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A monotonicity condition for multivariate real-valued functions is presented as a simple sufficient condition for Riemman integrability. The one dimension well-known result is extended to show that any monotone and bounded real-valued function on a bounded Jordan measurable subset of the n-cartesian product of the set R of real numbers is Riemann integrable. As an application, this result allows to show that some characteristics of aggregation functions are well-defined without further constraints such as continuity.

Introduction

Riemann's definition [Riemann, 1854] of integral has opened up a fairly wide field of research in integration theory. To this end, numerous results have been developed on this issue. A number of these results deal with a necessary and/or sufficient condition for a real-valued functions defined on a bounded and closed interval of R to be Riemann integrable; see [Levine, 1977], [Protter and Charles Jr, 1977] or [Taylor, 2006]. In particular, it is well known that any monotone real-valued function defined on a closed and bounded interval of real numbers is Riemann integrable, see for example [Protter and Charles Jr, 1977, Section 5.1, Corrolary 2] or [Taylor, 2006, Theorem 1.21]. To the best of our knowledge, no similar monotonicity condition which guarantees the integrability of multivariate real-valued functions defined on multidimensional rectangular boxes (also called cells) of R n has been proposed in the literature. Some authors are even skeptical by asserting that " In the case of the real line we have seen that also certain discontinuous functions, e.g. bounded monotone functions, are integrable. The notion of monotonicity cannot be extended to R n ", see [Jacob and Evans, 2016, pp. 411]. Therefore continuity is sometimes used to justify the Riemann integrability of such functions, see [Guzman, 2012, Section 4.2] for more details. Furthermore, the lack of a quite simple extension of the integrability of "monotone" multivariate real-valued function also constraint some authors such as [START_REF] Grabisch | Aggregation functions[END_REF] and [Kurz, 2018], who work on aggregation functions (a class of multivariate real-valued functions defined on multidimensional rectangular boxes with practical application), to either assume the integrability or continuity of functions considered.

In this paper, we propose a monotonicity condition as a sufficient criterion to guarantee the Riemann integrability (and thus, Lebesgue integrability) of multivariate real-valued functions defined on a cell of R n . The concept of monotone function defined on R n clearly extends the classical monotone function when n " 1. This rather simple result therefore generalizes the well-known one dimensional monotonicity condition of Riemann integrability of real-valued functions. As an application, our result allows us to show that some characteristics of aggregation functions defined using integrals, see for example [Grabisch et al., 2009, Section 10.3] and [Kurz, 2018], are well defined without additional constraints such as continuity required in [Kurz, 2018].

The rest of this paper is organized as follows. In Section 2, we introduce the preliminary notations and definitions. The Section 3 is devoted to the main result and Section 4 presents an application of our result to aggregation functions.

Basic notations and definitions

Throughout this paper, we consider some distinctions on real intervals with bounds α and β as follows:

• rα, βs " tx P R : α ď x ď βu;

• sα, βr" tx P R : α ă x ă βu;

• rα, βr" tx P R : α ď x ă βu;

• sα, βs " tx P R : α ă x ď βu.

Given a positive integer n ě 1 and two n-tuples a " pa i q 1ďiďn and b " pb i q 1ďiďn of real numbers such that a i ă b i for 1 ď i ď n, we set I pa, bq :" ra 1 , b 1 s ˆ¨¨¨ˆra n , b n s.

Definition 1 A cell in R n is a cartesian product C :"
ś n i"1 E i such that for each 1 ď i ď n, E i P trα i , β i s, sα i , β i r, rα i , β i r, sα i , β i su for some real numbers α i and β i .

In this case, the interior of C is the cartesian product intpCq " ś n i"1 sα i , β i r and its (ndimensional) volume is the positive number volpCq " ś n i"1 pβ i ´αi q. Moreover, if volpCq ą 0 and E i " rα i , β i s for all 1 ď i ď n, C is called a non-degenerate closed cell.

Definition 2 A cell-partition of C is a collection P " pC j q 1ďjďq of disjoint cells whose union is C; that is C j X C k " H if j ‰ k and Y q j"1 C j " C.
Definition 3 A step function defined on a cell C is a real valued function f such that for some cell-partition P " pC j q 1ďjďq of C, f is constant on the interior of each C j ; that is, there exists a sequence λ " pλ j q 1ďjďq of real numbers such that f pxq " λ j for all x P intpC j q, j " 1, 2, ¨¨¨, q .

