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Introduction

Gelatin, a transparent animal-derived biopolymer in its sensu stricto appellation [START_REF] Di Giuseppe | Gelatins as rock analogs: A systematic study of their rheological and physical properties[END_REF], has been used as an analog of the crust and lithosphere, in a wide range of laboratory experiments [START_REF] Reber | What model material to use? a review on rock analogs for structural geology and tectonics[END_REF]. It has proven useful to study the seismic cycle in subduction zones [e.g. 3], the deformation of the upper crust around magma storage zones [e.g. [START_REF] Mcleod | The growth of dykes from magma chambers[END_REF][START_REF] Canon-Tapia | Dyke nucleation and early growth from pressurized magma chambers: Insights from analogue models[END_REF] or magma transport through either open conduits [e.g. 6] or magma-filled cracks [e.g. [START_REF] Fiske | Orientation and growth of hawaiian volcanic rifts: the effect of regional structure and gravitational stresses[END_REF][START_REF] Takada | Experimental study on propagation of liquid-filled crack in gelatin: Shape and velocity in hydrostatic stress condition[END_REF][START_REF] Mcleod | The growth of dykes from magma chambers[END_REF][START_REF] Muller | Effects of volcano loading on dike propagation in an elastic half-space[END_REF][START_REF] Rivalta | Buoyancy-driven fracture ascent: Experiments in layered gelatine[END_REF][START_REF] Menand | Dyke propagation and sill formation in a compressive tectonic environment[END_REF][START_REF] Kavanagh | Challenging dyke ascent models using novel laboratory experiments: Implications for reinterpreting evidence of magma ascent and volcanism[END_REF][START_REF] Maccaferri | On the Propagation Path of Magma-Filled Dikes and Hydrofractures: The Competition Between External Stress, Internal Pressure, and Crack Length[END_REF]. A physical understanding of the Earth can be gained from analog experiments provided that they are geometrically, kinetically and dynamically scaled [START_REF] Hubbert | Theory of scale models as applied to the study of geologic structures[END_REF].

As a consequence the physical and rheological characterization of the gelatin has been addressed by numerous studies in Earth Sciences [e.g. [START_REF] Di Giuseppe | Gelatins as rock analogs: A systematic study of their rheological and physical properties[END_REF][START_REF] Van Otterloo | Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF] as a complement to work done in the food industry [e.g. 17].

Gelatin has been shown to behave in its gel-like state as a visco-elastic medium, which makes it particularly appropriate for tectonic studies [START_REF] Di Giuseppe | Gelatins as rock analogs: A systematic study of their rheological and physical properties[END_REF]. The balance between the viscous and elastic behavior has been investigated by measuring the storage (G') and the loss (G") moduli over a broad range of deformation rates. This balance depends mainly on gelatin concentration, temperature and aging [START_REF] Di Giuseppe | Gelatins as rock analogs: A systematic study of their rheological and physical properties[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF][START_REF] Van Otterloo | Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications[END_REF]. If prepared with a concentration between 2 and 5 wt %, gelatin behaves elastically at low temperatures (6-14 • C) for time scales up to a few hours [START_REF] Di Giuseppe | Gelatins as rock analogs: A systematic study of their rheological and physical properties[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF][START_REF] Van Otterloo | Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications[END_REF]. The main focus of the present study is the characterization of gelatin elastic behavior during fluid-filled crack propagation experiments, with application to the study of magma transport through the crust.

Elastic behavior of gelatin can be characterized by its Poisson's ratio ν and its Young's modulus E. Poisson's ratio of gelatin is generally assumed to be 0.5, which means that gelatin is incompressible [START_REF] Farquharson | Gelatin models for photoelastic analysis of stress in Earth masses[END_REF][START_REF] Crisp | The use of gelatin models in structural analysis[END_REF]. Slightly smaller Poisson's ratio with values around 0.45 for gelatin concentration greater than 3 wt % were measured by van Otterloo and Cruden [START_REF] Van Otterloo | Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications[END_REF] but the values they obtained for smaller concentration were unrealistic [START_REF] Van Otterloo | Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications[END_REF]. Pansino and Taisne [START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF] inferred a value larger than 0.47 with a 2.7 wt % concentration. Because these values are very close to 0.5, we will further consider gelatin as an incompressible medium. In contrast, crustal rocks generally have a Poisson's ratio around 0.25. The Young's modulus can be derived from the limit of the storage modulus G' when the frequency tends to infinity and thus measured on small samples of gelatin with a rheometer [START_REF] Di Giuseppe | Gelatins as rock analogs: A systematic study of their rheological and physical properties[END_REF]. However this method is destructive and limited to a reduced size sample. The gelatin Young's modulus increases with the gelatin concentration and decreases with the temperature. It also depends on the gelatin composition, on the preparation protocol and on the cooling history [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF]. It might sometimes be useful to add salt to the gelatin in order to slightly increase its density and improve the scaling in specific conditions [START_REF] Acocella | Dike propagation driven by volcano collapse: a general model tested at Stromboli, Italy[END_REF][START_REF] Kavanagh | An experimental investigation of sill formation and propagation in layered elastic media[END_REF][START_REF] Ritter | Conditions and threshold for magma transfer in the layered upper crust: Insights from experimental models[END_REF]. In particular, when attempting to model viscous effects on magma propagation, the use of salted gelatin is required in order to guarantee a sufficient buoyancy of the oils injected inside the gelatin. Brizzi et al. [START_REF] Brizzi | Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling[END_REF] have shown that the addition of salt dramatically affects not only material behavior, but also gel structure stability. Adding salt induces a decrease of both the Young's modulus and the viscosity, an increase of the time required for cooling down to a stable state and it tends to promote the elastic behavior compared to the viscous one. They also noted that the transparency might be reduced by salt addition and that the mechanical properties become highly sensitive to the preparation protocol such that it is more difficult to control the reproducibility of the experiments. Due to the complex behavior of the gelatin and the variability of experimental conditions, it is recommended to quantify the Young's modulus associated with each gelatin tank, which requires the use of non destructive and in situ measurements. The Young's modulus of crustal rocks can be measured in the laboratory by means of uniaxial strain-stress experiments [START_REF] Heap | Towards more realistic values of elastic moduli for volcano modelling[END_REF]. However, interpolating laboratory measurements on small rock samples to infer the Young's modulus value at depth and the crustal behavior is not trivial. The main issues in laboratory experiments are related to the scaling and use of non-fractured samples at low pressure and temperature that may not reflect the "in situ" conditions at depth in the crust. There are basically two ways of quantifying the in-situ crustal Young's modulus: either using the surface displacement induced by surface loading or unloading events [START_REF] Beauducel | Constraints on magma flux from displacements data at Merapi volcano, Java, Indonesia[END_REF][START_REF] Grapenthin | Icelandic rhythmics: Annual modulation of land elevation and plate spreading by snow load[END_REF][START_REF] Pinel | Discriminating volcano deformation due to magma movements and variable surface loads: application to Katla subglacial volcano, Iceland[END_REF], often referred to as a "static" estimation, or using seismic wave velocities derived from local tomography surveys [START_REF] Currenti | Modelling of ground deformation and gravity fields using finite element method: an application to Etna volcano[END_REF][START_REF] Wauthier | Magma sources involved in the 2002 Nyiragongo eruption, as inferred from an InSAR analysis[END_REF], often referred to as "dynamic" estimation. A systematic discrepancy has been evidenced between the dynamic and static Young's moduli. For rocks, the dynamic Young's modulus is always larger by a factor which depends on the porosity [START_REF] Cheng | Dynamic and static moduli[END_REF][START_REF] Adelinet | Frequency and fluid effects on elastic properties of basalt: Experimental investigations[END_REF].

