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Abstract

An early question in evolutionary theory asked why frequency distributions of

taxonomic group sizes exhibit “hollow curves” so frequently. An answer to this

question was provided by G. Udny Yule’s seminal contribution introducing a

discrete model for those distributions. But Yule observed that the fit of his

model to observed distributions was sometimes imperfect, in particular for the

class of reptiles. The present study introduces a multi-epoch extension of the

discrete Yule model that accounts for unobserved extinction of ancient lineages.

The multi-epoch model is described as a Pòlya urn embedded in a continuous-

time branching process with an harmonic sequence of diversification rates. The

main results include equivalent descriptions of multi-epoch models, their proba-

bility distributions, expected values, tail behavior and a self-similarity property.

As an illustration of the theory, the multi-epoch model is applied to study the

taxonomic diversity of reptile species, and provides a much better fit to the

observed distribution of species than the original discrete Yule model.
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1. Introduction

The distribution of the number of species within genera follows one of the

oldest laws in evolution (Willis, 1922). This distribution exhibits a “hollow

curve” for which most genera contain only one species and a few genera contain

a large number of species. The observed pattern has been long-recognized, and5

the hollow curve was summarized by Charles Darwin’s note in The Origin of

Species (1859) – “Rarity is the attribute of vast numbers of species in all classes”.

Not restricted to a particular taxonomic level, hollow curves occur for example

in ecology where they represent relative species abundance in various habitats

(McGill et al., 2007).10

The discrete Yule model was one of the earliest attempt at characterizing

the shape of the hollow curve in a mathematical way (Yule, 1925). The model

derives from a continuous-time pure-birth branching process with a constant

rate of diversification, and explains taxonomic diversification as a consequence of

pure randomness. More precisely, a constant rate pure-birth branching process15

is a continuous-time model of a tree in which each lineage splits at a constant

rate. In the branching process, the distribution of the number of descendants

at a particular time point is geometric, and its mean value grows exponentially

with the rate of diversification (Yule, 1925). The discrete Yule distribution is

obtained by considering the number of descendants after a random period of20

evolution having an exponential distribution of mean equal to one.

While the simplicity of the discrete Yule distribution makes it interesting as

a null-model to test hypotheses about evolution, it may not fully reflect the next

words of Darwin’s quotation: “If we ask ourselves why this or that species is

rare, we answer that something is unfavourable in its conditions of life” (Darwin,25

1859). In fact, the discrete model belongs to a class of skewed distributions that

find applications far beyond evolutionary theory, describing various processes

such as the size of cities, scientific citations, superstardom, or species abundance

(Simon, 1955; Chung and Cox, 1994; Chu and Adami, 1999). In an ecological

context, Nee (2003) also showed that the discrete distribution provides a good fit30
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to species abundance distributions. Considering higher taxonomic levels, Yule

acknowledged, however, that the fit of the model to observed distributions was

imperfect, in particular for the family of snakes.

An alternative mathematical description of the discrete Yule distribution

is as a Pòlya urn model, a discrete-time version of the branching process in35

which lineages correspond to balls drawn from an urn (Simon, 1955; Athreya

and Karlin, 1968; Mahmoud, 2008). Probabilistic urn models also arises in ran-

dom processes with reinforcement, in which previously visited states see their

probability of visit increased (Pemantle, 2007). In processes with reinforcement,

the tail of the distribution of states is often equivalent to the tail of a power law40

(Newman, 2005). In addition, urn models have connections with the sampling

theory of neutral alleles in population genetics (Crane, 2016; Hoppe, 1987). In

all cases, continuous trees or discrete urn models lead to statistically identi-

cal histories of diversification events. The connection between urns and trees

provides a natural approach to extend the discrete Yule distribution, and to45

improve its fit to observed frequency spectra.

