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ABSTRACT

This work addresses the macroscopic modeling of flow near porous media boundaries. This includes the vicinity with a fluid channel (i.e., a 
fracture), another rigid porous medium, or an impervious non-deformable solid. The analysis is carried out for one-phase, steady, incom-
pressible, inertial, and isothermal flow of a Newtonian fluid, considering slip effects at the solid–fluid interfaces. A one-domain approach is 
proposed, employing a simplified version of the volume averaging method, while conceiving the system as two homogeneous regions sepa-
rated by an inter-region. The upscaling procedure yields a closed macroscopic model including a divergence-free average (filtration) velocity 
for the mass balance equation and a unique momentum equation having a Darcy structure. The latter involves apparent permeability tensors 
that are constant in the homogeneous regions and position-dependent in the inter-region. All the permeability tensors are determined from 
the solution of coupled closure problems that are part of the developments. The derived model is validated by comparisons with direct 
numerical simulations in several two-dimensional configurations, namely, two porous media of contrasted properties in direct contact or sep-
arated by a fracture, the boundaries being either flat or wavy and a porous medium in contact with a flat or corrugated solid wall or separated 
from the latter by a fluid layer. The simplicity and versatility of the derived model make it an interesting alternative to existing one- and two-
domain approaches developed so far.

I. INTRODUCTION

Modeling flow at the macroscopic scale in the vicinity of surfaces
bounding a porous medium is of major interest, both from fundamen-
tal and applications points of view, although it remains a challenging
difficulty, which has not received a definite solution yet. Since the pio-
neering work of Beavers and Joseph,1 and during the past 50 years,
attention has been widely focused on the eponym configuration to
study fluid motion in the inter-region separating a porous medium
and a fluid channel, itself bounded by a solid flat plane, from theoreti-
cal,2–10 experimental,11–14 and numerical15–20 points of view. As
recalled in a recent work,10 two methods have been followed for this
purpose, both having advantages and drawbacks. In the first one,
referred to as the one-domain approach (ODA), a single macroscopic
transport equation is sought with abruptly but continuously varying
effective coefficients in the inter-region. The second one consists of
two separate equations in the free fluid (Navier–Stokes equation) and
in the porous region (Darcy or Darcy–Brinkman-type equation) that
are applied on each side of a dividing surface. The latter approach

requires boundary conditions at the dividing surface, which, in addi-
tion, needs to be adequately positioned.

Attention has also been paid to flow description in the vicinity of
boundaries for other configurations like, for instance, a porous
medium in contact with a solid or with another porous medium of
contrasted characteristics. In the former case, a boundary condition at
the wall was derived using the homogenization theory on the Stokes
equation21 or a matched asymptotic expansion method, assuming that
the Darcy–Brinkman equation is valid everywhere in the porous
zone.22 In both analyses, a boundary condition was obtained under
the form of a jump in the tangential velocity at the solid wall.
Considering the particular case of a bundle of parallel tubes as a model
porous medium, the average velocity profile was analyzed in the vicin-
ity of a solid impermeable wall, showing the importance of the averag-
ing domain size in the macroscopic description.23 For flow involving
two porous media in contact, the two-domain approach is usually
adopted, making use of Darcy’s law on both sides of a dividing surface
and continuity of the average pressure and flux.24 A similar approach
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is also used at the fracture–matrix boundary in fractured porous
media.25,26 Many other problems where the boundary with a porous
medium plays a central role have been recently investigated, like, for
instance, flow near a porous membrane,27 lubrication in the presence
of a porous material,28,29 or coupling with mass transport.30 So far,
however, a unified methodology to provide a macroscopic flow
description in the bulk of a porous medium and close to its boundary,
whatever its nature and shape, is still lacking, albeit of valuable
interest.

The purpose of the present analysis is hence to propose a general
framework that makes use of a one-domain approach to obtain a
closed macroscopic model consisting of a single mass and a single
momentum equation describing flow in a system involving a porous
medium limited by boundaries of different types. This is carried out
for one-phase steady, isothermal, inertial, and incompressible flow of a
Newtonian fluid. In addition, the possible existence of slip effects at
the solid–fluid interfaces is considered in the developments. The
method is inspired from that reported by Vald�es-Parada and
Lasseux,10 which was restricted to the Beavers and Joseph configura-
tion. In this sense, the present work extends the upscaling approach to
many other very different situations.

As a generic configuration, the heterogeneous system is con-
ceived as two porous media or one porous medium and a solid (all

of them being non-deformable materials), which may be in direct
contact or separated by a fluid channel. In the latter case, this corre-
sponds to a heterogeneous fractured porous medium or to the
Beavers and Joseph configuration if one of the two media is imper-
vious with a channel that may not have flat parallel walls. Indeed,
no restriction regarding the shape of the separation zone between
the media is assumed, a priori. The analysis is performed by consid-
ering three distinct regions as schematically represented in Fig. 1,
namely,

• the homogeneous parts of the system, referred to as the x1- and
x2-regions in the bulk of the two media;

• the x-inter-region, which corresponds to the zone where bound-
ary layers develop. When the system embeds a fluid channel
between the two media, this free fluid zone may be included
within this region.

On this basis, the article is organized as follows. In Sec. II, the
pore-scale flow problem is presented. An upscaling procedure is
applied on it to derive the closed macroscopic mass and momentum
equations and this is detailed in Sec. III. The results of the upscaling
procedure are a single macroscopic mass balance equation and a
Darcy-like equation for momentum transport. The latter is written in
terms of an effective apparent permeability, which is a position-

FIG. 1. Schematic representation of the system under con-
sideration including two porous media or a porous medium
and an impervious solid in direct contact or separated by a
fluid channel (fracture). The two homogeneous regions, x1

and x2, of characteristic macroscopic size Lx1 and Lx2 , are
separated by the x-inter-region, which may include a fluid
channel. The solid phase is ri in each medium i, i¼ 1, 2,
whereas the b-phase denotes the fluid-phase everywhere.
The averaging domain in each region is of characteristic
dimension rj0 ; j ¼ x1; x2; x, while the characteristic
pore-size is, respectively, ‘r1 ; ‘

r
2 ; and ‘

x
r1
.



dependent tensor that can be determined from closure problems to be
solved in the three regions: x1, x2, and x. Section IV is dedicated to
some illustrative results in four distinct cases, namely, two different
porous media sharing a boundary, two porous materials embedding a
fracture, and a porous medium in contact with a non-percolating one
(or a solid) or separated from it by a fracture. The upscaled model is
validated from comparisons with direct numerical simulations (DNS).
Conclusions are drawn in Sec. V.

