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Abstract

Single-molecule localization microscopy (SMLM) is a powerful method for the imaging of cellular structures. This
modality delivers nanoscale resolution by sequentially activating a subset of fluorescent molecules and by extracting their
super-resolved positions from the microscope images. The emission patterns of individual molecules can be distorted by
the refractive-index (RI) map of the sample, which reduces the accuracy of the molecule localization if not accounted
for. In this work, we show that one can exploit those sample-induced aberrations to reveal the structural information
of the specimen. Our work is related to the optical diffraction tomography in that we aim to recover the RI map. To
that end, we propose an optimization framework in which we reconstruct the RI map and optimize the positions of the
molecules in a joint fashion. The benefits of our method are twofold. On one side, we effectively recover the RI map
of the sample. On the other side, we further improve the molecule localization—the primary purpose of SMLM. We
validate our joint-optimization framework on simulated data. Our results lay the foundation of an exciting and novel
extension of SMLM.

Keywords: computational imaging, joint optimization, refractive index reconstruction.

1. Introduction

Single-molecule localization microscopy (SMLM) is a
method of choice for the observation of biological phe-
nomena at nanoscale resolution [1, 2, 3]. It breaks the
diffraction limit of conventional fluorescence microscopy
by sequentially activating and localizing a subset of fluo-
rescent molecules. As such, SMLM is a prime example of
computational microscopy where suitable acquisitions and
algorithmic reconstruction are combined so as to enhance
the capabilities of traditional systems. Although SMLM
acquisitions are two-dimensional, innovative point-spread
functions (PSF) whose shapes vary with depth have been
designed to encode the axial position of molecules. These
include the popular astigmatism [4] or double-helix [5]
PSFs. Therefore, in addition to efficient localization algo-
rithms, well-calibrated models of these PSFs are essential
to reach the promised nanoscale resolution [6].

The standard practice is to estimate these PSFs from
acquisitions of sub-resolved objects (e.g., fluorescent mi-
crospheres) [7, 8]. However, this strategy ignores sample-
induced distortions. Indeed, the heterogeneity of biologi-
cal specimens—through variations in their refractive index
(RI)—induces a scattering of the emitted light. This dis-
torts the recorded emission patterns and compromises the
accurate localization of molecules. To mitigate this effect,
Xu et al. [9] proposed an algorithm to jointly localize fluo-
rescent molecules and estimate an in situ PSF model that
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has the ability to capture sample-induced aberrations and,
hence, to improve localization accuracy.

If we could estimate both the RI and the position of
molecules from the SMLM acquisition stack alone, then
we would have a unique combination of structural (RI)
and functional (fluorescence) information about the sam-
ple [10]. To our knowledge, such a reconstruction of both
RI and fluorescence density from the same fluorescent data-
set (i.e., without phase measurements) has been investi-
gated only recently by Xue and Waller [11]. They con-
sider two-layers samples where the bottom layer contains
fluorescence-labeled objects and the top layer contains non-
labelled objects. In this context, they demonstrated that
the 3D RI map of the non-labelled objects can be re-
constructed from defocused fluorescence images that are
collected by sequentially stimulating small regions of the
fluorescence-labeled layer of the sample. Moreover, they
showed that the obtained RI map can be exploited to ob-
tain the scattered PSF and improve the fluorescence sig-
nal through deconvolution. This setting differs from the
exploitation of the individual emission of fluorophores in
SMLM that we propose here in two respects. First, RI and
fluorescence objects are mixed (i.e., no two-layers sam-
ples). Second, fluorescence measurements are recorded at
two distinct focal planes (i.e., biplane SMLM modality).

In SMLM, the recovery of the RI has been addressed
in [12, 13]. These two works exploit the fact that SMLM
data can be seen as measurements of an optical-diffraction
tomography (ODT) system with point-source illuminations
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inside the sample. In [12], the authors assumed that the
phase of the measurements was accessible, an assumption
which is not met in practice. Moreover, their proposed
approach relies on a linear model whose validity is lim-
ited to weakly scattering samples [14]. In our preliminary
work [13], we introduced a refined RI-reconstruction ap-
proach that can handle phaseless measurements under the
assumption that the positions of the fluorescent molecules
are perfectly known. This method is based on the exact
(nonlinear) Lippmann-Schwinger equation.

1.1. Contributions and Roadmap

In this work, we extend [13] in two ways. First, we con-
sider a more realistic image-formation model (described
in Section 2) that integrates background fluorescence as
well as the shot noise inherent to fluorescence microscopy.
Second, and more importantly, we consider that the po-
sitions of the molecules are known only approximately, as
opposed to [13], and then take advantage of our model-
based scheme to refine them.