This study introduces a multi-epoch model for describing the distribution of

the number of species within genera. In the multi-epoch model, the most ancient

epochs correspond to lower effective diversification rates, decreasing according

to the harmonic sequence, and representing the unobserved extinction of some50

ancient lineages. The multi-epoch model could be defined either as an urn model

or as a non-constant rate branching process. The main results for this model

are explicit formulas for the distribution of the number of species, first moment

and the tail of the distribution. In addition, the multi-epoch model exhibits

an interesting self-similarity property at its critical rate. An application of the55

multi-epoch model to the taxonomic diversity of reptile species (Uetz, 2000) is

studied. For this class, the multi-epoch model fits the observed distribution of

species better than the original discrete Yule distribution.
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2. A multi-epoch model

The discrete Yule distribution. The discrete Yule distribution can be described60

as the following urn model, also called Polya’s urn or reinforcement model (New-

man, 2005). The process starts with an urn containing two balls, a black one

and a white one. The white ball may be viewed as representing an ancestral

species in a tree-like evolutionary process. The black ball has weight one, and

the white ball has weight λ > 0. The parameter λ can be interpreted as a speci-65

ation or diversification rate for “white” lineages. Balls are drawn from the urn

with probability proportional to their respective weights. If the color resulting

from a drawing is white, then the white ball is replaced in the urn, and an exact

copy of it is added to the urn content. This event corresponds a speciation

event, i.e., the occurrence of a new species in the urn. The sampling process is70

continued until the black ball is drawn. Note that the tree topology correspond-

ing to the series of speciation events could be made explicit by labelling each

new ball with a distinct label. This is not useful for the purpose of describing

the discrete Yule distribution, and the labels will be ignored in the derivation

of the result.75

The discrete Yule model describes the probability distribution of the number

of white balls (species) resulting from the sequence of drawings. Because the

number of white balls corresponds to the waiting time until the black ball is

drawn, the distribution can be formulated as a product of sampling probabilities.

Considering the inverse speciation rate, ρ = 1/λ, the probability of having n80

species is indeed given by

p(n|ρ) =
1

(1 + ρ)

2

(2 + ρ)
. . .

n− 1

(n− 1 + ρ)

ρ

(n+ ρ)
, n ≥ 1.

In the above product, the first (n−1) terms represent the probabilities of drawing

white balls, whereas the nth term represents the probability that the last draw

is a black ball. By definition of the Beta Euler function,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

ua−1(1− u)b−1du, a, b > 0 ,
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the probability of having n species can be rewritten as follows85

p(n|ρ) = ρ
Γ(n)Γ(ρ+ 1)

Γ(ρ+ 1 + n)
= ρB(ρ+ 1, n), n ≥ 1.

Remarkably, the result entails a simple integral representation for the distribu-

tion

p(n|ρ) = ρ

∫ 1

0

uρ(1− u)n−1du, n ≥ 1 .

While the above integral representation results from simple calculus, it is

also connected to the embedding of the Pòlya urn into a pure-birth branching

process with birth rate λ (Athreya and Karlin, 1968; Athreya and Ney, 1972).90

The corresponding random tree is often called the equal rate Markov model or

the Yule model of speciation (Aldous, 2001). The random tree is rooted with a

unique ancestor and evolves for a period of time T , a random variable having

an exponential distribution of rate one. In the continuous tree, the number of

white balls corresponds to the number of branching events. The unit period T95

is called a random epoch, so that the Yule model corresponds to a single epoch.

The unit rate for the period T corresponds to the evolutionary time scale for a

genus occurrence. This rate was equal to µ > 0 in Yule’s original study. With

rate µ, the model parameter ρ rescales as ρ = µ/λ, and the probabilities p(n|ρ)

are unchanged. For this reason, only µ = 1 is considered in the rest of this100

study.

The N -epoch model. Here, an extension of the urn model considers that the urn

initially contains N black balls and a single white ball (N ≥ 1). Again, the white

ball is viewed as representing an ancestral species in a tree-like evolutionary

process, and its weight is still λ > 0. Each black ball has weight one. Balls105

are drawn from the urn with probability proportional to their weights. When

drawn from the urn, white balls are replaced in the urn, and an exact copy

of them is added to the urn content. In contrast, when a black ball is drawn,

it is removed from the urn. The last event could be called a transition event.

The sampling process is continued until all N black balls are removed from the110
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urn. The Yule(N, ρ) distribution describes the law of the number of white balls

resulting from the sequence of drawings.