II. PORE-SCALE PROBLEM

The system under consideration is sketched in Fig. 1 showing the
two homogeneous regions, x1 and x2, of the two media (one being
potentially non-percolating or, equivalently, an impervious solid)
and the x-inter-region, which may include a fluid channel. The
Newtonian fluid saturating the system is the b-phase while the
rigid solid phases constitutive of the two media are denoted by r1
and r2, respectively. Since flow is assumed to be steady, incom-
pressible, laminar, and isothermal with possible slip effects at the
solid–fluid interfaces, the pore-scale governing equations for the
flow in the entire system are given by (j denotes the x1-, x2-, or
x-region)

r � vj ¼ 0 in the b-phase; (1a)

qvj � rvj ¼ �rpj þ lr2vj in the b-phase; (1b)

vj ¼ �nikðI� nnÞ � n � rvj þrvTj
� �� �

ataj
bri
; i ¼ 1; 2: (1c)

In the above equations, q and l represent the fluid density and viscos-
ity that are both assumed constant. In addition, vj and pj denote the
fluid velocity and pressure in the j-region. Without any lack of gener-
ality, volume forces are not explicitly considered in the momentum
transport equation and may be included in the definition of the pres-
sure. The boundary condition in Eq. (1c) at the interface, aj

bri
,

between the fluid and the solid phase, ri in the j-region, is written as a
first-order Navier-type slip condition in the context of rarefied
effects.31–33 Here, I is the identity tensor and n is the unit normal vec-
tor directed from the b-phase toward the ri-phase. In addition, k
denotes the mean free path of the fluid molecules and ni is a constant
coefficient that is specific to the surface of the solid-phase ri and the
b-phase. It is defined in terms of the tangential momentum accommo-
dation coefficient, ai, as follows:

ni ¼
ð2� aiÞ

ai
; i ¼ 1; 2: (1d)

Because of the incompressible flow assumption, k is treated as a con-
stant in the developments that follow. It should be noted that the same
type of slip boundary condition could be written while considering it
as an effective one resulting from a pre-upscaling of a no-slip condi-
tion at rough surfaces.34

Macroscopic boundary conditions must be provided to close the
problem; however, they are left unspecified at this point as they will
not be used in the developments that follow.

An upscaling procedure shall now be applied on the above
boundary value problem in order to obtain the macroscopic closed
model.

III. UPSCALING
A. Preliminaries

Different techniques could be used to derive the upscaled
model, as, for instance, double-scale homogenization35 or volume
averaging.36 In this work, the latter is employed in a shortened ver-
sion. The averaging process is carried out by making use of an
averaging domain, vj, of measure Vj and characteristic size rj0 in
the j-region (j ¼ x1; x2; x). For any physical quantity, wj, in
this region, the superficial and intrinsic averaging operators are
then defined as36

hwjij ¼
1
Vj

ð
vbj

wj dV; (2a)

hwji
b
j ¼

1
Vbj

ð
vbj

wj dV: (2b)

Here vbj (of volume Vbj) represents the portion of vj occupied by
the fluid phase in the averaging domain located in the j-region. The
two averages are related by

hwjij ¼
Vbj

Vj
hwji

b
j: (2c)

The ratio Vbj=Vj is position-dependent in the inter-region (j ¼ x).
For j ¼ xi (i¼ 1, 2), and provided vj is chosen to be representative,
i.e., so as to contain all the necessary structural information of the
material, this ratio is the porosity, exi , of the corresponding homoge-
neous region, which is supposed to be constant in the remainder of
this work.

B. Average mass balance

To derive the average form of the mass balance equation valid
everywhere in the system, the superficial average operator is applied to
the mass balance equation (1a). In order to interchange spatial differ-
entiation and integration, it is convenient to use the averaging theorem
(or Leibniz rule), which, for the divergence operator, writes37,38

hr � wjij ¼ r � hwjij þ
1
Vj

ð
a

j
bri

n � wj dA: (3)

Once this theorem is employed, the average mass equation in the j-
region (j ¼ x1;x2;x) can be written as

r � hvjij þ
1
Vj

ð
a

j
bri

n � vj dA ¼ 0: (4)

Since the velocity is tangential to the solid–fluid interfaces (no mass is
transferred between the solid and fluid phases), the last term is zero in
the above equation, which reduces to

r � hvjij ¼ 0: (5)

This represents the closed form of the macroscopic mass equation
valid in all the three regions of the system and it does not require any
further developments.



C. Average momentum balance

1. Homogeneous regions, x1 and x2

The derivation of the macroscopic momentum equations in xi

(i¼ 1, 2), for flow including inertia and slip effects, can be found in
previously reported works.39–42 Here, the same steps as those pre-
sented in a recent article by Vald�es-Parada and Lasseux,10 to which
the reader is referred to for more details, are followed. For the sake of
brevity, it suffices here to only recall a summary of the procedure to
reach the result.

First, the xi-regions are conceived as periodic structures and
the averaging domain is taken as a Representative Elementary
Volume (REV).43 To be representative, this domain must contain all
the necessary structural information and is hence constrained by
the hierarchy

‘xi � rxi
0 ; (6a)

where ‘xi ¼ maxð‘xi
b ; ‘riÞ; ‘xi

b , and ‘ri , respectively, denoting the
characteristic size of the pores and of the solid phase i in xi-region
(see Fig. 1). In some practical situations, the constraint in (6a) is overly
severe and can be relaxed to ‘xi < rxi

0 . Moreover, it is assumed that,
for both regions, the lattice vectors of the periodic unit cells are the
same and that a unique size of the REV can be chosen so as to contain
at least one of the largest periodic geometrical unit cell of the two
regions. Finally, the classical assumption of length-scale separation is
also retained, i.e.,

rxi
0 � Lxi ; (6b)

where Lxi is the minimum dimension of each of the porous media in
the three directions of space.

