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13 Abstract

14  The diether core membrane lipid sesterterpanyl-phytanyl-glycerol (so-called extended
15 archaeol and often abbreviated Cz0-Czs) is considered as a hallmark of Haloarchaea, a
16 clade of archaea thriving under extreme high salinities. We here report about extended
17 archaeol occurrence in different saline aquatic settings with salinity ranging from ca. 50
18  psu (5 % NaCl w/v) to saturation (ca. 350 psu). This demonstrates that this lipid is not
19 restricted to extreme saline environments but suggests a minimum salinity threshold of
20 ca. 50 psu above which Cz0-Czs is most commonly produced. The proportion of C20-Cas
21 relative to that of archaeol (C20-C20) did not appear linearly dependent on the salinity of
22 the site and was potentially also influenced by pH and temperature, preventing its direct
23 wuse as a quantitative salinity proxy based on the present data set. An extensive literature

24 review of archaeal membrane lipid compositions further highlighted that taxonomy also
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contributes to the distribution of this lipid in the environment and identifies Natrialbales
(one of the three orders of Haloarchaea) as the main source. Statistical analysis showed
that, among Haloarchaea, C20-C»s producers display pH and salinity growth optima
slightly higher than non-producers and are distributed within two distinct groups, one
composed mostly of neutrophiles and one of alkaliphiles. In contrast, the presence of
C20-Cas was not correlated to the optimal growth temperature of the strains. This
suggests that two confounding parameters, i.e., taxonomy and adaptation to changes in

salinity and/or pH, contribute to the distribution of C20-Cas within Haloarchaea.

Keywords: Halophilic archaea; extended archaeol; adaptation to pH and salinity;

Natrialbales

1. Introduction

Isoprenoid dialkyl glycerol diether lipids are membrane lipids unique to the Archaea.
Archaeol 1 (2,3-di-O-phytanyl-sn-glycerol; Fig. 1A) and its elongated homologue called
extended archaeol 2 (2-O-sesterterpanyl-3-O-phytanyl-sn-glycerol 2a and its
regiosiomer 2-O-phytanyl-3-O-sesterterpanyl-sn-glycerol 2b; Fig. 1A) are the two main
types of archaeal diether lipids encountered. While 1 is globally distributed among
Archaea (e.g., Tourte et al., 2020), 2 was initially described only in haloalkaliphilic
archaea (De Rosa et al., 1982) before being detected in non-alkaline hypersaline
environments (Teixidor et al., 1993) and later on considered as a hallmark of halophilic
Euryarchaeota from the clade Haloarchaea (Dawson et al., 2012 and references therein).
However, few exceptions exist outside this clade (e.g., Becker et al., 2016). The extra

1soprenoid unit on either one of the alkyl chains in 2 compared to 1 results in an
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asymmetric lipid that was hypothesized to induce “zip-like” archaeal membranes
specifically adapted to high alkalinity and strong osmotic stress (De Rosa et al., 1982).
The detection of 2 in sedimentary archives has been consequently associated with the
presence of Haloarchaea and used as a marker of hypersaline/evaporitic environments
(Birgel et al., 2014). Although relevant to some extent, the distribution of 2 in both
Archaea and environmental samples as well as its physiological and adaptive functions
still remain incompletely understood. For instance, this compound has been reported in
ancient marine sequences showing no lithological evidence of high salinities
(Natalicchio et al., 2017). On the other hand, preliminary results based on laboratory
cultures of a single Haloarchaea species (from the order Halobacteriales) have shown
that the relative proportion of 2 increases with increasing temperature and salinity
(Yamauchi, 2008), while its occurrence within a few Haloarchaea species appeared
related to taxonomy and optimal NaCl concentration (Dawson et al., 2012). Here, we
report the presence of 2 in surface sediments from aquatic environments with diverse
salinities, and reinvestigate its occurrence in (halo)archaea based on an extensive
literature survey to better constrain its biological origin and potential use as a

(paleo)environmental indicator.

