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Introduction

In his seminal paper [START_REF] Hooft | A planar diagram theory for strong interactions[END_REF], 't Hooft discovered that SU(N ) and U(N ) two-dimensional gauge theories become easier to understand when considering the limit N → ∞, thanks to combinatorial simplifications. After that, the idea of studying large N limits of matrix models flourished, in particular in the case of Quantum Chromodynamics in two dimensions, or QCD 2 [START_REF] Douglas | Large N Phase Transition in continuum QCD 2[END_REF][START_REF] Gross | Two-dimensional QCD as a string theory[END_REF][START_REF] Gross | Two-dimensional QCD is a string theory[END_REF], but also in Conformal Field Theory [START_REF] Michael | Conformal field theory techniques in large N Yang-Mills theory[END_REF] and in Collective Field Theory [START_REF] Gross | Some properties of large-N two-dimensional Yang-Mills theory[END_REF]. Since then, mathematicians tried to derive rigorously some of the formulae used by these physicists, for instance [START_REF] Anshelevich | Quantum free Yang-Mills on the plane[END_REF]2,[START_REF] Dahlqvist | Yang-Mills measure and the master field on the sphere[END_REF][START_REF] Driver | The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF][START_REF] Lévy | Yang-Mills measure on compact surfaces[END_REF][START_REF] Lévy | The master field on the plane[END_REF][START_REF] Lévy | On the Douglas-Kazakov phase transition. Weighted potential theory under constraint for probabilists[END_REF][START_REF] Sengupta | The Yang-Mills measure for S 2[END_REF][START_REF] Sengupta | Yang-Mills on surfaces with boundary: quantum theory and symplectic limit[END_REF][START_REF] Ambar | Gauge theory in two dimensions: topological, geometric and probabilistic aspects[END_REF][START_REF] Ambar | Traces in two-dimensional QCD: the large-N limit[END_REF]. We will focus here on the asymptotics of partition functions of the two-dimensional Yang-Mills model over a compact surface, written as sums over irreducible characters of the structure group. Depending on the orientability and genus of the underlying surface, we will link the limit of the partition function to several special functions from number theory and combinatorics: the Witten zeta function, the Jacobi theta function and the Euler function.

The Yang-Mills partition function on a compact surface

Let λ = (λ 1 ⩾ . . . ⩾ λ N ) ∈ Z N be a non-increasing sequence of relative integers. We associate two real numbers to λ : the dimension

d λ = 1⩽i<j⩽N λ i -λ j + j -i j -i = 1⩽i<j⩽N 1 + λ i -λ j j -i , (1) 
which is indeed a positive integer, and the quadratic Casimir number

c 2 (λ) = 1 N ⎛ ⎝ N i=1 λ 2 i + 1⩽i<j⩽N (λ i -λ j ) ⎞ ⎠ . (2) 
These definitions are dictated by the representation theory of the unitary group U(N ): the N -tuple λ, which we will also call a highest weight in this paper, labels (up to isomorphism) an irreducible representation of U(N ) with dimension d λ , and on which the Casimir operator of U(N ), that is, the Laplacian, acts by the scalar -c 2 (λ). We will use the notation Û(N ) = {(λ 1 , . . . , λ N ) ∈ Z N ∶ λ 1 ⩾ . . . ⩾ λ N }.

Throughout this article, a surface will denote a compact connected closed surface. A standard classification theorem (see in [START_REF] Massey | A basic course in algebraic topology[END_REF] for instance) states that it is homeomorphic to either of the following:

(i) The connected sum of g tori1 , (ii) The connected sum of g projective planes.

