

Reappraisal of archaeal C20-C25 diether lipid (extended archaeol) origin and use as a biomarker of hypersalinity

Flore Vandier, Maxime Tourte, Cara Doumbe-Kingue, Julien Plancq, Philippe

Schaeffer, Phil Oger, Vincent Grossi

▶ To cite this version:

 $\label{eq:solution} Flore \ Vandier, \ Maxime \ Tourte, \ Cara \ Doumbe-Kingue, \ Julien \ Plancq, \ Philippe \ Schaeffer, \ et al.. \ Reappraisal of archaeal \ C20-C25 \ diether \ lipid (extended \ archaeol) \ origin \ and \ use \ as \ a \ biomarker \ of \ hypersultion \ hypersultion \ Schaeffer, \ Schaeffer, \ et al.. \ Reapprox \ and \ archaeol) \ origin \ and \ use \ as \ a \ biomarker \ of \ hypersultion \ hypersultion \ archaeol \ biomarker \ biomark$

HAL Id: hal-03289759 https://hal.science/hal-03289759

Submitted on 18 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Reappraisal of archaeal C20-C25 diether lipid (extended archaeol)
2	origin and use as a biomarker of hypersalinity
3	
4	Flore Vandier ^a , Maxime Tourte ^b , Cara Doumbe-Kingue ^b , Julien Plancq ^c , Philippe
5	Schaeffer ^d , Phil Oger ^b , Vincent Grossi ^a *
6	
7	^a Univ. Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, F-69622 Villeurbanne, France
8	^b Univ. Lyon, INSA Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France
9	^c School of Geographical and Earth Sciences, University of Glasgow, Scotland, UK
10	^d Univ. Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
11	*Author for correspondence : Vincent.grossi@univ-lyon1.fr
12	
13	Abstract
14	The diether core membrane lipid sesterterpanyl-phytanyl-glycerol (so-called extended
15	archaeol and often abbreviated C_{20} - C_{25}) is considered as a hallmark of Haloarchaea, a
16	clade of archaea thriving under extreme high salinities. We here report about extended
17	archaeol occurrence in different saline aquatic settings with salinity ranging from ca. 50
18	psu (5 % NaCl w/v) to saturation (ca. 350 psu). This demonstrates that this lipid is not
19	restricted to extreme saline environments but suggests a minimum salinity threshold of
20	ca. 50 psu above which C_{20} - C_{25} is most commonly produced. The proportion of C_{20} - C_{25}
21	relative to that of archaeol $(C_{20}-C_{20})$ did not appear linearly dependent on the salinity of
22	the site and was potentially also influenced by pH and temperature, preventing its direct
23	use as a quantitative salinity proxy based on the present data set. An extensive literature
24	review of archaeal membrane lipid compositions further highlighted that taxonomy also

