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Time-optimal control of piecewise affine bistable
gene-regulatory networks∗

Nicolas Augier1, Agust́ın Gabriel Yabo1

Abstract

We study the minimal-time problem for a piecewise affine bistable switch. Motivated by
applications in synthetic biology and biotechnology, the aim is to minimize the time needed for
this system to achieve transitions between its two stable steady states. The latter represents the
two possible states of a genetic toggle switch, a synthetic flip-flop device playing a fundamental
role in biocomputing and gene therapy. Results show that a time-optimal transition between
states should pass by an undifferentiated state, which is well known in cell biology for its
importance in fate differentiation of cells. In order to characterize the capacity of the system to
achieve transitions, we provide a lower bound on the minimal time, whose knowledge becomes
relevant when considering realistic systems involving subsystems evolving on different time
scales. Then, we show numerical simulations of optimal trajectories illustrating the structure
of the bang-bang optimal control for different scenarios.

keywords: genetic regulatory systems, hybrid systems, biological systems, hybrid optimal
control, genetic toggle switch, bistable switch

1 Introduction

Understanding complex biological phenomena has become of great interest in the last decades
for the scientific community. In the context of synthetic biology, numerous fields of study
have been employed to better comprehend and re-engineer the interactions within biological
systems [1]. Such is the case of control theory, widely used to explain regulatory mechanisms
in nature [2, 3], but also to artificially act upon them for biotechnological purposes [4, 5, 6].
A classical example is the metabolism of cells, described by multiple regulatory mechanisms
forming complex networks. In this framework, the interaction between genes is a crucial subject
of study [7], whose typical behaviors can be described by positive and negative feedback loops
[8, 9, 10, 11, 12]. The dynamics of these loops have been extensively analyzed, both from
experimental and theoretical perspectives, and are known to present either multistability or
oscillatory behaviors. From a mathematical modeling perspective, such a systems can be
modeled through dynamical systems of several variables, where the positivity or negativity is
given by the parity of negative interactions forming the loop.
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SIGNALIFE (ANR-11-LABX-0028-01). We acknowledge the support of the FMJH Program PGMO and the support
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Among all existing patterns, the simplest positive feedback loop is the two-dimensional
bistable system, which is commonly used to represent the so-called genetic toggle switch. The
latter is a synthetic flip-flop device first implemented experimentally in E. coli through the
genes lacI and tetR mutually repressing each other [13]. The state of the device is determined
by the concentration of the genes in the boolean form (low,high) and (high, low). This allows
genetic toggle switches to act as biological memory units capable of storing 1 bit of informa-
tion, by sustaining one of the two possible states through time [14], which offers a biosynthetic
alternative to the classical electronic flip-flop. Since its creation, understanding how to reg-
ulate bistable systems in a reliable manner (e.g. by supressing undesirable oscillations [15]
or achieving transitions between states [16, 17, 18]) has become highly relevant for their vast
implications in biotechnology and biocomputing.

In practice, the state of a genetic toggle switch can be controlled by externally catalyzing
or inhibiting the synthesis rate of the genes. This is done by introduction of a plasmid, which
are essentially small circular DNA molecules that can be constructed to include an inducible
promoter of the studied gene, thus affecting the synthesis rate of messenger RNA. Thus, the
transcription rate can be directly modified by aggregation of an inducer. In E. coli, this is done
by externally adding the diffusible molecules IPTG1 and aTc2, which are known to repress the
lacI and tetR genes, respectively [13].

Motivated by this experimental scheme, some authors proposed exact control strategies
based on a piecewise affine model of the bistable system [17]. As discussed in the work, the
importance of studying the phenomenon through qualitative models arises from the constraints
related to the experimental setup, both in measuring the state and in acting on the system.
The proposed model is characterized by the existence of an ”undifferentiated state”, where no
gene is predominant, and from which the system can evolve towards one of the two attractors.
Mathematically, the unstability of this state appears as a Filippov non-smooth ”saddle” singu-
larity [19]. From a biological point of view, such a state plays a key role in cell decision making
and cell fate differentiation [20]. Its role in fate commitment has also motivated experimental
studies aiming at stabilizing genetic toggle switches around this undifferentiated point [21, 22].

Whereas most of the theoretical work in the subject has been dedicated to externally
producing state transfers [23], the time efficiency of state switches has received little or no
attention from the community. Indeed, one of the key issues in these genetic devices is the
time needed to induce a transfer between its two stable states, due to its importance when
studying more complex networks of systems involving different time scales. In particular,
the latter becomes a major constraint in the framework of biological signal processing [24].
Thus, in this paper, we investigate the time-optimal control strategies for the aforementioned
bistable system. Our aim is to induce transitions between the two stable steady states in
minimal time. Many complex systems are known to involve bistable processes [25, 26]. Hence,
the reduction of the time needed for such transfers could allow experimentalists to speed
up certain chemical reactions or to artificially increase bacterial growth rate, thus improving
yield in biotechnological processes. In a different setting [27, 28], the time efficiency of bistable
systems switches in two-level quantum systems was studied, so as to induce efficient transitions
between two quantum states.

In addition to the biological relevancy of the subject, the resulting OCP (Optimal Control
Problem) yields very interesting results in the framework of Hybrid Optimal Control. The
steady states of the piecewise linear system cannot be reached in finite time due to the lack
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of controllability in certain regions, and so one has to consider a relaxed OCP with ”partial
targets”, that is, driving a given protein to a certain fixed value larger than its corresponding
threshold. In this regard, we show that time-optimal strategies for such a problem have a
very specific geometric description. When the initial state is far enough from the target, that
is below a curve called separatrix, we show by an adaptation of the HMP (Hybrid Maximum
Principle) to our setting that the optimal control consists in a concatenation of two bang arcs,
and the optimal trajectories follow:

• a first phase in which the system reaches the separatrix;

• a second phase where the system slides along this curve, until reaching the ”undifferen-
tiated” point of the biological system in finite time;

• a third phase, where the system leaves this curve, slides along a second fixed curve and
reaches its target.

These two curves correspond to the stable and unstable manifolds of the undifferentiated
saddle-type singularity, and the point where the dynamics achieves its transfer is nothing but
the corresponding Filippov equilibrium. The latter behavior can be compared to the turnpike
phenomenon [29], where the optimal trajectory for a given OCP for large final times is shown
to remain close to a steady-state trajectory solution of the associated static OCP. Besides its
specific interest, we expect our method to open new prospects in the study of optimal control of
higher dimensional genetic regulatory networks. In particular, it often occurs that trajectories
belonging to a given domain may bifurcate into different domains, similarly to what happens
in the toggle switch case, and some similar turnpike-like properties may hold in this case.

The paper is organized as follows: in Section 2, we present both the non-controlled sys-
tem and the studied controlled system, and we provide some technical results. In Section 3,
we introduce the time-optimal control problem and we adapt the HMP to our setting. In
Section 4, we present the main results, that prove the qualitative features of the optimal tra-
jectories mentioned above. In Section 6, we give a lower bound for the minimal time, then
characterizing the minimal transfer time between the two states of the toggle switch model. In
Section 7, we provide numerical results implemented with Bocop [30], an open-source toolbox
for solving OCPs. Additionally, we perform a numerical comparison between the trajectories
of the relaxed OCP and the original OCP, that suggests that the results also hold for the
original one.

