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Abstract—Zero-error source coding when side-information (SI)
may be present is a fundamental building block of interactive
real-world compression systems. In this paper, we show how to
use the SI at the encoder in order to lower the compression
rate. Indeed, in general, without SI at the encoder, the minimum
zero-error compression rate is the entropy of the source to be
compressed. In this paper, we show, that the availability of the SI
at the encoder allows to achieve lower rate. The code construction
relies on the typicality bipartite graph in which the vertices
corresponds to the sequences of source and side information,
where an edge links the pair of exactly typical sequences. By
considering binary source alphabets, we show that the Hamming
distance characterize the graph coloring. For short block length,
we show that our type grouping code outperforms any time-
sharing strategy between the Huffman code and the conditional
Huffman code. Then we extend these results to arbitrary source
alphabets.

I. INTRODUCTION

Consider a scenario where a source X is compressed with
the help of a side information (SI) Y and sent to two decoders,
as shown in Fig. 1. The SI is available at the encoder, and
the first decoder, but not at the second decoder. This scheme
has been studied in [1] for lossy compression. The lossless
scenario is of practical interest, when the data is accessed in
an interactive way, i.e. when only a small part of the data
is requested by the user. Indeed, in this context the decoding
order depends on the request, and is not known a priori by the
encoder. This uncertainty can be modeled by the fact that the
encoder does not know if a SI is available at the decoder, and
if so, which SI, as in [2]. The scheme Fig. 1 considered in this
paper corresponds to the one-SI case, where the encoder does
not know whether the decoder has access to the SI or not.

For lossless reconstruction with vanishing small error, an
incremental random binning strategy as in [3] (which does not
use encoder SI) is enough to send at rates R1 = H(X∣Y ), and
R1+R2 = H(X), i.e. at the same rate as if the encoder knew
whether the SI is available or not at the decoder. This positive
result motivated the use of practical schemes implementing the
random binning strategy in interactive compression schemes
applied to either omnidirectional images in [2] or data living
on graphs in [4]. However, in the latter applications, a zero
error code has been used in [5], since, as in many lossy video
compression schemes, zero-error source coding is a fundamen-
tal building block. More precisely, the no-error property can
be achieved by using the knowledge of the SI at the encoder.

If practical zero-error codes exist for the problem in Fig. 1,
there is no known single-letter asymptotic characterization in
general for the zero-error problem in Fig. 1.

A set of relevant work concerns Slepian-Wolf coding [6]
i.e. when the SI is not available at the encoder. However,
the result is quite pessimistic as it is shown in [7] that, in
general, the zero-error variant of the source coding problem
with SI at decoder is only possible if R1 ≥ H(X). However,
as for the zero-error channel coding problem, in certain cases,
when certain symbol pairs have zero probability, then zero-
error Slepian Wolf coding is possible below the entropy [8],
[9].
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Fig. 1: Source coding when side-information may be present

In this paper we investigate a coding algorithm that is based
on a typicality bipartite graph, which links the sequences
of source and side information that are exactly typical. This
object was under study in [10], for strongly typical sequences
with a tolerance parameter. We characterize the graph coloring
in terms of the Hamming distance between the sequences
of binary symbols of source and side information. Then we
introduce the type grouping code that groups the types of the
sequences, and forms a coloring for all the typicality graphs
in this group. The group and the color are transmitted to
both decoders, and additional information is conveyed to the
second decoder that does not observe the side information.
We provide an example for which the rate pair of the type
grouping code is below the time-sharing segment between the
direct transmission to each decoder, and the conditional coding
with respect to the side-information. As an extension, we show
that the optimal codes for binary source alphabet can be used
to construct optimal codes for arbitrary source alphabets.



II. PRESENTATION OF THE MODEL

We denote by x∶T = (x1, ..., xT ) the slicing of a sequence
(xt)t∈N. Integer intervals are denoted by double brackets:
∀n, n′ ∈ Z such that n ≤ n′, Jn, n′K ≐ {n, n+1, .., n

′−1, n
′}.