	contributes to the distribution of this lipid in the environment and identifies Natrialbales
26	(one of the three orders of Haloarchaea) as the main source. Statistical analysis showed
27	that, among Haloarchaea, C20-C25 producers display pH and salinity growth optima
28	slightly higher than non-producers and are distributed within two distinct groups, one
29	composed mostly of neutrophiles and one of alkaliphiles. In contrast, the presence of
30	C ₂₀ -C ₂₅ was not correlated to the optimal growth temperature of the strains. This
31	suggests that two confounding parameters, i.e., taxonomy and adaptation to changes in
32	salinity and/or pH, contribute to the distribution of C ₂₀ -C ₂₅ within Haloarchaea.
33	
34	Keywords: Halophilic archaea; extended archaeol; adaptation to pH and salinity;
35	Natrialbales
36	
37	1. Introduction
38	Isoprenoid dialkyl glycerol diether lipids are membrane lipids unique to the Archaea.
39	Archaeol 1 (2,3-di- <i>O</i> -phytanyl- <i>sn</i> -glycerol; Fig. 1A) and its elongated homologue called
39 40	
	Archaeol 1 (2,3-di- <i>O</i> -phytanyl- <i>sn</i> -glycerol; Fig. 1A) and its elongated homologue called
40	Archaeol 1 (2,3-di- <i>O</i> -phytanyl- <i>sn</i> -glycerol; Fig. 1A) and its elongated homologue called extended archaeol 2 (2- <i>O</i> -sesterterpanyl-3- <i>O</i> -phytanyl- <i>sn</i> -glycerol 2a and its
40 41	Archaeol 1 (2,3-di- <i>O</i> -phytanyl- <i>sn</i> -glycerol; Fig. 1A) and its elongated homologue called extended archaeol 2 (2- <i>O</i> -sesterterpanyl-3- <i>O</i> -phytanyl- <i>sn</i> -glycerol 2a and its regiosiomer 2- <i>O</i> -phytanyl-3- <i>O</i> -sesterterpanyl- <i>sn</i> -glycerol 2b; Fig. 1A) are the two main
40 41 42	Archaeol 1 (2,3-di- <i>O</i> -phytanyl- <i>sn</i> -glycerol; Fig. 1A) and its elongated homologue called extended archaeol 2 (2- <i>O</i> -sesterterpanyl-3- <i>O</i> -phytanyl- <i>sn</i> -glycerol 2a and its regiosiomer 2- <i>O</i> -phytanyl-3- <i>O</i> -sesterterpanyl- <i>sn</i> -glycerol 2b; Fig. 1A) are the two main types of archaeal diether lipids encountered. While 1 is globally distributed among
40 41 42 43	Archaeol 1 (2,3-di- <i>O</i> -phytanyl- <i>sn</i> -glycerol; Fig. 1A) and its elongated homologue called extended archaeol 2 (2- <i>O</i> -sesterterpanyl-3- <i>O</i> -phytanyl- <i>sn</i> -glycerol 2a and its regiosiomer 2- <i>O</i> -phytanyl-3- <i>O</i> -sesterterpanyl- <i>sn</i> -glycerol 2b; Fig. 1A) are the two main types of archaeal diether lipids encountered. While 1 is globally distributed among Archaea (e.g., Tourte et al., 2020), 2 was initially described only in haloalkaliphilic
 40 41 42 43 44 	Archaeol 1 (2,3-di- <i>O</i> -phytanyl- <i>sn</i> -glycerol; Fig. 1A) and its elongated homologue called extended archaeol 2 (2- <i>O</i> -sesterterpanyl-3- <i>O</i> -phytanyl- <i>sn</i> -glycerol 2a and its regiosiomer 2- <i>O</i> -phytanyl-3- <i>O</i> -sesterterpanyl- <i>sn</i> -glycerol 2b; Fig. 1A) are the two main types of archaeal diether lipids encountered. While 1 is globally distributed among Archaea (e.g., Tourte et al., 2020), 2 was initially described only in haloalkaliphilic archaea (De Rosa et al., 1982) before being detected in non-alkaline hypersaline
 40 41 42 43 44 45 	Archaeol 1 (2,3-di- <i>O</i> -phytanyl- <i>sn</i> -glycerol; Fig. 1A) and its elongated homologue called extended archaeol 2 (2- <i>O</i> -sesterterpanyl-3- <i>O</i> -phytanyl- <i>sn</i> -glycerol 2a and its regiosiomer 2- <i>O</i> -phytanyl-3- <i>O</i> -sesterterpanyl- <i>sn</i> -glycerol 2b; Fig. 1A) are the two main types of archaeal diether lipids encountered. While 1 is globally distributed among Archaea (e.g., Tourte et al., 2020), 2 was initially described only in haloalkaliphilic archaea (De Rosa et al., 1982) before being detected in non-alkaline hypersaline environments (Teixidor et al., 1993) and later on considered as a hallmark of halophilic