Before describing the Yule(N, ρ) distribution mathematically, some remarks

may help to better understand the connection between urns, trees and their

timescales. A first remark is that the Yule(1, ρ) distribution is the discrete Yule115

distribution. The Yule(1, ρ) distribution is equivalently described by giving a

weight one to the white ball and a weight ρ to the black ball. This operation is

equivalent to changing the time-scale and speciation rate in the continuous tree

model. A second remark is that, in a model with N epochs, the waiting time

for the first transition event follows the Yule(1, Nρ) distribution. This can be120

shown by considering an equivalent model for the first epoch in which there is a

single black ball of weight one, and the weight of the white ball is equal to λ/N .

At the end of the first epoch, there are N −1 black balls, and the weight of each

white ball increases to λ/(N−1). The above argument can be repeated for each

period. During epoch k, which corresponds to having k black balls in the urn,125

the speciation rate for white balls is equal to λ/k. The N -epoch model is thus a

model with unequal diversification rates in which the rates decrease backward in

time according to the harmonic sequence. In this model, each ancestor species

leaves more descendant species in recent epochs than in ancient epochs.

3. Main results130

This section describes an integral representation of the probability distribu-

tion of the number of white balls, or equivalently the number of extant species

within genera, for the Yule(N, ρ) distribution. It uses this representation to

compute first order moments and tails, and provides an efficient simulation al-

gorithm for the N -epoch model.135

The Yule(N, ρ) distribution. Theorem 1 extends the formula available for the

discrete Yule distribution. The result can be stated as follows.

Theorem 1. Let N be a positive integer, λ > 0 and ρ = 1/λ. The probabil-
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ity distribution of the number of species in the N -epoch model is given by the

following formula140

p(n |N, ρ) = Nρ

∫ 1

0

uρ(1− uρ)N−1(1− u)n−1du , n ≥ 1 .

Like the discrete Yule distribution, the N -epoch model has a natural em-

bedding in a pure-birth branching process. In the continuous tree, the rate of

diversification varies from an epoch to the next one. The continuous tree has

N independent epochs T1, ..., TN , where T1 corresponds to the most recent

epoch and TN corresponds to the most ancient one. The Tk’s are defined as145

exponentially distributed random variables with rate one. During epoch k, the

speciation rate is λ/k. To derive an expression for the Yule(N, ρ) distribution,

this is equivalent to consider a tree of height T = T1 + T2/2 + · · · + TN/N in

which the speciation rate is constant and equal to λ. The Theorem is then a

consequence of Yule’s result for the equal rate Markov model, for which the150

distribution of the number of species is geometric. This remark leads to

p(n |N, ρ) = E[e−λT (1− e−λT )n−1] , n ≥ 1,

which corresponds to the integral in Theorem 1. See appendix for mathematical

proofs.

By using Newton’s binomial formula and the Beta function, integrals in

Theorem 1 can be computed accurately for all n as follows155

p(n|N, ρ) = Nρ

N∑
k=1

(−1)k−1
(
N − 1

k − 1

)
B(kρ+ 1, n) , n ≥ 1. (1)

Note that for N = 1, the discrete Yule distribution is recovered.

First moment and critical value. Like the standard Yule(1, ρ) distribution, the

multi-epoch model has a critical value at ρ = 1. For ρ ≤ 1, the expected values

predict an infinite number of species, whereas for ρ > 1, the expected values are

finite and can be expressed in a closed form.160
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Figure 1. Expected number of species in the super-critical multi-epoch model

(ρ > 1). The number of epochs, N , is varied in the range [1, 50]. Expected values

are computed according to the formula given in Theorem 2, and displayed on a

logarithmic scale (base 10).

Theorem 2. Let XN be a random variable having the Yule(N, ρ) distribution.

