
Locality-Aware Scheduling of Independent Tasks
for Runtime Systems

Maxime Gonthier1, Loris Marchal1, and Samuel Thibault2

1 LIP, CNRS, ENS de Lyon, Inria & Université Claude-Bernard Lyon 1,
maxime.gonthier@ens-lyon.fr loris.marchal@ens-lyon.fr

2 LaBRI, University of Bordeaux, CNRS, Inria Bordeaux – Sud-Ouest
samuel.thibault@u-bordeaux.fr

Abstract. A now-classical way of meeting the increasing demand for
computing speed by HPC applications is the use of GPUs and/or other
accelerators. Such accelerators have their own memory, which is usually
quite limited, and are connected to the main memory through a bus
with bounded bandwidth. Thus, particular care should be devoted to
data locality in order to avoid unnecessary data movements. Task-based
runtime schedulers have emerged as a convenient and efficient way to
use such heterogeneous platforms. When processing an application, the
scheduler has the knowledge of all tasks available for processing on a
GPU, as well as their input data dependencies. Hence, it is able to order
tasks and prefetch their input data in the GPU memory (after possibly
evicting some previously-loaded data), while aiming at minimizing data
movements, so as to reduce the total processing time. In this paper, we
focus on how to schedule tasks that share some of their input data (but
are otherwise independent) on a GPU. We provide a formal model of
the problem, exhibit an optimal eviction strategy, and show that order-
ing tasks to minimize data movement is NP-complete. We review and
adapt existing ordering strategies to this problem, and propose a new
one based on task aggregation. These strategies have been implemented
in the StarPU runtime system. We present their performance on tasks
from tiled 2D and 3D matrix products. Our experiments demonstrate
that using our new strategy together with the optimal eviction policy
reduces the amount of data movement as well as the total processing
time.

Keywords: Memory-aware scheduling, Eviction policy, Tasks sharing
data, Runtime systems.

1 Introduction

High-performance computing applications, such as physical simulations, molec-
ular modeling or weather and climate forecasting, have an increasing demand in
computer power to reach better accuracy. Recently, this demand has been met
by extensively using GPUs, as they provide large additional performance for a
relatively low energy budget. Programming the resulting heterogeneous architec-
ture which merges regular CPUs with GPUs is a very complex task, as one needs

to handle load balancing together with data movements and task affinity (tasks
have strongly different speedups on GPUs). A deep trend which has emerged
to cope with this new complexity is using task-based programming models and
task-based runtimes such as PaRSEC [4] or StarPU [2]. These runtimes aim at
scheduling scientific applications, expressed as directed acyclic graphs (DAGs)
of tasks, onto distributed heterogeneous platforms, made of several nodes con-
taining different computing cores.

Data movement is an important problem to consider when scheduling tasks
on GPUs, as those have a limited memory as well as a limited bandwidth to
read/write data from/to the main memory of the system. Thus, it is crucial to
carefully order the tasks that have to be processed on GPUs so as to increase
data reuse and minimize the amount of data that needs to be transferred. It
is also important to schedule the transfers soon enough (prefetch) so that data
transfers can be overlapped with computations and all tasks can start without
delay. We focus in this paper on the problem of scheduling a set of tasks on
one GPU with limited memory, where tasks share some of their input
data but are otherwise independent. More precisely, we want to determine
the order in which tasks must be processed to optimize for locality, as well as
when their input must be loaded/evicted into/from memory. Our objective is to
minimize the total amount of data transferred to the GPUs for the processing of
all tasks with a constraint on the memory size. We start focusing on independent
tasks sharing input data because when using usual dynamic runtime schedulers,
the scheduler is exposed at a given time to a fairly large subset of tasks which
are independent of each others. This is in particular the case with linear algebra
workflows, such as the matrix multiplication or Cholesky decomposition: except
possibly at the very beginning or very end of the computation, a large set of
tasks is available for scheduling. Thus, solving the optimization problem for the
currently available tasks can lead to a large reduction in data transfers and hence
a performance increase.

Because of space limitation, the complete review of related work is devoted
to the extended version of the paper [8]. In this paper, we make the following
contributions:

– We provide a formal model of the optimization problem, and prove the prob-
lem to be NP-complete. We derive an optimal eviction policy by adapting
Belady’s rule for cache management (Section 2).