49 asymmetric lipid that was hypothesized to induce "zip-like" archaeal membranes 50 specifically adapted to high alkalinity and strong osmotic stress (De Rosa et al., 1982). 51 The detection of 2 in sedimentary archives has been consequently associated with the 52 presence of Haloarchaea and used as a marker of hypersaline/evaporitic environments 53 (Birgel et al., 2014). Although relevant to some extent, the distribution of 2 in both 54 Archaea and environmental samples as well as its physiological and adaptive functions 55 still remain incompletely understood. For instance, this compound has been reported in 56 ancient marine sequences showing no lithological evidence of high salinities 57 (Natalicchio et al., 2017). On the other hand, preliminary results based on laboratory 58 cultures of a single Haloarchaea species (from the order Halobacteriales) have shown 59 that the relative proportion of 2 increases with increasing temperature and salinity 60 (Yamauchi, 2008), while its occurrence within a few Haloarchaea species appeared 61 related to taxonomy and optimal NaCl concentration (Dawson et al., 2012). Here, we 62 report the presence of 2 in surface sediments from aquatic environments with diverse 63 salinities, and reinvestigate its occurrence in (halo)archaea based on an extensive 64 literature survey to better constrain its biological origin and potential use as a 65 (paleo)environmental indicator.

66

67 2. Material and Methods

2.1. Sediment samples and lipid analysis
Surface sediments coming from 31 sites with a salinity ranging from 0 practical salinity
unit (psu) to saturation (ca. 350 psu) were investigated for the presence of 1 and 2
(Table S1). The different sites include lakes from the Canadian Prairies (Plancq et al.,
2018) and the Tibetan Plateau (Wang et al., 2020), salterns from France (Camargue) and

73	Argentina (Valdes Peninsula) and saline ponds from Guadeloupe (Huguet et al., 2015).
74	Some sediments have been analyzed in previous studies while other were specifically
75	considered for the present work (Table S1). Sediment samples were freeze-dried and
76	extracted ultrasonically [methanol (MeOH) x2, dichloromethane (DCM)/MeOH (1:1,
77	v/v) ×2, DCM ×2] or using an automated solvent extractor (Huguet et al., 2015; Plancq
78	et al., 2018). The total lipid extracts were chromatographed over a silica gel column
79	with hexane (Hex), Hex/DCM (1:1, v/v), Hex/ethyl acetate (3:1, v/v), and DCM/MeOH
80	(1:1, v/v) as eluents. The third fraction, which contained free alcohols, was silylated
81	with pyridine/N,O-bis(trimethylsilyl)trifluoroacetamide (1:1, v/v) and analyzed by gas-
82	chromatography - mass spectrometry (GC-MS) using an Agilent 6890 gas
83	chromatograph coupled to an Agilent 5975C mass spectrometer. Compounds were
84	injected on column and separated on a HP5-MS capillary column (30 m \times 0.25 mm \times
85	0.25 μ m) using the following GC oven temperature program: 60 °C held for 0.5 min,
86	20 °C min ⁻¹ to 130 °C then 4 °C min ⁻¹ to 300 °C held for 45 min. The temperature of the
87	on-column injector was programmed as followed: 60 °C held for 0.5 min, 200 °C min ⁻¹
88	to 300 °C held for 1 min. Total Ion Current (TIC) and Selected Ion Monitoring (SIM) of
89	the ions m/z 130, 131, 426 and 496 (specific of silylated derivatives of 1 and 2; Teixidor
90	et al., 1993) were recorded. Due to the low amount of 2 and/or compounds coeluting
91	with 1 in some samples, the abundance of 2 relative to $1+2$ (R) was determined from the
92	peak area measured on the SIM chromatograms, with $R = 2/(1+2) \times 100$. It should be
93	noted, however, that when both measurements were possible, SIM and TIC signals
94	yielded comparable R values (Table S1).
95	

96 2.2. Literature survey and statistical analyses

97 Information on the membrane lipid compositions of all Archaea species reported in the 98 literature was collected (N = 450). To estimate the influence of growth parameters on 99 the production of **2**, Haloarchaea (N = 277) were sorted between **2**-positive and **2**-100 negative species and their optimal growth conditions (salinity, pH and temperature) 101 were compared using a non-parametric test on medians performed with the Python 102 statistical package, as data were not normally distributed. Medians were considered 103 significantly different when *P*-values were below 0.05.