In the first case, the surface is said to be orientable, otherwise it will be non-orientable, and in either case we will call g the genus of the surface. Given an orientable surface Σ g,T of genus g ⩾ 0 and total area T ⩾ 0, the partition function of the Yang-Mills theory on Σ g,T with structure group U(N ) is defined2 by

Z N (g, T ) = λ∈ Û(N ) e -T 2 c 2 (λ) d 2-2g λ . (3) 
If Σ - g,T is a non-orientable compact surface of area T homeomorphic to the connected sum of g projective planes, then the partition function on Σ - g,T with structure group U(N ) is defined 3 

by Z - N (g, T ) = λ∈ Û(N ) e -T 2 c 2 (λ) d 2-g λ (ι λ ) g , (4) 
where ι λ is the Frobenius-Schur indicator of an irreducible representation of U(N ) with highest weight λ, given by

ι λ = U(N )
χ λ (g 2 )dg.

These partition functions admit a special unitary variant, which differs from them in two aspects: the summation is restricted to the N -tuples λ = (λ 1 ⩾ . . . ⩾ λ N -1 ⩾ λ N = 0) of which the last element is 0, and the Casimir number is replaced by its special unitary version

c ′ 2 (λ) = 1 N ⎛ ⎝ N i=1 λ 2 i - 1 N N i=1 λ i 2 + 1⩽i<j⩽N (λ i -λ j ) ⎞ ⎠ . (5) 
It is worth emphasizing that c ′ 2 (λ) is a non-negative real number. Indeed, an application of the Cauchy-Schwarz inequality shows that the first sum is larger than the absolute value of the second, and the third one is non-negative by definition of λ. We introduce

SU(N ) = {(λ 1 , . . . , λ N ) ∈ Z N ∶ λ 1 ⩾ . . . ⩾ λ N = 0},
which is in bijection with the irreducible representations of SU(N ), and define

Z ′ N (g, T ) = λ∈ SU(N ) e -T 2 c ′ 2 (λ) d 2-2g λ , (6) 
Z ′ - N (g, T ) = λ∈ SU(N ) e -T 2 c ′ 2 (λ) d 2-g λ (ι ′ λ ) g , (7) 
where ι ′ is the Frobenius-Schur indicator of an irreducible representation of SU(N ) with highest weight λ. Let us notice that when T = 0, the summands in the cases of U(N ) and SU(N ) are the same, and only the set of summation changes. In this 'zero-temperature' situation, the partition function Z ′ N (g, 0) was already studied by Witten [START_REF] Witten | On quantum gauge theories in two dimensions[END_REF], and later by Zagier [START_REF] Zagier | Values of zeta functions and their applications[END_REF] who called it Witten zeta function and denoted it by ζ su(N ) (2g -2). The denomination 'zeta function' comes from the remark that

Z ′ 2 (g, 0) = ζ(2g -2)
, where ζ is the Riemann zeta function.

Statement of the results

The purpose of this paper is to establish the large N limit of the partition functions, depending on the orientability and the genus of the underlying surface. The two following theorems state the limit of orientable surfaces of genus 1 and higher, and non-orientable surfaces of genus 2 and higher. The next sections will then be devoted to prove these theorems. Before stating the theorems, let us recall two special functions.

The Jacobi theta function ϑ is defined, for (z, τ ) ∈ C 2 such that Im(τ ) > 0:

ϑ(z; τ ) = n∈Z e iπn 2 τ +2iπnz .
We will also denote a particular version of this function by θ(q) = ∑ n∈Z q n 2 for q ∈ C such that q < 1.

The Euler function φ is defined, for q ∈ C such that q < 1, as the infinite product

φ(q) = (q; q) ∞ = ∞ m=1
(1q m ).

Theorem 1.1 (Orientable limits). Let Σ be an orientable surface of genus g and area

T ⩾ 0. Set q = e -T 2 .
(i) If g ⩾ 2 and T > 0, then the following convergences hold:

lim N →∞ Z N (g, T ) = θ(q) and lim N →∞ Z ′ N (g, T ) = 1.
Moreover, if g ⩾ 2 and T = 0, we have

lim N →∞ Z ′ N (g, 0) = 1.
(ii) If g = 1 and T > 0, then the following convergences hold:

lim N →∞ Z N (1, T ) = θ(q) φ(q) 2 and lim N →∞ Z ′ N (1, T ) = 1 φ(q) 2 .
Theorem 1.2 (Non-orientable limits). Let Σ be a non-orientable surface of genus g ⩾ 2 and area T ⩾ 0. Set q = e -T 2 .

