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In this paper, we mainly study error bounds for a single convex inequality and semi-infinite convex constraint systems, and give characterizations for stability of error bounds via directional derivatives. For a single convex inequality, it is proved that the stability of local error bounds under small perturbations is essentially equivalent to the non-zero minimun of the directional derivative at a reference point over the sphere, and the stability of global error bounds is proved to be equivalent to the strictly positive infimum of the absolute directional derivatives, at all points in the boundary of the solution set, over the sphere as well as some mild constraint qualification. When these results are applied to semi-infinite convex constraint systems, characterizations for the stability of local and global error bounds under small perturbations are also provided. In particular such stability of error bounds is proved to only require that all component functions in semi-infinite convex constraint systems have the same linear perturbation. Our work demonstrates that verifying the stability of error bounds for convex inequalities constraint systems is, to some degree, equivalent to solving the convex optimization (defined by directional derivatives) over the sphere.

Introduction

Our main goal in this paper is to study error bounds of a single convex inequality and semi-infinite convex constraint systems and to provide characterizations for stability of local and global error bounds under perturbations. Theory of error bounds can be traced back to the pioneering work by Hoffman [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] for systems of affine functions in which it has been proved that for a given matric A and a vector b, the distance from x to the polyhedral set {u : Au ≤ b} is bounded above by some scalar constant (depending on A only) times the norm of the residual error (Ax -b) + , where for any vector z, (z) + denotes the positive part of z. Hoffman 's result was extensively and intensively studied by Robinson [START_REF] Robinson | An application of error bounds for convex programming in a linear space[END_REF], Mangasarian [START_REF] Mangasarian | A condition number for differentiable convex inequalities[END_REF], Auslender and Crouzeix [START_REF] Auslender | Global regularity theorems[END_REF], Pang [START_REF] Pang | Error bounds in mathematical programming[END_REF], Lewis and Pang [START_REF] Lewis | Error bounds for convex inequality systems[END_REF], Klatte and Li [START_REF] Klatte | Asymptotic constraint qualifications and global error bounds for convex inequalities[END_REF], Jourani [START_REF] Jourani | Hoffman's error bound, local controllability, and sensitivity analysis[END_REF], and there have been important developments of various aspects of error bounds for convex and nonconvex functions in recent years. We refer the readers to bibliographies [START_REF] Azé | A survey on error bounds for lower semicontinuous functions[END_REF][START_REF] Azé | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF][START_REF] Bednarczuk | Error bounds for vector-valued functions: necessary and sufficient conditions[END_REF][START_REF] Corvellec | Nonlinear error bounds for lower semicontinuous functions on metric spaces[END_REF][START_REF] Fabian | Error bounds: necessary and sufficient conditions[END_REF][START_REF] Gfrerer | First order and second order characterizations of metric subregularity and calmness of constraint set mappings[END_REF][START_REF] Huang | On first-and second-order conditions for error bounds[END_REF][START_REF] Ioffe | Variational analysis of regular mappings[END_REF][START_REF] Kruger | Hölder error bounds and Hölder calmness with applications to convex semi-infinite optimization[END_REF][START_REF] Luke | Implicit error bounds for Picard iterations on Hilbert spaces[END_REF][START_REF] Ng | Error bounds for lower semicontinuous functions in normed spaces[END_REF][START_REF] Van Ngai | Error bounds for systems of lower semicontinuous functions in Asplund spaces[END_REF][START_REF] Wu | On error bounds for lower semicontinuous functions[END_REF][START_REF] Penot | Calculus without derivatives[END_REF] and references therein for the summary of the theory of error bounds and their various applications for more details.

Error bounds have been applied to the sensitivity analysis of linear programs (cf. [START_REF] Robinson | Bounds for error in the solution set of a perturbed linear program[END_REF][START_REF] Robinson | A characterization of stability in linear programming[END_REF]) and to the convergence analysis of descent methods for linearly constrained minimization (cf. [START_REF] Güler | Augmented Lagrangian algorithms for linear programming[END_REF][START_REF] Iusem | On the convergence properties of Hildreth's quadratic programming algorithm[END_REF][START_REF] Tseng | On the convergence of the exponential multiplier method for convex programming[END_REF][START_REF] Luo | On a global error bound for a class of monotone affine variational inequality problems[END_REF]). In addition, it is proven that error bounds play an important role in the feasibility problem of finding a point in the intersection of a finite collection of closed convex sets (cf. [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Beck | Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems[END_REF][START_REF] Bednarczuk | Error bounds for vector-valued functions: necessary and sufficient conditions[END_REF]) and have an application in the domain of image reconstruction (cf. [START_REF] Combettes | Hilbertian convex feasibility problem: convergence of projection methods[END_REF]). Also, error bounds are extensively discussed in connection with weak sharp minima of functions and metric regularity/subregularity as well as Aubin property/calmness of set-valued mappings (cf. [START_REF] Azé | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF][START_REF] Burke | Weak sharp minima revisited[END_REF][START_REF] Burke | Weak sharp minima revisited. II. Application to linear regularity and error bounds[END_REF][START_REF] Cánovas | Calmness modulus of linear semi-infinite programs[END_REF][START_REF] Gfrerer | First order and second order characterizations of metric subregularity and calmness of constraint set mappings[END_REF][START_REF] Ioffe | Metric regularity -a survey[END_REF][START_REF] Ioffe | Metric regularity-a survey Part 1[END_REF][START_REF] Robinson | An application of error bounds for convex programming in a linear space[END_REF][START_REF] Zheng | Metric subregularity and calmness for nonconvex generalized equations in Banach spaces[END_REF][START_REF] Zheng | Metric subregularity for proximal generalized equations in Hilbert spaces[END_REF] and references therein).