In this case, f is said to be a step function associated with the partition P and the collection λ; and the (Riemann) integral of f is the number

ż C f :" q ÿ j"1 λ j volpC j q.
It is straightforward that for any other cell-partition P 1 " pC 1 j q 1ďjďq 1 of C,

ż C f " q 1 ÿ j"1 ż C f | C 1 j where f | C 1 j pxq " f pxq if x P C 1 j ; and f | C 1 j pxq " 0 if x R C 1 j .
Definition 4 A real-valued function f : Ipa, bq ÝÑ R is monotone if one of the two following conditions is satisfied:

• pC1q: for all x, y P Ipa, bq : x ĺ y ùñ f pxq ď f pyq;

• pC2q: for all x, y P Ipa, bq : x ĺ y ùñ f pxq ě f pyq;

where the relation x ĺ y means that x i ď y i for all i P t1, 2, ¨¨¨, nu.

Main result

Step functions on Ipa, bq Ă R n constitute the simplest family of integrable real-valued functions on Ipa, bq. Moreover, step functions are used to test whether a real-valued function on Ipa, bq is integrable or not; see [Protter and Charles Jr, 1977] and [Taylor, 2006] for more detailed on theory of integration. To ease the presentation, we use the following characterization of an integrable function, see [Jacob and Evans, 2016, Theorem 18. 13] with slightly modification.

Definition 5 A real-valued function f on Ipa, bq is integrable if there exists two sequences ph k q k and pg k q k of step functions on Ipa, bq such that

• for all non negative integers k and for all x P Ipa, bq, h k pxq ď f pxq ď g k pxq;

• ş Ipa,bq pg k ´hk q tends to 0 as k tends to infinity.

Theorem 1 All monotone functions on Ipa, bq are integrable.

Proof. Suppose that f : Ipa, bq Ñ R is monotone and assume that f satisfies pC1q) (otherwise consider ´f ). We show that f is integrable on Ipa, bq by constructing two sequences of step functions ph p q and pg p q on Ipa, bq such that:

h p ď f ď g p

and lim

pÑ`8 ż Ipa,bq pg p ´hp q " 0 .

To do this, let p be a positive integer. We split each ra i , b i s into 2 p intervals of equal length and Ipa, bq into p2 p q n cells of equal volume by considering the sequence a p i,j " a i `j 2 p pb i ´ai q with 0 ď j ď 2 p , the collection pC p i,j q 1ďjď2 p of intervals, the n-cartesian product R p " t1, 2, ¨¨¨, 2 p u n and the collection pC p,k q kPRp of cells in Ipa, bq defined by: C p i,j " ra p i,j´1 , a p i,j r for 1 ď j ă 2 p and C p i,j " ra p i,j´1 , a p i,j s for j "

2 p C p,k " C p 1,k 1 ˆCp 2,k 2 ˆ¨¨¨ˆC p n,kn , for all k " pk 1 , k 2 , ¨¨¨, k n q P R p .
By construction,

tC p i,j , j " 1, ¨¨¨, 2 p u " tra i , a p i,1 r, ¨¨¨, ra p i,2 p ´1, b i su is a partition of ra i , b i s; tC p,k , k P R p u is a cell-partition of Ipa, bq and for all 1 ď j ď 2 p , C p i,j " C p`1 i,2j´1 Y C p`1 i,2j
. Moreover for each k P R p , we split C p,k into 2 n disjoint cells of equal volume as follows:

C p,k " n ź i"1 ´Cp`1 i,2k i ´1 ď C p`1 i,2k i ¯" ď lPS p,k C p`1,l
with S p,k " tl P R p : l i P t2k i ´1, 2k i u, 1 ď i ď nu. Now define h p and g p as follows: for all x P Ipa, bq there exists k P R p such that x P C p,k ; pose h p pxq " f pC p,k q and g p pxq " f pC p,k q for all x P C p,k where C p,k " pa p

1,k 1 ´1 , a p 2,k 2
´1 , ¨¨¨, a p n,kn´1 q and C p,k " pa p 1,k 1 , a p 2,k 2 , ¨¨¨, a p n,kn q. Note that h p and g p are both step functions on Ipa, bq. Moreover, for all k P R p and for all x P C p,k , we have C p,k ĺ x ĺ C p,k . Since f is monotone, then f pC p,k q ď f pxq ď f pC p,k q. Hence for all x P Ipa, bq, h p pxq ď f pxq ď g p pxq.

