
HAL Id: hal-03291077
https://hal.science/hal-03291077

Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transport Triggered Polar Decoders
Mathieu Leonardon, Camille Leroux, Pekka Jaaskelainen, Christophe Jego,

Yvon Savaria

To cite this version:
Mathieu Leonardon, Camille Leroux, Pekka Jaaskelainen, Christophe Jego, Yvon Savaria. Trans-
port Triggered Polar Decoders. 2018 IEEE 10th International Symposium on Turbo Codes & It-
erative Information Processing (ISTC), Dec 2018, Hong Kong, Hong Kong SAR China. pp.1-5,
�10.1109/ISTC.2018.8625310�. �hal-03291077�

https://hal.science/hal-03291077
https://hal.archives-ouvertes.fr

Transport Triggered Polar Decoders
Mathieu Léonardon∗†, Camille Leroux∗, Pekka Jääskeläinen‡, Christophe Jégo∗ and Yvon Savaria†

∗Univ. Bordeaux, Bordeaux INP, IMS Lab, UMR CNRS 5218, France
†École Polytechnique de Montréal, QC, Canada

‡Tampere University of Technology, Tampere, Finland

Abstract—In this paper, the first transport triggered archi-
tecture (TTA) customized for the decoding of polar codes is
proposed. A first version of this programmable processor is
optimized for the successive cancellation (SC) decoding of polar
codes while a second architecture is further specialized to also
support Soft CANcellation (SCAN) decoding. Both architectures
were fully validated on FPGA device by prototyping. The first
architecture was also synthesized in 28nm ASIC technology. It
runs at a frequency of 800 MHz and reaches a throughput of
352 Mbps for a (1024, 512) polar code decoded with the SC
algorithm. Compared to previous work, the energy consumption
is reduced by one order of magnitude (0.14 nJ / bit) and the
throughput is increased fivefold. Compared to an optimized
software implementation on a general purpose processor (x86
architecture), the throughput is 37 % higher and the energy
consumption is two orders of magnitude lower. TTA can be seen
as a way to reduce the gap between programmable and dedicated
polar decoders.

I. INTRODUCTION

Invented a decade ago [1], polar codes are included in the
next generation of wireless communication standard (5G). This
singular family of channel codes will be used for the enhanced
mobile broadband control channel [2]. The polar codes are also
considered for other 5G scenarios. Shortly after their invention,
the first dedicated hardware decoders were proposed [3], [4].
Such polar decoders, implemented on ASIC or FPGA device,
provide a set of solutions with high data rate, low latency and
low energy consumption. On the other side of the design space,
some works proposed to implement polar decoding algorithms
on programmable architectures (x86, ARM, GPU) [5], [6].
These so-called software polar decoders take advantage of the
parallelism available on recent high-end processors to reach
high throughput with a great deal of flexibility at the price of
an increased energy consumption.

Between these two design approaches, Application Specific
Instruction-set Processors (ASIP) are usually seen as a way
to find a better compromise between the high efficiency of
dedicated architectures and the high flexibility of program-
mable architectures. An ASIP is usually defined as a special-
ized programmable processor, in the sense that it includes
some hardware units and instructions dedicated to a family
of algorithms with unneeded components removed to save
implementation resources.

A first approach is to give the designer the ability to
configure and extend a conventional Reduced Instruction Set
Computer (RISC) processor. This is the approach proposed
by the Cadence Tensilica toolset. Such an ASIP was de-

signed in [7] for the successive cancellation (SC) decoding
of polar codes. Despite some customizations, the processor
keeps its general purpose programmability. This first study
showed some significant improvements in terms of energy
consumption and throughput in comparison with current pro-
grammable processors (x86, ARM). It also showed that the
bottleneck for further improvements in throughput was lying
in the core architectural model. Using the RISC programming
model typically implies that most of the data accesses pass
through the register file. In most cases, the loading, processing
and storage of data take 3 instructions while in a dedicated
architecture, these memory accesses can be anticipated and
masked. This 3 steps process is particularly problematic for
channel decoding algorithms because they require a large
number of memory transactions.

