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Abstract—Polar codes can theoretically achieve very compet-
itive Frame Error Rates. In practice, their performance may
depend on the chosen decoding procedure, as well as other
parameters of the communication system they are deployed
upon. As a consequence, designing efficient polar codes for a
specific context can quickly become challenging. In this paper,
we introduce a methodology that consists in training deep neural
networks to predict the frame error rate of polar codes based on
their frozen bit construction sequence. We introduce an algorithm
based on Projected Gradient Descent that leverages the gradient
of the neural network function to generate promising frozen
bit sequences. We showcase on generated datasets the ability of
the proposed methodology to produce codes more efficient than
those used to train the neural networks, even when the latter are
selected among the most efficient ones.

I. INTRODUCTION

Polar Codes are a family of Error Correcting Codes that are
used in the 5G NR standard. In order to construct these codes,
traditional methods consist in estimating the bit error proba-
bilities with mathematical models. Usually these approaches
consider the Successive Cancellation (SC) decoding algorithm
as it allows such mathematical formulations. In practice the
Successive Cancellation List (SCL) decoder allows to achieve
much better error rates. However predicting the bit error
probabilities for SCL is not as easy as for SC. Finding good
code constructions is therefore challenging, and many works
have been published with that aim [1]–[3]. Most of these
methods require estimating bit/frame error rates (BER/FER)
using Monte Carlo simulations, and training models to lower
them. Ideally, a well trained machine learning algorithm could
lead to finding error rates lower than those encountered on its
training data.

In this paper, we aim at using neural networks to predict the
FER of a polar code from its construction parameters. Once
such a neural network is trained, it is possible to use it to
generate competitive codes. To this end we propose to use an
adaptation of a classical algorithm typically meant to generate
adversarial inputs, i.e. inputs that are specifically designed to
fool the neural network decision. In our case, these frozen bit
sequences inputs will be generated with the aim at lowering
the error rate. We propose two datasets made of bit frozen
sequences and associated FERs, obtained using Gaussian
Approximation or Density Evolution. For each one, we show
that it is possible to train neural networks able to predict the
FER with high confidence, resulting in an error inflation of
about 5% in average on previously unseen inputs. Using these

neural networks, we propose new polar codes achieving lower
FERs than the ones used during training. We release both
the datasets and the code used in this paper at the following
address: https://github.com/brain-bzh/PolarCodesDNN.

II. CONSTRUCTING POLAR CODES

A. Conventions

In this paper we consider (N,K) polar codes, where N
is the codeblock length and K the length of the information
sequence. We are more precisely interested in polar codes with
Arıkan kernels, as defined in [4]. Apart from both N and
K, such a code is defined thanks to the frozen bit sequence
f ∈ {0, 1}N . Namely, the 1s in f = {fi}0≤i<N correspond
to the indices of the frozen bits.

B. Mathematical models

Constructing polar codes refers to the way to generate a
frozen bits sequence f , given N , K, and a channel model.
In [4], construction was only defined for Binary Erasure
Channels. Methods to construct polar codes for Additive White
Gaussian Noise (AWGN) channels were later given in [5], [6].
All three methods sort the positions of frozen bits, from the
most to the least reliable, considering SC decoding. However,
freezing the least reliable bits is not guaranteed to offer the best
performance, expressed as the Frame Error Rate (FER) for a
targeted SNR in more complex situations. As a matter of fact,
finding the best frozen bit sequence (i.e. that yielding the lower
Frame Error Rate (FER)), for a given channel, target SNR
and decoder, is a difficult challenge that has to be addressed
specifically, using complex models or empirical approaches.

C. Learning Approaches

Some learning-based methods have been recently proposed
to further improve the error correcting performance of polar
codes. They are based on the mathematical constructions men-
tioned above and particularize this construction to the specific
channel and decoding conditions. In [1], a genetic algorithm
is used to modify the frozen bits set in order to improve
the performance of polar codes with different channel models
(AWGN, Rayleigh) and different decoding algorithms e.g.
Belief Propagation (BP), SCL, etc. Reinforcement Learning
(RL) has also been used to address the same problematic [3].
The polar code construction is formulated as a maze-traversing
game, which is solved using RL methods. This allows to



improve the performance of polar codes constructed with [5]
in some of the studied cases.