104

105 **3. Results and Discussion**

106 Compounds 1 and 2 were detected in 19 and 10 out of the 31 samples analyzed,

107 respectively. Other isoprenoid diether lipids [e.g., (macro)cyclic or hydroxylated1] were

108 not detected besides 1 and 2. Among the 19 lakes where 1 was observed, 2 was detected

109 in all sites with a salinity around or above 50 psu, yielding R values between 1.7 and

110 11.3 %, and was not detected in lakes with a salinity lower than 50 psu except in one

saline pond from Guadeloupe with a salinity of ca. 41 psu (Fig. 1B; Table S1). Although

sediments from hypersaline ponds with the highest salinity (ca. 350 psu, close to

saturation level) displayed the highest proportions of **2** (R values of ca. 11 %), similar

114 proportions of **2** were also observed in sites with a salinity between 70 and 210 psu (Fig.

115 1B). These results support **2** as a biomarker of hypersaline environments as previously

116 suggested (Teixidor et al., 1993; Birgel et al., 2014), but further show that this

117 biomarker is not restricted to extreme saline environments, extending its use to settings

118 with a salinity down to ca. 40-50 psu. This is in line with the occurrence of 2 in

119 Miocene shales, marls and carbonates which are supposed to have formed under non-

120 extreme conditions of salinity (Natalicchio et al., 2017). The proportion of 2 did not

121 appear linearly dependent on salinity (Fig. 1B), preventing the definition of a 122 quantitative salinity proxy given the present data set. It is possible, however, that some 123 uncertainties linked to the ways salinity was measured for the different sites (Table S1) 124 may have obscured such a potential linear relationship between the relative proportion 125 of **2** and salinity. On the other hand, the possibility that a sediment sample reflects 126 different salinity conditions than those at the time of sampling is not likely since only 127 the surficial sediments were analyzed and none of the 'low-salt' sediments in which 2 128 was detected enclosed evaporites which could have attested from past hypersaline 129 conditions. It may also be envisaged that the occurrence of 2 further depends on other 130 environmental parameters such as pH or temperature. Because these limnological 131 parameters were not available for all the studied sites (Table S1), their potential 132 influence on the occurrence of 2 could only be partially investigated (Fig. S1). Still, for 133 the limited set of data available, a potential influence of both variables on the proportion 134 of 2 was noticed. R seemed to decrease with increasing in-situ temperature (in the range 135 15-30 °C; Fig. S1A and Table S1) which contrasts with previous observations made 136 using laboratory cultures of a single Haloarchaea species (Yamauchi, 2008). On the 137 other hand, 2 was detected in sediments with pH values ranging from 7.5 to 9.4 (Fig. 138 S1B and Table S1), pointing towards different pH conditions of production. Lastly, our 139 analyses only considered the occurrence of 1 and 2 under their free forms [i.e., as core 140 lipids (CL) without polar heads] and did not take into account the potential co-141 occurrence of these diethers as intact polar lipids (IPL), as found in living biomass. 142 However, considering that 1 and 2 IPL are likely to exhibit similar polar heads, their 143 hydrolysis rates during diagenesis are expected to be close to each other, thus limiting potential biases reflected in the R ratio based on CL analysis. Whether or not this ratio 144

can become a quantitative environmental proxy remains to be further investigated. It
would be of particular interest to determine if the biosynthesis of 2 scales with salinity
(or other environmental parameters) within individual producers, and/or if the relative
abundance of archaeal species producing this compound scales with salinity (or other
variables).