Since real-world problems typically have inaccurate data, it is of practical and theoretical interest to know the behavior of error bounds under data perturbations. For systems of linear inequalities, this question has been studied by Luo and Tseng [START_REF] Luo | Perturbation analysis of a condition number for linear systems[END_REF] and Azé and Corvellec [START_REF] Azé | On the sensitivity analysis of Hoffman constants for systems of linear inequalities[END_REF]. Subsequently Deng [START_REF] Deng | Perturbation analysis of a condition number for convex inequality systems and global error bounds for analytic systems[END_REF] studied systems of a finite number of convex inequalities. In 2005, Zheng and Ng [START_REF] Zheng | Perturbation analysis of error bounds for systems of conic linear inequalities in Banach spaces[END_REF] considered the stability of error bounds for systems of conic linear inequalities in a general Banach space. In 2010, Ngai, Kruger and Théra [START_REF] Van Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF] studied the stability of error bounds for semi-infinite convex constraint systems in a Euclidean space and established subdifferential characterizations for the stability under small perturbations. The infinite dimensional extensions were considered by Kruger, Ngai and Théra in [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF]. In 2012, by relaxing the convexity assumption, Zheng and Wei [START_REF] Zheng | Perturbation analysis of error bounds for quasi-subsmooth inequalities and semi-infinite[END_REF] discussed the stability of error bounds of quasi-subsmooth (not necessarily convex) inequalities in a general Banach space and provided Clarke subdifferential characterizations for the stability of error bounds. In 2018, Kruger, López and Théra [START_REF] Kruger | Perturbation of error bounds[END_REF] extended the development in [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF][START_REF] Van Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF] and characterized the stability of error bounds of convex inequalities in the Banach space setting. From the viewpoint of infinite dimensional Banach spaces, results on the stability of error bounds in [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF][START_REF] Kruger | Perturbation of error bounds[END_REF][START_REF] Van Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF][START_REF] Zheng | Perturbation analysis of error bounds for quasi-subsmooth inequalities and semi-infinite[END_REF] are dual conditions, and it is a pretty natural idea to study this issue in the primal way since information on the dual space may be missing; e.g. metric spaces. Inspired by this observation, we study characterizations for the stability of local and global error bounds of a single convex inequality and semi-infinite convex constraint systems via directional derivatives. For a single convex inequality, we prove that the stability of local error bounds under small perturbations holds if and only if the minimun of the directional derivative at a reference point over the sphere is non-zero, and the stability of global error bounds is proved to be equivalent to the strictly positive infimum of the absolute directional derivatives, at all points in the boundary of the solution set, over the sphere as well as some mild constraint qualification. When these results are applied to semi-infinite convex constraint systems, characterizations for the stability of local and global error bounds under small perturbations are also provided. Particularly such stability of error bounds is proved to only require that each component function in semi-infinite convex constraint systems have the same linear perturbation. Our work demonstrates that verifying the stability of error bounds for convex inequalities constraint systems is, to some degree, equivalent to be solving the convex minimization (defined by directional derivatives) over the sphere.

The paper is organized as follows. In Section 2, we give some definitions and preliminary results. Section 3 is devoted to the stability of local and global error bounds of a single convex inequality. Through the directional derivatives, we prove that the stability of local error bounds under small perturbations is equivalent to the non-zero minimun of the directional derivative at a reference point over the sphere (see Theorem 5), and the stability of global error bounds is equivalent to the strictly positive infimum of the absolute directional derivative over the boundary of the solution set times the sphere as well as some mild constraint qualification (see Theorem 10). The same idea is applied to the stability of error bounds when considering the semi-infinite convex constraint systems in Section 4. By using results obtained in Section 3, we obtain characterizations via directional derivatives for the stability of local and global error bounds (see Theorem 13 and Theorem 14). Conclusions of this paper are given in Section 5.

Preliminaries

In what follows we consider the Euclidean space R m equipped with the norm • := •, • . We denote by B m the closed unit ball of R m and following the standard notation by Γ 0 (R m ) the set of extended-real-valued lower semicontinuous convex functions f : R m → R ∪ {+∞} which are supposed to be proper, that is such that dom(f ) := {x ∈ R m : f (x) < +∞} is nonempty.

For a subset D of R m , we denote by d(x, D) the distance of x to D which is defined by

d(x, D) := inf{ x -y : y ∈ D}.
We denote by bdry(D) and int(D) the boundary and the interior of D, respectively.

Let f ∈ Γ 0 (R m ) and x ∈ dom(f ). For any h ∈ R m , we recall that the directional derivative f (x, h) of f at x along the direction h is defined as

f (x, h) := lim t→0 + f (x + th) -f (x) t . ( 1 
)
It is known from [START_REF] Rockafellar | Convex Analysis[END_REF] that the function

t → f (x + th) -f (x) t
is nonincreasing as t → 0 + and thus

f (x, h) = inf t>0 f (x + th) -f (x) t . ( 2 
)
We denote by ∂f (x) the subdifferential of f at x which is defined by

∂f (x) := {x * ∈ R m : x * , x -x ≤ f (x) -f (x) for all x ∈ R m }.
It is known from [START_REF] Rockafellar | Convex Analysis[END_REF] that

∂f (x) = {x * ∈ R m : x * , h ≤ f (x, h) for all h ∈ R m } (3) 
and

f (x, h) = max{ x * , h : x * ∈ ∂f (x)}. (4) 
We conclude this section with the following lemma which is used in our analysis.

Lemma 1. Let f ∈ Γ 0 (R m ) and x ∈ dom(f ) be such that min h =1 f (x, h) < 0. Then -min h =1 f (x, h) = d(0, ∂f (x)). (5) 
Proof. Note that min h =1 f (x, h) < 0 and thus 0 ∈ ∂f (x). Let r := d(0, ∂f (x)). By the separation theorem, there exists h 0 ∈ R m with h 0 = 1 such that sup

x * ∈∂f (x)
x * , h 0 + r = 0 and thus by (4), one has

min h =1 f (x, h) ≤ f (x, h 0 ) ≤ -r. (6) 
For any ε > 0, we can select u * ε ∈ (r + ε)B m ∩ ∂f (x). Then for any h ∈ R m with h = 1 and any t > 0, one has

f (x + th) -f (x) t ≥ u * ε , h ≥ -(r + ε)
and consequently min

h =1 f (x, h) ≥ -(r + ε).
By letting ε → 0 + , it follows from (6) that (5) holds. The proof is complete.

Stability for Error Bounds of A Single Convex Inequality

In this section, we mainly study local and global error bounds of a single convex inequality, and provide primal characterizations of stability for error bounds. We first recall the definition of error bounds for a single convex inequality.

