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A B S T R A C T

SARS-CoV-2 virus has spread over the world rapidly creating one of the largest pandemics ever. The absence of
immunity, presymptomatic transmission, and the relatively high level of virulence of the COVID-19 infection
led to a massive flow of patients in intensive care units (ICU). This unprecedented situation calls for rapid and
accurate mathematical models to best inform public health policies.

We develop an original parsimonious discrete-time model that accounts for the effect of the age of infection
on the natural history of the disease. Analysing the ongoing COVID-19 in France as a test case, through the
publicly available time series of nationwide hospital mortality and ICU activity, we estimate the value of the
key epidemiological parameters and the impact of lock-down implementation delay.

This work shows that including memory-effects in the modelling of COVID-19 spreading greatly improves
the accuracy of the fit to the epidemiological data. We estimate that the epidemic wave in France started on
Jan 20 [Jan 12, Jan 28] (95% likelihood interval) with a reproduction number initially equal to 2.99 [2.59,
3.39], which was reduced by the national lock-down started on Mar 17 to 24 [21, 27] of its value. We also
estimate that the implementation of the latter a week earlier or later would have lead to a difference of about
respectively −13k and +50k hospital deaths by the end of lock-down.

The present parsimonious discrete-time framework constitutes a useful tool for now- and forecasting
simultaneously community incidence and ICU capacity strain.
1. Introduction

In Dec 2019, an increasing number of ‘pneumonia of unknown
etiology’ cases were reported in Wuhan, China (Li et al., 2020a). The
causal agent was rapidly identified as a new coronavirus named SARS-
Cov-2 (Coronaviridae Study Group of the ICTV, 2020). Because of its
relatively large basic reproduction number (0 ≈ 2.2 in the Wuhan
outbreak (Li et al., 2020a)) and the high proportion of undetected
cases (Nishiura et al., 2020; Li et al., 2020b; He et al., 2020), the virus
rapidly spread in mainland China and then all over the world. The size-
able virulence of the so-called COVID-19 infection – the fatality ratio
of which was estimated to approx. 1% in China (Verity et al., 2020) –
and the important proportion of severe cases requiring hospitalisation
rapidly made it the primary health concern worldwide.

The COVID-19 pandemic provides an opportunity to develop ade-
quate tools for the short-term forecasting and potential management of
this and future epidemics. In the absence of any prophylactic or cura-
tive pharmaceutical solution, the nations and their healthcare systems
face two major challenges. The first one is blocking the transmission
chains in the community with measures such as social distancing,
school closure, mask-wearing, tracking and quarantine, along with
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massive testing (Flaxman et al., 2020). The second one is caring for
the hospitalised patients with severe complications, especially within
intensive care units (ICU) (Bouadma et al., 2020).

At the early stage of the epidemic, and until a very restrictive
non-pharmaceutical intervention (NPI) such as national lock-down is
implemented, the incidence is growing exponentially. Consequently,
both the means of prevention (mask stocks, PCR reagents, tracking
logistics) and the ICU bed capacity can be rapidly overloaded, ex-
posing health systems to a major crisis. The optimal allocation of
these limited resources over time is therefore crucial (Halpern, 2011;
Djidjou-Demasse et al., 2020) and require models to predict short-term
dynamics as accurately as possible (Weissman et al., 2020).