Next, the pressure gradient in xi is decomposed under the
form44

rpxi ¼ rhpi
b
xi
þr~pxi

; (7)

~pxi
being the pressure deviations in xi, and, for simplification in the

notation, rhpibxi
� rhpxii

b
xi
. As a consequence of the length-scale

constraint expressed in (6b), rhpibxi
is treated as a constant in the

REV. Moreover, vxi and ~pxi
can be regarded as periodic variables at

the boundaries of the REV so that the flow problem is reformulated as
(here, i¼ 1, 2)

r � vxi ¼ 0 in theb-phase; (8a)

q
l
vxi � rvxi ¼ �

1
l
r~pxi

þr2vxi �
1
l
rhpibxi

in the b-phase;
(8b)

vxi ¼ �nikðI� nnÞ � n � rvxi þrvTxi

� �h i
ataxi

bri
; (8c)

wðrþ ljÞ ¼ wðrÞ; j ¼ 1; 2; 3; w ¼ vxi ; ~pxi
; (8d)

h~pxi
ibxi
¼ 0: (8e)

The last equation results from the fact that hpxi i
b can be treated as a

constant within the REV and is required for the problem to be well-
posed. In the periodic conditions [Eq. (8d)], lj represents the common

periodic lattice vectors for the two regions. It should be noted that,
here, distinct pressure gradients are considered in the different regions
in contrast with a previous work whererhpibxi

was taken as a constant
all through the system.10

Considering the convective velocity as a known field in the
inertial term in Eq. (8b) so that the problem can be seen as linear,
and keeping in mind that rhpibxi

is constant within the REV, the
formal solution of this boundary value problem can be written
as10

vxi ¼ �
Dxi

l
� rhpibxi

; (9a)

~pxi
¼ �dxi � rhpi

b
xi
: (9b)

The reader is referred to previously reported works39,42,45 for details
about the derivation of this solution. Here, Dxi and dxi are closure
variables that map the macroscopic pressure gradient onto the velocity
and pressure deviations in each homogeneous region. These variables
solve the following boundary value problems (i¼ 1, 2):

Problem-xi,

r � Dxi ¼ 0 in the b-phase; (10a)

� q
l2
rhpibxi

� DT
xi
� rDxi ¼ �rdxi þr2Dxi þ I

in the b-phase; (10b)

Dxi ¼ �nikðI� nnÞ � n � rDxi þrDT1
xi

� �h i
at axi

bri
; (10c)

wðrþ ljÞ ¼ wðrÞ; j ¼ 1; 2; 3; w ¼ Dxi ; dxi ; (10d)

hdxii
b
xi
¼ 0: (10e)

In the boundary condition at the solid–fluid interfaces [Eq. (10c)], the
superscript T1 denotes the transpose of a third-order tensor that per-
mutes the first and second indices, i.e., ðrDÞT1ijk ¼ ðrDÞjik.

The macroscopic momentum equation can then be obtained by
applying the superficial averaging operator to the solution for vxi

given in Eq. (9a). This yields

hvxiixi
¼ �Hxi

l
� rhpibxi

; (11)

with

Hxi ¼ hDxiixi
; (12)

being the apparent permeability tensor that is specific to the xi-region
and whose symmetry properties, in the absence of slip, were reported
in a previous work.46 When there is no inertial nor slip effects, Hxi

reduces to the intrinsic permeability tensor. Note that if xi is a non-
percolating medium (i.e., a solid), the corresponding closure problem
degenerates (Dxi ¼ 0; Hxi ¼ 0; vxi ¼ hvxiixi

¼ 0, and pxi ¼ const
is the trivial solution) and can hence be ignored.

The derivation of the average momentum equation must now
be carried out in the x-inter-region to complete the macroscopic
model.



2. x-inter-region

This region is delimited by two fictitious dividing planes denoted
asaxi (i¼ 1, 2), corresponding to the locations where the assumption
of spatial homogeneity breaks down as illustrated in Fig. 2. These
planes are defined by two vectors of the periodic lattice, l1 and l2. At
these boundaries, it is physically relevant to impose that the pore-scale
velocity is continuous. Once the closure problem-xi (i¼ 1, 2) is solved
in the REV, the fields of Dxi are available and so is the pore-scale
velocity ataxi , which is given by its expression in Eq. (9a). As a conse-
quence, the pore-scale problem in the x-inter-region can be stated as
follows:

r � vx ¼ 0 in theb-phase; (13a)
q
l
vx � rvx ¼ �

1
l
r~px þr2vx �

1
l
rhpibx

in theb-phase; (13b)

vx ¼ �nikðI� nnÞ � n � rvx þrvTx
� �� �

at ax
bri
; i ¼ 1; 2; (13c)

vx ¼ �
Dxi

l
� rhpibxi

at axi ; i ¼ 1; 2; (13d)

wðrþ ljÞ ¼ wðrÞ; j ¼ 1; 2; w ¼ vx; ~px; (13e)

h~pxi
b
x ¼ 0: (13f)

The pressure decomposition introduced in the momentum equation
(13b) makes use of an averaging domain which size, rx0 , is supposed to
satisfy

‘x � rx0 ; (14)

where ‘x ¼ maxð‘xb ; ‘xri
Þ; ‘xb , and ‘xri

, respectively, denoting the char-
acteristic size of the pores and of the solid phase i in thex-inter-region
(see Fig. 1). It should be noted that the section size of the averaging
domain in the planeaxi (i¼ 1, 2) must be compliant with that of the
REV in the corresponding adjacent homogeneous region. The proce-
dure to determine the location ofaxi will be clearly stated later on.

A simple formal solution to the above pore-scale problem can be
proposed upon assuming, first, that the convective velocity in the iner-
tial term of the momentum equation (13b) is a known field. With this
hypothesis, the problem can be considered as linear. Second, since this
problem is made non homogeneous by the presence of three macro-
scopic sources, namely, rhpibxi

; ði ¼ 1; 2), and rhpibx, the formal
solution can be sought as a linear combination of the three sources,
provided they can be treated as constants in the x-inter-region. By
definition, the two sources at axi take values equal to those in the
REV adjacent to this boundary in the xi-region and have hence given
constant values. However, treating rhpibx as a constant is subject to a
constraint that can be expressed as

dx � Lp; (15)

where dx and Lp, respectively, represent the maximum size of the
x inter-region in the three directions of space and the minimum char-
acteristic length over which rhpibx experiences significant variations.
Under these circumstances, the solution for vx and ~px can be formally
written as

vx ¼ �
Fxi

l
� rhpibxi

� Fx

l
� rhpibx; (16a)

~px ¼ �fxi � rhpi
b
xi
� fx � rhpibx: (16b)

When the aforementioned constraint is not satisfied, the solution for
vx and ~px can be shown to be nonlocal in space and requires the com-
putation of the associated Green’s functions problem. This is however
beyond the scope of this article. In the above expressions, where the
Einstein notation was implicitly used in the first terms on the right-
hand sides, the closure variables Fxi ; fxi (i¼ 1, 2) and Fx; fx are sol-
utions of the following three closure problems:

Problems-I–II (i¼ 1, 2),

r � Fxi ¼ 0 in theb-phase; (17a)

q
l
vx � rFxi ¼ �

1
l
rfxi þr2Fxi in the b-phase; (17b)

Fxi ¼ �nikðI� nnÞ � n � rFxi þrFT1
xi

� �h i
atax

bri
; (17c)

Fxi ¼ Dxi ataxi ; (17d)

Fxi ¼ 0 ataxk ; k ¼ 1; 2; k 6¼ i; (17e)

wðrþ ljÞ ¼ wðrÞ; j ¼ 1; 2; w ¼ Fxi ; fxi ; (17f)

hfxii
b
x ¼ 0: (17g)

Problem-III,

r � Fx ¼ 0 in theb-phase; (18a)

q
l
vx � rFx ¼ �rfx þr2Fx þ I in the b-phase; (18b)

FIG. 2. Sketch of the inter-region separating two porous media. This region is com-
prised between y ¼ �yx1 (locating ax1 ) and y ¼ yx2 (locating ax2 ). The yellow
square represents the averaging domain of size rx0 and its centroid can be located
anywhere in the inter-region.