To cope with this more challenging scenario, we pro-
pose a joint-optimization framework in Section 3. Our
method simultaneously reconstructs the RI and refines the
positions and amplitudes of the molecules. The benefits of
our framework are twofold. On one side, we are accurately
estimating the structural information (RI) from SMLM
acquisitions. On the other side, we significantly improve
the localization of the molecules—the primary objective of
SMLM. We validate our framework on simulated data in
Section 4.

1.2. Notations

Scalar and continuously defined functions are denoted
by italic letter (e.g., kb ∈ R, u ∈ L2(R)). The complex
conjugate of v ∈ C is denoted by v∗. Vectors and ma-
trices are denoted by bold lowercase and bold uppercase
letters, respectively (e.g., x ∈ RN , G ∈ CN×N ). The
mth element of a vector v ∈ RM is denoted as vm or
[v]m. Similarly, the nth column of a matrix X ∈ RM×N
is denoted as xn or [X]n. The notation GH refers to the
conjugate transpose of the matrix G ∈ CN×N . The ma-
trix IN ∈ RN×N is the identity and diag(f) ∈ RN×N is a
diagonal matrix formed out of the entries of f ∈ RN . The
notation 1M = (1, 1, . . . , 1) ∈ RM stands for an M -length
vector of ones. Similarly, 0M denotes a vector of M zeros.
Finally, � and � stand for the Hadamard product and the
pointwise division, respectively.

2. Image-Formation Model

2.1. SMLM Meets ODT

The space-varying refractive index of the sample un-
der consideration is represented by the function η : Ω→ R
with Ω ⊆ R3. The sample is populated with L fluorophores
located at spatial position {xl ∈ Ω}Ll=1. Without loss of
generality, we consider an SMLM acquisition stack where a

Figure 1: Biplane single-molecule localization microscopy. A
fluorophore emits fluorescent light which scatters through the sam-
ple. Then, an optical system records the intensity of the total field
at two different focal planes.

single fluorophore is activated on each frame. Indeed, be-
cause fluorophores are incoherent sources, the image pro-
duced upon activation of multiple emitters is simply the
sum of the individual contribution of each emitter [15].

When activated, the lth fluorophore at position xl ∈ Ω
emits a spherical wave with intensity al > 0, which leads
to

uin(x;xl, al) = al
exp (jkb‖x− xl‖2)

4π‖x− xl‖2
, (1)

where j is the imaginary unit and kb = 2πηb
λ is the wavenum-

ber determined by the emission wavelength λ and the RI
ηb > 1 of the surrounding medium. The spherical wave
acts as an “incident” field that illuminates from within
the sample. As such, it scatters through the sample and
produces a field ul : R3 → C that satisfies the Lippmann-
Schwinger equation

ul(x) = uin(x;xl, al) +

∫
Ω

g(x− z)f(z)ul(z) dz, (2)

where f(x) = k2
b

(
η(x)2

η2b
− 1
)

is the scattering potential

and g : R3 → C is the Green function that corresponds to
the centered spherical wave uin(x;0, 1) [16]. The intensity
of the field ul at the camera plane Γ is then recorded by
an optical system to form the lth SMLM frame yl ∈ RM .
Formally, we have, ∀l ∈ {1, . . . , L}, that

yl = Pois
(
|Pul

∣∣
Γ
|2 + bl

)
, (3)

where Pois denotes Poisson’s distribution (shot noise), ul
∣∣
Γ

denotes the restriction of ul to Γ, and bl ∈ RM is a back-
ground signal that can originate from autofluorescence or
spurious out-of-focus fluorophore emissions. Finally, P :
C2 → RM is a linear operator that models both the effect
of the optical system (i.e., pointwise multiplication with
the pupil function in the Fourier domain) and the sampling
on the M camera pixels.
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Algorithm 1 Joint-Optimization Framework

Require: f0 ∈ RN≥0, [x0
1 · · ·x0

L] ∈ ΩL, a0 ∈ RL>0

1: t = 0
2: while (Not converged) do
3: Select a subset L ⊂ {1, . . . , L}

. Update amplitudes and positions
4: for l ∈ L do
5: (at+1

l ,xt+1
l ) = Refine (Jl(f t, · , · ); atl ,xtl)

6: end for
. Update the scattering potential:

7: f t+1 = aFBS
(∑

l∈L Jl( · ,xt+1
l , at+1

l ); f t
)