2 Bistable-switch model

2.1 Free dynamics

Consider two variables x1 and x2 which represent two genes mutually inhibiting each other.
The individual dynamics, defined in Filippov sense, is the following{

ẋ1 = −γ1x1 + k1s
−(x2, θ2),

ẋ2 = −γ2x2 + k2s
−(x1, θ1),

(1)

where for j ∈ {1, 2}, xj ∈ R, and for θ ∈ R, s−(·, θ) : R→ R is such that

s−(x, θ) =

{
1 if x < θ,
0 if x > θ.
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It is assumed that s−(x) ∈ [0, 1] for x = θ. The positive constants (γj)j∈{1,2}, (kj)j∈{1,2}
correspond, respectively, to the degradation and the production rates of each variable. It is
classical [17] that the domain K = [0, k1/γ1]× [0, k2/γ2] is forward invariant by the dynamics
of Equation (1). From now on, we consider only solutions evolving in K. Define the regular
domains

B00 =
{

(x1, x2) ∈ R2 | 0 < x1 < θ1, 0 < x2 < θ2

}
,

B01 =
{

(x1, x2) ∈ R2 | 0 < x1 < θ1, θ2 < x2 <
k2
γ2

}
,

B10 =
{

(x1, x2) ∈ R2 | θ1 < x1 <
k1
γ1
, 0 < x2 < θ2

}
,

B11 =
{

(x1, x2) ∈ R2 | θ1 < x1 <
k1
γ1
, θ2 < x2 <

k2
γ2

}
.

Equation (1) restricted to a regular domain Bij is an affine dynamical system on R2 having
an asymptotically stable equilibrium, called focal point for system (1). Each region Bij for
i, j ∈ {0, 1} has a focal point

φij = (x̄i, x̄j)

corresponding to

x̄i =
ki
γi
s−(x̄j , θj).

Thus, system (1) has two locally asymptotically stable steady states

φ10 =

(
k1

γ1
, 0

)
∈ B10,

φ01 =

(
0,
k2

γ2

)
∈ B01,

and an unstable Filippov equilibrium point at (θ1, θ2). Figure 1 illustrates the dynamics of the
system for a given set of parameters.

2.2 Controlled dynamics and some related properties

We write the controlled dynamics assuming that the synthesis rates of each gene can be
externally catalyzed or inhibited (e.g. through the introduction of inducible promoters of a
given gene), as indicated in the previous section. Mathematically, this is represented by the
control input u acting directly on the synthesis rate of each gene, in a multiplicative form.
Then, the controlled system, defined in Filippov sense, is{

ẋ1 = −γ1x1 + u(t)k1s
−(x2, θ2),

ẋ2 = −γ2x2 + u(t)k2s
−(x1, θ1),

(S)

where the control u(·) ∈ L∞([0, tf ], [umin, umax]), with 0 < umin < 1 ≤ umax. We make the
following assumptions on the parameters of the system (for more details, see [17]).

Assumption 2.1. The parameters (γj)j and (kj)j satisfy

θj <
kj
γj
, j ∈ {1, 2}; θ2

θ1
>
k2

k1

γ1

γ2
;

θ2

θ1
<
k2

k1
.

This assumption allows to find a control strategy driving the solution of Equation (S) from
B10 to B01, as well as from B01 to B10. Note that it implies γ1 < γ2.
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γ2
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Figure 1: Stream plot with free dynamics given by Equation (1). System parameters are γ1 = 1.1,
γ2 = 1.7, θ1 = 0.6, θ2 = 0.4, k1 = k2 = 1.

2.2.1 Separatrix

Now define the separatrix, which is a curve playing a fundamental role in in the global dynamics
of both the open-loop system (1) and the controlled system (S). For a fixed value of u(t) ≡ u ∈
[umin, umax], the separatrix (Su) is defined as the stable manifold of the Filippov equilibrium
(θ1, θ2) for Equation (S) restricted to B00. In the coordinates (x1, x2) ∈ B00, for u ≥ 0, the
separatrix (Su) can be written as the curve of equation

x2 = α(x1, u) =
k2u

γ2
−
(
k2u

γ2
− θ2

)
k1u

γ1
− x1

k1u

γ1
− θ1


γ2
γ1

.

Using the latter, we define the regions

(Su)+ =

{
(x1, x2) ∈ R2 | 0 < x1 < θ1, α(x1, u) < x2 <

k2

γ2

}
,

(Su)− =

{
(x1, x2) ∈ R2 | 0 < x2 < θ2, α(x1, u) > x2, x1 <

k1

γ1

}
,

such that the domain K is divided into

K = (Su)+ ∪ (Su)− ∪B11, (2)

as shown in Figure 2. The solutions of Equation (S) having initial conditions in (Su)− (re-
spectively, (Su)+) reach B10 (respectively, B01) in finite time. Moreover, B10 (respectively,
B10) is included in the bassin of attraction of φ10 (respectively, φ01). Notice that, for a fixed
value of u(t) ≡ u ∈ [umin, umax], the solutions of Equation (S) having initial conditions in (Su)
reach the Filippov point (θ1, θ2) in finite time. Once having reached this point, the solution of
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Figure 2: Division of the domain K as defined in (2).

Equation (S) is then defined by differential inclusion in the Filippov sense. Roughly speaking,
there exist several solutions that will reach either B01 or B10 (see [17, Appendix] for more
precise informations about Filippov solutions of such a system).

2.2.2 Lower separatrix

Now we define the lower separatrix, which will be useful in Section 6.

Definition 2.2. For (γj)j∈{1,2} and (kj)j∈{1,2} satisfying Assumption 2.1, define the lower

separatrix (S̃u) as the straight line of equation

x2 = β(x1, u) =
k2u

γ1
−
(
k2u

γ1
− θ2

)
k1u

γ1
− x1

k1u

γ1
− θ1

 .

Lemma 2.3. Let (γj)j∈{1,2} and (kj)j∈{1,2} satisfy Assumption 2.1 and u ≥ 1, and let x̄1 be
the unique x1 ∈ [0, θ1] such that β(x1, u) = 0. Then for every x1 ∈ [x̄1, θ1] and u ≥ 1, we have
β(x1, u) ≤ α(x1, u), that is, (S̃u) is below (Su) for every x1 ∈ [x̄1, θ1].

Proof. For every x1 ∈ [0, θ1] and u ≥ 1, define X(x1) =
k1u
γ1
−x1

k1u
γ1
−θ1

. We have easily that β(x1, u) =

0 if and only if x1 = x̄1, where x̄1 ∈ [0, θ1] is such that X(x̄1) = k2u/γ1
k2u/γ1−θ2 . Evaluating in the

expression of α at x1 = x̄1, we have

α(x̄1, u) =
k2u

γ2
−
(
k2u

γ2
− θ2

)(
k2u/γ1

k2u/γ1 − θ2

) γ2
γ1
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Using the fact that γ2 > γ1 under Assumption 2.2.1, one can prove by a direct differentiation
that the function

x 7→

(
k2u
γ1
− x
) γ2
γ1

k2u
γ2
− x

is non-decreasing on [0, θ2], and that x1 7→ α(x1, u) is concave for x1 ∈ [0, θ1]. Hence, we have(
k2u
γ1

k2u
γ1
− θ2

) γ2
γ1

≤
k2u
γ2

k2u
γ2
− θ2

,

and we can deduce α(x̄1, u) ≥ 0. Provided that α(θ1, u) = β(θ1, u) = θ2, we deduce that
α(x1, u) ≥ β(x1, u), for every x1 ∈ [x̄1, θ1].