150

151 To further explore potential adaptive functions of **2** towards salinity and other growth 152 parameters, we looked for its occurrence among all the archaeal membrane lipid 153 compositions available in the literature (N=450). It should be emphasized that all 154 literature data was not homogeneous in the sense that some studies focused on IPL, 155 whereas other studies reported CL compositions obtained after hydrolysis of total lipid 156 extracts. Since our survey considered both IPL and CL, it should not be biased by the 157 heterogeneity of the literature data. Compound 2 was reported in only 91 out of 450 158 species, with 87 species belonging to the three orders of Haloarchaea, i.e., the 159 Halobacteriales, Haloferacales and Natrialbales. The 4 additional species producing 2, 160 namely, Methanomassilicoccales lyminyensis, Methanolobus tindarius, Methanosarcina 161 barkeri and Methanosarcina mazei, were randomly distributed within non-halophilic 162 methanogens (De Rosa et al., 1986; Grant and Ross, 1986; Becker et al., 2016). 163 Therefore, we focused our analysis on Haloarchaea (N=277; Fig. 2A). Compound 2 164 was identified in the majority of currently known Natrialbales (51 out of 78 species, 16 165 out of 22 genera), but was more sporadically reported in Halobacteriales (32 out of 90 166 species, 14 out of 31 genera) and Haloferacales (6 out of 109 species, 2 out of 18 167 genera, i.e., *Halorubrum* and *Halalkaliarchaeum*). Such distinct distributions of **2** 168 between the three Haloarchaea orders support the idea that factors controlling its

biosynthesis are dependent on taxonomy (Dawson et al., 2012). Its wide distribution 169 170 within Natrialbales would indicate that the ability to synthesize this compound is a 171 common and ancestral feature of all the species of this order, while its patchy 172 distribution within Haloferacales and Halobacteriales would suggest that members of 173 these orders have sporadically gained this biosynthetic ability by horizontal gene 174 transfers or spontaneous emergence. Another hypothesis to explain the distribution of 2175 within Haloarchaea is that the ability to synthesize this lipid emerged and conferred 176 increased fitness under peculiar environmental conditions, and was thus maintained. 177 In an effort to disentangle the contribution of taxonomy vs. stress response in the 178 occurrence of 2 in Haloarchaea, we gathered from the literature the in-lab optimal 179 growth conditions of all species with described membrane lipid compositions (Fig. 2B). 180 To identify putative subgroups that might for instance result from the aforementioned 181 influence of taxonomy, we represented our data using violin plots instead of typical box 182 plots. Unlike the latter, violin plots represent the probability of a data point to be in a 183 certain region of the plot (e.g., the larger the region the more data points it contains) and 184 thus better depicts the data set distribution. Results showed that Haloarchaea 185 synthesizing 2 grow optimally at significantly higher pH (7.45 vs. 7.30, P-value = 186 (0.015) and salinity (200 vs. 190 psu, *P*-value = (0.035)) than non-producing species (Fig. 187 2B). However, although significant, these differences appeared rather small to support a major influence of growth pH and/or salinity on the biosynthesis of 2. This nonetheless 188 189 hints that 2 may have played a role in the (long-term) adaptation of Haloarchaea to pH 190 and salinity variations. Looking more closely at their optimal growth conditions, species 191 capable of the synthesis of 2 are distributed within two distinct groups: one composed 192 mostly of neutrophilic Haloarchaea (median pH = 7.2) and one of alkaliphilic

194 suggests that two confounding parameters, i.e., taxonomy and adaptation, might 195 contribute to the distribution of 2 within Haloarchaea. For instance, 2 might support 196 adaptation towards extreme pH in Natrialbales, while it might provide other yet 197 unknown advantage in Haloferacales and Halobacteriales. 198 Our statistical analysis further showed that the occurrence of 2 is not correlated to the

Haloarchaea, mostly Natrialbales (median pH = 9.2; Figure 2B). Such a bimodality

199 optimal growth temperature of Haloarchaea (P-value = 0.523; Fig. 2B). This suggests

200 that temperature have not exerted a significant control on the biosynthesis of 2 during

201 the long-term evolution of this clade (Fig. S1A). It may not preclude, however, that

202 temperature may influence the proportion of this lipid in the membrane of the archaeal

203 producers during short-term acclimatisation (Yamauchi, 2008; Fig. S1A).