The vast majority of epidemiological models relies on ordinary
differential equations (ODEs) (Keeling and Rohani, 2008). Although
these models have useful analytical properties when analysed over a
long time period, they perform poorly on short time scales. One reason
for this is that they are essentially Markovian, i.e. ‘memoryless’. This
means for instance that an individual that has been infected for 10 days
has the same probability to clear the infection as e.g. an individual
infected less than a day ago.
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Fig. 1. COVID-19 epidemic discrete-time model structure. Each square represents a group of individuals who share the same clinical kinetics and who contribute equally to
the epidemic dynamics. Contiguous squares form a day after day progression sequence which captures the memory effects of the infection age. Pink boxes correspond to infected
individuals in the community (yellow area). Light blue boxes represent critical cases cared for in hospitals (blue area). The grey area corresponds to removed compartments that
do not contribute to the epidemic. Arrows between boxes correspond to the daily flow of individuals. Dotted arrows depict transitions that occur with probability 1. For the sake
of simplicity, only one age group 𝑖 is here depicted and only one of the two probabilities is shown for each bifurcating transition. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
In this work, we develop an original discrete-time method that
combines the advantages of individual-based approaches and the law of
large numbers, to best analyse ICU activity and hospital mortality time
series, both being particularly informative because of their high and
homogeneous sampling rate (i.e. few cases are missed). This is done by
introducing a parsimonious model supported by an original statistical
treatment that best reproduces chronologically the natural history of
disease. Using the French epidemics as a test case we show that,
contrary to its memory-less counterpart, the model can very accurately
capture the ICU admission, occupancy, and mortality peaks. It can thus
be used to forecast epidemics and evaluate potential disease control
implementations.

2. Methods

2.1. Model structure and dynamics

As classically done (Kermack and McKendrick, 1927; Keeling and
Rohani, 2008), we group individuals with the same epidemiologi-
cal contribution into compartments whose densities are tracked over
time. Given that many COVID-19 clinical outcome proportions are
age-dependent – e.g. the infection fatality ratio (IFR) (Verity et al.,
2020) – we further split each compartment into an arbitrary number
of age groups, denoted by index 𝑖. This allows us to adjust nationwide
averages and capture demographic effects by matching demography to
age-stratified hospital data.

The structure of the system is shown in Fig. 1. Initially, all indi-
viduals in group 𝑖 belong to the susceptible compartment, the density
of which is denoted 𝑆𝑖. These individuals can be infected with a daily
probability called the force of infection, the expression of which is
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where 𝜋𝑗,𝜏 is the prevalence of 𝑗-individuals infected since 𝜏 days,
𝑘𝑗 the per capita contact rate and 𝜁𝜏 the discretised serial interval
distribution, i.e. the relative contribution of each day upon infection to
the individual force of infection (see Appendix S2.2 for the derivation).

Upon infection, a fraction 1−𝜃𝑖 of the individuals will develop non-
critical infections and move to the 𝐽𝑖,⋅ compartment, where the second
2

subscript indicates the age of the infection (in days). At each time step,
an individual in the compartment 𝐽𝑖,𝑘 moves to the compartment 𝐽𝑖,𝑘+1
and after 𝑔 days of infection it moves to the recovered (and assumed
lastingly immunised) compartment 𝑅𝑖.

A fraction 𝜃𝑖 of infections will lead to critical complications (typ-
ically acute respiratory distress syndrome (Bouadma et al., 2020)),
and move to the 𝑌𝑖,1 compartment. On day 𝑘, individuals in the 𝑌𝑖,𝑘
subgroup have a probability 𝜂𝑘 to be hospitalised and a complementary
probability 1 − 𝜂𝑘 to move to the 𝑌𝑖,𝑘+1 subgroup. As detailed in
Appendix S2.5, two groups of hospitalised critical patients are consid-
ered. Upon hospitalisation, a proportion 𝜓𝑖 of them have a substantial
chance, 1 − 𝜇𝑖, to recover and benefit from a long stay in an ICU;
they are denoted by 𝐻𝑖,⋅. Their length of stay is captured by proba-
bilities 𝜌𝑘 (𝑘 denoting the number of days since hospitalisation) (Santé
Publique France, 2020a). Those who will die, either after a short stay
in ICU or in another ward, are denoted by 𝑊𝑖,⋅. Time to death for this
latter compartment is captured by the sequence of 𝜐𝑘.

