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Abstract

Even if it is not always stated explicitly, the majority of recent approaches to domain adap-
tation are based on theoretically unjustified assumptions, on the one hand, and (often hidden)
inductive biases on the other. This paper first point out that feature alignment which is often
misrepresented as a minimizer of some theoretical upper-bounds on risk in the target domain
is neither necessary nor sufficient to obtain low target risk. This paper also demonstrates,
through numerous experiments, that deep domain adaptation methods, in fact, rely heavily on
some hidden inductive biases found in common practices, such as model pretraining or encoder
architecture design. In a third step, the paper argues that using handcrafted priors might not
be sufficient to bridge distant domains: powerful parametric priors can be instead learned from
data, leading to a large improvement in target accuracy. A meta-learning strategy allowing to
find inductive biases that solve specific transfers is proposed. It shows superior performance to
that of handcrafted priors on several tasks.

1 Introduction

Deep learning models achieve impressive performance on image classification tasks, when a large
number of training samples is provided. However, in many situations, there is not enough labeled
data available for the task of interest (the target domain), while there is some in related domains
(source domains) but with a statistical bias which makes them impossible to use as is to learn a
model. The objective of domain adaptation is to exploit the data in the source dataset to obtain
a model that performs well in the target domain. In this article, we focus on unsupervised domain
adaptation, a task for which only unlabeled examples of the target domain are available to train
the model.

This work focuses on domain adaptation under the covariate shift assumption, which assumes
that the same input data is associated with a single label, regardless of the domain to which it
belongs (see Section 3 for a formal definition of the covariate shift). Indeed, transfer learning
usually assumes that the labeling function is consistent across all domains and only accounts for
qualitative shifts in the distribution of input data.

Following Bouvier et al. (2020), we analyze domain adaptation through the scope of inductive
biases. An inductive bias is a set of hidden assumptions that condition the behavior of the model
on unseen data (in that case, the target domain). Indeed, the vast majority of domain adaptation
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algorithms work by enforcing some regularization criterion that is expected to enhance the trans-
ferability of representations to the target domain, such regularization being a contribution to the
inductive bias.

Among them, domain alignment (e.g., Ganin et al. (2016); Häusser et al. (2017); Xu et al.
(2019); Zhang et al. (2019)) is the dominant approach for solving unsupervised domain adaptation
problems that fall under the covariate shift assumption, i.e., when the two domains contain the
same classes and the same labeling rule. Their goal is to enforce domain-independence (in the
distributional sense) of the hidden features produced by the encoder model. These methods are
based on a series of theoretical results related to unsupervised domain adaptation: such as Ben-
David et al. (2010); Mansour et al. (2009); Redko et al. (2020); Zhang et al. (2019) which proposed
various upper bounds on target risk. Indeed, in almost all these contributions, the bound includes
- among other things - the source risk and some measure of deviation between source and target
input data distributions.

The first thing to notice is that this theoretical justification is flawed: further analyses of Zhao
et al. (2019); Johansson et al. (2019) and Bouvier et al. (2020) have shown that practical domain-
alignment algorithms are in fact largely inconsistent with the theory from which they claim to be
derived and may even be counterproductive in some cases. We summarize all the important facts
in section 3.

Our second remark is that the empirical success of such methods on popular benchmark datasets
can be better explained thanks to implicit inductive biases found in the standard practice of domain
alignment literature. For example use of pre-trained models or augmentation. In other words, such
biases help to ensure that domain alignment behaves well despite the lack of conclusive theoretical
guarantees. We give a comprehensive presentation of existing biases and illustrate their effects
through various experiments in section 4.

This analytical work shows that human-designed priors may be sub-optimal and cannot be safely
combined to solve any domain adaptation scenario. This introduces the second contribution of our
paper, namely the introduction of meta-learning principles to produce more adaptable models.
We propose a strategy to learn a flexible and powerful parametric inductive bias to enhance the
transferability of representations for a single transfer. In contrast with Li et al. (2018) and Balaji
et al. (2018) which employ meta-learning in the multi-source domain generalization setting (test
on same classes but on a new, unseen domain), we rather consider the ability of models to perform
the same transfer with tasks involving new test classes.

2 Related work

In this section, we review the works and concepts present in the literature and related to the
question of domain adaptation, in order to be able to position our work within this context.

2.1 Learning bounds

The goal of domain adaptation theory is to find informative upper bounds on target risk to estimate
how well a task can be adapted to the target domain. Most of them involve a divergence between
the source and target distributions. They vary according to the chosen divergence and the statistical
framework they are based on: (VC, Rademacher, PAC-Bayes).

Ben-David et al. (2010) first proposed a bound that uses the H∆H divergence, which accounts
for how much two hypotheses can deviate from one another and in a different way in the two
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domains. Zhang et al. (2019) further refined the bound by relaxing the divergence to a single
adversarial hypothesis. Mansour et al. (2009) provides another classifier-based bound that does
not require the covariate shift assumption. Shen et al. (2017) proposes a bound based on the
Wasserstein distance that is robust to disjoint supports. Several bounds were also proposed for
the PAC-bayesian setting (Li and Bilmes, 2007; Germain et al., 2015, 2016). Simon et al. (2020)
present a divergence based on PR curves. More details about the bounds will be provided in the
next section, but we also advise the reader to refer to Kouw (2018), Redko et al. (2020) for an
exhaustive list of existing domain adaptation bounds.

2.2 Domain-Invariant feature learning

The large majority of domain adaptation methods aim at producing a domain-invariant feature rep-
resentation at the output of an encoder model by aligning source and target feature distributions.
To perform this feat, early works minimize some closed-form measure of discrepancy between dis-
tributions; DeepCORAL (Sun and Saenko, 2016) trains the encoder model to align the distribution
means and variance-covariance matrices. Tzeng et al. (2014) uses the more powerful Maximum
Mean Discrepancy (MMD) metric, wich was then extended by Long et al. (2015) with multiple
kernels. With the advent of GANs (Goodfellow et al., 2014), adversarial training was quickly used
for domain-alignment, leading to the DANN algorithm (Ganin et al., 2016). A wide set of vari-
ants of DANN followed: ADDA (Tzeng et al., 2017) uses a separate feature encoder for source
and target, Shen et al. (2017) uses a Wasserstein critic instead of the standard Jensen-Shannon.
PixelDA (Bousmalis et al., 2017) aligns distributions in image-space by using an image translation
model. As domain-alignment was proven to be insufficient for good target performance, new im-
provements were found by the community to better condition the process of distribution alignment:
(Shu et al., 2018; Häusser et al., 2017; Xu et al., 2019) exploit a cluster assumption in feature space
to stabilize alignment. (Cicek and Soatto, 2019; Chen et al., 2019; Lv et al., 2021; Zhang et al.,
2019; Saito et al., 2018; Kang et al., 2019; des Combes et al., 2020) make use of pseudo-labels to
condition alignment to class information. Kumar et al. (2018) performs alignment on an ensemble
of feature-spaces and forces a single classifier to agree on all of them.