Let ρ = 1/λ. For all N ≥ 1, the expected number of species within genera is

equal to

E[XN |N, ρ] =∞, if ρ ≤ 1 ,

and

E[XN |N, ρ] = N B(1− λ,N) , if ρ > 1 .
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In the super-critical case (ρ > 1), the expected number of species is a finite165

number. Its expression coincides with the result known for the discrete Yule

distribution for N = 1. For general values of N , explicit values can be obtained

for integer values of ρ. In the particular case of ρ = 2, the expected number of

species is given by the ratio of the even numbers to the odd numbers between

1 and 2N170

E[XN |N, ρ = 2] =
2

1

4

3
. . .

2N

(2N − 1)
.

For other super-critical values of ρ, the formulas are less explicit, but an asymp-

totic result for the large N can be described according to Stirling’s formula as

follows (λ < 1)

E[XN |N, ρ] ∼ Γ(1− λ)Nλ , N →∞,

where the ∼ symbol means that the sequences are mathematically equivalent

(Abramowitz and Stegun, 1970). For ρ = 2 and N = 100, the asymptotic175

approximation is equal to
√
πN ≈ 17.72, while the exact value is around 17.74.

The result shows that the expected number of species grows like a power of the

number of epochs, and that growth is slower for smaller diversification rates

(Figure 1).

The results for the multi-epoch model can be compared to those for a con-180

stant rate model. In the urn process, a constant rate model would keep the

number of black balls at their initial value, N , by replacing them in the urn

each time they are drawn from the urn. The replacement rules for white balls

are unchanged, and the process is stopped after drawing N black balls. Like for

the multi-epoch model, results for a constant rate model could be obtained by185

applying a continuous tree embedding approach. In the continuous time model,

N independent epochs are considered, and epochs have exponential distribu-

tions of rate one. The probability distribution of the number of white balls

after drawing N black balls is then given by the following formula
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pconstant(n |N, ρ) = ρN−1
∫ 1

0

uρ(1− u)n−1 log(1/u)N−1du , n ≥ 1 .

The constant rate model is also critical at ρ = 1, and, for ρ > 1, its expected190

value is given by the following formula

Econstant[XN |N, ρ] =

(
1

1− λ

)N
.

In the constant rate model, the expected number of species grows exponentially

with N , whereas the growth is much slower in the Yule(N, ρ) model.

Tail of the Yule(N, ρ) distribution. Next, the tail of the distribution in the N -

epoch model is studied, and the next result shows that it is described by a power195

law.

Theorem 3. Let N be a positive integer, ρ > 0 and consider XN , the number

of species within genera, having a Yule(N, ρ) distribution. This distribution

satisfies

p(n|N, ρ) ∼ NρΓ(ρ+ 1)

nρ+1
, n→∞ ,

and

P(XN > n|N, ρ) ∼ NρΓ(ρ)

nρ
, n→∞ ,

where Γ(ρ) denotes the Gamma Euler function. The ∼ symbol means that the

sequences are mathematically equivalent.

The result shows that the tail probabilities are asymptotically larger by a

factor N in the multi-epoch model compared to the single epoch model. Thus200

reinforcement is stronger in the multi-epoch model than in the standard discrete

Yule model. The power exponents are, however, independent on the number of

epochs, and the tail of the distribution for larger N does not differ very much

from those with smaller N . The difference with the discrete Yule model arises

in a more subtle way, as the distribution tends to flatten with large N ’s and205

puts more probability on larger clades.
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Computer simulation of the Yule(N, ρ) distribution. By definition of the model,

the Yule(N, ρ) distribution can be simulated as the number of white balls re-

sulting from the Pòlya urn scheme. Changing weights as described in section

2.2, the Yule(N, ρ) distribution can thus be defined recursively as follows. Let210

us denote by Polya(x, ρ) the distribution of the number of white balls when the

urn process is started with x white balls of weight ρ and N = 1 black ball of

weight one. Then define a sequence of N random variables as follows

YN = Polya(1, ρN)

and, for k = N − 1, . . . , 1,

Yk = Polya(Yk+1, ρk).

According to the Pòlya urn scheme, Y1 follows the Yule(N, ρ) distribution. Sim-215

ulation results for m = 100, 000 samples confirmed that the distribution of Y1

was described by equation (1) (see Figure 2, for N = 3, ρ = 0.9 and ρ = 1.2).