2.2. Memory effects

The daily probability for a key transition in the natural history of
COVID-19 to occur is likely to increase with elapsed time. This has
been documented for the onset of contagiousness and the respiratory
complications, which are likely to arise in narrow time windows re-
spectively around the 4th day since infection (Nishiura et al., 2020)
and a week after symptom onset (Linton et al., 2020; Bouadma et al.,
2020). To capture this ’ageing property’, which is lacking in the expo-
nential distributions implicitly used by ODE models, we used Weibull
distributions (Bolker, 2008) with shape parameters greater than 1 in
the parameterisation of the time distributions involved in the model,
as detailed in Appendix S2.6. For the sake of parsimony, we assume
that these distributions are identically distributed across age classes.

Importantly, our model does not require an incubation or a latency
period to be specified explicitly. Instead, the contribution of each indi-
vidual to the force of infection is weighted by the discretised empirical
distribution of the serial interval estimated by Nishiura et al. (2020),
according to the age of its infection. This modelling approach eventu-
ally recovers a classical SIR model for the non-critical cases, capturing
the empirical and effective non-homogeneous infectiousness period
without recourse to additional arbitrary compartments (such as a la-
tent/exposed 𝐸, and convalescent densities) and their corresponding

parameters.
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Fig. 2. Predicted (plain line) and observed (dots) dynamics with (classical) memory-less processes. The continuous-time memory-less analog of the focal model poorly
reproduces the observed trends in daily ICU admissions (turquoise triangles) and mortality (red circles) in France. Vertical lines indicate the beginning and end of the national
lockdown.
Fig. 3. Flow through time shape comparison between Markovian and non-Markovian dynamics. 100 individuals assumed to develop respiratory complications are infected
the same day. The bars represent the number of daily ICU admissions related to this virtual cohort. Time between infection and admission follows either an exponential (in red)
or a Weibull (in blue) distribution. Both distributions have the same mean, about 14.5 days. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
2.3. Data and estimation

All statistical analyses and numerical integration were conducted in
R (R Core Team, 2020). The system was initialized as a fully suscep-
tible population according to the French population pyramid (Institut
National de la Statistique et des Études Économiques, 2020) from which
the residents of nursing homes (Muller, 2017) have been excluded, to
focus on the general population viral circulation. Parameter inference
was performed using nationwide daily ICU admissions, current ICU bed
occupancy, as well as the cumulative number of deaths, all available on
the French government data repository (Santé Publique France, 2020b).
3

These time series were 7-day rolling averaged beforehand in order to
correct for under-reporting during week-ends.

We first located the region of highest likelihood using initial pa-
rameter values estimated from data or compatible with the literature
(see Appendix S1 for details). Then, the maximum likelihood estimates
(MLE) and associated 95%-intervals were stepwise calculated (Bolker
and Giné-Vázquez, 2020) with respect to daily ICU admissions, ICU
discharges, and daily mortality time series, assuming a Gaussian noise
around the prediction. The median and 95% confidence intervals of
the model’s output are finally calculated as the daily sample quantiles
across runs from 1000 randomly drawn parameter sets with statistically
equivalent likelihoods (Wilks, 1938). Details on times series, parameter
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estimation and output calculations can be found in Appendix S2.4, S2.7,
and S2.8 respectively. Moreover, we ran the fitting procedure using an
alternative set of initial age-stratified IFRs (Salje et al. (2020) instead
of Ferguson et al. (2020)) and show that our key estimates are robust
to the uncertainty on this parameter (Appendix S3.2) .

3. Results

3.1. Memoryless approach

To illustrate the ability of our discrete model to capture COVID-19
short-term dynamics, we first explored the best outcome of parameter
inference for a Markovian (memory-less) model.

As shown in Fig. 2, in spite of one additional degree of freedom
compared to the focal model (see Appendix S2.9 for more details), the
best fit performs poorly on the daily ICU admissions and mortality.
Indeed, the model cannot capture both time series (respectively in blue
and red). Furthermore, for each of the time series the decline phase
after the lockdown (on Mar 17 for France) is underestimated. This can
be explained by the fact that memoryless/Markovian models implicitly
assume exponentially distributed waiting times that essentially cannot
reproduce peaked dynamics, as shown by Fig. 3.