Inspired by the representation learning literature, other methods add auxiliary modeling objec-
tives to the features to improve their robustness, interpretability and transferability: (Peng et al.,
2019; Bousmalis et al., 2016) learn a feature space where class and style information are disentan-
gled. Sun et al. (2019) completes alignment with a self-supervision objective.

2.3 Controversies

Alignment methods seek theoretical justification in the learning bounds derived from Ben-David
et al. (2010) by applying them in feature space. However, further analyses from (Shu et al., 2018;
Zhao et al., 2019; Johansson et al., 2019; Bouvier et al., 2020; Siry et al., 2020) proved that domain-
alignment only partially minimizes those bounds and is not sufficient for provable good target
accuracy. We will adopt the same critical approach in the next section and give additional examples.

2.4 Inductive bias

We refer as an inductive bias any set of assumptions we can use to help a model generalize to unseen
data. The importance of inductive bias in domain adaptation has been first mentioned in (Bouvier
et al., 2020). In this paper, we consolidate this work by unveiling various instances of inductive

3



bias that were already used in the literature and crucially underpin good target performance. A
fact that has not been highlighted much by the domain adaptation community.

2.5 Meta-learning

Meta-learning, or learning to learn, is a recent paradigm in deep learning which can be viewed as a
data-centric way to learn a parametric inductive bias that works for some distribution of tasks. First
introduced to address few-shot generalization (Finn et al., 2017), meta learning has then been used
in domain adaptation, especially in the multi-source domain generalization setting: Li et al. (2018)
meta-learns an encoder representation that generalizes to test domains, this was then improved by
Balaji et al. (2018) which meta-learns regularization weights optimized for transferable fine-tuning.
Wei et al. (2021) uses meta-learning to synchronize the learning dynamics of domain alignment and
supervision on source.

3 Two common assumptions that are nevertheless flawed

In this section, we attempt to highlight two commonly held assumptions in the domain adaptation
literature and show that these assumptions are in some cases unfounded, thus leaving most of the
practical algorithms presented in the literature without any proper theoretical guarantees.

We refer as source and target domains two distributions S and T over the space of labeled data
X × Y . We define SX and TX the marginals of S and T over X and SY , TY the marginals over Y .
Finally, we call domain shift the discrepancy existing between S and T .

Provided labeled samples from S and unlabeled samples from T , we would like to exploit labeled
knowledge from S to obtain a model that minimizes the target risk.

Obviously, this can only be possible if a relationship between S and T exists.
The following general cases are often described in the literature:

1. Covariate shift / inductive transfer: SX 6= TX and PS(Y |X) = PT (Y |X),

2. Concept shift / transductive transfer: SX = TX and PS(Y |X) 6= PT (Y |X),

3. Unsupervised transfer: SX 6= TX and PS(Y |X) 6= PT (Y |X).

Most deep learning domain adaptation contributions indeed invoke the covariate shift assump-
tion, and, among them, several works build upon theoretical upper bounds on the target error.
For example, this is the case of DANN (Ganin et al., 2016) which built upon the upper bounds
developed in Ben-David et al. (2010).

The most commonly used upper bounds usually take the following form (see e.g., Ben-David
et al. (2010); Mansour et al. (2009); Shen et al. (2017) or Redko et al. (2020) for a more exhaustive
list).

εT (h) ≤εS(h) + δ(SX , TX) + λ (1)

where h ∈ H is a hypothesis, εS(h) and εT (h) represent the error associated with h in the two
domains.

The second term of the right hand side of the bound, δ(SX , TX) represents a divergence be-
tween the marginal distribution of X under both domains, and this divergence involves the class of
hypotheses H.
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The last term of Eq.(1), λ, underpins the adaptability in the sense that λ is small only if
a common hypothesis h∗ can perform well on both domains. This term is not amenable to be
computed without the labels in the target, but it is expected to be small in well-posed problems.

The first term, εS(h), can be easily minimized to zero by training h with a standard cross-entropy
cost as the source domain is assumed to be fully labeled. However, for a given hypothesis space,
δ(SX , TX) cannot be brought close to zero, because the input distributions are fixed. Furthermore,
in the majority of domain changes that are considered in the computer vision literature, the domains
actually have supports that are disjoint, i.e. SX ⊥ TX .

For instance, pictures of an object taken during the day (the source domain) will have zero
probability under the distribution of images taken at night (the target domain). Another example
is the MNIST / SVHN pair of domains. Both are well-known datasets of digit recognition: while
MNIST displays white-on-black handwritten digits with a moderate variety of shapes and sizes, the
richer SVHN is a dataset of house numbers, hence displaying a wide variety of colors, fonts and
sizes. Also in that case, it is straightforward to determine with 100% accuracy from which dataset
a digit image was drawn.

In such cases, the notion of conditional distribution, say PS(Y |X), is undetermined outside of
the support of SX . As a result, the constraint PS(Y |X) = PT (Y |X) is nonbinding, and the notion
of covariate shift no longer makes sense. This statement is the first untruth we would like to
point out.

Although this fact is often disregarded in domain adaptation theoretical works, which still
advocate for the covariate shift assumption, the usual practice is to introduce a feature extractor
Ψ : X → Z hence embedding both distributions in latent space Z where the supports may overlap
(e.g. Sun and Saenko (2016); Long et al. (2015); Ganin et al. (2016); Häusser et al. (2017); Zhang
et al. (2019)). When the bound is applied on feature-space, δ(SX , TX) can be trivially minimized: to
bring the divergence term close to zero, it is sufficient to output a domain-invariant representation;
indeed, a feature representation is domain-invariant if the features from the source domain follow
the same distribution than features from the target domain. Most methods hence train the encoder
to satisfy a dual objective: i) give sufficiently informative features to get a good classification
accuracy on source and ii) minimize a measure of discrepancy between source and target feature
distributions. The most prominent domain-alignment technique is DANN, which makes use of
adversarial learning: it makes the feature extractor compete with a domain classifier in a minimax
game; the domain classifier trains itself to recognize the domain from which feature samples come
from by minimizing a classification error on domain labels, then the feature extractor trains itself
to maximize this error, hence fooling the classifier and bringing source and target distributions
closer to each other. After several steps of alternate optimization, the algorithm eventually reaches
equilibrium and source and target distributions are aligned. At this point, the H∆H-divergence of
the Ben-David bound from which DANN draws its inspiration is close to zero.

