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Abstract. Spinors ψj of SU(2) represent group elements, i.e. three-dimensional rotations Rj , because they
are shorthands of SU(2) representation matrices Rj obtained by taking their first columns. We explain
that making linear combinations of spinors of SU(2) is feasible algebraically but geometrically meaningless.
E.g. ψ1 +ψ2 ∈ C

2 would have to correspond to R1 +R2. But in SO(3), R1 +R2 would be a function that
transforms r ∈ R

3 into R1(r)+R2(r), while in SU(2) it would correspond to a different function that is up
to a multiplication constant equal to S : r → S(r) = R1(r) + R2(r) + 2 [ cos(ϕ1/2) cos(ϕ2/2) − s1·s2 ] r +
2 sin(ϕ1/2) sin(ϕ2/2)[ ( s2·r ) s1 + ( s1·r ) s2 ] + 2 sin(ϕ1/2) cos(ϕ2/2)(s1 ∧ r) + 2 cos(ϕ1/2) sin(ϕ2/2)(s2 ∧ r).
The multiplication constant must be chosen such that |r| is preserved. Such extensions by linear combi-
nations for spinors from a manifold to an embedding vector space are therefore mindless algebra with a
spurious, conceptually impenetrable geometrical counterpart. This should not surprise anybody because
the group axioms only define products of group elements, not linear combinations of them. Redefining
spinors as vectors of a Hilbert space is therefore a purely formal, would-be scholar generalization.

PACS. 02.20.-a, 03.65.Ta, 03.65.Ca Group theory, Quantum Mechanics

1 Introduction

We have explained based on Eq. 4 on p. 7 of [1] that a spinor of SU(2) is the first column of a rotation matrix of
SU(2), and as such can be considered as a shorthand notation for a rotation matrix. It therefore also represents a
rotation around the origin of R3. The group SO(3) of rotations around the origin of R3 forms a three-dimensional
manifold, because a rotation is defined by three independent real parameters, e.g. by the Euler angles (α, β, γ) or by
(s, ϕ), where ϕ is the rotation angle around the rotation axis defined by the unit vector s. A linear combination of two
rotations is not defined by the group axioms, only the product of two group elements is defined. Therefore, also the
linear combination of two SU(2) matrices or of two spinors is geometrically not defined. But these spinors belong to C2

which is a two-dimensional complex vector space, equivalent to the four-dimensional real vector space R4. This leads
to the speculation that by definition every element of C2 could be called a spinor and that ∀(c1, c2) ∈ C2, c1ψ1+ c2ψ2,
would be defined in the vector space C

2 [2,3,4]. These operations are indeed algebraically defined, but this is not the
end of the story. The problem is to give the algebraic result a geometrical meaning. When a curved manifold M is
embedded in a vector space V , the geometrical meaning one would have to attribute to the points of the set V \M
may not make sense. This is a well-known mathematical fact (see below), which is overlooked in such speculations.

It is actually even overlooked in the mathematical definitions one can find in most texts, in the style: “In the
mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear
transformations (i.e. automorphisms) of vector spaces.” Perhaps, this definition should be tweaked. We would then
need also the discussion in Section 2.5.2 of [1] to justify certain calculations of group representation theory where
linear combinations are nevertheless used, e.g. the calculation of Casimir operators. In fact, on p.7 of his monograph
[5], Sagan states clearly that the linear combinations are purely formal. Instead of a group ring [6], Sagan calls the set
of these purely formal linear combinations a G-module, and the corresponding calculus the group algebra. The lack
of geometrical meaning is something a mathematician should not be satisfied with, and even less a physicist because
he applies the formalism to the real world.

The mathematical fact that spinors do not form a vector space flies in the face of what one can read elsewhere
(see e.g. [2], which ignores the fact that the calculations are purely formal) and of the very existence of a monograph
written by Dirac with the title “Spinors in Hilbert space”. Accordingly, in the eyes of a physicist, our remark seems
to have all odds against it. Some physicists therefore immediately declare it anathema: The statement that spinors do
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not form a vector space very obviously has to be wrong. They even refuse to read [1] where this mathematical fact is
proved [7,8]. This should not refrain us from stoically pointing out the truth. Traditional quantum mechanics (QM)
is teeming with such misinterpretations of the mathematics due to the way physicists use these mathematics as a
blackbox according to the leitmotiv: “Shut up and calculate!” There is no pride to be drawn from such an expeditious
slogan. In Section 4 we will provide a whole laundry list of such flawed interpretations.