The above forward equations reproduce the urn scheme mechanistically, but

they are generally costly for large N and values of ρ ≤ 1. A much more efficient

(backward) simulation algorithm can be obtained from the integral representa-

tion presented in Theorem 1. From this representation, the Yule(N, ρ) distri-

bution falls in the category of Beta-geometric distributions (Johnson and Kotz,

1969). It can be interpreted as a mixture of geometric distributions, Geom(Uλ),

where U is sampled from a Beta distribution with shape parameters 1 and N ,

U ∼d Beta(1, N)

and

XN ∼d Geom(Uλ) .

In the above formulas, the symbol ∼d means that the variable on the left hand-

side is sampled according to the distribution on the right hand-side. This alter-

native representation of the probability distribution does not simulate any tree220
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Figure 2. Frequencies from the Pòlya urn process for the Yule(N, ρ) and

theoretical values predicted by Theorem 1. The multi-epoch model had N = 3

epochs with ρ = 0.9 (left) and ρ = 1.2 (right). Number of simulations, m =

100, 000.

or urn models. It is considerably faster than simulating the urn process from

the set of recursive equations.

Critical case. The critical case ρ = 1 exhibits a self-similarity property. Theo-

rem 4 shows that the critical N -epoch Yule distribution rescaled by the number

of epochs, N , corresponds to the critical Yule distribution with N = 1. A more225

precise statement of the property is as follows.

Theorem 4. Consider the critical case ρ = 1. For N ≥ 1, let XN be a random

variable having Yule(N, 1) distribution. Let dxe denote the least succeeding in-

teger of x. Then the distribution of the renormalized random variable dXN/Ne

is the critical discrete Yule distribution,230

dXN

N
e ∼d X1 .

Here X1 is a random variable following the discrete Yule distribution, and the

symbol ∼d means that the variables share the same distribution.
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4. Application to reptiles

In this section, a likelihood function of the parameters of the multi-epoch

model is proposed and used to adjust the Yule(N, ρ) distribution to the observed235

frequencies of species in reptile genera.

Maximum-likelihood estimation. Consider a sample with m observations (ni),

i = 1, . . . ,m, from the Yule(N, ρ) distribution. Since the distribution is explicit,

a maximum-likelihood method can be used for fitting the N -epoch model to

the observed data. To apply the maximum-likelihood approach, the sampled240

data can be summarized by an histogram of observed frequency, assuming that

observations from a very large tree are independent. Let us define

mk = #{i : ni = k} , 1 ≤ k ≤ K,

the number of genera having k species, where K = maxni is the largest value

observed in the sample. Considering a multinomial distribution for the observed

frequency data, the log-likelihood function is defined as follows245

LN (ρ) =

K∑
k=1

mk

n
log p(k|ρ,N) .

The log-likelihood corresponds to the cross-entropy of observed and predicted

probability distributions. For each N , the parameter ρ can estimated by maxi-

mizing the log-likelihood function over a range of values.

Next, a series of experiments was performed to evaluate the bias and vari-

ance of the maximum likelihood estimate (MLE) for N = 1-8 and ρ in the range250

[0.7, 1.6]. To keep in order with the sample size in the real data (m = 1196),

samples of size m = 1, 200 were considered. Samples were simulated by using

the Beta-geometric representation of the Yule(N, ρ) distribution. First, a ran-

dom value, ui, was sampled from the Beta(1, N) distribution, and ni was then

sampled from a geometric distribution of rate uλi , for i = 1, . . . ,m .255

The squared bias of the MLE of the inverse speciation rate (ρ) was small,

around 1.45e-05, but differed from zero significantly (t-test P = 0.003). Analysis

13



Table 1: Inverse speciation rate estimates (MLEs) for the reptile data

N estimate lower upper log-likelihood

1 0.548 0.468 0.579 -277.9

2 0.872 0.813 0.920 -217.8

3 1.069 1.009 1.112 -203.8

4 1.206 1.154 1.257 -200.3

5 1.317 1.257 1.376 -200.4

6 1.411 1.342 1.462 -201.8

7 1.479 1.419 1.547 -203.7

8 1.547 1.479 1.616 -205.8

N: Number of epochs, estimate: inverse speciation rate, lower and upper: 95%

confidence interval.

of variance did not detect significant difference among the squared bias values

for different N (ANOVA P = 0.34) or different ρ (ANOVA P = 0.1). The

variance of the MLE of the inverse speciation rate varied in the range [2.34e-04,260

5.56e-03]. The logarithm of the variance exhibited a linear trend in which larger

variance was observed for smaller ρ and larger N . Overall those results indicated

that the MLEs of ρ were accurate (low bias) and precise (low variance) in the

range of values considered.