For a given f ∈ Γ 0 (R m ), we consider the set of solutions of a single convex inequality:

S f := {x ∈ R m : f (x) ≤ 0}. ( 1 
)
Recall that the convex inequality (1) is said to have a global error bound if there exists a constant τ ∈ (0, +∞) such that

d(x, S f ) ≤ τ [f (x)] + ∀x ∈ R m , (2) 
where [f (x)] + := max{f (x), 0}. We denote by τ min (f ) the global error bound modulus of S f . For x ∈ bdry(S f ), the convex inequality (1) is said to have a local error bound if there exist constants τ, δ ∈ (0, +∞) such that

d(x, S f ) ≤ τ [f (x)] + ∀x ∈ B(x, δ). ( 3 
)
We denote by τ min (f, x) the local error bound modulus of S f at x. The following theorem gives characterizations of global and local error bounds. We refer the readers to [START_REF] Azé | On the sensitivity analysis of Hoffman constants for systems of linear inequalities[END_REF] for more details. This result is needed in the sequel.

Theorem 2. Let f ∈ Γ 0 (R m ). Then (i) S f has a global error bound if and only if η(f ) := inf{d(0, ∂f (x)) : x ∈ R m , f (x) > 0} > 0. More precisely, τ min (f ) = [η(f )] -1 . (ii) S f has a local error bound at x ∈ bdry(S f ) if and only if η(f, x) := lim inf x→x,f (x)>0 d(0, ∂f (x)) > 0. More precisely, τ min (f, x) = [η(f, x)] -1 . (iii)
The following equality holds:

τ min (f ) = sup x∈bdryS f τ min (f, x)
For a mapping φ : X → Y between Banach spaces X, Y , we denote by Lip(φ) the Lipschitz constant which is defined by

Lip(φ) := sup u,v∈X,u =v φ(u) -φ(v) u -v .

Stability for Local Error bounds

In this subsection, we mainly study local error bounds for a convex inequality and aim to provide primal equivalent criterion for the stability of local error bounds for convex inequality [START_REF] Auslender | Global regularity theorems[END_REF]. We first give a sufficient condition for the local error bound of convex inequality [START_REF] Auslender | Global regularity theorems[END_REF].

Proposition 3. Let f ∈ Γ 0 (R m ) and x ∈ S f such that min h =1 f (x, h) = 0.
Then convex inequality (1) has a local error bound at x and moreover

τ min (f, x) ≤ 1 min h =1 f (x, h) . ( 4 
)
Proof. Let β(f, x) := min h =1 f (x, h). Suppose that β(f, x) > 0.
Then for any x = x, by (2), one can verify that

f (x) -f (x) = f x + x -x x -x x -x -f (x) ≥ f x, x -x x -x x -x ≥ β(f, x) x -x ≥ β(f, x)d(x, S f ). This means that τ min (f, x) ≤ [β(f, x)] -1 . Suppose that β(f, x) < 0. Then Theorem 1 implies that d(0, ∂f (x)) = -β(f, x) and by virtue of Theorem 2, one has τ (f, x) ≤ 1 -β(f, x) .
Hence (4) holds. The proof is complete.

Remark 4. Theorem 3 shows that the solution set S f = {x} if min h =1 f (x, h) > 0. Note that the condition min h =1 f (x, h) = 0 is only a sufficient condition for the existence of a local error bound of (1). Indeed, let f (x) ≡ 0 for all x ∈ R. Then S f = R has a global error bound, while min h =1 f (x, h) = 0 for all x ∈ R.

The following theorem shows that the condition min h =1 f (x, h) = 0 can be used to give primal characterizations of stability for the local error bound of the convex inequality (1). To show clearly the primal spirit, we provide a self-contained proof of this theorem.

Theorem 5. Let f ∈ Γ 0 (R m ) and x ∈ R m be such that f (x) = 0. Then the following statements are equivalent:

(i) min h =1 f (x, h) = 0; (ii) There exist constants c, ε > 0 such that for all g ∈ Γ 0 (R m ) satisfying x ∈ S g and lim sup x→x |(f (x) -g(x)) -(f (x) -g(x))| x -x ≤ ε, ( 5 
)
one has τ min (g, x) ≤ c; (iii) There exist constants c, ε > 0 such that for all u * ∈ R m with u * ≤ 1, one has τ min (g u * ,ε , x) ≤ c, where g u * ,ε (x) := f (x) + ε u * , x -x for all x ∈ R m . Proof. Let β(f, x) := min h =1 f (x, h). (i) ⇒ (ii): Take any ε > 0 such that ε < |β(f, x)| and let c := (|β(f, x)| -ε) -1 . For any g ∈ Γ 0 (R m ) such that x ∈ S g and (5) holds. If β(f, x) > 0, then for any h ∈ R m , one has g (x, h) ≥ f (x, h) -ε,
and thus min

h =1 g (x, h) ≥ min h =1 f (x, h) -ε ≥ β(f, x) -ε.
This and Theorem 3 imply that τ min (g, x)

≤ [β(f, x) -ε] -1 = c. If β(f, x) < 0, then for any h ∈ R m , one has g (x, h) ≤ f (x, h) + ε,
and thus min

h =1 g (x, h) ≤ min h =1 f (x, h) + ε ≤ β(f, x) + ε.
By using Theorem 3 again, one yields that τ min (g, x) ≤ [-β(f, x) -ε] -1 = c. Hence (ii) holds. Note that the implication (ii) ⇒ (iii) is clear and it remains to prove (iii) ⇒ (i). Suppose on the contrary that there exists

h 0 ∈ R m with h 0 = 1 such that f (x, h 0 ) = 0. Take u * 0 ∈ R m with u * 0 = 1 such that u * 0 , h 0 = 1. Let ε > 0 and consider the function g ε (x) := f (x) + ε u * 0 , x -x for all x ∈ R m . From β(f, x) = 0,
one can verify that f (x) ≥ f (x) for any x = x. Note that f (x, h 0 ) = 0 and it follows that there exists a sequence {δ k } decreasing to 0 such that

f (x + δ k h 0 ) < f (x) + εδ k = inf x∈R m f (x) + εδ k . ( 6 
)
By virtue of the Ekeland variational principle, we can select

z k ∈ R m such that z k -(x + δ k h 0 ) < δ k 2 , f (z k ) ≤ f (x + δ k h 0 ) and f (x) + 2ε x -z k > f (z k ), ∀x = z k . ( 7 
)
This implies that z k → x, g ε (x) = f (x) = 0 and