While this comparison shows that memory effects associated with
contagiousness and critical symptom onset are essential to the epidemi-
ological dynamics, preliminary fitting attempts have on the other hand
shown that those associated with post-hospitalisation events (namely
the distributions of 𝜌𝑘 and 𝜐𝑘) are weaker. Precisely, exponentially-
distributed hospitalisation to ICU discharge or death intervals (namely
𝜌𝑘 and 𝜐𝑘) appear to be more parsimonious.

3.2. Epidemic parameter values estimation

Maximum likelihood estimates and 95% likelihood intervals (here-
after indicated by square brackets) were found for all parameters
except those determining the generation time distribution (kept fixed
following Nishiura et al., 2020). The basic reproduction number was
estimated to 2.99 [2.59–3.39]. The effect of the lock-down is estimated
to a 75.9% [72.9–78.7] reduction of the reproduction number. The
estimates for the other parameters are all in line with official reports of
average values. The epidemic wave is estimated to have started around
Jan 20. This result is in agreement with early phylogenetic analyses on
sequence data sampled in France (Danesh et al., 2020). Estimates and
intervals for the other parameters are summarised in Table S-5.

The fitted non-Markovian discrete-time model accurately captures
the dynamics of both the daily hospital mortality and the daily number
of ICU admissions since most of the data points fall into the 95%
confidence intervals. As can be observed in Fig. 4(top), the model
correctly approaches the number of daily admissions in the vicinity of
the peak, which is crucial for hospital management at both local and
national levels.

We also present the temporal reproduction number (𝑡), which
rapidly drops below unity following the onset of the national lock-
down and was equal to 0.71 [0.69, 0.74] by May 11 according to the
model. Notice that 𝑡 started to decrease before the lock-down onset,
due to density-dependent effects. In a model with strong host hetero-
geneity and so-called ‘super-spreaders’, this effect would be even more
pronounced. Other explanations include local saturation, staggered
implementation of pre-containment measures, such as health commu-
nication campaigns, or improved patient management as diagnosis and
therapy became more effective. However, neither the structure of the
model nor the level of detail in the available data makes it possible
to identify the isolated impact of each measure on epidemiological
dynamics.

Fig. 4(bottom) illustrates that the model also accurately captures
the post-ICU admission dynamics (though with a slight tendency to
overestimate the declining ICU bed occupancy), which is essential in
4

assessing the risk of saturation of such hospital units, which would lead
to excess-mortality. The fit to these data points could be improved with
access to non-aggregated patient data or distributions of ICU residency
time. The cumulative mortality curve is fitted with great accuracy,
which allows us to use it as a comparison criterion between control
strategies in further analyses. Finally, the figure also shows that the
level of population immunisation, the median of which we estimate
at 2.37% ([2.27, 2.48]% 95%-CI) by May 11, is far below the classical
group immunity threshold (ETE Modelling Team, 2020).

3.3. Timing of the estimation

This model was applied to the early phase of the epidemic and its
adequation to the data greatly improved on April 23, when French data
on ICU residency time was made public. To illustrate the ability of the
model to perform accurate parameter value estimations early in the
epidemics, we performed the inference by censoring the data to the
right.

As shown in Fig. 5, estimates with censoring on April 15, that is
one month before the final data point shown in Fig. 4, were already
accurate. Estimates with an earlier censoring are qualitatively correct
but the confidence intervals larger. The enlargement of the last con-
fidence intervals can be explained by a wider range of parameter sets
having close likelihoods: either by fitting well the peak or the final slow
decrease, possibly affected by improved care of hospitalised patients
two months after the outbreak. As a supplementary result, we also
provide in Appendix S3.3 the model forecast of the hospital time series
based on the data available from Mar 18 to Apr 7 2020. With less
than three weeks of daily figures, our framework was able to anticipate
the following week trajectory and to capture the trend of the hospital
dynamics for more than a month ahead.