– We review and adapt three heuristic algorithms from the literature for this
problem, and propose a new one based on gathering tasks with similar data
patterns into packages (Section 3).

– We implement all four heuristics into the StarPU runtime and study the
performance (amount of data transfers and total processing time) obtained
on both 2D and 3D blocked matrix multiplications (Section 4). Overall, our
evaluation shows that our heuristic generally surpasses previous strategies,
in particular in the most constrained situations.

Note that while we focus our experimental validation on GPUs, the optimiza-
tion problem studied in this paper is not specific to the use of such accelerators:

T1 T2 T3 T4 T5

D1 D2 D3 D4 D5 D6

D1

D2

D3

D4

D5

D6

D1

timeT1 T2 T3 T4 T5

data in memory

processed tasks

Fig. 1: Example with 5 tasks and 6 data, with a memory holding at most M = 3
data. The graph of input data dependencies is shown on the left. The schedule
on the right corresponds to processing the tasks in the natural order with the
following eviction policy: V(1) = V(2) = ∅, V(3) = {1}, V(4) = {2}, V(5) =
{3, 4}. This results in 7 loads (only D1 is loaded twice).

it appears as soon as tasks sharing data must be processed on a system with
limited memory and bandwidth. For example, it is also relevant for a computer
made of several CPUs with restricted shared memory, and limited bandwidth
for the communication between memory and disk.

2 Problem modeling and complexity

We consider the problem of scheduling independent tasks on one GPU with
memory size M. As proposed in previous work [9], tasks sharing their input
data can be modeled as a bipartite graph G = (T ∪ D, E). The vertices of this
graph are on one side the tasks T = {T1, . . . , Tm} and on the other side the
data D = {D1, . . . , Dn}. An edge connects a task Ti and a data Dj if task Ti
requires Dj as input data. For the sake of simplicity, we denote by D(Ti) =
{Dj s.t. (Ti, Dj) ∈ E} the set of input data for task Ti. We here consider that
all data have the same size. The GPU is equipped with a memory of limited size,
which may contain at most M data simultaneously. During the processing of a
task Ti, all its inputs D(Ti) must be in memory.

For the sake of simplicity, we here do not consider the data output of tasks.
In the case of linear algebra for instance, the output data is most often much
smaller than the input data and can be transferred concurrently with data input.
Data output is then not the driving constraint for efficient execution. Our model
could however easily be extended to integrate task output.

All m tasks must be processed. Our goal is to determine in which order to
process them, and when each data must be loaded or evicted, in order to
minimize the amount of data movement. More formally, we denote by σ
the order in which tasks are processed, and by V(t) the set of data to be evicted
from the memory before the processing of task Tσ(t). A schedule is made of m
steps, each step being composed of the following three stages (in this order):
1. All data in V(t) are evicted (unloaded) from the memory;
2. The input data in D(Tσ(t)) that are not yet in memory are loaded;

3. Task Tσ(t) is processed.
An example is shown in Figure 1. This example illustrates that input data

are loaded in memory as late as possible: loading them earlier would be pointless
and possibly trigger more data movements. In real computing systems, a pre-
fetch is usually designed to load data a bit earlier so as to avoid waiting for
unavailable data, however, for the sake of simplicity, we do not consider this in
our model: if needed, we may simply book part of our memory for the pre-fetch
mechanism.

Using the previous definition, we define the live data L(t) as the data in
memory during the computation of Tσ(t), which can be defined recursively:

L(t) =

{
D(Tσ(1)) if t = 1

L(t) = (L(t− 1)\V(t)) ∪ D(Tσ(t)) otherwise

Our memory limitation can then be expressed as |L(t)| ≤ M for each step
t = 1, . . . ,m. Our objective is to minimize the amount of data movement, i.e., to
minimize the number of load operations: we consider that data are not modified
so no store operation occurs when evicting a data from the memory. Assuming
that no input data used at step t is evicted right before the processing (V(t) ∩
D(Tσ(t)) = ∅), the number of loads can be computed as follows:

#Loads(σ,V) =
∑
t

∣∣∣D (Tσ(t)) \L(t)
∣∣∣

There is no reason for a scheduling policy to evict some data from memory if
there is still room for new input data. We call thrifty scheduler such a strategy,
formalized by the following constraints: if V(t) 6= ∅, then |L(t)| = M . For this
class of schedulers, the number of loads can be computed more easily: as soon
as the memory is full, the number of loads is equal to the number of evictions.
That is, for the regular case when not all data fit in memory (n > M), we have:

#Loads(σ,V) = M +
∑
t

|V(t)|

Our optimization problem is stated below:

Definition 1 (MinLoadsForTasksSharingData). For a given set of tasks T
sharing data in D according to D, what is the task order σ and the eviction policy
V that minimizes the number of loads #Loads?

