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Abstract

Probabilistic record linkage is a process of combining data from different sources,
when such data refer to common entities and identifying information is not available.
Fellegi and Sunter proposed a probabilistic record linkage framework that takes into
account multiple non-identifying information, but is limited to simple binary com-
parison between matching variables. In our work, we propose an extension of this
model for mixed-type comparison vectors. We develop a mixture model for handling
comparison values of low prevalence categorical matching variables, and a mixture
of hurdle gamma distribution for handling comparison values of continuous matching
variables. The parameters are estimated by means of the Expectation Conditional
Maximization (ECM) algorithm. Through a Monte Carlo simulation study, we evalu-
ate both the posterior probability estimation for a record pair to be a match, and the
prediction of matched record pairs. The simulation results indicate that the proposed
methods outperform existing ones in most considered cases. The proposed methods
are applied on a real dataset, to perform linkage between a registry of patients suf-
fering from venous thromboembolism in the Brest district area (GETBO) and the
French national health information system (SNDS).

Keywords: hurdle gamma distribution, low prevalence variables, mixture model, Expecta-
tion Conditional Maximization (ECM) algorithm.
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1 Introduction

Electronic health records have become more and more prevalent in medical fields, and

the ability to exchange this information can help in providing better care for patients as

well as richer sources for researchers. Record linkage is a process of combining data from

different sources that refer to the same entity. The process is straightforward if each record

contains a unique identifier such as Social Security Number (Zhu et al., 2015). However,

some large health databases may not contain such identifying information. In other cases,

this information is available but may contain errors, or may not be used for record linkage

due to ethical reasons. Fellegi and Sunter (1969) proposed a probabilistic framework that

takes into account multiple non-identifying information such as name, address and postal

code. It has become widely used in applications when unique identifiers are unavailable or

when data contain errors (e.g. Grannis et al., 2003; Sayers et al., 2015).

The French SNDS (Système National des Données de Santé) is the national health data

system including the national health insurance information (SNIIRAM: Système National

d’Information InterRégimes de l’Assurance Maladie) of around 99% of the French popu-

lation (Bezin et al., 2017). This data system also includes information on all health care

expenses, as well as private and public hospital data collected in the medical information

system (see Tuppin et al., 2017b). There is therefore an increasing demand of getting this

information from SNDS to enrich research datasets in epidemiology or public health. How-

ever, due to ethical reasons, the SNDS database is anonymous. This means that personal

identifying information such as Social Security Number, Name or Address is not avail-

able. We are therefore interested in proposing a probabilistic record linkage model using

other variables in common represented by the so-called matching variables. They can be

of various types (categorical, binary, continuous) depending on the research study. For
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example, the matching variables may include postal code (categorical), date of treatment

(continuous) and medical diagnosis (binary).

The Fellegi-Sunter probabilistic record linkage model laid the foundation for most record

linkage models until now (Christen and Winkler, 2017). Although this model is useful for

many applications in sample surveys and epidemiology, it has a limitation when some

matching variables are binary and with a low prevalence (e.g., medical diagnoses). In that

case, the simple binary comparison method proposed by Fellegi and Sunter (1969) can

not distinguish the agreement of low prevalence values, which is much more informative

than the agreement of high prevalence value. Such cases are considered in Hejblum et al.

(2019), who propose a Bayesian linkage framework outperforming the Fellegi-Sunter model.

However, their model is restricted to binary matching variables only.

Another limitation is that most probabilistic record linkage models only make use of

simple binary or categorical comparison values (see Christen, 2012) even if the match-

ing variables are continuous. Some authors introduced continuous similarity measures for

comparing string data, but then comparison values are transferred to categorical values rep-

resenting different levels of agreement (e.g., Herzog et al., 2007; Enamorado et al., 2019),

which may result in a loss of information.

In this article, we propose a new linkage model adapted from the framework of Fellegi

and Sunter, which handles such situations. We aim at improving the taking into account

of the nature of matching variables (e.g., low-prevalence binary, or continuous), so as to

improve the performances of record linkage. The article is organized as follows. In Section

2, we review the Fellegi-Sunter probabilistic record linkage model and some relevant prob-

lems. We then propose two comparison strategies for low prevalence binary or continuous

matching variables in Section 3. An extended mixture model taking into account both

categorical and continuous comparison values is also introduced in Section 3. In Section
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4, we evaluate the proposed methods through simulation studies. In Section 5, a real data

application is proposed, where we perform record linkage between SNDS and the GETBO

(Groupe d’Etude de la Thrombose de Bretagne Occidentale) registry. Finally, possible

further research is discussed in Section 6.

2 Probabilistic record linkage

Consider two databases A and B containing nA and nB records respectively, and with

elements in common. Following the terminology in Fellegi and Sunter (1969), each possible

record pair (ai, bj) with ai ∈ A, i = 1, . . . , nA and bj ∈ B, j = 1, . . . , nB either belongs to

the set of true matched pairs

M = {(a, b); a = b, a ∈ A, b ∈ B}

or to the set of true unmatched pairs

U = {(a, b); a 6= b, a ∈ A, b ∈ B}.