Throughout this document the notation F(A,B) will be used for the functions whose definition domain is the set
A and which take values in the set B. By L(A,B) we will design the linear mappings from the A to the set B.

2 The points of the vector space which do not belong to the embedded manifold

Column matrices representing group elements are not proverbial rare birds. We encounter them in every regular
representation of a finite group. Let us consider e.g. the permutation group Sn. We can label arbitrarily each of the n!
permutations pj ∈ Sn with a number j ∈ [1, n!]∩N. The order the group elements acquire this way has no importance.
Any order will do. The regular representation is then given by n!×n! representation matrices and each group element
pj is also represented by a n! × 1 matrix p(j), whose entries are [p(j) ]k = δkj . That is, all entries take the value 0
except the one on line j, which takes the value 1. The square matrix representing a group element pj just represents

pj by the group automorphism: Tpj
: q ∈ Sn → Tpj

(q) = pj ◦ q ∈ Sn. We could call the n! × 1 column matrices p(j)

“column vectors” and they would span a “vector space” (V,K) over some number field K that could be R or C. The
group Sn would then be a finite discrete subset (of n! points) of the vector space (V,K) = (Kn!,K). The n! column
vectors constitute an orthonormal basis for (V,K). But this is just shallow nonsense, because in the representation the
sum of two such n!× 1 column matrices p and q would by isomorphism correspond to:

(
1 2 · · · k · · · n
p(1) p(2) · · · p(k) · · · p(n)

)

+

(
1 2 · · · k · · · n
q(1) q(2) · · · q(k) · · · q(n)

)

. (1)

Good luck to anyone who wants to make sense of this. It is very obvious that this operation is just not defined, and

the same applies for any other linear combination
∑n!

j=1 cjp
(j), with cj ∈ K, ∀j ∈ [1, n!] ∩ N, that does not belong

to Sn. All points of Kn!\Sn are a priori meaningless. This example illustrates the pitfalls of heedlessly carrying out
algebraic calculations without bothering what they mean, as implied by the motto: “Shut up and calculate!”.

It is for the same reason that in general relativity the curved space-time manifold should not be considered as
embedded in a vector space, but described intrinsically. The points you would have to add to obtain an extension in
the form of a vector space wherein the curved space-time manifold could be embedded do not exist physically. That
vector space would have to be R5, just like the two-dimensional surface of a sphere is embedded in R3. The points
of the extension to R

5 that do not belong to space-time would just be physically meaningless. It is in order to avoid
such utter nonsense and to describe accordingly space-time intrinsically that we need a whole artillery of concepts
from differential geometry like manifolds, Riemann and Ricci tensors, curvilinear coordinates, covariant derivatives
and parallel transport.

Within the representation SO(3) ⊂ L(R3,R3) it is possible to attribute a meaning to the sum of two rotations
R1+R2 because we can figure out the result of the action of R1+R2 on a general vector r ∈ R3. In fact R1(r)+R2(r)
is a sum of vectors, and we know what this means, such that it can be used to define R1 + R2. But the resulting
definition does not introduce a very enlightening geometrical concept. It does not correspond to a Gestalt. A similar
approach for the sum of two SU(2) matrices R1, R2 and a general spinor ψ yields R1ψ + R2ψ which is a sum of
spinors. This makes it impossible to figure out the geometrical meaning of R1 +R2 for Rj ∈ SU(2) without knowing
the geometrical meaning of sums of spinors.1 But these spinors ψj are the first columns of the matrices Rj, such that
to figure out their meaning we must know the meaning of R1 +R2. If we wanted to figure out what the sum ψ1 + ψ2