204

193

205 The current set of archaeal lipid compositions further places Haloarchaea as the main 206 producers of 2. As the vast majority of currently known Haloarchaea are unable to thrive at salinity below 100 psu, the presence of **2** in sediments with salinity from ca. 40 207 208 to 100 psu is intriguing (Fig. 1B). However, 2 has been reported in non-halophilic 209 species distinct from Haloarchaea (i.e., in non-halophilic methanogens; De Rosa et al., 1986; Grant and Ross, 1986; Becker et al., 2016) and the lipid composition of numerous 210 211 archaeal species is yet uncharacterized. The possibility that a whole range of producers 212 of **2** besides Haloarchaea may contribute to the pool of this lipid biomarker in 213 environments with contrasted salinity thus cannot be ruled out. On the other hand, 214 Haloarchaea have been observed in low or non-extreme saline environments such as 215 estuaries (Purdy et al., 2004; Singh et al., 2010), sulfur-rich springs (Elshahed et al., 216 2004) or thiotrophic microbial mats (Jessen et al., 2016), suggesting that some (yet

undescribed) low salt-tolerant Haloarchaea might be responsible for the production of 2in settings with moderate salinity.

219 In spite of the still fragmented information currently available on the biosynthesis

220 (producers and conditions) of extended archaeol, the present study encourages further

221 investigation of the physiological role, environmental occurrence and potential use as

222 (paleo)environmental indicator of this puzzling lipid.

223

224 Acknowledgments

225 We thank Dr. Mingda Wang for his valuable help in gathering the environmental

226 parameters of the Tibetan lakes and Dr Philippe Cuny for providing the sediments from

salterns. We thank two anonymous reviewers for their comments which greatly

228 improved the manuscript. We are grateful to the CNRS Interdisciplinary program MITI

229 'Adaptation du vivant à l'environnement' (project Adapthalo 2020-2021) and the ENS

230 Lyon for their financial support.

231

232 References

Becker, K.W., Elling, F.J., Yoshinaga, M.Y., Söllinger, A., Urich, T., Hinrichs, K.-U.,
2016. Unusual butane- and pentanetriol-based tetraether lipids in *Methanomassiliicoccus luminyensis*, a representative of the seventh order of
Methanogens. Applied and Environmental Microbiology 82, 4505-4516.

Birgel, D., Guido, A., Liu, X., Hinrichs, K.-U., Gier, S., Peckmann, J., 2014.Hypersaline conditions during deposition of the Calcare di Base revealed from archaeal di- and tetraether inventories. Organic Geochemistry 77, 11-21.

- Cui, H.-L., Dyall-Smith, M.L., 2021. Cultivation of halophilic archaea (class *Halobacteria*) from thalassohaline and athalassohaline environments. Marine Life Science & Technology 3, 243-251.
- Dawson, K.S., Freeman, K.H., Macalady, J.L., 2012. Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Organic Geochemistry 48, 1-8.
- De Rosa, M., Gambacorta, A., Gliozzi, A., 1986. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiological Reviews 50, 70-80.
- De Rosa, M., Gambacorta, A., Nicolaus, B., Ross, H.N.M., Grant, W.D., Bu'Lock, J.D., 1982. An asymmetric archaebacterial diether lipid from alkaliphilic halophiles. Microbiology 128, 343-348.
- Elshahed, M.S., Najar, F.Z., Roe, B.A., Oren, A., Dewers, T.A., Krumholz, L.R., 2004. Survey of archaeal diversity reveals an abundance of Halophilic archaea in a low-salt, sulfide- and sulfur-rich spring. Applied and Environmental Microbiology 70, 2230-2239.
- Ernst, R., Ejsing, C.S., Antonny, B., 2016. Homeoviscous adaptation and the regulation of membrane lipids. Journal of Molecular Biology, Molecular Biology of Membrane Lipids 428, 4776-4791.
- Grant, W.D., Ross, H.N.M., 1986. The ecology and taxonomy of halobacteria. FEMS Microbiology Reviews 2, 9-15.
- Hou, J., Tian, Q., Wang, M., 2018. Variable apparent hydrogen isotopic fractionation between sedimentary *n*-alkanes and precipitation on the Tibetan Plateau. Organic Geochemistry 122, 78-86.