In this work, we focus on an alternative customizable
programmable architecture template: the Transport Triggered
Architecture (TTA). An ASIP based on the TTA approach is
designed and customized for the decoding of polar codes while
retaining a general purpose instruction set. A TTA processor
is composed of several Functional Units (FU) connected by
a set of configurable buses [8]. The instruction set consists
of a single move instruction: in addition to general purpose
registers, data can be moved from the output of a FU to the
input of any other FU. Among other features, it enables direct
data transactions between the memory and the functional units,
thus alleviating the cost of memory data transfers. TTA pro-
cessors have been customized for LDPC [9] and Turbocodes
[10] but, to the best of our knowledge, this paper reports the
first TTA processor specialized for polar decoding. In order to
show the modularity of the TTA model, two transport triggered
(TT) architectures were designed, the first one is designed for
efficient SC decoding (TT-SC), while the second one also
supports Soft CANcellation (SCAN) decoding (TT-SCAN).
Both architectures were implemented and validated on a FPGA
device. The TT-SC decoder was also synthesized for 28nm
FD-SOI CMOS technology, in order to have performance
estimations for an ASIC target.

FPGA and ASIC implementation results show that Trans-
port Triggered Polar Decoders (TTPD) improve the through-
put and the energy efficiency of programmable polar decoders
and thus reduce the gap between programmable and dedicated
polar decoders. The rest of the paper is organized as follows:
Section II details the considered decoding algorithms. Section
III presents the proposed TTPD. The implementation results

Layer

R0

SPC

R1

LLR PS

R1 R1 R1 R1R1R0 R0 R0

LLR PSFunction f
Function g

Function h 0

1

2

3

Fig. 1. SC decoding tree

are shown and analyzed in Section IV. Finally, Section V
concludes the paper.

II. POLAR DECODING

A. Successive Cancellation Decoding

The SC decoding algorithm may be described as the traver-
sal of a binary tree starting from the root node. For a N = 2n

polar code, the tree contains logN + 1 layers. Layers are
indexed from l = 0 (upper layer) to l = logN (lower layer).
A layer l contains 2l nodes. Each node contains 2n−l Log-
Likelihood Ratios (LLRs), Li and 2n−l Partial Sums (PSs), si.
The lowest layer includes N −K frozen bits, represented as
gray PSs in Figure 1a, and K information bits. Channel LLRs
are stored in the root node. When the decoding is terminated,
the decoding result is stored in the root node in the form
of PSs. The LLRs of a node are updated when the node
is accessed in the descending direction. PSs of a node are
updated when the node is accessed in the ascending direction.
The LLRs and PSs updating rules are listed in Eq. (1).

f(La, Lb) = sign(La × Lb)×min(|La|, |Lb|)
g(La, Lb, s) = (1− 2s)La + Lb

h(sa, sb) = (sa ⊕ sb, sb)

R1(La) =

{
0 if La > 0
1 else

(1)

In general, when processing a node at layer l, a maximum of
2n−l computations (LLRs or PSs) can be performed in parallel.
In other words, the upper layers offer a higher parallelism
than the lower layers. Let us define P as the maximum
number of computations that a decoder can perform in parallel.
Considering a layer l in the tree, as P ≥ 2n−l the processing
units of the decoder can be fully utilized. This condition is
not verified in the lower part of the tree in which some other
optimization strategies are necessary in order to speedup the
decoding process. One approach is to use unrolled processing
units dedicated to the processing of the lower sub-trees [11].