To complete the proof, we show that lim pÑ`8 ş Ipa,bq pg p ´hp q " 0. For this purpose, let δ p " ş Ipa,bq pg p ´hp q. By the definition of h p and g p we compute:

δ p " ÿ kPRp rf pC p,k q ´f pC p,k qs ˆvolpC p,k q " v 0 2 np ÿ kPRp rf pC p,k q ´f pC p,k qs (1) 
where v 0 " volpIpa, bqq. Since C p,k : k P R p ( is a cell-partition of Ipa, bq, it follows that

δ p`1 " ÿ kPRp ż Ipa,bq pg p`1 ´hp`1 q | C p,k . (2) 
Furthermore, for each k P R p , pg p`1 ´hp`1 q | C p,k is null out of C p,k and C p,k is the disjoint union of cells C p`1,l for l P S p,k . Thus, for each k " pk 1 , k 2 , ¨¨¨, k n q P R p we have:

ż Ipa,bq pg p`1 ´hp`1 q | C p,k " ÿ lPS p,k
´gp`1 pC p`1,l q ´hp`1 pC p`1,l q ¯ˆvolpC p`1,l q " v 0 2 npp`1q » -ÿ lPtl 1 ,l 2 u ´f pC p`1,l q ´f pC p`1,l q ¯`ÿ lPS p,k ´f pC p`1,l q ´f pC p`1,l q ¯fi fl where, l 1 " p2k i ´1q 1ďiďn , l 2 " p2k i q 1ďiďn and S p,k " S p,k ztl 1 , l 2 u .

Note that,

C p`1,l 1 " C p,k , C p`1,l 2 " C p`1,l 1 , C p`1,l 2 " C p,k (3) 
and for all l P S p,k we have:

C p,k ĺ C p`1,l ĺ C p`1,l ĺ C p,k . (4) 
So, thanks to the monotonicity of f and Equation (4) we get:

f pC p,k q ď f pC p`1,l q ď f pC p`1,l q ď f pC p,k q , This implies f pC p`1,l q ´f pC p`1,l q ď f pC p,k q ´f pC p,k q .

(5)

By combining equations ( 3) and ( 5), we obtain:

ż Ipa,bq pg p`1 ´hp`1 q| C p,k " v 0 2 npp`1q » - ÿ lPtl 1 ,l 2 u ´f pC p`1,l q ´f pC p`1,l q ¯`ÿ lPS p,k
´f pC p`1,l q ´f pC p`1,l q ¯fi fl ď v 0 2 npp`1q rf pC p,k q ´f pC p,k qs `v0

2 npp`1q ÿ lPS p,k rf pC p,k q ´f pC p,k qs ď v 0 2 n f pC p,k q ´f pC p,k q 2 np p1 `|S p,k |q " 2 n ´1 2 n v 0 2 np rf pC p,k q ´f pC p,k qs
Finally for all k P R p , we have

ż Ipa,bq pg p`1 ´hp`1 q| C p,k ď 2 n ´1 2 n v 0 2 np rf pC p,k q ´f pC p,k qs (6) 
By summing over k P R p all left-hand-side terms and all right-hand-side terms from (6), equations (1) and (2) imply that

δ p`1 ď 2 n ´1 2 n δ p .
for all positive integer p. Therefore 0 ď δ p ď ˆ2n ´1 2 n ˙p δ 0 , where δ 0 " v 0 pf pbq ´f paqq. Since Proof. Let D be a nonempty Jordan measurable subset of a cell C of R n and f : D ÝÑ R a monotone and bounded function. Without loss of generality, assume that f satisfies condition pC1q. We show that f is integrable on D by constructing a monotone function g :

C ÝÑ R such that p f " g ¨χD | C
. The result comes from the fact that, p f is the product of two integrable functions.

Let x P C we set D ´pxq " tt P D , t ĺ xu. Since f is bounded on a nonempty set D, we define g : C ÝÑ R as follows:

gpxq " " suptf ptq , t P D ´pxqu if D ´pxq ‰ H inftf ptq , t P Du otherwise (7) 
Let us show that g is monotone and p f " g ¨χD | C . To do this, consider x, y P D such that x ĺ y. We note that D ´pxq Ď D ´pyq.

• If D ´pyq " H then D ´pxq " H. So, from Equation (7), we get gpxq " inftf ptq , t P Du " gpyq ;

• If D ´pyq ‰ H, two cases are possible. First assume that D ´pxq " H, then gpxq " inftf ptq , t P Du ď f pt 0 q for all t 0 P D ´pyq. Hence, gpxq ď suptf ptq , t P D ´pyqu " gpyq .

Second, suppose that D ´pxq ‰ H, then gpxq " suptf ptq , t P D ´pxqu. Since D ´pxq Ď D ´pyq then, gpxq " suptf ptq , t P D ´pxqu ď suptf ptq , t P D ´pyqu " gpyq .

Finally for all x, y P C such that x ĺ y we have gpxq ď gpyq. We then conclude that g is monotone on C and it follows from Theorem 1 that g is integrable on C.