2. Material and Methods

2.1. Sediment samples and lipid analysis

Surface sediments coming from 31 sites with a salinity ranging from 0 practical salinity
unit (psu) to saturation (ca. 350 psu) were investigated for the presence of 1 and 2
(Table S1). The different sites include lakes from the Canadian Prairies (Plancq et al.,

2018) and the Tibetan Plateau (Wang et al., 2020), salterns from France (Camargue) and
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Argentina (Valdes Peninsula) and saline ponds from Guadeloupe (Huguet et al., 2015).
Some sediments have been analyzed in previous studies while other were specifically
considered for the present work (Table S1). Sediment samples were freeze-dried and
extracted ultrasonically [methanol (MeOH) x2, dichloromethane (DCM)/MeOH (1:1,
v/v) X2, DCM x2] or using an automated solvent extractor (Huguet et al., 2015; Plancq
et al., 2018). The total lipid extracts were chromatographed over a silica gel column
with hexane (Hex), Hex/DCM (1:1, v/v), Hex/ethyl acetate (3:1, v/v), and DCM/MeOH
(1:1, v/v) as eluents. The third fraction, which contained free alcohols, was silylated
with pyridine/N,O-bis(trimethylsilyl)trifluoroacetamide (1:1, v/v) and analyzed by gas-
chromatography - mass spectrometry (GC-MS) using an Agilent 6890 gas
chromatograph coupled to an Agilent 5975C mass spectrometer. Compounds were
injected on column and separated on a HP5-MS capillary column (30 m x 0.25 mm X
0.25 pm) using the following GC oven temperature program: 60 °C held for 0.5 min,

20 °C min! to 130 °C then 4 °C min™! to 300 °C held for 45 min. The temperature of the
on-column injector was programmed as followed: 60 °C held for 0.5 min, 200 °C min’!
to 300 °C held for 1 min. Total Ion Current (TIC) and Selected Ion Monitoring (SIM) of
the ions m/z 130, 131, 426 and 496 (specific of silylated derivatives of 1 and 2; Teixidor
et al., 1993) were recorded. Due to the low amount of 2 and/or compounds coeluting
with 1 in some samples, the abundance of 2 relative to 1+2 (R) was determined from the
peak area measured on the SIM chromatograms, with R = 2/(1+ 2) x 100. It should be
noted, however, that when both measurements were possible, SIM and TIC signals

yielded comparable R values (Table S1).

2.2. Literature survey and statistical analyses
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Information on the membrane lipid compositions of all Archaea species reported in the
literature was collected (N = 450). To estimate the influence of growth parameters on
the production of 2, Haloarchaea (N = 277) were sorted between 2-positive and 2-
negative species and their optimal growth conditions (salinity, pH and temperature)
were compared using a non-parametric test on medians performed with the Python
statistical package, as data were not normally distributed. Medians were considered

significantly different when P-values were below 0.05.

3. Results and Discussion

Compounds 1 and 2 were detected in 19 and 10 out of the 31 samples analyzed,
respectively. Other isoprenoid diether lipids [e.g., (macro)cyclic or hydroxylated1] were
not detected besides 1 and 2. Among the 19 lakes where 1 was observed, 2 was detected
in all sites with a salinity around or above 50 psu, yielding R values between 1.7 and
11.3 %, and was not detected in lakes with a salinity lower than 50 psu except in one
saline pond from Guadeloupe with a salinity of ca. 41 psu (Fig. 1B; Table S1). Although
sediments from hypersaline ponds with the highest salinity (ca. 350 psu, close to
saturation level) displayed the highest proportions of 2 (R values of ca. 11 %), similar
proportions of 2 were also observed in sites with a salinity between 70 and 210 psu (Fig.
1B). These results support 2 as a biomarker of hypersaline environments as previously
suggested (Teixidor et al., 1993; Birgel et al., 2014), but further show that this
biomarker is not restricted to extreme saline environments, extending its use to settings
with a salinity down to ca. 40-50 psu. This is in line with the occurrence of 2 in
Miocene shales, marls and carbonates which are supposed to have formed under non-