Since the last term λ cannot be evaluated without knowing the target labels, only the first two
terms of the RHS are considered in the minimization, and when reasoning in feature space, the
prior assumption that λ is small does not hold anymore.

This fact has been highlighted by at least three recent papers, namely (Zhao et al., 2019;
Johansson et al., 2019; Bouvier et al., 2020) in a form of a no-free-lunch theorem. The gist of
this result relies on the observation that while the first two terms of the upper-bound are
minimized, the third one can go out of control. In particular, the feature extractor can map
different regions of TX of different classes to the same region of Z leading to a larger target Bayes
risk. This label mixing will be further strengthened by minimizing the divergence in scenarios where
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Figure 1: Well-behaved domain-alignment: both divergence between feature marginals and joint
error λ are low. Colors denotes domain. Continuous boundaries denotes class 1, dashed boundaries
denotes class 2.

Figure 2: Degenerate domain-alignment: divergence between feature marginals is low but joint
error λ is high. Colors denotes domains. Continuous boundaries denotes class 1, dashed boundaries
denotes class 2.

classes are balanced differently in the source and target domains, a situation known as a prior shift
which is not ruled out by the covariate shift assumption). Worst, nothing prevents regions of TX
of a given class to be embedded in regions corresponding to different classes of SX . We illustrate
this case in Figure 2.

Both phenomenons are due to the non-invertibility of Ψ (Johansson et al., 2019), which is
necessary for the support of SZ and TZ to overlap.

Despite the previous caveat, domain alignment approaches based on upper-bounds are still often
successful in practice. On the one hand, this success can be explained by the way in which published
results are selected. For instance, while the transfer from SVHN to MNIST is often reported, it
is almost never the case of the inverse (MNIST to SVHN – see Fig 3 for a visual comparison of
DANN latent representation in both cases). Indeed, the SVHN to MNIST should be considered the
”easy” way: as SVHN is richer than MNIST in terms of degrees of freedom (fonts, scales, colors,
background textures), the features learned thanks to supervision on SVHN are already robust
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Figure 3: t-SNE plot of feature space after DANN adaptation (labels are color-coded, plain dots
are source samples, crosses are target samples). Left: SVHN→MNIST, Right: MNIST→ SVHN.
SVHN has many more degrees of freedom (digit fonts, scales, colors) than MNIST, it is therefore
not surprising that the features learnt from raw SVHN supervision transfer consistently on MNIST,
making the joint feature distributions close. Left: one can see that the alignment obtained with
DANN is non-degenerate. Right: The inverse transfer MNIST → SVHN is much harder. Features
learnt with MNIST supervision do not extrapolate consistently to the richer SVHN. In that case,
applying the DANN algorithm leads to a degenerate alignment.

enough to generalize slightly on MNIST, and thanks to the adjustment brought by the domain
alignment, we can see in the left plot of Fig 3 that not only the marginal feature distributions are
aligned, but so is the joint feature-label distribution; on each source class cluster is a target cluster
made of samples from the same class. The MNIST to SVHN case is much harder: supervision on
MNIST does not naturally produce features that are transferable to SVHN, and aligning domains
leads to a degenerate case in which marginals are aligned but not the joint distribution. In the
right plot of Fig 3, on each source class cluster is a target cluster made of target samples from
arbitrary classes, indicating that the encoder used its large capacity to exploit arbitrary sources
of information found in the target region of image-space to match the source distribution. The
few works reporting results on the MNIST to SVHN transfer use ad-hoc tricks such as augmenting
MNIST with random colors Häusser et al. (2017), which qualitatively brings it closer to SVHN,
or use of InstanceNorm Kumar et al. (2018), which helps the encoder model to ignore colors and
contrasts, thus introducing a good handcrafted invariance that helps conditional alignment. In fact,
these ”tricks” are part of the inductive bias which will be the subject of the next section.

On the other hand, the analysis of their success is restricted to reasoning on bounds such as
Eq 1, while the no-free-lunch theorem should raise concerns on these justifications. It is therefore
clear that other explanations must be put forward to understand what makes a transfer susceptible
to favorable alignment. In this article, we elaborate on the role of (hidden) inductive biases, as
advocated by Bouvier et al. (2020).

4 Inductive (implicit) biases found in domain adaptation
practice

Since theoretical bounds alone cannot fully enlighten what makes domain adaptation work, we spec-
ulate that its relative success is essentially conditioned by the existence of some inductive bias. For
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reference, in machine learning, inductive bias is the set of assumptions (implicit or explicit) used to
improve a model in addition to the training data. For example, one of such biases arises from use of
pre-trained models, a design choice that is ubiquitous in the common practice of domain adaptation
Ganin et al. (2016), Zhang et al. (2019), Shen et al. (2017), especially when dealing with difficult,
low-shot transfers such as Office-31 (Gong et al., 2012). In domain-adaptation-related publications,
such choices are often pushed into the background in the ”experiment” section and presented as
subsidiary information (Ganin et al., 2016; Lv et al., 2021). Their overall contribution on transfer
success with respect to some domain adaptation method is rarely mentioned nor discussed. This
lack of clarity introduces many uncertainties when comparing methods or reproducing results. We
therefore propose here a set of experiments to complete the understanding of several cases of in-
ductive bias. We organize the different biases in four main categories namely, i) biases involved in
the domain alignment per se, ii) biases in the data augmentation process, iii) implicit biases of the
feature extractor and iv) biases related to the network architectures. All the experiments involve
training a classifier of the form f = g ◦Ψ, where Ψ is a feature extractor and g is a classifier.

The experiments presented in this section are based on different datasets commonly used in
domain adaptation, i.e. MNIST (LeCun et al., 1998), MNIST-M (Ganin et al., 2016), SVHN (Netzer
et al., 2011) and PACS (Li et al., 2017). Moreover, we use the default ResNet-18 encoder for Ψ in all
experiments except for the BatchNorm ablation one (in that case, a simpler VGG-16 convolutional
architecture is used). When applicable, we use the default ImageNet pre-trained weights provided
by PyTorch. The classifier g is a simple feedforward network with one hidden layer of width 1024.