8: t← t+ 1
9: end while

Return: f t,Xt,at

2.2. Discrete Forward Model

Let us rasterize Ω into N voxels of length h. Follow-
ing [17, 18, 19], we define the discrete forward model by

H : RN≥0 × Ω× R>0 → RM

(f ,xl, al) 7→ B
∣∣P[A(f), IM

]
sin(xl, al)

∣∣2 (4)

with

A(f) = G̃ diag(f) (IN −Gdiag(f))
−1
, (5)

sin(xl, al) = [(uΩ
in,l)

T , (uΓ
in,l)

T ]T . (6)

Here, f ∈ RN is a sampled version of f within Ω. The vec-
tors uΩ

in,l ∈ CN and uΓ
in,l ∈ CM are the sampled versions

of uin( · ;xl, al) within Ω and Γ, respectively. We denote
by {xΩ

n}Nn=1 and {xΓ
m}Mm=1 the sampling points within Ω

and Γ. The matrix G ∈ CN×N encodes the convolution
with the Green function in (2). Similarly, G̃ ∈ CM×N is a
matrix that, given the total field within Ω, gives the scat-
tered field at the measurement plane Γ. Next, P ∈ CM×M
is the discrete version of P and | · |2 denotes the pointwise-
squared magnitude. A full description of G, G̃, and P is
provided in [19]. Finally, the matrix B ∈ RM×M encodes
a convolution with a Gaussian filter of length σb = 0.7h.
It accounts for the mismatch between our physical model
derived from the scalar diffraction theory and the vectorial
nature of light [20, 21].

In this work, we adopt a biplane configuration [22] that
involves two pupil functions with separate focal planes. To
keep the notation simple, we shall use a single matrix P
to represent the effect of the two pupil functions (i.e., two
focal planes). Given the discrete forward model (4), the
image formation model (3) writes as, ∀l ∈ {1, . . . , L},

yl = Pois(H(f ,xl, al) + bl). (7)

Remark 1. Although we consider a biplane modality in
our experiments, the proposed joint optimization frame-
work (Section 3) can be deployed with any number of focal
planes. In this proof-of-concept work, we considered two

focal planes because i) it corresponds to a standard SMLM
modality ii) it helps to compensate for the lack of phase
measurements.

3. Joint Recovery of the Molecule Localization and
Refractive Index

3.1. Joint-Optimization Framework

Our goal is to jointly recover the distribution of the re-
fractive index and the localization of fluorescent molecules.
To that end, we propose to solve the minimization problem

(f∗,X∗,a∗) ∈ arg min
f∈RN

≥0,

X∈ΩL,a∈RL
>0

L∑
l=1

Jl(f ,xl, al) + τR(f), (8)

where, for all f ∈ RN≥0, x ∈ Ω, and a > 0,

Jl(f ,x, a) = DKL (H(f ,x, a) + bl;yl) . (9)

The matrix X = [x1 · · ·xL] ∈ ΩL and the vector a =
(a1, . . . , aL) ∈ RL>0 are the concatenation of positions and
amplitudes of the fluorophores, respectively. The func-
tional R : RN → R≥0 is a regularization term that intro-
duces prior knowledge on the RI distribution, and τ > 0
is a tradeoff parameter. In this work, we use the total-
variation (TV) regularization [23], although alternatives
such as the Hessian-Schatten norm [24] or learnt regular-
izers [25, 26, 27, 28] can be easily plugged into our frame-
work. The data-fidelity term DKL is the Kullback-Leibler
divergence [29] defined as, ∀(z,y) ∈ RM≥0 × RM≥0,

DKL (z;y) = zT1M − y � log(z + β), (10)

where β > 0 is a stabilizing parameter. Note that the
Kullback-Leibler divergence corresponds to the Poisson
negative log-likelihood up to some constant term.

To optimize (8), we alternate between an update of
the refractive index and an update of the amplitudes and
positions of the fluorophores (Algorithm 1), inspired by the
self-calibrating reconstruction techniques developed for oth-
er modalities [30, 31]. Updates are performed on a sub-
set of molecules (Line 3) in a stochastic fashion. In Al-
gorithm 1, aFBS

(∑
l∈L Jl( · ,xt+1

l , at+1
l ); f t

)
refers to the

minimization of
∑
l∈L Jl( · ,xt+1

l , at+1
l ) with the algorithm

aFBS initialized with f t. We use the same notation for the
refinement step at Line 5. Details on the algorithms de-
ployed for each sub-problem are provided in Sections 3.2
and 3.3. We implemented the method within the Global-
BioIm framework [32].