B. Tree Pruning

Figure 1b shows the pruning technique that was proposed
in [12] and later improved in [13]. This technique reduces
the computational complexity of the SC decoding algorithm.
Depending on the frozen bits subset, some subtrees can be

Fig. 2. A base TTA processor with a custom FU.

replaced by a single node. The traversal of these subtrees
becomes a specialized function dedicated to the decoding of
these nodes. For instance, Rate-0 (R0) and Rate-1 (R1) nodes
correspond to nodes holding only frozen bits and only infor-
mation bits, respectively. Specialized nodes called repetition
(REP) and single parity check nodes (SPC) correspond to
subtrees representing repetition codes and single parity check
codes, respectively. This tree pruning method significantly
reduces the number of operations in the algorithm with a
negligible impact on the decoding performance.

C. Soft CANcellation algorithm

The SCAN algorithm was introduced in [14]. It is an
iterative version of the SC decoding in which PSs are replaced
by LLRs. The soft decision nature of SCAN decoding makes it
suitable for code concatenation as in [15]. The update rules of
SCAN decoding are shown in Eq. (2). In the SCAN algorithm,
partial sums are replaced by LLRs. The input variables of the
elementary functions are therefore all LLRs (La, Lb, Lc).

{
fscan(La, Lb, Lc) = f(La, Lb + Lc)
gscan(La, Lb, Lc) = f(La, Lc) + Lb

(2)

III. TRANSPORT TRIGGERED POLAR DECODERS

A. Transport Triggered Architectures

TTA is a modular processor architecture template [8] in-
spired from the MOVE architecture [16]. A hardware/software
development tool chain, called TCE, was designed to ease the
implementation of such systems [17]. A TTA is composed of
elementary blocks, denoted as function units, connected with
a custom number of buses. As shown in Figure 2, the Base
TTA consists of a control unit (gcu), that includes the fetch and
decode stages, an ALU, a load / store unit (LSU) and a register
file (RF). The modularity lies in the possibility to add some
customized FUs and to include extra buses interconnecting
these FUs.

Building from that very lean foundation, the TTA does
not have an explicit instruction set. It simply moves data
from the output of an FU to the input of any other FU. All
FUs have a particular input port, denoted as its trigger port.
When a data is written to this trigger port, some processing
is performed within the FU. The performed instruction is a
side effect of a data transaction. The structure of the TTA
is essentially parallel in the sense that several data transac-
tions can happen at the same time. The assembly language
expressing the functionality of a TTA system actually consists
in specifying, at each clock cycle, the source and destination

ALU RF PS LSUgcu LSU BLLR LSU PS PU LLR PU Unrolled SCAN VRFUnrolled SCLLR LSU LLR LSU

Fig. 3. Transport Triggered Polar Decoder Architecture.

of data transactions performed in parallel: the data path is
exposed to the programmer.

Despite the great simplicity of the instruction set, program-
ming the TTA assembly would be a tedious task to perform by
hand. One would have to specify each data transport at each
clock cycle. Fortunately, TCE provides a runtime retargetable
compiler. Given an architecture description file, the compiler
converts a source code written in a high level description
language (C, C++, OpenCL) into an executable file [17]. The
efficiency of the compiled program partly stems from the
modularity of the LLVM toolset [18]. Front and middle end
optimizations are provided by LLVM. Low level optimizations
that are specific to TTAs are integrated as a custom TTA code
generation library included in TCE.

A complete TTA-based processor, including its custom
function units, is generated as generic or optimized RTL
(VHDL or Verilog). The resulting customized processor can
then be directly synthesized and implemented on either ASIC
or FPGA devices. Due to their flexibility and modularity, TTAs
have shown to provide very elegant solutions for a broad range
of applications.

B. Software optimizations

Assuming the base TTA processor of Figure 2, a C descrip-
tion of a polar decoding algorithm can be readily compiled
and executed on the TTA. However, this straightforward im-
plementation is very slow and some software optimizations are
required to take advantage of its inherent parallel structure.