3.4. Response date impact

Using our estimated parameters, we then explored the effects of
implementing the national lock-down a week earlier or a week later.
As shown in Fig. 6, the peak was reached on Apr 8, with 7019 ICU beds
occupied (the model estimates it to Apr 12 and 6920 beds). Enforcing
the lock-down a week earlier (in green) would have led to an earlier and
smaller epidemic peak with less than 1500 ICU beds occupied on Apr
5. Conversely, another week of delay (in red) would have led to a peak
above 32 000 beds occupied in ICU on Apr 18, which is largely above the
ICU capacity at the time (ca. 5000 beds). Overall, in the range studied,
each elapsed week multiplies ICU occupancy peak by more than 4.5,
while delaying it by 3 weeks.

These differences also translate in terms of mortality. According to
the model, implementing the lock-down a week earlier could have led
to 13 300 [12 900–13 700] less deaths, while waiting for an additional
week could have claimed 52 800 [45 800–61 500] more lives (Fig. 7).

. Discussion

COVID-19 is not an unusually lethal or contagious infectious dis-
ase. On the other hand, the large proportion of transmission at-
ributable to individuals with few or no symptoms makes it redoubtably
ifficult to control compared to e.g. SARS (Fraser et al., 2004). In the
bsence of a massive and homogeneous screening effort, the dynamics
f COVID-19 can only be studied through hospitalisations induced by
omplications, which are rare and occur on average two weeks after
nfection. The marginal, indirect, and delayed nature of these events
ustifies the use of statistical analyses and mathematical modelling
n the short-term epidemiological management of this unprecedented
ealth crisis. However, given the magnitude of the risks at stake, the
iversity of fields involved, and the number of unknowns (such as cli-
ate effects, immunity duration), mathematical modelling predictions

hould be handled with caution in the decision process.
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Fig. 4. COVID-19 epidemic wave in France fitted by a non-Markovian discrete-time model. Top panel. The blue and pink curves respectively represent the median daily ICU
admissions and the median daily (hospital) mortality as generated by the fitted model. Turquoise triangles and red circles are the (rolling 7-day average) data counterparts. The
black curve shows the median daily temporal reproduction number calculated from the simulated epidemic. The dotted horizontal line shows the reproduction number threshold
value, i.e. 1. Bottom panel. The blue and pink curves respectively represent the median number of occupied beds in ICU nationwide and the median cumulative (hospital)
mortality as generated by the fitted model. The turquoise triangles and red circles are the (rolling 7-day average) data counterparts. The purple dotted horizontal line shows the
initial French ICU capacity, ca. 5000 beds. The green curve shows the median proportion of the population that has recovered (and is assumed to be immune). The green dotted
horizontal line corresponds to the median herd immunity threshold 1 −−1

0 . The two vertical lines show respectively (from left to right) the beginning and the end of the French
national lock-down. Shaded areas correspond to 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Informing decision-making processes is challenging because most
mathematical modelling in epidemiology relies on ordinary differential
equations. These offer a wide palette of analytical tools, but they also
become less accurate on short time scales. Conversely, stochastic mod-
els, whether agent-based or not, offer a much more precise picture of
the early stages of the epidemics. However, they become less necessary
once the outbreak threshold has been crossed and epidemic dynamics
become essentially deterministic.

We therefore developed an original framework at the crossroads of
individual-centred and compartmental modelling approaches, tailored
to the COVID-19 natural history, which has two great advantages. First,
its discrete time structure, shared with that of common epidemiolog-
ical data, allows us to assume any distribution for model processes,
therefore introducing what is known in the literature as memory effects
(or ‘non-Markovian’ processes), related to the age of the infection. As
a result, we obtain a much better fit than classical memory-less (or
‘Markovian’) models on intermediate timescales (weeks or months).
Second, the deterministic nature of the model allows us to perform
5
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extremely fast simulations, especially compared to agent-based mod-
elling that requires the drawing of millions of random numbers for
a single simulation. The computational performance combined with
the great parsimony, that still allows it to accurately fit the observed
epidemiological dynamics, makes this model a relevant tool that can
be easily transposed and deployed to other settings, countries or scales,
even with solely aggregated publicly available data — as it is the case
in the present work, while the extension to age-stratified data sets is
straightforward.