Fx ¼� nikðI� nnÞ � n � rFx þrFT1
x

� �� �
at ax

bri
; i ¼ 1; 2; (18c)

Fx ¼ 0 at axi ; i ¼ 1; 2; (18d)

wðrþ ljÞ ¼ wðrÞ; j ¼ 1; 2; w ¼ Fx; fx; (18e)

hfxibx ¼ 0: (18f)

In addition, the macroscopic momentum equation in the x-
inter-region is obtained by applying the superficial averaging operator
to Eq. (16a) in this region, yielding

hvxix ¼ �
Hx

xi

l
� rhpibxi

� Hx
x

l
� rhpibx; (19)

where, again, the Einstein notation is applied. The effective coeffi-
cients, Hx

x1
(i¼ 1, 2) and Hx

x, are apparent permeability tensors given
by

Hx
xi
¼ hFxiix; i ¼ 1; 2; (20a)

Hx
x ¼ hFxix (20b)

that are obtained from the solutions of the above closure problems
I–II–III. These three closure problems are coupled, as can be readily
understood when the expression of vx given in Eq. (16a) is replaced
back into Eqs. (17b) and (18b). Moreover, this substitution shows that
these problems are closed, i.e., their solutions do not require the pre-
determination of vx by solving the flow problem.

Closure problems I–II–III are to be solved in the domain having
a section size in the fictitious planes,axi , equal to that of the REV in
the xi-region and a height equal to the inter-region thickness, i.e., to
the distance between the two planes, given by yx2 þ yx1 as illustrated
in Fig. 2. It must be noted that, in the definitions of the apparent
permeability tensors given in Eqs. (20), the superficial average is per-
formed over an averaging domain whose extent across the inter-
region is smaller than this region size. Therefore, its centroid position
is moved betweenax1 andax2 in order to capture the spatial varia-
tions of the three apparent permeability tensors.

In situations for which the macroscopic pressure gradient can be
considered as uniform (equal torhpib) in the entire system, the above
closure procedure is considerably simplified. Indeed, the pore-scale
problem involves a unique source and leads to a single closure prob-
lem given by

Problem-x

r � F ¼ 0 in the b-phase; (21a)

� q
l2
rhpib � FT � rF ¼ �rf þr2Fþ I in theb-phase; (21b)

F ¼ �nikðI� nnÞ � n � rFþrFT1ð Þ½ �
at ax

bri
; i ¼ 1; 2; (21c)

F ¼ Dxi at axi ; i ¼ 1; 2; (21d)

wðrþ ljÞ ¼ wðrÞ; j ¼ 1; 2; w ¼ F; f; (21e)

hfibx ¼ 0: (21f)

The above problem can be seen as the sum of the closure problems
given in Eqs. (17) and (18). The macroscopic momentum equation in
the inter-region reduces to

hvxix ¼ �
Hx

l
� rhpib; (22)

with

Hx ¼ hFix: (23)

Note that this last result is also obtained from the sum of Eqs. (20).
As a summary, the upscaled model is composed of the macro-

scopic mass conservation equation (5) and the macroscopic momen-
tum balance equations

hvxiixi
¼ �Hxi

l
� rhpibxi

in thexi-region; i ¼ 1; 2; (24a)

hvxix ¼ �
Hx

xi

l
� rhpibxi

� Hx
x

l
� rhpibx

in thex-inter-region; (24b)

the Einstein notation being implied in the latter. This allows proposing
the following unique macroscopic momentum conservation equation
for the one-domain approach developed here that takes the following
form:

hvi ¼ �Hi

l
� rhpibxi

� H12

l
� rhpibx; i ¼ 1; 2; (25)

with again the Einstein notation implied in the first term on the right-
hand side. In this equation, the three position-dependent apparent
permeability tensors are given by

Hi ¼
dijHxj in thexj-region;

Hx
xi

in thex-inter-region;
i; j ¼ 1; 2:

(
(26a)

dij being the Kronecker delta. In addition,

H12 ¼
0 in thexi-region; i ¼ 1; 2;

Hx
x in thex-inter-region:

(
(26b)

In the above relationships, Hxi ; H
x
xi
, and Hx

x are, respectively, given
by Eqs. (12), (20a), and (20b). When the macroscopic pressure gradi-
ent can be thought of as being uniform in the entire system, the mac-
roscopic momentum equation in the present one-domain approach
has the following simple form:10

hvi ¼ �H

l
� rhpib: (27)

Here, the apparent permeability tensor, H, takes the following values
in the three regions:

H ¼
Hxi in thexi-region; i ¼ 1; 2;

Hx in thex-inter-region;

(
(28)

where Hx is defined in Eq. (23).
When the macroscopic pressure gradient is not uniform, the val-

ues ofrhpibxi
(i¼ 1, 2) andrhpibx shall be determined by solving the

following macroscale problem (here, i¼ 1, 2):

HT
xi

: rrhpibxi
¼ 0 in thexi-region; (29a)



n � Hxi � rhpi
b
xi

� �
¼ n � ðHx

x1
� rhpibx1

þ Hx
x2
� rhpibx2

þHx
x � rhpi

b
xÞ at axi ; (29b)

r � ðHx
x1
� rhpibx1

þ Hx
x2
� rhpibx2

þ Hx
x � rhpi

b
xÞ

¼ 0 in thex-inter-region; (29c)

g hpibj
� �

¼ 0; j ¼ xi; x at @vM : (29d)

The boundary condition given in Eq. (29b) expresses the macroscopic
flux continuity at the fictitious boundaries axi , n denoting the unit
normal vector at these boundaries. Moreover, Eq. (29d) is a formal
representation of the macroscopic boundary condition at the bound-
ing surfaces of the entire system denoted by @vM . These equations are
to be solved in a coupled manner with the closure problems providing
the five apparent permeability tensors. It should be noticed that the
solution of the above macroscopic problem can be the constant value,
rhpib, in the three regions if the configuration and the functional g
are compliant with this result. Under such circumstances, the solution
is decoupled from those of the closure problems.