As explained in Section II, the pruning technique reduces
the amount of computation to be performed during the de-
coding process. It is thus necessary to determine the type
of processing that should be performed at a given stage of
the decoding (R0, R1 or UNROLLED). In the main loop
of the C source code, this is implemented as a switch case.
This conditional jump limits the speedup usually brought by
tree pruning. In order to fully benefit from tree pruning, the
loop unrolling optimization technique, introduced in [19] for
polar codes, was applied. In [20], a library was proposed to
produce unrolled source code targeting x86 processors. It was
slightly modified to target the TTA architecture described in
the following subsection. The drawback of unrolling the code

Fig. 4. The LLR Processing Unit supporting SC and SCAN decoding.

is that a specific source code must be compiled for each code
rate and frozen bits configuration.

C. Transport Triggered Polar Decoders Architecture

The proposed architecture is depicted in Figure 3. The
Base TTA allows the proposed architecture to support any
algorithm by providing general purpose instructions. It was
extended with different kinds of vector custom FUs. A vector
size of P = 64 was selected, meaning that vector FUs can
process a maximum of 64 data (LLR or PSs) in parallel. LLRs
are represented as Q = 8-bit values in order to guarantee
a negligible decoding performance loss. Some Load / Store
Units provide parallel access to the data memories. The Polar
Processing Units implement the polar functions that are listed
in Eq. 1 and the functions specific to the tree pruning. The
Unrolled SC Unit is an unrolled SC decoder included to
speedup the most sequential part of the decoding algorithms
as proposed in [11] and detailed in Section III-C2. Finally, a
Vector Register File is designed to buffer vector data. The
gray-colored blocks are the resources that are only used for the
SCAN algorithm. The support of customized SCAN decoding
requires an extra 512-bit bus for LLRs, one extra input port in
the LLR PU, an LSU for the backward LLRs and a dedicated
unrolled SCAN subtree decoder.

1) Load / Store Units: In the proposed architecture, the
maximum supported polar code length is Nmax = 1024 which
is the size of the largest frozen bit set defined in the 5G
standard [2]. This could easily be modified to support larger
codes by increasing the size of the memories. The PSs require
the storage of Nmax bits and since it is necessary to access
P = 64 data in parallel, a 16x64-bit memory is sufficient.
However, the system needs some additional addresses, thus the
next memory size was selected: 32x64. For similar reasons,

the LLR memory is mapped into a 64x512-bit RAM. The
backward LLR memory, used in SCAN decoding, requires
QN logN bits and is implemented into a 256x512-bit RAM.

As mentioned in Section I, the efficiency of a channel
decoder is strongly determined by memory access latency. The
custom LSUs are modified versions of those provided by the
TCE. First, the latency of each load and store operation has
been reduced from three to one clock cycle by removing some
internal registers. It does not affect the critical path that lies in
the 32-bit scalar ALU. Then, additional hardware and control
resources were added in order to perform unaligned loads and
stores. Adding these custom instructions does not affect the
unit’s latency.

2) Polar Processing Units: The PS PU and the LLR PU
perform the specific operations of polar decoding in parallel.
One can see them as Single Instruction Multiple Data (SIMD)
units dedicated to polar decoder processing. An extended ver-
sion of the TCE, called TCEMC [21], was chosen to facilitate
the SIMD description. Figure 4 shows the architecture of the
LLR PU. Since both SCAN and SC algorithms need f and
g functions, it is possible to share the associated blocks. It
reduces the complexity overhead induced by the support of
the SCAN decoding.

In [11], the lower stages of the decoding tree are processed
using an unrolled subtree decoder in which registers were
added in order to split the critical path. In the proposed
TTA processor, two similar unrolled subtree decoders were
implemented as FUs. The unrolled SC and SCAN decoders
can process 8 LLRs in 6 and 10 clock cycles, respectively.
These unrolled subtrees do not limit the flexibility of the
decoder as the frozen bit pattern is given as an input. Unlike
the 3-phase decoder in [11], unrolled subtree decoders do
not include registers but instead use a multi-cycle timing
strategy. Unnecessary registers are consequently removed, and
the critical path remains in the general purpose ALU. Multi-
cycle paths are possible in the TCE, by configuring an FU to
have a certain latency.