To conclude this proof, it is sufficient to show that g | D " f . Let x P D, then x P D ´pxq and by Equation ( 7) we can write:

f pxq ď gpxq " suptf ptq , t P D ´pxqu . (8) 
Moreover for all t P D ´pxq we have t ĺ x. This implies that f ptq ď f pxq, for all t P D ´pxq. Hence gpxq " suptf ptq , t P D ´pxqu ď f pxq .

and from relations ( 8) and ( 9) we conclude that gpxq " f pxq, for all x P D, i.e., g | D " f . This implies that p f " g ¨χD | C . Since D is a bounded Jordan measurable set then χ D | C is integrable on C; so is the product p f of g and χ D | C .

Application to aggregation functions

Aggregation functions constitute a class of multivariate real-valued functions defined on multidimensional rectangular boxes with practical application; see [Grabisch et al., 2009, Definition 1.1] for the following formal definition with a given closed and bounded interval I of R: Apxq " sup I .

Note that, the condition pC1q in Definition 4 is equivalent to saying that, the function f is nondecreasing in each variable x i for i " 1, 2, . . . , n. That is why aggregation functions can be considered as monotone multivariate real-valued functions satisfying condition pC1q; see [Grabisch et al., 2009, Definition 2.1] and [Beliakov et al., 2007, Section 1.1].

We now consider some characteristics of aggregation functions and prove that they are all well-defined on the full set of aggregation functions. Hereafter, we denote by A n pa, bq the set of all aggregation functions defined on the cell ra, bs n for some real numbers a and b such that a ă b. Any aggregation function in A n p0, 1q is called simple aggregation function.

Definition 9 [Grabisch et al., 2009, Definition 10. 37] Let a, b P R such that a ă b, let A be an integrable aggregation function on ra, bs n , and consider any subset K Ď rns. The importance index of coordinates in K Ď rns on A is defined by

φ K pAq :" 1 pb ´aq n ż ra,bs n Apb K xq ´Apa K xq b ´a d x (10) 
where rns " t1, 2, . . . , nu, d x " d x 1 ¨¨¨d x 2 and for each α P ta, bu, α K x denotes the n-tuple of ra, bs n whose ith coordinate is α, if i P K, and x i , otherwise.

Beside importance indices, interaction indices are also presented in [Grabisch et al., 2009, Section 10.4] among which the following:

Definition 10 [ Grabisch et al., 2009, Definition 10. 41] Let a, b P R such that a ă b, let A be an integrable aggregation function on ra, bs n , and consider any subset K Ď rns. The interaction index of coordinates in K Ď rns on A is defined by

I K pAq " 1 pb ´aq n ż ra,bs n ∆ K Apxq b ´a dx (11) 
where

∆ K Apxq " ÿ LĎK p´1q |L| Apa L b KzL xq
with y " a L b KzL x " py 1 , y 2 , . . . , y n q been the element of ra, bs n such that y i " a if i P L , y i " b if i P KzL and y i " x i otherwise.

In both Definition 9 and Definition 10, the mention "integrable" can be omitted as shown below.

Proposition 1 Given K Ď rns and a, b P R such that a ă b, the importance index of coordinates in K as well as the interaction index of coordinates in K respectively defined by equations (10) and (11) are well-defined on A n pa, bq without any restriction.

Proof. Let A P A n pa, bq, K Ď rns and c P ra, bs. It is obvious that the mapping x Þ ÝÑ Apc K xq is an monotone function on ra, bs n that satisfies condition pC1q. Taking into account the linearity of the integral, the result follows from Theorem 1.

Another characteristic of aggregation functions is found in [Kurz, 2018] under the continuity assumption.

Definition 11 [Kurz, 2018, Definition 5.1] Let A be a continuous simple aggregation function and i P rns. The importance measure of coordinate i on A is defined by 

) 12 
where S n is the set of all permutations on rns and for all π P S n , π ěi " tj P rns, πpjq ě πpiqu and π ąi " tj P rns, πpjq ą πpiqu.

Note that, the importance measure φ, is well known in the literature as a tool for measuring decision-making power, see, [Kurz, 2014][Kurz et al., 2019], or [START_REF] Kurz | Axiomatizations for the shapley-shubik power index for games with several levels of approval in the input and output[END_REF].

Proposition 2 Given i P rns, the importance measure of coordinate i defined by Equation ( 12) is well-defined over the full set A n p0, 1q.

Proof. As above, the result follows from Theorem 1 and the fact that x Þ ÝÑ Apc K xq is monotone on r0, 1s n for K P tπ ěi , π ąi u and c P t0, 1u.
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