extreme conditions of salinity (Natalicchio et al., 2017). The proportion of 2 did not
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appear linearly dependent on salinity (Fig. 1B), preventing the definition of a
quantitative salinity proxy given the present data set. It is possible, however, that some
uncertainties linked to the ways salinity was measured for the different sites (Table S1)
may have obscured such a potential linear relationship between the relative proportion
of 2 and salinity. On the other hand, the possibility that a sediment sample reflects
different salinity conditions than those at the time of sampling is not likely since only
the surficial sediments were analyzed and none of the ‘low-salt’ sediments in which 2
was detected enclosed evaporites which could have attested from past hypersaline
conditions. It may also be envisaged that the occurrence of 2 further depends on other
environmental parameters such as pH or temperature. Because these limnological
parameters were not available for all the studied sites (Table S1), their potential
influence on the occurrence of 2 could only be partially investigated (Fig. S1). Still, for
the limited set of data available, a potential influence of both variables on the proportion
of 2 was noticed. R seemed to decrease with increasing in-situ temperature (in the range
15-30 °C; Fig. S1A and Table S1) which contrasts with previous observations made
using laboratory cultures of a single Haloarchaea species (Yamauchi, 2008). On the
other hand, 2 was detected in sediments with pH values ranging from 7.5 to 9.4 (Fig.
S1B and Table S1), pointing towards different pH conditions of production. Lastly, our
analyses only considered the occurrence of 1 and 2 under their free forms [i.e., as core
lipids (CL) without polar heads] and did not take into account the potential co-
occurrence of these diethers as intact polar lipids (IPL), as found in living biomass.
However, considering that 1 and 2 IPL are likely to exhibit similar polar heads, their
hydrolysis rates during diagenesis are expected to be close to each other, thus limiting

potential biases reflected in the R ratio based on CL analysis. Whether or not this ratio
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can become a quantitative environmental proxy remains to be further investigated. It
would be of particular interest to determine if the biosynthesis of 2 scales with salinity
(or other environmental parameters) within individual producers, and/or if the relative
abundance of archaeal species producing this compound scales with salinity (or other

variables).

To further explore potential adaptive functions of 2 towards salinity and other growth
parameters, we looked for its occurrence among all the archaeal membrane lipid
compositions available in the literature (N= 450). It should be emphasized that all
literature data was not homogeneous in the sense that some studies focused on IPL,
whereas other studies reported CL compositions obtained after hydrolysis of total lipid
extracts. Since our survey considered both IPL and CL, it should not be biased by the
heterogeneity of the literature data. Compound 2 was reported in only 91 out of 450
species, with 87 species belonging to the three orders of Haloarchaea, i.e., the
Halobacteriales, Haloferacales and Natrialbales. The 4 additional species producing 2,
namely, Methanomassilicoccales [yminyensis, Methanolobus tindarius, Methanosarcina
barkeri and Methanosarcina mazei, were randomly distributed within non-halophilic
methanogens (De Rosa et al., 1986; Grant and Ross, 1986; Becker et al., 2016).
Therefore, we focused our analysis on Haloarchaea (N=277; Fig. 2A). Compound 2
was identified in the majority of currently known Natrialbales (51 out of 78 species, 16
out of 22 genera), but was more sporadically reported in Halobacteriales (32 out of 90
species, 14 out of 31 genera) and Haloferacales (6 out of 109 species, 2 out of 18
genera, i.e., Halorubrum and Halalkaliarchaeum). Such distinct distributions of 2

between the three Haloarchaea orders support the idea that factors controlling its
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biosynthesis are dependent on taxonomy (Dawson et al., 2012). Its wide distribution
within Natrialbales would indicate that the ability to synthesize this compound is a
common and ancestral feature of all the species of this order, while its patchy
distribution within Haloferacales and Halobacteriales would suggest that members of
these orders have sporadically gained this biosynthetic ability by horizontal gene
transfers or spontaneous emergence. Another hypothesis to explain the distribution of 2
within Haloarchaea is that the ability to synthesize this lipid emerged and conferred
increased fitness under peculiar environmental conditions, and was thus maintained.