3 Time-optimal transfer

3.1 Problem formulation

The state of a genetic toggle switch is determined by gene expression in the boolean form
(low, high) and (high, low), and so the objective in this work is to achieve a transition from one
boolean state to the other in minimal time. In the mathematical context, the latter translates
into finding trajectories that drive the solution (x1(t), x2(t)) of Equation (S) towards the steady
states φ01 and φ10 of Equation (1) in minimum time (where these states correspond to the
differentiated states aforementioned). However, due to the lack of controllability in direction
x1 (respectively, x2) of Equation (S) restricted to B01 (respectively, B10), one has to relax the
problem. More precisely, the steady state φ01 (respectively, φ10) cannot be reached in finite
time, because u does not act on x1 in the domain B01 (respectively, x2 in the domain B10).

Thus, we will be first interested in driving x2(t) towards an arbitrary value x2(tf ) = xf2 > θ2

(for instance, the value xf2 = k2/γ2 corresponding to the x2-component of the steady state
φ01), with the constraint that at the final time, x1(tf ) belongs to the interval [0, θ1). This
target choice ensures that, at the final time, the gene x2 is strongly expressed while the gene
x1 is weakly expressed. The symmetric problem, which is equivalent, consists in driving x1(t)

towards an arbitrary value x1(tf ) = xf1 > θ1, with the constraint that at the final time, x2(tf )

belongs to the interval [0, θ2). Fix x0
1 ≥ θ1, x0

2 ≤ θ2, xf2 ≥ θ2, and consider the minimization
problem 

minimize tf ≥ 0,

x(t) = (x1(t), x2(t)) is subject to (S),

x(0) = (x0
1, x

0
2),

x2(tf ) = xf2 ,

x1(tf ) ∈ [0, θ1),

u(·) ∈ [umin, umax].

(OCP )
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3.2 Reachability of the terminal state

A fundamental aspect of OCPs with fixed terminal state is the existence of a solution. Such
a matter is directly linked to the reachability and controllability analysis of the dynamical
system, which are often hard to conduct analytically. In this work, we provide sufficient
conditions for the feasibility of the proposed trajectory, and we show that a simple piecewise
constant control strategy [17] achieves the objective, serving as a candidate to (OCP ). This
strategy drives asymptotically the system from an initial state in B01 to φ10 (or B10 to φ01 for
the symmetric problem). One can show that, under Assumption 2.1, there exist umin < θ1γ1/k1

and umax ≥ 1 such that

Φ∗(umin) ∈ (Sumax)+,

with

Φ∗(umin)
.
=

(
umink1

γ1
,
umink2

γ2

)
. (3)

In previous works [17, Section 3], authors proved the existence of ūmin, ūmax such that for
every umin, umax such that 0 ≤ umin ≤ ūmin ≤ ūmax ≤ umax, we have Φ∗(umin) ∈ (Sumax)+.
The latter condition is satisfied for ūmin, ūmax when there exists δ < θ1k2

θ2k1
− 1 and ε > 0 small

enough such that

ūmax > max

1,
(1 + δ)γ2

θ2

k2
− γ1

θ1

k1

δ

 ,

and

0 < ūmin < min

{
γ1

k1
θ1,

γ2

k2
θ2, (1− ε)x∗1

γ1

k1

}
,

where x?1 ∈ (0, θ1) is the unique solution of α(x?1, umax) = 0. Concerning the symmetric
problem, one can show the existence of another choice of umin < θ1γ1/k1 and umax ≥ 1 such
that Φ∗(umin) ∈ (Sumax)−. Due to the symmetry of both problems, we will focus on the first
case, and state the following assumption.

Assumption 3.1. Bounds umin and umax are chosen such that 0 ≤ umin ≤ ūmin ≤ ūmax ≤
umax, so that Φ∗(umin) ∈ (Sumax)+.

Based on the solution developed in previous works [17], we first propose an input control
constrained to two possible values {umin, umax} corresponding to the low and high synthesis
control. The control law is expressed in terms of the state and time as

u(x, t) =


umin if x ∈ B10,

umin if t ∈ [0, ts), x ∈ B00,

umax if t ∈ [ts,∞), x ∈ B00,

umax if x ∈ B01.

(4)

for ts > 0 sufficiently large. During the first phase with u ≡ umin, every focal point of the
system belongs to B00, hence the solution x(t) of Equation (S) converges towards the point
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Φ∗(umin) ∈ B00 when t→∞. During the second phase with u ≡ umax, state x(t) reaches B01

in finite time, and x2(t) converges towards xf2 in finite time. From that point, an open-loop
control u ≡ 1 drives x(t) to φ01 when t→∞. An example illustrating this trajectory is shown

in Figure 3, where xf2 = k2/γ2, matching the coordinate x2 of the point φ01. Indeed, under
Assumptions 2.1 and 3.1, and by choosing ts sufficiently large, the control strategy (4) ensures

that any trajectory starting from (x0
1, x

0
2) reaches a final point meeting x1 ∈ [0, θ1) and x2 = xf2

in finite time, which shows that the set of admissible controllers for problem (OCP ) is non
empty.

Notice that, while the latter strategy serves as a candidate, the set of possible controllers is
not limited to bang-bang solutions. One could consider, for instance, non bang-bang strategies
based on 4 with intermediate control values (e.g. replacing umax by ũmax < umax) which also
achieve the transfer. This implies that there exist several trajectories reaching the target of
Problem OCP , which motivates a study from a Pontryagin’s Maximum Principle perspective.

0 θ1
x1

0

θ2

xf2

x 2

x0

(Sumax)
Φ * (umin)

0 ts tf

umin

1

umax

B10 B00 B01

u

Figure 3: Optimal trajectory with x0
1 = 0.8, x0

2 = 0.3 and xf2 = k2/γ2. System parameters are
γ1 = 1.1, γ2 = 1.7, θ1 = 0.6, θ2 = 0.4, and k1 = k2 = 1. Control bounds are set to umin = 0.4 and
umax = 1.1. The control switches from u ≡ umin to u ≡ umax at time ts (= 3 in this case), after the
state x(t) has crossed the separatrix (Sumax).

3.3 Hybrid optimal control problem with a fixed domain se-
quence

Consider two compact subsets M0 and M1 of R2, and assume M1 is reachable from M0 for
system (S), that is, such that there exists a time tf > 0, a control u(·) ∈ L∞([0, tf ],Ω) and
x0 ∈M0 such that the solution x(t) of Equation (S), defined in the Filippov sense with initial
condition x(0) = x0 satisfies x(tf ) ∈ M1. Consider the problem of steering the system (S)
from M0 to M1 in minimal time tf . In order to properly define the problem, one has to choose
a sequence B in the set {B00, B01, B10, B11} of regular domains, and consider B-admissible
trajectories of Equation (S), defined as follows.

Definition 3.2. Let B = (Bj)j∈{1,...,k} be a sequence of regular domains. We say that a

9



solution x(t) of Equation (S) is B-admissible if there exists a time T > 0, a control u(·) ∈
L∞([0, tf ],Ω), and times t0 = 0 < t1 < · · · < tk such that x(t) ∈ Bj for every t ∈ ∆j, where
∆j = (tj , tj+1).

In particular, the previous definition excludes sliding modes along the frontier between
two successive regular domains. Additionally, we require two more assumptions related to the
reachability of B-admissible solutions for the general case.

Assumption 3.3. M0 (respectively, M1) is included in the adherence B̄jk (respectively, B̄qi)
of a regular domain, for j, k, q, i ∈ {0, 1}.