For gelatin in a tank, the most commonly used in-situ and non-destructive method is based on surface loading. It consists of measuring the vertical displacement induced by a circular load applied at the surface and inverting for the Young's modulus using an analytic formula for a circular rigid load applied on an infinite half-space [e.g. [START_REF] Menand | The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An experimental approach[END_REF][START_REF] Menand | Dyke propagation and sill formation in a compressive tectonic environment[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF][START_REF] Daniels | An experimental investigation of dyke injection under regional extensional stress[END_REF][START_REF] Gaete | The impact of unloading stresses on post-caldera magma intrusions[END_REF]. Due to the assumption of an infinite medium, the diameter of the load should be smaller by a factor of ten than the smaller dimension of the tank (either vertically or laterally) [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF].

However, gelatin tanks used for experiments are usually of limited size mainly to ensure a volume which is manageable to produce. It follows that instrumentalists always have to be cautious of boundary effects. One way to account for the rigid boundaries at the box walls consists in using numerical models to infer the actual state of stress within the gelatin [e.g. 11]. For instance, Corbi et al. [START_REF] Corbi | Understanding the link between circumferential dikes and eruptive fissures around calderas based on numerical and analog models[END_REF] calculated the state of stress inside their gelatin tank using a 2D-axisymmetric Finite Element Model (FEM) in order to interpret the crack path observed in experiments. Pinel et al. [START_REF] Pinel | A two-step model for dynamical dike propagation in two dimensions: Application to the july 2001 etna eruption[END_REF] improved the estimate of the stress field acting within the gelatin tank previously used by Watanabe et al. [START_REF] Watanabe | Analog experiments on magma-filled cracks: Competition between external stresses and internal pressure[END_REF] to quantify the influence of the external stress field on the fluid-filled crack path. This was done by computing the stress field induced by a surface load using a 3D numerical simulation, taking into account the geometry of the tank and the geometry of the load, and by comparing it to the analytical solution previously used. In the same way, Maccaferri et al. [START_REF] Maccaferri | On the Propagation Path of Magma-Filled Dikes and Hydrofractures: The Competition Between External Stress, Internal Pressure, and Crack Length[END_REF] computed both the local stress field and the surface displacement induced by a load of given size, accounting for the rigid boundaries of the box and used this information to obtain an accurate value of the Young's modulus for gelatin tanks.

More recently, Pansino and Taisne [START_REF] Pansino | How Magmatic Storage Regions Attract and Repel Propagating Dikes[END_REF][START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF] proposed to derive the Young's modulus from the propagation velocity of shear waves. They took advantage of gelatin being a birefringent photo-elastic material. Its refractive index varies with the stress applied such that, using a pair of polarizing filters enables to visualize the deviatoric stress and track the propagation of shear waves within the gelatin. This method can be thought of as the equivalent of crustal Young's modulus estimations from seismic waves. The results were compared with estimations made using the static loading method and showed to be in good agreement [START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF]. In addition, Pansino and Taisne [START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF] proposed that the shear wave method could potentially be used to quantify any variations of the Young's modulus inside the tank.

Experiments of fluid-filled crack propagation also require the characterization of the brittle behavior of the gelatin. A key parameter is the fracture toughness. Crack propagation will only occur once the stress intensity factor at the tip, which depends on the applied stress and the shape of the crack, exceeds the fracture toughness of the surrounding medium. The fracture toughness K c is linked to the Young's modulus by the following equation expressed by Griffith [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF]:

K c = 2γ s E, (1) 
with γ s the surface energy of the solid, which for gelatin is estimated around [START_REF] Menand | The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An experimental approach[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF]. This relationship is often used to derive the fracture toughness but it should be kept in mind that the value of γ s is expected to depend on the gelatin composition and might be different when salt is added [START_REF] Kavanagh | An experimental investigation of sill formation and propagation in layered elastic media[END_REF]. Alternatively, the fracture toughness can be quantified by measuring the pressure required to propagate a pre-existing fluid-filled crack [START_REF] Menand | The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An experimental approach[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF].
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Another method consists in retrieving the stress intensity factor of propagating cracks for various velocities of propagation: the fracture toughness is then given by the limit of the stress intensity factor when the propagation velocity tends to zero [START_REF] Heimpel | Buoyancy-driven fracture and magma transport through the lithosphere: models and experiments[END_REF].

In the current study, we further detail how numerical simulations may improve the determination of gelatin Young's modulus by surface loading.

In particular, we provide an accurate estimate of the error resulting from using the analytical formula when deriving the Young's modulus by surface loading. We also compare Young's modulus obtained by surface loading to values derived by the shear wave velocity method. Then, Young's modulus estimates are used to derive a calibration of the relation between the injected volume and the crack length in case of air-filled cracks. We thus provide a new method for Young's modulus estimation. Finally, we characterize the fracture toughness of the gelatin to quantify the effects of adding salt to gelatin on its brittle behavior. heating or freezing, respectively [START_REF] Di Giuseppe | Gelatins as rock analogs: A systematic study of their rheological and physical properties[END_REF]. Following Brizzi et al. [START_REF] Brizzi | Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling[END_REF]'s protocol, in order to add salt to the recipe, we first dissolved the salt in hot water, then we used the salty water to dissolve the gelatin granules, as previously described.

Methods

Laboratory technique
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It is important to first dissolve the salt and then the gelatin granules to avoid the precipitation of the peptide chains and to preserve the transparency of the solid.

To prevent the formation of a tough "skin" on the gelatin surface caused by water evaporation, a thin layer of vegetable oil was poured on top of the gelatin (salted and unsalted) before placing it into the fridge. The oil was removed before starting the experiments.

The gelatin density was computed as the ratio between its mass and the volume. Using a graduated cylinder, we measured a volume of 50±1 mL of liquid gelatin and weight it with a gram-accurate scale. Density of unsalted and salted (15 wt %) gelatin were estimated to 1020±40 kg.m -3 and 1120±40 kg.m -3 , respectively. Although, we have a quite large formal abso-lute error due to the poor scale resolution, we obtain very good reproducibility in our measurements from one tank to another. We checked that density changes due to cooling and solidification were negligible by repeating density measurements at different temperatures, and checking that the gelatin level in the tank did not change after solidification.

Experimental setup and recordings

We used three different plexiglas tanks: a cylindrical one with a diameter of 14.3 cm and a height of 30 cm and two cuboids with dimensions L × l × H of 13.9 cm×13.9 cm×24 cm for the smaller one and 40 cm×20 cm×25 cm for the larger one. The larger tank corresponds to the one used for experiments described by Maccaferri et al. [START_REF] Maccaferri | On the Propagation Path of Magma-Filled Dikes and Hydrofractures: The Competition Between External Stress, Internal Pressure, and Crack Length[END_REF] (see Fig. 1). The height of gelatin was usually close to 20 cm (see Tab. In order to measure the gelatin Young's modulus by static deformation, the gelatin surface was loaded with rectangular (6×14 cm) or circular shapes (with diameters ranging from 2 to 4 cm) and masses ranging from 3 g to 331 g.

