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Abstract—A compact and closed-form expression of capacity
is derived for a uplink multiband satellite system in the presence
of nonlinear interference. The nonlinear effect comes from the
satellite high-power amplifier modeled by a Volterra series
expansion. The derivations reveal that the nonlinear interference
can provide a constructive power contribution that could be
used to increase the transmission rate. Consequently, decoders
designed by viewing this interference as only an additional
noise are suboptimal. Numerical results confirm this claim and
also shows that an appropriate power allocation amongst the
subbands may be of interest.

Index Terms—High power amplifier, Volterra series, nonlinear
impairment, capacity, multiband, uplink satellite communication.

I. INTRODUCTION

Satellite communications in addition to next generation
cellular systems (5G/6G) will become a key component to
sustain the exponential growth of the Internet traffic. As in [1],
it is envisioned to open Ka-band to satellite communications
for new services for both forward and return links. In this
paper, we focus on the uplink/return link where non-colocated
terrestrial transmitters send their data stream to the same
satellite, which forwards the aggregate stream into a terrestrial
gateway seen as the final receiver. For the uplink to the
satellite, the users belong to the same beam but are separated
into different subbands and different timeslots (by using the
so-called Multiple Frequency – Time Division Multiple Access
scheme, MF-TDMA) in order to avoid interference.

Actually, the above-mentioned interference does not exist
if the satellite transponder always operates into the linear
regime of the satellite amplifier. Here we assume that the
transponder is single and works on the aggregate signal
created by all the subbands. When operating in the nonlinear
regime of the amplifier, in-band and out-of-band distortions
are generated causing a loss in performance. In order to limit
these drawbacks, we can proceed in three different ways:
• We force the system to work into the linear regime by

applying an Input Back-Off (IBO). However, the energy
efficiency of the amplifier becomes lower. More impor-
tantly, the maximum sum-capacity of the uplink system
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is not reached by fixing an operating point preventing
nonlinearity to disturb the incoming signal.

• When operating in the non linear regime, pre-
compensation methods (see [2] and reference therein) can
be applied in order to mitigate nonlinear interference at
the receiver side. However, in uplink, this approach can
be only implemented in a distributed manner and, thus,
it is not optimal anymore. Indeed, one are not able to
cancel all the nonlinear impairments since only in-band
impairments can be pre-compensated for.

• Assuming the nonlinear regime, post-compensation at the
end receiver (i.e. at the gateway in our uplink scenario)
can be carried out.

In this paper, we aim to evaluate theoretically the system
sum-capacity when operating in the nonlinear regime, in order
to evaluate clearly the system capacity loss with respect to the
case where the nonlinear interference is seen as an additional
noise, as well as in order to investigate on the impact of the
power allocation amongst the subbands. To do so, we derive
a closed-form expression for the sum-capacity of the uplink
satellite communication system when nonlinearity occurs. We
do not assume pre-compensation as well as post-compensation.
The main contributions can be summarized as follows:

• First, the impact of the satellite amplifier is modeled
through the use of Volterra series expansion of the
received signal. While this model has been deeply inves-
tigated in [3], we propose here an alternative and elegant
approach to derive analytically all required terms. Indeed,
the proposed derivations for the sum-capacity will rely
on the closed-form derivations of the auto-correlation
of the additional nonlinear term as well as the cross-
correlation of this nonlinear term and the linear one. In
the context of multiband communications, these terms
have been characterized by [3]. Nevertheless, the existing
characterization is tedious and does not provide clear
insights. Here we propose to follow an alternative path
to obtain much more compact and insightful closed-form
expressions for these terms. We especially prove that they
are all posynomials with respect to the subband powers.
This property may be useful for future resource allocation
management [4].



• Based on these new expressions, we are able to derive
closed-form expressions for the sum-capacity for two
decoding strategies. First, we consider the optimal case
for which the decoder takes into account the signal
nonlinear structure. Then, we consider the case of a
nonlinearity-agnostic decoder, for which any term coming
from the nonlinearity is considered as an additional noise.

The rest of the paper is organized as follows: the system
model of the uplink multiband satellite communications sys-
tem with nonlinearity due to the satellite amplifier is given in
Section II. The general expressions for the sum-capacity asso-
ciated with both decoding strategies are derived in Section III.
Then the correlation terms involved in the sum-capacity are
expressed in a compact closed-form in Section IV. Numerical
results are presented in Section V. Finally, concluding remarks
and perspectives are drawn in Section VI.