First, we used our model to infer three key parameters of the
epidemics. Our estimate of 0 is comparable to that already computed
in France based on their 95% confidence interval (Di Domenico et al.,
2020; Salje et al., 2020). We also estimate the temporal reproduction
number 𝑡 after the lock-down to 0.71, in line with the estimates of
other studies (Salje et al., 2020; Hoertel et al., 2020; Forien et al.,
2020), and the number of lives potentially saved (more than 50 000)
ompared to a lock-down implemented a week later.
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Fig. 5. Basic reproduction number, lock-down effect and initiation day estimates as a function of the date of censoring. Each dot represents the maximum likelihood
estimate of the basic reproduction number 0 (top left), the lock-down effect 𝜅 (top right) and the initiation day 𝑡0 (top right) calculated from data truncated at the corresponding
date on the 𝑥-axis. Bars shows 95% likelihood intervals.
Fig. 6. Lock-down implementation date effect and ICU bed occupancy. Each curve represents the median current ICU bed occupancy as generated by the model according to
a given lock-down scenario, while their surrounding shaded areas correspond to their 95% confidence intervals. From bottom to top: the green scenario simulates an early national
lock-down (on March 10th); the purple scenario is the realised one (lock-down beginning on Mar 17); the pink scenario simulates a late lock-down (on Mar 24th). Vertical lines
indicate lock-down implementation dates. Crosses indicate the median ICU peak activity. Triangles represent the data and the dotted line the maximum ICU bed capacity in France.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
The model makes several strong assumptions, the strongest being
the mean-field approximation: the population is supposed to be well-
mixed. This limitation can become strong if the epidemic grows in
size to infect a large proportion of the population. Nonetheless, ear-
lier works have shown that non spatially structured models produce
conservative estimates from a public health viewpoint, while their
parsimony and tractability outweighs the greater precision provided by
finer models (Keeling, 1999; Trapman et al., 2016). Second, there is
no specification of the public health control measures implemented:
all the options (quarantine of confirmed cases, adoption of barrier
measures, social distancing: closing of schools and universities, banning
of gatherings, etc.) are combined to reduce the contact rate. We also
neglected fomite transmission (see Ferretti et al., 2020 for an example)
and assumed perfect and lifelong immunity against reinfection due to
currently insufficient data on immunity. One simplifying assumption
6

we made is that mortality probabilities do not vary over time, whereas
in practice hospital saturation could affect mortality, whether related
to COVID-19 or not.

In terms of outlook, the model can straightforwardly be extended
to formally take into account any kind of finer stratification, e.g. age,
sex, and comorbidities simultaneously and take advantage of a discrete
implicit spatial structure. This work has laid the foundation for two
epidemic surveillance and projection online applications, respectively
at the national (Reyné et al., 2020) (published in Jul 2020) and
infra-national level (Boennec et al., 2021) (published in Feb 2021
and currently referenced by the French government data and app
repository). Future work includes taking into account possible changes
in parameter values with time, mainly detecting and estimating sea-
sonal effects. If these are of significant impact, model fitting could be
adapted, either by estimating parameters within defined time windows
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Fig. 7. Estimated lock-down date effect on cumulative mortality. Each curve represents the median cumulative (hospital) mortality as generated by the model according to a
given lock-down scenario, while their surrounding shaded areas correspond the their 95% confidence intervals. The scenarios are as detailed in Fig. 6. Dots represent the data.
or by left-censoring the data as time goes by. Beyond the ongoing
pandemic, this framework can be easily adapted and deployed as a
now- and forecasting tool in future outbreaks.
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