Because no unique identifying variable can be used, other less discriminant data are

used in the probabilistic record linkage procedure, such as the name, date of birth, postal

code, or some diagnosis codes. This information needs to be registered in both data sets

and is referred to as matching variables. The matching variables in two databases are

required to have the same format (Christen, 2012).

It is supposed that there is no prior knowledge on how likely the matches are, which

is often the case in practice. The strategy therefore begins by comparing K matching

variables for all records XA,i = (X1
A,i, . . . , X

K
A,i), i = 1, . . . , nA of nA individuals in A, with

all records XB,j = (X1
B,j, . . . , X

K
B,j), j = 1, . . . , nB of nB individuals in B. This leads to
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nA × nB comparison vectors γij such that

γij =
{
γ1ij, . . . , γ

k
ij, . . . , γ

K
ij

}
, (1)

where γkij = hk(Xk
A,i, X

k
B,j) and hk is a comparison function for the k−th matching variable.

Because the number of all record pairs is quadratic in the number of individuals in

each database, making the comparison for all possible record pairs is often impracticable in

applications. One of the most popular methods to reduce the number of record pairs that

need to be compared is blocking, in which only records from the two databases that are in

a same block (i.e., sharing the same values for the blocking variables) are compared with

each other. Record pairs disagreeing on the blocking variable are automatically classified

as non-matches. Therefore, blocking is a trade-off between computational cost and the

proportion of missed matches (matched pairs are missed because of errors in the blocking

variable), see Herzog et al. (2007).

The set of all possible realizations of γ is called the comparison space and denoted by

Γ. The comparison function γk for the k-th matching variable can be defined in different

ways depending on the type of matching variables (Christen, 2012). The most common

way consists in a binary comparison, i.e.

γkij = hk(Xk
A,i, X

k
B,j) =

1 if Xk
A,i = Xk

B,j,

0 if Xk
A,i 6= Xk

B,j.
(2)

If there is no error in the matching data, all components of a comparison vector of a matched

pair are equal to 1. However, application data usually contain errors (e.g., typographical

errors), and some similarity measures that can take them into account have been developed

in the literature for string variables (Herzog et al., 2007).

Once all candidate pairs are compared, various approaches are possible to classify the

set of comparison vectors into matches and non-matches (Christen, 2012). If training
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data where we observe the true matched status of record pairs is available, supervised

classification methods (Christen, 2008) can be used to find a classification rule. If there

is no training data but some clerical review is possible, some semi-supervised approaches

(e.g. Enamorado, 2018) may be applied. However, the exact knowledge of matches is rarely

possible in real world situations, and the clerical review is costly. Unsupervised methods

(e.g. Winkler, 1988; Mamun et al., 2016) are therefore the more common approaches. From

a Bayesian perspective, Tancredi and Liseo (2011) introduced a paradigm for probabilistic

record linkage and Steorts et al. (2016) proposed a Bayesian approach to graphical record

linkage.

In the frequentist view, Fellegi and Sunter (1969) assumed that each record pair belongs

to one of the two latent classes. The distribution of comparison vectors γ for each pair is

assumed to follow a mixture model

P(γ) = P(γ|M)P(γ ∈M) + P(γ|U) [1− P(γ ∈M)] . (3)

If we do not make additional assumptions on the joint agreement pattern, the comparison

vector γ may take 2K different values, each of which corresponds to a parameter that we

need to estimate. To reduce this number, some authors (Fellegi and Sunter, 1969; Winkler,

1988), have proposed to make the so-called conditional independence assumption between

fields of the comparison vector. Under this assumption, we obtain:

P
[
γ = (γ1, . . . , γK)|M

]
=

K∏
k=1

P(γk|M), (4)

P
[
γ = (γ1, . . . , γK)|U

]
=

K∏
k=1

P(γk|U). (5)

The conditional independence assumption is common in most probabilistic record linkage

models (Winkler, 1988), although it may not hold in some practical cases. For example,
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if some records agree on a chronic disease, they are more likely to agree on the drug used.

Although the assumption is invalid in some cases, the linkage result is still quite robust, in

the sense that we may have a good linkage performance even if the conditional independence

assumption does not hold (Winkler, 1988; Grannis et al., 2003; Sayers et al., 2015). Some

authors (e.g. Xu et al., 2019) relaxed this assumption and showed better record linkage

results in some specific scenarios.

Under the conditional independence assumption, we only need to estimate 2K + 1

parameters which are the marginal probabilities of agreement for matched and unmatched

pairs mk ≡ P(γk = 1|M) and uk ≡ P(γk = 1|U), and the overall probability of matches

pM ≡ P(γ ∈ M). Winkler (1988) proposed to apply the expectation maximization (EM)

algorithm (Dempster et al., 1977; Wu, 1983), to find the maximum likelihood estimates

for the vector of parameters θ ≡
{
p,mk, uk, k = 1, . . . , K

}
. It has become widely used in

probabilistic record linkage (Grannis et al., 2003; Christen, 2012). Once all the parameters

are estimated, the record pairs may be ordered by either matching weights

ŵij =
P(γij|M, θ̂)