IV. IMPLEMENTATION RESULTS

It is worth mentioning that a fine grain comparison with
other existing decoders is difficult, since many parameters
change from an implementation to another, such as technology
node, power supply, supported algorithms, tree pruning strate-
gies, quantization, frozen bits location. The purpose of this
section is to show that TTA stands as a natural compromise
between programmable and dedicated architectures in the case
of polar decoding. We also show that compared to our previous
work [7], the proposed TTA processor offers a significant
improvement in terms of throughput and energy efficiency.

The TT-SC decoder was customized for SC decoding only
while the TT-SCAN version includes some extra resources for
optimized SC and SCAN decoding.

A. TT-SC Architecture

The Transport Triggered Polar Decoder (TTPD) customized
for SC decoding was synthesized with a 0.9V, 125◦C ST-

TABLE I
COMPARISON OF PROGRAMMABLE PROCESSORS RUNNING THE SC

DECODING ALGORITHM FOR R=0.5 POLAR CODES

Architecture N
Latency

[µs]
Throughput

[Mb/s]
Eb

[nJ/bit]

i7-3.3GHz 1024 2.0 257 41
512 1.2 210 49

(GPP) 256 0.7 179 59
128 0.4 143 73

A57-1.1GHz 1024 10.7 48 17
512 5.3 48 17

(GPP) 256 2.8 46 17
128 1.6 41 20

LX7-835MHz 1024 7.2 71 1.6
512 3.9 66 1.7

(ASIP) 256 1.9 65 1.7
128 1.0 62 1.8

TTPD-800MHz 1024 1.4 352 0.14
512 0.8 313 0.15

(ASIP) 256 0.4 304 0.16
128 0.2 284 0.17

TABLE II
FPGA IMPLEMENTATIONS OF DEDICATED SC DECODERS FOR A

(1024,512) POLAR CODE

Proposed TTPD [22] [13]

Target Artix 7 Stratix IV Stratix IV Virtex 6
Clock cycles 1161 222 165 165
IT/P (Mb/s) 44 238 319 217
Freq (MHz) 100 103 103 70

LUTS 14744 23020 24821 22115
FFs 7354 1024 5823 7941

RAM (Kb) 141 43 36 36
Pruning R0 & R1 Full Full Full

28nm FD-SOI standard cells library. The memories were
implemented with SRAM blocks using the same technology.
Table I compares the TT-SC decoder with state-of-the-art pro-
grammable processors implementations using the intra-frame
parallelization method. The unrolled software description is
provided by the AFF3CT tool chain [24]. The Intel i7-4712HQ
processor provides a high throughput solution but with a rather
high energy consumption. The ARM implementation reduces
the energy consumption while it offers a lower throughput. The
LX7 polar SC decoder improves the energy consumption of the
ARM without significantly affecting the speed. With a (1024,
512) polar code, the TT-SC decoder achieves a throughput of
352 Mbps, which is 37 % higher than the i7 while the energy
consumption of 0.14 nJ / bit is two orders of magnitude lower.

Even if the TT-SC decoder is closer in terms of functionality
to the general purpose processors mentioned above, it is inter-
esting to compare it to dedicated architectures. The proposed
TT-SC processor was implemented and validated on a Xilinx
Artix-7 FPGA. Table II shows that the flexibility cost appears
in the number of clock cycles needed to decode a frame: 1161
cycles are needed for the proposed TTPD whereas 222 are
needed in [13]. The two main factors explaining this difference
are i) a more complete tree pruning, with the usage of SPC and
REP nodes and ii) in the TT-SC decoder, each input of a FU