As a final note, it is of interest to propose a procedure to locate
the fictitious boundaries axi (i¼ 1, 2). Their position can be deter-
mined in an iterative manner, starting from an initial guess corre-
sponding to the edge of a unit cell in the corresponding region. At
each iteration, the average velocity, computed on the REV adjacent to
axi inside the homogeneous xi-region, is compared to that obtained
in the averaging domain positioned next to this boundary inside the
x-inter-region. If the average velocities on both sides of axi differ
from each other by more than a criterion value that is fixed a priori,
the corresponding boundary is moved further away inside the homo-
geneous region and this is repeated until the criterion is satisfied. If the
initial guess is such that the criterion is satisfied, the boundary is
moved toward the inter-region (i.e., outside the homogeneous region)
until the criterion is still fulfilled. In both cases, the boundary is moved
by a value corresponding to the size of the REV in the corresponding
direction at each iteration.

At this point, it is necessary to evaluate the relevance of the mac-
roscopic model. This is the purpose of the four case studies proposed
in Sec. IV.

IV. RESULTS

The model derived in Sec. III is now tested and validated through
DNS in four different situations, namely: two porous media of con-
trasted properties in direct contact (case 1) or separated by a fracture
(case 2), as well as a porous medium in contact with a solid wall (case
3) or separated from it by a fluid channel (case 4). The latter case can
be viewed as the Beavers and Joseph configuration, with a notable dif-
ference that the solid wall is not necessarily flat, nor the porous
medium surface which may hold a roughness having a non-negligible
amplitude compared to ‘xi . For the sake of simplicity, all the simula-
tions were performed in a two-dimensional domain. Moreover, the
system is supposed to be of infinite extension in the x-direction. As a
consequence, the DNS can be carried out in a domain including a sin-
gle vertical stripe of unit cells as the one sketched in Fig. 2 together
with periodic boundary conditions on v and ~p in the x-direction. The
closure problems are solved in the same domain.

The numerical solutions of the pore-scale flow equations and clo-
sure problems were carried out using the finite element software

COMSOL Multiphysics 5.6. The direct PARDISO solver included in
the software was employed to compute the solutions. In addition, stan-
dard convergence analyses in terms of mesh and relative tolerance
were performed so that the results presented here are independent of
these numerical degrees of freedom. Since the mean flow is along ex ,
and because the macroscopic pressure gradient is along this direction,
the comparison is only made on the x-component of hvi, requiring to
only compute the xx components of the apparent permeability tensors.
Furthermore, in order to reduce the number of parameters to be speci-
fied in the model evaluation, it is convenient to reformulate the micro-
scale flow problem and the closure problems in terms of the following
dimensionless quantities:

r� ¼ r
‘c
; v� ¼ v

vref
; p� ¼ ‘cp

lvref
; Re ¼

qvref ‘c
l

;

k� ¼ k
‘c
; D�xi

¼ Dxi

‘2c
; d�xi

¼ dxi

‘c
ði ¼ 1; 2Þ;

F� ¼ F

‘2c
; f� ¼ f

‘c
:

(30)

Here, ‘c is the height of the geometrical unit cell and
vref ¼ ‘2c jjrhpi

bjj=l. Under this dimensionless formulation, the only
parameters that need to be specified are the cell Reynolds (Re) and
Knudsen [nik

� (i¼ 1, 2)] numbers for a given geometrical configura-
tion. Indeed, the dimensionless macroscopic pressure gradient has a
magnitude equal to 1. For all the results presented below,
Re ¼ 103; n1k

� ¼ n2k
� ¼ nk� ¼ 0:01, and rhp�ib ¼ �ex . This

value of the Reynolds number is convenient as it lies below the first
Hopf bifurcation.47 In addition, the value of cell Knudsen numbers is
within the range of validity of the Navier–Stokes equations. It is worth
recalling that the interfacial boundary condition can also be regarded
as an effective one over rough surfaces. Taking this into account, it is
thus possible to use the same cell Knudsen number in the different
media considered in this section.

For the sake of easiness, a unique value of yxi , i¼ 1, 2, common
to all the different cases reported below, was chosen, following a sim-
plified version of the iterative algorithm presented above with a con-
vergence criterion equal to 0.1%. In fact, it was verified that
yxi ¼ 10‘c, i¼ 1, 2 was a large enough value that satisfies this criterion
in all the cases reported below and was hence employed in all the
numerical simulations.

The simulations involving two porous media were performed
considering four types of porous structures made of 2D patterns of
parallel cylinders of circular cross section with flow orthogonal to the
cylinders axes. For each type, the porosity of the x1- and x2-regions
(see Figs. 1 and 2) is, respectively, ex1 ¼ 0:4 and ex2 ¼ 0:8. For type I,
the cylinders are of uniform size and arranged in a square pattern,
whereas for type II, they are placed on a staggered grid in which every
two columns of cylinders are shifted by 0:5‘c. For type III, both the
cylinder radii and positions inside the unit cell are randomly chosen
according to a uniform distribution, achieving the same porosity val-
ues as in the previous geometries. The type IV configuration resembles
type I, except that the porosity is linearly varied in the vertical direc-
tion from ex1 ¼ 0.4 to ex2 ¼ 0.8 over 10 unit cells between the x1- and
x2-regions. For all the results reported below, the averaging domain
size in the vertical direction in the x-inter-region was taken equal to
that of the REV in both homogeneous regions, i.e., rx�0 ¼ 1.



A. Case 1: Two porous media

In this case, the four types of porous media were considered.
Results of local streamlines patterns obtained from DNS for each of
them, and colored by the magnitude of the pore-scale velocity, are
reported in Fig. 3. For the first four types of geometries, they are repre-
sented within a domain corresponding to 4 unit cells centered in the
inter-region, whereas for the structure of type IV, the results are
reported in the 10 unit cells in which the porosity is varied. As can be
seen in this figure, the frontier between the two porous media is flat
for structures of types I, III, and IV, whereas for type II, the dividing
surface is wavy as the two structures slightly intermingle. This was
achieved by reconstructing a periodic pattern in the horizontal direc-
tion obtained by alternatively interchanging a cylinder from one struc-
ture to the other at the surface of each media before positioning them
on the top of each other.

As expected, the velocity range is larger in the coarser porous
structure (the top one) since local flow paths are wider. Inertia can
clearly be noticed in structures of types I and IV where recirculation
zones are formed behind cylinders in the more permeable areas. For

types II and III, recirculations are not observed for this value of Re due
to the complicated flow-paths.