of two spinors means, we could also try to calculate Rψ1 +Rψ2, but this is again a sum of two spinors. Whatever we
try to make sense of such sums, we end up running in circles. In summary, we cannot figure out what the sum of two
spinors means because we cannot figure out what the sum of two rotation matrices means, and we cannot figure out
what the sum of two rotation matrices means because we cannot figure out what the sum of two spinors means. What
we did for SO(3) can this way not be transposed to SU(2). We cannot solve the problem in SU(2) with the method
we used in SO(3), because the column vectors the rotation matrices are operating on do not correspond to vectors
but to group elements, which form a manifold rather than a vector space. To make sense of sums of rotation matrices
or spinors in SU(2) we must therefore try again to figure out how they operate on vectors r ∈ R3, but the problem is
that the calculations to be performed are now no longer linear but “quadratic”, in the sense to be developed below,
starting from Eq. 7.

1 In reality R1, R2 must here be considered as elements of F(SU(2),SU(2)), more precisely of the group of group automor-
phisms, which is isomorphic to SU(2).
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Consider now the complex vector space C2 and a general point (ζ1, ζ2) ∈ C2 of it. Until something is done about
it, such a point has no obvious physical meaning. A first step consists in pointing out that the spinors ψ = [ ζ1, ζ2 ]

⊤

of SU(2), which (as explained on p.7 of [1]) can be given the meaning of rotations around the origin in R3, belong
to the set C = {(ζ1, ζ2) ‖ ζ∗1 ζ1 + ζ∗2 ζ2 = 1} ⊂ C2, such that SU(2) ⊂ C . These spinors are isometries, i.e. special
elements of the vector space L(R3,R3), which conserve the metric. They are geometrical/physical operators. Each
rotation corresponds to two spinors which are identical up to a factor ±1. Each rotation defines therefore two points
of the curved manifold C , but the converse is also true: each such pair of points of C corresponds to a rotation, i.e. a
pair of spinors of SU(2), which is a double covering of SO(3) due to the very existence of these two possible factors ±1.
The simplest way to prove this is to identify (ζ1, ζ2) with the expression for a spinor that corresponds to the rotation
R(α, β, γ) where (α, β, γ) are its Euler angles, as e.g. given by the first column of:

R(α, β, γ) =





e−ı(α+γ)/2 cos β
2 −ıe−ı(α−γ)/2 sin β

2

−ıeı(α−γ)/2 sin β
2 e+ı(α+γ)/2 cos β

2



 , (2)

in Eq. 1.2.29 of [2]. The definition of the Euler angles used here is defined in Fig. 1.5 of [2]. Therefore we have also
C ⊂ SU(2), such that C ≡ SU(2). We can consider the manifold C as embedded in C2. In terms of real numbers, the
rotation group, represented by C , is then a three-dimensional manifold embedded in the four-dimensional vector space
C2 ≡ R4. This is analogous to four-dimensional space-time embedded in R5 as explained above, such that analogous
caveats must prevail.

It is of course algebraically feasible to calculate linear combinations c1ψ1+ c2ψ2, where (c1, c2) ∈ C2, or to consider
elements of C2\C but this is purely formal and a priori devoid of any geometrical meaning in terms of some element of
L(R3,R3), which is the natural embedding for the rotation group SO(3) ⊂ L(R3,R3) [1]. What other kind of embedding
of SO(3) could we else imagine to give (ζ1, ζ2) ∈ C2\C meaning? This argument is similar to the one for Sn above.
However, this time the group is a continuous Lie group and therefore no longer a discrete finite set but a differentiable
manifold.

3 Attempt to attribute a meaning to the sum of two spinors of SU(2) within L(R3
,R3)

We can further illustrate that the meaning we would have to attribute to a sum of two spinors of SU(2) in L(R3,R3) is
spurious, by making the following calculation on vectors anticipated above. Let us consider two rotations Rj(sj , ϕj),
j ∈ {1, 2}, and a vector r ∈ R3. Here ϕj are the rotation angles around the rotation axes ℓj defined by the unit
vectors sj ‖ ℓj . The SU(2) representation matrices of Rj(sj , ϕj) are given by Rj = cos(ϕ/2)1− ı sin(ϕ/2)[ sj·σ ]. The
corresponding spinors ψj are obtained by taking the first columns of Rj . The vector r is represented by [ r·σ ].