g ε (z k ) = f (z k ) + ε u * 0 , z k -x ≥ ε u * 0 , z k -x + δ k h 0 + εδ k > εδ k - 1 2 εδ k = 1 2 εδ k > 0.
We claim that min

h =1 g ε (z k , h) < 0. (8) 
(Otherwise, min h =1 g ε (z k , h) ≥ 0 and then one has g ε (z k ) = inf x∈R m g ε (x), which contradicts g ε (x) = 0). For any h ∈ R m with h = 1 and any t > 0, by [START_REF] Beck | Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems[END_REF], one has

g ε (z k + th) -g ε (z k ) t = f (z k + th) -f (z k ) t + ε u * 0 , h ≥ -2ε h -ε = -3ε and consequently 0 ≥ min h =1 g ε (z k , h) ≥ -3ε.
Thanks to Theorem 1 and Theorem 3, one can obtain that τ min (g ε , x) ≥ 1 3ε , which contradicts (iii) as ε is arbitrary. The proof is complete. Remark 6. (a) From [START_REF] Kruger | Perturbation of error bounds[END_REF][START_REF] Van Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF], the condition (5) means that g is an ε-perturbation of f near x and the condition min h =1 f (x, h) = 0 is sufficient and necessary for this ε-perturbation of local error bounds. Further, it is proved in Theorem 5 that such ε-perturbation is essentially equivalent to ε-linear perturbation.

(b) Theorem 5 can be regarded as the equivalent primal version of [40, Theorem 2.2] since one can prove that

min h =1 f (x, h) = 0 ⇐⇒ 0 ∈ bdry(∂f (x)).
Indeed, suppose that 0 ∈ bdry(∂f (x)). For the case that 0 ∈ int(∂f (x)), there is r > 0 such that rB m ⊆ ∂f (x). This and (4) imply that min

h =1 f (x, h) ≥ r > 0.
For the case that 0 ∈ ∂f (x), by the separation theorem, there exists

h 0 ∈ R m with h 0 = 1 such that 0 > sup{ x * , h 0 : x * ∈ ∂f (x) } = f (x, h 0 )
and consequently min

h =1 f (x, h) ≤ f (x, h 0 ) < 0.
On the other hand, if 0 ∈ bdry(∂f (x)), then min h =1 f (x, h) ≥ 0 and for any ε > 0, we can select u * ε ∈ εB m \∂f (x) and

x ε = x such that u * ε , x ε -x > f (x ε ) -f (x).
By [START_REF] Azé | A survey on error bounds for lower semicontinuous functions[END_REF], for any t ∈ (0, 1), one has

f (x + t(x ε -x)) -f (x) t ≤ f (x ε ) -f (x) < u * ε , x ε -x and thus f x, x ε -x x ε -x ≤ u * ε , x ε -x x ε -x ≤ ε.
This means that min h =1 f (x, h) ≤ ε → 0 + and so min h =1 f (x, h) = 0.

Stability for Global Error Bounds

This subsection is devoted to the study stability for global error bounds of a single convex inequality, and the aim is to give primal sufficient and/or necessary conditions for the global stability via directional derivatives.

The following theorem gives primal criterion for stability of global error bounds.

Theorem 7. Let f ∈ Γ 0 (R m ) be such that bdry(S f ) ⊆ f -1 (0). Consider the following statements:

(i) There exists τ ∈ (0, +∞) such that

inf min h =1 f (x, h) : x ∈ bdry(S f ) > τ. ( 9 
)
(ii) There exist constants c, ε ∈ (0, +∞) such that for all g ∈ Γ 0 (R m ) satisfying S f ⊆ S g and Lip(f -g) < ε, [START_REF] Burke | Weak sharp minima revisited. II. Application to linear regularity and error bounds[END_REF] one has τ min (g) ≤ c. (iii) There exist constants c, ε ∈ (0, +∞) such that for all g ∈ Γ 0 (R m ) satisfying bdry(S f ) ∩ g -1 (0) = ∅ and Lip(f -g) < ε, [START_REF] Cánovas | Calmness modulus of linear semi-infinite programs[END_REF] one has τ min (g) ≤ c.

Then (i) ⇒ (ii) and (iii) ⇒ (i).

Proof. (i) ⇒ (ii): If there is some x ∈ bdry(S f ) such that min h =1 f (x, h) > 0, then one can verify that S f = {x} and the implication follows as in the proof of Theorem 5. We next consider the case the min h =1 f (x, h) ≤ 0 for all x ∈ bdry(S f ). By virtue of ( 9) and Theorem 2, one can verify that S f has a global error bound with the constant 1 τ ; that is,

τ d(x, S f ) ≤ [f (x)] + , ∀x ∈ R m . ( 12 
)
Take any ε ∈ (0, τ ). Suppose that g ∈ Γ 0 (R m ) satisfies [START_REF] Burke | Weak sharp minima revisited. II. Application to linear regularity and error bounds[END_REF]. Let x ∈ R m be such that g(x) > 0. Then f (x) > 0 as S f ⊆ S g . We claim that min

h =1 f (x, h) ≤ -τ. ( 13 
)
Granting this, by Lip(f -g) < ε in [START_REF] Burke | Weak sharp minima revisited. II. Application to linear regularity and error bounds[END_REF], one can prove that

min h =1 g (x, h) ≤ min h =1 f (x, h) + ε ≤ -(τ -ε).
This and Theorem 2 imply that τ min (g) ≤ (τ -ε) -1 . We next prove the claim [START_REF] Corvellec | Nonlinear error bounds for lower semicontinuous functions on metric spaces[END_REF]. Take z ∈ bdry(S f ) such that x -z = d(x, S f ) and ( 12) implies that

f (x) ≥ τ d(x, S f ) = τ x -z .
Then for any t ∈ (0, 1), one has

f (x + t(z -x)) ≤ tf (z) + (1 -t)f (x)
and thus

f (x + t(z -x)) -f (x) t ≤ -f (x) ≤ -τ x -z .