II. SYSTEM MODEL

We consider a uplink multiband satellite communication
system composed of an high Power Amplifier (HPA), Input
Multiplexer (IMUX) and Output Multiplexer (OMUX) [2], [3].
The two last devices are assumed to be ideal.

We consider K terrestrial users using adjacent bands in
a single beam (FDMA). User k, k = 1 · · ·K, transmits
an independent and identically-distributed symbol sequence
{ak,n}n∈Z towards the satellite. All users have the same
shaping filter with an impulse response pT (t). For the sake of
simplicity, pT (t) is assumed to be a square-root raised cosine
(RRC) with roll-off r.

We denote by uk(t) the baseband signal sent by user k,

uk(t) =
∑
n∈Z

ak,npT (t− nTs), (1)

where Ts is the symbol period. Each signal xk(t) is shifted
to frequency fk. In order to avoid subband interference, the
difference between two adjacent frequencies, denoted by ∆F ,
is equal to ∆F = (1 + r)/Ts.

The satellite receives the carrier signal xc(t) equal to the
sum of the K-transposed signals, as follows

xc(t) =

K∑
k=1

√
Gkuk(t)e2iπfkt. (2)

with Gk the channel gain between user k and the satellite.
Let yc(t) be the received signal at the gateway. This signal

has undergone the disturbance from the satellite amplifier,
modeled by the following third-order Volterra series expan-
sion, as well as noise added at the receiver. The link between
the satellite and the gateway is assumed ideal [3],

yc(t) = γ1xc(t) + γ3xc(t)xc(t)x
∗
c(t) + wc(t), (3)

where γ1 and γ3 are fixed parameters depending on the HPA
and wc(t) is an additive white zero-mean Gaussian noise. The
superscript (.)∗ stands for complex conjugate.

At the receiver side, to recover the bits stream of user k,
we need to demodulate yc(t) around frequency fk, as follows

yk(t) = yc(t)e
−2iπfkt. (4)

After matched filtering using pR(t) := p∗T (−t), we have

zk(t) =

∫
R
pR(τ)yk(t− τ)dτ. (5)

Finally the signal zk(t) is sampled at the symbol rate, leading
to the following sequence of samples zk,n = zk(nTs) that are
used for detection and decoding.

The signal zk,n can be decomposed into three terms

zk,n = zL
k,n + zNL

k,n + wk,n, (6)

where
• zL

k,n depends linearly on the symbols {ak,n}k,n,
• zNL

k,n depends nonlinearly on the symbols {ak,n}k,n,
• wk,n :=

∫
R pR(τ)wc(nTs − τ)e−2iπfk(nTs−τ)dτ is a

white zero-mean Gaussian noise with variance PW.
To obtain closed-form expressions for both terms zL

k,n and
zNL
k,n in Eq. (6), Eqs. (1)-(2) are first inserted in Eq. (3). Then,

after frequency down-shifting and matched filtering, the signal
term zk(t) writes as follows

zk(t) = γ1

K∑
k′=1

∑
n′∈Z

ak′,n′

√
Gk′e

2iπ(k′−k)∆Ft

× h1(t− n′Ts, k′ − k)

+ γ3

K∑
k1,k2,k3=1

∑
n1,n2,n3∈Z

ak1,n1
ak2,n2

a∗k3,n3

×
√
Gk1Gk2Gk3e

2iπ(k1+k2−k3−k)∆Ft

× h3(t−n1Ts, t−n2Ts, t−n3Ts, k1 + k2 − k3 − k)

+

∫
R
pR(τ)wc(t− τ)e−2iπfk(t−τ)dτ,

with

h1(t1, `) =

∫
R
pT (t1 − τ)pR(τ)e−2iπ`∆Fτdτ (7)

and

h3(t1, t2, t3, `) =

∫
R
pT (t1 − τ)pT (t2 − τ)

× pT (t3 − τ)pR(τ)e−2iπ`∆Fτdτ. (8)

