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Abstract—Zero-error source coding when side-information (SI)
may be present is a fundamental building block of interactive
real-world compression systems. In such a scenario, the side
information may represent an image that could have been
requested previously by the user. We aim at designing a two
layer zero-error coding scheme that adapts to the presence or not
of the side information at the decoder. The scenario we consider
involves two decoders and two noiseless channels, the first channel
to both decoder and the second channel of additional information
to decoder 2 only. The side information is available at the encoder
and decoder 1, but not at decoder 2. By using a random coding
argument we characterize the zero-error achievable rate region.
The code construction relies on coset partitioning obtained from
a linear code. The encoder sends the coset of the source sequence
on the first channel to all decoders, and sends the index of the
source sequence in its coset on the second channel to decoder 2.

I. INTRODUCTION

We consider the scenario described in Fig. 1 in which the
information source X is correlated to the side information
(SI) Y observed by the encoder and decoder 1 only. The
information is sent through a noiseless channel at rate R1 to
both decoders and an additional noiseless channel at rate R2 to
decoder 2, which does not observe the SI. All decoders must
recover the source X with zero-error, i.e. with a probability
of error equal to zero, which is a more restrictive assumption
than a vanishing probability of error.

This scenario arises in interactive compression, where the
user can randomly access part of the data directly in the com-
pressed domain. A source sequence X

n models the smallest
entity that can be requested, for instance a file of a database, a
frame of a video, or a block of an omnidirectional image [1].
Upon request of X

n, and if no request has been previously
made (case of decoder 2 in Fig. 1), the encoder sends the com-
plete representation of the data �f1�Xn

, Y
n�, f2�Xn

, Y
n��

at rate R1 � R2. If, instead, the block Y
n has already been

requested (case of decoder 1), the encoder sends part of the
complete compressed representation namely f1�Xn

, Y
n� to

complete Y
n. Moreover, we consider the zero-error version

of this problem, as zero-error source coding is a fundamental
building block of practical video coding schemes. We therefore
seek for the set of rates �R1, R2�, which can be achieved in
this scenario.

A way to achieve zero-error coding is to use conditional
coding, and send the source X to decoder 1 at rate R1 �

H�X¶Y �, since both encoder and decoder 1 observe the SI
Y . Then, to recover the source X , decoder 2 needs to obtain
the SI Y , which requires a rate of R2 � H�Y �. To reduce
R2, one can construct a scheme based on Slepian and Wolf
(SW) random binning argument [2] for lossless source coding
with side information at the decoder only. First, the encoder
sends to both decoders the bin index, to which the X sequence
belongs at rate R1 � H�X¶Y �, which corresponds to the data
sent by the SW encoder. Then, a complement is sent to decoder
2, which is the index of the X sequence in the bin. One can
deduce from the random binning argument, that this requires
a rate R2 � H�X��H�X¶Y � � I�X;Y �, see [3, Sec. 10.3].

These rates however hold for a vanishing error probability
only. Indeed, for some probability distributions, the zero-error
SW scheme requires to send at rate H�X� to the decoder
with side information, see [4]–[6]. However, the SW scheme
does not use the side information knowledge at the encoder.
Therefore, we study the role of the side information at the
encoder with a zero-error constraint when side information
may be present at the decoder.
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Fig. 1: Source coding when side-information may be present.

In this paper, we characterize the set of rate pairs that
are achievable with zero-error source codes, as depicted in
Fig. 1. More precisely, we show that the pair of rates�R1, R2� � �H�X¶Y �, I�X;Y �� is achievable and moreover,
it is the corner-point of the set of achievable pair of rates. Our
achievability result relies on a random coding argument. We
use Csiszar and Körner’s method of types [7, Chapter 2] in
order to calibrate a linear code which is used to partition the
set of source sequences. The encoder sends the coset of the
source sequence to all decoders and the index of the source



sequence in its coset to decoder 2. We show that the zero-error
property is satisfied and the corresponding rates converge to
the pair of target rates �H�X¶Y �, I�X;Y ��.