P(γij|U, θ̂)
,

see Fellegi and Sunter (1969); Belin and Rubin (1995), or by posterior probabilities of

matching q̂ij ≡ P(M |γij, θ̂) (Larsen and Rubin, 2001). Then, the pairs are classified into

matches, non-matches or possible matches based on two defined thresholds (Fellegi and

Sunter, 1969). Because the possible matches require manual review which is sometimes

not available, Grannis et al. (2003) propose to establish only a single threshold to avoid

human review. Although the matching scores and the posterior probabilities produce the

same ordering for record pairs (Larsen and Rubin, 2001), the posterior probabilities are

preferable in our case because they may be useful for further analyses (Lahiri and Larsen,

2005; Kim and Chambers, 2012; Hof and Zwinderman, 2012; Zhang and Tuoto, 2020).
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In some applications, a one-to-one matching restriction may be needed; namely, that

each record in B can be matched to one and only one record in A, and conversely. One

possible approach to respect a one-to-one matching is to solve a linear sum assignment

problem proposed by Jaro (1989). If the optimal score is not demanded, a simple approach

is to sort all candidate pairs according to their estimated posterior probabilities of matching,

and to select matched pairs in a greedy approach (Christen, 2012).

3 An extension of the Fellegi-Sunter model

In this section, we extend the Fellegi-Sunter model by making better use of low preva-

lence categorical matching variables and of continuous variables. Two new comparison

approaches and a mixture model for mixed type of comparison values are introduced.

3.1 Comparison approaches

For a categorical matching variable, it is likely that the proportions for each category are

different, and accounting for these differences in a record linkage model may help to improve

the linkage results. This idea was proposed by Fellegi and Sunter (1969); Winkler (1989)

and is applied on a real clinical data in Zhu et al. (2009). These authors use the same model

for simple agreement/disagreement comparison, but the matching weights are rescaled a

posteriori, using a frequency-based correction. We introduce a new comparison approach

for categorical matching variables, which differs from simple binary comparison and may

naturally handle different proportions for categories.

Let Xk be a categorical matching variable taking L different values, which means

that the comparison function for this variable may take up to L2 values. For exam-

ple, the comparison for a binary matching variable may lead to four possible realizations
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{(0, 0), (0, 1), (1, 0), (1, 1)} and a comparison function can be defined as follows

hk(0, 0) = 1, hk(0, 1) = 2, hk(1, 0) = 3, hk(1, 1) = 4. (6)

If this is a low prevalence binary matching variable such that only 5% (say) of the values

in the dataset are equal to 1, the agreement on the value "1" is much more informative than

the agreement on the value "0". Our comparison approach aims at using this information

while the simple agreement comparison method does not, leading to poor performance.

Hejblum et al. (2019) propose a Bayesian record linkage framework making use of a similar

idea, and which is efficient in case of a large number of low-prevalence binary matching

variables. However, their model is designed for binary variables only.

If the number of matching variables and/or the number of categories is large, the number

of parameters to be estimated is L2 − 1, which may be too large in practice. This number

may be reduced by assigning the same comparison value for the agreement/disagreement

of categories which have roughly a same significance. For instance, we may reduce the

comparison values given in (6) as

hk(0, 0) = 0, hk(0, 1) = hk(1, 0) = 1, hk(1, 1) = 2. (7)

Now, let us consider the case of a continuous variable Xk. For example, date variables

(e.g., admission to the hospital, or medical act) are common in medical datasets. By con-

verting each date into a duration from a specified origin, they may be treated as continuous

counting variables. Even if an individual is present in both datasets, a lag between dates

is likely to appear. The simple binary comparison is therefore not appropriate. In this

article, if the kth matching variable is continuous, we propose to consider

γkij = hk(Xk
A,i, X

k
B,j) = d(Xk

A,i, X
k
B,j), (8)
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where d is a distance which can be used to measure the difference between two dates

of events, in which case it can be interpreted as a time lag. By using the distance, the

continuous comparison values γk of matching pairs (Xk
A,i, X

k
B,j) can be described as

γkij|(XA,i, XB,j) ∈M =

0 with probability 1− ek

εkij > 0 with probability ek,

where ek is the proportion of error for the kth matching variable among matched pairs.

Therefore, γk|M follows a hurdle distribution in which the positive part depends only on

the distribution of errors. On the other hand, the distribution of γk|U depends mostly

on the distribution of the kth matching variable, since εk is often small compared to the

distance between records for two unmatched units.

3.2 Estimation of parameters

Let

γij =
(
γ1ij, . . . , γ

K1
ij , γ

K1+1
ij , . . . , γK1+K2

ij

)
(9)

be a mixed type comparison vector which includesK1 categorical comparison values γ1ij, . . . , γ
K1
ij

and K2 continuous distances γK1+1
ij , . . . , γK1+K2

ij . Following the Fellegi-Sunter framework,

these comparison vectors are assumed to follow the mixture model (3).