4.1 Inductive biases in the alignment method

Our first experiment is designed to evaluate the response of several domain alignment strategies
with respect to prior shift. Indeed, we proved in the previous section that perfect marginal feature
alignment is not sufficient to align domains; we will now further demonstrate that it is not necessary
as well. Worse, it can have a negative impact on target accuracy on some cases when compared to
the source-only baseline. To introduce such a shift while keeping the experiment compatible with
the covariate shift assumption, we consider two versions of MNIST for both domains. In the source
domain the classes are represented in a balanced ratio (i.e. 10%), while in the target we purposely
make the ratios uneven, with class partitions ranging from 5 to 20%. Therefore, the transfer problem
falls strictly speaking within the covariate shift assumption, i.e. PS(Y |X) = PT (Y |X).

In this experiment, we consider three forms of domain adaptation. The first one corresponds
to training g ◦Ψ without any explicit alignment. In this case, referred to as source only (SO), the
cost function is computed solely from the cross entropy on source samples. The second and third
approaches correspond to DANN Ganin et al. (2016) and associative DA (Häusser et al., 2017).
Associative-DA is an alignment technique which only partially aligns source and target distributions
to avoid some limitations of DANN. Indeed, if the distribution of classes is not the same in source
and target domains, the perfect feature alignment obtained through adversarial techniques is likely
to degrade the performance: in such a case, to satisfy a perfect distribution matching criterion,
samples from one mode would be moved to another mode to restore the balance and hence take
the risk of being misclassified. To avoid this, Associative-DA relies on the assumption that, in
the source and target distributions, samples of same class will cluster together, and proceeds to
align clusters centröıds without aligning cluster population. We therefore expect Associative-DA
to be more robust to prior shifts. Indeed, in the case of prior shift, aligning marginal distributions
in the latent representation Z = Ψ(X) is detrimental. This can be seen in Table 1: on the one

8



SO DANN ASSO-DA

M→ MI 0.99 0.67 0.97

Table 1: Effect of alignment in a prior-shifted transfer; M = balanced MNIST, MI = MNIST with
class imbalance

hand, the source-only training performs almost perfectly (0.99 target accuracy). On the other
hand, the DANN approach tries to strictly impose the alignment of marginals and deteriorates
the performance by a large margin (0.67 target accuracy). Last, the associative DA approaches
do the alignment in a looser manner, by relying on the aforementioned cluster assumption and
reaches a target accuracy of 0.97. In fine, even though the alignment remains slightly harmful to
the performance, this experiment exhibits a form of inductive bias that renders alignment more
robust to prior shift.

4.2 Data Augmentation

A straightforward and well-known way to enhance feature generalization is to explicitly augment
input images with a family of class-preserving image transformations. For example, it can be con-
structed by a composition of random flips, scaling, rotation, translation, blur or changes in color
statistics. Such transformations represent a subset of all the possible class-preserving transforma-
tions and can hence partly explain the domain shifts found in real life. Therefore, augmentation
of the source images is another inductive bias and its effect on transferability must be measured
in the domain adaptation setting. On Figure 2, we show that a simple color randomization of
source MNIST digits and backgrounds helps solving the hard MNIST→SVHN transfer, usually out
of reach even for pre-trained models, with a drastic 45% increase of the target performance. This
shows how a simple but ad-hoc transform can help bridging the complex domain shift that exists
between MNIST and SVHN.

DANN w/o augment DANN w/ augment

M→ S 0.15 0.6
P→Sk 0.38 0.42
P→C 0.22 0.24
P→A 0.58 0.64

Table 2: Effects of data augmentation; M=MNIST, S=SVHN, P=PACS-Photo, A=PACS-Art-
Painting, Sk=PACS-Sketch, C=PACS-Clipart; Model is pre-trained

4.3 Pretraining and optimizer implicit biases

The next question is probably the most subtle one. It has been noted by Siry et al. (2020) that
the target accuracy of a source-only trained model is predictive of a high chance of success in the
alignment itself. This observation can lead to several interpretations in terms of inductive biases.

Indeed, most image classification tasks share some common priors: sample images contain a
single (or a few very salient) object to classify. Similarly, domain shifts found in real life consist in
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Transfer NoPT+FT PT PT+FT

M→ MM 0.13 0.19 0.56
MM→ M 0.98 0.29 0.97

S→ M 0.56 0.25 0.84
M→ S 0.06 0.19 0.23
P→ Sk 0.16 0.17 0.41
P→ C 0.16 0.17 0.22
P→ A 0.24 0.34 0.58

Table 3: Target accuracies of the KNN classifier on static pre-trained features (PT) and features
obtained after source-only fine-tuning (PT+FT). We also give non-pretrained source-only features
as a reference (NoPT+FT); P=PACS-Photo, A=PACS-Art-Painting, Sk=PACS-Sketch, C=PACS-
Clipart, M=MNIST, MM=MNIST-M, S=SVHN

class-preserving transformations, which are a narrow subset of all possible image transforms (see
previous section). A realistic domain shift can hence be modeled as a random combination of such
transforms. Taking those priors into account defines a narrower family of possible domains and
transfers, for which it is easier to design domain-invariant encoding functions.

ImageNet pre-training is widely used in the Deep Learning community. It provides a good,
general and robust feature space that considerably fastens convergence to almost all downstream
classification tasks, and helps generalizing when training data is scarce. This tendency to generalize
easily extends naturally to domain adaptation: in practice, pre-trained features are crucial for
successful adaptation of low-shot domains of the Office-31 benchmark and make simpler transfers
such as SVHN→ MNIST easier. Even the simplest ”source-only” baseline, (fine-tune on source,
test on target) already gives convincing results when pre-training is employed. If the same model
started from a random initialization scheme, its target accuracy would drop dramatically.

In our experiments, pre-training is performed on the widely known ImageNet dataset, containing
more that 1000 categories and a million samples. Solving this large-scale classification problem
encourages the discovery of features that are invariant to all class-preserving transforms. It is
therefore not surprising to see that the so obtained models can more easily bridge domains.

To characterize the role of pre-training in domain adaptation, we envision the following two
hypotheses (the latter being a refined version of the former): i) pretraining the feature extractor
leads to an operating point where source and target samples are grouped together in a consistent
way in the latent embedding ii) pretraining the feature extractor and the optimization bias of the
source cross-entropy leads to such a consistently clustered embedding. To assess the likelihood of
these two potential explanations, we conducted two experiments as described below.