Let S be a finite set, we denote by #S its cardinality. Let
{0, 1}∗ be the set of binary words. For all w ∈ {0, 1}∗,
the length of w is denoted by ∣w∣. The random variables
will be denoted by capital letters, and their set of possible
values with the corresponding calligraphic letters. For example
X ∶ Ω → X , where Ω denotes the set of aleas. The set
of probability distributions over a finite set X is denoted by
∆(X ) (∈ R#X ). The distribution of a random variable X
is denoted by a vector pX ∈ ∆(X ), as its set of possible
values will be finite. This will give us geometric interpretations
of probabilistic phenomena. The conditional distribution of
a random variable Y knowing X is denoted by a matrix
p
X∣Y

∈ R#X×Y . This allows for extracting the marginal
distributions with a dot product, for example. The same applies
for the joint distribution pX,Y .

We consider the setting of Fig. 1 described by:
⬩ An information source over a finite set X × Y with

publicly observed distribution p
X,Y

∈ ∆(X × Y), and
a pair of random variables (X,Y ) ∼ pX,Y .

⬩ An encoder that observes the realizations of (X,Y ).
⬩ Two decoders, where only the decoder 1 observes the

realizations of the side-information Y .
⬩ The encoder transmits over a common channel to both

decoders, and also over a secondary channel to the
decoder 2 only.

⬩ For T ∈ N∗ = N \ {0} iterated source uses, we consider
a sequence (X∶T , Y∶T ) of independent copies of (X,Y ).
The codewords sent by the encoder are concatenated, so
the decoder has to choose the right decomposition into
codewords before decoding.

Definition II.1 (T -Source code, rate) A T -source code is a
pair of mappings f ∶ X T ×YT → {0, 1}∗ and g ∶ X T ×YT →
{0, 1}∗. We define their rates:

R1 ≐
1

T
EX,Y [∣f(X∶T , Y∶T )∣], (1)

R2 ≐
1

T
EX,Y [∣g(X∶T , Y∶T )∣].

The rate R1 (resp. R2) corresponds to the quantity of infor-
mation sent over the common (resp. secondary) channel.

Definition II.2 (Zero-error) In this setting, a T -source code
is zero-error if both decoders can retrieve X with zero-error.
That is, there exists two functions X̂1 ∶ {0, 1}∗ × YT → X T

and X̂2 ∶ ({0, 1}∗)2 → X T such that

X̂
1
∶T (f(X∶T , Y∶T ), Y∶T ) = X∶T , (2)

X̂
2
∶T (f(X∶T , Y∶T ), g(X∶T , Y∶T )) = X∶T ,

with probability 1.

Theorem II.3 In this setting, for all T ∈ N and for all zero-
error T -source code (f, g) we have:

R1 ≥ H(X∣Y ), R1 +R2 ≥ H(X).

Proof. In this setting, each decoder must retrieve X without
loss. Using Shannon lossless source coding result and Slepian-
Wolf theorem [6, Theorem 2] on each decoder, we have R1 ≥

H(X∣Y ) and R1 +R2 ≥ H(X).

Definition II.4 (Asymptotically achievable rates) Let
(r1, r2) ∈ R2, the pair (r1, r2) is asymptotically achievable
if for all ε > 0 there exists an integer T and a zero-error
T -source code (f, g) such that

R1 ≤ r1 + ε, R2 ≤ r2 + ε.

Theorem II.5 The segment with extremities (r1, r2) =

(H(X), 0) and (H(X∣Y ),H(Y )) is asymptotically achiev-
able.

Proof. On one hand, the pair of rates (H(X), 0) is asymptot-
ically achievable by using a Huffman code to transmit X on
the common channel. On the other hand, the pair of rates
(H(X∣Y ),H(Y )) is asymptotically achievable by using a
conditional Huffman code on the common channel, and by
transmitting Y on the secondary channel. With time-sharing,
we have that each point of the segment with extremities
(H(X), 0) and (H(X∣Y ),H(Y )) is asymptotically achiev-
able.