3.2. Update of Molecule Amplitudes and Positions

For the refinement procedure in Line 5 of Algorithm 1,
we again adopt an alternating scheme between an update
of the amplitude and the position, as summarized in Al-
gorithm 2. In the Sections 3.2.1 and 3.2.2, we describe
the Newton and gradient update steps used to refine the
amplitude and position, respectively.
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Algorithm 2 Refinement procedure for the lth molecule

Require: x0
l ∈ Ω, a0

l > 0, Tmol ∈ N
1: t = 0
2: while (Not converged or t < Tmol) do
3: at+1

l = NewtonUpdate (Jl(f ,xtl , · ); atl)
4: xt+1

l = GradientUpdate
(
Jl(f , · , at+1

l );xtl
)

5: t← t+ 1
6: end while

Return: xtl , a
t
l

3.2.1. Amplitudes

Let f ∈ RN≥0 and X ∈ ΩL be fixed. First of all, one can
see from (4) that, for al > 0,

H(f ,xl, al) = a2
lH(f ,xl, 1), (11)

which is very helpful to reduce the computational cost of
our joint-optimization procedure. Indeed, denoting vl =
H(f ,xl, 1), we have that

Jl(f ,xl, al) = DKL(a2
l vl + bl;yl) (12)

= (a2
l vl + bl)

T1M

− yl � log(a2
l vl + bl + β). (13)

The function Jl is twice differentiable with respect to a.
Its first derivative is given by

∂aJl(f ,xl, al) = 2al

M∑
m=1

vlm

(
1− ylm

a2
l vlm + blm + β

)
. (14)

Its second derivative reads as

∂2
aJl(f ,xl, al) = 2

M∑
m=1

vlm

(
1− ylm

a2
l vlm + blm + β

)

+

M∑
m=1

(2alvlm)2ylm
(a2
l vlm + blm + β)2

. (15)

As such, we can perform a Newton update on al as

at+1
l = atl − s

∂aJl(f ,xl, atl)
∂2
aJl(f ,xl, atl)

, (16)

where s is the length of a step computed via line-search so
as to satisfy Wolfe’s conditions [33].

3.2.2. Positions

Let f ∈ RN≥0 and a ∈ RL>0 be fixed. We want to perform
a gradient update on the position xl of the lth molecule.
However, one can see that the spherical wave in (1) is not
differentiable whenever x = xl. Consequently, we prefer
to consider the smoothed version of the spherical wave

usmth
in (x;xl, al) = al

exp (jkb‖x− xl‖2,ε)
4π‖x− xl‖2,ε

, (17)

Algorithm 3 aFBS

Require: f0 ∈ RN≥0, TRI ∈ N, γ > 0, α ∈ [0, 1]

1: t = 0, w0 = f0, v0 = 1
2: while (Not converged or t < TRI) do
3: g =

∑
l∈L∇Jl( · ,xl, al)(wt)

4: f t+1 = proxγτR
(
wt − γg

)
5: vt+1 =

1+
√

1+4(vt)2

2

6: wt+1 = f t + α v
t−1
vt+1 (f t − f t+1)

7: t← t+ 1
8: end while

Return: f t

where ‖ · ‖2,ε =
√
‖ · ‖22 + ε with 0 < ε � 1. Then, the

gradient of Jl with respect to x, evaluated at xl, is given
by

∇xJl(f ,xl, al) = 2JHsin,l
[
A(f), IM

]H
PHP

[
A(f), IM

]
sin,l

�BT∇zDKL (H(f ,xl, al) + bl) , (18)

where sin,l = sin(xl, al) ∈ CN+M . The gradient of DKL

in (10) with respect to the first variable z is given by

∇zDKL(z;y) = 1M − yl � (z + β) . (19)

Finally, it remains to provide the expression of the Hermi-
tian transpose of the Jacobian matrix of sin( · , al), evalu-
ated at xl, which we denote JHsin,l ∈ C3×(N+M). Its qth
column is given by

[JHsin,l]q = [sin,l]
∗
q

(
jkb +

1

‖rq − xl‖2,ε

)
(rq − xl)

‖rq − xl‖2,ε
. (20)

Let us emphasize that rq = xΩ
q (Ω sampling points) for

q ≤ N and rq = xΓ
q−N (Γ sampling points) for N < q ≤

N +M . Equipped with this closed-form gradient, we can
deploy a projected-gradient update on xl as

xt+1
l = PΩ

(
xtl − s∇xJl(f ,xtl , al)

)
, (21)

where s is a step-size computed via a backtracking line-
search [34]. The projector PΩ : R3 → Ω constrains the
fluorophore positions to remain in Ω.