A solution to this optimization problem consists in two parts: the order σ
of the tasks and the eviction policy V. Note that when each task requests a
single data, finding an efficient eviction policy corresponds to the classical cache
management policy problem. When the full sequence of data requests is known,
the optimal policy consists in evicting the data whose next use is the furthest in
the future. This is the well-known Belady MIN replacement policy [3]. We prove
in the following theorem that this rule can be extended to our problem, with
tasks requiring multiple data (see proof in the extended version of the paper [8]).

Theorem 1. We consider a task schedule σ for a MinLoadsForTasks-
SharingData problem. We denote by MIN the thrifty eviction policy that al-
ways evicts a data whose next use in σ is the latest (breaking ties arbitrarily).
MIN reaches an optimal performance, i.e., for any eviction policy V,

#Loads(σ,MIN) ≤ #Loads(σ,V).

For cache management, Belady’s rule has little practical impact, as the
stream of future requests is generally unknown; simple online policies such as
LRU (Least Recently Used [7]) are generally used. However in our case, the full
set of tasks is available at the beginning. Hence, we can take advantage of this
optimal offline eviction policy. Thanks to the previous result, we can restrict our
problem to finding the optimal task order σ. Unfortunately, this problem is NP-
complete. The proof, available in [8], consists in a reduction from the cutwidth
minimization problem on graphs.

Theorem 2. Given a set of tasks T sharing data in D according to D and an
integer B, finding a task order σ such that #Loads(σ,MIN) ≤ B is NP-complete.

3 Algorithms

We present here several heuristics to solve the MinLoadsForTasksSharing-
Data optimization problem. Two of them are adapted from the literature
(Reverse-Cuthill-McKee and Maximum Spanning Tree), one of them is the ac-
tual dynamic strategy from the StarPU runtime (Deque Model Data Aware
Ready) and we finally propose a new strategy: Hierarchical Fair Packing.

Reverse-Cuthill-McKee (RCM) We have seen above that our problem is close to
the cutwidth minimization problem, known to be NP-complete. This motivates
the use of the Cuthill–McKee algorithm, which concentrates on a close metric:
the bandwidth of a graph. It permutes a sparse matrix into a band matrix so that
all elements are close to the diagonal [6]. If the resulting bandwidth is k, it means
that vertices sharing an edge are not more than k edges away. We apply this
algorithm on the graph of tasks GT = (T, ET , wT) where there is an edge (Ti, Tj)
if tasks Ti and Tj share some data, and where wT (Ti, Tj) is the number of such
shared data. If the bandwidth of the graph is not larger than k, this means in our
problem that any task Ti processed at time t has all its “neighbours” tasks (tasks
sharing some data with Ti) processed in the time interval [t− k; t+ k]. Hence, if
k is low, this leads to a very good data locality. Reversing the obtained order is
known to improve the performance of the Cuthill–McKee algorithm, which we
also notice in our experiments. The straightforward adaptation of the Reverse-
Cuthill–McKee algorithm to our model is available in the extended version [8].

Maximum Spanning Tree (MST) Yoo [10] et al. proposed another heuristic to
order tasks sharing data to improve data locality. They first build a Maximum
Spanning Tree in the graph GT using Prim’s algorithm and then order the

Algorithm 1 Hierarchical Fair Packing heuristic

1: Let Pi ← [Ti] for i = 1 . . .m and P = {P1, . . . , Pm}
2: SizeLimit ← true, MaxSizeReached ← false,
3: while |P| > 1 do
4: while (MaxSizeReached = false or SizeLimit = false) and |P| > 1 do
5: MaxSizeReached ← true
6: for all packages Pi with the smallest number of tasks do
7: Find a package Pj such that |D(Pi) ∩ D(Pj)| is maximal
8: if weight(Pi ∪ Pj) ≤M or SizeLimit = false then
9: Merge Pi and Pj (append Pj at then end of Pi and remove Pj from P)

10: MaxSizeReached ← false
11: end if
12: end for
13: end while
14: SizeLimit ← false
15: end while
16: Return the only package in P

vertices according to their order of inclusion in the spanning tree. By selecting
the incident edge with largest weight, they increase the data reuse between the
current scheduled tasks and the next one to process. The direct adaption of the
Maximum Spanning Tree to our model algorithm is described in the extended
version [8].