We illustrated a specific example in Fig. 4, with the feasible
segment from Theorem II.5 and the non-achievable rates from
II.3.

III. TYPICALITY GRAPH AND PROPERTIES

We consider the case where X = Y = {0, 1}.

Definition III.1 (Type) For all pair of sequences
(x∶T , y∶T ) ∈ X T × YT , the joint type is defined by

τ(x∶T , y∶T ) ≐ ( 1

T
#{t ≤ T ∣(xt, yt) = (x, y)})

(x,y)∈X×Y
.

We denote the marginal types by τ(x∶T ) and τ(y∶T ), respec-
tively. The T -discretized simplex ∆T (X×Y) is the set of types
from ∆(X ×Y) that are achievable using sequences of length
T , i.e.

∆T (X × Y) ≐ {τ∗ ∈ ∆(X × Y) ∣∀(x, y), T τ∗x,y ∈ N} . (3)

In this section, we seek for zero-error decoding functions.
Showing the existence of such functions rely on the notion of
deterministic degradation defined below.

Definition III.2 (Deterministic degradation ≼) The
random variable A is a deterministic degradation of
the random variable B if there exists a deterministic function
h ∶ B → A such that h(B) = A almost surely, which is
denoted by A ≼ B. Moreover, A ≼ B conditionally given an
event e, if h(B) = A whenever e is realized.



Proposition III.3 Let C be a random variable such that A ≼

B conditionally given C = c for all c ∈ C, then A ≼ (B,C).

Proof. For all c ∈ C, let hc ∶ B → A be the function such that
hc(B) = A whenever C = c. Then the mapping h ∶ (b, c) ↦
hc(b) is deterministic and satisfies h(B,C) = A almost surely.
Thus, A ≼ (B,C).

We now introduce the typicality graph. Unlike in [10], this
graph is defined for a given type and not a set of types. This
will allow us to characterize explicitly the distance properties
between the sequences having the same type in Prop. III.8.

Definition III.4 (Typicality graph) Let τ∗ ∈ ∆T (X × Y) =
∆T ({0, 1}2), we denote by Gτ∗ = ((VX ,VY), E) the typical-
ity bipartite graph for the type τ∗. The sets VX and VY are
the sets of sequences that are typical w.r.t. the corresponding
marginal distribution of τ∗. There is an edge between pairs
of sequences that are jointly typical w.r.t. τ∗. More formally:

VX = {x∶T ∈ X T ∣ τ(x∶T ) = (τ∗0,0 + τ∗0,1, τ∗1,0 + τ∗1,1)}, (4)

VY = {y∶T ∈ X T ∣ τ(y∶T ) = (τ∗0,0 + τ∗1,0, τ∗0,1 + τ∗1,1)},
∀(x∶T , y∶T ) ∈ VX × VY , (x∶T , y∶T ) ∈ E if τ(x∶T , y∶T ) = τ∗.

Remark III.5 Let τ∗ ∈ ∆T (X ×Y) = ∆T ({0, 1}2), we have
that all the sequences from VX in Gτ∗ are equiprobable.

For all i ∈ N∗, we have ∆T ({0, 1}2) ⊂ ∆iT ({0, 1}2).

Definition III.6 (Neighborhood) Let τ∗ ∈ ∆T (X × Y) =

∆T ({0, 1}2), and let x∶T ∈ VX in Gτ∗ . The neighborhood of
x∶T in Gτ∗ is defined by

N (x∶T ) ≐ {y∶T ∈ VY ∣ (x∶T , y∶T ) ∈ E}. (5)

Definition III.7 (⊕, Hamming distance) Let x∶T , x
′
∶T ∈

{0, 1}T be two sequences, we define their addition ⊕ by:

x∶T ⊕ x
′
∶T = (xt + x′t mod 2)t≤T (6)

The Hamming distance between two sequences is defined
by d(x∶T , x′∶T ) = ∑t≤T 1xt≠x

′
t
.