3.3. Update of the Refractive Index

When the positions X ∈ ΩL and amplitudes a ∈ RL>0

are fixed, the RI update consists in solving

f∗ ∈ arg min
f∈RN

≥0

L∑
l=1

Jl(f ,xl, al) + τR(f). (22)

It corresponds to an inverse-scattering problem from in-
tensity measurements [35, 36]. To solve (22), we deploy
a relaxed variant [37] of the accelerated forward-backward
splitting (aFBS) algorithm [38, 39] (Algorithm 3). It re-
quires the computation of two quantities.
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1. The gradient of Jl( · ,xl, al) which involves the Ja-
cobian of A(f) in (4) whose expression is provided
in [18].

2. The proximal operator of R which, for TV, can be
efficiently evaluated by using the fast gradient-pro-
jection algorithm [40].

3.4. Initialization Strategies

3.4.1. Initialization of the Refractive Index

In phaseless diffraction tomography, the light-field re-
focusing method is a standard tool to obtain an initial
guess of the RI distribution [35, 41]. However, this initial-
ization requires coherent light sources with known geom-
etry, which prevents its use on SMLM data. We there-
fore adopt an alternative approach that comprises two
steps. We first replicate the widefield image (sum of the
SMLM stack) along the axial direction and then blur the
obtained volume with a Gaussian filter. The rationale be-
hind this choice is that we can only expect to recover the
RI where fluorophore emissions have propagated, that is,
at the vicinity of fluorescent molecules. We then define f0

as a scaled version of this filtered volume so that its values
belong to an admissible range of RI (see Figure 3).

3.4.2. Single-Molecule Localization

Any SMLM localization software can be used to com-
pute the initial positions {x0

l }Ll=1. However, we found that
existing software packages for a biplane modality were not
performing well on our simulated dataset. We believe that
this is due to the high thickness of the sample together
with the small number of acquisitions.

Therefore, we adopted a simple yet efficient method.
We localize the position of the lth fluorophore based on
cross-correlations between the measurements yl and a set
{kp}Pp=1 of PSF models in ∈ RM . We define them as the
the output of the forward model with no scatterer, like in

kp = H(0N ,x
psf
p , 1), (23)

where the positions xpsf
p = (0, 0, p∆z) for p = {−P, . . . , P}

vary along the axial direction. We then initialize

x0
l = (m̂h, n̂h, p̂∆z) (24)

where
(m̂, n̂, p̂) = arg max

m,n,p
[yl ? k

∨
p ]m,n, (25)

with ? the 2D discrete convolution and ( · )∨ the reflection
operator. Once localized, we initialize the amplitude as

a0
l =

(
‖Mx0

l
(yl − b̂l)‖1/‖kp̂‖1

) 1
2

, (26)

where Mx0
l
∈ RR×M crops a region-of-interest centered

at x0
l and b̂l denotes the estimated background (see Sec-

tion 3.4.3).

3.4.3. Background Estimation

To estimate {bl}Ll=1, we apply a simple algorithm suit-
able for a background that slowly varies in space and time.
In SMLM, this is a common assumption [42]. Our proce-
dure proceeds in two steps.

1. For each measurement yl, we mask an area around
the estimated position xl and inpaint it using the
function regionfill of Matlab1 to obtain ȳl.

2. We apply a spatio-temporal (3D) median filter along
the stack of masked and inpainted measurements Ȳ =
[ȳ1 · · · ȳL] to take advantage of the spatio-temporal
smoothness of the background.

4. Numerical Experiments

4.1. Simulation Setting

We created an RI volume immersed in water (ηb =
1.339), fully included in the region Ω of size (7.2 × 7.2 ×
3.2)µm3 (Figure 2). This sample presents small features
with RI values that are lower or higher than their sur-
roundings. Then, we populated this sample with fluo-
rophores randomly placed on a structure that is composed
of an outer membrane as well as inner compartments. The
smallest distance between two fluorophores is 20nm. We
simulated L = 1000 SMLM acquisitions with a biplane
modality, each corresponding to the activation of a single
fluorophore. The two focal planes were set at ±300nm.
The amplitude al of each fluorophore emission was drawn
from a Poisson distribution with mean A = 1000 and the
wavelength of the emitted light is set at λ = 647nm. In ad-
dition, we simulated a pupil function for each focal plane
with NA = 1.45 and 25 Zernike coefficients. Their values
were drawn from the uniform distribution U(−0.5, 0.5), ex-
cept that the three first coefficients were set to 0 and that
the fourth coefficient was drawn from U(−0.1, 0.1) to bet-
ter match the PSFs observed in real SMLM acquisitions.
The background signals bl for l ∈ {1, 100, 200, . . . , 1000}
were simulated by convolving a Gaussian kernel with a
random image generated from a uniform distribution. We
then scaled the obtained images so that their pixel values
belong to the range [350, 450]. Backgrounds for intermedi-
ate frames were then obtained through interpolation. We
set a large width for the Gaussian kernel so as to obtain
a slowly varying background in both space and time. Fi-
nally, to control the noise, we scaled the noiseless measure-
ments with a factor r ∈ (0, 1] before applying the Poisson
noise so that (4) writes as, ∀l ∈ {1, . . . , L},