A. Notations

Random variables and their realizations are represented
by uppercase letters (e.g., X) and lowercase letters (e.g.,
x), respectively; and their set of possible values with the
corresponding calligraphic letters (e.g., X ). We denote by ¶ � ¶
the cardinality of a set. We denote a sequence of symbols by
x
n
� �x1, ..., xn�. The set of probability distributions over

a finite set X is denoted by P�X �. The distribution of a
random variable X is denoted by PX " P�X �. The conditional
distribution of a random variable X knowing Y is denoted by
PX¶Y , and the joint distribution is denoted by PX,Y . We denote
by r0, 1x� the set of binary words. Throughout the paper the
logarithms are in base two.

II. PROBLEM STATEMENT AND MAIN RESULT

The setting of Fig. 1 is described by:
� Two finite sets X , Y and a pair of random variables�X,Y � " X � Y drawn with the distribution PX,Y .
� An encoder that observes the realizations of �X,Y �.
� Two decoders, where only decoder 1 observes the real-

izations of the side-information Y .
� The encoder transmits over a first channel to both de-

coders, and a second channel to decoder 2 only.
� We denote by n " N� � N ¯ r0x the block size of the

coding scheme. For n iterated source uses, we denote
by �Xn

, Y
n� the sequences of independent copies of�X,Y �.

Definition II.1 Given n " N� � N ¯ r0x, �R�n�
1 , R

�n�
2 	 "

�0,���2, a �n,R�n�
1 , R

�n�
2 	-zero-error source code consists

of encoding functions �f1, f2� that assigns variable-length
binary sequences and decoding functions �g1, g2� defined by:

f1 � X
n
� Yn

� r0, 1x�, f2 � X
n
� Yn

� r0, 1x�, (1)

g1 � r0, 1x� � Yn
� Xn

, g2 � �r0, 1x��2 � Xn
, (2)

that satisfy

R
�n�
1 �

1
nE�l�f1�Xn

, Y
n���, R

�n�
2 �

1
nE�l�f2�Xn

, Y
n���,

where l��� denotes the length of a binary word, and that satisfy
the zero-error property, i.e. X

n
� g1�f1�Xn

, Y
n�, Y n� �

g2�f1�Xn
, Y

n�, f2�Xn
, Y

n�� with probability 1.

Definition II.2 A rate pair �R1, R2� " �0,���2 is achiev-
able if there exists a sequence of �n,R�n�

1 , R
�n�
2 �-zero-error

source codes such that

lim
n

R
�n�
1 � R1, lim

n
R

�n�
2 � R2. (3)

We denote by R the zero-error achievable rate region.

Theorem II.3

R � u�R1, R2�, R1 ' H�X¶Y �, R1 �R2 ' H�X�{. (4)

R

H�X¶Y � H�X�

I�X;Y �

H�X�

0
0

R1

R2 complement of R
R1 �R2 � H�X�

R1 � H�X¶Y �

Fig. 2: Zero-error achievable rate region R.

Proof. [Converse of Theorem II.3] In this setting, each decoder
must retrieve X with zero-error. Using Shannon lossless source
coding result [8, Theorem 5.3.1] and Slepian-Wolf Theorem
[2, Theorem 2] on each decoder, we have R1 ' H�X¶Y �
and R1 � R2 ' H�X�, as the zero-error source codes are a
subclass of lossless codes considered for these converses.

III. ACHIEVABILITY PROOF OF THEOREM II.3

In order to complete the proof of Th. II.3, we show that

�H�X¶Y �, I�X;Y �� " R. (5)

In order to complete the achievability result we use a time
sharing with the point �H�X�, 0�, which is known to be
achievable by compressing X using a Huffman code and
sending the resulting binary sequence via f1.

A. Preliminaries

Definition III.1 (Type) For all pair of sequences �xn
, y

n� "
Xn

� Yn, the joint type is the distribution from P�X � Y�
denoted Txn,yn that satisfies for all �x¬, y¬� " X � Y

Txn,yn�x¬, y¬� � 1
n
»»»»»»ui & n · �xi, yi� � �x¬, y¬�{»»»»»». (6)

We denote the marginal types by Txn and Tyn , respectively.
The conditional type of xn knowing y

n is denoted Txn¶yn and
is defined for all �x¬, y¬� " X � Y by

Txn¶yn�x¬¶y¬� � Txn,yn�x¬, y¬�
Tyn�y¬� �

Txn,yn�x¬, y¬�
<x¬¬ Txn,yn�x¬¬, y¬� . (7)

We denote by TXn,Y n the random variable of the joint type
of the random sequences �Xn

, Y
n�. We denote the random

variables of their conditional and marginal types by TXn¶Y n ,
TXn and TY n , respectively.
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Fig. 3: The 2-discretized probability simplex P2�X � Y� for
X � Y � r0, 1x.