Lemma 1 If τ(x∶T ) = τ(x′∶T ) then d(x∶T , x′∶T ) is even.

The proof is direct. By using the intrinsic properties of the
typicality graph we characterize the intersections of the sets
of neighbors in terms of the Hamming distance.

Proposition III.8 (Distance and shared neighborhoods)
Let τ∗ ∈ ∆T (X×Y) = ∆T ({0, 1}2), and let x∶T ≠ x

′
∶T ∈ VX

in Gτ∗ . Then N (x∶T ) ∩ N (x′∶T ) ≠ ∅ in Gτ∗ if and only if
d(x∶T , x′∶T ) ≤ 2T ∑y∈Y min(τ∗0,y, τ∗1,y).

The proof of Prop. III.8 is provided in [11].
In order to perform zero-error coding, we color the vertices

of typicality graphs such that two vertices from VX can share
the same color if they can not be confused while observing a
sequence from VY ; i.e. if their neighborhoods are disjoint.

Definition III.9 (X-coloring) Let τ∗ ∈ ∆T ({0, 1}2), and
Gτ∗ the associated typicality graph, an X-coloring of Gτ∗
is an application k from VX to a set of colors C that satisfies:
for all x∶T ≠ x

′
∶T ∈ VX , if k(x∶T ) = k(x′∶T ) then N (x∶T ) and

N (x′∶T ) are disjoint in Gτ∗ .

Given τ
∗
∈ ∆T ({0, 1}2), there always exists an X-coloring

k in Gτ∗ : k(x∶T ) = x∶T for all x∶T ∈ VX .

Corollary III.10 (Minimal distance for shared colors) We
have that an application k ∶ VX → C is an X-coloring of Gτ∗
if and only if for all x∶T ≠ x

′
∶T ∈ VX with k(x∶T ) = k(x′∶T ),

we have d(x∶T , x′∶T ) > 2T ∑y∈Y min(τ∗0,y, τ∗1,y).

The proof is a direct consequence of Prop. III.8.

Proposition III.11 Let τ
∗

∈ ∆T ({0, 1}2), and Gτ∗ the
associated typicality graph, we have

#VX = ( T
T (τ∗0,0 + τ∗0,1) ), #VY = ( T

T (τ∗0,0 + τ∗1,0) ),

∀x∶T ∈ VX ,#N (x∶T ) = ( T (τ∗0,0 + τ∗0,1)
Tτ

∗
0,0

)( T (τ∗1,0 + τ∗1,1)
Tτ

∗
1,1

),

∀y∶T ∈ VY ,#N (y∶T ) = ( T (τ∗0,0 + τ∗1,0)
Tτ

∗
0,0

)( T (τ∗0,1 + τ∗1,1)
Tτ

∗
1,1

),

#E = ( T
Tτ

∗
0,0, T τ

∗
0,1, T τ

∗
1,0, T τ

∗
1,1

).

Proof. The number of all the possible arrangements of T (τ∗0,0+
τ
∗
0,1) "0" symbols in T slots is #VX = ( T

T (τ∗0,0 + τ∗0,1) ). For

all x∶T ∈ VX , the sequences in #N (x∶T ) consists of all the
possible arrangements of Tτ∗0,0 "0" symbols in the T (τ∗0,0 +
τ
∗
0,1) slots where x∶T presents a "0" symbol, times all the

possible arrangements of Tτ∗1,1 "1" symbols in the T (τ∗1,0 +
τ
∗
1,1) slots where x∶T presents a "1" symbol. Similarly, we

determine the value of #VY and #N (y∶T ) for all ∀y∶T ∈ VY .
It follows that Gτ∗ is biregular, i.e. #N (x∶T ) does not

depend on x∶T and #N (y∶T ) does not depend on y∶T . Thus
for all x∶T ∈ VX , we have #E = #VX#N (x∶T ).