(i) If g ⩾ 3 and T ⩾ 0, then the following convergences hold:

lim N →∞ Z - N (g, T ) = Z ′ - N (g, T ) = 1.
(ii) If g = 2 and T > 0, then the following convergences hold:

lim N →∞ Z - N (2, T ) = lim N →∞ Z ′ - N (2, T ) = 1 φ(q 2 )
.

Comparison with other results

In our setting, we only consider the case of compact connected closed surfaces with a fixed area T . In the orientable cases, this was already studied by Gross alone [START_REF] Gross | Two-dimensional QCD as a string theory[END_REF] as well as with Taylor [START_REF] Gross | Two-dimensional QCD is a string theory[END_REF]: they found some results that we generalize here (see Section 2.2 for more details). The limit given in Theorem 1.1 for g = 1 is also mentioned without proof in [6, eq.(3.2)], and the limit for g > 1 is in adequation with a result by Rusakov [START_REF] Rusakov | Large-N quantum gauge theories in two dimensions[END_REF]. Let us remark that Rusakov affirmed that there is a nonzero free energy in the case of the torus, which is contradicted by the point (ii) of Theorem 1.1. The asymptotic behaviour of the partition function on the sphere is very different from the higher genus surfaces, and needs more analytical tools. Its free energy was computed rigorously by Boutet de Monvel and Shcherbina [2] and later by Lévy and Maïda [START_REF] Lévy | On the Douglas-Kazakov phase transition. Weighted potential theory under constraint for probabilists[END_REF], as well as Dahlqvist and Norris [START_REF] Dahlqvist | Yang-Mills measure and the master field on the sphere[END_REF]; in particular, Lévy and Maïda proved a phase transition conjectured by Douglas and Kazakov [START_REF] Douglas | Large N Phase Transition in continuum QCD 2[END_REF]. We do not consider this case because it needs different tools than the ones we use. We also leave aside the case of a non-orientable surface of genus 1, which is homeomorphic to the projective plane, because our tools do not provide any concluding result; we expect it to be more closely related to the case of the sphere, because the dimensions of the irreducible representations are raised to a positive power.

Although we do not consider surfaces with boundaries, there are plenty of works, in particular in physics, devoted to the partition function on a cylinder. For instance, Gross and Matytsin [START_REF] Gross | Some properties of large-N two-dimensional Yang-Mills theory[END_REF] conjectured that there might be the same kind of phase transition for the cylinder with fixed boundary conditions as the one happening for the sphere. However, they used non-rigorous techniques leading to the asymptotic estimation of irreducible characters of SU(N ) for which Tate and Zelditch [START_REF] Tate | Counterexample to conjectured SU (N ) character asymptotics[END_REF] exhibited a counterexample. Zelditch then obtained in [START_REF] Zelditch | Macdonald's identities and the large N limit of YM 2 on the cylinder[END_REF] a different result, using the so-called MacDonald identities, and computed the free energy on a cylinder with area T N . In the mathematical literature, Guionnet and Maïda [START_REF] Guionnet | Character expansion method for the first order asymptotics of a matrix integral[END_REF] developed some character expansion techniques that applied in this setting. Note here that the scaling regime is different from ours, and it might be enlightening to see how the limits of partition functions change when the area depends on N as in the works of Zelditch or Guionnet-Maïda.

General remarks

Before diving into the proofs of Theorems 1.1 and 1.2, let us state a few facts that we find interesting around these Theorems.

The limit of the partition function in the unitary case for g ⩾ 2 is the common value of Z 1 (g, T ) for all g ⩾ 0. Indeed, the irreducible representations of U(1) are indexed by integers n ∈ Z, and as U(1) is abelian, they all have dimension 1. Moreover, the Casimir number c 2 (n) is simply equal to n 2 , therefore the partition function Z 1 (g, T ) can be written

Z 1 (g, T ) = n∈Z e -T 2 n 2 = θ(q)
as expected. It could also be said that the limiting value of the partition functions Z ′ N (g, T ) is also the value Z ′ 1 (g, T ), understood as the partition function associated with the trivial group SU(1), with a unique irreducible representation of dimension 1 and Casimir number 0.