This means that min

h =1 f (x, h) ≤ f x, z -x x -z ≤ -τ
Hence (13) holds. (iii) ⇒ (i): Suppose that there exists a sequence {x k } ⊆ bdry(S f ) such that

α k := min h =1 f (x k , h) → 0 -(as k → ∞).
Let ε > 0 be arbitrary and k be sufficiently large such that

3 2 α k + ε 2 > 0 and α k + ε > 0. ( 14 
)
Note that for any x = x k , one has

f (x) -f (x k ) x -x k = f x + x -x k • x-x k x-x k -f (x k ) x -x k ≥ f x k , x -x k x -x k ≥ α k and thus f (x) -α k x -x k ≥ f (x k ), ∀x ∈ R m . ( 15 
)
Choose

h k ∈ R m with h k = 1 and u * k ∈ R m with u * k = 1 such that f (x k , h k ) = α k and u * k , h k = 1. ( 16 
)
Then we can take

r k → 0 + (as k → ∞) such that f (x k + r k h k ) < f (x k ) + (α k + ε)r k . ( 17 
)
This and (15) imply that

f (x k + r k h k ) -α k x k + r k h k -x k < inf x∈R m f (x) -α k x -x k + εr k .
Applying Ekeland variational principle, we can select y k ∈ R m such that

y k -(x k + r k h k ) < r k 2 , f (y k ) -α k y k -x k ≤ f (x k + r k h k ) -α k r k , ( 18 
)
and

f (x) -α k x -x k + 2ε x -y k > f (y k ) -α k y k -x k , ∀x = y k . ( 19 
)
This implies that

y k -x k > r k - r k 2 = r k 2 and y k -x k < r k + r k 2 = 3 2 r k .
and thus

y k = x k . Let us consider a function g ε ∈ Γ 0 (R m ) defined by g ε (x) := f (x) + ε u * k , x -x k for all x ∈ R m .
By virtue of ( 14), ( 15), ( 16) and ( 19), one has

g ε (y k ) = f (y k ) + ε u * k , y k -x k = f (y k ) + ε u * k , y k -(x k + r k h k ) + εr k ≥ α k y k -x k -ε y k -(x k + r k h k ) + εr k ≥ α k • 3 2 r k + ε 2 r k > 0.
Similarly to prove (4), one can obtain that min h =1 g ε (y k , h) < 0. For any h ∈ R m with h = 1 and t > 0, by [START_REF] Hesse | Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems[END_REF], one has

g ε (y k + th) -g ε (y k ) t = f (y k + th) -f (y k ) t + ε u * k , h ≥ 1 t α k ( y k + th -x k -y k -x k -2εt ε u * k , h ≥ α k -2ε -ε and consequently 0 > min h =1 g ε (y k , h) ≥ α k -2ε -ε ≥ -4ε.
Thanks to Theorem 1 and Theorem 2, we obtain τ min (g ε ) ≥ 1 4ε , which contradicts (iii) as ε is arbitrary. The proof is complete.

Remark 8. (a) Compared with [START_REF] Van Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF]Theorem 3.1] in which a subdifferential characterization for global stability was established with the aid of the so-called asymptotic qualification condition, Theorem 7 is to study stability of global error bounds in the primal way with no redundant hypothesis. It is known from Theorem 7 that the condition ( 9) is sufficient for the stability of global error bounds as said in (ii) of Theorem 7, and is necessary for the global stability as in (iii) of Theorem 7.

(b) It should be noted that the condition ( 9) is not sufficient for the global stability as in (iii) of Theorem 7; also the assumption S f ⊆ S g for the global stability as said in (ii) of Theorem 7 is crucial. To see this, let us consider the following example: Example 9. Let f (x) := e x -1 for all x ∈ R. Then S f = (-∞, 0], bdry(S f ) = {0} and | min |h|=1 f (0, h)| = 1 > 0. However, for any ε ∈ (0, +∞), let us consider the function g ε := f (x) -εx for all x ∈ R. Then one can verify that g ε has two different zero points which are denoted by x 1 := x < 0 and x 2 := 0 and S gε = [x, 0]. Thus S f ⊆ S gε and for any x < x, one has d(x, S gε )

g ε (x) = x -x e x -1 -εx → 1 ε as x → -∞.
This implies that

τ min (g ε ) ≥ 1 2ε ,
and consequently the global stability (for f ) as said in (iii) of Theorem 7 does not hold as ε > 0 is arbitrary.

Further, a natural question arises from the above example:

Is there some type of global stability that can be characterized by condition (9)?

We do have no answer to this question. However, if this answer is affirmative, we conjecture that such global stability should be strictly stronger than that of (ii) in Theorem 7 and weaker than the one of (iii) in Theorem 7.

The following theorem gives primal characterizations for the stability of global error bounds for a convex inequality as said in (iii) of Theorem 7.

Theorem 10. Let f ∈ Γ 0 (R m ) be such that bdry(S f ) ⊆ f -1 (0). Then the following statements are equivalent:

(i) There exists τ ∈ (0, +∞) such that (9) holds and the following qualification condition is satisfied:

(QC) For any sequence {z k } ⊆ S f \bdry(S f ), one has

lim inf k→∞ min h =1 f (z k , h) > τ ( 20 
)
if there is a sequence

{x k } ⊆ bdry(S f ) satisfying lim k→∞ f (z k )-f (x k ) z k -x k = 0. (ii)
There exist constants c, ε ∈ (0, +∞) such that for all g ∈ Γ 0 (R m ) satisfying [START_REF] Cánovas | Calmness modulus of linear semi-infinite programs[END_REF], one has τ min (g) ≤ c; (iii) There exist constants c, ε > 0 such that for any x ∈ bdry(S f ) and u * ∈ R m with u * ≤ 1, one has τ min (g u * ,ε ) ≤ c, where g u * ,ε (x) := f (x) + ε u * , x -x for all x ∈ R m .