With the corresponding pressure range, we induced surface displacement large enough to be accurately measured, without damaging the gelatin. We used a digital caliper, whose accuracy is 10 -2 mm, to measure the subsidence.

We fixed the caliper to a rigid support on the top of the tank (Fig. 1c). We measured the distance to the gelatin surface without load d 1 and the distance to the top of the load d 2 . Knowing the load thickness e, we can derive the vertical surface displacement u induced by the load (Eq. 2):

u = d 2 + e -d 1 (2) 
The main limitation to the measurement accuracy comes from the ability of experimentalists to use the caliper without deforming the gelatin surface while measuring the subsidence. To reduce the uncertainties, we repeated the measurements for each tank at least three times using the same load until getting 3 values less than 0.2 mm apart, and when possible, we used several loads with increasing mass. In order to estimate the gelatin Young's modulus by measuring the shearwaves propagation velocity, we added polarizing filters on both the front and back sides of the tank. Following Pansino and Taisne [START_REF] Pansino | How Magmatic Storage Regions Attract and Repel Propagating Dikes[END_REF][START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF], we excited the gelatin surface with a spoon, and we recorded the shear wave propagation with the front camera. Using the open source software TRACKER [START_REF] Kavanagh | Challenging dyke ascent models using novel laboratory experiments: Implications for reinterpreting evidence of magma ascent and volcanism[END_REF], we measured the propagation velocity (Fig. 2). For each tank, we performed velocity measurements on several wave trains by manually picking the propagation front on at least 4 to 5 successive images. Then we computed the mean velocity and the standard deviation associated to each tank.

In order to study the fluid-filled crack propagation, we used a syringe to inject a finite volume of air from some holes at the bottom of the tank. The fracture orientation was controlled by carefully orienting the needle used for the injection. No slit was needed, we let the air create its own fracture. On the bottom of the larger rectangular tank, 15 holes with 2 cm in between allow to perform several injections into the same gelatin. Three perpendicular cameras recorded the fluid-filled crack shape and path. Two spotlights illuminated the tank from the back and right sides (Fig. 1). Videos subsampling was done with the video editing and open source software Shotcut [START_REF] Heycke | Screen recordings as a tool to document computer assisted data collection procedures[END_REF].

The software TRACKER was used to measure the length L of the air-filled cracks and to extract the path and the velocity of the crack. When all injections were completed in a tank, we took several pictures of a ruler at the location of the cracks in order to measure the calibration factor F needed to scale the videos. The crack length L was computed as L = F × L . Thus, the statistical error on the crack length is given by:

σ L L = σ F F 2 + σ L L 2 ( 3 
)
Where σ is the standard deviation. Given that σ F F = 0.024 and

σ L L = 0.026,
we obtain σ L L =0.035.

Numerical simulations

In order to take into account the finite size of the tank and the exact shape and size of the circular load, we use a 3D FEM to compute the surface displacement induced by the applied load. Numerical simulations are performed with the commercial software COMSOL [START_REF] Multiphysics | Introduction to comsol multiphysics®[END_REF] applying a zero displacement condition to the lateral and bottom boundaries of the gelatin to reproduce the adherence of the gelatin to the tank walls. We use a mesh made of about 330,000 tetrahedral units, refined in a vertical plane centered below the load as well as on the upper surface around the load (minimum size of the mesh was set to 2 mm). The upper surface is considered as a free surface except where the load is applied. To simulate the loading, the easiest boundary condition to be considered would be a constant pressure

P Load = 4m L g πD L (4) 
with g the standard acceleration due to gravity and m L the load mass applied on the circular surface of diameter D L (Fig. 3a). We will refer to this condition, as the "uniform pressure condition". However, this boundary condition is not fully satisfactory as rigid loads are applied to the surface inducing a uniform vertical displacement below the load. To better reproduce this condition we simulate a thin (thickness e p ) rigid plate characterized by a large Young's modulus E p . On the upper surface of this plate we apply the pressure P Load . We also apply a condition of zero horizontal displacement to the lateral edge of this rigid plate (Fig. 3b). We will refer to this condition as the "rigid load condition". We set the values of E p and e p to 10 9 Pa and 4 mm respectively, to ensure a uniform vertical displacement below the applied load. As a theoretical value of 0.5 for the Poisson's ratio cannot be handled numerically, we set it to 0.49.

We compare the simulations using constant pressure and rigid load in similar conditions. We also run a set of simulations for a given load, increasing the box size.

Additionally, several studies [START_REF] Daniels | An experimental investigation of dyke injection under regional extensional stress[END_REF][START_REF] Le Corvec | Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: an experimental approach[END_REF], have presented an experimental setup where gelatin is in contact with water on two lateral sides and detached from the other two sides of the tank. In order to discuss the influence of such a specific setup, we also applied another set of lateral conditions with a free surface on the two proximal lateral sides and a roller condition (zero displacement in the direction perpendicular to the tank wall) on the distal lateral sides (Fig. 3c).

3. Young's modulus determination by surface loading

Validity domain of the analytical solution

The relationship between the vertical surface displacement (U z ) beneath a rigid load of mass m L applied to the surface of a half-space is given by the analytical formula (see Timoshenko et al. [START_REF] Timoshenko | Theory of elasticity[END_REF]):

U z = m L g(1 -ν 2 ) D L E , (5) 
where D L is the load diameter. This method has been followed by most analog modelers to estimate the Young's Modulus of gelatin [e.g. [START_REF] Menand | The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An experimental approach[END_REF][START_REF] Menand | Dyke propagation and sill formation in a compressive tectonic environment[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF][START_REF] Daniels | An experimental investigation of dyke injection under regional extensional stress[END_REF][START_REF] Gaete | The impact of unloading stresses on post-caldera magma intrusions[END_REF]. However, assuming an infinite half space, such formula may introduce an error. This error was reported to remain small providing that the tank minimum size is ten times larger that the load diameter [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF]. This estimation was derived from a correlation study between the Young's modulus estimate and the ratio of the load versus tank dimensions [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF]. As the tank size is usually limited for practical reasons, this condition might be difficult to fulfill, in particular, because the load applied should be large enough to ensure significant displacement and it should be applied over an area large enough to avoid damaging the gelatin. In our case, even with our largest cuboid tank, the tank minimum dimension is indeed only five times larger than the load we applied. In order to quantify the error performed when using Eq. 5 as a function of the tank size, we compare the surface displacement calculated from the numerical simulation with the one predicted by the analytical formula.

Numerically, we apply a circular load (mass m = 8 g and diameter D L = 40.04 mm) to the center of our largest rectangular tank and we progressively multiply the tank size by a factor f up to 80. Calculations are done both for the uniform pressure condition (Fig. 3a) and the rigid load condition (Fig. 3b)

with gelatin adhering to the tank walls. The gelatin Young's modulus is set to 1000 Pa. Displacement profiles are shown in Fig. 4. As expected, the uniform pressure solution (dashed lines in Fig. 4) results in a maximum displacement below the load center while the rigid load condition produces a smaller and uniform displacement below the load which better reproduces our experimental conditions. We also represent the analytical solution for a uniform pressure load, which can be derived from Sneddon [START_REF] Sneddon | Fourier Transforms[END_REF] as proposed by Sigmundsson and Einarsson [START_REF] Sigmundsson | Glacio-isostatic crustal movements caused by historical volume change of the Vatnajökull ice cap, Iceland[END_REF] and Pinel et al. [START_REF] Pinel | Discriminating volcano deformation due to magma movements and variable surface loads: application to Katla subglacial volcano, Iceland[END_REF]:

U z = 4 π m L g(1 -ν 2 ) D L E (6) 
We find that using a uniform pressure (Eq. 6) instead of a rigid load (Eq. 5)

as boundary condition for the loading, would produce an overestimate of the Young's modulus E by a factor 4/π ∼ 1.27 for an infinite half-space. Moreover, both analytical formulas (Eq. 5 and 6) predict more vertical displacement than the corresponding numerical solution. Therefore, if such formula is applied to our largest cuboid tank (Tab. 2), E gets overestimated by 15% and 21% for the uniform pressure and the rigid load conditions, respectively.