In the case of orientable surfaces, it appears that the limits of Z N and Z ′ N always differ from one factor, which is actually Z 1 (g, T ). We can summarize this asymptotic factorization as follows:

lim N →∞ Z N (g, T ) = lim N →∞ Z 1 (g, T )Z ′ N (g, T ). (8) 
Numerical simulations suggest that for all g ⩾ 2 and all T ⩾ 0, the sequences (Z N (g, T )) N ⩾2 and (Z ′ N (g, T )) N ⩾2 might be non-increasing. This would be an interesting fact, that we are not yet able to establish.

Using the Jacobi triple product formula

n∈Z q n 2 = ∞ m=1 (1 -q 2m )(1 + q 2m-1 ) 2 ,
the limit of Z N (1, T ) can be rewritten as an infinite product:

lim N →∞ Z N (1, T ) = ∞ m=1 (1 + q m )(1 + q 2m-1 ) 2 1 -q m .
It does not particularly enlightens the nature of the limit but it makes it at least easier to approximate numerically. We now turn to the proofs of Theorem 1.1, which is given in Section 2, and Theorem 1.2, which is given in Section 3.

Orientable surfaces 2.1 Orientable surfaces of genus g ⩾ 2

The special unitary case

We will start by proving Theorem 1.1.(i) in the special unitary case. Let us first reduce the problem to the case where T = 0 and g = 2.

Lemma 2.1. For all g ⩾ 0, all T ⩾ 0, and all N ⩾ 1, we have

1 ⩽ Z ′ N (g, T ) ⩽ Z ′ N (2, 0).
It follows from this lemma that the special unitary case of Theorem 1.1.(i) is implied by the assertion lim

N →∞ Z ′ N (2, 0) = 1, (9) 
which we will prove in this section.

Proof of Lemma 2.1. The N -tuple (0, . . . , 0) has dimension 1 and Casimir number 0. Thus, it contributes 1 to the partition function Z ′ N (g, T ), which explains the first inequality. The second inequality is an immediate consequence of the fact that all Casimir numbers are non-negative, and that all dimensions are positive integers.

Our goal is now to prove [START_REF] Fulton | Representation theory[END_REF]. We will deduce it from the following fact about Witten zeta functions. Proposition 2.2. For all real s > 1, one has

sup N ⩾1 ζ su(N ) (s) = sup N ⩾1 λ∈ SU(N ) d -s λ < ∞.
More precisely, lim

N →∞ ζ su(N ) (s) = 1 and lim N →∞ λ∈ SU(N ) λ≠(0,...,0) d -s λ = 0.
The proof of this proposition relies on three lemmas.

Lemma 2.3. For all s > 1 and all N ⩾ 1, one has

λ∈ SU(N ) d -s λ ⩽ N -1 k=1 n⩾k n k -s . ( 10 
)
Proof. Let us choose s > 1 and N ⩾ 1. In the left-hand side of [START_REF] Gross | Two-dimensional QCD as a string theory[END_REF], which is a sum over λ 1 ⩾ . . . λ N ⩾ 0, let us make the change of variables

m 1 = λ 1 -λ 2 + 1, . . . , m N -1 = λ N -1 -λ N + 1.
The new variables m 1 , . . . , m N -1 are now independent, and positive. Using (1), we find

d λ = 1⩽i<j⩽N m i + . . . + m j-1 j -i , (11) 
so that

λ 1 ⩾...⩾λ N =0 d -s λ = m 1 ,...,m N -1 ⩾1 1⩽i<j⩽N (j -i) s (m i + . . . + m j-1 ) s = m 1 ,...,m N -1 ⩾1 N -1 k=1 k i=1 (k -i + 1) s (m i + . . . + m k ) s (k = j -1) Since m i + . . . + m k-1 ⩾ k -i, we obtain λ 1 ⩾...⩾λ N =0 d -s λ ⩽ m 1 ,...,m N -1 ⩾1 N -1 k=1 k i=1 (k -i + 1) s (m k + k -i) s = m 1 ,...,m N -1 ⩾1 N -1 k=1 k + m k -1 k -s = N -1 k=1 n⩾k n k -s
, which is the announced upper bound.