Definition III.2 (Entropy of a type) For all �xn
, y

n� "

Xn
� Yn, we define the entropy of the type Txn,yn by:

HTxn,yn �X,Y � � � =
�x¬,y¬�

Txn,yn�x¬, y¬� log Txn,yn�x¬, y¬�,
HTxn,yn �X¶Y � � � =

�x¬,y¬�
Txn,yn�x¬, y¬� log Txn¶yn�x¬¶y¬�.

For random sequences �Xn
, Y

n�, we denote by
HTXn,Y n �X,Y � (resp. HTXn,Y n �X¶Y �), the random
entropy computed with respect to the random type TXn,Y n .

Definition III.3 (n-discretized simplex) The n-discretized
probability simplex Pn�X � Y� is the set of types that are
achievable using sequences of length n,

Pn�X � Y� � uπ " P�X � Y� »»»»»»¾�x¬, y¬�, nπ�x¬, y¬� " N{.
Definition III.4 (Type class, V -shell) For all type π "

Pn�X � Y�, we denote the type class by Tπ

Tπ � u�xn
, y

n� " Xn
� Yn »»»»»» Txn,yn � π{. (8)

Given a conditional type V " P�X �¶Y¶, the V -shell of a
sequence y

n is the set

TV �yn� � uxn
" X

»»»»»» Txn¶yn � V {. (9)

Definition III.5 (Generator/parity matrix, syndrome, coset)
By extending PX,Y " P�X � Y� with zeros, we assume
without loss of generality that ¶X ¶ is a prime number, thus
giving X � Z©¶X ¶Z a field structure. For all n, k " N�, we
denote by Mn,k�X � the set of n � k matrices over the finite
field X .

Let k " N�, a generator matrix is a matrix G "Mn,k�X �.
An associated parity matrix is a matrix H "Mn�k,n�X � such
that Im G � Ker H, where Im and Ker denote the image and
the kernel, respectively.

The syndrome of a sequence xn is Hx
n. The coset associated

to the syndrome Hx
n is the set

Im G � x
n
� rx̃n

" Xn ¶ Hx̃
n
� Hx

nx. (10)

B. Coding scheme

For all n " N�, we show the existence of a sequence
of �n,R�n�

1 , R
�n�
2 	-zero-error source codes that achieves the

corner-point �H�X¶Y �, I�X;Y �� of the zero-error rate region
R. Our proof is based on a linear code adjusted depending on
TXn,Y n , and coset partitioning of the Hamming space.

We assume w.l.o.g. that PX,Y j PXPY . We fix the block-
length n and a constant parameter δ " �0; log ¶X ¶�H�X¶Y ��
that will represent a rate penalty.
� Random code generation: For each pair of sequences�xn

, y
n�, we define the parameter

k � /n � n
HTxn,yn �X¶Y � � δ

log ¶X ¶ 5� . (11)

where *�0 denotes the ceiling function and ���� denotes
max��, 0�. We denote by K the random variable induced
by k, for the random sequences �Xn

, Y
n�. A generator

matrix G " Mn,n�X � is randomly drawn, with i.i.d.
entries drawn according to the uniform distribution on X .
If K j 0, let GK be the matrix obtained by extracting
the K first lines of G, and HK a parity matrix associated
to GK .
The random code C consists of the set of random matrices
C � r�Gk,Hk�, 1 & k & nx. Before the transmission
starts, a code realization is chosen and revealed to the
encoder and both decoders.