In Tab. 2, displacements at the center of the load are also estimated using analytical formulas and a Poisson's ratio value of 0.49 (instead of 0.5)

similarly to numerical simulations. Using a Poisson's ratio of 0.49 for the rigid load condition (Eq. 5) produces an overestimate of the vertical displacement by 1% (0.02mm). Such an overestimate is negligible in comparison to the error made by ignoring the boundary effect.

Both Fig. 4 and Tab. 2 show that when the tank size increases, numerical solutions tend to the value given by the analytical ones, which confirms the validity of the numerical model.

We compare the estimation of the Young's modulus when using the analytical formula (Eq. 5) to the numerical solution for the rigid load conditions (Tab. 2) as a function of the relative size of the load and the tank (Fig. 5).

The caliper we used to measure the subsidence has an accuracy of 0.01 mm which corresponds to an error of 5% on the Young modulus estimate. According to Fig. 5, the ratio between the shortest dimension of the tank and the load diameter must be at least 21 for the error being less than 5% in the case of an experimental setup with gelatin adhering to the tank walls.

This ratio is twice larger than the ratio previously recommended based on correlation studies [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF]. For ratios below twenty, side effects due to the rigid walls of the tank cannot be neglected and the analytical formula significantly overestimates the displacement induced by a given load thus producing an overestimation of the Young's modulus of the gelatin (see also Tab. 1). Fig. 5 also shows that, when a specific experimental setup that ensures hydrostatic conditions on the proximal lateral sides of the gelatin block is used, the use of the analytical solution is less problematic. Then the analytical solution can be used provided that the shortest dimension of the tank remains 7 times larger than the load diameter. However even in the few studies that consider these specific lateral conditions, the Young's modulus was measured before the gelatin sides were melted and replaced by water meaning that the gelatin adhered to wall during the Young's modulus measurement. While most experimenters indicate the size of the tank they are using, the size of the load applied during the Young's modulus measurement is never provided except by Kavanagh et al. [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF]. In the literature, the minimum size of the tank ranges from 8.6 cm [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF] to 80 cm [START_REF] Manta | New insight into a volcanic system: Analogue investigation of bubble-driven deformation in an elastic conduit[END_REF], which means that the maximum size of the applied load should be less than 0.4 cm for the smallest tanks and less than 3.8 cm for the largest. We provide a solution to this problem as from our results, it is possible to derive a correction factor to be applied to the value derived using the analytical formula in order to take into account the actual size of the tank (Fig. 5) and thus obtain a reliable value for the Young's modulus.

Young's modulus estimations by surface loading

Based on the results presented in the previous paragraph, the best method to estimate the Young's modulus by surface loading is to use the numerical simulation with a rigid load condition. We thus follow this strategy. Using the FEM simulation, with a geometry corresponding to each tank and each load considered, we compute the surface displacement U F EM z induced by the load with a Young's modulus value of E F EM =1000 Pa, Poisson's ratio ν =0.49 and gravity g = 9.81 m.s -2 . For each measurement of surface subsidence in the analog setup U mes z , we can determine a Young's modulus value E load using the following equation:

E load = E F EM U F EM z U mes z (7) 
The Young's modulus is estimated for the 37 gelatin blocks (15 tanks filled with unsalted gelatin at 1.5 to 2 wt % and 22 tanks filled with salted gelatin at 1.5 to 3.5 wt % of gelatin and 10 to 15 wt % of salt). We estimate a value Table 2: Comparison of modeled vertical displacement induced by a circular load (diameter D L = 40.04 mm, mass m L = 8 g) applied at the surface of a rectangular tank (dimensions L×l×H of 40 cm×20 cm×20 cm multiplied by a factor f , the value f = 1 corresponding to the largest rectangular tank we used in our experiments). The Young's modulus is set to 1000 Pa. Two analytical solutions are tested also with three numerical solutions ("uniform pressure condition" with gelatin adhering to the walls of the tank, "rigid load condition" with gelatin adhering to the walls of the tank and "rigid load condition" with gelatin in contact with water on two of the lateral sides of the gelatin block) for several values of the tank size. In numerical simulations, the Poisson's ratio value is set to 0.49. FEM: Finite Element Model ; P: uniform pressure ; rgdL: rigid load; Swall: gelatin adhering to the tank walls; Fwall: gelatin in contact with water on two of the lateral sides of the gelatin block.

Model

Tank size l (dm) The right axis gives the corresponding correction factor to be applied to the value derived analytically in order to obtain the actual value of the Young's modulus inside the tank. The plain and dashed lines are, respectively, for the experimental setup with gelatin adhering to the tank walls and for the case where gelatin is in contact with water on the two proximal lateral sides. Circles indicate the numerical simulations we performed. The red line is for a 5 % error.

Ratio l/D L U z (mm) Analytic rgdL ν = 0.5 ∞ ∞ 1.4695 Analytic rgdL ν = 0.49 ∞ ∞ 1.4889 Analytic P ν = 0.5 ∞ ∞ 1.8711 Analytic P ν = 0.49 ∞ ∞ 1.
of the Young's modulus for each measurement of the vertical displacement.

Then for each tank we compute the mean and standard deviation values from all available measurements (Fig. 6 and Tab. 1). For unsalted gelatin at 2 wt %, we estimate E = 2150±230 Pa, with a good reproducibility. Only the first tank (1701) is found to have a lower value E = 1640 Pa. However, because neither the length, nor the shape nor the velocity of the cracks in this gelatin block is significantly different from the others, we believe that this low value is due to an error on the measurement of the vertical displacement induced by the load.

Varying gelatin and salt concentration, Young's modulus of salted gelatin range between 300 and 2900 Pa (Tab. 1). As found by Brizzi et al. [START_REF] Brizzi | Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling[END_REF], 2 wt % gelatin with 15 wt % salt has lower Young's modulus than unsalted gelatin at 2 wt %. By increasing the gelatin concentration to 3.5 wt %, we prepared salted gelatin with Young's modulus similar to unsalted gelatin at 2 wt %.

We made 3 tanks at 3.5 wt % and 15% salt and we obtain E = 2065±120 Pa, a value close to the Young's modulus estimated for unsalted gelatin at 2 wt %.

Comparison of Young's modulus estimates either by shear-wave velocity or surface loading

An alternative method for non-destructive and in-situ measurements of Young's modulus has been proposed recently by Pansino and Taisne [START_REF] Pansino | How Magmatic Storage Regions Attract and Repel Propagating Dikes[END_REF][START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF].

It takes advantage of the birefringent photo-elastic property of the gelatin.