yl = Pois(r(H(f ,xl, al) + bl)). (27)

By doing so, r can be interpreted as the product between
the excitation photon flux and the integration time. A

1Matlab’s command regionfill performs a smooth interpola-
tion inward from the pixel values that are on the outer boundary of
the mask.
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Figure 2: Simulation setup. The RI map, immersed in water (nb = 1.339), is depicted on the left orthoviews. The sample is populated
with fluorescent molecules that belong to the labeled region. They sequentially emit a spherical wave which is then propagated through the
sample using the Lippmann-Schwinger model. Two focal planes (with pupil functions) are acquired. The widefield images are generated
by summing all SMLM frames. The fluorescence images were satured for visualization purpose. We display the labeled region with partial
transparency so as to make the inner compartments visible. Scale bars: 500nm.

small r yields a higher level of noise, which increases the
difficulty of the localization of molecules and the RI recon-
struction.

We compare our joint-optimization framework with two
baselines. They consist on the sole RI reconstruction with
i) perfectly characterized molecules (i.e., true amplitudes
and positions) or ii) the initial estimation of the ampli-
tudes and positions obtained as described in Section 3.4.2.
By doing so, we somehow obtain the worst-case and best-
case scenarios. For each case, we obtained the best recon-
struction by performing a grid search on the regularization
parameter τ .

For our joint-optimization framework, we set the pa-
rameters Tmol = 4, TRI = 1, and α = 0.85. In our imple-
mentation, w0 and v0 in Line 1 of Algorithm 3 are initial-
ized from the previous call. We ran our optimization on
a PowerEdge c4140 equipped with Intel Xeon Gold 6240
CPUs (2.60GHz) and a GPU NVIDIA Tesla V100 SXM3
(32 GB). An iteration of Algorithm 1 took 20 seconds on
average. We used up to 2000 iterations, which corresponds
to about 10 hours of computation.

4.2. Metrics and Visualization

To assess the quality of the reconstructed RI volume,
we compute the relative error as well as the structural
similarity index measure (SSIM) [43] with respect to the
ground-truth. To assess the accuracy of the localization
of the molecules, we compute the root-mean-square er-
ror (RMSE) with respect to the true positions. Note that
we do not report detection metrics such as true/false de-
tections as they are not really relevant in our setting where
we consider only frames containing one molecule. Finally,
given a list of molecule positions, we generate a 3D image
through the Gaussian rendering technique [6]. To that

end, we represent the fluorophore positions as a sum of
shifted Dirac

s(x) =

L∑
l=1

δ(x− xl). (28)

Gaussian rendering then consists in convolving s with an
isotropic Gaussian kernel and sample the result on a grid.
Here, we set the standard deviation of the Gaussian kernel
to 10nm and the grid step to h/10 = 10nm.

4.3. Results

We first fix the noise level to r = 1 in (27).

4.3.1. Reconstructed Refractive Index

We display the RI volumes in Figure 3 and report
there the relative errors and SSIM. When the positions
and amplitudes of the molecules are perfectly known, we
recover most of the details of the ground-truth. This is
in line with our previous work [13]. On the contrary,
the reconstruction obtained with the initial positions and
amplitudes is unsuccessful. This highlights the impor-
tance of refining molecule positions and amplitudes jointly
with RI reconstruction. We effectively see that our joint-
optimization framework is able to recover an RI volume
that is visually similar to the best-case scenario. The
metrics confirm the visual assessment. Yet, one can ob-
serve some high frequency artifacts (ringing) on the recon-
struction obtained with the joint optimization framework
(plane z = −0.2µm). They are due to few badly refined
molecule positions (outliers in Figure 8) that lead to a mis-
match in the model. Finally, it should be noted that we
could expect that the quality of the reconstruction varies
with the axial position z. The reason is that an SMLM
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Figure 3: Reconstructions of the RI volume. From left to right: Ground truth, initial guess, reconstruction with positions and
amplitudes fixed to their initial values (see Section 3.4.2), reconstruction with the proposed joint-optimization framework, and reconstruction
with positions and amplitudes fixed to their true values (gold-standard). The SSIM and relative errors are displayed in the first row at the
left and right corners, respectively, of each corresponding reconstruction. Scale bar: 500nm.