Deep Learning Techniques have also been used to improve
existing codes [2]. It is mentioned that neural networks are
used to predict performance of a polar code under certain
channel and decoding conditions, and some results are pro-
vided. However, the methods used to construct and train the
network are not described. In this paper, we propose to further
investigate the capabilities of neural networks to model and
construct polar codes. We give hints about how to construct
these neural networks, with detailed experiments and results.
Finally, we propose methods that allow to use neural networks
to improve the construction of polar codes for a given channel
and decoding algorithm.

III. POLAR CODES DESIGN WITH NEURAL NETWORKS

A. Dataset Generation

We propose to train a neural network to predict the FER
performance of a polar code. The neural network is trained on
a dataset consisting of pairs of frozen bits sets f associated
with their corresponding FERs. The FERs are obtained by
Monte Carlo simulations, using the AFF3CT toolbox as a
library [7]. The frozen bits set is the only parameter that
change in the communication chain accross the simulations.
All other parameters are constant, e.g. N , K, Eb/N0. The
frozen bits sets space is a high dimensional space

(
N
K

)
in

which most of its elements yield bad FERs. Directly training
on poorly performing codes would inevitably lead the neural
network to focus predicting high FERs.

In order to generate a relevant subset, we first use the
Gaussian Approximation (GA) method to generate a list of
the frozen bits positions p ∈ {0, 1, . . . N − 1}N−1, that are
sorted according to the reliability that GA associates with each
of them. Usually, this sorted positions are directly used to
generate the frozen bits set f , where

fpi =

{
1 if i < K
0 if i ≥ K ,∀0 ≤ i < N (1)

To generate our dataset, a subset of the values in p are
randomly shuffled to get a new vector of frozen bits positions
pd:

pdi = πd(pi),∀K − r ≤ i < K + r (2)

where {πd}0≤d<D is a set of uniformly distributed random
permutations. The shuffling range r is chosen empirically.
According to our experiments, the best results are obtained
when r is chosen so that there is a one to ten ratio between
the worst and the best measured FER in the generated dataset.
In order to get a dataset of size D, the shuffling operation
is performed D times, to get D variants of the frozen bits
positions pd and the corresponding frozen bits sets fd.

B. Neural network

Let us first recall that a neural network can be modelled
as a mathematical function that is obtained by assembling
elementary subfunctions called layers. A typical layer is a

function of the form F ` : x 7→ σ(W `x + b`), where
W ` and b`, respectively a matrix and a vector, are made
of values that are trainable parameters, and σ is a nonlinear
predetermined function which acts on each component of its
input independently. The number of dimensions in the input x
is denoted dinput` and the number of dimensions in the output
F`(x) is denoted doutput` . Assembling layers can be performed
by performing composition, additions, concatenations, etc.

In our work, we consider very simple architectures that are
defined using three hyperparameters:
• The number of layers L. We denote each associated

layer function (F`)1≤`≤L. We use Rectified Linear Units
(ReLU) as nonlinear functions in all layer functions,
except the last for which we do not use a nonlinear
function.

• The number of neurons in hidden layers, denoted H . We
then fix the dimensions: dinput1 = N , (dinput` = H,∀` >
1), (doutput` = H,∀` < L), doutputL = 1.

• The shortcut gap G defined in analogy to celebrated
ResNet architectures [8] (see details below).

Once all parameters L,H and G are fixed, we can define
the neural network function F . Denote f an input sequence
of bits. We compute the following sequence:

f0 = f

f `+1 =

 F`+1(f
`) + f `+1−G if ∃k ∈ N∗, ` = kG

and `+ 1 < L
F`+1(f

`) otherwise
(3)

Then, we define F (f) = fL,∀f .
In particular, when G is no lesser than L−1, this sequence

boils down to composing F = FL ◦ FL−1 ◦ · · · ◦ F 1. A toy
depiction of this architecture is shown in Figure 2.

