 0.791 | 272.7 | 0.219 | 20.4 | 0.198 | 139.7 | 0.543 | 16.2 | 0.280 | 102.9 |
| 2015.0 | 0.685 | 284.6 | 0.225 | 22.3 | 0.198 | 137.9 | 0.549 | 15.8 | 0.274 | 99.5 |
| 2016.0 | 0.599 | 300.3 | 0.230 | 24.2 | 0.197 | 136.2 | 0.555 | 15.4 | 0.268 | 96.0 |
| 2017.0 | 0.556 | 319.7 | 0.236 | 25.9 | 0.197 | 134.4 | 0.560 | 15.0 | 0.262 | 92.2 |
| 2018.0 | 0.571 | 340.2 | 0.241 | 27.6 | 0.197 | 132.6 | 0.566 | 14.7 | 0.255 | 88.3 |
| 2019.0 | 0.639 | 357.9 | 0.246 | 29.2 | 0.197 | 130.8 | 0.571 | 14.3 | 0.248 | 84.1 |
| 2020.0 | 0.743 | 11.5 | 0.251 | 30.8 | 0.196 | 129.0 | 0.577 | 13.9 | 0.240 | 79.7 |
| 2021.0 | 0.864 | 21.4 | 0.256 | 32.3 | 0.196 | 127.3 | 0.582 | 13.6 | 0.232 | 75.0 |
| 2022.0 | 0.990 | 28.9 | 0.261 | 33.7 | 0.196 | 125.5 | 0.588 | 13.2 | 0.224 | 70.0 |

Table 11 Physical parameters ( $\pi_{\mathrm{dyn}}, a$ and $\mathfrak{M}_{\text {total }}$ ) derived from the new orbital elements.

| ADS | HIP | $m_{V}$ | $\Delta m_{V}$ | Spectral type | $\begin{gathered} \pi_{\mathrm{dyn}} \\ (\mathrm{mas}) \end{gathered}$ | $\begin{gathered} \pi_{\mathrm{HIP}} \\ (\mathrm{mas}) \end{gathered}$ | ( ${ }^{\prime \prime}$ ) | (AU) | $\begin{gathered} \mathfrak{M}_{\text {total }} \\ \left(\mathrm{M}_{\odot}\right) \\ \hline \end{gathered}$ | Source of $\pi_{\text {HIP }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10786BC | - | 10.2 | 0.5 | M4V | 123.0 | $120.33^{(1)}$ | 1.39 | 11.5 | 0.82 | van Leeuwen (2007) |
|  |  |  |  |  |  | $\pm 0.16$ | $\pm 0.04$ | $\pm 0.3$ | $\pm 0.07$ |  |
| 12144 | 94194 | 8.65 | 0.9 | F8V | 6.2 | 5.58 | 0.238 | 42.7 | 4.1 | van Leeuwen (2007) |
|  |  |  |  |  |  | $\pm 0.85$ | $\pm 0.032$ | $\pm 8.7$ | $\pm 2.6$ |  |
| 12515 | 95845 | 7.83 | 1.3 | A3V | 3.3 | 3.62 | 0.211 | 58 | 3.8 | ESA (1997) |
|  |  |  |  |  |  | $\pm 1.19$ |  | $\pm 19^{(2)}$ | $\pm 3.7^{(2)}$ |  |
| " | " | " | " | " | " | 1.91 | " | 110 | 26 | van Leeuwen (2007) |
|  |  |  |  |  |  | $\pm 1.01$ |  | $\pm 58$ | $\pm 41$ |  |
| 16314 | 112871 | 6.96 | 1.0 | A3V | 6.5 | 6.89 | 0.555 | 81 | 3.6 | ESA (1997) |
|  |  |  |  |  |  | $\pm 1.62$ | $\pm 0.026$ | $\pm 19$ | $\pm 2.9$ |  |
| " | " | " | " | " | " | 7.54 | " | 74 | 2.7 | van Leeuwen (2007) |
|  |  |  |  |  |  | $\pm 0.84$ |  | $\pm 9$ | $\pm 1.4$ |  |
| 16539 | 114280 | 7.61 | 0.6 | F5V | 9.8 | 9.25 | 0.247 | 27 | 3.7 | ESA (1997) |
|  |  |  |  |  |  | $\pm 1.16$ | $\pm 0.021$ | $\pm 4$ | $\pm 1.7$ |  |
| " | " | " | " | " | " | 8.36 | , | 29 | 5.0 | van Leeuwen (2007) |
|  |  |  |  |  |  | $\pm 0.82$ |  | $\pm 4$ | $\pm 1.9$ |  |