Under the conditional independence assumption between the different fields in the com-
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parison vector for both the matched and the unmatched sets, we have

P(γij|M) =

K1∏
k=1

P(γkij|M)︸ ︷︷ ︸
P 1M
ij

K1+K2∏
k=K1+1

P(γkij|M)︸ ︷︷ ︸
P 2M
ij

, (10)

P(γij|U) =

K1∏
k=1

P(γkij|U)︸ ︷︷ ︸
P 1U
ij

K1+K2∏
k=K1+1

P(γkij|U)︸ ︷︷ ︸
P 2U
ij

, (11)

for i = 1, . . . , nA and j = 1, . . . , nB. For both equations (10) and (11), the first term in the

rhs involves K1 categorical comparison values of the comparison vector γij. We define

mk
s = P(γkij = s|M) and uks = P(γkij = s|U) for s ∈ Sk, (12)

with Sk the set of all possible categorical comparison values for the kth variable. Then

P 1M
ij =

K1∏
k=1

P(γkij|M) =

K1∏
k=1

∏
s∈Sk

(mk
s)
1
γk
ij

=s

P 1U
ij =

K1∏
k=1

P(γkij|U) =

K1∏
k=1

∏
s∈Sk

(uks)
1
γk
ij

=s

for i = 1, . . . , nA and j = 1, . . . , nB, and with
∑

s∈Sk m
k
s =

∑
s∈Sk u

k
s = 1.

The second part in the rhs of equations (10) and (11) involves K2 continuous values of

the comparison vector γ. We define

P 2M
ij =

K1+K2∏
k=K1+1

P(γkij|M) with P(γkij|M) ∼ fkM(φkM),

P 2U
ij =

K1+K2∏
k=K1+1

P(γkij|U) with P(γkij|U) ∼ fkU(φkU),

(13)
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for i = 1, . . . , nA and j = 1, . . . , nB. The distributions fkM and fkU need to be postulated,

depending on the characteristics of the matching variables and on the chosen distance.

To find the maximum likelihood estimates for parameters, we apply the Expectation-

Maximization (EM) algorithm (Dempster et al., 1977) or the Expectation Conditional

Maximization (ECM) algorithm (Meng and Rubin, 1993), depending on the distribution fk.

In Section 1 of the supplementary material, we present the details of the ECM algorithm,

when both fkM and fkU correspond to a hurdle gamma distribution, which is used in the

next part of this article.

Once all parameters are estimated by means of the EM/ECM algorithm, the posterior

probabilities qij = P(M |γij) are estimated for all record pairs by the Bayes formula

q̂ij =
p̂M P̂

1M
ij P̂ 2M

ij

p̂M P̂ 1M
ij P̂ 2M

ij + (1− p̂M)P̂ 1U
ij P̂

2U
ij

. (14)

These estimated posterior probabilities are then used to find proper matched pairs.

4 Simulation studies

In this section, our proposed approaches are evaluated and compared to other existing

approaches. To facilitate interpretation, two simulation studies are performed to evaluate

the properties of the proposed methods for binary and continuous variables separately. All

the simulations are implemented in a R program, which is available as a supplement.

4.1 Simulation designs

In the following simulations, we consider two databases A and B containing nA = 500

and nB = 200 individuals and K matching variables. We assume that there is no dupli-

cate in both databases and that all individuals in B have corresponding individuals in A.
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The number of individuals in both databases remains fixed in our simulations. However,

different sizes are considered in additional simulations available as a supplement.

We first generate the observations in A, and a random subset of nB units is used to

obtain the database B. For i = 1, . . . , nA and j = 1, . . . , nB let us denote by

XA,i =
(
X1
A,i, . . . , X

K
A,i

)
and XB,j =

(
X1
B,j, . . . , X

K
B,j

)
(15)

the ith and jth individual in A and B, respectively. Without loss of generality, we assume

that the first unit in B is the first unit in A, . . . , the nthB unit in B is the nthB unit in A. The

full comparison matrix γ =
{
γkij
}
contains nA × nB = 10 000 lines and K columns.

Once the posterior matching probabilities are estimated for all possible record pairs, a

pair is classified as a match if q̂ij (see equation 14) is larger than a predefined threshold

τ , and is classified as a non-match otherwise. The choice of the threshold depends on the

objectives of the study, a higher threshold leading to a lower number of false matches.

Scenario 1: binary matching variables

Data generating process In this scenario, each variableXk
A,i is first generated according

to a Bernoulli distribution with parameter pk, for k = 1, . . . , K. To account for possible

errors in the matching variables, the variables Xk
B,j in database B are then obtained as

Xk
B,j =

X
k
A,j with probability 1− ek

1−Xk
A,j with probability ek.

(16)

Simulation parameters Since there are only binary matching variables, all the methods

tested require a large number K of matching variables to achieve acceptable results. We

therefore usedK ∈ {30, 40, 50}. The probability of error is chosen as ek ∈ {0.02, 0.04, 0.06}.

For simplicity, the probability pk for each Bernoulli variable is fixed to 0.2.
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Methods Once the variables in the databases were generated, we considered four possible

record linkage methods: FS, the Fellegi-Sunter model with simple binary comparison as

described in (2); FS3, the Fellegi-Sunter model using a comparison with 3 categories, as

described in (7); FS4, the Fellegi-Sunter model using a comparison with 4 categories,

as described in (6); Bayesian, the bayesian method described in Hejblum et al. (2019).