Deque Model Data Aware Ready (DMDAR) DMDA or “Deque Model Data
Aware” is a dynamic scheduling heuristic designed to schedule tasks on hetero-
geneous processing units in the StarPU runtime. It takes data transfer time
into account and schedules tasks where their completion times is expected to
be minimal [1] (also called tmdp). We focus here on a variant, DMDAR, which
additionally uses a ready strategy at runtime, to favor tasks whose data has
already been loaded into memory. If at some point the next task Ti planned for
execution requires some data which is not yet loaded in the GPU memory, then
it looks further in the list of scheduled tasks. If it finds a task Tj that needs to
load strictly less data than task Ti, it will first opportunistically compute that
task Tj (see the extended version for details [8]). In our context with a single
processing unit, DMDAR is reduced to selecting the next task with this strategy.
DMDAR is a dynamic scheduler that relies on the actual state of the memory,
it thus depends on the eviction policy, which is the LRU policy.

Hierarchical Fair Packing (HFP) HFP builds packages (denoted P1, P2, ...) of
tasks, which are stored as lists of tasks, forming a partition of T. To do so,
it gathers tasks that share the most input data. By extension, we denote by
D(Pk) the set of inputs of all tasks in Pk. We aim at building the smallest
number of packages so that the inputs of all tasks in each package fit in memory:
D(Pk) ≤ M . The intuition is that once the data D(Pk) are loaded, all tasks in
the package can be processed without any additional data movement. We have

P start
i P end

iPi: P start
j P end

jPj :

P start
i P end

i rev(P start
j)rev(P end

j)Pi + rev(Pj):

Fig. 2: Flipping packages to improve HFP. Here we assume that the pair of sub-
packages (P end

i , P end
j) is the one with the most shared input data, so that only

Pj is reversed before merging packages.

proven that building the minimum number of packages is NP-complete [8], hence
we rely on a greedy heuristic to build them, described in Algorithm 1. We start
with packages containing a single task. Then we consider all packages with fewest
tasks and try to merge each of them with another package with whom it shares
the most input data. When it is not possible to merge packages without exceeding
the M bound any more, we perform a second step where we gather packages in
the same way but ignore the M bound on the input size. The intuition is to
create meta-packages that express the data affinity between packages already
built. Note that we do not modify the order of tasks within packages when
merging them, hence keeping the good data locality inside packages. Eventually,
the last remaining package after all merges is the list of tasks for the schedule.

We note ∆ = maxi |D(Ti)| the maximal number of data for any task. For
linear algebra applications, it is most often a very small constant number. The
worst-case complexity of HFP (detailed in the extended version [8]) is O(m3∆2).

Improving HFP with package flipping A concern appears in the second step of
HFP (when we merge packages without taking care of the M bound): if Pi is
merged with Pj , the merged package contains the tasks of Pi followed by the
ones of Pj . However, the last tasks of Pi might have very little shared data with
the first tasks of Pj , leading to poor data reuse when starting Pj . Hence, for
each package Pi, we consider two sub-packages P start

i and P end
i containing the

first and last tasks so that the weight of their input data is smaller than M
but their cardinal is maximal, as illustrated on Figure 2. Then, we count the
common input data of each pair: (P start

i , P start
j), (P start

i , P end
j), (P end

i , P start
j),

(P end
i , P end

j). We identify the pair with most common input data and selectively
reverse the packages so that tasks in this pair of sub-packages are scheduled
consecutively in the resulting package.