Proposition III.12 Let τ∗ ∈ ∆T ({0, 1}2). For all n ∈ N∗

let Gn = ((VnX ,VnY), En) which is the graph Gτ∗ when τ
∗

is seen as an element of ∆nT ({0, 1}2). We have that, in Gn,
#N (x∶nT ) does not depend on x∶nT and #N (y∶nT ) does not
depend on y∶nT . Let Nn

≐ #N (x∶T ) for any x∶T ∈ VnX and
N
′n
≐ #N (y∶T ) for any y∶T ∈ VnY , then

1

nT
log #VnX →

n→∞
H(X), 1

nT
log #VnY →

n→∞
H(Y ), (7)

1

nT
logN

n
→
n→∞

H(Y ∣X), 1

nT
logN

′n
→
n→∞

H(X∣Y ),
1

nT
log #En →

n→∞
H(X,Y ),

where all the entropies are computed with (X,Y ) ∼ τ∗.

The proof follows from [12, Lemma 2.3, pp. 17]. In Fig. 2,
we built an example of typicality graph for T = 4 and for the



distribution τ
∗
= ( 2/4 0

1/4 1/4 ). The marginal distributions of

τ
∗ over X and Y are (2/4, 2/4) and (3/4, 1/4), respectively,

and #VX = 6, #VY = 4.

IV. ZERO-ERROR CODE CONSTRUCTION

The following proposition is a key ingredient of our code
construction. Indeed, it shows how to use the X-coloring to
achieve zero-error coding for decoder 1. More precisely, we
show that given the X-coloring, the side information Y∶T , the
color of X∶T , and the joint type are sufficient to retrieve X∶T .

Proposition IV.1 Let τ∗ ∈ ∆T ({0, 1}2), and k be an X-
coloring of Gτ∗ . Then conditionally given τ(X∶T , Y∶T ) = τ∗,
we have X∶T ≼ (Y∶T , k(X∶T )).

Proof. Let y∶T ∈ VY in Gτ∗ , and x∶T ≠ x
′
∶T ∈ N (y∶T ), then

we have N (x∶T )∩N (x′∶T ) is nonempty as it contains y∶T ; so
by Def. III.9, k(x∶T ) ≠ k(x′∶T ). This is true for all y∶T ∈ VY
in Gτ∗ , and x∶T ≠ x

′
∶T ∈ N (y∶T ); therefore, k(X∶T ) is a color

assigned to exactly one sequence in N (Y∶T ): this sequence is
X∶T .

The main idea behind the construction of the type grouping
code is to partition the set of types into groups, and build
X-colorings that are valid for all types in a group.

Definition IV.2 (Type grouping code) A type grouping code
is a pair (c, Z) : Z is the index of the group which contains the
type τ(X∶T , Y∶T ), i.e. Z ≼ τ(X∶T , Y∶T ); and c is a mapping
from X T ×∆T ({0, 1}2) to a set of colors C. The pair (c, Z)
must satisfy:
⬩ ∀τ∗ ∈ ∆T ({0, 1}2), c(⋅, τ∗) is an X-coloring of Gτ∗ ,
⬩ for all z ∈ Z , for all pair of types τ∗, τ ′ ∈ ∆T ({0, 1}2)

that have the same marginal distribution on X such that
P(τ(X∶T , Y∶T ) = τ

∗∣Z = z) and P(τ(X∶T , Y∶T ) =

τ
′∣Z = z) are both positive, c(⋅, τ∗) = c(⋅, τ ′).

A type grouping code consists in transmitting on the
common channel the pair (c(X∶T , τ(X∶T , Y∶T )), Z) with a
Huffman code, and transmitting on the secondary channel
X∶T knowing (c(X∶T , τ(X∶T , Y∶T )), Z) with a conditional
Huffman code.