${ }^{(1)}$ Parallax of ADS 10786A.
${ }^{(2)}$ lower estimate of the error, using the parallax error only, and neglecting all the other (unknown) errors.
formula (Scardia et al., 2008b) is in good agreement with the value obtained with Hipparcos (see Table 11).

### 4.3 New orbit of ADS 12515

WDS 19106+5429 - A 1653 - ADS 12515 (HIP 95845)

This couple was discovered by R.G. Aitken in 1907 with the $91-\mathrm{cm}$ refractor of Lick Observatory. It is a close binary with an average angular separation of around $0^{\prime \prime} .2$, which is difficult to observe with a small telescope. Like ADS 12144, we only managed to resolve ADS 12515 when PISCO was operated at the Pic du Midi, on the 2-meter Bernard-Lyot telescope. About half of the orbit that appears nearly circular has been monitored since its discovery.

The first orbit of ADS 12515 was computed by Heintz (1963). It leads now to systematic residuals both for $\rho$ and $\theta$. In this paper we present the new orbit that we computed by fitting the set of 36 available observa-
tions obtained between 1907 and 2007. We first drew the apparent ellipse and applied Kowalsky's method on the apparent ellipse. Hellerich's method did not converge and we had to improve this orbit using a trial-and-error method. Our final orbit is nearly circular and fits the observations with means residuals of $0^{\prime \prime} .020$ and $4^{\circ} .1$ in $\rho$ and $\theta$, respectively. The large value for the position angle residuals is due to the poor quality of the measurements. Only two speckle measurements have been obtained yet (PISCO in 1998 and Mason in 2007).

This object has a spectral type of A3V and is very far from the sun, with an estimated parallax of $0^{\prime \prime} .00191 \pm 0^{\prime \prime} .00101$ (van Leeuwen, 2007) or $0^{\prime \prime} .00362 \pm$ $0^{\prime \prime} .00119$ (ESA 1997). Although they are based on the same observations (from Hipparcos), those two determinations are quite different, but the uncertainties are very large. The systemic mass is excessive and unreasonable ( $25.7 \mathrm{M}_{\odot}$ ) when using van Leeuwen (2007)'s parallax, whereas it is in fair agreement with the theory $\left(3.8 \mathrm{M}_{\odot}\right)$ with ESA (1997)'s value. In the "General Cat-
alogue of Trigonometric Parallaxes" (van Altena et al., 1995), the parallax is even larger ( $0^{\prime \prime} .0045 \pm 0^{\prime \prime} .0070$ ), which leads to a total mass of $2.0 \mathrm{M}_{\odot}$. The dynamic parallax computed with our formula (Scardia et al., 2008b) is in agreement with the values from ESA (1997) or van Altena et al. (1995), but in disagreement with van Leeuwen (2007)'s parallax, which seems underestimated.

### 4.4 New orbit of ADS 16314

## WDS 22514+2623 - HO 482 AB - ADS 16314 (HIP 112871)

This couple was discovered in 1889 by G.W. Hough with his $47-\mathrm{cm}$ refractor in Evanston (Illinois, USA) (Hough, 1890). Its angular separation was very small until (and around) the periastron passage that occurred in 1925, and this binary was not easy to resolve with small telescopes. Since then, the companion has been moving away from the primary, which makes it easier to measure. The observations of ADS 16314 are numerous, especially after 1925 , and their dispersion is rather small (see Fig. 4).