Optimal eviction policy Lastly, we make another improvement to HFP: it is
equipped with the optimal eviction policy adapted from Belady’s rule (see
Lemma 1). To make it compatible with dynamic runtimes, such as the StarPU
runtime used in our experiments, we use a dynamic version of the eviction pol-
icy: whenever the runtime needs to evict some data, we choose the one whose
next usage is the latest.

HFP’s packing and package flipping allows it to be applicable and have good
performance with other classes of problem such as the Cholesky factorization or
random tasks graphs.

4 Experimental evaluation

We present below a subset of the experimental evaluation conducted to compare
the strategy presented above.3 We refer the interested reader to the extended
version of the paper [8] for a more thorough discussion of these results, as well
as experiments on other datasets (Cholesky and randomized 2D multiplication
tasks sets). We used cuBLAS 10.2 GPU kernels with single precision.

4.1 Settings

All strategies mentioned above have been implemented in the StarPU runtime
system [2]. This allows us to test them on a variety of applications expressed
as sets of tasks. We performed both real experiments on a tesla V100 GPU as
well as simulations using the ability to run StarPU code over the SimGrid
simulator [5] to test our strategies in various experimental conditions. The use
of simulation is motivated both by the fidelity of the simulated results as well
as the saving of energy consumption. Even on the actual GPU, we have divided
the original 12000 MB/s PCI bandwidth by two (by generating traffic between
the CPU memory and another GPU) to represent the bandwidth share typically
available for a given GPU in a multi-GPU platform. We have limited the GPU
memory to 500 MB in order to better distinguish the performance of different
strategies even on small datasets.

The scheduling algorithms receive the whole set of tasks of the application
in a natural order (row by row for a matrix multiplication for instance), then
output this same set of tasks in a new order, which is used in StarPU to
process tasks on the GPU. We measure the obtained performance (in GFlop/s)
as well as the total volume of data transferred between CPU and GPU. When
measuring GFlop/s, the cost of computing the MST, RCM, and HFP heuristics
is not considered, to only observe their benefit as a first approach.

We use two sets of tasks for these experiments (see [8] for more datasets).

Square 2D matrix multiplication To compute C = A× B in parallel, each
task corresponds to the multiplication of one block-row of A per one block-
column of B. Input data are thus the rows of A and columns of B.

Square 3D Matrix multiplication All matrices (A, B, C) are tiled, and the
computation of each tile of C is decomposed into multiple tasks, each of
which requires one tile of A and one tile of B. Each tile of C is also used as
input for all tasks on this tile but the first one.

We use the four scheduling heuristics presented above, together with Eager,
a scheduler that processes tasks in the natural order (i.e. row major for matrix
multiplications) as a baseline. Unless specified otherwise, for HFP we enable all
of the Ready dynamic task reordering of DMDAR (see Section 3), the package
flipping (called flip on the plots), and Belady’s optimal eviction policy (called
Belady on the plots). We also show results when enabling only one of them.

3 The code used to reproducibly obtain the results of this paper is available at
https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/coloc2021

https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/coloc2021

●

●

●
●

● ● ● ● ●

●

●

●

● ●
● ● ● ●

●

●

●

● ●
● ● ● ●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

B = MA + B = M

GFlop/s max

0

2500

5000

7500

10000

12500

500 1000
Working set (MB)

G
F

lo
p/

s

(a) On a a Tesla V100 GPU. GPU memory size fixed
 to 500MB, varying working set size.

●

●

●

● ● ● ●
●

● ●

●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● ●
●

● ●

B = M A + B = M

GFlop/s max

0

2500

5000

7500

10000

12500

100 200 300 400 500
Memory (MB)

G
F

lo
p/

s

(b) In SimGrid. Working set size fixed to 422MB,
 varying GPU memory size.

●●●●●●●●● ●●●●●●●●● ●●●●●●●●●

●●●●●●●●● ●●●●●●●●●

HFP HFP only ready HFP only flip RCM Eager

HFP only ready and flip HFP only Belady DMDAR MST

Fig. 3: Performance on the 2D matrix multiplication.

4.2 Results on the 2D matrix multiplication

On Figure 3, we plot the performance of each scheduling heuristic when varying
either the size of the problem, or conversely the size of the available memory. On
these graphs, the dotted horizontal black line represents the maximum GFlop/s
(12557) that the GPU can achieve when processing elementary matrix product
(without I/Os) and is our asymptotic goal. The red dotted vertical line denotes
the situation when the GPU memory can fit exactly only one of the two input
matrices, and the orange line denotes the situation when it can accommodate
both input matrices.