To train F to associate an input bit sequence f with
the corresponding FER denoted FERf , we use a variant of
the Stochastic Gradient Descent algorithm named Adam [9],
which is meant to minimize the Mean Square Error between
F (f) and FERf in logscale. In other words, we aim at
approximately solving:

arg min
{W `,b`}1≤`≤L

E[(F (f)− log(FERf ))
2]. (4)

We use a logscale to better encompass for the range of FERs
we expect to observe in applications.

C. Inflation Of Error (IOE)

To train a neural network, we make use of a training set
T and a validation set V , both made of pairs (f ,FERf ). The
idea is to define these sets so that V ∩ T = ∅. Once a neural
network has been trained using T as a proxy to the expectation
of Equation (4), we evaluate on V its ability to generalize
predictions to previously unseen inputs.

To properly reflect the exponential scale of FER, we define
the Inflation Of Error (IOE) of (f ,FERf ) ∈ V for the neural
network function F as:

IOE(f , F ) = max

{
FERf

exp(F (f))
,
exp(F (f))

FERf

}
− 1. (5)
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Fig. 1. Evolution of validation Inflation Of Errors depending on the number of epochs used for training, in both the case of large codes (left) and small
codes (right). Standard deviation obtained on 10 runs is also shown.

f F (f)
⊕

F1 F2 FG+1

Fig. 2. Depiction of the architectures used to predict the FER based on
input frozen bit sequences. The direct flow of data from input to output is
periodically combined with shortcuts of length G.

As an example, an IOE of 100% means that the FER
predicted using the neural network is half or twice the actual
FER of the considered validation sample.

In our experiments, we are typically interested in measuring
the average IOE or the worst (i.e. maximal) IOE on the
validation set.

D. Constructing codes using neural networks

Once neural networks have been trained to predict FER
based on input frozen bit sequences, we can leverage them
to propose new efficient codes.

We adapt the methodology described in [10], called Pro-
jected Gradient Descent (PGD). PGD has been widely used in
the context of adversarial attacks, where the aim is to generate
inputs meant to fool the neural network predictions. The idea is
to fix the neural network parameters, and use gradient descent
to update inputs so that it translates the corresponding output
towards new decisions. In our case, the goal is to use the
prediction of the neural network as the function to minimize,
since it means lowering the FER.

In more details, we implement a straight-through [11] pro-
cedure, in which we manipulate inputs that are not necessarily
binary: such inputs can be seen as a relaxation of bit sequences
into real-valued ones. When we estimate the FER using the
neural network, we manipulate a quantized version of the
input, where all values below the median are set to one bit
and all others the other one. We compute the gradient with
respect to this input, but apply it to its real-valued version.
More details are available in Algorithm 1. It comes with two
parameters: a number of iterations I and a gradient step µ.

Algorithm 1: Algorithm used to generate low FER
polar codes.

1 f ← random binary initialization
2 for a fixed number of iterations I do
3 f̃ ← quantized version of f
4 y ← F (f̃)
5 for 0 ≤ i < N do
6 fi ← fi − µ ∂y

∂f̃i

7 Return quantized version of f

IV. EXPERIMENTS

Throughout this section, we consider two types of polar
codes, namely (256, 128), termed small and (1024, 512),
termed large. In both cases, an SCL decoder is used, with a list
depth of respectively L = 4 and L = 32. The SNR values used
for any construction method are respectively Eb/N0 = 3.2dB
and Eb/N0 = 2.7dB. For the small codes, we generated a
total of 77′466 frozen bit sequences f , split arbitrarily in 80%
used for training and 20% for validation. For the large codes,
we generated a total of 15′862 frozen bit sequences, with the
same proportions for training and validation.