With the methods FS, FS3 and FS4, the parameters pM , mk
s and uks (see equation 12)

are estimated by means of the EM algorithm, and some initial values are required. We

initialize with 1/nA for pM . The formulas to compute the initial values for mk
s and uks and

the stopping criteria are given in Section 2.1 of the supplementary material. The Bayesian

method is performed by means of the package ludic of Hejblum et al. (2019), where we used

0.01 as the discrepancy rates needed for the method.

Scenario 2: continuous matching variables

Data generating process In this scenario, each variable Xk
A is generated according to

an exponential distribution with parameter λk, for k = 1, . . . , K. To account for possible

errors in the matching variables, the variables Xk
B,j in database B are then obtained as

Xk
B,j = Xk

A,j +

0 with probability 1− ek

εkj with probability ek,
(17)

where the εkj ’s are iid, generated according to an exponential distribution of parameter λke .

Simulation parameters We used K = 3 matching variables and λk = 0.02 for k =

1, . . . , K. Because small lags are likely to happen in the registration process, we considered

as possible proportions of errors ek ∈ {0.1, 0.2, 0.3} and λke ∈ {1/2, 1/3, 1/4}. This leads to

a mean value of approximately 50 days for Xk, and a mean value of approximately 2, 3 or
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4 days for the lag value εk.

Methods Once the databases were generated, we compared three possible record linkage

methods: FS, the Fellegi-Sunter model with simple binary comparison as described in (2);

FS3, the Fellegi-Sunter model using a comparison with 3 categories defined as follows:

γkij =


0 if |Xk

B,j −Xk
A,i| = 0,

1 if 0 < |Xk
B,j −Xk

A,i| ≤ 3,

2 if 3 < |Xk
B,j −Xk

A,i|

(18)

for k = 1, . . . , K; FS-HGa, the Fellegi-Sunter model using the absolute distance for com-

parison defined as:

γkij = d(Xk
A,i, X

k
B,j) = |Xk

B,j −Xk
A,i| (19)

For the FS-HGa method, we used the hurdle Gamma distribution

f(γk; pk0, α
k, βk) =


pk0 if γk = 0,

(1− pk0)
γk

αk−1
e−γ

k/βk

βkα
k

Γ(αk)
if γk > 0,

(20)

for both fkM , fkU in equation (13) where αk, βk ∈ R+ and Γ(αk) is the gamma function for

k = 1, . . . , K. This is the true distribution for γk|M under our simulation set-up, since

γkj,j|M = |Xk
B,j −Xk

A,j| =

0 with probability 1− ek

εkj with probability ek,
(21)

and since εkj follows an exponential distribution, which is equivalent to a Gamma distribu-

tion with parameters αk = 1 and βk = 1/λk for any j = 1, . . . , nB. On the other hand, it
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is more complicated to describe the true distribution of γk|U . For j 6= i, we have

γki,j|U = |Xk
B,j −Xk

A,i| =

|X
k
A,j −Xk

A,i| with probability 1− ek

|Xk
A,j −Xk

A,i + εk| with probability ek.
(22)

Since Xk
B,j and Xk

A,i are independent for i 6= j, γki,j|U follows an exponential distribution

with probability 1− ek. With probability ek, the distribution of γki,j|U also involves that of

the error εk. Since this error is typically small compared to the difference Xk
B,j −Xk

A,i, we

may also consider that γk|U approximately follows an exponential distribution.

With the FS-HGa method, we propose using the hurdle gamma distribution for f ,

since it adds more flexibility to the modeling. The histogram of γki,j values on one sample

is given in Figure 1a for the matched pairs, and in Figure 1b for the unmatched pairs.

They decidedly indicate that the hurdle gamma distribution fits well to these values in this

example. The robustness of our modeling with different families of distributions for Xk

and εk is studied in Section 3.6 of the supplementary material.

While the parameters for FS and FS3 are estimated by the EM algorithm, the param-

eters for FS-HGa are estimated by the ECM algorithm which is presented in Section 1 of

the supplementary material. The starting values and stopping criteria for all methods are

presented in Section 3.1 of the supplementary material.

Since the matching variables are interpreted as durations (in days) in the application

presented in Section 5, the generated values Xk
A and εk values are rounded to the smallest

larger integer in this simulation. For example, patients may get a medical act at different

times (days, hours and minutes), but the durations may be registered in days only.
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Figure 1: Histogram of the positive values of γki,j for the matched pairs (left side) and

the unmatched pairs (right side) and fitted gamma density estimation (red curve) when

λke = 1/2 and ek = 0.2

4.2 Performance criteria

All the methods tested for record linkage are evaluated by means of the True Positive Rate

TPRτ = P {qij ≥ τ |(XA,i, XB,j) ∈M} ,

and the Positive Predicted Value

PPVτ = P {(XA,i, XB,j) ∈M |qij ≥ τ} .

The True Positive Rate (a.k.a sensitivity or recall) is the proportion of matched pairs which

are correctly identified. The Positive Predicted Value (a.k.a. precision) is the proportion
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of predicted matched pairs which are correctly identified. These are the most common

criteria in an imbalanced binary classification problem, which is the case when the overall

set of record pairs is extremely dominated by non-matches. In this work, these criteria are

estimated by means of 1, 000 independent Monte Carlo simulations.