z z z

Figure 4: Observable region of the sample. Illustration of the
region of the sample that is “illuminated” by a fluorophore far from
(left) and close to (middle) the detection system. The right scheme
illustrates the fact that SMLM data carry more information about
RI regions that are close to the detection system (positive z).

frame (from the activation of one molecule) carries infor-
mation about the part of sample that lies between the
activated molecule and the optical system (see Figure 4).
As such, there are more SMLM frames that carry informa-
tion about z-planes with positive z than frames that carry

information about z-planes with negative z. Moreover,
waves produced by fluorophores with negative z-positions
propagate through a larger layer of the sample, inducing
more scattering. These facts make that i) fluorophores
with negative z-positions are harder to localize, and ii)
z-planes of RI with negative z are harder to reconstruct.

4.3.2. Molecule Localization

It is noteworthy to recall that the primary objective of
SMLM is to localize the fluorescent molecules with nano-
metric precision. It follows that another benefit of our
joint-optimization framework is an improvement of this lo-
calization. Indeed, our model accounts for sample-induced
distortions that usually compromises the accurate localiza-
tion of molecules [9].

We report in Table 1 the RMSE of the initial and re-
fined positions, as well as the RMSE of the initial and re-
fined amplitudes. In addition, we provide the RMSE of the
refined positions and amplitudes when the RI map is fixed
to the initial guess f0 or the ground-truth (best-case sce-

7



Table 1: RMSE for the estimated positions and amplitudes. First
row: Initial positions and amplitudes from our standard single-
molecule localization. Second row: Positions and amplitudes from
our joint-optimization framework. Third and fourth rows: Positions
and amplitudes refined with the RI map fixed to the initial guess f0

and the ground-truth (GT), respectively. Amp.: Amplitude. Lat.:
Lateral. Ax.: Axial.

3D [nm] Lat. [nm] Ax. [nm] Amp.

Initial 163 69 148 109
Joint 74 15 72 76

with f0 142 38 136 194
with fGT 72 18 70 76
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Figure 5: Rendering of localized molecules (Y-projection).
Region-of-interest of the projection along Y of the rendered fluores-
cent volume. From top to bottom: Initial positions, positions refined
with the joint-optimization framework, ground-truth. Field-of-view
(XZ): (3600 × 600)nm2. The images were satured for visualization
purpose. Scale bar: 200nm.

nario). There is a gain of 89nm in the 3D RMSE for our
joint-optimization framework. One sees that the lateral
and axial RMSE are improved by 54nm and 76nm, respec-
tively. Not only does our joint-optimization framework
successfully recover the RI volume, but it also improves
significantly the localization of the molecules. The pro-
posed joint-optimization framework performs better than
the refinement of the positions and amplitudes with the RI
map fixed to f0. Moreover, it performs similarly to the re-
finement with the RI map fixed to the ground-truth. Those
observations confirm that the joint-optimization frame-
work is necessary to improve the localization and can even
reach similar performance to the best-case scenario.

In Figure 5, we display a Y-projection of the fluorescent
volume rendered from the molecule positions, where one
can visually appreciate the gain in accuracy. The estima-
tion of the amplitudes is improved as well. This can help
to better estimate the uncertainty of localization [44, 45].

4.3.3. Influence of the Distribution of Fluorophores

From the phenomenon illustrated in Figure 4, one can
expect that the quality of the reconstructed RI map is
closely related to the spatial distribution of the fluores-
cent probes. In this section, we investigate this question
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A: Distribution of fluorophores
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10

00
fr
am

es
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8.6× 10−30.96

8.39× 10−30.97

1
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8.5× 10−30.95

B: RI reconstruction

1.339 1.506

Figure 6: Reconstructions of the RI volume with different
fluorophore distributions. A: The four considered fluorophore
distributions. B; Reconstructed RI maps. The SSIM and relative er-
rors are displayed in the XZ view at the left and right corners of each
reconstruction, respectively. The signal-to-noise ratio is displayed at
the bottom-left corner for each noise level. Scale bar: 500nm.

by comparing the reconstructions obtained with the four
fluorophore distributions illustrated in Figure 6 (Panel A).
These include the rather homogeneous distribution de-
picted in Figure 2 and a more concentrated distribution,
both with two different numbers of molecules (i.e., num-
bers of frames).
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Figure 7: Reconstructions of the RI volume with different noise levels. From left to right: Ground truth, reconstruction with the
proposed joint optimization framework for r = 0.1, 0.5, and 1. The SSIM and relative errors are displayed in the first row at the left and right
corners of each reconstruction, respectively. The last row contains two examples of SMLM acquisition (ROI) for two different molecules at
axial positions z = 440nm (top) and z = 0nm (bottom). The signal-to-noise ratio is displayed at the bottom-left corner for each noise level.
Scale bar: 500nm.