This property allows the measurement of the shear wave velocity ν s and the determination of Young's modulus E shw with the following equation:

E shw = 2(1 + ν)ρ g ν 2 s ( 8 
)
where ρ g is the gelatin density and ν is its Poisson's ratio, here, assumed to be 0.5.

Shear wave velocities measurements are performed for 12 gelatin blocks (1 unsalted gelatin and 11 salted gelatin) enabling for a direct comparison with the previous estimates based on surface loading. We compute the Young's modulus E shw for each measured value of shear wave velocity, then we use the mean value and the standard deviation obtained for each gelatin block (Fig. 6 and Tab. 3). Young's modulus estimates using both the surface loading method and the shear wave method have the same order of magnitude. (1909, 1913 and 1916) having the smallest values of Young's modulus. In Tab. 3 we report the ratio between E load and E shw , which is smaller in our case (between 0.81 and 3.53) than in Pansino and Taisne [START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF] (between 0.79 and 5.29). In both studies, a better agreement between estimation by surface loading and by shear waves velocity is observed for more rigid gelatins. Pansino and Taisne [START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF] attributed the largest values given by the surface loading method to the non homogeneous cooling of the gelatin. Whereas the shear wave method allows to quantify the strength of the interior region of the tank, the surface loading method quantifies the strength of the upper layer, whose hardening by cooling is much quicker than the interior of the tank. This conclusion was supported by larger discrepancy between E load and E shw being observed after a shorter duration of cooling. However, because precise dimension of the load are not provided for each tank of Pansino and Taisne [START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF]'s study, an overestimation of the Young's modulus by surface loading due to the use of the analytical formula cannot be completely excluded.

Young's modulus estimation by crack length measurement

Principles and theoretical background

The length of propagating air-filled cracks in a gelatin block depends on the injected air volume and on the physical properties of the gelatin [START_REF] Rivalta | Buoyancy-driven fracture ascent: Experiments in layered gelatine[END_REF] such that cracks shape might be used to estimate the Young's modulus [START_REF] Takada | Experimental study on propagation of liquid-filled crack in gelatin: Shape and velocity in hydrostatic stress condition[END_REF].

Whereas the critical fluid volume required to ensure a buoyant crack propagation is a function of the fracture toughness [START_REF] Davis | Critical fluid injection volumes for uncontrolled fracture ascent[END_REF], the relationship between the injected volume and the crack length only depends on the Young's modulus and buoyancy.

In the framework of the Weertman's theory, a static crack of length L = 2a, filled with an incompressible fluid, is characterized by the following halfopening profile w along z direction [START_REF] Secor | On the stability of open hydraulic fractures in the Earth's crust[END_REF][START_REF] Weertman | The stopping of a rising liquid-filled crack in the Earth's crust by a freely sleeping horizontal joint[END_REF]:

w(z) = 1 -ν 2 E ∆ρg √ a 2 -z 2 (a + z); -a ≤ z ≤ a, ( 9 
)
where a is the half-length of the crack and ∆ρ = ρ solid -ρ f luid is the density contrast between the fluid and the host rock. Integrating the opening profile (Eq. 9) over the crack's length gives the area A of the crack's cross section:

A = π(1 -ν 2 ) 8 ∆ρg E L 3 (10) 
The influence of fluid compressibility on Eq. 10 can be shown by using a 2D numerical, boundary-element model (see Fig. 7). In 3D, one could expect for the volume V of the crack :

V = α(1 -ν 2 ) ∆ρg E L 4 , (11) 
with α a constant.

Considering that in side view a rising crack has a shape close to an ellipsoid in its upper part and close to a rectangular in its lower part (Fig. 8a), and that the crack half breadth or lateral dimension r is comprised between 3/4a and a [START_REF] Dahm | On the shape and velocity of fluid-filled fractures in the earth[END_REF], it follows that α is expected to range between 0.22 and 0.30.

Calibration of the Volume-Length relation in 3D

Volumes ranging between 0.4-20 mL were injected with syringes of different sizes (2±0.2, 10±1 or 20±2 mL). Measurements of the crack length from both cameras are consistent and, for most of the injections, the crack length remains constant during crack propagation. Fig. 8 shows a selection of cross-section and front views of cracks compared to the opening profile predicted by the Weertman's theory (Eq. 9). As shown by experiments performed injecting 12 mL in tank 1902 (unsalty) and in tank 1804 (salty) which have similar Young's modulus, the crack length is not affected by the addition of salt into the gelatin. The crack length versus injected volume relationship (Eq. 11 with α air set to 0.25) can thus be used to infer the Young's modulus inside any gelatin tank by measuring the crack length when injecting a known volume of air or of any non-viscous buoyant fluid.

In order to further validate this method, we derive the Young's modulus, from Eq. 11 (E α ) with α=0.25 considering several injected volumes in four tanks (tanks 2002, 2003, 2004 and 2005 as listed in Tab. 1), which were not used to derive α. We then compute the relative differences between E α and E load (Eq. 12) for several injections (Fig. 10):

∆E E (%) = |E load -E α | E load + E α × 200 (12) 
We get a mean error and a standard deviation of 17 ± 9 % which reflects the dispersion of our data due to measurements uncertainties on length, volume and ∆ρ. Whereas the absolute accuracy of this method does not seem better than 15%, it enables us to evidence potential changes in the Young's modulus along the crack path as discussed below.

Evidence of a Young's modulus vertical gradient in some experimental tanks

If the Young's modulus of the gelatin tank is homogeneous, the length of the crack does not vary, except in the close vicinity of the upper free surface where it is expected to decrease [START_REF] Rivalta | Acceleration of buoyancy-driven fractures and magmatic dikes beneath the free surface[END_REF]. Otherwise, a progressive change in the crack length of an ascending crack may reflect a gradient in the rigidity of the gelatin. In two tanks (1806 and 1807), we injected the air a few hours after taking the gelatin out of the fridge. In those cases, cracks are getting shorter and thicker during their ascent consistently with a decrease of the Young's modulus value at shallower depths. In tank 1806, we measure the crack length at several depths for injections 1834 and 1835. Using Eq. 11,

we evidence a vertical gradient of rigidity of 35 Pa.cm -1 and 43 Pa.cm -1 , respectively (Fig. 11).

Those tanks are filled with salted gelatin but the observed gradient cannot originate from a gradient in salt concentration. If it had been the case larger salt concentration would have been expected in the lower part of the gelatin tank resulting in smaller values of Young's modulus at the bottom of the tank. An effect of a gradient in gelatin concentration cannot be excluded, however it is unlikely as such a gradient was never observed in other tanks obtained following the same protocol. Such a decrease of the Young's modulus with decreasing distance to the gelatin surface cannot be due to an ongoing cooling either, as it would result in the reverse gradient. One explanation would be a progressive re-heating of the gelatin tank due to the lighting. This is consistent with the fact that both experiments were run after a long stay (more than 4 hours) at room temperature. The slightly larger value obtained for the Young's modulus derived from injection 1834, performed before injection 1835, is consistent with this explanation. But the difference between both estimations might also reveal lateral variations in the tank. In particular, the crack in 1835 is injected in the backward side of the tank which is closer to the light source.