We know that for a matrix R of SU(2) its inverse is given by: R−1 = R†. In fact, the inverse of a general 2 × 2
matrix:

M =

[
a b
c d

]

, with: D = det(M) = ad− bd, (3)

exists when D 6= 0 and is then obtained by first calculating the matrix of the minors, subsequently transposing it and
finally dividing it by its determinant. This yields:

M−1 =
1

D

[
d −b

−c a

]

. (4)

Applying this to a matrix of the form:

S =

[
u −v∗
v u∗

]

, with (u, v) ∈ C
2, det(S) = uu∗ + vv∗ ∈ R, (5)

one obtains:

S−1 =
1

uu∗ + vv∗

[
u∗ v∗

−v u

]

=
1

uu∗ + vv∗

[
u −v∗
v u∗

]†
. (6)

For matrices R ∈ SU(2), we have uu∗+vv∗ = 1, such that then R−1 = R†. For a sum R1+R2 of two SU(2) matrices,
det(R1 +R2) ∈ R will not be equal to 1. But to calculate the inverse of R1 +R2 it suffices to calculate [R1 +R2 ]

†

and to divide the result by det[R1 +R2 ], provided D = det[R1+R2 ] 6= 0. Otherwise the inverse will not be defined,
which will happen if and only if u = v = 0, i.e. R2 = −R1.
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Let us calculate the effect of the sum R1 + R2 on [ r·σ ]. The original idea behind the speculation is that all
elements of C2 should be meaningful spinors. They therefore should be the first columns of 2× 2 matrices which work
on vectors r ∈ R3 in the same way as the rotation matrices of SU(2). Hence ψ1 + ψ2 corresponds to R1 +R2 which
works on [ r·σ ] according to:

[R1 +R2 ] [ r·σ ] [R1 +R2 ]
−1 =

1

D
[R1 +R2 ] [ r·σ ] [R1 +R2 ]

† (7)

Note that for R ∈ SU(2), it is the rule [ r·σ ] → R [ r·σ ]R−1 which is primal, while the rule [ r·σ ] → R [ r·σ ]R† is
derived and relies on the specifity R−1 = R† which is no longer valid for R1 + R2. Thus, the result must really be
calculated according to Eq. 7, not according to Eq. 8 below. Let us now first calculate the result of the transformation:

[R1 +R2 ] [ r·σ ] [R1 +R2 ]
† = R1[ r·σ ]R†

1
︸ ︷︷ ︸

+ R2[ r·σ ]R†
2

︸ ︷︷ ︸
+ R1[ r·σ ]R†

2
︸ ︷︷ ︸

+ R2[ r·σ ]R†
1

︸ ︷︷ ︸
.

R1(r) R2(r) T3 T4

. (8)

As already mentioned, this action is no longer linear but “quadratic” or rank-2.
The term T4 can be obtained from the term T3 by carrying out the substitution (1, 2)|(2, 1) on all indices. It suffices

therefore to calculate T3. Using the algebraic identity [ a·σ ][b·σ ] = (a · b)1+ ı[ (a ∧ b)·σ ], this yields:

T3 = { cos(ϕ1/2)1− ı sin(ϕ1/2)[ s1·σ ] } [ r·σ ] { cos(ϕ2/2)1+ ı sin(ϕ2/2)[ s2·σ ] } =

{cos(ϕ1/2)[ r·σ ]− ı sin(ϕ1/2)( s1·r )1+ sin(ϕ1/2)[ (s1 ∧ r)·σ ]} { cos(ϕ2/2)1+ ı sin(ϕ2/2)[ s2·σ ] } . (9)

This equation contains a scalar and a vector term. The scalar term of T3 is:

− ı sin(ϕ1/2) cos(ϕ2/2)( s1·r ) + ı sin(ϕ2/2) cos(ϕ1/2)( s2·r ) + ı sin(ϕ1/2) sin(ϕ2/2)(s2·(s1 ∧ r)). (10)

The substitution (1, 2)|(2, 1) in the indices yields for the corresponding scalar term within T4:

− ı sin(ϕ2/2) cos(ϕ1/2)( s2·r ) + ı sin(ϕ1/2) cos(ϕ2/2)( s1·r ) + ı sin(ϕ2/2) sin(ϕ1/2)(s1·(s2 ∧ r)). (11)

The sum of these two scalar terms is zero. In fact, the mixed products can be written under the form of determinants,
and these two determinants are obtained one from another by exchanging two lines. Because the scalar terms vanish,
T3 + T4 is a true vector. The vector part of term T3 is:

cos(ϕ1/2) cos(ϕ2/2)[ r·σ ] + sin(ϕ1/2) sin(ϕ2/2)( s1·r )[ s2·σ ] + sin(ϕ1/2) cos(ϕ2/2)[ (s1 ∧ r)·σ ]

− cos(ϕ1/2) sin(ϕ2/2)[ (r ∧ s2)·σ ]− sin(ϕ1/2) sin(ϕ2/2)[ (( s1 ∧ r ) ∧ s2)·σ ]. (12)

This can be rewritten as:

cos(ϕ1/2) cos(ϕ2/2)[ r·σ ] + sin(ϕ1/2) sin(ϕ2/2)( s1·r )[ s2·σ ] + sin(ϕ1/2) cos(ϕ2/2)[ (s1 ∧ r)·σ ]

+ cos(ϕ1/2) sin(ϕ2/2)[ (s2 ∧ r)·σ ] + sin(ϕ1/2) sin(ϕ2/2)[ (s2 ∧ ( s1 ∧ r ))·σ ]. (13)

Now we can use the identity a ∧ (b ∧ c) = (a·c)b− (a·b)c to rewrite this as:

cos(ϕ1/2) cos(ϕ2/2)[ r·σ ] + sin(ϕ1/2) sin(ϕ2/2)( s1·r )[ s2·σ ] + sin(ϕ1/2) cos(ϕ2/2)[ (s1 ∧ r)·σ ]

+ cos(ϕ1/2) sin(ϕ2/2)[ (s2 ∧ r)·σ ] + sin(ϕ1/2) sin(ϕ2/2)((s2·r)[ s1·σ ]− (s2·s1)[ r·σ ]). (14)

With the substitution (1, 2)|(2, 1) in the indices we obtain the corresponding term in T4:

cos(ϕ2/2) cos(ϕ1/2)[ r·σ ] + sin(ϕ2/2) sin(ϕ1/2)( s2·r )[ s1·σ ] + sin(ϕ2/2) cos(ϕ1/2)[ (s2 ∧ r)·σ ]

+ cos(ϕ2/2) sin(ϕ1/2)[ (s1 ∧ r)·σ ] + sin(ϕ2/2) sin(ϕ1/2)((s1·r)[ s2·σ ]− (s1·s2)[ r·σ ]). (15)
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Summing the vector terms in T3 and T4 yields:

2 [ cos(ϕ1/2) cos(ϕ2/2)− s1·s2 ] r + 2 sin(ϕ1/2) sin(ϕ2/2)[ ( s2·r ) s1 + ( s1·r ) s2 ]

+ 2 sin(ϕ1/2) cos(ϕ2/2)(s1 ∧ r) + 2 cos(ϕ1/2) sin(ϕ2/2)(s2 ∧ r). (16)

Therefore the transformation in Eq. 7 corresponds to the function S ∈ L(R3,R3) : r ∈ R
3 → S(r) given by:

S(r) = R1(r) + R2(r) + 2 [ cos(ϕ1/2) cos(ϕ2/2)− s1·s2 ] r + 2 sin(ϕ1/2) sin(ϕ2/2)[ ( s2·r ) s1 + ( s1·r ) s2 ]

+ 2 sin(ϕ1/2) cos(ϕ2/2)(s1 ∧ r) + 2 cos(ϕ1/2) sin(ϕ2/2)(s2 ∧ r). (17)

Let us now treat the division by D = det[R1 +R2 ] ∈ R, when D 6= 0. In this case D > 0, such that
√
D ∈ R. The

determinant of the matrix U = 1√
D
[R1 +R2 ] is equal to 1. The matrix U is therefore unitarian and:

[R1 +R2 ] [ r·σ ] [R1 +R2 ]
−1 =

√
DU[ r·σ ]U−1 1√

D
= U[ r·σ ]U−1. (18)

The matrix U is a rotation which preserves the length of r. Therefore the operation [R1 + R2 ] [ r·σ ] [R1 + R2 ]
−1

also preserves the length. This means that this operation is nothing else than the rotation which transforms r into
|r|S(r)/|S(r)|, provided S(r) 6= 0. This would then be the transformation that corresponds to ψ = ψ1 + ψ2. The sum
ψ = ψ1 + ψ2 has this way been given a geometrical definition but it is completely abstruse. It is an elaboration of the
calculation in Section 2.5.1 starting on p. 12 of [1], where we also introduced (ψ1+ψ2)/|ψ1+ψ2| provided ψ1+ψ2 6= 0.
But now we have extended the scope to the action on vectors. We were wondering how we could justify introducing
such a renormalization of ψ1 + ψ2. The present calculation gives the answer. It is a corollary of the agenda to call
all elements of C2 spinors, based on the assumption that spinors would constitute a vector space, whereby it turns
out that the operator that corresponds to the sum ψ1 + ψ2 of two spinors has the same action on a vector as these
renormalized sums (ψ1 + ψ2)/|ψ1 + ψ2|.

The first two terms in S(r) correspond to R1(r) and R2(r). Their sum corresponds to what we expect on the basis
of the representation SO(3). But in SU(2) there are extra terms and the sum of these terms is in general not identical
to zero, as is easily checked. The result in SU(2) will in general be different from the result in SO(3), be it only because
the result in SO(3) does not preserve the length of the vector r while the result in SU(2) does. But the vectors will
in general also not be parallel. The finding that the value we must attribute to the sum of two group elements would
depend on the choice of the representation gives a first inkling of the fact that the algebraic procedure of summing
spinors or group elements does not necessarily define a meaningful geometrical result. We can compare it to a definition

that would depend on the choice of a reference frame. The elaboration of |ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + ψ1ψ
†
2 + ψ2ψ

†
1

contains also two extra terms ψ1ψ
†
2, ψ2ψ

†
1 which lead to conceptual problems in the double-slit experiment for electrons

[9], raising also questions about the procedure of summing spinors.
Furthermore, the extravagant result |r|S(r)/|S(r)| is admittedly providing ψ1 + ψ2 with a geometrical definition,

but one that is just not suited for any use in physics because its meaning is unfathomable. The vector S(r) is as useful
as a point of R5 in general relativity. It all just looks like inscrutable nonsense, let alone what we would obtain for
ψ = c1ψ1 + c2ψ2. And when R2 = −R1 the result is definitely meaningless. Nevertheless, sums of spinors are used in
QM with useful results, such that this requires an investigation. It is therefore explained in [1] that linear combinations
of spinors correspond to sets, which gives a reasonable meaning to the (incoherent) sums of spinor wave functions [9],
whereas coherent summing cannot be justified [9].

4 Appendix - An anthology of wrong interpretations of the mathematics in traditional QM

“When the wise man points to the Moon, the fool inspects the finger.” (Confucius).

The following is a non-exhaustive list of errors in the traditional theory of QM. Most of them are treated in [1,
10]. We have always tried to signal these errors with some restraint out of respect for the founding fathers of QM and
for the feelings of the readers. But peer review is infested with bullying psychopaths and a few of them wrote con-
temptuous sham peer reviews on a paper I submitted to Symmetry. They were endorsed by all editors, of which only
Alessandro Sergi was not anonymous. The following list of errors in traditional QM that went unnoticed for all those
years indicates that, if only they had empathy and cared, such gatekeepers could perhaps be a bit less self-righteous
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and a bit more humble:

� Dirac’s delta function does not exist.
� The algebraic expressions a·σ (and a·γ) are the representations of vectors a, not some coupling of a with σ

where ~

2σ would be the spin. The quantity σ does not contain the spin, but just represents the triad of basis vectors
(ex, ey, ez). This erroneous interpretation of a mere notation as a true scalar product is used in the treatment of the
anomalous Zeeman effect and the definition of the helicity of the neutrino. The correct expression for spin axis is s·σ.