In an effort to disentangle the contribution of taxonomy vs. stress response in the
occurrence of 2 in Haloarchaea, we gathered from the literature the in-lab optimal
growth conditions of all species with described membrane lipid compositions (Fig. 2B).
To identify putative subgroups that might for instance result from the aforementioned
influence of taxonomy, we represented our data using violin plots instead of typical box
plots. Unlike the latter, violin plots represent the probability of a data point to be in a
certain region of the plot (e.g., the larger the region the more data points it contains) and
thus better depicts the data set distribution. Results showed that Haloarchaea
synthesizing 2 grow optimally at significantly higher pH (7.45 vs. 7.30, P-value =
0.015) and salinity (200 vs. 190 psu, P-value = 0.035) than non-producing species (Fig.
2B). However, although significant, these differences appeared rather small to support a
major influence of growth pH and/or salinity on the biosynthesis of 2. This nonetheless
hints that 2 may have played a role in the (long-term) adaptation of Haloarchaea to pH
and salinity variations. Looking more closely at their optimal growth conditions, species
capable of the synthesis of 2 are distributed within two distinct groups: one composed

mostly of neutrophilic Haloarchaea (median pH = 7.2) and one of alkaliphilic
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Haloarchaea, mostly Natrialbales (median pH = 9.2; Figure 2B). Such a bimodality
suggests that two confounding parameters, i.e., taxonomy and adaptation, might
contribute to the distribution of 2 within Haloarchaea. For instance, 2 might support
adaptation towards extreme pH in Natrialbales, while it might provide other yet
unknown advantage in Haloferacales and Halobacteriales.

Our statistical analysis further showed that the occurrence of 2 is not correlated to the
optimal growth temperature of Haloarchaea (P-value = 0.523; Fig. 2B). This suggests
that temperature have not exerted a significant control on the biosynthesis of 2 during
the long-term evolution of this clade (Fig. S1A). It may not preclude, however, that
temperature may influence the proportion of this lipid in the membrane of the archaeal

producers during short-term acclimatisation (Yamauchi, 2008; Fig. S1A).

The current set of archaeal lipid compositions further places Haloarchaea as the main
producers of 2. As the vast majority of currently known Haloarchaea are unable to
thrive at salinity below 100 psu, the presence of 2 in sediments with salinity from ca. 40
to 100 psu is intriguing (Fig. 1B). However, 2 has been reported in non-halophilic
species distinct from Haloarchaea (i.e., in non-halophilic methanogens; De Rosa et al.,
1986; Grant and Ross, 1986; Becker et al., 2016) and the lipid composition of numerous
archaeal species is yet uncharacterized. The possibility that a whole range of producers
of 2 besides Haloarchaea may contribute to the pool of this lipid biomarker in
environments with contrasted salinity thus cannot be ruled out. On the other hand,
Haloarchaea have been observed in low or non-extreme saline environments such as
estuaries (Purdy et al., 2004; Singh et al., 2010), sulfur-rich springs (Elshahed et al.,

2004) or thiotrophic microbial mats (Jessen et al., 2016), suggesting that some (yet



217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

undescribed) low salt-tolerant Haloarchaea might be responsible for the production of 2
in settings with moderate salinity.

In spite of the still fragmented information currently available on the biosynthesis
(producers and conditions) of extended archaeol, the present study encourages further
investigation of the physiological role, environmental occurrence and potential use as

(paleo)environmental indicator of this puzzling lipid.
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Figure legends

Figure 1. A) Structures of archaeol 1 and the two possible regioisomers of extended
archaeol 2; B) Proportion of 2 relative to 1 in superficial sediments of lakes and ponds
with different salinities. The dashed line indicates a possible threshold for the presence

of 2 around 40-50 psu. R=2/(1+2) x 100.

Figure 2. A) Archaeal phylogenetic tree (redrawn from Cui and Dyall-Smith, 2021) and
average optimal growth parameters (salinity, pH and temperature) of Haloarchaea.
Genera highlighted in red illustrate the presence of 2 in at least one species; genera in
bold red are those for which all species were reported to produce 2. B) Distribution of
optimal growth parameters among Haloarchaea producing (red) or not (white) extended
archaeol 2 (literature data). Violin plots include the medians (white dots), 1 and 3™
quartiles (black box limits), ranges (black whiskers) and probability densities (shape

width).

Figure S1. Proportion of 2 relative to 1 in superficial sediments of lakes and ponds as a
function of A) temperature (°C) and B) pH. R=2/(1+2) x 100. Only samples where 1
and/or 2 were detected are represented (see Table S1). pH values in saline ponds from

Guadeloupe were rough estimates based on pH paper and were thus not considered.

Table S1. Characteristics of the surface sediment samples investigated.
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