Reptile data. Reptiles (Reptilia) form a highly diverse class that consists of265

10,885 species classified in m = 1, 196 genera (Uetz, 2000). In reptiles, the

average number of species within genera is around 9.101. The empirical distri-

bution of the number of species within genera exhibits a typical hollow curve

(Figure 3). About 21 percent (20.81%) genera contain more that 10 species,

and 0.85% genera contain more that 100 species. In his original study, Yule270

(1925) used the family of snakes to illustrate its mathematical theory of evo-

lution, and acknowledged that the constant rate branching process provided a

14
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Figure 3. Observed frequencies of reptile species within their genera for less
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the values predicted by the discrete Yule model (N = 1). Top: The brown
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brown line shows the values predicted by a model with N = 5 epochs (Log-
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poor fit to the snake data. After fitting the discrete Yule model to the reptile

data, the MLE for the inverse speciation rate was equal to ρ̂1 = 0.548 (Table

1). A confidence interval for this estimate was computed by using the bootstrap275

method, and was equal to CI = (0.468,0.579). Figure 3 shows that the resulting

Yule(1, ρ̂) distribution provided an imperfect fit to the observed frequencies of

species in genera. Considering nine histogram bins, the chi-squared goodness-

of-fit statistic was equal to 196.36, and the discrete Yule model was rejected by

the chi-squared test (df = 8, P < 10−10). In addition, a subcritical estimate,280

ρ̂ < 1, predicting an infinitely large expected value for number of species was

biologically implausible.

Estimates for the N -epoch model reached their maximum likelihoods for

N = 4, 5 and MLEs of the inverse speciation rate were equal to ρ̂4 = 1.257 and

ρ̂5 = 1.376 respectively (Table 1, Figure 3). The likelihood functions exhibited285

a large plateau and the confidence intervals overlaped significantly (Table 1,

Figure S1). For this reason, providing a unique choice for N was difficult. For

N = 4, the chi-squared statistic was equal to 16.05, and the multi-epoch model

was weakly rejected (df = 8, P = 0.041). For N = 5, the statistic was equal to

15.00, and the test was not significant (P = 0.059).290

MLEs for N = 7 and N = 8 reached values close to those obtained for

N = 4, 5. Models with N = 7 and N = 8 predicted the frequency of singleton

species less accurately than with N = 5, but the deeper models provided a better

fit to the mean observed value and to the tail of the observed distribution (Table

2). For N = 8, the multi-epoch model predicted an average number of 9.797295

species per genera (for 9.101 observed species), and the probability to have more

that 100 species in a genus was 0.9% for an observed value of 0.85%. Thus larger

number of epochs predicted the tail of the observed distribution more accurately

that smaller N ’s.
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Table 2: Observed and predicted values for the reptile data.

Observed N = 5 N = 6 N = 7 N = 8

One species 0.260 0.240 0.232 0.225 0.220

More than 10 species 0.208 0.197 0.194 0.196 0.194

More than 100 species 0.008 0.013 0.011 0.010 0.009

Average number of species 9.101 13.068 11.193 10.457 9.797

Observed: empirical values, N = k: predicted values for the k-epoch model.

5. Discussion300

Hollow curves are one of the most frequently observed patterns in ecology

and evolution. These curves, describing the distribution of species occurring

within a community, at a trophic or at a taxonomic level, exhibit a general

shape for which many species are rare and few species are abundant. Which

models provide the best fit to the data, and the resulting implications for the305

mechanistic processes structuring the data have been an active field of inves-

tigation since the discovery of these curves. The discrete Yule distribution is

one of those models, and it provides a useful null-model for testing hypotheses

about diversity (Yule, 1925; Mooers and Heard, 1997; Nee, 2003, 2006).