Table 2: RMSE of the estimated positions and amplitudes for the
four distributions of fluorophores depicted in Figure 6 (Panel A).
Amp.: Amplitude. Lat.: Lateral. Ax.: Axial. Dist.: Distribution.

#Fluo 3D [nm] Lat. [nm] Ax. [nm] Amp.

D
is

t.
1 1000 74 15 72 76

100 80 13 79 76

D
is

t.
2 1000 85 3 85 77

100 82 3 82 55

As expected, the reconstructed RI map is significantly
degraded when the distribution of fluorophores is more
concentrated (Figure 6B, right column). Indeed, the emit-
ted light has mainly propagated through a restricted area
of the sample, limiting the information on the RI map
carried by the measurements. On the contrary, the qual-

ity of the reconstructed RI map seems less sensitive to the
number of fluorophores. Although some details are lost,
the RI maps reconstructed with 100 frames remain qual-
itatively similar to their counterparts reconstructed from
1000 frames (Figure 6B).

Finally, we display in Table 2 the RMSE obtained after
the joint optimization. Interestingly, the refinement of the
positions and amplitudes of the molecules remains stable
when reducing the number of frames. For the concen-
trated distribution, the axial RMSE is slightly degraded
and, on the contrary, the lateral RMSE is drastically re-
duced, which might be due to the concentration of the
distribution.

4.3.4. Robustness to Noise

Next, we are interested in the robustness of our frame-
work to the measurement noise. To that end we vary the
parameter r in (27) from 0.1 to 1. Some examples of ob-
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Figure 8: Box plots of the localization (left) and amplitude (right) error for different noise levels. Three noise levels are
displayed with r = 0.1, 0.5, and 1. For each case, the left box plot (hatched) corresponds to the initial positions/amplitudes and the right box
plot (solid) corresponds to the refined positions/amplitudes. Note that the estimated amplitudes were scaled by r−1 to compare with the
same ground-truth. For the box plots of the localization error after refinement (solid), we set the upper whiskers to 50nm so as to consider any
larger error as outliers. This is in line with the expected 3D localization error in SMLM [6]. This bound is not relevant for the initial errors
(hatched) as they are too large. For the hatched box plots, we thus set the default upper whiskers to Q3 + 1.5IQR, where IQR = (Q3 −Q1)
is the interquartile range and Q1, Q3 are the 25th and 75th percentile, respectively. Finally, the lower whiskers are always set to the smallest
error among all molecules. Outliers are indicated by ×.

tained measurements are shown in Figure 7 (last row),
where one can observe that the noise is stronger when r is
smaller. The RI reconstructions for each noise level are
displayed in Figure 7. Although the quality of reconstruc-
tion degrades when the noise increases, the shape and the
most prominent features are recognizable even for r = 0.1.
This suggests that our method is quite robust to noise.

The box plots of the localization errors are displayed in
Figure 8. For each noise level, we show the box plot for the
initial and refined positions to illustrate the improvement.
We again observe a certain robustness to noise, even for the
case r = 0.1 where the amplitudes were badly initialized.
It is noteworthy to mention the presence of outliers in the
displayed box plots even for r = 1. For some molecules, we
observed that the joint-optimization could not refine the
positions and amplitudes well. In few cases, the estimates
did even worsen. Fortunately, the number of such failures
is limited (e.g., 60 over 1000 molecules for r = 0.1).

5. Discussion

We have presented a joint-optimization framework to
estimate both the RI map and the position of fluores-
cent molecules from an SMLM acquisition stack. Our
method takes advantage of the sample-induced aberra-
tions to unveil the map of the refractive index of the sam-
ple. Such structural information complements fluorescence
imaging [10]. In addition to this unique feature, our frame-
work is able to improve the accuracy of molecule localiza-
tion. Our work shows that additional information about
the sample can be recovered from SMLM data. This is a

first step towards an exciting and new extension of SMLM.
As future refinement, we need to look into ways to identify
and correct the molecules that our framework can some-
times fail to refine. We shall then be in a good position to
apply our framework to real data.
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