The Eager, MST and RCM heuristics switch to pathological behavior at the
red line. Indeed, they tend to process tasks along the rows of C. This allows us
to reuse the same block-row of matrix A for tasks that compute tiles of the same
row of C, but requires reloading the whole matrix B for each new block-row of
A, which is a well-known pathological case of the LRU eviction policy.

DMDAR does not suffer from this pathological case because its Ready strat-
egy allows it to rather process tasks that need the block-column of B already in
memory instead of reloading the whole matrix.

The HFP heuristic gets performance very close to ideal. Indeed, it tends to
gather tasks that compute a square part of C that require parts of A and B,
that can fit in memory size M . This allows us to execute a lot of tasks with
very few data to load. On figure 3a which shows native execution measurements,
we notice that, with larger working sets, the cost of our implementation of the
Belady rule brings significant overhead. On other figures which show simulated
execution, this overhead is not included, which allows to observe its benefit. Here
are the percentage of improvement of HFP with only Ready and flip over the
other heuristics, averaged on the nine points:

●

●

●
●

●

●
● ●

●

●

●

●

●
● ● ●

● ●

●

●

●

●
● ● ● ● ●

●

●

●

● ●

● ● ●
●

B = M
A + B = M

All data fit

GFlop/s max

0

3000

6000

9000

2500 5000 7500
Working set (MB)

G
F

lo
p/

s

(a) Performance.

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

B = M
A + B = M

All data fit PCI b
us

 lim
it

0

1000

2000

3000

4000

5000

6000

2500 5000 7500
Working set (MB)

D
at

a
tr

an
sf

er
s

(M
B

)

(b) Amount of data transfers.

●●●●●●●● ●●●●●●●●

●●●●●●●● ●●●●●●●●

HFP HFP only Belady DMDAR MST

HFP only ready HFP only flip RCM Eager

Fig. 4: Results on 3D matrix multiplication on SimGrid: GPU memory size fixed
to 500MB, varying working set size.

Reference Eager MST RCM DMDAR HFP only flip HFP only ready
Improvement 51.5% 25.6% 26.0% 8.3% 1.9% -0.2%

Figure 3b shows the dual view of Figure 3a: the working set is now set to
422MB and we simulate varying amounts of available GPU memory. The mea-
surements at 500MB on Figure 3b are the same as the measurements at 422MB
on Figure 3a. We can observe the same results as on 3a but reversed: when the
available memory is smaller than the working set, heuristics get pathological be-
havior. Since we strongly reduce the amount of available memory, we get a more
restrictive situation, and the Ready task selection provides a large improvement
here. The Belady rule or package flipping alone do not provide the same amount
of improvement.

4.3 Results on the 3D matrix multiplication

On Figure 4, we plot the performance and amount of data transfers for all
heuristics on the 3D matrix multiplication. On this set of tasks, matrix C now
plays a role in affinities, which is why we added a vertical green dotted line to
denote the situation when all A, B, and C matrices fit in memory. On Figure 4b,
the black dotted line represents the maximum number of transfers that can
be done during the minimum time for computation (given by the bound on
the GFlop/s), thus the hard limitation induced by the PCI bus bandwidth: a
heuristic exceeding this amount necessarily requires more than the optimal time
for computation.

MST keeps ordering tasks along the rows of C, and thus still gets pathological
performance when memory can not fit matrix B. This is confirmed on Figure 4b:
the number of loads gets dramatically high. RCM and DMDAR, however, do not

have the same problem. RCM (resp. DMDAR) computes tasks along columns
(resp. rows) of C but alternates between tasks of a few consecutive columns
(resp. rows). This allows them to improve data reuse: Figure 4b shows that they
exhibit a limited number of transfers, even with a large working set.