Assumption 3.4. Assume that there exists a time T > 0 and a B-admissible solution
(x(t), u(t)) such that x(0) ∈M0 and x(T ) ∈M1.

Notice that for given sets M0,M1, the choice of the sequence B is not unique in gen-
eral. Assume that M0,M1, B satisfy the assumptions 3.3 and 3.4. For a fixed sequence
B = (Bj)j∈{1,...,k}, we can consider Problem (4.1) restricted to B-admissible trajectories.
Necessary conditions of optimality for this problem can be directly derived from the HMP,
which we will state in Theorem 3.1 of the following subsection.

3.4 Hybrid Maximum Principle for time optimal control

In this section, we provide an adaptation of the Hybrid Maximum Principle given by Dmitruk
and Kaganovich [31] to the time optimal setting. Let t0 < t1 < · · · < tν be real numbers.
Denote by ∆k the time interval [tk−1, tk]. For continuous functions xk : [t0, tν ] → Rn, k ∈
{1, . . . , ν}, define the vector

p =
(
t0, (t1, x

1(t0), x1(t1)), . . . , (tν , x
ν(tν−1), xν(tν))

)
∈ Rd,

where d = 1 + (2n + 1)ν. Let (fk)k∈{1,...,ν} be smooth vector fields on Rn, and (φi)i∈{1,...,m},

(ηj)i∈{1,...,q} be two families of smooth functions defined on R(ν+1)(n+1). For t ∈ [t0, tν ] and a
collection (Uk)k∈{1,...,ν} of subsets of Rq, q ≥ 1, consider the autonomous hybrid OCP

minimize tν − t0,

ẋk(t) = fk(x
k(t), uk(t)),

uk(t) ∈ Uk,

t ∈ ∆k,

k ∈ {1, . . . , ν},

ηj(p) = 0, j = 1, . . . , q,

φi(p) ≤ 0, i = 1, . . . ,m.

(HOCP)

Definition 3.5. For a tuple w = (t0; tk, x
k(t), uk(t), k = 1, . . . , ν) which is extremal for Prob-

lem (HOCP), define:

• the trajectory (x(t))t∈[t0,tν ] which is equal to xk(t) for every t ∈ ∆k \ {tk} and k ∈
{1, . . . , ν};
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• the adjoint trajectory (λ(t))t∈[t0,tν ] which is equal to λk(t) for every t ∈ ∆k \ {tk} and
k ∈ {1, . . . , ν};

• the control (u(t))t∈[t0,tν ] which is equal to uk(t) for every t ∈ ∆k \ {tk−1} and k ∈
{1, . . . , ν}.

Define, for every k ∈ {1, . . . , ν}, t ∈ ∆k,

Hk(xk, λk, λ0, u
k) = 〈λk, fk(xk, uk)〉 − λ0.

Theorem 3.1. Assume that (x̃(·), ũ(·), p̃) is an optimal solution of Problem (HOCP). Then
there exists

(α, β, λ(·), λ0),

where α = (α1, . . . , αm) ∈ Rm, β = (β1, . . . , βq) ∈ Rq, λ = (λ1, . . . , λν), all λk : ∆k → Rn for
k ∈ {1, . . . , ν} being Lipschitz functions, and a constant λ0 ≥ 0 such that:

• (λ0, α, β) 6= 0;

• For every i ∈ {1, . . . ,m}, αi ≥ 0;

• For every i ∈ {1, . . . ,m}, αiφi(p̃) = 0;

• For almost every t ∈ ∆k,

ẋk =
∂Hk

∂λ
(xk, λk, λ0, ũ),

λ̇k = −∂H
k

∂xk
(xk, λk, λ0, ũ), (E)

Hk(xk, λk, λ0, ũ) = max
u∈Ω

Hk(xk, λk, λ0, u) = 0.

Moreover, if we define L(p) = λ0(tν − t0) +
∑m

i=1 αiφi(p) +
∑q

j=1 βjηj(p), then we have the
following transversality and discontinuity conditions at times t = t0, . . . , tν :

• At the initial and final times t0 and tν , we have

λ1(t0) =
∂L

∂x1(t0)
(p̃),

λν(tν) =
∂L

∂xν(tν)
(p̃).

• At the crossing times (tk)k∈{1,...,ν−1}, we have, for every k ∈ {1, . . . , ν − 1},

λk(tk−1) =
∂L

∂xk(tk−1)
(p̃),

λk(tk) = − ∂L

∂xk(tk)
(p̃).

4 Main results

We are interested in solving (OCP ) among continuous B-admissible trajectories, as defined in
Section 3.3. We first observe that the regular domain B11 is repulsive, and so any B-admissible
trajectory with x(0) ∈ B10 and x(tf ) ∈ B01 should pass through B00, as the point (θ1, θ2)
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cannot be reached from B10. Thus, we fix the sequence of regular domains B = (B10, B00, B01),

with M0 restricted to a point in K, and M1 = {(x1, x2) ∈ K | x1 ∈ [0, θ1), x2 = xf2} which
has already been proven to be reachable in finite time, verifying assumptions 3.3 and 3.4.
As previously said, the problem can be further analyzed by applying HMP. The Maximum
Principle in the Hybrid framework requires to define functions (φi)i and (ηj)j that guarantee
the continuity of the trajectories and the changes of dynamics at the frontiers x1 = θ1 and
x2 = θ2 [31]. Through its application, we obtain that (OCP ) admits an optimal control which
can be defined as a very simple feedback.

Theorem 4.1. The optimal strategy u(x) solution of (OCP ) for B-admissible trajectories is
the feedback control

u(x) =

{
umin if x ∈ (Sumax)−,
umax if x ∈ (Sumax)+ ∪ (Sumax).

Note that u(x) is not defined in B11 due to the lack of control in the region. Figure 4
illustrates the resulting vector field of (S) with the latter time-optimal control law. As a

0 θ1 k1
γ1

x1

0

θ2

k2
γ2

x 2 u≡ umax

No control

u≡ umin

(Sumax)

Figure 4: Stream plot of the controlled dynamics (S) with the feedback control of Theorem 4.1.
System parameters are γ1 = 1.1, γ2 = 1.7, θ1 = 0.6, θ2 = 0.4, k1 = k2 = 1. Control bounds are set
to umin = 0.5 and umax = 1.5.

consequence of the latter theorem, the solutions of (OCP ) for B-admissible trajectories are
such that:

• the optimal control consists of two bang arcs u ≡ umin and u ≡ umax, similar to the
suboptimal control (4), with the switching between them occurring at the time when the
trajectory reaches the separatrix (Sumax);

• the optimal trajectories passes by the unstable Filippov equilibrium (θ1, θ2), which is
reached by its stable manifold corresponding to dynamics of Equation (S) with u ≡ umax.
Then, the Filippov equilibrium is left by its unstable manifold corresponding to the
dynamics of Equation (S) with u ≡ umax.
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The proof of this result involves showing there are no singular arcs in the optimal control,
and thus u(t) can only be a concatenation of bang arcs. Additionally, because of the two-
dimensional affine structure in each regular domain, the sign of the switching function in the
Hamiltonian can switch at most once throughout the whole interval [0, tf ]. Consequently, the
optimal control consists of at most two bang arcs (umin or umax), and the problem is reduced
to finding the optimal switching time between the two arcs. An example of this trajectory and
optimal control is shown in Figure 5.