Since Yule’s contribution, models attempting to explain the causes of the hol-310

low curve in species abundance or specie/genus distributions have proliferated to

a very large degree. Yule’s paper initiated a series of works on birth-death pro-

cesses which yield similar distributions (Kendall, 1948; Raup, 1973; Foote et al.,

1999; Aldous, 2001). In their review of species abundance distributions, McGill

et al. (2007) identified five families of models with over forty members. For315

those distributions, the first theories attempting to explain mechanisms under-

lying the curve used a stick breaking analogy of niche partitioning (Motomura,

1932). The stick breaking model likely inspired further works on splitting tree

distributions (Aldous, 2001). Fisher et al. (1943) argued for a logseries distribu-
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tion as the limit of a Poisson sampling process, and Kendall (1948) derived the320

logseries from branching models. However, empirical data show lack of fit to the

Yule and other distributions, including hyperbolic (Chamberlin, 1924), logseries

(Fisher et al., 1943), broken stick (Dial and Marzluff, 1999) distributions. The

statistical similarities of hollow curve distributions even led to the hypothesis

that they were due not to mechanisms, but rather to pure randomness in com-325

bination with the branching nature of speciation and extinction (Bokma et al.,

2013).

Partly because of the unsatisfactory fit of theoretical distributions to empir-

ical data on species over taxa, alternative models of the shape of phylogenetic

clades have been proposed, differing from Yule’s model substantially (Aldous,330

2001; Blum and François, 2006). But it has also been suggested that the ob-

served hollow curve distributions are affected by the criteria used by biologists to

define taxa, which may not reflect evolutionary history (Scotland and Sanderson,

2004). By introducing a multi-epoch model for the observed data, the present

study is closer to this last vein of thought, reconsidering the evolutionary time335

scale of a genus definition. The multi-epoch model is a natural extension of the

discrete Yule distribution. The number of evolutionary epochs, N , corresponds

to the tree height parameter. Higher trees have lower diversification rates in

their more ancient epochs, and may capture extinction of ancient species in a

better way than constant rate models. Compared to the discrete Yule distribu-340

tion, the topology of the underlying tree is left unchanged, only the date of the

root is reconsidered. In the discrete Yule model, the date of origin is a random

variable having an exponential distribution of rate one. The multi-epoch model

birth data corresponds to a maximum of N independent copies of this random

variable. For reptiles, the fact that N = 4−8 copies fit the observed frequencies345

better than a single copy could reflect uncertainty in the definition of a genus

not captured by the single copy.

The main contribution of the present study was to describe mathematical

properties of the multi-epoch model. To cope with the combinatorics, an em-

bedding of the urn scheme in a continuous branching process was introduced.350
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The method could likely be extended to other urn processes with consideration

of births and deaths. The distribution of the number of species in birth and

death processes would yield less explicit representations of probability distribu-

tions than those obtained from pure birth processes (Lansky et al., 2014). In

addition, Pòlya’s urn theory most often consider the equilibrium distributions355

of tenable urns – a remarkable exception is a gunfight model studied by King-

man (1999). The models considered here do not satisfy the tenability condition

(Mahmoud, 2008), and are less amenable to analysis by standard combinatorial

techniques. Nevetheless, we feel that integral representations could also be ob-

tained in complexified models, and open a future avenue of research on hollow360

curve distributions.
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Appendix365

This appendix provides analytic arguments for the proofs of Theorems 1-4,

given for sake of completness. Let XN be a random variable having a Yule(N, ρ)

distribution.

Proof of Theorem 1. The proof uses an embedding of the urn scheme into a

pure-birth branching process. According to the description of the urn process,370

the tree has N independent epochs of duration T1, ..., TN , having exponential

distribution of rate one, during which the speciation rates are λ, λ/2, · · · , λ/N ,

respectively.