By sampling zk(t) at time nTs, the linear part is

zL
k,n = γ1

K∑
k′=1

∑
n′∈Z

ak′,n−n′

√
Gk′e

2iπ(k′−k)∆FnTs

× h1(n′Ts, k
′ − k), (9)

and the nonlinear part is

zNL
k,n = γ3

K∑
k1,k2,k3=1

∑
n1,n2,n3∈Z

ak1,n−n1ak2,n−n2a
∗
k3,n−n3

×
√
Gk1Gk2Gk3e

2iπ(k1+k2−k3−k)∆FnTs

× h3(n1Ts, n2Ts, n3Ts, k1 + k2 − k3 − k). (10)

Notice that as pT (t) is a square-root Nyquist filter with
respect to Ts, the sequence n 7→ h1(nTs, k) is zero for any



n 6= 0. In addition as ∆F is equal to the bandwidth of
pT (t), the sequence k 7→ h1(nTs, k) is zero for any k 6= 0.
Consequently, in Eq. (9), we have n′ = n and k′ = k which
implies that

zL
k,n = γ1

√
Gkak,n, (11)

since h1(0, 0) = 1 by the filter energy normalization.

III. CAPACITY CLOSED-FORM EXPRESSIONS IN
NONLINEAR REGIME

In this section, we provide a closed-form expression for
the mutual information when assuming the input signal as
a Gaussian random process and when we neglect the time
and frequency correlations between the linear part and the
nonlinear part (i.e., we consider that zL

k,n and zNL
k′,n′ with

k 6= k′ or n 6= n′ are uncorrelated). Using a slight abuse
of language, this mutual information will be called capacity
in the remainder of the paper.

The input-output link (modeling the uplink channel, the
satellite amplifier, and the noise at the receiver end) is given
by Eq. (6) where zL

k,n and zNL
k,n are given by Eq. (11) and

Eq. (10) respectively.
Assuming a complex-valued circularly-symmetric Gaussian

random variable a as the channel input and z the output
channel, the capacity is given by [5]

C = log2

(
1 +

E [az∗]E [za∗]

E [|a|2]E [zz∗]− E [az∗]E [za∗]

)
. (12)

For applying Eq. (12) to our system, we assume that
• {ak,n}k,n are iid complex-valued circularly-symmetric

Gaussian random process,
• and as already said, that zk,n is an uncorrelated sequence.
Reminding Eqs (6),(11) and Eq. (12), the capacity for user

k, denoted by C(k), becomes

C(k) = log2 (1 +Q(k)) (13)

with

Q(k) =
P2

L(k) + 2PL(k)<{PLNL(k)}+ |PLNL(k)|2
PL(k)PNL(k) + PL(k)PW − |PLNL(k)|2 ,

where
• PL(k) = E[|zL

k,n|2] is the auto-correlation of the linear
part,

• PNL(k) = E[|zNL
k,n|2] is the auto-correlation of the non-

linear part, and
• PLNL(k) = E[zL

k,nz
NL
k,n

∗
] is the cross-correlation between

the linear and nonlinear parts.
As a first remark, one can note that although there is a

negative sign in the denominator of Q(k), the term is positive.
Indeed, according to Cauchy-Schwartz inequality, we have
|E[zL

k,nz
NL
k,n

∗
]|2 ≤ E[|zL

k,n|2]E[|zNL
k,n|2] which is equivalent

to |PLNL(k)|2 ≤ PL(k)PNL(k). As a second remark, the
cross-correlation plays a significant role in the capacity. If
<{PLNL(k)} > 0, the capacity is higher than the case
<{PLNL(k)} = 0. In addition, the capacity does not vanish

even if PL(k) = 0, since the nonlinear term provides infor-
mation on the current symbol. Notice that in [3], only the
following Mean Square Error (MSE) is analyzed1

E[|zk,n − γ1

√
Gkak,n|2] = PNL(k) + PW.

which does not capture the role of the cross-correlation.
We now assume that the decoder sees the nonlinear inter-

ference as noise, as currently done in most receivers, and so is
not adapted to the presence of nonlinearity. As a consequence,
the corresponding capacity is obtained as follows

C(k) = log2

(
1 +Q(k)

)
(14)

with
Q(k) =

PL(k)

PNL(k) + PW
,

where we just have to calculate the Signal-to-Interference-
plus-Noise Ratio (SINR). One can remark that Eq. (14) is
equal to Eq. (13) by forcing PLNL(k) = 0. Thus if the
cross-correlation vanishes, the nonlinear interference purely
corresponds to a degradation. If not, taking into account the
cross-correlation at the decoder side is of interest.