The average velocity profiles along the vertical direction,
computed from DNS results and obtained from the macroscopic
model (ODA), are represented in Fig. 4 for the four types of
porous media. In these graphs, the normalized average velocity
ðhv�xi � hv�ximinÞ=ðhv�ximax � hv�ximinÞ, varying between 0 in the x1-
region and 1 in the coarser x2-region, was used for convenience in the
representation. From Fig. 4(a), it can be noticed that the size of the x-
inter-region could have been limited to y�x1

¼ y�x2
¼ 2 for types I, II,

and III. For type I, the average velocity experiences a step change cen-
tered at y� ¼ 0 where the porous media frontier is located and
smoothly increases with y� on each side of this step. Conversely, for
type II, the variation is much smoother but the inter-region tends to
thicken due to the more complex structure and the non-smooth fron-
tier between the two porous media. For the type III random structure,

FIG. 3. Examples of the streamlines pattern colored by the dimensionless velocity
magnitude near the frontier between two porous media. The different structures
shown here correspond to (a) type I, (b) type II, (c) type III, and (d) type IV. In all
the simulations, Re ¼ 103 and nk� ¼ 0:01 and flow is from left to right.

FIG. 4. Average velocity profiles vs the vertical coordinate in the vicinity of the x-
inter-region in the case of two porous media in direct contact. (a) Porous media of
types I, II, and II. (b) Porous media of type IV. For comparison purposes, the result
obtained with media of type I is recalled in this last figure.



the average velocity is even smoother but varies over a narrower
region, as a result of a flat dividing surface between the two media.
Results for type IV, reported in Fig. 4(b), exhibit a succession of step
changes of the average velocity while moving the averaging domain
from one unit cell to another. Certainly, this results from the choice of
the averaging domain size as a smoother profile would be obtained
with a larger measure of rx0 . In comparison to type I, whose results are
also reported in this figure, the inter-region is much larger as it spans
over about 14 unit cells around y� ¼ 0. This is a direct consequence of
the continuously evolving structure over the 10 unit cells between the
two homogeneous regions.

For all the configurations, an excellent agreement is achieved
between the DNS results and the prediction from the average model
derived with the ODA. This shows that, in all cases under consider-
ation here, the upscaled model perfectly captures the average flow
characteristics in the inter-region in the case of two porous media in
direct contact.

B. Case 2: Two porous media embedding a fracture

As a second case of analysis, consider now flow between two
porous media separated by a fracture. The porous media geometries
used in the present case study correspond to the four types studied in
case 1. For types I, III, and IV, the fractures were obtained by removing
the solid phase in a geometrical unit cell whose centroid is located at
y¼ 0 (variant a), y ¼ �0:5‘c (variant b), y ¼ þ0:5‘c (variant c), and,
in the final variant d, a unit cell of height 2‘c with its centroid located
at y¼ 0 was used. For the type II structure, the first and last variants
were formed in the same fashion as in the other geometries; however,
the second and third variants consisted in removing the last (variant
b) and first (variant c) rows of cylinders of the same size, thus giving
rise to wavy fractures.

In Figs. 5–7, the dimensionless average velocity profiles, obtained
from DNS and predicted from the average model, are reported for
structures of types I–III and their variants. These figures also include
samples of the pore-scale velocity streamlines colored by the velocity
magnitude resulting from DNS. The results corresponding to type IV
are not reported since they exhibit a similar behavior to those for the
type I structure. Regarding these results, the following comments are
in order:

• The presence of fractures translates into a noticeable increment
of the fluid velocity, which exceeds the values observed in the
previous case. As expected, the average velocity exhibits a
parabolic-like profile in the fracture, which connects to the mini-
mal value located at y ’ �2‘c in the homogeneous x1-region
and to the other constant value in the homogeneous x2-region
(at about y ¼ 2‘c). The maximum velocity is found near the
mid-plane of the fractures. The largest velocity is found in the
fourth variant structure, which has the largest fracture aperture.
Comparing this value for the different types of structures, it
results that the type Id geometry is the one yielding the largest
flow-rate, followed by structures of type IIId and IId.

• The average velocity profiles corresponding to the second and
third variants of the structures exhibit practically the same ampli-
tudes, with the maximum value shifted according to the location
of the fracture mid-plane. The above observations are noted in
all the geometries.

• Regarding the results for the first variant, the structure geometry
plays a determining role in the maximum velocity values at the
middle of the fracture. This contrasts with the values for the sec-
ond and third variants. Note that some cylinders are cut for all
the structures with the first variant. In specific, for the type I
geometry, the average velocity is smaller than for the second and
third variants because the upper and lower half cylinders consti-
tute a significant flow resistance. To simplify, one may explain
this velocity contrast by the fact that the aperture of the equiva-
lent flat fracture is smaller for the first variant than for the second
and third ones. The opposite is observed in the type II geometry
and this is consistent with the fact that the flow paths are more
complex for structures of types IIb and IIc, while it is mostly
straight in structure of type-IIa. Again, this can be simply sum-
marized by noticing that the aperture of the equivalent flat frac-
ture is smaller in structures of types IIb and IIc than in IIa.
Finally, for the random geometries, it turns out that the average
velocity in the first variant is only slightly smaller than that for
the second and third variants because only few cylinders were cut

FIG. 5. Top: examples of the streamlines pattern colored by the dimensionless
velocity magnitude near the frontier of two porous media separated by a fracture.
The structures correspond to the four variants considered for the type I: (a) type Ia,
(b) type Ib, (c) type Ic, and (d) type Id. Bottom: average velocity profiles in the vicin-
ity of the inter-region obtained from direct numerical simulations (DNS) and with the
one-domain approach (ODA) for the four variants of the type I geometry shown at
the top. In all the simulations Re ¼ 103 and nk� ¼ 0:01.



in the type-IIIa geometry. The same arguments in terms of the
equivalent flat fracture aperture also explain this behavior.

As a final note, it is worth highlighting the fact that the agreement
between the predictions from the ODA and the DNS is excellent. This
serves to conclude that the model derived here is applicable when two
porous media are separated by a fracture.