� Encoding function f1: Let E " r0, 1x be such that E � 0
if K j 0 and �Im GK �X

n� = TTXn¶Y n �Y n� � rXnx;
E � 1 otherwise. Then we define

f1�Xn
, Y

n� � wb�TXn,Y n , E,HKX
n� if E � 0,

b�TXn,Y n , E,X
n� if E � 1,

(12)

where b��� denotes the binary expansion.
� Encoding function f2: If E � 0, the index of X

n in its
coset Im GK �X

n is compressed using a Huffman code
with the distribution PXn . Let B�GK , X

n
, Y

n� be the
resulting binary sequence, then we set

f2�Xn
, Y

n� � B�GK , X
n
, Y

n�. (13)

Otherwise, f2�Xn
, Y

n� � 0.
� Decoding function g1: It observes f1�Xn

, Y
n� and ex-

tracts E and TXn,Y n . If E � 1,

g1�f1�Xn
, Y

n�, Y n� � X
n
. (14)

Otherwise E � 0, it extracts HKX
n and determines the

coset Im GK�X
n. Moreover, by using TXn,Y n and Y

n it
determines the TXn¶Y n -shell TTXn¶Y n �Y n�, and therefore
returns an element

g1�f1�Xn
, Y

n�, Y n� " �Im GK �X
n� = TTXn¶Y n �Y n�.



� Decoding function g2: It observes f1�Xn
, Y

n� and ex-
tracts E and TXn,Y n . If E � 0, it extracts HKX

n

and determines the coset Im GK � X
n, and it returns

g2�f1�Xn
, Y

n�, f2�Xn
, Y

n��, the element of Im GK �

X
n with index f2�Xn

, Y
n�. If E � 1, it returns

g2�f1�Xn
, Y

n�, f2�Xn
, Y

n�� � X
n
.

Remark III.6 The parameter K is selected so that when K %

0, the number of parity bits of the linear code asymptotically
matches the conditional entropy:

�n �K� log ¶X ¶
n � HTXn,Y n �X¶Y � � δ �O � 1n
 . (15)

C. Zero-error property

We now prove that the code built in Section III-B satisfies
the zero-error property. It is clear that both decoders retrieve
X

n with zero-error when E � 1.
If E � 0, then by definition of E we have �Im GK �

X
n� = TTXn¶Y n �Y n� � rXnx, hence g1�f1�Xn

, Y
n�, Y n� �

X
n with probability 1. On the other hand, f2�Xn

, Y
n� �

B�GK , X
n
, Y

n�, so the element of Im GK �X
n with index

f2�Xn
, Y

n� is X
n. Thus, g2�f1�Xn

, Y
n�, f2�Xn

, Y
n�� �

X
n with probability 1.

D. Rate analysis

Now we prove that for all parameter δ % 0, the sequence of
rates of the codes built in Section III-B satisfy

R
�n�
1 �

n��
H�X¶Y � � δ, R

�n�
2 �

n��
I�X;Y �. (16)

Lemma 1 (Large deviations) Let X
¬ be a random variable

such that PX ¬ is the uniform distribution over X . Then for
each pair of sequences �xn

, y
n�, we have:

Pr �TX ¬n,yn � Txn,yn� � 2
nHTxn,yn �X¶Y ��n log ¶X ¶�o�n� (17)

Proof. Since PX ¬ is uniform:

Pr �TX ¬n,yn � Txn,yn� � ¶X ¶�n »»»»»TTxn¶yn �yn�»»»»» (18)

� 2
�n log ¶X ¶

2
nHTxn,yn �X¶Y ��o�n�

,

as [7, Lemma 2.5] gives the asymptotic size of the Txn¶yn -
shell TTxn¶yn �yn�.

Probability of decoding ambiguity. We need to es-
timate Pr�E � 1�. We have E � 1 iff K � 0
or there exists �α1, ..., αK� " XK ¯ r0, ..., 0x such that
T�Xn

�<i&K αiG�i�
K 	,Y n � TXn,Y n , where G�i�

K denotes the i-th
column of GK . Thus

Pr�E � 1� & Pr�K � 0� (19)

� Pr� �
α"XK

αj0

�T�Xn
�<i&K αiG�i�

K 	,Y n � TXn,Y n� »»»»»»»»»»K j 0�.