IV. AUTO-CORRELATION AND CROSS-CORRELATION
CLOSED FORM EXPRESSIONS IN NONLINEAR REGIME

The goal of this Section is to provide compact and insightful
closed-form expressions for PL(k), PNL(k), and PLNL(k).

A. Derivations of PL(k)

According to Eq. (11), one can easily check that

PL(k) = γ2
1GkPk, (15)

with Pk = E
[
|ak,n|2

]
the transmit power of user k.

B. Derivations of PNL(k)

According to Eq. (10), we obtain

PNL(k) = γ2
3

K∑
k1,k2,k3=1

K∑
k′1,k

′
2,k

′
3=1

∑
n1,n2,n3∈Z

∑
n′
1,n

′
2,n

′
3∈Z√

Gk1Gk2Gk3Gk′1Gk′2Gk′3

× e2iπ(k1+k2−k3−k)∆FnTse−2iπ(k′1+k′2−k
′
3−k)∆FnTs

× E[ak1,n−n1
ak2,n−n2

a∗k3,n−n3
a∗k′1,n−n′

1
a∗k′2,n−n′

2
ak′3,n−n′

3
]

× h3(n1Ts, n2Ts, n3Ts, k1 + k2 − k3 − k)

× h∗3(n′1Ts, n
′
2Ts, n

′
3Ts, k

′
1 + k′2 − k′3 − k). (16)

This term is already involved in the derivations done in
[3]. Nevertheless, the expressions provided in [3] is quite
complicated and spread over the paper (see Tables 1 and
2, Eqs. (17) and (20) in [3]). Here, we propose a new way
to derive PNL(k) in order to obtain a more compact and
insightful form. So, unlike [3], we start by managing the

1Actually, the cross correlation in [3] occurred since the author considered
that h1(nTs, k) may not vanish for non-zero n or k. But under our
orthogonality assumption, the cross-correlation term disappears in the MSE.



term E[ak1,n−n1ak2,n−n2a
∗
k3,n−n3

a∗k′1,n−n′
1
a∗k′2,n−n′

2
ak′3,n−n′

3
]

and then the term h3.
As {ak,n}k,n are circularly-symmetric complex-valued

Gaussian random process, we have (see (1.68) in [6])

E[ak1,n−n1
ak2,n−n2

a∗k3,n−n3
a∗k′1,n−n′

1
a∗k′2,n−n′

2
ak′3,n−n′

3
] =

E[ak1,n−n1
a∗k′1,n−n′

1
]E[ak2,n−n2

a∗k3,n−n3
]

× E[a∗k′2,n−n′
2
ak′3,n−n′

3
]

+ E[ak1,n−n1
a∗k′1,n−n′

1
]E[ak2,n−n2

a∗k′2,n−n′
2
]

× E[a∗k3,n−n3
ak′3,n−n′

3
]

+ E[ak1,n−n1
a∗k3,n−n3

]E[ak2,n−n2
a∗k′2,n−n′

2
]

× E[a∗k′1,n−n′
1
ak′3,n−n′

3
]

+ E[ak1,n−n1
a∗k3,n−n3

]E[ak2,n−n2
a∗k′1,n−n′

1
]

× E[a∗k′2,n−n′
2
ak′3,n−n′

3
]

+ E[ak1,n−n1
a∗k′2,n−n′

2
]E[ak2,n−n2

a∗k3,n−n3
]

× E[a∗k′1,n−n′
1
ak′3,n−n′

3
]

+ E[ak1,n−n1a
∗
k′2,n−n′

2
]E[ak2,n−n2

a∗k′1,n−n′
1
]

× E[a∗k3,n−n3
ak′3,n−n′

3
]. (17)

Notice that in [3] APSK constellation (instead of Gaussian
one) is considered. Then a seventh term related to the six-
order cumulant of {ak,n}k,n is required. Here the assumption
on Gaussian constellation is done to resort to Eqs. (13)-(14).