In the simulations, the EM/ECM algorithm is used for the estimation of parameters,

with a convergence tolerance of 10−6 before reaching the maximum number of iterations

(set equal to 500). We observed convergence issues for record linkage methods, more

particularly for the usual Fellegi-Sunter method in the Scenario 1: that is, there are some

simulations for which the tolerance value is not reached after 500 iterations. The Monte

Carlo approximation of the PPR and PPV for any method is therefore obtained from the

subset of simulations for which the convergence is attained for all methods. The proportion

of cases for which the convergence is attained is presented for all methods in Section 2.2

and 3.2 of the supplementary material, along the results we would obtain for the PPR and

PPV if the Monte Carlo iterations with convergence issues were taken into account.

The Monte Carlo approximation for the TPR and PPV are presented in Section 4.3

for the methods considered, with a threshold τ = 0.5. In practice, the choice of the

threshold τ corresponds to a trade-off between TPR and PPV: a more stringent threshold

may increase PPV, but decrease TPR. For a particular case of each scenario, we therefore

plotted in Figures 3 and 5 the PPV-TPR curve (a.k.a. precision-recall curve) for different

values of τ . Two types of curves are plotted. The "observed" curves correspond to the

(theoretical) situation when the parameters are directly estimated by maximizing the full

likelihood, assuming that the true status (matched/unmatched) is known for each pair. The

"estimated" curves correspond to the (practical) situation when this status is not known,

and the parameters are estimated by the EM/ECM algorithm as described in Section

4.1. The difference between an observed curve and its estimated counterpart is helpful to
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separate the effect in parameter estimation when using the EM/ECM algorithm.

4.3 Results

Scenario 1

The Monte Carlo estimates for the TPR and the PPV are presented in Figure 2. We

first note that for all the methods considered, both criteria improve when the number of

matching variables K increases and/or when the probability of error e decreases, as could

be expected. In terms of TPR, FS3 is preferable, followed by FS4; Bayesian and FS show

comparable results for K ≤ 40, but FS performs better for K = 50. In terms of PPV,

FS4 and Bayesian are preferable, with almost identical results; FS3 performs slightly

worse, while FS performs poorly, but both methods improve as K increases. Overall, FS3

performs better than FS in both TPR and PPV. As explained in Hejblum et al. (2019),

FS has many false matches, leading to the smallest PPV. In comparison to FS4 and

Bayesian, FS3 improves the TPR substantially with a slight decrease of the PPV. FS4

and Bayesian show a similar behavior when e = 0.02. However, when the error increases,

FS4 has a better TPR with a minimal decrease in PPV as compared to Bayesian.

To evaluate the impact of the choice of the threshold τ in the performances of the

methods, we consider the particular scenario with the parameters K = 40, pk = 0.2 and

e = 0.04. We plot in Figure 3 the PPV in function of the TPR for different thresholds. The

Figure 3 indicates that the observed FS4 performs better among the observed methods,

while the estimated FS3 performs better among the estimated methods.

Additional simulations with a fixed number of matching variables K = 40 and different

values for the probability pk were performed in Section 2.3 of the supplementary material.

The results showed that all methods improve significantly when pk rises from 0.1 to 0.3.
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Figure 2: Monte-Carlo estimates of TPR and PPV with binary matching variables only

and sample sizes nA = 500 and nB = 200, pk = 0.2 for the parameter of the Bernoulli

distribution, a number of matching variables K ∈ {30, 40, 50}, and a proportion of errors

eK ∈ {0.02, 0.04, 0.06}.
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Figure 3: PPV-TPR curves for the observed/estimated version of the methods considered

with binary matching variables only, with sample sizes nA = 500 and nB = 200, K =

40 matching variables, pk = 0.2 for the parameter of the Bernoulli distribution, and a

proportion of errors ek = 0.04.

Also, the results in Section 2.4 of the supplementary material indicate that all methods

gradually improve as the ratio nB/nA increases.

Scenario 2

The Monte Carlo estimates for the TPR and the PPV are presented in Figure 4. For each

method, both the TPR and the PPV decrease as the proportion of errors e increases. We

note that the slower decrease is observed for FS-HGa, which is also the method which

gives both the best TPR and the best PPV in all cases. We also observe that for FS-HGa

and FS3, both the TPR and the PPV decrease with λe, but the decrease is very limited for

FS-HGa. On the other hand, FS is not affected by λe: this is likely due to the fact that
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FS only considers exact agreement/disagreement in comparison step, while FS3 accounts

for an additional category when the time lag is no greater than 3 days. Therefore, FS3

performs better than FS when the proportion of error is large (e = 0.3) and the mean value

of the error is small (λe = 1/2; 1/3).

To evaluate the impact of the threshold τ , we consider the particular scenario with the

parameters K = 3, λk = 0.02, e = 0.2 and λe = 1/2. We observe in Figure 5 that the

PPV-TPR curves obtained for a given estimated method and for its observed counterpart

are very similar. Also, FS-HGa performs significantly better than FS3 and FS.