Fracture toughness characterization

Magma transport through the upper crust occurs mainly by dike propagation. Magma flows inside a planar fracture such that the velocity is partly controlled by fracturing, at least in the tip area, and depends on the crustal fracture toughness [START_REF] Heimpel | Buoyancy-driven fracture and magma transport through the lithosphere: models and experiments[END_REF]. Fracture toughness is thus a key physical parameter of the gelatin for fluid-filled crack propagation experiments. This property is linked to the Young's modulus through the surface energy γ s (see Eq. 1) [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF], which is usually poorly known. Kavanagh et al. [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF] estimated the value of surface energy for unsalted gelatin with concentration ranging from 5 to 8 % to be around 1.0 ± 0.2 Jm -2 . It was done measuring independently the Young's modulus by surface loading and the fracture toughness by quantifying the pressure required to propagate a pre-existing crack, using a two-dimensional approximation. Here we followed the strategy proposed by Heimpel and Olson [START_REF] Heimpel | Buoyancy-driven fracture and magma transport through the lithosphere: models and experiments[END_REF] to estimate the fracture toughness. We estimated the velocity for several finite size air-filled cracks of various volumes injected inside the same tank of gelatin. We computed the stress intensity factor based on the crack length. Following Secor and Pollard [START_REF] Secor | On the stability of open hydraulic fractures in the Earth's crust[END_REF], in 2D, the stress intensity factor in mode I K 2D I , for a buoyant crack, can be expressed as:

K 2D I = ∆ρga √ πa (13) 
Dahm [START_REF] Dahm | On the shape and velocity of fluid-filled fractures in the earth[END_REF] better characterized the 3D shape of buoyancy-driven propagating fractures with an approximately circular and straight line boundary at the upper and lower ends, respectively. He showed that fractures are self similar with the lateral extent (half breadth r) linked to the vertical extent (half length a) by the relationship: r = (3/4)a. Using this approximation and the expression for the stress intensity factor in 3D proposed by Heimpel

and Olson [START_REF] Heimpel | Buoyancy-driven fracture and magma transport through the lithosphere: models and experiments[END_REF], we can derive a scaling factor between 3D (K 3D I ) and 2D (K 2D I ) stress intensity factors: Derived fracture toughness values are listed in Tab. 1 for each tank where this property was estimated. We use our estimates of K 3D I , in combination with estimates of the Young's modulus E load , to compute the surface energy γ s for our gelatins (Eq. 1). Our results (Fig. 13) are mostly consistent with the previous estimate of γ s [START_REF] Menand | The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An experimental approach[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF]. For unsalted gelatin, we derive a value for γ s equal to 0.77 Jm -2 , which is slighty below the range derived by Kavanagh et al. [START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF] with more rigid gelatin. Importantly, our results clearly show that, for the same Young's modulus, a salted gelatin is characterized by a higher fracture toughness than an unsalted one. Using all available salted gelatin, for γ s we obtain a value of 1.32 Jm -2 . When omitting tank 1906, which could be considered as an outlier in Fig. 13, we obtain for γ s a value of 1.10 Jm -2 The stress intensity factor is estimated from the 3D theory (Eq. 14). For each tank, the limit of K I when the vertical velocities tends to zero corresponds to the fracture toughness of the gelatin.

K 3D I = 2 √ 3 π K 2D I = 2 √ 3 √ π ∆ρga √ a ≈ 1.103K 2D I (14) 
Figure 13: Relationship between the fracture toughness and the Young's modulus. Fracture toughness is estimated using the 3D approximation (Eq. 14). Linear fit, with uncertainties, corresponding to γ s equal to 1±0.2 Jm -2 [START_REF] Menand | The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An experimental approach[END_REF][START_REF] Kavanagh | Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions[END_REF] is represented by the black line, whereas fits obtained from the salted and unsalted tanks are represented, respectively, by red and blue lines.

for the salted gelatin, which is significantly larger than the value obtained for the unsalted one. Further experiments varying the salt concentration would be useful to better characterize the influence of salt on the surface energy of gelatin.

Discussion

Comparison of the various methods for Young's modulus estimation

Our numerical simulations pointed out that the most common method used by experimentalists to infer Young's modulus is reliable (error <5 %) only if the diameter of the load applied at the surface of the gelatin is 20 times smaller than the minimum dimension of the tank. Otherwise, a numerical model is required to link the vertical displacement to the Young's modulus of gelatin taking into account the boundary effect of the rigid tank walls. Here, we also provide a correction factor that can be applied to the value derived from the analytical formula. Even considering the improvement brought by the numerical model, this method still suffers some bias. The major bias is that the measurement is done at the surface, which makes it difficult to reveal potential heterogeneities or layering of the gelatin. The same limitation is encountered when deriving a static value of the crustal Young's modulus from surface loading or unloading events. The lateral extent of the load determines the crustal depth over which the Young's modulus is effectively averaged. In particular, one expects that loads applied on a broader area will probe a thicker layer of the underlying medium. In order to characterize this effect, we perform several numerical simulations in 2D axisymmetry using a FEM.

Numerical calculations are performed either to match the experiments (with the Poisson's ratio set to 0.49 and a rigid load applied at the surface) or the crustal Earth case (with the Poisson's ratio set to 0.25 and a uniform pressure applied at the surface). The numerical box size is set to 2000 times the size of the load applied at the surface to match the ideal case of a half-space. We set the Young's modulus to be a linear function of depth at shallow level and constant deeper:

E(z) = E surf + ∇E × z for z < Z d E(z) = E surf + ∇E × Z d for z ≥ Z d ( 15 
)
where E surf is the value of the Young's modulus at the surface (in z=0), ∇E is its vertical gradient and Z d is the depth at which the Young's modulus becomes constant. The numerical simulation is used to calculate the value of the surface displacement induced by the load. From this value, we can estimate the corresponding Young's modulus (E eq ) for a homogeneous medium (using Eq. 5 for the rigid load condition and Eq. 6 for the uniform pressure condition). We then calculate an effective depth Z eq corresponding to the depth over which the actual Young's modulus inside the medium should be averaged in order to obtain E eq . It can be expressed by:

Z eq = 2 E eq -E surf ∇E , (16) 
providing that Z eq remains smaller than Z d . Z eq gives an estimate of the penetration depth reached by the surface load for Young's modulus measurements. In all cases, as expected, Z eq increases with the diameter of the load applied.

Consequently loads of various diameter might be used to evidence a vertical gradient of the Young's modulus in a gelatin block. In case a load of significant diameter is required, a numerical solution to interpret the subsidence should then be used. Note that applying the load at various location of the tank surface might also be useful to reveal potential lateral gradients. Once again, the use of the numerical model might be necessary.

To infer the gelatin Young's modulus, the alternative method based on the measurement of shear wave velocities as recently proposed by Pansino

and Taisne [START_REF] Pansino | How Magmatic Storage Regions Attract and Repel Propagating Dikes[END_REF][START_REF] Pansino | Shear wave measurements of a gelatin's young's modulus[END_REF] or the new method based on the measurement of the length of a finite volume crack proposed in this study, enable to detect spatial variations of the Young's modulus. They can additionally be used to quantify the potential gradients, which is not possible with surface load measurements.

The accuracy of the shear wave velocities method strongly depends on the absolute value of the Young's modulus. Higher rigidity, will produce faster seismic waves, thus reducing the ability to follow a wave train with sufficient resolution before any reflection occurred on the rigid walls. In contrast, the method based on the air-filled crack propagation cannot be considered as strictly non-destructive because once the crack has propagated through it, the gelatin remains cut along the path followed by the crack.