As we have six additive terms in Eq. (17), Eq. (16) can be
split into the six following terms

PNL(k) = p
(1)
NL(k) + p

(2)
NL(k) + p

(3)
NL(k)

+ p
(4)
NL(k) + p

(5)
NL(k) + p

(6)
NL(k). (18)

It remains now to derive in closed-form each term p
(j)
NL(k)

for j = 1, · · · , 6.
a) Derivations of p(1)

NL(k): According to Eqs. (17)-(16),
we have

p
(1)
NL(k) = γ2

3

K∑
k1,k2,k3=1

K∑
k′1,k

′
2,k

′
3=1

∑
n1,n2,n3∈Z

∑
n′
1,n

′
2,n

′
3∈Z√

Gk1Gk2Gk3Gk′1Gk′2Gk′3

× e2iπ(k1+k2−k3)∆FnTse−2iπ(k′1+k′2−k
′
3)∆FnTs

× E[ak1,n−n1a
∗
k′1,n−n′

1
]E
[
ak2,n−n2a

∗
k3,n−n3

]
× E[a∗k′2,n−n′

2
ak′3,n−n′

3
]

× h3(n1Ts, n2Ts, n3Ts, k1 + k2 − k3 − k)

× h∗3(n′1Ts, n
′
2Ts, n

′
3Ts, k

′
1 + k′2 − k′3 − k). (19)

A lot of indexes can be removed in above equation by
remarking that the terms dealing with the symbol expectation
are non-null only if both first indexes are equal to each other
and if both second indexes are equal to each others. We thus

have k1 = k′1, k2 = k3, k′2 = k′3 and n1 = n′1, n2 = n3,
n′2 = n′3. Consequently, we get

p
(1)
NL(k) = γ2

3

K∑
k1,k2,k′2=1

∑
n1,n2,n′

2∈Z

Gk1Gk2Gk′2Pk1Pk2Pk′2

× h3(n1Ts, n2Ts, n2Ts, k1 − k)

× h∗3(n1Ts, n
′
2Ts, n

′
2Ts, k1 − k). (20)

According to [3], the interference coming from the subband
is non-negligible only for the current subband and its adjacent
subbands. Consequently, only (k1 − k) ∈ {−1, 0, 1} are
considered. Therefore, Eq. (20) can be also split into three
terms

p
(1)
NL(k) = p

(1)
NL,0(k) + p

(1)
NL,1(k) + p

(1)
NL,−1(k).

Each term p
(1)
NL,j(k) is given below:

• Case k1−k = 0 (intra-band interference). We easily have

p
(1)
NL,0(k) = γ2

3α
(1)GkPk

K∑
k′,k′′=1

Gk′Gk′′Pk′Pk′′

with

α(1) =
∑

n1,n2,n3∈Z
h3(n1Ts, n2Ts, n2Ts, 0)

× h∗3(n1Ts, n3Ts, n3Ts, 0).

Actually the term α(1) is positive. Indeed one can prove
by swapping adequately indexes in the various sums that

α(1) =
∑
n′∈Z

∣∣∣∣∣ ∑
n′′∈Z

h3(n′Ts, n
′′Ts, n

′′Ts, 0)

∣∣∣∣∣
2

.

• Case k1 − k = 1 (right adjacent subband interference).
We have for k 6= K

p
(1)
NL,1(k)=γ2

3β
(1)Gk+1Pk+1

K∑
k′,k′′=1

Gk′Gk′′Pk′Pk′′

with

β(1) =
∑

n1,n2,n3∈Z
h3(n1Ts, n2Ts, n2Ts, 1)

× h∗3(n1Ts, n3Ts, n3Ts, 1).

By using the same argument as for α(1), we see that β(1)

is positive and equal to

β(1) =
∑
n′∈Z

∣∣∣∣∣ ∑
n′′∈Z

h3(n′Ts, n
′′Ts, n

′′Ts, 1)

∣∣∣∣∣
2

.

The case k = K leads to null term since the last user can
not be disturbed by its right as it is empty.

• Case k1 − k = −1 (left adjacent subband interference).
Similarly to the case k1 − k = 1, we have for k 6= 1

p
(1)
NL,−1(k) = γ2

3β
(1)Gk−1Pk−1

K∑
k′,k′′=1

Gk′Gk′′Pk′Pk′′ .