Proof. (i) ⇒ (ii): If there is some x ∈ bdry(S f ) such that min h =1 f (x, h) > 0, then one can verify that S f = {x} and the implication follows as in the proof of Theorem 5. We next consider the case the min h =1 f (x, h) ≤ 0 for all x ∈ bdry(S f ). We first prove the following claim:

Claim: There exists ε 0 > 0 such that for all x 0 ∈ bdry(S f ), one has

inf min h =1 f (z 0 , h) : z 0 ∈ R m , f (z 0 ) ≥ -ε 0 z 0 -x 0 ≥ τ. ( 21 
)
Suppose on the contrary that there exist

ε k → 0 + , x k ∈ bdry(S f ) and z k ∈ R m such that f (z k ) ≥ -ε k z k -x k and min h =1 f (z k , h) < τ for all k. ( 22 
)
Then f (z k ) ≤ 0 for all k (otherwise, similarly to the proof of ( 13), one can prove that min h =1 f (z 0 , h) > τ , a contradiction). By ( 9), one has z k ∈ S f \bdry(S f ) and it follows from ( 22) that

0 ≥ f (z k ) -f (x k ) z k -x k = f (z k ) z k -x k ≥ -ε k .
This and the qualification condition in (i) imply that lim inf

k→∞ min h =1 f (z k , h) > τ,
which contradicts [START_REF] Ioffe | Metric regularity -a survey[END_REF]. Hence the claim is proved. Let ε > 0 be such that ε < min{ε 0 , τ }. Suppose that g ∈ Γ 0 (R m ) satisfies [START_REF] Cánovas | Calmness modulus of linear semi-infinite programs[END_REF]. Take any x ∈ bdry(S f )∩g -1 (0). Then for any x ∈ R m with g(x) > 0, one has

f (x) ≥ g(x) + (f (x) -g(x)) -ε x -x > -ε x -x .

Using (21), one obtains min

h =1 f (x, h) < -τ and thus min h =1 g (x, h) < min h =1 f (x, h) + ε < -(τ -ε).
By virtue of Theorem 1 and Theorem 2 we derive the inequality τ min (g) ≤ 1 τ -ε . Note that (ii) ⇒ (iii) follows immediately and it remains to prove (iii) ⇒ (i).

Suppose on the contrary that (i) does not hold. Based on (iii) ⇒ (i) in Theorem 7, we only consider the case that there exist z k ∈ S f \bdry(S f ) and

x k ∈ bdry(S f ) such that lim k→∞ f (z k ) -f (x k ) z k -x k = 0 and α k := min h =1 f (z k , h) → 0 -. ( 23 
)
Let ε > 0 be arbitrary. Without loss of generality, we can assume that

z k -x k z k -x k → h 0 (considering subsequence if necessary). Then h 0 = 1 and choose u * 0 ∈ R m with u * 0 = 1 such that u * 0 , h 0 = 1. Suppose that k is sufficiently large such that α k + ε > 0 and f (z k ) -f (x k ) z k -x k + ε u * 0 , z k -x k z k -x k > 0. ( 24 
)
Let us consider a function g ε ∈ Γ 0 (R m ) defined by [START_REF] Ioffe | Variational analysis of regular mappings[END_REF] and thus

g ε (x) := f (x) + ε u * 0 , x -x k for all x ∈ R m . Then g ε (z k ) = f (z k ) + ε u * 0 , z k -x k > 0 by
0 > min h =1 g ε (z k , h) ≥ min h =1 f (z k , h) -ε = α k -ε > -2ε.
This, together with Theorem 1 and Theorem 2 imply that τ min (g ε ) ≥ 1 2ε , which contradicts (iii) as ε is arbitrary. The proof is complete.

Remark 11. Note that condition (QC) in ( 20) is necessary for the stability of global error bounds. Consider the example given in Remark 3.3 again. Let f (x) := e x -1 for all x ∈ R. Then the global stability for f as said in (iii) of Theorem 7 does not hold. Further, for any z k → -∞, one can verify that

min |h|=1 f (z k , h) = e z k → 0 as k → ∞,
which means that (QC) (for f ) in [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] fails to be verified.

Stability for Error Bounds of Semi-infinite Convex Constraint Systems

In this section, we study local and global error bounds of semi-infinite convex constraint systems, and mainly provide characterizations of stability for error bounds by directional derivatives. We first recall the definition of error bounds for semi-infinite convex constraint systems. For semi-infinite convex constraint systems in R m , we mean the problem of finding x ∈ R m satisfying:

f i (x) ≤ 0 for all i ∈ I, ( 25 
)
where I is a compact, possibly infinite, Hausdorff space, f i : R m → R, i ∈ I, are given convex functions such that i → f i (x) is continuous on I for each x ∈ R m . It is known from [START_REF] Rockafellar | Convex Analysis[END_REF]Theorem 7.10] that in this case, (i, x)

→ f i (x) is continuous on I × R m . Let F ∈ C(I × R m , R) be defined by F (i, x) := f i (x) for all (i, x) ∈ I × R m .
We denote the solution set of system [START_REF] Ioffe | of Studies in Mathematics and its Applications[END_REF] by

S F := {x ∈ R m : f i (x) ≤ 0 for all i ∈ I}. ( 26 
)
For any x ∈ R m , we set

f (x) := max{f i (x) : i ∈ I} and I f (x) := {i ∈ I : f i (x) = f (x)}. (27) 
Recall that system (25) is said to have a global error bound if there exists a constant τ ∈ (0, +∞) such that

d(x, S F ) ≤ τ [f (x)] + ∀x ∈ R m . ( 28 
)
We denote by τ min (F ) the global error bound modulus of S F . For x ∈ bdry(S F ), system ( 25) is said to have a local error bound if there exist constants τ, δ ∈ (0, +∞) such that

d(x, S F ) ≤ τ [f (x)] + ∀x ∈ B(x, δ). ( 29 
)
We denote by τ min (f, x) the local error bound modulus of S F at x. We first study the stability for local error bounds of semi-infinite convex constraint system [START_REF] Ioffe | of Studies in Mathematics and its Applications[END_REF] and aim to provide primal characterizations of the local stability for system [START_REF] Ioffe | of Studies in Mathematics and its Applications[END_REF]. To this aim, we need the following proposition which is of independent interest.