TABLE III
ASIC IMPLEMENTATIONS OF DEDICATED SC DECODERS FOR A

(1024,512) POLAR CODE

Proposed TTPD [23] [4] [4]1

Target 28nm 28nm 180nm 28nm
Clock cycles 1161 1833 1568 1568
IT/P [Mb/s] 352 94 49 436
Freq [MHz] 800 336 150 1335

Power [mW] 48 18 67 5
Eb [nJ/bit] 0.14 0.19 1.4 0.011

Area [mm2] 0.16 0.44 1.71 0.04
Pruning R0 & R1 First R0 None None

1 Scaling factors from 180nm to 28nm of [4] are taken from [23].

has to be registered while in a dedicated architecture, the load
- compute - save operations can be performed in a single clock
cycle. In terms of FPGA complexity, the TT-SC decoder needs
a similar amount of logic (LUT and FF) while increasing the
memory cost, as explained in section III-C1. For the record,
the Base TTA as represented in Figure 2 is implemented on
approximately 1000 LUTs and 700 Flip-Flops in our design.

Table III shows some implementation results of previous
ASIC SC decoders. Comparing the TT-SC decoder with ASIC
implementations is difficult due the variety of implementation
parameters. Indeed, the SC decoder proposed in [23] is the
basis of a list decoder, and its power and area could be reduced
if only SC was supported. Moreover, a limited pruning strategy
is used. This explains the lower throughput compared to the
TT-SC processor. The SC decoder in [4] is based on a different
technology node and no pruning is implemented. Thus, Table
III only aims at showing that the TT-SC processor has a
competitive hardware complexity and power consumption. It
achieves several hundreds of Mb/s while conserving the great
flexibility of a programmable processor.

B. TT-SCAN Architecture

In order to demonstrate its extensibility, the proposed TTA
SC decoder was further customized to implement the SCAN
decoding algorithm. Three modifications were necessary: i)
an LSU and the associated RAM were added to handle the
extra LLRs required in the SCAN algorithm, ii) the LLR ALU
was modified to support SCAN update rules as depicted in
Figure 4 and iii) a SCAN specific unrolled sub-tree decoder
was designed (”Unrolled SCAN” in Figure 3).

The TT-SCAN was implemented on an Artix 7 FPGA. The
resulting throughput of our programmable TT-SCAN is the
same as that of the dedicated decoder reported in [25]. The
algorithm is exactly the same, but the parallelism is only 16,
and no unrolled subtree is used.

V. CONCLUSION

In this paper, the first TTA-based polar decoders were
proposed. Compared to the state-of-the-art ASIP implemen-
tation of a (1024, 512) polar code under SC decoding, the
throughput of the proposed decoder (352 Mbps) is increased
fivefold and the energy consumption (0.14 nJ / bit) is one
order of magnitude lower. Compared to an optimized software

implementation on a GPP (x86 architecture), the throughput
is 37 % higher and the energy consumption is two orders
of magnitude lower. The use of TTA processor for polar
decoding is shown to be an interesting compromise between
the performance of dedicated decoders and the flexibility of
programmable processors. Flexibility was demonstrated by
transforming a TT-SC decoder into a TT-SCAN decoder.
Future works will focus on the list decoding of polar codes.

REFERENCES

[1] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
IEEE Transactions on Information Theory, 2009.

[2] 3GPP, “TS 38.212, Multiplexing and Channel Coding,” 2017.
[3] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware Architectures

for Successive Cancellation Decoding of Polar Codes,” in ICASSP, 2011.
[4] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux,

P. Meinerzhagen, A. Burg, and W. J. Gross, “A Successive Cancellation
Decoder ASIC for a 1024-bit Polar Code in 180nm CMOS,” in IEEE
A-SSCC, Nov. 2012.

[5] B. Le Gal, C. Leroux, and C. Jégo, “Multi-Gb/s Software Decoding of
Polar Codes,” IEEE Transactions on Signal Processing, Jan 2015.