We use classical data standardization techniques, where
we center and reduce both input and output components.
On the input, this has the effect of replacing 0s with -1s.
We also remove coordinates in the inputs that are constant
on our datasets. We end up using 36 out of the 256 input
dimensions for small codes and 112 out of the 1024 input
dimensions for large codes. The minimal FER in the training
and validation sets are 1.67e-4 for small codes and 5.75e-5
for large ones. As a reference for upcoming experiments, we
also computed the average IOE and worst IOE obtained when
using a constant predictor (predicting the average of outputs).
We obtained: average IOE: 86.03% and worst IOE: 1541.32%
for small codes and average IOE: 47.90% and worst IOE:
4716.20% for large ones. These quantities can be thought of as
“chance levels”. For all reported results, we compute at least an
average over 10 runs, where each run is obtained with different
randomly drawn initial weights for the layer parameters, and
different order of presenting data during training.



A. Effect of hyperparameters on IOE

As a first series of experiments, we wanted to empirically
study the impact of hyperparameters in our architectures on
the average and worst IOEs. We first randomly searched for
an efficient starting set of hyperparameters, and then looked
at the influence of varying a single parameter, while leaving
the others constant. We ended up using 20 epochs for training
for small codes and 100 epochs for training for large ones.
In both cases, we used 320 neurons in the hidden layers, a
network depth of 6 and a shortcut gap of 3.

Prediction performance of neural networks:
On small codes, we obtain after 10 runs the following per-

formance: average IOE: 2.65% ± 0.06%, worst IOE: 29.36%
± 5.63% for small codes (confidence intervals obtained at
95%). For the large codes, we obtain: average IOE: 5.46%
± 0.04%, worst IOE: 31.28% ± 0.04%. In other words, the
ratio between predicted FER and actual one is no more than
6% in average for our datasets, which is way smaller than
the chance level we estimated. Also, in the worst case, the
actual FER is about 30% larger or smaller than the actual
one, which demonstrates the outstanding generalization ability
of the trained neural networks. It is also worth pointing out
that the estimation of FER using Monte Carlo simulations is
subject to a small error, and that this error could be significant
with respect to the average IOE measured in our experiments.

Effect of the number of epochs in training:
In Figure III-A, we report the average and worst IOEs

obtained depending on the number of epochs used to train
the neural network architectures. As expected the small codes
require less epochs to reach convergence, as the dataset is way
larger than in the case of large codes. Interestingly, we observe
a small increase of IOEs when training large codes for too
many epochs, which can indicate a small risk of overfitting.

Effect of the number of neurons in hidden layers:
Next, we wanted to study the impact of the number of neu-

rons in hidden layers H in the architecture. In Figure IV-A, we
depict the evolution of IOEs as a function of H . Except for the
small outlier obtained with the blue curves – which is probably
due to the limited number of runs –, we observe an expected
global decrease of IOE as the number of neurons grow. A
plateau is soon reached around H = 300. Interestingly, the
worst IOE for small codes seems to increase with the largest
values of H , making one suspect about potential overfitting.

Effect of the depth of the architecture:
In Figure IV-A, we vary the depth of trained architectures

and report the corresponding IOEs. The effect of the depth
seems to play a role analogous to that of the number of neurons
in hidden layers, where too small or too large values can cost
higher IOEs. The best obtained average IOEs are for depth 3
and 9 respectively, with a pretty insignificant effect between
these values. On the contrary, increasing the depth seems to
cause way larger worst IOEs for small codes.

Effect of the shortcut gap length:
Next, we tested the effect of the shortcut gap G on the

IOE of trained architectures. Obtained results are presented in
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Fig. 3. Evolution of validation Inflation Of Errors depending on the size of
the hidden layers in the trained architectures, for large codes (blue and cyan)
and small codes (red and orange). Standard deviation obtained on 10 runs is
also shown.
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Fig. 4. Evolution of validation Inflation Of Errors depending on the depth
of the trained architectures, for large codes (blue and cyan) and small codes
(red and orange). Standard deviation obtained on 10 runs is also shown.

Figure IV-A. Of all tested parameters, the shortcut gap length
seems to be the one having the smallest influence on obtained
IOEs. It is worth noting that a depth of 6 is equivalent to not
using shortcuts in our architectures. When zooming, we still
observe a significant improvement when using small gaps in
both the case of small and large codes.