- Huguet, A., Grossi, V., Belmahdi, I., Fosse, C., Derenne, S., 2015. Archaeal and bacterial tetraether lipids in tropical ponds with contrasting salinity (Guadeloupe, French West Indies): Implications for tetraether-based environmental proxies. Organic Geochemistry 83-84, 158-169.
- Jessen, G.L., Lichtschlag, A., Struck, U., Boetius, A., 2016. Distribution and composition of thiotrophic mats in the hypoxic zone of the Black Sea (150-170 m water depth, Crimea Margin). Frontiers in Microbiology 7, 1011.
- Li, C., Zhang, Q., Kang, S., Liu, Y., Huang, J., Liu, X., Guo, J., Wang, K., Cong, Z., 2015. Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environmental Science and Pollution Research 22, 12490-12500.
- Natalicchio, M., Birgel, D., Peckmann, J., Lozar, F., Carnevale, G., Liu, X., Hinrichs,
 K.-U., Dela Pierre, F., 2017. An archaeal biomarker record of paleoenvironmental
 change across the onset of the Messinian salinity crisis in the absence of evaporites
 (Piedmont Basin, Italy). Organic Geochemistry 113, 242-253.
- Plancq, J., Cavazzin, B., Juggins, S., Haig, H.A., Leavitt, P.R., Toney, J.L., 2018.Assessing environmental controls on the distribution of long-chain alkenones in the Canadian Prairies. Organic Geochemistry 117, 43-55.
- Purdy, K.J., Cresswell-Maynard, T.D., Nedwell, D.B., McGenity, T.J., Grant, W.D., Timmis, K.N., Embley, T.M., 2004. Isolation of haloarchaea that grow at low salinities. Environmental Microbiology 6, 591-595.
- Singh, S.K., Verma, P., Ramaiah, N., Chandrashekar, A.A., Shouche, Y.S., 2010. Phylogenetic diversity of archaeal 16S rRNA and ammonia monooxygenase genes

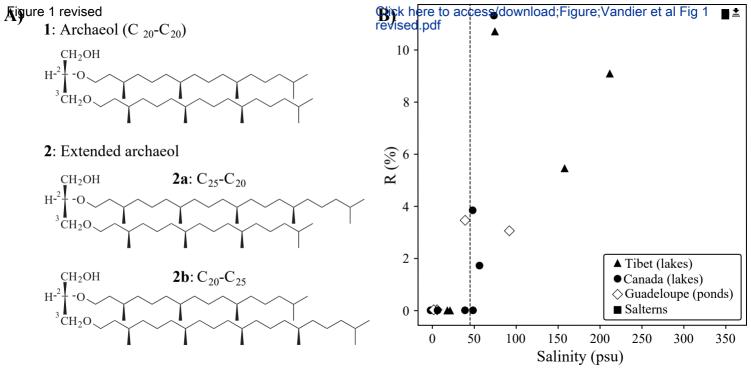
from tropical estuarine sediments on the central west coast of India. Research in Microbiology 161, 177-186.

- Teixidor, P., Grimalt, J.O., Pueyo, J.J., Rodriguez-Valera, F., 1993. Isopranylglycerol diethers in non-alkaline evaporitic environments. Geochimica et Cosmochimica Acta 57, 4479-4489.
- Tourte, M., Schaeffer, P., Grossi, V., Oger, P.M., 2020. Functionalized membrane domains: An ancestral feature of Archaea? Frontiers in Microbiology 11, 526.

Wang, S., Dou, H. (1998). A Directory of Lakes in China. Beijing: Science Press.