Proposition 12. Let x ∈ R m . Then for any h ∈ R m , one has f (x, h) = max i∈I f (x) f i (x, h). ( 30 
)
Proof. Let h ∈ R m . Take any i ∈ I f (x). Then for any t > 0, one has

f i (x + th) -f i (x) t ≤ f (x + th) -f (x) t and thus f i (x, h) ≤ f (x, h). This implies that f (x, h) ≥ max i∈I f (x) f i (x, h). ( 31 
)
By virtue of (3), one has

f (x, h) = max x∈∂f (x)
x * , h , and thus there is z * ∈ ∂f (x) such that

f (x, h) = z * , h . ( 32 
)
Note that the subdifferential of the function f at a point x ∈ R m is given by (see Ioffe & Tikhomirov [25])

∂f (x) = co i∈I f (x) ∂f i (x)
where "co" denotes the convex hull of a set. Then by [START_REF] Kruger | Hölder error bounds and Hölder calmness with applications to convex semi-infinite optimization[END_REF], there exist

λ 1 , • • • , λ N ≥ 0, i 1 , • • • , i N ∈ I f (x) and z * k ∈ ∂f i k (x), k = 1, • • • , N such that N k=1 λ k = 1 and z * = N k=1 λ k z * k .
This and (32) imply that

f (x, h) = z * , h = N k=1 λ k z * k , h ≤ N k=1 λ k f i k (x, h) ≤ max i∈I f (x) f i (x, h).
Hence [START_REF] Kruger | Error bounds and metric subregularity[END_REF] follows from [START_REF] Kruger | Perturbation of error bounds[END_REF]. The proof is complete.

The following theorem gives primal characterizations for the stability of local error bounds of system [START_REF] Ioffe | of Studies in Mathematics and its Applications[END_REF].

Theorem 13. Let x ∈ R m be such that f (x) = 0. Then the following statements are equivalent:

(i) min h =1 f (x, h) = 0. (ii) There exist constants c, ε > 0 such that if G ∈ C(I × R m , R), g i (x) := G(i, x), g i is convex; (33) g(x) := max i∈I g i (x), I g (x) := {i ∈ I : g i (x) = g(x)}; (34) g(x) = 0; ( 35 
)
I g (x) ⊆ I f (x) whenever min h =1 f (x, h) < 0; ( 36 
)
I f (x) ⊆ I g (x) whenever min h =1 f (x, h) > 0; ( 37 
) lim sup x→x |fi(x)-gi(x)-(fi(x)-gi(x))| x-x ≤ ε, ∀i ∈ I f (x) ∩ I g (x), ( 38 
)
then one has τ min (G, x) ≤ c. (iii) There exist constants c, ε > 0 such that for all u * ∈ R m with u * ≤ 1, one has τ min (G, x) ≤ c, where

G ∈ C(I × R m , R) is defined by G(i, x) := f i (x) + ε u * , x -x for all (i, x) ∈ I × R m . ( 39 
)
Proof. We set

β(f, x) := min h =1 f (x, h).
(i) ⇒ (ii): Suppose that β(f, x) > 0. Then one can verify that S F = {x}. Choose any ε ∈ (0, β(f, x)). Then for any i ∈ I f (x) ⊆ I g (x), by (4.14), one has

g i (x, h) ≥ f i (x, h) -ε
and it follows from Theorem 12 and (4.13) that min

h =1 g (x, h) = min h =1 max i∈Ig(x) g i (x, h) ≥ min h =1 max i∈I f (x) g i (x, h) ≥ min h =1 max i∈I f (x) f i (x, h) -ε = min h =1 f (x, h) -ε = β(f, x) -ε > 0.
Applying Theorem 3, we derive the inequality

τ min (G, x) = τ min (g, x) ≤ 1 β(f, x) -ε .
Suppose that β(f, x) < 0. Choose any ε > 0 such that β(f, x) + ε < 0. Then for any i ∈ I g (x) ⊆ I f (x), by (4.14), one has

g i (x, h) ≤ f i (x, h) + ε
and it follows from Theorem 12 and (4.12) that min

h =1 g (x, h) = min h =1 max i∈Ig(x) g i (x, h) ≤ min h =1 max i∈Ig(x) (f i (x, h) + ε) ≤ min h =1 max i∈I f (x) f i (x, h) + ε = min h =1 f (x, h) + ε = β(f, x) + ε < 0.
Applying Theorem 3 again, we obtain the inequality

τ min (G, x) = τ min (g, x) ≤ 1 -β(f, x) -ε .
(ii) ⇒ (iii): The implication follows immediately as I f (x) = I g (x).

(iii) ⇒ (i): Let u * ∈ R m with u * ≤ 1 and G ∈ C(I × R m , R) be defined as [START_REF] Ng | Error bounds for lower semicontinuous functions in normed spaces[END_REF]. Note that

g i (x) = G(i, x) = f i (x) + ε u * , x -x and thus g(x) = max i∈I g i (x) = max i∈I (f i (x) + ε u * , x -x ) = f (x) + ε u * , x -x .
This means that the implication follows from (iii) ⇒ (i) as in Theorem 5. The proof is complete. 

Let f i : R 2 → R be defined by f i (x) := |x i |, i = 1, 2 for all x = (x 1 , x 2 ) ∈ R 2 , x = (0, 0), F := (f 1 , f 2 ) and f := max{f 1 , f 2 }. Then I f (x) = {1, 2} and min h =1 f (x, h) = √ 2 2 > 0.
However, for each ε > 0, we define functions g 1,ε and g 2,ε by

g 1,ε (x) := |x 1 | + ε|x 2 |, g 2,ε (x) := |x 2 | -ε, for all x = (x 1 , x 2 ) ∈ R 2 .
We set G ε := (g 1,ε (x), g 2,ε (x)) and g ε := max{g 1,ε , g 2,ε }. Then one can verify that I g (x) = {1} and thus

I f (x) ⊆ I g (x). Note that S Gε = {x} and Lip(f 1 -g 1,ε ) ≤ ε.
For any δ ∈ (0, ε -1 ), we set z δ := (0, δ) ∈ R 2 . Then d(z δ , S Gε ) = δ and g ε (z δ ) = εδ, which implies that

τ min (G ε , x) ≥ 1 ε . Let f 1 , f 2 : R 2 → R be defined by f 1 (x) := x 1 and f 1 (x) := -x 1 + |x 2 | -1 for all x = (x 1 , x 2 ) ∈ R 2 , x = (0, 0), F := (f 1 , f 2 ) and f := max{f 1 , f 2 }. Then I f (x) = {1} and min h =1 f (x, h) = min h =1 f 1 (x, h) = -1 < 0.
However, for each ε > 0, we define functions g 1,ε and g 2,ε as

g 1,ε (x) := x 1 + ε|x 2 |, g 2,ε (x) := -x 1 + ε|x 2 |, for all x = (x 1 , x 2 ) ∈ R 2 .
We set G ε := (g 1,ε , g 2,ε ) and g ε := max{g 1,ε , g 2,ε }. Then one can verify that I g (x) = {1, 2} and thus