Using standard methods to increase predicted IOEs:
Finally, we implemented standard techniques from the field

of Deep Learning meant to either prevent overfitting or im-
prove prediction performance. We implemented DropOut [12],
including on the input [13], where we randomly mask coordi-
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gaps in the trained architectures, for large codes (blue and cyan) and small
codes (red and orange). Standard deviation obtained on 10 runs is also shown.



TABLE I
INFLUENCE OF COMMON TECHNIQUES IN DEEP LEARNING ON THE
AVERAGE IOE (CONFIDENCE INTERVALS AT 95% ARE INDICATED):

DROPOUT, BATCH-NORMS (BNS) AND MIXUP.

DropOut BNs Mixup IOE (Large) IOE (Small)
5.46% (± 0.04%) 2.65% (± 0.06%)
7.69% (± 0.06%) 3.08% (± 0.17%)
8.95% (± 0.37%) 6.42% (± 0.80%)
9.14% (± 0.50%) 8.05% (± 0.11%)

36.78% (± 0.28%) 58.92% (± 0.37%)
37.43% (± 0.44%) 60.78% (± 0.69%)
32.77% (± 0.23%) 52.96% (± 0.21%)
32.89% (± 0.33%) 53.31% (± 0.18%)

2 4 6

10−5

10−3

10−1

Eb/N0 (dB)

FE
R

1 2 3 4

10−5

10−3

10−1

Eb/N0 (dB)

Fig. 6. Frame Error Rate performance of small (left) and large (right) codes,
with the GA construction (blue circles), the generated datasets (blue areas),
and our proposed construction (red circles). Green vertical lines correspond
to the target SNR.

nates of input or output vectors computed throughout the ar-
chitecture during training, BatchNorms [14], which center and
reduce each dimension of computed vectors during training,
and learn corresponding coefficients to be used on validation
data, and Mixup [15], a simple data-augmentation procedure
in which training inputs are linearly interpolated and trained to
associate the corresponding linear interpolation of the outputs.
Results are presented in Table I. Interestingly, none of the
tested methods resulted in improved IOEs on our tests. We
suspect that it is because these techniques are mostly meant to
be applied when dealing with raw input signals, such as in the
case of vision or audio signals. In our case, their discrete and
combinatorial nature might make these techniques unsuitable.

B. Constructing Codes

After having explored the impact of hyperparameters on the
IOEs, we fixed parameters for constructing interesting codes.
We chose: (L,H,G) = (3, 640, 3) trained for 100 epochs
for large codes (i.e. not using shortcuts) and (L,H,G) =
(5, 320, 3) trained for 40 epochs for small codes. When using
Algorithm 1, we used a maximum of 5000 iterations and a
gradient step µ = 0.1.

With large codes, we obtained a frozen bit sequence reach-
ing as low as 1.01e-5 as FER, validated using Monte Carlo
simulations, which is way lower than the minimum observed
on the training set (5.75e-5). With small codes, we obtained
several interesting candidates that reached competitive FERs,
but not surpassing by a large margin the examples of the
training set. This was expected due to the relative small size
of these codes and the abundance of already very optimized

bit sequences in the training set. The corresponding FERs of
best candidates are depicted in Figure 6.

V. CONCLUSION

In this paper, we investigated how to build neural networks
capable of predicting the error correction performance of polar
codes. We proposed an algorithm to extract competitive codes
from trained neural networks. Two datasets of frozen bits
sets associated with their corresponding FER values, for a
fixed SNR, were generated for two different code lengths,
under SCL decoding. These datasets were used to train neural
networks to predict the FER of any frozen bits set. We obtained
in average a ratio of errors of less than 1.06 for the (1024,512)
codes and 1.02 for (256,128) codes. The codes we generated
using trained neural networks were shown to perform better
than those of the training datasets. Finally, the source code
used in this article as well as the generated datasets are
published for reproducibility and reuse.
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