0 θ1
x1

0

θ2

xf2

x 2

x0

(Sumax)
Φ * (umin)

0 t1 ts t2 tf

umin

1

umax

B10 B00 B01

u

Figure 5: Optimal trajectory with x0
1 = 0.8, x0

2 = 0.3 and xf2 = 0.7. System parameters are γ1 = 1.2,
γ2 = 1.8, θ1 = 0.6, θ2 = 0.4, and k1 = k2 = 1. Control bounds are set to umin = 0.5 and umax = 1.5.
Times t1 and t2 are the transition times at which the state meets x1(t1) = θ1 and x(t2) = (θ1, θ2).

5 Proof of the main results

In this section, we provide the proof for Theorem 4.1, which is organized as follows:

• In Section 5.1, we reduce the problem to B = (B00, B01)-admissible trajectories;

• In Section 5.2, we prove that any optimal control admits no singular arcs in B00;

• In Section 5.3, we show that the optimal control in B00 consists of two bang arcs with a
switching time ts such that x(ts) ∈ (Sumax), and we conclude the proof of Theorem 4.1
showing that there are no singular arcs in B10.

5.1 Reduction of the problem

Let x(t) be the solution of Equation (S) such that x(0) = x0 associated with an arbitrary
control u(t), and define the time at which the system crosses the frontier between B10 and B00

(respectively, between B00 and B01) as t1 (respectively, t2). We notice that the time needed

to achieve a transfer between the point (x1(t2), θ2) and the set {(x1, x2) ∈ K | x2 = xf2 , 0 ≤
x1 ≤ θ1} does not depend on x1(t2) ≤ θ1, and by a direct property of Equation (S) restricted
to B01, we can easily prove that the optimal control strategy for Problem (OCP ) is obtained
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when u(t) = umax for t ≥ t2. Moreover, if u(t) ∈ [umin, umax] is another optimal control, then
we obtain ∫ tf

t2

eγ2s(u(s)− umax)ds = 0,

hence u(t) = umax for almost every t ∈ [t2, tf ]. As a consequence, we can reduce the problem

to solving (OCP ) with xf2 = θ2 among B = (B10, B00)-admissible trajectories.

5.2 Absence of singular arcs in B00

In order to apply Theorem 3.1, given the choice B = {B10, B00}, we set ν = 2, and we define
the vector fields, for x = (x1, x2) ∈ R2, u ∈ [umin, umax], by

f1(x1, x2, u) =

(
−γ1x1 + uk1

−γ2x2

)
, f2(x1, x2, u) =

(
−γ1x1 + uk1

−γ2x2 + uk2

)
.

The times where changes of regular domains occur for the dynamics are denoted by t0 = 0 < t1,
and the final time is t2 = tf . Notice that t0 = 0 is assumed to be fixed while t1, tf are not fixed
quantities a priori. We introduce the following functions (ηj)j∈{1,...,7}, which will guarantee the
B-admissibility of the trajectories x(t), which are solutions of Equation (S). In accordance with
Definition 3.5 of Section 3.4, for a trajectory x(t) which is solution of Equation (S), we define
p =

(
t0, (t1, x

1(t0), x1(t1)), (tf , x
2(t1), x2(tf ))

)
. In order to guarantee the B-admissibility and

the continuity of the trajectory x(t) at t = t1, we define the functions

η1(p) = t0,

η2(p) = x1
1(t0)− x0

1,

η3(p) = x1
2(t0)− x0

2,

η4(p) = x1
1(t1)− θ1,

η5(p) = x2
1(t1)− θ1,

η6(p) = x1
2(t1)− x2

2(t1),

η7(p) = x2
2(tf )− θ2.

As in Theorem 3.1, for p =
(
t0, (t1, x

1(t0), x1(t1)), (tf , x
2(t1), x2(tf ))

)
, α ∈ R, and β =

(β1, . . . , β7) ∈ R7, define the Lagrangian

L(p) = αtf +

7∑
j=1

βjηj(p).

For k ∈ {1, 2}, the Hamiltonian Hk defined in Theorem 3.1 can be written as Hk = H0+ukHk
1 ,

with uk ∈ [umin, umax] where, for every xk = (xk1, x
k
2) ∈ R2 and λk = (λk1, λ

k
2),

H0(xk, λk, λ0) = −γ1x
k
1λ

k
1 − γ2x

k
2λ

k
2 − λ0,

Hk
1 (xk, λk) = ξk1k1λ

k
1 + ξk2k2λ

k
2,

with ξ1
1 = 0, ξ2

1 = 1, ξ1
2 = 1, and ξ2

2 = 1. In this setting, the Adjoint State Equation (E) of
Theorem 3.1 writes {

λ̇k1 = γ1λ
k
1,

λ̇k2 = γ2λ
k
2,

(AD)
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which is independent of k ∈ {1, 2}. Then, we can derive conditions from Theorem 3.1 concern-
ing singular arcs of Equation (OCP ) along B-admissible trajectories, as defined in Section 3.3.
For k ∈ {1, 2}, extremal singular arcs occur when the variables (xk(t), λk(t), λ0, u

k(t)) are
extremal and satisfy

Hk
1 (xk(t), λk(t)) = 0, (Sing)

for every t ∈ [T1, T2], where t1 ≤ T1 < T2 ≤ tf . Along such trajectories, the vanishing condition
of the k-th Hamiltonian Hk becomes

−γ1x
k
1(t)λk1(t)− γ2x

k
2(t)λk2(t)− λ0 = 0, (V)

for every t ∈ [T1, T2]. Define the B00 switching function as φ(t) = sign(k1λ
2
1(t) + k2λ

2
2(t)) for

t ∈ [0, tf ]. As a direct consequence of Theorem 3.1, we have the following result.

Lemma 5.1. At times t0 = 0, t1 and tf , we have the following transversality and discontinuity
conditions: 

β1 = −α = λ0,

λ1
1(0) = β2,

λ1
2(0) = β3,

λ1
1(t1) = −β4,

λ2
1(t1) = β5,

λ1
2(t1) = λ2

2(t1) = β6,

λ2
1(tf ) = 0,

λ2
2(tf ) = −β7.

(TD)

We can deduce the following property of extremal trajectories of Problem (OCP ).

Lemma 5.2. Extremal trajectories of Problem (OCP ) along B-admissible trajectories admit
no singular arcs in B00, that is, for t ∈ [t1, t2].

Proof. In this case, Condition (Sing) becomes

k1λ
2
1(t) + k2λ

2
2(t) = 0,

for t ∈ [T1, T2]. Differentiating this equality, we obtain

k1γ1λ
2
1(t) + k2γ2λ

2
2(t) = 0,

for t ∈ [T1, T2]. Then we get, for t ∈ [T1, T2]

λ2
1(t)(γ1 − γ2) = 0.

Knowing that γ1 6= γ2 by Assumption 2.1, we obtain λ2
1(t) = 0 for t ∈ [T1, T2], and Condi-

tion (V) implies
λ2

1(t) = λ2
2(t) = λ0 = 0.

Hence, by Equation (AD), we have λ2
1(t) = λ2

2(t) = λ0 = 0 for every t ∈ [t1, tf ]. Applying
Theorem 3.1 with the functions (ηj)j∈{1,...,7}, and the Lagrangian L as defined as above, we
see easily that the transversality and discontinuity conditions (TD) at times t0 = 0, t1 and tf
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provide that α = βj = 0, for every j ∈ {1, . . . , 7}. Indeed, the condition λ2
1(t) = λ2

2(t) = λ0 = 0
for every t ∈ [t1, tf ] implies that α = β1 = β5 = β6 = β7 = 0. By Equation (AD), we get
that λ1

2(t) = λ2
2(t) = 0 for every t ∈ [0, tf ], so that we can deduce β3 = β6 = 0. The null

Hamiltonian condition (V) then implies λ1
1(t) = 0 for t ∈ [0, t1]. It follows that β2 = β4 = 0,

so that the nontriviality condition (α, β) 6= 0 of Theorem 3.1 is violated.