I g (x) ⊆ I f (x). Note that S Gε = {x} and Lip(f 1 -g 1,ε ) ≤ ε. For any δ ∈ (0, ε -1 ), set z δ := (0, δ) ∈ R 2 . Then d(z δ , S Gε ) = δ and g ε (z δ ) = εδ. This means that τ min (G ε , x) ≥ ε -1 .
We now turn our attention to the stability for global error bounds of semi-infinite constraint system (25) and mainly give a primal equivalent criterion for the global stability. Based on Theorem 10,the following theorem establishes equivalent conditions for the stability of global error bounds for the system [START_REF] Ioffe | of Studies in Mathematics and its Applications[END_REF].

Theorem 14. The following statements are equivalent:

(i) There exists τ ∈ (0, +∞) such that inf min

h =1 f (x, h) : x ∈ bdry(S f ) > τ, ( 40 
)
and (QC) as in Theorem 10 is satisfied.

(ii) There exist constants c, ε > 0 such that if

G ∈ C(I × R m , R), g i (x) := G(i, x), g i is convex; (41) g(x) := max i∈I g i (x), I g (x) := {i ∈ I : g i (x) = g(x)}; (42) z ∈ bdry(S f ) : f i (z) = g i (z) for all i ∈ I = ∅; (43) 
sup i∈I Lip(f i -g i ) < ε; ( 44 
)
I g (x) ⊆ I f (x) whenever min h =1 f (x, h) < 0; (45) 
I f (x) ⊆ I g (x) whenever min h =1 f (x, h) > 0, ( 46 
)
then one has τ min (G) ≤ c. (iii) There exist constants c, ε > 0 such that for all x ∈ bdry(S f ) and u * ∈ R m with u * ≤ 1, one has τ min (G) ≤ c, where G ∈ C(I × R m , R) is defined by

G(i, x) := f i (x) + ε u * , x -x for all (i, x) ∈ I × R m . ( 47 
)
Proof. (i) ⇒ (ii): If there is some x ∈ bdry(S f ) such that min h =1 f (x, h) > 0, then one can verify that S f = {x} and the implication follows as in the proof of Theorem 13. We next consider the case the min h =1 f (x, h) ≤ 0 for all x ∈ bdry(S f ). Thanks to the claim given in the proof of Theorem 10, there exists ε 0 > 0 such that for all x 0 ∈ bdry(S f ), one has inf min

h =1 f (x, h) : x ∈ R m , f (x) ≥ -ε 0 x -x 0 ≥ τ. ( 48 
)
Take any ε > 0 such that ε < min{ε 0 , τ }. Suppose that G, g i and g satisfy (4.17 

f i (x, h) + ε ≤ min h =1 max i∈I f (x) f i (x, h) + ε = min h =1 f (x, h) + ε ≤ -(τ -ε).
Applying Theorem 1 and Theorem 2, we derive the inequality τ min (G) ≤ 1 τ -ε . It remains to prove relation [START_REF] Tseng | On the convergence of the exponential multiplier method for convex programming[END_REF]. For the case that f (x) > 0, similarly to the proof of (13), one can verify that (49) holds. Thus we only need to consider the case that f (x) ≤ 0.

By virtue of (4.19), there is z 0 ∈ bdry(S f ) such that f i (z 0 ) = g i (z 0 ) for all i ∈ I. Then for any i ∈ I g (x) ⊆ I f (x), by (4.20), one has f i (x) ≥ g i (x) -(f i (z 0 ) -g i (z 0 )) -ε x -z 0 = g(x) -ε x -z 0 > -ε x -z 0 and thus f (x) > -ε 0 x -z 0 . This and [START_REF] Rockafellar | Convex Analysis[END_REF] imply that (49) holds.

(ii) ⇒ (iii): The implication follows immediately since I f (x) = I g (x) for all x ∈ R m . (iii) ⇒ (i): Let x ∈ bdry(S f ), u * ∈ R m with u * ≤ 1 and G ∈ C(I × R m , R) be defined as [START_REF] Robinson | A characterization of stability in linear programming[END_REF]. Note that Thus, the implication follows from (iii) ⇒ (i) as in Theorem 10. The proof is complete

g i (x) = G(i, x) = f i (x) + ε u * , x -

Conclusions

This paper is devoted to the stability of local and global error bounds of convex inequalities constraint systems including a single convex inequality and semi-infinite convex constraint systems. The main results consist on providing primal characterizations (via directional derivatives) of stability for local and global error bounds of a single convex inequality (see Theorem 5 and Theorem 10). When these results are applied to error bounds of semi-infinite convex constraint systems, characterizations for the stability of local and global error bounds are also established in terms of directional derivatives (see Theorem 13 and Theorem 14). These results show that the stability of error bounds for convex inequalities constraint systems can be equivalent to solving the convex optimization defined by directional derivatives over the sphere.

Remark 4 . 1 .

 41 (a) Compared with[START_REF] Van Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF] Theorem 2.4] in which a subdifferential characterization of local stability for system[START_REF] Ioffe | of Studies in Mathematics and its Applications[END_REF] was established, Theorem 13 can be regarded as an equivalent version and a supplement in the primal way. Further, on contrary to [40, Theorem 2.4], our local stability for system[START_REF] Ioffe | of Studies in Mathematics and its Applications[END_REF]only requires that all component functions in system[START_REF] Ioffe | of Studies in Mathematics and its Applications[END_REF] have the same ε-linear perturbation.(b) It should be observed that the condition I f (x) ⊆ I g (x) or I g (x) ⊆ I f (x) in Theorem 13 is crucial. To see this, we consider the following two examples:

  )-(4.22). Let x ∈ R m be such that g(x) > 0. We claim that minh =1 f (x, h) ≤ τ.

  x and consequentlyg(x) = max i∈I g i (x) = max i∈I (f i (x) + ε u * , x -x ) = f (x) + ε u * , x -x .
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