C. Case 3: A porous medium in contact with a solid

The following case study is the flow in the vicinity of a porous
medium and a flat or rough wall. The wall roughness considered in
this case and in the following one consists in a sinusoidal oscillation
with a period corresponding to that of the geometrical unit cell. Three
amplitudes were considered for the wall roughness, namely, 0:1‘c

(sinusoidal-I), 0:2‘c (sinusoidal-II), and 0:3‘c (sinusoidal-III). For the
remainder of this section, the porosity in the x2-region is fixed to be
ex2 ¼ 0.8 and only the structures of types I and II are analyzed. The
results are reported in Figs. 8 and 9, respectively. As expected, when
the averaging domain does not contain any fluid, the average velocity
is zero. Subsequently, the velocity increases in a different fashion
depending on the porous geometry and the type of wall roughness. As
shown in Fig. 8, for the type I geometry, a step change in the velocity is
observed that is centered around y¼ 0, with the velocity increasing as
the wall roughness is decreased. These noticeable vertical average
velocity gradients are attenuated as y increases until converging to the
constant average velocity value in the homogeneous x2-region when
the centroid of the averaging domain is located near y ¼ 1:5‘c.

Directing the attention to the results represented in Fig. 9, it is
striking that the step-like change in the average velocity profiles is not
present around y¼ 0, but in the upper zone, near y ¼ 0:6‘c. This is
where the largest average velocity values are reached for the flat and
sinusoidal-I structures. Nevertheless, the average velocity profiles fol-
low the same trend as those corresponding to the type-I structure, i.e.,
the largest values correspond to the flat wall and they decrease as the

FIG. 6. Top: examples of the streamlines pattern colored by the dimensionless
velocity magnitude near the frontier of two porous media separated by a fracture.
The structures correspond to the four variants considered for the type II: (a) type
IIa, (b) type IIb, (c) type IIc, and (d) type IId. Bottom: average velocity profiles in the
vicinity of the inter-region obtained from direct numerical simulations (DNS) and
with the one-domain approach (ODA) for the four variants of the type II geometry
shown at the top. In all the simulations Re ¼ 103 and nk� ¼ 0:01.

FIG. 7. Top: examples of the streamlines pattern colored by the dimensionless
velocity magnitude near the frontier of two porous media separated by a fracture.
The structures correspond to the four variants considered for the type III: (a) type
IIIa, (b) type IIIb, (c) type IIIc, and (d) type IIId. Bottom: average velocity profiles in
the vicinity of the inter-region obtained from direct numerical simulations (DNS) and
with the one-domain approach (ODA) for the four variants of the type III geometry
shown at the top. In all the simulations Re ¼ 103 and nk� ¼ 0:01.



roughness increases. This can be partly attributed to the formation of
fluid recirculation zones in the valleys of the wall roughness.
Interestingly, the average velocity profiles tend to all converge near
y ¼ ‘c and they exhibit an oscillatory behavior before reaching the
value corresponding to that in the homogeneous x2-region of the
porous medium.

Finally, the excellent match between the averaged DNS velocity
results and those predicted by the upscaled model obtained from the
ODA must be emphasized, confirming the reliable performance of the
latter.

D. Case 4: A porous medium and a solid separated
by a fluid channel

The final case to discuss in this section corresponds to a porous
medium in the vicinity of an impervious wall separated by a fluid
channel. For the sake of brevity in presentation, only the results corre-
sponding to the type-II geometry are reported because those for the
type-I geometry were observed to be quite similar to those shown in
Fig. 10. In this figure, the average velocity profiles, obtained from DNS
and from the upscaled model, are reported, considering both a flat and
the three amplitudes of the sinusoidal wall presented in the previous

case. This configuration is similar to the classical one studied by
Beavers and Joseph, and this is confirmed by the shape of the average
velocity profiles reported in Fig. 10.10 Clearly, the largest average veloc-
ity values are observed when the impervious wall is flat and noticeably
decrease as the amplitude of the wall roughness increases. As in the
previous case, this is partly due to the recirculation zones in the valleys
of the wall that induce a significant energy loss. Note that the location
of the maximum average velocity changes with the measure of the wall

FIG. 8. Top: examples of the streamlines pattern colored by the dimensionless
velocity magnitude near the frontier between a porous medium composed of inline
cylinders and a wall. The wall geometries correspond to (a) a flat wall, (b) a sinusoi-
dal wall with amplitude of 0:1‘c (sinusoidal-I), (c) a sinusoidal wall with amplitude of
0:2‘c (sinusoidal-II), and (d) a sinusoidal wall with amplitude of 0:3‘c (sinusoidal-
III). Bottom: average velocity profiles resulting from direct numerical simulations
(DNS) and the one-domain approach (ODA). In all cases e ¼ 0:8, Re¼ 1000, and
nk� ¼ 0:01.

FIG. 9. Top: examples of the streamlines pattern colored by the dimensionless
velocity magnitude near the frontier between a porous medium composed of stag-
gered cylinders and a wall. The wall geometries correspond to (a) a flat wall, (b) a
sinusoidal wall with amplitude of 0:1‘c (sinusoidal-I), (c) a sinusoidal wall with
amplitude of 0:2‘c (sinusoidal-II), and (d) a sinusoidal wall with amplitude of 0:3‘c
(sinusoidal-III). Bottom: average velocity profiles resulting from direct numerical sim-
ulations (DNS) and the one-domain approach (ODA). In all cases e ¼ 0:8,
Re¼ 1000, and nk� ¼ 0:01.



roughness. Finally, in all the cases, the values of the average velocity in
the homogeneous x2-region of the porous medium are recovered at
y ’ 2‘c. Again, the agreement between the predictions from the ODA
and the DNS data is excellent, thus validating the upscaled model in
this final case study.

E. Finite-size structure

The perfect match between the DNS results and the macroscopic
model for all the cases reported above was indeed expected due to the

infinite periodic structures making the average model from the ODA
exact in that case. However, agreement shall be further investigated
when the system has a finite extension in the x-direction using Dirichlet
pressure boundary conditions instead of periodicity. For this purpose,
the DNS may now be conceived as numerical experiments in a domain
made of an M-repetition of a vertical stripe of unit cells as the one
sketched in Fig. 2. This analysis, carried out for one type of structure in
each of the four cases investigated above, is reported in the Appendix. It
shows that the agreement remains excellent far enough from the macro-
scopic boundaries, i.e., at a distance where the influence of the Dirichlet
boundary conditions, that are not compatible with periodicity in the gen-
eral case, becomes insensitive. The results indicate that the value ofM to
reach a relative difference smaller than 1% between the macroscopic
model prediction and DNS at x� ¼ M=2 (taking the ODA as the refer-
ence) strongly depends on the configuration under consideration. It can
be concluded that, under these circumstances, the ODA developed here
perfectly captures the mean flow. Certainly, this conclusion is not
restricted to the geometrical configurations reported here. As a matter of
fact, on the basis of the results reported above, it is reasonable to propose
that, as long as the assumptions involved in the model derivation are
met, the ODA should provide reliable predictions of the average velocity
in any other type of inter-region.