Assessing feature transferability with KNN: in order to validate the first hypothesis, we
design a simple KNN classifier to predict the label of the feature samples from the target distribution.
This classifier works as follow: it finds the top-K (K=50) labeled source nearest feature vectors of
the unlabeled target feature embedding, according to a base metric in feature-space (e.g., the L2-
norm), then returns the majority vote of their K labels. Good accuracy of this classifier would
demonstrate that the representations of the classes in the target domain are close to the ones of the
same classes in the source domain. To say it differently, good KNN performance implies natural class
equivariance and domain invariance of the considered feature space. However, as mentioned earlier,
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expecting the property to be verified for the initial ImageNet features might be too restrictive since
the source-only training baseline also involves end-to-end tuning of the encoder model on source
samples, which subsequently modifies the feature space. To account for this alternate explanation,
the effects of the source-only fine-tuning have to be reported as well. Therefore, we evaluate the
KNN classifier on ImageNet pre-trained ResNet-18 features, before (PT) and after (PT+FT) source-
only fine-tuning. We also evaluate non-pretrained features obtained after source-only (NoPT+FT)
as a baseline. We do so for several transfers and report results in Table 3. On digit classification
transfers, we observe better-than-random but low KNN accuracy with not finetuned features, for
example 19% for MNIST→ MNIST-M and 25% for SVHN→ MNIST. However, the source and
target feature distributions become significantly closer as the encoder is tuned on source, with
KNN accuracies rising to 56% and 84% respectively on those two transfers. The exact same trend
can be observed on PACS transfers. The benefits of pre-training hence cannot be fully explained by
the geometry of pre-trained output features: pre-trained hidden ResNet-18 layers also condition the
dynamics of source-only fine tuning that eventually leads to good source and target representations
thanks to an implicit optimization bias.

Dead Pixel on CIFAR dataset: To complement this first experiment on the influence of pre-
training and source-only finetuning, we have designed an experiment to show that the presence of
confusing factors in the source domain can make pretraining detrimental. Note that this experiment
is deliberately extreme: it does not follow the prior assumptions of natural classification problems,
to a point of completely defeating the commonly useful bias of ImageNet pretraining. For this
experiment, we build a synthetic transfer tailored to make pre-training less efficient than random
initialization. In both domains, we construct an image sample by taking a random CIFAR-10 image
and set its ith upper-left pixel to a fixed color value (grey), the pixel index i is chosen between 1
and 10. In the source domain, i matches the original CIFAR-10 image class. On the contrary, in
the target domain, the dead pixel index and the original image class are completely decorrelated,
and the image label is given by the dead pixel and not by the object contained in the image. The
task is to evaluate to which extend the classifier is tied to the so-called Dead Pixel.

This experiment exposes one of the main obstacles in domain adaptation: the presence of
confounding factors that are present in the source domain but absent from the target domain.
When supervised on source, we expect pretraining to introduce a bias associating the content of
image with the label. It is therefore highly probable that the pre-trained model will ignore the dead
pixel and exploit features from the objects, as the initial parameters already make this information
salient and filter out pixel-level details. In the target domain, where the CIFAR-10 object is not
useful anymore to predict the image label, the pre-trained model should fail even if source-only
fine-tuning is performed. On the contrary, a randomly initialized classifier should quickly identify
the dead pixel as the safest, easiest way to predict the image label and should completely ignore the
CIFAR-10 object. Consequently, the classifier trained from scratch on source should achieve a good
accuracy on target. Results for the dead pixel CIFAR transfer (D-Pix) can be found on Table 4: as
expected, pre-training performs worse, but still manages to exploit some Dead-Pixel information,
leading to reasonable performance on target. The model trained from scratch performs consistently
in both domains and reaches maximum accuracy on target. Also, the explicit alignment with DANN
hardly improves over source only in this scenario.

We conducted additional experiments in Table 4 to sum-up the influence of pre-training on
transfers that satisfy the properties of realistic domain shifts. We observe a consistent performance
increase when pre-training is used, in both source-only and DANN adaptation. On most digits
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no pretraining

SO DANN

M→ MM 0.17 0.63
MM→ M 0.98 0.98

S→ M 0.65 0.71
M→ S 0.07 0.1
P→ Sk 0.15 0.21
P→ C 0.17 0.26
P→ A 0.23 0.22
D-Pix 0.95 0.99

with pretraining

SO DANN

M→ MM 0.6 0.99
MM→ M 0.98 0.98

S→ M 0.83 0.88
M→ S 0.25 0.15
P→ Sk 0.42 0.6
P→ C 0.22 0.67
P→ A 0.58 0.76
D-Pix 0.75 0.76

Table 4: Target accuracies for the source-only baseline and the DANN alignment algorithm; Left:
No pretraining, Right: pretraining; P=PACS-Photo, A=PACS-Art-Painting, Sk=PACS-Sketch,
C=PACS-Clipart, M=MNIST, MM=MNIST-M, S=SVHN, D-Pix=Dead Pixel CIFAR transfer

transfers, DANN provides an additional increase in performance even in the non-pretrained case
(+46% on MNIST → MNIST-M, +6% on SVHN→MNIST without pre-training). Those trans-
fers fall in the “easy” category, in which supervision on source naturally builds features that are
transferable to target without pre-training. The only exception is the very hard MNIST → SVHN
in which DANN fails both in non-pre-trained and pre-trained regimes. This degenerate case has
already been illustrated in Figure 3. On PACS transfers, we observe that using DANN is very
beneficial in the pre-trained case, with large increases in target performance. However DANN still
improves performance on average in the non-pre-trained regime.

In this section, we have confirmed that pre-trained representations usually allows to obtain
features displaying a high degree of transferability. We have shown that pretraining alone is not
always sufficient and is mainly useful if combined with source-only fine-tuning. Our synthetic
experiment corroborates that pre-training should be considered as an inductive bias that helps
with domain shifts similar to those found in real life, and fails in cases where confounding factors
make this bias counter-effective.

4.4 Network architecture components

The update of features during source-only tuning is a complex, non-linear process that does not
depend solely on the initialization of the feature encoder. To have a finer understanding of how
transferable task-relevant features emerge, one must also take into account the architecture of the
encoder. In this section, we conduct additional experiments to show how transfer learning can be
sensitive to these architecture components.

The BatchNorm is mainly used to accelerate training of deep models: it rescales all activations
in the effective range of the subsequent non-linearity, avoiding flat regions in the loss landscape on
which gradient descent makes little progress. Furthermore, this multiplicative operation might give
rise to descriptors that display higher degrees of invariance to certain transformations, for example
variability in colorization or contrast. To illustrate this tendency to give rise to such invariant
representations, we perform a very simple transfer, the purpose of which is to adapt MNIST to
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its color-inverted counterpart, Inv-MNIST, and show in Table 5 that in the non-pretrained case,
adding BatchNorm entirely conditions the success of domain adaptation for both source-only and
DANN.