To evaluate the robustness of FS-HGa, we performed additional simulations presented

in Section 3.6 of the supplementary material. In these simulations, Xk is generated accord-

ing to a uniform distribution and ε according to a normal distribution. The results indicate

that even when the model is misspecified, FS-HGa is robust and performs better than the

other methods. Also, we considered different values for K and λk in Section 3.3 and 3.4 of

the supplementary material. In general, under the fixed sample sized nA and nB, all meth-

ods perform better with more matching variables (larger K) and/or when the matching

variables are more informative (smaller λk). Finally, the Section 3.5 of the supplementary

material indicates that all methods gradually improve as the ratio nB/nA increases.
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Figure 4: Monte-Carlo estimates of TPR and PPV over different simulation cases when

there are only continuous matching variables with sample sizes nA = 500 and nB = 200,

K = 3 matching variables, λk = 0.02 for the parameter of the Exponential distribution, a

proportion of errors ek ∈ {0.1, 0.2, 03}, and a parameter λke ∈ {1/2, 1/3, 1/4} for the error

lag.
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Figure 5: PPV-TPR curves for the observed/estimated version of the methods considered

with continuous matching variables only, with sample sizes nA = 500 and nB = 200,

K = 3 matching variables, λk = 0.02 for the parameter of the Exponential distribution, a

proportion of errors e = 0.2, and a parameter λe = 1/3 for the error lag.

5 Application

5.1 Description of SNDS and GETBO databases

The French national health information system SNDS was first created mainly based on the

national register of health insurance information (SNIIRAM), which is currently one of the

largest claims database in the world (Bezin et al., 2017). The SNDS includes information

such as socio-demographic data, real-life use of drugs, chronic medical conditions (ICD10

codes), date and duration of hospital admissions. These databases are therefore of major

interest, and their study has already led to several useful findings (e.g. Tuppin et al.,
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2017a,b). Because of this interest, there is an increasing demand for using this database

to enrich existing cohorts or medical registers. However, most of the time, no common

identifier is available in the database. Our objective is therefore to link the de-identified

GETBO database to the SNDS, when no common individual identifier is available.

The GETBO database results from a data management process of the raw data of the

GETBO registry. It is built as a list of documented cases of venous thromboembolism

(VTE) recorded between 2013 and 2015 in Brest metropolitan area (Delluc et al., 2016). A

given patient may have several events, and the database contains 1, 404 events concerning

1, 332 distinct patients. For each documented case, the diagnostic or therapeutic medical

acts were recorded with their type and the precise date, as well as the demographic infor-

mation for each patient (date of birth, gender, residency code). Linked data consisting of

VTE cases from GETBO and corresponding valuable health information from SNDS will

be used to build a prediction model which can identify symptomatic VTE early for French

people (Noboa et al., 2006; Delluc et al., 2016).

In this application, the so-called SNDS database results from a data extraction process

of the raw data from SNDS including the health insurance data from SNIIRAM and the

national hospital discharge databases. The complete extraction was designed to select

patients living in the Brest area and having at least one care reimbursement between 2013

and 2015. It concerned 369, 695 distinct individuals. We selected patients having, during

the studied period, at least one medical act either prescribed for diagnosis purposes of VTE

(echodoppler, scintigraphy, tomoscintigraphy and angiography), or for therapeutic purposes

(vena cava filter and thrombolysis) that were supposed to be recorded in the GETBO

registry. This led to a list of 48, 102 timestamped medical acts concerning 32, 382 distinct

patients with all the related demographic information (date of birth, gender, residency

code). This database is expected to contain all medical acts in the GETBO database.
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5.2 Probabilistic record linkage process

Since some VTE events in GETBO can relate to several medical acts, we first restruc-

ture this database such that each row contains only one medical act.This results in a new

GETBO database with 1, 919 medical acts associated to 1, 332 patients. There are 6 avail-

able matching variables: year of birth, month of birth, residency code, gender, type of

medical act, date of medical act. Because a Cartesian product of the GETBO and SNDS

databases requires computing 1, 919× 48, 102 = 92, 307, 738 comparison vectors, we choose

two variables (type of medical act, month of birth) as blocking variables to reduce the

computational time. Therefore, only the records with the same type of medical act and

the same month of birth are compared. By employing this blocking scheme, there are only

4, 308, 847 candidates pairs with the four remaining matching variables.

We use the simple binary comparison function (2) for the year of birth and residency

code variable. For the gender variable, since there is an imbalance between male and female

in SNDS database (36.6% compared to 63.4%), we choose (7) as the comparison function.

Finally, we choose the absolute distance (19) for the dates of medical acts variable. The

comparison step results in a set of 4, 308, 847 mixed-type comparison vectors. They are

fitted by our proposed extension of Fellegi-Sunter model for mixed-type data, denoted by

FS-ext. The ECM algorithm is applied to estimate all the model parameters. It stopped

after 5 iterations when the relative difference of log-likelihood values of two successive

steps was less than 10−7. Once all parameters are estimated, we compute the estimated

posterior probabilities of matching (14) for all record pairs of medical acts. Finally, we

define a threshold τ = 0.5, and a pair with a greater estimated posterior probability is

predicted as a match.
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Figure 6: Histogram of the comparison values for dates of medical acts of predicted matched

pairs (a) and unmatched pairs (b), and the fitted distribution (red line) of our model.