The first orbit of ADS 16314 was proposed by Arend (1944), and a few others have been computed since. The last one, from Starikova (1982) now leads to systematic residuals. We thus decided to take profit of more than thirty years of new observations to determine new orbital elements. The orbital elements reported in Table 4 were obtained by fitting the set of the 145 observations made since its discovery. They fit the observations very well (see Fig. 4), with mean residuals of $\Delta \rho_{O-C}=0.028^{\prime \prime}$ and $\Delta \theta_{O-C}=2.5^{\circ}$. Only part of the orbit has been monitored yet, which explains the large uncertainty of the period. However, as the dispersion of the measures is rather small, the other orbital elements are rather well determined with a small uncertainty.

The total mass of the system is in good agreement with the theoretical values (see Table 11) and the dynamical parallax computed with our formula (Scardia et al., 2008b) is consistent with the Hipparcos parallax.

### 4.5 New orbit of ADS 16539

## WDS 23088+1058 - A 1328 AB - ADS 16539 (HIP 114280)

This couple was discovered by R.G. Aitken in 1905 with the $91-\mathrm{cm}$ refractor of Lick Observatory (Aitken, 1905). It has always been difficult to measure, since its angular separation has never been larger than $0^{\prime \prime} .35$. Since 1905 , the companion has made about 1.5 orbital revolutions, which were regularly monitored by the observers. A few orbits have been computed until now, and the last one was calculated in 2000 by our group (Scardia et al., 2001). This orbit leads to systematic residuals with the last speckle observations, so
we decided to use those precise observations to revise it.

The new orbital elements presented in Table 4 have been computed by fitting the 78 available measurements, using the general procedure that was described above. Our elements lead to a good representation of the observations (see Fig.4) with mean residuals of $\Delta \rho_{O-C}=0.031^{\prime \prime}$ and $\Delta \theta_{O-C}=3.4^{\circ}$. The uncertainties for the period and the semi-major axis are very small, so we do not think new observations will change their values in the future.

The total mass computed with the Hipparcos parallax value of $0 .{ }^{\prime \prime} 00839$ determined by van Leeuwen (2007), is slightly in excess for a F5V binary. This excess is smaller with the ESA (1997)'s determination of $0 .^{\prime \prime} 00925$. The dynamic parallax computed with (Scardia et al., 2008b) is slightly larger ( $0 .^{\prime \prime} 0098$ ) and would lead to a smaller systemic mass, in good agreement with theoretical masses (see Table 11.

## 5 Conclusion

In 2012, we obtained 355 new measurements of 344 visual binaries with PISCO in Merate, with an average accuracy of $0^{\prime \prime} .02$ for the angular separation and $0^{\circ} .5$ for the position angles. The total number of measurements made with PISCO in Merate since 2004 now exceeds 3200 . Our group has thus provided a good contribution to the continuing monitoring of long period visual binary systems, which is important for refining systemic stellar masses.

We finally presented new orbital elements computed for ADS $10786 \mathrm{BC}, 12144,12515,16314$ and 16539 , Those orbits were partly derived from PISCO observations. The total mass values we have obtained are compatible with the expected theoretical values.

Acknowledgements. We thank the members of the United States Naval Observatory, Washington DC, for kindly sending on request some lists of measurements of visual binaries. This work has made use of the "Fourth Catalogue of Interferometric Measurements of Binary Stars" (http://ad.usno. navy.mil/wds/int4), the "Sixth Catalogue of Orbits of Visual Binary Stars" (http://ad.usno.navy.mil/wds/orb6), the Washington Double Star Catalogue (http://ad.usno.navy.mil/wds/wds) maintained at the U.S. Naval Observatory, and the SIMBAD astronomical data base (http://simbad.u-strasbg.fr/simbad) operated by the Centre de Données Astronomiques de Strasbourg (France).