M→ InvM SO DANN

Encoder-BN 0.5 0.95
Encoder-NoBN 0.05 0.04

Table 5: Source-only accuracy for two different encoder architectures (with and without batch
normalization); M=MNIST, InvM=MNIST with inverted colors

Global Pooling is an operation that collapses a whole feature map into a single vector by av-
eraging across all spatial dimensions. The mean operator does not retain the original location of
features and is therefore translation-invariant. Popular backbone architectures VGG-16, ResNet-
18 or DenseNet have a 7x7 AvgPool layer. We conduct another transfer to evaluate the capacity
to learn translation-invariance without being explicitly supervised to do so ; the source domain
is MNIST, while the target domain is MNIST-T. MNIST-T is generated from MNIST samples,
augmented by a random translation/scale/rotation. We report the performance of this transfer in
Table 6. Results show, again, how a simple but appropriate architectural inductive bias such as
Average Pooling can modify the extrapolation behavior of a model on an unseen target domain.
Interestingly, when this positive bias is used, DANN brings further improvement over SO, while
without global pooling, DANN performs even worth than SO.

Dropout Srivastava et al. (2014) is a simple yet very effective technique to regularize the capacity
of neural networks by setting activations to zero with some probability p during training. This
avoids co-adaptation of neurons and performs implicit model averaging. As dropout is ubiquitous
in standard classification to increase generalization, we would like to measure its contribution to
domain-invariance. To do so, we run all experiments of Table 4 again with and without dropout in
the penultimate layer. We noticed that the impact of dropout was not the same depending whether
pre-training is applied as well or not. We therefore gather in Table 7 a detailed sets of results
(with/without dropout and with/without pretraining). Comparison with the non-dropout baseline
shows a negligible impact in both non-pretrained and pre-trained cases.

M→ MT SO DANN

NoGlobalAvgPool 0.51 0.48
GlobalAvgPool 0.8 0.95

Table 6: Source only accuracies for two different encoder architectures; M=MNIST, MT=MNIST
with random translation/scale/rotation augmentation
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no pretraining

SO DANN

M→ MM 0.17 / 0.13 0.63 / 0.7
MM→ M 0.98 / 0.98 0.98 / 0.985

S→ M 0.65 / 0.65 0.71 / 0.74
M→ S 0.07 / 0.07 0.1 / 0.1
P→ Sk 0.15 / 0.17 0.21 / 0.22
P→ C 0.17 / 0.175 0.26 / 0.26
P→ A 0.23 / 0.23 0.22 / 0.22

with pretraining

SO DANN

M→ MM 0.6 / 0.7 0.99 / 0.98
MM→ M 0.98 / 0.98 0.98 / 0.984

S→ M 0.83 / 0.8 0.88 / 0.91
M→ S 0.25 / 0.22 0.15 / 0.14
P→ Sk 0.42 / 0.43 0.6 / 0.6
P→ C 0.22 / 0.22 0.67 / 0.67
P→ A 0.58 / 0.595 0.76 / 0.77

Table 7: Target accuracy without / with dropout; Left table: Non-pre-trained Right ta-
ble: Pre-trained; P=PACS-Photo, A=PACS-Art-Painting, Sk=PACS-Sketch, C=PACS-Clipart,
M=MNIST, MM=MNIST-M, S=SVHN

5 Optimization of Inductive Biases

So far, we have looked for inductive biases controlled by a fixed set of hyperparameters. Although
some of them, like pre-training, seem to provide a steady increase in target accuracy, there is no
principled way to determine how such design choices should be chosen, adjusted and combined to
address a given transfer in the general case. Moreover, there is no guarantee that fixed priors and
assumptions produce an optimal solution.

In this section, we will explore several methods that add a degree of flexibility to the model
by enabling optimization of parametric inductive biases. This optimization can be either heuristic
or designed to minimize the actual objective (target risk). In the latter case, we fall in the meta-
learning case.

5.1 Choosing Augmentation Parameters by Optimizing a Proxy Objec-
tive

In the usual domain adaptation experimental setting, the true objective cannot be computed nor
optimized directly, as target labels are not available. Therefore, we must choose a proxy objective
according to which our hyperparameters controlling the inductive bias can be optimized. The SDA
method (Ilse et al., 2020) falls within this category: it aims at learning the augmentation parameters
leading to the best adaptation between a pair of domains. Given a set of augmentation functions
(e.g., random rotation, gaussian blur, color jitter, etc.), SDA greedily chooses the augmentation
function that maximizes domain confusion. It does so by training a classifier to distinguish between
the two augmented domains and select the augmentation for which the accuracy is minimal (i.e.
domain confusion is highest). The process is then repeated with all the remaining augmentations,
composed with the previous one and so on until a stopping criterion is met. At test time, we
train the model on the source domain augmented with the final chain of chosen augmentations and
evaluate the performance on the target domain.

To study the soundness of this proxy objective, we evaluate in Figure 4 the domain confusion
induced by 4 augmentation types (random rotation, random color jitter, gaussian noise and random
crop) on 5 transfers. For each experimental configuration (augmentation function, transfer), we
gradually increase the parameter controlling the augmentation intensity from its minimal value
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Figure 4: Increase in domain-confusion and class-confusion for a set of transfers and augmentations.
Despite the increase of the augmentation parameter, a simple ResNet-18 model easily manages
to distinguish the domains perfectly. As a sanity check, we also provide the source class as a
measurement of image corruption.

(corresponding to the application of no augmentation) towards its maximum value. For example,
in the case of rotations, we span from ±0◦ to ±180◦. For each degree of intensity, we report domain
classification accuracy as a measure of confusion, and class accuracy on source as a measure of how
the augmentation removes the useful class information.

Except for the pacs-photo to pacs-painting transfer, in which we observe a slight decrease in
domain classification accuracy as the augmentation becomes too severe, the domains can be per-
fectly distinguished with a simple pre-trained ResNet-18. However, we observe a consistent drop in
classification accuracy in most transfers.

To facilitate the emergence of domain confusion, we tried to weaken the domain classifier by
using the older AlexNet architecture and SGD instead of Adam and report the results in Figures
5 and 6. We observed that for those regularized classifiers, domain classification remains trivial
even on heavily corrupted images. However, the class accuracy is significantly lower than with
ResNet-18.

Our conclusions on SDA is twofold: 1) the domain classification accuracy given by a deep model
is not a reliable criterion for measuring confusion, as augmented source and target distributions do
not overlap. 2) the heuristic chosen by SDA to choose the right set of augmentations do not have
any consideration for the corruption of relevant class information, and hence does not lead to a
dependable increase in target accuracy.
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Figure 5: Same experiment than in figure 4, but with an AlexNet trained by Adam
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Figure 6: Same experiment than in figure 4, but with an AlexNet trained by SGD
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5.2 Meta-Learning

5.2.1 Formalism and definition

Meta-learning, or ”learning to learn”, is a recent trend in machine learning that aims at learning the
inductive bias from data itself, by directly optimizing the purpose it should serve. In this section,
we propose to meta-learn a parametric inductive bias that helps better transfer some given domain
shift, namely the initial weights of the network.