5.3 Optimality of the two bang arcs trajectory for Problem (OCP )

Because of the two-dimensional affine structure in each regular domain, the switching function
φ can switch at most once throughout the whole interval [0, tf ]. By reachability considerations,
we can deduce the following result.

Proposition 5.3. Extremal trajectories of Problem (OCP ) along B-admissible trajectories are
made of two bang arcs in the domain B00, that is, there exists ts ≥ t1 such that u(t) = umin

for t1 ≤ t ≤ ts, and u(t) = umax for t > ts.

Proof. By Equation (AD) and Lemma 5.2, the switching function φ switches at most once
for t ∈ [t1, tf ]. Moreover, in order to achieve a transfer between the lines x2

1(t1) = θ1 and
x2

2(tf ) = θ2, at least one switch is needed. Indeed, a constant control strategy u ≡ umin is such
that the associated solution x(t) of Equation (S) converges towards Φ∗(umin) when t → ∞,
where Φ∗(umin) is defined as in Equation (3), so that x(t) < θ2 for every t ≥ t1. Moreover,
a constant control strategy u ≡ umax is such that x(t) ∈ B10 for t ≥ t1, so that x(t) is not
B-admissible.

Now we prove that that the switching time ts defined in Proposition 5.3 for optimal trajec-
tories of Problem (OCP ) along B-admissible trajectories is such that (x2

1(ts), x
2
2(ts)) ∈ (Sumax).

First notice that, by a direct study of Equation (S) restricted to the domain B00, we can define
t? > 0 as the unique time at which the solution (y1(t), y2(t)) of Equation (S) with u ≡ umin

and y1(0) = θ1 and y2(0) = x2
2(t1) satisfies (y1(t?), y2(t?)) ∈ (Sumax). In order to guarantee the

conditions x2
1(tf ) ∈ [0, θ1] and x2

2(tf ) = θ2, the time ts defined in Proposition 5.3 has to satisfy
ts ≥ t1 + t?. We have the following result.

Lemma 5.4. Optimal trajectories of Problem (OCP ) along B-admissible trajectories are such
that ts = t1 + t? and x2

1(tf ) = θ1.

Proof. We have for t1 ≤ t ≤ ts,

x2
1(t) = (θ1 − k1umin

γ1
)e−γ1(t−t1) + k1umin

γ1
,

x2
2(t) = (x2(t1)− k2umin

γ2
)e−γ2(t−t1) + k2umin

γ2
,

and for t ≥ ts we have

x2
1(t) = (x2

1(ts)− k1umax
γ1

)e−γ1(t−ts) + k1umax
γ1

,

x2
2(t) = (x2

2(ts)− k2umax
γ2

)e−γ2(t−ts) + k2umax
γ2

.

Notice that the condition x2
2(t1) < θ2 implies x2

2(ts) < θ2 and x2
1(ts) < θ1. By direct computa-

tions, a time T ≥ ts satisfies x2
2(T ) = θ2 if and only if

T = T (ts) ≡ ts +
1

γ2
ln

(
−x2

2(ts) + k2umax/γ2

−θ2 + k2umax/γ2

)
.
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Notice that the condition θ2 <
umax
γ2

implies we can define a positive function T : ts 7→ T (ts).
Moreover, one can prove that, for every ts > 0,

T ′(ts) =
k2(umax − umin)

−γ2x2
2(ts) + k2umax

.

Using the fact that (x2
1(ts), x

2
2(ts)) belongs to B00, we obtain that T is increasing on R+, and

reaches its minimum in the interval [t1 + t?,+∞) at ts = t1 + t?. The result follows from the
definitions of t? and (Sumax) (see Section 2.2.1).

There remains to understand the structure of an optimal trajectory in the regular domain
B10, that is, when t ≤ t1. In the next proposition, we eliminate the possibility of having
singular arcs in B10 by a direct study of the dynamics of Equation (S) associated with the
application of Lemma 5.4.

Proposition 5.5. Optimal trajectories of Problem (OCP ) along B-admissible trajectories
admit no singular arc in B10.

Proof. Consider the solution x̄(t) = (x̄1(t), x̄2(t)) of Equation (S) such that u ≡ umin while
x̄(t) ∈ B10, u ≡ umin while x̄(t) ∈ B00 ∩ (Sumax)−, u ≡ umax while x̄(t) ∈ (Sumax), and the
solution x̃(t) = (x̃1(t), x̃2(t)) of Equation (S) such that u ≡ ũ(t) while x̃(t) ∈ B10 for an
arbitrary control t 7→ ũ(t) ∈ [umin, umax], u ≡ umin while x̃(t) ∈ B00 ∩ (Sumax)−, u ≡ umax

while x̃(t) ∈ (Sumax), with same initial conditions. Hence we can define the time T̄ > 0
(respectively, T̃ ) at which we have x̄(T̄ ) = (θ1, θ2) (respectively, x̃(T̃ ) = (θ1, θ2)).In order
to prove that T̃ ≥ T̄ , let us first consider the time t̃1 > 0 (respectively, t̄1 > 0) at which
x̃(t) (respectively,x̄(t)) reaches the frontier between B10 and B00. By a direct property of
Equation (S) restricted to the domain B10, we have x̃1(t) ≥ x̄1(t) and x̃2(t) = x̄2(t) for
every t ≤ min(t̃1, t̄1). It follows that t̄1 ≤ t̃1 and x̃2(t̃1) ≤ x̄2(t̄1). Now consider a solution
ỹ(t) = (ỹ1(t), ỹ2(t)) (respectively, ȳ(t) = (ȳ1(t), ȳ2(t))) of Equation (S) with u ≡ umin and
such that ỹ1(0) = ȳ1(0) = θ1, ỹ2(0) = x̃2(t̃1) and ȳ2(0) = x̄2(t̄1). By a direct property of
Equation (S), the times s̃1 (respectively, s̄1) at which ỹ(t) (respectively,ȳ(t)) reaches (Sumax)
are such that s̃1 ≥ s̄1. Hence we can deduce T̃ = t̃1 + s̃1 ≥ T̄ = t̄1 + s̄1, and the structure of
optimal trajectories in B00 given by Lemma 5.4 allows to prove that an optimal trajectory for
Problem (OCP ) is such that u(t) = umin for almost every t ∈ [0, t1]. In particular, optimal
trajectories for Problem (OCP ) have no singular arcs in B10.

The latter proposition concludes the proof of Theorem 4.1. Additionally, as a direct con-
sequence of the previous results, we obtain that for t ∈ [0, tf ], the optimal control is made of
a first bang arc with u ≡ umin towards (Sumax) for t ∈ [0, ts], then a second bang arc with
u ≡ umax for t ∈ [ts, tf ] so that the system follows (Sumax) until reaching (θ1, θ2).