Going back to the Earth's crust, seismic tomography has been used to infer spatial variations of the Young's modulus at depth, usually showing an increase of the rigidity with depth [START_REF] Gudmundsson | Effect of tensile stress concentration around magma chambers on intrusion and extrusion frequencies[END_REF][START_REF] Currenti | Modelling of ground deformation and gravity fields using finite element method: an application to Etna volcano[END_REF][START_REF] Wauthier | Magma sources involved in the 2002 Nyiragongo eruption, as inferred from an InSAR analysis[END_REF], whereas measurements made by surface loading or unloading only provide a value averaged over a given crustal thickness below the surface. Fig. 14b presents the depth probed by surface loading as a function of the lateral extent of the load for values corresponding to a typical crust. Note that usually when using surface displacements induced by surface loading to infer the crustal rheology, the load size is imposed by the natural phenomenon at play (e.g. lake level change, ice thickness variations, etc.). Also, similarly to what we propose for the gelatin, the length of magma intrusions could potentially be used to bring insight into the crustal Young's modulus. However it might be difficult to have a precise knowledge of the volume of magma involved. Besides, here we derived the relationship between length and volume for a non viscous fluid, which might be not fully appropriate in case of dynamic magma propagation.

Critical length for crack propagation

The critical volume required to ensure liquid-filled fracture propagation is key information both in the hydraulic fracturing domain and in volcanology.

Using a numerical model and analytical derivation, Davis et al. [START_REF] Davis | Critical fluid injection volumes for uncontrolled fracture ascent[END_REF] and Salimzadeh et al. [START_REF] Salimzadeh | Gravity hydraulic fracturing: A method to create self-driven fractures[END_REF] provided an expression for the critical volume for vertical propagation of a buoyant crack in three dimensions. They underlined that previous estimations for critical "volumes" were only given in terms of critical fracture length and based on analyses performed in 2-D. In particular, following Secor and Pollard [START_REF] Secor | On the stability of open hydraulic fractures in the Earth's crust[END_REF] and using the fact that the stress intensity factor is equal to the fracture toughness at the upper tip and zero at the lower tip of the crack, the critical half-length is given by:

a c = K c ∆ρg √ π 2/3 , (17) 
Using again the approximation r = (3/4)a and the expression for the stress intensity factor in 3D proposed by Heimpel and Olson [START_REF] Heimpel | Buoyancy-driven fracture and magma transport through the lithosphere: models and experiments[END_REF], we end up with an expression for the critical length in 3D:

a c = √ π 2 √ 3 K c ∆ρg 2/3 , (18) 
Using Eq. 18 and Eq. 11, we obtain an expression for the critical volume and can express it the same way used by Davis et al. [START_REF] Davis | Critical fluid injection volumes for uncontrolled fracture ascent[END_REF]. Using α equal to 0.25 in Eq. 11, we have:

V c = α 2 13/3 9 1 -ν 16µ 9π 4 K 8 c ∆ρ 5 g 5 1/3 , (19) 
V c ≈ 0.56 1 -ν 16µ 

with µ the shear modulus. Eq. 20 is very close to the expression numerically derived by Davis et al. [START_REF] Davis | Critical fluid injection volumes for uncontrolled fracture ascent[END_REF], who gave a coefficient of 0.75 instead of 0.56. This expression of the critical volume can be useful to interpret the volume of magmatic dikes keeping in mind that it was derived neglecting potential viscous effects.

Young's modulus decrease and surface energy increase in presence of salt

We used the independent estimation of Young's modulus and fracture toughness to estimate the surface energy of the gelatin. We evidenced that the surface energy is increased by addition of salt. It follows that for the same value of the Young's modulus, a salted gelatin will have a higher fracture toughness. This is consistent with the roughly six times higher velocity measured in unsalted gelatin, for a similar injected volume and a similar Young's modulus (Fig. 8). In the same way the critical volume for crack propagation is larger for the salted gelatin than for the unsalted one. It is thus important to take into account this influence of the salt on the surface energy of the gelatin when using salted gelatin as a crustal analog. In particular, to enable the injection of viscous fluids like vegetable or silicon oils, the use of salted gelatin might be required in order to guarantee a sufficient buoyancy.

In this case, the fracture toughness cannot be simply derived using the surface energy for unsalted gelatin.

Conclusion

We illustrated the added value of using numerical simulations to improve the interpretation of analog experiments. In particular, we quantified the errors associated with the use of the analytical formula corresponding to an elastic half-space [START_REF] Timoshenko | Theory of elasticity[END_REF] for a finite medium. An overestimation of 5 % is expected when using this analytical formula to derive the Young's modulus if the tank size is not 20 times larger than the load diameter when a standard experimental setup is used with gelatin adhering to the tank walls. We showed that using a 3D numerical model removes the constraint of only applying surface loads of limited diameters to derive the Young's modulus. This enables, for instance, to check for potential heterogeneous elastic properties inside a gelatin tank. Two others methods are suitable to quantify the Young's modulus and can alternatively reveal its variations inside a tank. One consists of measuring shear wave velocities, which is fully non-destructive. The other is based on the calibration performed in this study and requires the quantification of the length of cracks filled with a known volume of a non-viscous buoyant fluid, which can be done with limited alteration of the gelatin. In addition we highlighted the influence of salt on gelatin physical properties.

While salt was known to decrease the Young's modulus value of the gelatin, we showed that it also increases its surface energy. More generally, the information provided by numerical models regarding the depth probed by surface loading, might prove to be useful when interpreting Young's modulus values for the Earth's crust derived by static loading/unloading events. Based on our numerical model results in the case of a linear increase of the crustal Young's modulus with depth, we confirm that the lateral size of the surface loading (or unloading) considered should be the same order of magnitude as the crustal thickness to be probed.
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 16 and van Otterloo and Cruden [15] liquid gelatin solidifies, behaving as a visco-plastic solid below 25 • C and as an elastic solid below 15 • C. Note that during the preparation, the temperature of the gelatin should never exceed 70 • C or drop below 4 • C to avoid the denaturation of the peptide chains by

  [START_REF] Di Giuseppe | Gelatins as rock analogs: A systematic study of their rheological and physical properties[END_REF]. For experiments2002, 2003 and 2004, both the room and the gelatin temperature were continuously recorded during the whole duration of the experiment by thermocouples, whereas for some other experiments the gelatin temperature was measured by an infrared thermometer. However, we do not have temperature records for all the experiments: when available the gelatin temperature, or temperature values for the beginning and the end of the experiment are given in Tab. 1 together with the duration of the whole experiment.

Figure 1 :

 1 Figure 1: Experimental set-up. (a) Sketch of the experimental set-up and location of the three cameras. Section along plane y = 0 shows shear stress induced by the loading (grey cylinder). The 15 injection holes (2 sizes) are marked by blue circles on the underside of the tank. (b) Photography of the experimental set-up. Two lamps illuminate the tank from the back and right sides through the white screens. (c) Photography of the measurement of the surface vertical downward displacement induced by a load applied at the surface. Inset diagrams schematize the two steps of a measurement (d) measuring the reference distance d 1 before putting the load and (e) measuring the distance d 2 to the top of the load of known thickness e.

Figure 2 :

 2 Figure 2: Shear wave velocity measurements with TRACKER. Panels (a to f) display screenshot of six successive images (t 767 to t 772 ) from the video records of tank 1910 showing shear wave propagation front after exciting the surface. Red dots indicate the manual picking of the propagation front position to compute the velocity. Note that the shear wave attenuates quickly and it becomes increasingly difficult to track it manually.