[6] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast Software Polar
Decoders,” in ICASSP, May 2014.

[7] M. Léonardon, C. Leroux, D. Binet, J. M. P. Langlois, C. Jégo, and
Y. Savaria, “Custom Low Power Processor for Polar Decoding,” in
ISCAS, May 2018.

[8] H. Corporaal, Microprocessor Architectures: From VLIW to TTA. New
York, NY, USA: John Wiley & Sons, Inc., 1997.

[9] B. Rister, P. Jääskeläinen, O. Silvén, J. Hannuksela, and J. R. Cavallaro,
“Parallel Programming of a Symmetric Transport-Triggered Architecture
with Applications in Flexible LDPC Encoding,” in ICASSP, 2014.

[10] H. Kultala, O. Esko, P. Jääskeläinen, V. Guzma, J. Takala, J. Xianjun,
T. Zetterman, and H. Berg, “Turbo Decoding on Tailored OpenCL
Processor,” in IWCMC, 2013.

[11] B. Le Gal, C. Leroux, and C. Jégo, “A scalable 3-phase polar decoder,”
in ISCAS, May 2016.

[12] A. Alamdar-Yazdi and F. R. Kschischang, “A Simplified Successive-
Cancellation Decoder for Polar Codes,” IEEE Comm. Letters, 2011.

[13] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast Polar
Decoders: Algorithm and Implementation,” IEEE JSAC, 2014.

[14] U. U. Fayyaz and J. R. Barry, “Low-Complexity Soft-Output Decoding
of Polar Codes,” IEEE JSAC, 2014.

[15] Y. Wang, K. R. Narayanan, and Y. C. Huang, “Interleaved Concatena-
tions of Polar Codes With BCH and Convolutional Codes,” IEEE Journal
on Selected Areas in Communications, 2016.

[16] D. Tabak and G. J. Lipovski, “MOVE Architecture in Digital Con-
trollers,” IEEE Journal of Solid-State Circuits, 1980.

[17] O. Esko, P. Jääskeläinen, P. Huerta, C. S. de La Lama, J. Takala, and
J. I. Martinez, “Customized Exposed Datapath Soft-Core Design Flow
with Compiler Support,” in IEEE FPL, 2010.

[18] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in CGO, 2004.

[19] G. Sarkis, P. Giard, C. Thibeault, and W. J. Gross, “Autogenerating
Software Polar Decoders,” in GlobalSIP, Dec. 2014.

[20] A. Cassagne, B. Le Gal, C. Leroux, O. Aumage, and D. Barthou,
“An Efficient, Portable and Generic Library for Successive Cancellation
Decoding of Polar Codes,” in LCPC. Springer, Cham, Sep. 2015.

[21] P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg, HW/SW Co-design
Toolset for Customization of Exposed Datapath Processors. Springer
International Publishing, 2017, pp. 147–164.

[22] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “A 638 Mbps Low-
Complexity Rate 1/2 Polar Decoder on FPGAs,” in SiPS, Oct. 2015.

[23] P. Giard, A. Balatsoukas-Stimming, T. C. Müller, A. Bonetti,
C. Thibeault, W. J. Gross, P. Flatresse, and A. Burg, “PolarBear: A 28nm
FD-SOI ASIC for Decoding of Polar Codes,” IEEE JESTCS, 2017.

[24] A. Cassagne, M. Léonardon, O. Hartmann, G. Delbergue, T. Tonnellier,
R. Tajan, C. Leroux, C. Jego, B. Le Gal, O. Aumage, and D. Barthou,
“Fast Simulation and Prototyping with AFF3CT,” in SiPS, 2017.

[25] G. Berhault, C. Leroux, C. Jégo, and D. Dallet, “Hardware Implementa-
tion of a Soft Cancellation Decoder for Polar Codes,” in DASIP, 2015.