HFP keeps gathering tasks forming a square part of C, which provides better
locality. Here are the percentages of average improvement of HFP over the other
heuristics:

Reference
Eager MST RCM DMDAR

HFP HFP HFP
algorithm only flip only ready only Belady

Improvement 79.4% 48.1% 16.2% 11.0% 2.0% 1.9% 2.7%

As the 3D matrix multiplication already exhibits a better data locality than
the 2D multiplication, the differences in performance between heuristics is less
pronounced than on Figure 3a, but HFP is still better on average. It is worth
noticing that HFP without the Belady rule gets higher performance than RCM
and DMDAR, even if it triggers a larger number of transfers. The latter heuristics
indeed tend to periodically require a sudden burst of data loads, while HFP tends
to require loads that are nicely distributed over time, and thus well overlapped
with computation. We however notice that HFP without Ready gets a number
of transfers very close to the PCI bus limit in the 3014 MB working set case,
which translates into lower performance. We can also see on Figure 4b that the
Belady rule significantly reduces the quantity of data transfers.

5 Conclusion and Future Work

To take the best performance out of GPUs, it is crucial to avoid moving data
as much as possible. We provided in this paper a formalization of the prob-
lem of ordering independent tasks sharing input data in order to minimize the
amount of data transfers, and showed that this problem is NP-complete. We
also exhibited an optimal eviction scheme, based on Belady’s rule. We adapted
three heuristics for the ordering problem, based on the state of the art, and
compared them with a new algorithm gathering tasks with similar input data
into packages of increasing size, called HFP. We also present an improvement
of HFP based on package flipping. All four ordering strategies have been im-
plemented in the StarPU runtime and tested on various sets of tasks. In all
cases, the proposed HFP heuristic provides significant speedups. For instance,
it allows on average a 8.3% (resp. 11%) improvement over the most advanced
StarPU scheduler for 2D (resp. 3D) matrix multiplication. HFP is very rele-
vant and obtains important speedups particularly in the case when the memory
is very constrained compared to the size of the total working set. The Belady
rule reduces drastically the number of data transfers. Without this rule, HFP
may entail much more data transfers than other heuristics, but achieves better
performance, which shows that HFP is also good at distributing data transfer
over time to increase transfer/computation overlap. Studying this final problem
(minimizing computation time with overlap) is one of our future directions. We
also plan to focus on the very beginning of the execution, where it is crucial

to first schedule tasks with few input data. Optimizing the implementation of
Belady’s rule and adapting it to the Ready dynamic task reordering will allow
to integrate it in native executions. On a longer term, we want to tackle the
general case with tasks not only sharing input data, but also with inter-task
dependencies, as well as targeting multi-GPU platforms, for which our approach
with packages seems particularly well suited.

Acknowledgments

This work was supported by the SOLHARIS project (ANR-19-CE46-0009) which
is operated by the French National Research Agency (ANR).

Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see
https://www.grid5000.fr).

References

1. Augonnet, C., Clet-Ortega, J., Thibault, S., Namyst, R.: Data-Aware Task
Scheduling on Multi-Accelerator based Platforms. In: 16th International Confer-
ence on Parallel and Distributed Systems. Shangai, China (Dec 2010)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience, Special Issue: Euro-Par 2009 23 (2011)

3. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal 5(2) (1966)

4. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Dongarra, J.:
PaRSEC: A programming paradigm exploiting heterogeneity for enhancing scala-
bility. Computing in Science and Engineering 15(6), 36–45 (Nov 2013)

5. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. Journal of
Parallel and Distributed Computing 74(10) (Jun 2014)

6. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:
Proceedings of the 1969 24th National Conference. ACM ’69 (1969)

7. Denning, P.J.: The working set model for program behavior. Communications of
the ACM 11(5), 323–333 (1968)

8. Gonthier, M., Marchal, L., Thibault, S.: Locality-Aware Scheduling of Independant
Tasks for Runtime Systems. Research report, Inria (2021), https://hal.inria.
fr/hal-03144290

9. Kaya, K., Uçar, B., Aykanat, C.: Heuristics for scheduling file-sharing tasks on het-
erogeneous systems with distributed repositories. J. Parallel Distributed Comput.
67(3) (2007)

10. Yoo, R.M., Hughes, C.J., Kim, C., Chen, Y.K., Kozyrakis, C.: Locality-aware task
management for unstructured parallelism: A quantitative limit study. In: ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA) (2013)

https://www.grid5000.fr
https://hal.inria.fr/hal-03144290
https://hal.inria.fr/hal-03144290

	Locality-Aware Scheduling of Independent Tasks for Runtime Systems