Remark 5.6. By a direct analysis of the dynamics of Equation (S) in the regular domain B00,
one can show that the time t? = ts− t1 > 0 is the unique non-negative solution of the equation(

k2umin

γ2
− x2

2(t1)

)
e−γ2t + k2

umax − umin

γ2
(EQ)

=

(
k2umax
γ2
− θ2

)
(
k1umax
γ1
− θ1

)γ2/γ1
((

k1umin

γ1
− θ1

)
e−γ1t + k1

umax − umin

γ1

)γ2/γ1
.
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The latter can be obtained by solving y2(t?) = α(y1(t?), umax), with y1(t?) = x2
1(t1 + t?) and

y2(t?) = x2
2(t1 + t?). Equation (EQ) is hard to solve explicitly in the general case where

Assumption 2.1 is satisfied, especially because the latter assumption implies γ1 6= γ2.

6 Lower bound on the minimal time

The time required to perform a transition can be minimized to a certain extent, which is im-
posed by the dynamics of the system and the choice of control bounds, as shown in previous
sections. In this section, we show there exist a lower bound to the minimal time. However,
an explicit computation requires to solve Equation (EQ) analytically, which is a challeng-
ing task. In this section, we give a lower bound on the minimal time of Problem (OCP )
in Proposition 6.3, which is uniform w.r.t. [umin, umax) ⊂ [0,+∞) and is a function of the
parameters (γj)j∈{1,2}, (kj)j∈{1,2}, (θj)j∈{1,2} satisfying Assumption 2.1. In this purpose,
we introduce an additional system which provides a lower bound for Problem (OCP ). Let
[umin, umax) ⊂ [0,+∞) be such that Assumption 3.1 is satisfied. Then, for every umin, umax ≥ 0
such that [ūmin, ūmax] ⊂ [umin, umax], we have Φ?(umin) ∈ (Sumax)−. Hence, the optimal control
strategy for Problem (OCP ) associated with such values of umin, umax is given by Theorem 4.1.

Definition 6.1. Define the lower trajectories as the solutions of

ż1 = −γ1z1 + k1u(t)s−(z2, θ2)
ż2 = −γ1z2 + k2u(t)s−(z1, θ1),

(S̃)

with u(t) ≡ umin for z(t) ∈ (S̃umax)
−, and u(t) ≡ umax for z(t) ∈ (S̃umax)

+ ∪ S̃umax, where
(S̃umax) is defined as in Definition 2.3.

θ1
x1

0

θ2

x 2

(Sumax) for system (S)
Trajectories of  (S)
(Sumax) for system (S̃)
Trajectories of  (S̃)

Figure 6: Different trajectories starting from x1 = θ1 with fixed control. System parameters are
γ1 = 1.4, γ2 = 2, θ1 = 0.6, θ2 = 0.4, and k1 = k2 = 1. Control is set to u ≡ umin with umin = 0.5.
Trajectories of (S̃) reach its associated separatrix at the lower-bound time Tlow. Vertical lines at
the interception indicate x1(Tlow).
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A direct application of Lemma 2.3 proves that if a lower trajectory z(t) is such that z(0) ∈
(S̃umax)−, then z(t) reaches (S̃umax) in finite time Tlow(umin, umax). Moreover, as a consequence
of the condition γ2 > γ1, we obtain the following lemma.

Lemma 6.2. Consider the solution x(t) of Equation (S) such that x(0) = x0 ∈ (Sumax)
−, where

u is defined as in Theorem 4.1, and the solution z(t) of Equation (S̃) such that z(0) = x0.
Then we have x1(t) ≤ z1(t) and x2(t) ≤ z2(t), for every t ∈ [0, Tlow(umin, umax)].

As a direct consequence, we get that the time ts needed by x(t) in order to reach (Sumax)
(defined as in Proposition 5.3) is such that ts ≥ Tlow(umin, umax).

Hence, if we denote the minimal time for Problem (OCP ) by Tf (umin, umax), then we
have Tf (umin, umax) ≥ Tlow(umin, umax), for every umin, umax be such that 0 ≤ umin ≤ umax.
Furthermore, by definition of Problem (OCP ), we have Tf (umin, umax) ≥ Tf (ũmin, ũmax), for
every umin, umax, ũmin, ũmax such that 0 ≤ ũmin ≤ umin ≤ umax ≤ ũmax. It follows that for such
a choice of umin, umax, ũmin, ũmax, we have

Tf (umin, umax) ≥ Tlow(ũmin, ũmax). (5)

Proposition 6.3. Set x0 = (x0
1, x

0
2) ∈ B̄10 such that x0

2 < θ2, and consider umin, umax such
that 0 ≤ umin ≤ umax. Let x(t) be the solution of Equation (S) such that x(0) = x0, where u

is defined as in Theorem 4.1. Then we have Tf (umin, umax) ≥ − 1
γ1

ln
(
θ1k2−θ2k1
θ1k2−x02k1

)
> 0.

Proof. First assume that x0
1 = θ1. Then by an adaptation of the formula given in Remark 5.6,

replacing γ2 by γ1, the time Tlow(umin, umax) needed by the lower trajectory z(t) to reach
(S̃umax) is

Tlow(umin, umax) = − 1

γ1
ln

 (A(umax)k1 − k2)(umax − umin)

γ1

((
k2umin
γ1
− x0

2

)
−A(umax)

(
k1umin
γ1
− θ1

))
 ,

where A(umax) =
k2umax
γ1

−θ2
k1umax
γ1

−θ1
. For every umin, umax, ũmax such that 0 ≤ umin ≤ umax ≤ ũmax,

Inequality (5) provides

Tf (umin, umax) ≥ Tlow(0, ũmax) = − 1

γ1
ln

(
(A(ũmax)k1 − k2)ũmax

γ1

(
−x0

2 +A(ũmax)θ1

)) .
Noticing that Tlow(0, ũmax)→ − 1

γ1
ln
(
θ1k2−θ2k1
θ1k2−x02k1

)
when ũmax → +∞, we deduce that Tf (umin, umax) ≥

− 1
γ1

ln
(
θ1k2−θ2k1
θ1k2−x02k1

)
, for every umin, umax such that 0 ≤ umin ≤ umax. Moreover, Assumption 2.1

and the condition x0
2 < θ2 guarantee that − 1

γ1
ln
(
θ1k2−θ2k1
θ1k2−x02k1

)
> 0. We deduce the general case

x0
1 ≥ θ1 noticing that we have in this case x2(t1) ≤ x0

2, where t1 ≥ 0 is the time where x(t)
changes regular domain from B10 to B00, then applying the case x0

1 = θ1.

7 Numerical results

We illustrate our results with numerical simulations performed with Bocop [30], an open-
source toolbox for solving OCPs3. The original problem (OCP ) is solved through a direct

3In order to guarantee the reproducibility of the computational results, the computations can be executed through
an online version of Bocop available at https://ct.gitlabpages.inria.fr/gallery/bistable/bistable.html
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method, by approximating it by a finite dimensional optimization problem, using a Lobato
time discretization method. As the algorithm requires s− to be regularized to a smooth
function, we define, for x ∈ R and k ∈ N, the Hill function

δ(xi, θi, k) =
θki

xki + θki
, (6)

which can approximate s− for large values of k and, when k →∞, it verifies

lim
k→∞

δ(xi, θi, k) =


1 xi < θi,
0 xi > θi,
1/2 xi = θi.

Replacing s− by Hill functions (6) in system (S) yields the non-hybrid system{
ẋ1 = −γ1x1 + uk1δ(x2, θ2, k),
ẋ2 = −γ2x2 + uk2δ(x1, θ1, k).