We define a task T as a N -way classification problem with its corresponding training set T train
and test set T test. A meta learning model defines an inner learning procedure that aims at solving
any task T sampled from a task distribution p(T ), which means that, on average, for any T ∼ p(T ),
it should display a good performance on the test set after training itself on the training set. Indeed,
tasks from p(T ) are assumed to share some common information to justify the learning of a common
inductive bias. A meta-learning model is defined by two sets of parameters θ and Φ:

• θ, also called ”fast weight” contains the parameters that are specific to the learning of a task
Ti provided on-the-fly, That means that it is authorized to be trained into θi after observing
the task training data T traini . θi is obtained during an imposed heuristic called ”inner-loop
training”. In practice, we may initialize θ from only Φ and/or a random source of information
and then train θ into θi.

• Φ is the task-agnostic parameter, also called ”meta parameter” or ”slow weight” : it embeds
the common information shared among all T ∼ p(T ). It is not allowed to change when a
specific Ti is provided, but it is meta-optimized to a fixed value that maximizes expected
performance of (θi,Φ) on every Ti. This process is called ”meta-optimization” or ”outer-loop
training”.

We can sum-up the key principles of meta-learning by the following two equations :

Φ? = argmin
Φ

E
Ti∼p(T )

[L(θi,Φ, T testi )]

θi = innerloop(Φ, T traini )

Any prototype of meta-learning model can hence be defined by a parametrization of θ, Φ,
some functional innerloop and a loss function L. We expect a clever meta-learning design to
beat on average any heuristic optimization/regularization on Ti once meta-trained. However, to
demonstrate its usefulness, a meta-learning method must be trained on tasks Ti that are different
from test tasks. We therefore define two sets of tasks that are mutually exclusive, called ”meta-
training” and ”meta-test” sets. We hope that some Φ? that is optimal for the meta-train set will
also optimal on the meta-test set. Similarly to standard machine learning, there is a risk of ”meta-
overfitting” (Rajendran et al., 2020) on meta-training tasks that we must mitigate, for example by
increasing the diversity of meta-training tasks, or by choosing a clever parametrization of θ and Φ.

5.2.2 Application of Mela-Learning to Domain Adaptation

Early works on meta-learning focused on few-shot learning problems, which is an extreme case of
standard generalization. However, meta-learning is an extremely flexible framework that we can
apply to any scenario, including domain adaptation.

We propose to use meta-learning to maximize the target-domain performance of a ”Source-
Only” training. In other words, for any task Ti, we set T traini = S and T testi = T . During its
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inner loop, the model will hence optimize θi by exploiting samples from the source domain, and
will be meta-optimized so that the tuple (Φ, θi) performs well on the same classification task, but
on the target domain. We favor the Source-Only setting for its simplicity and flexible experimental
conditions. Indeed, it does not require unlabeled target samples during inner-loop training. Note
that several other meta-learning methods for domain adaptation do not use the Source-only setting
for their inner loop (Wei et al., 2021). We now describe in detail the two parts of our meta-learning
method.

Inner loop : We use the same parametrization than MAML (Finn et al., 2017) : the goal is to
meta-train the initialisation θ0 of a chosen neural network architecture, so that K gradient descent
steps from this initialization computed on T traini lead to a final parameter θK = θi that performs
well on the target domain.

To catch up with the formalism presented in part 5.2.1, we can consider the equivalence Φ = θ0

and θi = θK .
Outer loop optimization : To optimize θ0 into θ0?, we unroll the full graph of derivatives of

innerloop, evaluate the meta-objective, compute the gradient of this objective w.r.t. θ0 and finally
perform a gradient descent step on θ0. We repeat this process until convergence to θ0?.

Algorithm 1 MAML-2DOM

Require: γ: inner learning rate, η: outer learning rate, S source domain, T target domain, YMTrain

set of all meta-training classes
for 0 ≤ i < niters do
YTi ← sample 10 classes(YMTrain)
T traini ∼ get samples of said classes(S, YTi

)
T testi ∼ get samples of said classes(T, YTi

)
θ ← θ0

for 0 ≤ j < K do

θ ← θ − γ ∂L(θ,T train
i )

∂θ
end for
θ0 ← θ0 − η ∂L(θ,T test

i )
∂θ0

end for

Definition of meta-train and meta-test sets : Until now, our training loop is identical
to the one proposed by Li et al. (2018). However, we still have to define exactly what will be
our meta-train set and, most importantly, to which meta-test set of tasks we expect our learned
inductive bias to generalize. There are several possibilities :

• The algorithm of Li et al. (2018) solves a problem of multi-source domain generalization with
meta-learning. In this setting, we have P − 1 source domains and only 1 target domain. In
this case, to build a meta-train task, we select 2 source domains among the P − 1, and use
them as T train and T test. Only one task is evaluated in meta test : it uses the union of
the P − 1 source domains as T train and the unique target domain as T test. Note that the
same classes are used during meta-training and meta-testing. In this case, meta-training is
exploited as a means of cleverly merging the information from different source domains to
better solve the same task on an unseen target domain.

• In our contribution, we address a totally different use-case. We have only two domains from
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which we can sample tasks. In these domains, we have P meta-training classes and Q meta-
testing classes. To build a meta-training task, we choose N classes among the P , and define
T train, T test as the sets of samples from domain 1 (resp. from domain 2) belonging to these
classes. To build a meta-test task, we proceed similarly, but by picking among the Q meta-test
classes instead. Here, the goal is to learn an inductive bias that implements the ability to
transfer from one fixed domain to another fixed domain regardless of the classes encountered
in the task. This has a strong connection with the discussions of section 4. We define this
training and evaluation setting by the acronym MAML-2DOM.

The two nested training loops of MAML-2DOM are summarized in pseudo-code in Algorithm 1.

5.2.3 Experiments

Dataset: To satisfy the experimental setting described above, we use images from the VisDA
dataset. VisDA is a dataset that includes 6 domains and subsequent domain shifts of varying
difficulty : ”Real”, ”Painting”, ”Sketch”, ”Quickdraw”, ”Clipart” and ”Infograph”. All domains
contain the same 345 classes. Hence, making this dataset ideal to synthesize various transfer tasks.
In our experiments, we define the first 200 classes as meta-training classes and the remaining 145
classes as meta-test classes. All tasks are 10-way classification problems.