In Figure 6, we present two histograms of comparison values of the dates of medical acts

for our predicted matched/unmatched pairs. The red line is the hurdle gamma distribution

fitted by our model. Figure 6a indicates that there are more than 90% predicted matches

with the same dates, and the others have 1 to 5 days in difference between dates.

5.3 Results

We first select 1, 810 pairs of medical acts that have posterior probabilities of matching

equal or larger than a threshold of 0.5 for matched pair candidates. From the databases

GETBO and SNDS, we then get the corresponding pair of patients for each pair of medical

acts. Since one patient in GETBO should be linked to one patient only in SNDS and
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conversely, when an individual has more than two candidates for matching, only the pairs

of medical acts with the highest posterior probability of matching is selected.

Eventually, we predict 1, 627 pairs of medical act as matches corresponding to 1, 146

pairs of patients. Among them, 13 patients in GETBO have two matched candidates in

SNDS with the same probability. The distribution of the (estimated) posterior matching

probabilities is presented in Table 1: among the predicted matched pairs, 1, 410/1, 627 =

87% have estimated posterior probabilities larger than 0.9.

q̂ (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 0.95] (0.95, 1]

Number of pairs

of medical acts
4 9 18 186 188 1,222

Table 1: Frequency distribution table of estimated posterior probability of matching for

predicted matched pairs of medical acts

We also consider two different approaches for linking the two databases: the Fellegi-

Sunter model FS with binary comparison (2), and the deterministic method. Under the

latter, a pair of medical acts is classified as a match if they share the same type of medical

act, month, year of birth, gender, residency code, while the date of medical act is compared

with a tolerance of 3 days. Some manual review is required for pairs that link an individual

in the database to more than two individuals in another database.

We compare the three approaches in terms of predicted matched pairs of patients. As

could be expected, the set of predicted matched pairs obtained under both FS-ext and FS

include all the pairs identified by the deterministic record linkage. All 867 pairs predicted

as a match by the deterministic method have a very high average posterior probability

of matching for both FS-ext (q̂FS-ext = 0.993) and FS (q̂FS-ext = 0.996). Among the
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247 remaining pairs which are classified as a match by FS, 1112/1114 ≈ 99.8% are also

identified by FS-ext Besides, 34 additional pairs of patients are identified as match by FS-

ext, with a high average probability (q̂FS-ext = 0.868). From a look at the data, these pairs

are not predicted by FS because they often correspond to a difference of 1 to 5 days in the

date of medical acts. Consequently, the proposed method FS-ext predicts 1, 146 matched

pairs for 1, 332 patients in GETBO accounting for around 86% patients in GETBO while

the result from deterministic method and FS only account for 65% and 83.6% respectively.

6 Discussion

In this article, we proposed two comparison approaches for low prevalence categorical and

continuous matching variables. The proposed comparison functions aim to make a more

extensive use of the matching variables in the comparison vectors. We propose an extension

of the Fellegi-Sunter probabilistic record linkage model, for comparison vectors containing

both categorical and continuous comparison values. This model allows for using a variety

of comparison functions, which can reflect matching data more accurately. We also suggest

the use of a mixture of hurdle gamma distributions, for modeling the absolute difference

between continuous variables such as dates. This distribution has never been formerly

considered in the record linkage literature. In practice, the distribution for comparison

values of continuous matching variables should be considered and validated posteriorly.

The simulation studies show that our proposed model outperforms the simple model

with binary comparison in all the scenarios considered. In our real data application, our

proposed model also performs more efficiently than the probabilistic model with simple

binary comparison and the deterministic record linkage method. It predicts more matching

patients in SNDS for patients registered in GETBO with high probability.
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In practice, the matching variables that can be used for record linkage may include

missing data. Also, dates of events may be censored. It would be of great practical

interest to develop a joint modeling for record linkage and handling of missing values, to

improve the performance of the record linkage process in this case. This is an important

matter for further research. In a different approach, Copas and Hilton (1990) described

a hit-miss model for record linkage which can accommodate the frequency distribution

and missing values of the matching variables. However, this approach is not as commonly

used in practice as the Fellegi-Sunter model due to its specific context (Goldstein et al.,

2017). Besides, we did not consider matching variables varying over time. A study of Li

et al. (2011) suggests that considering matching variables along with their time stamp (if

applicable) may improve matching quality.

A problem of most probabilistic record linkage models lies in the imbalance between

matched and non-matched pairs in the set of all comparison vectors, which may cause bias

in parameter estimation. Blocking methods have been introduced to reduce the number

of non-matched pairs, along with the computational cost. However, some true matched

pairs may be overlooked if the blocking variable contains errors. Recently, Fortini (2020)

introduced a robust approach where the EM algorithm is modified to obtain unbiased

estimates of parameters in this context. However, this approach is designed for binary

comparison values only.

The construction of the complete likelihood function rests on the assumption that the

comparison vectors are independent. Such assumption may not be valid in practice, espe-

cially when there are matching restrictions such that each record in a database can be linked

to only one record in another database. Lee et al. (2020) recently proposed a maximum

entropy classification for record linkage which overcomes this assumption.
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