System parameters are fixed to γ1 = 1.2, γ2 = 2, θ1 = 0.6, θ2 = 0.4 and k1 = k2 = 1, which
verify Assumption 2.1; and control bounds are set to umin = 0.5 and umax = 1.5 satisfying
Assumption 3.1. The parameter k of the Hill function is set to k = 500, which proved an
acceptable approximation of the s− function. Figure 5 shows an optimal trajectory representing
the transition (high, low) to (low, high). In accorance with the analytical results, the optimal
control is a bang-bang control: it consists of a first phase [0, ts] of low synthesis control umin
until x reaches the separatrix (Sumax), followed by a phase [t2, tf ] of high synthesis control umax
until x2 reaches xf2 . As it is customary when solving OPCs with direct methods, the algorithm
does not count on any a priori information of the structure of the optimal control. Yet, the
obtained trajectory is in agreement with Theorem 4.1, which confirms our theoretical results.
Moreover, the solver is not restricted to consider only B-admissible trajectories, which suggests
that the solution found in this work is optimal not only for Problem (OCP ) along B-admissible
trajectories but also for the general (OCP ), without imposing the domain sequences. Figure 7
shows different trajectories starting from (Sumax)+ and (Sumax)−. The streamplot represents
the closed-loop dynamics for the optimal control defined in Theorem 4.1. All trajectories
starting in (Sumax)− approach asymptotically the point Φ∗(umin) (denoted by a cross) until they
reach the separatrix, point at which the state slides over it towards the Filippov equilibrium
(θ1, θ2). The optimal control for trajectories starting in (Sumax)+ consists in u ≡ umax for the
whole interval [0, tf ], and do not pass by the Filippov equilibrium.

Remark 7.1. As already mentioned in the introduction, the dynamics is not uniquely defined
at the undifferentiated point (θ1, θ2), and the proposed solution is obtained by making a choice
of dynamics at this point. Hence, concerning a biological implementation of our time-optimal
strategy, it seems more reasonable to apply u(t) ≡ umin during a slightly longer time t̃s = ts+ ε
with a small ε > 0.

In accordance with Remark 7.1, one can be interested in comparing the suboptimal control
strategy given in Equation (4) with the optimal control given by Theorem 4.1. To this purpose,
one can evaluate the time loss when delaying the switch by a time δt > 0, as ts = t1 + t? + δt,
where t1 and t? are defined as in Section 5.3 and depend on the parameters of the system.
One can show by simple computations that the difference between the times needed to reach
the target xf2 for the modified trajectory w.r.t. the optimal trajectory is equal to

1

γ2
ln
(

1 + eγ2(t̃−t∗)
(
eγ2δt − 1

))
,
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xf2

x 2
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Φ *

Figure 7: Optimal trajectories starting from different initial points, with xf2 = 0.7 and k = 500.
The streamplot represents the vector field resulting from applying the optimal bang-bang strategy
from Theorem 4.1.

where

t̃ =
1

γ2
ln

(
k2(umin − umax)

γ2θ2 − k2umax

)
.

7.1 Minimal time with the supplementary condition x1(tf) <
xmax

1

In bistable systems, a binary switch implies taking the state towards the equilibria φ10 and
φ01. However, as stated in Section 3, (OCP ) represents a relaxed version of this problem
where x1(tf ) > 0, as it is not possible to control concentration x1 in B01. In order to compare
the relaxed version with the original one, we investigate numerically the following problem:

minimize tf ≥ 0

x(t) = (x1(t), x2(t)) is subject to (S),

x(0) = (x0
1, x

0
2),

x2(tf ) = xf2 ,

x1(tf ) ∈ [0, xmax
1 ),

u(·) ∈ [umin, umax].

(OCP2)

In the particular case xf2 = k2/γ2, solving Problem (OCP2) allows to ensure that the state x(t)
is close enough to the steady state φ01 at time t = tf . The main difference with (OCP ) is that
x1(tf ) is now constrained to the interval [0, xmax

1 ] with xmax
1 < θ1. For initial conditions in B01

given by x0
1 ∈ (xmax

1 , θ1] and x0
2 = θ2, we notice that the time it takes for x1(t) to reach xmax

1

does not depend on the control u (as there is no term depending on the control u in the dynam-
ics of x1(t)). Therefore, the final time tf does not depend on the control, and so any control
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driving x2(t) from x2(0) = θ2 to xf2 in a time t′ ≤ tf is optimal for Problem (OCP2). Thus,
the problem has infinite solutions. Figure 8 shows different trajectories for different values of
xmax

1 . Among all infinite solutions, the ones found by Bocop depend on the initialization of the
optimization algorithm, and have no particular meaning in the regular domain B01. However,
we verify that, as in (OCP ), the switch in the control u occurs at the separatrix (Sumax), and
then they follow the separatrix until the point (θ1, θ2). Thus, the simplest bang-bang strategy
solution of (OCP2) is

u1(x) =


umin if x ∈ (Sumax)−,

umax if x ∈ (Sumax)+ ∪ (Sumax) and x2 < xf2 ,

γ2
k2
xf2 if x2 = xf2 .

where the control u ≡ xf2γ2/k2 is chosen so that ẋ2 = 0 in the last phase. In the particular

case where the final state is such that xf2 = k2/γ2 (corresponding to the x2-coordinate of the
steady state φ01), the optimal control in the last phase corresponds to the open loop system
u ≡ 1.

0 θ1
x1

0

θ2

xf2

x 2

xmax
1 = θ1
xmax
1 =0.3θ1
xmax
1 =0.15θ1
xmax
1 =0.08θ1

xmax
1 =0.015θ1
(Sumax)
Φ *

0.00 0.05 0.10 0.15 0.20 0.25
xf1

2

3

4

t f

Figure 8: Optimal trajectories obtained with Bocop starting from the same initial point (0.8, 0.3),
with xf2 = 0.7 and for different values of xmax

1 . The streamplot represents the vector field resulting
from applying the optimal bang-bang strategy from Theorem 4.1. The first case (with xmax

1 = θ1)
is the solution of (OCP ).

8 Conclusion

This paper addressed the time-optimal control problem of a bistable gene-regulatory network.
Through the application of HMP, we showed that any optimal control achieving state tran-
sition is a bang-bang control, where its value is a function of the state of the system (i.e. a
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feedback control). While in previous works [17], the bang-bang nature of the control is imposed
as a constraint, we showed that such a characteristic is necessary to produce minimum-time
transitions. Results also indicate that optimal trajectories should pass by the Filippov equilib-
rium (θ1, θ2), which represents the undifferentiated state, highly relevant from the biological
point of view. We showed the existence of a lower bound to the minimal time, by introducing
the concept of lower trajectories. The numerical simulations obtained through direct methods
confirm our analytical results, even when no prior knowledge of the structure of the optimal
trajectories is specified. The latter are obtained by approximating the piecewise behavior of
the systems with Hill functions, thus simulating a non-hybrid system. Additionally, the nu-
merical results indicate that the trajectories found are optimal not only among B-admissible
trajectories, but for all solutions of the hybrid system (S). Finally, we performed a numer-
ical comparison of the trajectories obtained for the relaxed problem (i.e. with a constraint

xf1 ≤ θ1) and those of the original one (i.e. with a constraint xf1 ≤ xmax
1 < θ1), which suggests

that our results are also applicable to the original problem. We expect that our result could
be generalized to higher dimensional genetic regulatory networks, where it often occurs that
trajectories belonging to a given domain may bifurcate in different domains, similarly to what
happens in the toggle switch case.
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bacterial growth for the maximization of metabolite production. Journal of mathematical
biology, 78(4):985–1032, 2019.

[5] Agust́ın Gabriel Yabo, Jean-Baptiste Caillau, and Jean-Luc Gouzé. Singular regimes for
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