0011
0101
0110
1001
1010
1100

0001
0010
0100
1000

Colors VX

VYR
G
B
B
G
R

Fig. 2: The graph Gτ∗ for T = 4 and τ
∗
= ( 2/4 0

1/4 1/4 ). A

possible X-coloring is depicted. Note that each sequence of
VY has a unique sequence of each color adjacent to it.

Theorem IV.3 Let (c, Z) be a type grouping code, then it is
zero-error and we have

R1 =
1

T
H(c(X∶T , τ(X∶T , Y∶T )), Z),

R2 =
1

T
H(X∶T ∣c(X∶T , τ(X∶T , Y∶T )), Z).

(8)

Proof. By construction, decoder 2 can retrieve X∶T with
probability 1. We now show that decoder 1 can also
retrieve X∶T . To do so, let τ

∗
∈ ∆T ({0, 1}2), then

c(⋅, τ∗) is an X-coloring of Gτ∗ , and by Prop. IV.1, we
have X∶T ≼ (Y∶T , c(X∶T , τ(X∶T , Y∶T ))) conditionally given
τ(X∶T , Y∶T ) = τ∗.

Let hτ∗ be a mapping such that X∶T =

hτ∗(Y∶T , c(X∶T , τ(X∶T , Y∶T ))) whenever τ(X∶T , Y∶T ) = τ
∗,

that is, X∶T = hτ∗(Y∶T , c(X∶T , τ
∗)). Let z ∈ Z be the unique

element such that P(τ(X∶T , Y∶T ) = τ
∗∣Z = z) is positive,

then we have X∶T = hτ∗(Y∶T , c(X∶T , τ
′)) for all τ ′ such that

P(τ(X∶T , Y∶T ) = τ ′∣Z = z) is positive.
Thus X∶T ≼ (Y∶T , c(X∶T , τ(X∶T , Y∶T ))) conditionally

given Z = z, by using the mapping hτ∗ . Using Prop. III.3, we
have X∶T ≼ (Y∶T , c(X∶T , τ(X∶T , Y∶T )), Z) and the decoder 1
can retrieve X∶T with probability 1.

The coding rates are obtained by using Huffman codes.

V. ILLUSTRATIVE EXAMPLE

Definition V.1 We consider T = 6 and we define τ =

( 2/6 1/6
1/6 2/6 ) ∈ ∆6(X × Y), and for all sequence x∶T ∈ VX

in Gτ , let k(x∶T ) = x2∶T ⊕ (x1, ..., x1).

Proposition V.2 The mapping k is an X-coloring of Gτ .

Proof. We have 2T ∑y∈Y min(τ0,y, τ1,y) = 4. From Corollary
III.10, two different x-sequences with the same color must be
at distance d(x∶T , x′∶T ) > 5. From Lemma 1, their distance
d(x∶T , x′∶T ) must be even. Therefore, only sequences at dis-
tance at least 6 pairwise can share the same color in any X-
coloring of Gτ . Note that 6 is the maximal Hamming distance
between any sequences from VX , as T = 6.

Let x∶T , x
′
∶T ∈ VX such that k(x∶T ) = k(x′∶T ), then we

have either x1 = x
′
1, in that case x2∶T ⊕ (x1, ..., x1) =

x
′
2∶T ⊕ (x′1, ..., x′1) ⇒ x∶T = x

′
∶T ; or x1 ≠ x

′
1, in that case

x2∶T ⊕ (x1, ..., x1) = x
′
2∶T ⊕ (x′1, ..., x′1) ⇒ x∶T ⊕ x

′
∶T =

(1, ..., 1). The sequences that share the same color are at
Hamming distance 6, thus k is an X-coloring of Gτ .

In Fig. 3, we illustrate the graph Gτ , with its X-coloring k.
We have that τ has the same marginal type on both X and Y :

(3/6, 3/6). Using Prop. III.11 there are ( 6
3
) = 20 sequences

in both VX and VY in Gτ .
For all x∶T ∈ VX , there exists a unique sequence x′∶T ∈ VX

such that d(x∶T , x′∶T ) = 6: x′∶T = x∶T ⊕ (1, ..., 1). Therefore
we have two sequences per color, which gives 10 colors as
there are 20 vertices in VX . Thus, when k(X∶T ) is given, an
additional bit (which is X1) is required to retrieve X∶T .