Notice that β(1) is still involved since
h3(n1Ts, n2Ts, n3Ts,−1) = h∗3(n1Ts, n2Ts, n3Ts, 1).
The case k = 1 leads to null term since the first user can
not be disturbed by its left as it is empty.
b) Derivations of p(2)

NL(k): According to Eqs. (17)-(16),
we have

p
(2)
NL(k) = γ2

3

K∑
k1,k2,k3=1

K∑
k′1,k

′
2,k

′
3=1

∑
n1,n2,n3∈Z

∑
n′
1,n

′
2,n

′
3∈Z√

Gk1Gk′1Gk2Gk′2Gk3Gk′3

× e2iπ(k1+k2−k3)∆FnTse−2iπ(k′1+k′2−k
′
3)∆FnTs

× E[ak1,n−n1a
∗
k′1,n−n′

1
]E[ak2,n−n2a

∗
k′2,n−n′

2
]

× E[a∗k3,n−n3
ak′3,n−n′

3
]

× h3(n1Ts, n2Ts, n3Ts, k1 + k2 − k3 − k)

× h∗3(n′1Ts, n
′
2Ts, n

′
3Ts, k

′
1 + k′2 − k′3 − k),

As previously, only relevant indexes in the symbol expec-
tation are kept. Consequently, k1 = k′1, k2 = k′2, k3 = k′3 and
n1 = n′1, n2 = n′2, n3 = n′3. This implies

p
(2)
NL(k) = γ2

3

K∑
k1,k2,k3=1

∑
n1,n2,n3∈Z

Gk1Gk2Gk3Pk1Pk2Pk3

× |h3(n1Ts, n2Ts, n3Ts, k1 + k2 − k3 − k)|2 .
As previously, by keeping only the terms such that (k1 +

k2 − k3 − k) ∈ {−1, 0, 1}, we have

p
(2)
NL(k) = p

(2)
NL,0(k) + p

(2)
NL,1(k) + p

(2)
NL,−1(k).

with
• Case k1 + k2 − k3 − k = 0. We have

p
(2)
NL,0(k) = γ2

3α
(2)

K∑
k1,k2,k3=1
k=k1+k2−k3

Gk1Gk2Gk3Pk1Pk2Pk3

with

α(2) =
∑

n1,n2,n3∈Z
|h3(n1Ts, n2Ts, n3Ts, 0)|2.

Notice that α(2) is positive and also that the condition on
(k1, k2, k3) in the sum is described in Table 1 of [3].

• Case k1 + k2 − k3 − k = 1. We have

p
(2)
NL,1(k) = γ2

3β
(2)

K∑
k1,k2,k3=1

k=k1+k2−k3−1

Gk1Gk2Gk3Pk1Pk2Pk3

with

β(2) =
∑

n1,n2,n3∈Z
|h3(n1Ts, n2Ts, n3Ts,−1)|2.

Notice that β(2) is positive. As previously, the condition
on (k1, k2, k3) in the sum is described in Table 2 of [3].

• Case k1 + k2 − k3 − k = −1. Similarly, we have

p
(2)
NL,−1(k) = γ2

3β
(2)

K∑
k1,k2,k3=1

k=k1+k2−k3+1

Gk1Gk2Gk3Pk1Pk2Pk3 .

c) Derivations of p(j)
NL(k) for j = 3, · · · , 6: By doing

similar derivations, one can easily check that

p
(1)
NL(k) = p

(3)
NL(k) = p

(4)
NL(k) = p

(5)
NL(k)

and

p
(2)
NL(k) = p

(6)
NL(k).

By encompassing all the previous expressions, we obtain
the following final result for PNL(k),

PNL(k) = 4γ2
3α

(1)GkPk

K∑
k′,k′′=1

Gk′Gk′′Pk′Pk′′

+ 2γ2
3α

(2)
K∑

k1,k2,k3=1
k=k1+k2−k3

Gk1Gk2Gk3Pk1Pk2Pk3

+ 4γ2
3β

(1)(δ̃k,1Gk−1Pk−1 + δ̃k,KGk+1Pk+1)

×
K∑

k′,k′′=1

Gk′Gk′′Pk′Pk′′

+ 2γ2
3β

(2)
K∑

k1,k2,k3=1
k=k1+k2−k3±1

Gk1Gk2Gk3Pk1Pk2Pk3

where δ̃k,k′ = 1−δk,k′ with the Kronecker index δk,k′ . Notice
that PNL(k) is a sum of positive terms.