� Similarly cα in the Dirac equation represents a triad of vectors, rather than the three components of a “velocity
operator” cα in terms of a so-called Zitterbewegung (which does not exist).

� The Dirac equation cannot be used to define neutrinos as fermions that would travel at the speed of light,
because its derivation starts from describing a fermion as a spinning particle in its rest frame.

� The velocity of the electron in the Dirac equation with phase (Et− p · r)/~ is already v < c such that it is not
necessary to introduce wave packets based on the observation that the phase velocity of the wave function is c2/v > c.

� There is no collapse of the wave function.
� The Dirac equation cannot be applied to an electron with a varying direction of its spin axis. It can thus not be

used to describe precession.
� The operators in QM are defined by the group theory, not by a procedure of trial and error based on guessing.
� The particle-duality is a wrong concept. Single electrons are particles, an electron wave corresponds to a statistical

ensemble of electrons.
� Schrödingers cat does not correspond to a cat that is both dead and alive but to a statistical ensemble of cats,

half of which are dead and half of which are alive.
� Negative energies in the Dirac equation do not correspond to antiparticles. The change of sign just corresponds

to a change of sense in the spinning motion. When an electron and a positron annihilate it yields two gamma rays of
511 keV, rather than a zero total energy.

� The derivation of the expression for the Thomas precession by the Dirac theory is wrong, because the wave
function is a mixed state of opposite spinning motions.

� The direction of spin is not quantized.
� The traditional “derivation” of the Dirac equation is carried out within the exterior algebra while the correct

derivation, which permits to understand what is going on behind the scenes, is made within the algebra of the group
elements.

� The linearity of the Schrödinger, Pauli and Dirac equations does not imply that the wave functions can be added.
� The Heisenberg uncertainty principle is just a mathematical consequence of the way we define the wave functions.
� The probabilities that intervene in the Bell inequalities are conditional probabilities defined with respect to

different contexts, i.e. different experimental set-ups with different polarizer settings (see [11] and the many references
therein).

References

1. G. Coddens, Symmetry, 13, 659 (2021).
2. J. Hladik, J.M. Cole, in Spinors in Physics, (Springer, New York, NY, USA, 2012).
3. Anonymous on https : //physics.stackexchange.com/questions/636734/do − spinors − form− a− vector− space.

“Honestly the only way I can see this making some sense is if he uses some non-standard definition of spinors. In the
conventional story spinors are by definition elements of a representation space of the spin group. In that case they form a
vector space by definition”.

4. Anonymous on https : //physics.stackexchange.com/questions/636734/do − spinors − form− a− vector− space.
“I think that he might be thinking of the orbit that you get when you choose a fixed starting spinor ψ0 and consider the
set you get by acting on it by all possible SU(2) matrices. This subset of spinors (the orbit of ψ0) is not a vector space, but
that does not mean that the set of all spinors is not a vector space.”

5. Sagan, B.E. in The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, Springer
Graduate Texts in Mathematics, Volume 203, 2nd ed.; Springer: New York, NY, USA, 2001.

6. B.L. van der Waerden, in Group Theory and Quantum Mechanics, Springer, Berlin-Heidelberg (1974), translated from Die

gruppentheoretische Methode in der Quantenmechanik, Springer, Berlin (1932).
7. Anonymous referee report Symmetry: “Every scientific paper should be, in my view, self-contained. I am sorry but I cannot

accept the argument that for reading a given paper I will have to read another one as an introduction.”
8. Anonymous on https : //physics.stackexchange.com/questions/636734/do − spinors − form− a− vector− space.

“I am loath to spend time on what may be a mathematical statement at variance to conventional definitions.”
9. G. Coddens, https : //hal − cea.archives − ouvertes.fr/cea − 01383609v6.

10. G. Coddens, Symmetry 13,134 (2021).
11. M. Kupczynski, Frontiers in Physics, 8, 273 (2020).


	Introduction
	The points of the vector space which do not belong to the embedded manifold
	Attempt to attribute a meaning to the sum of two spinors of SU(2) within L(R3, R3)
	Appendix - An anthology of wrong interpretations of the mathematics in traditional QM