- Wang, M., Liang, J., Hou, J., Hu, L., 2015. Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors. Science China Earth Science 59, 961-974.
- Wang, M., Tian, Q., Li, X., Liang, J., He, Y., Hou, J., 2020. TEX₈₆ as a potential proxy of lake water pH in the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 538, 109381.
- Yamauchi, N., 2008. ESI-MS and GC-MS analyses of C₂₅-C₂₀ isoprenoidal diether originated from halophilic archaea with reference to an indicator for hypersaline environment. Researches in Organic Geochemistry 23-24, 123-130.

233


Figure legends

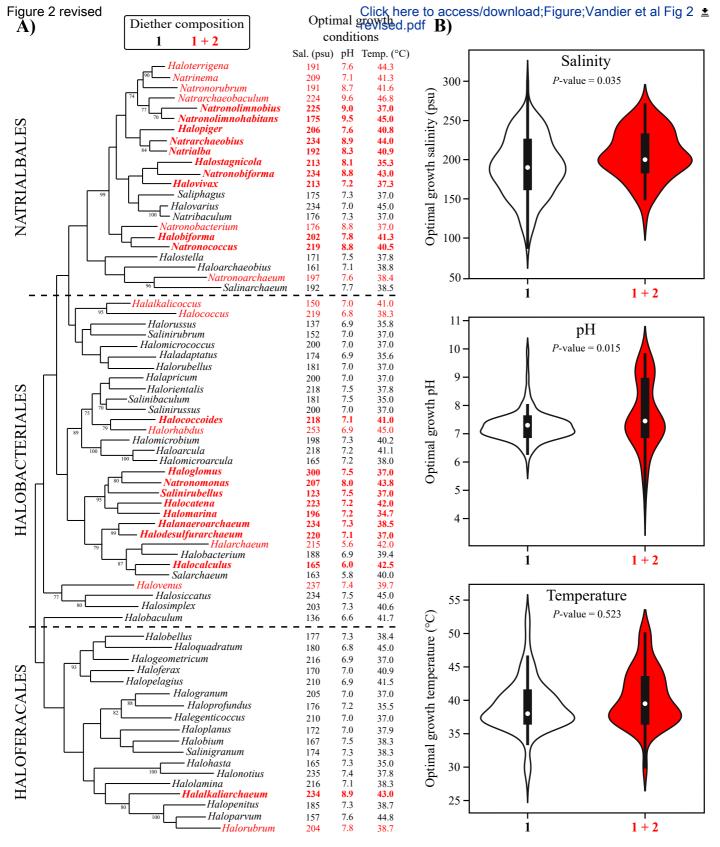

Figure 1. A) Structures of archaeol 1 and the two possible regioisomers of extended archaeol 2; B) Proportion of 2 relative to 1 in superficial sediments of lakes and ponds with different salinities. The dashed line indicates a possible threshold for the presence of 2 around 40-50 psu. $R = 2/(1+2) \times 100$.

Figure 2. A) Archaeal phylogenetic tree (redrawn from Cui and Dyall-Smith, 2021) and average optimal growth parameters (salinity, pH and temperature) of Haloarchaea. Genera highlighted in red illustrate the presence of **2** in at least one species; genera in bold red are those for which all species were reported to produce **2**. **B)** Distribution of optimal growth parameters among Haloarchaea producing (red) or not (white) extended archaeol **2** (literature data). Violin plots include the medians (white dots), 1st and 3rd quartiles (black box limits), ranges (black whiskers) and probability densities (shape width).

Figure S1. Proportion of 2 relative to 1 in superficial sediments of lakes and ponds as a function of A) temperature (°C) and B) pH. $R=2/(1+2) \times 100$. Only samples where 1 and/or 2 were detected are represented (see Table S1). pH values in saline ponds from Guadeloupe were rough estimates based on pH paper and were thus not considered.

 Table S1. Characteristics of the surface sediment samples investigated.