C. Derivations of PLNL(k)

According ot Eqs. (10) and (11), we have

PLNL(k) = γ1γ3

K∑
k1,k2,k3=1

∑
n1,n2,n3∈Z

×
√
GkGk1Gk2Gk3e

−2iπ(k1+k2−k3−k)∆FnTs

× E[ak,na
∗
k1,n−n1

a∗k2,n−n2
ak3,n−n3

]

× h∗3(n1Ts, n2Ts, n3Ts, k1 + k2 − k3 − k).

Following the same derivation steps than for PNL(k) (i.e. first
decompose the fourth-order term in {ak,n}k,n, then looking
at the simplification on h3), we obtain

PLNL(k) = 2γ1γ3λGkPk

K∑
k′=1

Gk′Pk′ (21)

with λ =
∑
n1∈Z h

∗
3(0, n1Ts, n1Ts, 0). Using the symmetric

of the RRC filter, one can prove that λ is positive.
Thanks to these closed-form expressions, two remarks can

be done: PLNL(k) is a positive term which implies that it
enables us to increase the capacity given by Eq. (13). In
addition, each subband has significant impact on PNL(k)
and PLNL(k) since the terms related to subband k′ are not
multiplied by negligible weights.



V. NUMERICAL RESULTS

A multiband single-beam satellite is considered. The system
operates in the Ka-band for the uplink (27.5-29.5 GHz) and
K = 6 terrestrial users are in the beam coverage. The number
of subbands is equal to K, and the subband assignment has
been already performed [7]. The channel gains {G(k)}k are
computed according to [8]. The roll-off of RRC filters is 0.25.
The values γ1 and γ3 are 1 and 0.05 respectively.

In Fig. 1, we plot C, C and the capacity for Gaussian
channel (expressed by CAWGN(k) = log2(1 + PL(k)/PW))
versus the transmit power of the terrestrial users (we assume
Pk = Pk′ = P for any k, k′). We have consider three
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Fig. 1. Sum-capacity vs. user’s power P for K = 6 and 3 different values
of pre-amplifier gain Gamp ∈ {−10, 0,+10}dB (A, B and C respectively).

configurations: each of them corresponds to a satellite pre-
amplifier gain value. Actually, this device is located before
HPA which operates into linear or nonlinear mode depending
on the tuning of the pre-amplifier. Here A, B, and C deal with
linear, transient and nonlinear modes respectively. In nonlinear
mode, we show that i) the decoder related to C offers a gain
of 5% if the power is chosen to maximize C and ii) the power
to operate is different according to the selected decoder and
the gain with C is then around 12% if the power is well tuned.

In Fig. 2, we plot C, C, and CAWGN versus the pre-amplifier
gain for two weather conditions (D: clear sky; E: rain for
a third of users) and two power allocations. In the first one
(called ”naive”), we force all the users to have the same power
(ie. Pk = Pk′) and we select the power within the interval
[0, Pmax] maximizing the sum-capacity. The algorithm relies
on a 1-D search. In the second one (called ”exhaustive”), we
allow users to have their own power within [0, Pmax]. So we
may have Pk 6= Pk′ and a K-D search is applied.

The difference between power allocations occurs on the
nonlinear regime. Indeed in linear regime, the users use their
maximum power since they do not interact to each other.
Under (D), the gain of the exhaustive allocation is marginal
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Fig. 2. Sum-capacity vs. pre-amplifier gain Gamp for K = 6 and Pmax =
50W. (D) corresponds to clear sky while (E) corresponds to rain for two users.

(around 2%). Under (E), the gain is more significant (around
8%) since Gk are quite different amongst users. Notice that
this configuration is realistic as the beam covers a large area
on Earth which may lead to different weather conditions.

VI. CONCLUSION

In the context of uplink multiband satellite communications,
we have provided closed-form expression for the capacity
in nonlinear regime generated by the satellite amplifier. In
future works, we plan to take into account the time and
frequency correlations for the capacity derivations and to
design practical algorithms for the power allocations instead
of just a prohibitive exhaustive search.
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