We provide an upper bound on the second term in (19). For
all �xn

, y
n� such that k j 0, we have:

Pr� �
α"Xk

αj0

�T�xn
�<i&k αiG�i�

k 	,yn � Txn,yn� �

& =
α"Xk

αj0

Pr�T�xn
�<i&k αiG�i�

k 	,yn � Txn,yn� (20)

&¶X ¶k2nHTxn,yn �X¶Y ��n log ¶X ¶�o�n� (21)

&2
n log ¶X ¶�nHTxn,yn �X¶Y ��δn�o�n�

� 2
nHTxn,yn �X¶Y ��n log ¶X ¶�o�n�

& 2
�δn�o�n�

, (22)

where (21) comes from Lemma 1 and (22) comes from (11).
Therefore,

Pr� �
α"XK

αj0

�T�Xn
�<i&K αiG�i�

K 	,Y n � TXn,Y n� »»»»»»»»»»K j 0�
� =

xn,yn

Pr��Xn
, Y

n� � �xn
, y

n�»»»»»»K j 0	
� Pr� �

α"XK

αj0

�T�Xn
�<i&K αiG�i�

K 	,Y n � TXn,Y n�
»»»»»»»»»»K j 0, �Xn

, Y
n� � �xn

, y
n�� (23)

& =
xn,yn

Pr��Xn
, Y

n� � �xn
, y

n�»»»»»»K j 0	2�δn�o�n� (24)

&2
�δn�o�n�

, (25)

where (24) comes from (22) and the fact that G is independent
of �X,Y �.

We now provide an upper bound on the first term in (19).

S � vπ " P�X � Y�, 1 �
Hπ�X¶Y � � δ

log ¶X ¶ & 0|. (26)

Then we have:

Pr�K � 0� (27)

� Pr�/n � n
HTXn,Y n �X¶Y � � δ

log ¶X ¶ 5� � 0� (28)

� Pr�n � n
HTXn,Y n �X¶Y � � δ

log ¶X ¶ & 0� (29)

� Pr�TXn,Y n " S� (30)

� =
π"S=Pn�X�Y�

Pr�TXn,Y n � π� (31)

& ¶S = Pn�X � Y�¶ sup
π"S=Pn�X�Y�

Pr�TXn,Y n � π� (32)

& ¶S = Pn�X � Y�¶ sup
π"S=Pn�X�Y�

2
�nD�π½PX,Y � (33)

& ¶S = Pn�X � Y�¶ sup
π"S

2
�nD�π½PX,Y � (34)



& 2
�n infπ"S D�π½PX,Y ��o�n�

, (35)

where (33) comes from [7, Lemma 2.6]. Since PX,Y � S by
definition of δ, we have infπ"S D�PX,Y ½π� % 0. Thus there
exists a positive constant β % 0 such that

Pr�K � 0� & 2
�βn�o�n�

. (36)

Thus by combining (19), (25), (36), we have:

Pr�E � 1� & 2
�δn�o�n�

� 2
�βn�o�n�

. (37)

Rate on the common channel. The encoding function f1
defined in (12) returns TXn,Y n and E. When E � 0, it sends
the syndrome HKX

n at rate n�K
n

log ¶X ¶, otherwise, it sends
X

n. Therefore,

nR
�n�
1 �1 � ¶X ¶¶Y¶ log2�n � 1� � Pr�E � 1�n log ¶X ¶

� Pr�E � 0� =
xn,yn

Pr��Xn
, Y

n� � �xn
, y

n�·E � 0�
� �n � k� log ¶X ¶ (38)

&1 � ¶X ¶¶Y¶ log2�n � 1� � Pr�E � 1�n log ¶X ¶
� �n � E�K�� log ¶X ¶ (39)

&1 � ¶X ¶¶Y¶ log2�n � 1� � Pr�E � 1�n log ¶X ¶
� nE�HTXn,Y n �X¶Y �� � nδ � 1, (40)

where (39) comes from n � k ' 0 for all �xn
, y

n�, and (40)
comes from (11).