## References

Aitken,R.G.,1905, Lick Obs. Bull. n. 93
Aitken, R.G., 1907, Lick Obs. Bull. n. 109
Aitken, R.G.: 1932, "New General Catalogue of Double Stars", Carnegie Institute, Washington
Arend, M.S., 1944, Journ. Observ., 27, 23
Aristidi, E., Carbillet, M., Lyon, J.-F., Aime, C., 1997, A\&AS, 125, 139
Baize, P., Romani, L., 1946, Ann. Astrophys. 9, 13
Baize, P., 1987, A\&AS, 71, 177
Baize, P., 1988, A\&AS, 74, 507
Couteau, P., 1959, Bull. Astron. Paris 23, 127
Dawes, W.R., 1857, MNRAS 17, 257
Doberck, W.A., 1879, Astron. Nachr. 96, 111
ESA: 1997, The Hipparcos and Tycho Catalogues, ESA SP1200, ESA Publications Division, Noordwijk
Hartkopf, W.I., Mason, B.D., 2013, "Sixth Catalogue of Orbits of Visual Binary Stars" http://ad.usno.navy.mil/wds/orb6.html (OC6)
Hartkopf, W.I., Mason, B.D., Wycoff, G.L., McAlister, H.A., 2013, "Fourth Catalogue of Interferometric Measurements of Binary Stars" http://ad.usno.navy.mil/wds/int4.html (IC4)
Heintz, W.D., 1963, Veroff. Sternw. München 5, 19
Hellerich, J., 1925, Astron. Nachr. 223, 335
Hopmann, J, 1973, Astron. Mitt. Wien, 13, 322
Hough, G.W., 1890, AJ, 9, 177
Kowalsky, M., 1873, Procès-verbaux de l'Université Impériale de Kasan
Mason, B.D., Wycoff, G.L., Hartkopf, W.I., 2013, "Washington Double Star Catalogue" http://ad.usno.navy.mil/wds/wds.html (WDS)
Prieur, J.-L, Koechlin, L., André, C., Gallou, G., Lucuix, C., 1998, Experimental Astronomy, vol 8, Issue 4, 297

Prieur, J.-L., Scardia, M., Pansecchi, L., Argyle, R.W., Sala, M., Ghigo, M., Koechlin, L., Aristidi, E., 2008, MNRAS, 387, 772 (Paper V)
Prieur, J.-L., Scardia, M., Pansecchi, L., Argyle, R.W., Sala, M., 2009, MNRAS, 395, 907 (Paper VII)

Prieur, J.-L., Scardia, M., Pansecchi, L., Argyle, R.W., Sala, M., 2010, MNRAS, 407, 1913 (Paper IX)

Prieur, J.-L., Scardia, M., Pansecchi, L., Argyle, R.W., Sala, M., 2012, MNRAS, 422, 1057-1070 (Paper XI)

Scardia, M., Prieur, J.-L., Koechlin, L., Aristidi, E., 2001, IAU Commisssion 26, Inf. Circ. n. 144
Scardia, M., Prieur, J.-L., Sala, M., Ghigo, M., Koechlin, L., Aristidi, E., Mazzoleni, F., 2005, MNRAS, 357, 1255 (with erratum in MNRAS 362, 1120) (Paper I)
Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R.W., Sala, M., Ghigo, M., Koechlin, L., Aristidi, E., 2006, MNRAS, 367, 1170 (Paper II)
Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R.W., Basso, S., Sala, M., Ghigo, M., Koechlin, L., Aristidi, E., 2007, MNRAS, 374, 965 (Paper III)

Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R.W., Sala, M., Basso, S., Ghigo, M., Koechlin, L., Aristidi, E., 2008a, Astron. Nach., 329, 1, 54 (Paper IV)
Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R.W., 2008b, AN 329, 379
Scardia M., Prieur J.-L., Pansecchi L., Argyle R.W., Sala M., 2009, Astron. Nach., 330, 1, 55 (Paper VI)

Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R.W., Sala, M., 2010, Astron. Nach., 331, 286 (Paper VIII)

Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R.W., Sala, M., 2011, Astron. Nach., 332, 508 (Paper X)

Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R.W., Spanó, P., Riva, M., Landoni, M., 2013, MNRAS, 434, 2803-2813 (Paper XII)
Starikova, G.A., 1976, Trud. Astron. Inst. Sternberg 47, 96
Starikova,G.A., 1982, Pisma Astron. Zh. 8,306
van Altena, W.F., Truen-Liang, L., Hoffleit, E.D., 1995, "The General Catalogue of Trigonometric Stellar Parallaxes", Yale University Observatory ed., New Haven, U.S.A.
van Leeuwen, F., 2007, "Hipparcos, the new reduction of the raw data", Springer Netherlands Ed.