V. CONCLUSION

In this work, a general macroscopic model describing one-phase,
steady, incompressible, inertial, and isothermal flow of a Newtonian
fluid in the vicinity of porous medium boundaries was derived. The
different configurations studied here included flow between two
porous media, or a porous medium and a solid, the two being non-
deformable and in direct contact or separated by a fluid–saturated
fracture, the boundaries being flat or wavy. The contribution of slip
effects at the solid–fluid interfaces was taken into account in the physi-
cal process.

A one-domain approach was followed and a simplified version of
the volume averaging method was employed to carry out the upscaling
on the pore-scale boundary value problem (Navier–Stokes and first-
order slip boundary condition). Conceiving the system as being com-
posed of two homogeneous regions and an inter-region, the procedure
yielded a unified macroscopic model under constraints that were made
clear in the course of the development. In particular, the classical sepa-
ration of length-scales and constant macroscopic pressure gradients are
pre-requisites for the derivations presented in this work to be valid.
The upscaled model consists of a divergence-free filtration velocity for
the mass balance equation and a unique momentum equation having
the structure of Darcy’s law, valid in the entire system. In this macro-
scopic momentum balance, the apparent permeability tensors are con-
stant valued in the homogeneous regions but space-dependent in the
inter-region, accounting for the changes of the structure (and hence of
the flow) in the vicinity of the boundaries. The permeability tensors
can be computed from the solution of coupled closure problems that
have a physical structure similar to the original pore-scale problem.
This simple mathematical structure of the upscaled model makes it
appealing for its application in a wide variety of practical situations.

To illustrate the upscaled model performance, a set of two-
dimensional case studies was considered, including (i) two porous
media in direct contact with a flat or wavy boundary, or with a continu-
ously evolving porosity from one homogeneous region to the other;

FIG. 10. Average velocity profiles between a porous medium and a wall separated
by a fracture of height ‘c considering arrays of staggered cylinders. The results cor-
respond to the solution of the pore-scale equations using direct numerical simula-
tions (DNS) and the one-domain approach (ODA). The wall was considered flat
and also sinusoidal with amplitudes of 0:1‘c (sinusoidal-I), 0:2‘c (sinusoidal-II), and
0:3‘c (sinusoidal-III). In all cases e ¼ 0:8, Re¼ 1000, and nk� ¼ 0:01.



(ii) two porous media separated by a flat or wavy fluid channel (a
fracture); (iii) a porous medium in direct contact with a flat or wavy
solid impervious wall; and (iv) a porous medium separated from a
solid impervious wall by a flat or wavy fluid channel. In all cases, an
excellent agreement was obtained between the average velocity profiles
predicted by the one-domain average model and those computed from
direct numerical simulations of the pore-scale problem in the whole
system.

The one-domain approach developed in this work provides an
efficient, simple, and versatile macroscopic model that is an interesting
alternative to existing one- or two-domain approaches reported in the
literature. The proposed methodology is promising and may be
applied for the study of more complicated situations, such as multi-
phase and even non-isothermal flow near porous media boundaries.
These, and other applications, will be studied in future works.
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APPENDIX: DNS IN FINITE-SIZE SYSTEMS

In this appendix, results obtained from DNS conceived as
numerical experiments over domains of finite size are compared to
the predictions of the macroscopic model. In contrast to the DNS
reported in Sec. IV where media were considered as periodic and
infinite in the x-direction, the system is supposed to be made of an
M-repetition of a vertical stripe of unit cells as the one sketched in
Fig. 2. Instead of periodic boundary conditions, pressure Dirichlet
conditions are considered at the entrance (x� ¼ 0) and exit
(x� ¼ M). Moreover, walls with a slip velocity condition are
assumed at y� ¼ y�xi

¼ 10, i¼ 1, 2. The latter was chosen in agree-
ment with the observation from the DNS results presented in
Sec. IV showing that, at this distance, the boundary condition has
no impact on the flow in the x-region.

With the dimensionless form adopted in this work, the flow
problem to be solved for these numerical experiments is given by

r� � v�j ¼ 0 in the b-phase; (A1a)

Re v�j � r�v�j ¼ �r�p�j þr�2v�j in the b-phase; (A1b)

FIG. 11. Examples of the convergence of
the y� profiles of hv�i resulting from direct
numerical simulations (DNS) in systems of
different sizes in the x-direction toward
those predicted from the average model
derived with the ODA. The size of the sys-
tem is M‘c . Results correspond to (a)
case 1, type I, (b) case 2, type Ia, (c) case
3, flat and (d) case 4, sinusoidal-III in the
main text.



v�j ¼ �nik
�ðI� nnÞ � n � r�v�j þr�v�Tj

� �� �
ataj

bri
; i ¼ 1; 2;

(A1c)

p� ¼ M; at x� ¼ 0; p� ¼ 0 at x� ¼ M; (A1d)

v�j ¼ �nik
�ðI� nnÞ � n � r�v�j þr�v�Tj

� �� �
at y�xi

: (A1e)

Since the objective is not to report about this analysis in all
the different configurations considered in Sec. IV, only a few illus-
trative ones were selected, namely, case 1, type I; case 2, type Ia;
case 3, flat and case 4, sinusoidal-III. The DNS were performed
with several values of M to analyze the convergence of the results
toward the predictions from the ODA and the relative % difference
between the two was computed at x� ¼ M=2, taking the ODA as
the reference. In Fig. 11, the profiles of hv�xi are represented vs y� at
x� ¼ M=2 for the different values of M. In the four situations, the
prediction from the ODA either overestimates (cases 1 and 4) or
underestimates (cases 2 and 3) the average velocity obtained from
DNS. In addition, the length of the domain for which the predic-
tion of the average velocity from the ODA can be achieved with a
given accuracy depends on the configuration under consideration.
Indeed, as shown in Fig. 12 representing the relative % difference
between the two approaches, if a criterion of 1% accuracy is cho-
sen, thenM¼ 11 is sufficient in case 1, whereas M¼ 25 is necessary
in cases 3 and 4, and, for case 2, M¼ 101 is required. The reason
for this is due to the fact that case 1 corresponds to a situation with

the largest viscous drag, followed by cases 3, 4, and 2; hence, the
distance after which periodic boundary conditions can be used
increases with the reduction of the drag, as expected. The conclu-
sion from this analysis is that convergence can be reached provided
M is large enough, the value of M at convergence strongly depend-
ing on the structure and the type of inter-region under consider-
ation. This was confirmed by simulations performed in many other
cases investigated in Sec. IV that are however not reported here for
the sake of brevity.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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