Training MAML-2DOM: Given a pair of domains S and T chosen in VisDA, we meta-
train an instance of MAML-2DOM to solve this transfer, and this transfer only. To do that, we
generate tasks by sampling 10 classes among the 200 meta-train tasks, simulate inner source-only
trainings from the source samples, measure the loss on target samples and minimize it w.r.t. the
meta-parameter until convergence.

Implementation details: Training a meta-learning model can be costly in terms of memory
and compute. Indeed, we must unroll and store the whole graph of derivatives at each realization
of the inner loop. To save compute and memory, we propose to reduce considerably model size
by avoiding working directly on image space. Indeed, doing so requires the use of a deep convo-
lutional architecture, involving many operations and storing high-dimensional feature maps during
the inner loop. We rather define the meta-model on top of a feature space produced by the pre-
trained ResNet-18, that are assumed to be informative enough to solve our downstream tasks. We
can therefore 1) pre-encode the whole VisDA database into features and 2) use a smaller model
architecture : in our case a perceptron with two hidden layers.

Baselines: To demonstrate the superiority of our approach based on learned inductive bias, we
must compare it to several reference baselines. Unless otherwise specified, these baselines also use
the same architecture and work on the same pre-trained feature space.

• Random initialization (Random): A classifier initialized with the standard random initializa-
tion, that is then trained on source-domain samples of the 10-way task.

• Pre-training followed by fine-tuning (PT+SO): Random initialization might not be a fair
baseline, as it could not exploit labeled information from the 200 meta-train classes from both
domains. We hence propose to pre-train the classifier model to solve the 200-way classification
problem for both meta-train domains simultaneously, then replace the last layer and fine-tune
on the downstream 10-way test task.

• DANN: We perform the 10-way transfer with both labeled source images and unlabeled target
images, we add the DANN adversarial constraint in the classifier to enhance transferability.
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Random+SO Pretrain+SO DANN Pretrain+DANN CAN ASAN MAML-2DOM

real→quickdraw 0.185 ± 0.036 0.197 ± 0.053 0.191 ± 0.033 0.300 ± 0.082 0.28 ± 0.033 0.26 ± 0.023 0.542 ± 0.010

real→painting 0.708 ± 0.065 0.641 ± 0.065 0.731 ± 0.067 0.728 ± 0.050 0.50 ± 0.051 0.61 ± 0.043 0.767 ± 0.009

real→sketch 0.501 ± 0.053 0.447 ± 0.043 0.536 ± 0.054 0.576 ± 0.082 0.58 ± 0.063 0.68 ± 0.016 0.681 ± 0.015

real→clipart 0.620 ± 0.059 0.543 ± 0.061 0.656 ± 0.082 0.640 ± 0.071 0.62 ± 0.054 0.70 ± 0.033 0.746 ± 0.008

real→infograph 0.359 ± 0.086 0.313 ± 0.032 0.446 ± 0.067 0.415 ± 0.062 0.34 ± 0.027 0.71 ± 0.017 0.502 ± 0.005

Table 8: Average target accuracies and standard deviations for 10-way domain adaptation test
tasks, computed over 10 runs; we outline best performance in bold

• Pre-training followed by DANN (PT+DANN): We combine pre-trained initialization and
DANN training. Note that none of the transfers we build are prior-shifted as we use artificially
balanced source and target batches, and that in all cases, we favor the baselines by choosing
on it the best optimizer, learning rate and number of fine-tune iterations.

• CAN and ASAN (Kang et al., 2019; Raab et al., 2020) are state-of-the-art single-source domain
adaptation methods. We use the default implementation provided by the authors : those
methods hence work directly on image space. Note that when using their respective codebases,
we nonetheless choose the pre-trained ResNet extractor and perform hyperparameter tuning
to improve on our VisDA experiments.

We favor the baselines as much as possible by doing hyperparameter search on optimizer, learning
rate and number of training iterations during fine-tuning.

Results : We study the transfers from ”Real” towards any of the 5 other domains and display
our results in table 8. Except for the transfer real→infograph, the corresponding MAML-2DOM
beats all baselines by a large margin, especially on real→quickdraw, that is peculiarly difficult and
on which the descriptors from ResNet-18 does not seem to transfer well, necessitating a correction
from the subsequent classifier through a learned inductive bias. Concerning baselines, DANN
generally provides an improvement of several percents compared to Source-Only both in the pre-
trained and non-pre-trained cases. Those gains, however, are not comparable to those brought by
MAML-2DOM. Last, pre-training the classifier on the full 200-way meta-train task does not seem
to improve over random initialization.

6 Conclusion

In this paper, we pursued the analysis from Zhao et al. (2019); Johansson et al. (2019) to defend
a meta-learning approach for unsupervised domain-adaptation. As a starting point, we consider
the following question. How much of the success of deep domain alignment approaches can be
unraveled through theoretical upper-bounds from domain adaptation theory. Despite their appeal-
ing prospects and their prescriptive significance in terms of modern approaches, a no-free-lunch
theorem can be stated which invalidates a universal benefit of the domain alignment strategy. This
surprising fact calls for a refined analysis of the key ingredients of successful domain alignment
transfers.

We therefore investigate the role of various inductive biases to give a more appropriate account
of the situation. We illustrate four kinds of inductive biases ranging from those inherent to the align-
ment approach itself to more generic ones such as the network architecture or data augmentation.
In particular, the role of pretraining on a general purpose database such as imagenet is insidious
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for several reasons. First, without this step, current alignment methods often fail which suggests
that pre-training helps moving the supports of source and target distributions to a close match
from which alignment methods can catch up. It appears nonetheless that the role of pretraining is
sometimes more tangled as was evidenced by our kNN classifier experiment. In a nutshell, in such
situations it is the combined effect of pretraining and source-driven optimization biases that are
responsible for successful alignment.

The latter evidence motivated our search for efficient ways to design good inductive biases in a
principled way. We have conducted an illustrative experiment in which we meta-learned parametric
inductive biases that perform better than usual domain-adaptation heuristics on a given transfer.
Given the impact of pre-training indicated by our former analysis, we proposed to meta-learn the
initialization of the network. Although this choice revealed very effective in our set of experiments,
it is not the only meaningful avenue. For instance, it is also possible to approach meta-learning on
a regularization perspective or an optimization one. We hope to see more future work exploring
this direction. On a closing note, we would like to point out that if our analysis sheds some light
on the inner working of domain alignment, it is only in an empirical way: much remains to be done
on the theoretical counterpart.
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