000111
001011
001101
001110
010011
010101
010110
011001
011010
011100
100011
100101
100110
101001
101010
101100
110001
110010
110100
111000

Colors
000111
001011
001101
001110
010011
010101
010110
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011010
011100
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110001
110010
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111000

00111
01011
01101
01110
10011
10101
10110
11001
11010
11100
11100
11010
11001
10110
10101
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01110
01101
01011
00111

VX VY

Fig. 3: For the sake of clarity, we represent only a subset
of edges of the graph Gτ that correspond to two vertices at
distance 6. The remaining edges can be drawn similarly by
symmetry. We describe the X-coloring k of the sequences
from VX on the left, the sequences VY are depicted on the
right.

Definition V.3 (Coding scheme) Let Z be the auxiliary ran-
dom variable defined by:

Z =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 if τ(X∶T , Y∶T ) = ( 2/6 1/6
1/6 2/6 )

1 if τ(X∶T , Y∶T ) = (∗ 0

0 ∗
)

0 otherwise

(9)

where ∗ represents any value. Let c ∶ X T×∆T (X×Y)→ X T

be the function defined by:

c(X∶T ,τ(X∶T , Y∶T ))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k(X∶T ) if τ(X∶T , Y∶T ) = ( 2/6 1/6
1/6 2/6 )

0, ..., 0 if τ(X∶T , Y∶T ) = (∗ 0

0 ∗
)

X∶T otherwise

(10)

where k is the coloring function defined in Def. V.1. We define
the following coding scheme:

⬩ On the common channel, c(X∶T , τ(X∶T , Y∶T )), Z are
jointly transmitted using a Huffman code.

⬩ On the secondary channel, X∶T is transmitted
using a conditional Huffman code knowing
c(X∶T , τ(X∶T , Y∶T )), Z.

Theorem V.4 (Achieved rates) The coding scheme (c, Z)
defined in Def. V.3 is a type grouping code that achieves the
rates:

R1 = 0.5786, R2 = 0.5345. (11)

The numerical values are obtained with the source distribution
p
X,Y

= ( 9/20 1/20
1/20 9/20 ) and T = 6.

The proof of Theorem V.4 is provided in [11].

Fig. 4: The performances of the type grouping code of Def.
V.3 are below the time-sharing feasible segment.

VI. EXTENSION

The following theorem states that for T = 1, it is possible to
design an optimal code adapted for arbitrary finite sets X and
Y , if we know optimal codes for X binary and Y arbitrary.
The adaptation for T > 1 is under study. In this section we
index X = {1, ...,#X }.

Lemma 2 ∑i<#X H(1X=i∣Y,X ≥ i)P(X ≥ i) = H(X∣Y )

The proof of Lemma 2 is provided in [11].

Theorem VI.1 Let (fi)i<#X , (gi)i<#X be two families of
zero-error variable-length 1-source codes adapted for the
probability distribution (p(1X=i,Y )∣X≥i)

1≤i<#X
. If we have for

all i < #X

EX,Y [∣fi(1X=i, Y )∣»»»»»»X ≥ i] = H(1X=i∣Y,X ≥ i)

EX,Y [∣gi(1X=i, Y )∣»»»»»»X ≥ i] = I(1X=i;Y ∣X ≥ i)
(12)

then the 1-source codes

f ∶ X × Y → {0, 1}∗

(x, y)↦ f1(0, y)f2(0, y)...fx−1(0, y)fx(1, y)
g ∶ X × Y → {0, 1}∗

(x, y)↦ g1(0, y)g2(0, y)...gx−1(0, y)gx(1, y)

(13)

have a rate of H(X∣Y ) and I(X;Y ), respectively.

The proof of Theorem VI.1 is provided in [11].
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