The urn process is equivalently described by a rescaled version of the tree

having N independent epochs of duration T1, T2/2, . . . ,TN/N , during which375

the speciation rates are equal to λ. In this representation, the random variable

Tk/k is exponentially distributed with rate k, for each k. Following Yule (1925),

the probability of observing n extant species after a period T is equal to
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p(n |N, ρ) = P(XN = n |N, ρ) = E[e−λT (1− e−λT )n−1] , n ≥ 1.

In the rescaled model, the height of the tree, T , is equal to T = T1 + T2/2 +

· · ·+ TN/N . According to this result, the above probabilities are equal to380

p(n |N, ρ) =

∫ ∞
0

e−λt(1− e−λt)n−1pT1+T2/2+···+TN/N (t)dt , n ≥ 1.

Using the loss-of-memory property of the exponential distribution, one can

show that T has the same distribution as the maximum of the N variables

T1, T2, · · · , TN (Ross, 2013). For all n ≥ 1, the probability of observing n ex-

tant species is thus equal to

p(n |N, ρ) = N

∫ ∞
0

e−λt(1− e−λt)n−1e−t(1− e−t)N−1dt , n ≥ 1.

The proof of Theorem 1 follows from the change of variable u = e−λt in the385

above integrals. �

Proof of Theorem 2. Theorem 2 follows from the integral representation of

the Yule(N, ρ) distribution and straightforward calculus. The expected value

E[XN |N, ρ] is defined as

E[XN |N, ρ] = Nρ

∫ 1

0

( ∞∑
n=1

nu(1− u)n−1

)
uρ−1(1− uρ)N−1dt .

Recognizing the mean of a geometric distribution and changing variable u = vλ390

(λ = 1/ρ), the integral rewrites as

E[XN |N, ρ] = N

∫ 1

0

v−λ(1− v)N−1dv .

The result is equal to

E[XN |N, ρ] =∞, if λ ≥ 1 , (ρ ≤ 1) ,
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and

E[XN |N, ρ] = N B(1− λ,N) , if λ < 1 , (ρ > 1) .

�

Proof of Theorem 3. The proof of Theorem 3 is based on a version of Watson’s395

lemma (Watson, 1922). The lemma considers the function h(x) defined by

h(x) = xα
∞∑
n=0

cnx
n , α > 0,

for x > 0, close to zero, and g(x) =
∑∞
n=0 cnx

n a real analytic function. Then

there is an asymptotic equivalent for the Laplace transform of h(x)/x

∫ ∞
0

e−nxh(x)
dx

x
∼ Γ(α)c0

tα
, n→∞.

After the change of variable 1−u = e−x in the integrals defining p(n |N, ρ), one

has

p(n |N, ρ) = Nρ

∫ ∞
0

e−nx(1− e−x)ρ
(
1− (1− e−x)ρ

)N−1
dx , n ≥ 1 .

The function h(x) in Watson’s lemma can thus be obtained as

h(x) = x(1− e−x)ρ
(
1− (1− e−x)ρ

)N−1
= xρ+1

(
1− ρx

2
+ · · ·

)
.

The coefficients α and c0 in Watson’s lemma can be identified as α = ρ + 1

and c0 = 1. The result for the cumulative distribution function can be obtained400

with similar arguments. �

Proof of Theorem 4. For ρ = 1, one has

P(XN = n |N, ρ = 1) = N

∫ 1

0

(1− u)N−1u(1− u)n−1du , n ≥ 1 .

Then, for all n ≥ 0, one has

P(XN > n |N, ρ = 1) = N

∫ 1

0

(1− u)N−1(1− u)ndu .
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and

P(XN > n |N, ρ = 1) = NB(1, N + n) =
N

N + n
.

Thus one obtains

P(XN > nN |N, ρ = 1) =
1

1 + n
,

and

P(XN/N > n |N, ρ = 1) = B(1, 1 + n) = P(X1 > n |N = 1, ρ = 1) .

�
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Figure S1. Log-likelihood functions for the reptile data and N -epoch models.

The curve for N = 1 has black color (left), and the curve for N = k is the kth

curve from the left (N = 8 at the right, grey color).
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