By the law of large numbers [8, Theorem 11.2.1]
E�HTXn,Y n �X¶Y �� �

n��
H�X¶Y �, and by using (37), we

obtain

lim
n��

R
�n�
1 & H�X¶Y � � δ. (41)

Rate on the secondary channel. The encoding function
f2 is defined in (13). If E � 0, then K j 0 and the encoder
transmits the index of Xn in its coset. The Huffman algorithm
has an average output length R

�n�
2 that satisfies

R
�n�
2 &

1
n�1 �=

kj0

Pr�K � k¶E � 0�
�H�Xn¶HkX

n
,K � k, C, E � 0�
 (42)

�
1
n �

1
nH�Xn¶K, C, E � 0�

�
1
nH�HKX

n¶K, C, E � 0�, (43)

where (43) follows from the fact that HKX
n is a deterministic

function of Xn, given a random code C.
We now provide an upper bound to the last term

�
1
n
H�HKX

n¶K, C, E � 0� in (43). To do so, we introduce a
new encoding scheme that first encodes the sequences X

nand
Y

n with the encoding function f1, and then encode the
output by using an entropy coder. The rate of this code r
is upperbounded by H�f1�Xn

, Y
n�¶C� � 1. Moreover, since

decoder 1 retrieves X
n with zero error (see Sec. III-C),

and since the entropy coder is also lossless, the rate of this

code must necessarily be greater than the rate achieved by a
conditional entropy coder that compresses Xn, while knowing
the side information Y

n at both encoder and decoder 2, whose
rate is lower bounded by nH�X¶Y �. Therefore, we have

nH�X¶Y � & r $ H�f1�Xn
, Y

n�¶C� � 1 (44)
� 1 �H�TXn,Y n , E¶C�
� Pr�E � 0�H�HKX

n¶TXn,Y n , C, E � 0�
� Pr�E � 1�H�Xn¶TXn,Y n , C, E � 1� (45)

& H�HKX
n¶TXn,Y n , C, E � 0� � o�n� (46)

� H�HKX
n¶TXn,Y n ,K, C, E � 0� � o�n� (47)

& H�HKX
n¶K, C, E � 0� � o�n� (48)

where o�n� in (46) corresponds to the term 1 �

H�TXn,Y n , E¶C��Pr�E � 1�H�Xn¶TXn,Y n , C, E � 1�, and
(47) follows from the fact that K is a deterministic function
of TXn,Y n .

We now provide an upper bound on the second term of (43).

1
nH�Xn¶K, C, E � 0� & 1

nPr�E � 0��H�Xn¶K, C, E�
� Pr�E � 1�H�Xn¶K, C, E � 1�	
&

1
nH�Xn¶K, C, E� � o�1� (49)

& H�X� � o�1�. (50)

By combining (43), (48) and (50), we obtain

lim
n��

R
�n�
2 & I�X;Y �. (51)

Conclusion. The rates in (41) and (51) are evaluated on
average over the random code C with a parameter δ % 0
arbitrarily small. This shows that there exists a sequence of�n,R�n�

1 , R
�n�
2 	-zero-error source codes, such that

�R�n�
1 , R

�n�
2 	 �

n��
�H�X¶Y �, I�X;Y ��. (52)

REFERENCES

[1] N. M. Bidgoli, T. Maugey, and A. Roumy, “Fine granularity access
in interactive compression of 360-degree images based on rate-adaptive
channel codes,” IEEE Transactions on Multimedia, 2020.

[2] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. 19, no. 4, pp.
471–480, Jul. 1973.

[3] A. A. El Gamal and Y.-H. Kim, Network information theory. Cambridge
; New York: Cambridge University Press, 2011.

[4] A. El Gamal and A. Orlitsky, “Interactive data compression,” in 25th
Annual Symposium onFoundations of Computer Science, 1984. IEEE,
1984, pp. 100–108.

[5] P. Koulgi, E. Tuncel, S. Regunathan, and K. Rose, “On zero-error source
coding with decoder side information,” IEEE Transactions on Information
Theory, vol. 49, no. 1, pp. 99–111, Jan. 2003.

[6] E. Tuncel, J. Nayak, P. Koulgi, and K. Rose, “Zero-error Distributed
source coding,” in Distributed source coding: theory, algorithms, and
applications. Elsevier, 2009.

[7] I. Csiszár and J. Körner, Information theory: coding theorems for discrete
memoryless systems. Cambridge University Press, 2011.

[8] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.