Figure 3 :

 3 Figure 3: Boundary conditions applied in the numerical model and modeled surface displacements. The gray line shows the shape of the vertical component of the surface displacement induced by the boundary condition applied to the surface: (a) uniform pressure with gelatin adhering to the tank walls, (b) rigid load with gelatin adhering to the tank walls and (c) rigid load with gelatin in contact with water on two of the lateral sides of the gelatin block.

Figure 4 :

 4 Figure 4: Profile of vertical surface displacement along x-axis (y=0, profile at the load center) for a circular load (diameter D L = 40.04 mm, mass m L = 8 g) applied to the surface of a rectangular tank (dimensions L×l×H of 40 cm×20 cm×20 cm multiplied by a factor f , the value f = 1 corresponding to the largest rectangular tank we used in our experiments). The Young's modulus is set to 1000 Pa. Black, blue and red solid lines are profiles calculated with the FEM for, respectively f = 1, f = 5 and f = 10. Dashed lines are for solutions derived with the uniform pressure condition, whereas plain lines are for solutions derived with the rigid load condition (in the case of the experimental setup with gelatin adhering the tank walls). Black diamond and circle represent the vertical displacement from analytical formulas (in x=0 at the load center) considering, the uniform pressure and the rigid load condition, respectively.

Figure 5 :

 5 Figure5: Estimation of the error resulting from the use of the analytical solution for a rigid circular load applied on a half-space (Eq. 5) when estimating the surface displacement induced by a circular load as a function of relative size of the load applied and the tank. The right axis gives the corresponding correction factor to be applied to the value derived analytically in order to obtain the actual value of the Young's modulus inside the tank. The plain and dashed lines are, respectively, for the experimental setup with gelatin adhering to the tank walls and for the case where gelatin is in contact with water on the two proximal lateral sides. Circles indicate the numerical simulations we performed. The red line is for a 5 % error.

Figure 6 :

 6 Figure 6: Comparison of Young's Modulus estimated for 12 gelatin tanks and two methods.The average value obtained from several measurements is represented, either derived by the surface loading method (E load in blue), or from shear waves velocity measurements (E shw in red). Tank numbers of unsalted gelatin and salted gelatin are highlighted in purple and orange respectively. Error bars represent the standard deviation.

Figure 7 :

 7 Figure7: Comparison of the analytical value and the numerical value for the 2D crosssectional area of a finite length static crack in an infinite elastic medium. Analytical value is given by Eq. 10, the numerical value is calculated with the Boundary Element model described in Maccaferri et al.[START_REF] Maccaferri | A quantitative study of the mechanisms governing dike propagation, dike arrest and sill formation[END_REF], considering increasing crack lengths. For the compressible case, the bulk modulus of the fluid is set to 100 Pa whereas for the non compressible case it is set to 10 6 Pa.

Figure 8 :

 8 Figure 8: Panels (a), (b), (c) and (d) show crack shapes in cross section (left) and front (right) view of four experiments. Profile opening along cross sections is computed withEq. 9 (dashed line). Panel (a) also shows a scheme of the theoretical shape of front view as a combination of an elliptic upper part which radius are r (half-width) and a (half-length) and a rectangular lower part which sides are 2r and a.
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 94 Figure 9: Relationship between crack length (L) and injected volume (V ) for air-filled cracks (for all injections performed in tanks 1701 to 1916 listed in Tab. 1). Circles and diamonds represent injections inside unsalted gelatin and salted gelatin, respectively. Colors represent the Young's modulus (E = E load ) of the tank estimated by surface loading. (a) Crack length (L) as a function of injected volume of air (V ). (b) ∆ρL 4 E as a function of the injected volume of air (V ), the linear tendency gives α = 0.25 for Eq. 11.
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 4 Fig. 9a shows the crack length (L) as a function of the injected volume (V ) for each air injection. For a given injected volume, shorter cracks form in gelatin with lower Young's modulus. In order to test the validity of Eq. 11, Fig. 9b represents ∆ρL 4 E as a function of the injected volume V . We use our numerically estimated Young's modulus for the first 33 tanks listed in Tab. 1 to calibrate Eq. 11 by determining the proportionality coefficient α. The linear tendency allows to estimate α air to 0.25.

Figure 10 :

 10 Figure 10: Relative difference between the Young's modulus estimated by air-filled crack length (E α ) and by surface loading (E load ) for four tanks (2002, 2003, 2004 and 2005 as listed in Tab 1). Circles and diamonds represent injections inside unsalted gelatin and salted gelatin, respectively. Colors represent the Young's modulus (E = E load ) of the tank estimated by surface loading. E α is computed with α = 0.25 in Eq. 11.

Figure 11 :

 11 Figure 11: A rigidity gradient affects the tank 1806. (a) Screenshots showing the evolution of the shape of the cracks 1834 (3 mL) and 1835 (9 mL) during propagation. (b) Evolution of E with depth, blue and red curves represent experiments 1834 and 1835 respectively.
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 12 Fig. 12 shows the evolution of K 3D I as a function of the crack velocity in three different tanks. The critical value for the stress intensity factor is the minimum which allows for crack propagation and equals the fracture toughness of the host medium. Therefore, a linear regression is used to quantify the fracture toughness of the gelatin in each tank, which corresponds to the vertical intercept.

Figure 12 :

 12 Figure 12: Stress intensity factor K 3D I as a function of vertical velocity. 26 air injections for 3 different tanks (2002 and 2003 unsalted and 2005 salted) are represented.The stress intensity factor is estimated from the 3D theory (Eq. 14). For each tank, the limit of K I when the vertical velocities tends to zero corresponds to the fracture toughness of the gelatin.

Figure 14 :

 14 Figure 14: Effective depth over which the Young's modulus is probed as a function of the size of the load applied when there is a vertical gradient. Plain and dashed lines are for a decrease and an increase of the Young's modulus with depth, respectively. Different curves are obtained for various values of the Young's modulus at the surface. Circles are for the numerical simulations performed. a) Cases relevant for the gelatin tank. The depth Z d at which the Young's modulus becomes constant is here set to 40 cm, the Poisson's ratio to 0.49 and a rigid load is applied at the surface. b) Case relevant for the Earth's crust. The depth Z d at which the Young's modulus becomes constant is here set to 20 km, the Poisson's ratio to 0.25 and a uniform pressure load is applied at the surface.

Fig. 14 shows

 14 Fig. 14 shows Z eq as a function of the size of the load for different Young's modulus profiles. Results are obtained with the depth Z d set to 40 cm for the experimental case (Fig 14a) and to 20 km for the crustal case (Fig 14b).

9π 4 K 8 c ∆ρ 5 g 5 1/ 3 ,

 853 

  

  

Table 1 :

 1 Gelatin properties for the 37 tanks. E load an is calculated only when a circular load was applied to the surface with Eq. 5 whereas E load num is calculated with the Finite Element model with the rigid load condition taking into account the exact geometry of the load applied. Injections is for the number of injections performed and used in this study.

	ρ
	Height Volume Gel. Salt
	Tank
	Tank

gel T gel Duration Injections E load an ± std E load num ± std Shear velocity ± std E shw

Table 3 :

 3 Comparison of Young's modulus estimation by surface loading E load and shearwave velocity measurement E shw for 12 tanks. ∆E is the absolute difference in Pa,∆E 

	E load
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