Lemma 2.4. For all real s > 1,

k⩾1 n>k n k -s < ∞.
Proof. We use the fact that for k between 2 and n -2, the inequality n k ⩾ n 2 holds. Thus,

k⩾1 n>k n k -s ⩽ 2 -s + ∞ n=3 2 n s + (n -3) 2 s n s (n -1) s , which is indeed finite for s > 1. Lemma 2.5. Let λ be an element of SU(N ). If λ = (0, . . . , 0), then d λ = 1. Otherwise, d λ ⩾ N .
Proof. Let us use again the variables m 1 , . . . , m N -1 introduced in the proof of Lemma 2.3. It is manifest on the expression [START_REF] Gross | Some properties of large-N two-dimensional Yang-Mills theory[END_REF] of d λ that this dimension is increasing in each of the variables m 1 , . . . , m r . The case where each of these variables is equal to 1 is the case where λ = (0, . . . , 0) and d λ = 1. Any other irreducible representation has a dimension that is at least equal to the dimension of one of the representations

λ 1 = (1, 0, . . . , 0), λ 2 = (1, 1, 0, . . . , 0), . . . , λ N -1 = (1, . . . , 1, 0).
These representations, which are the exterior powers of the standard representation of SU(N ), have dimensions

d λ k = N k ⩾ N, k ∈ {1, . . . , N -1}.
Thus, d λ ⩾ N , as expected.

We can now prove Proposition 2.2.

Proof of Proposition 2.2. The bound obtained in Lemma 2.3 can be rewritten as

λ 1 ⩾...⩾λ N =0 d -s λ ⩽ N -1 k=1 1 + n>k n k -s ⩽ exp ∞ k=1 n>k n k -s
and this last bound, independent of N , is finite by Lemma 2.4. This proves the first assertion.

For the second, let us introduce a real s ′ ∈ (1, s) and use Lemma 2.5. We find λ∈ SU(N ) λ≠(0,...,0)

d -s λ ⩽ N -(s-s ′ ) λ∈ SU(N ) d -s ′ λ ,
which tends to 0 as N tends to infinity.

In order to prove (9), we need a last piece of information about the dimensions of the irreducible representations of SU(N ).

Proof of Theorem 1.1.(i) in the special unitary case. On one hand, Lemma 2.1 implies that Z ′ N (2, 0) ⩾ 1. On the other hand,

Z ′ N (2, 0) = λ∈ SU(N ) d -2 λ = 1 + λ≠(0,...,0) d -2 λ .
Using Lemma 2.5, we find

Z ′ N (2, 0) ⩽ 1 + N -1 2 λ≠(0,...,0) d -3 2 λ ⩽ 1 + N -1 2 sup N ⩾1 λ∈ SU(N ) d -3 2 λ .
Thanks to Proposition 2.2, this implies lim sup

N →∞ Z ′ N (2, 0) ⩽ 1
and this concludes the proof of ( 9), hence of Theorem 1.1.(i) in the special unitary case.

The unitary case

We treat the unitary case of Theorem 1.1.(i) using our understanding of the special unitary case, and the bijection

Φ ∶ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ SU(N ) × Z ∼ → Û(N ) (λ, n) → λ + n = (λ 1 + n, . . . , λ N + n).
We will keep throughout this section the notation λ for an element of SU(N ), n for an element of Z, λ + n for the corresponding element of Û(N ), and λ = λ 1 + ⋯ + λ N . The first observation is the following.

Lemma 2.6. We have the equality

c 2 (λ + n) = c ′ 2 (λ) + n + λ N 2 .
Proof. The proof is a simple verification using the definitions (2) and ( 5) of c 2 and c ′ 2 .

It is the contribution of the highest weights of the form 0+n = (n, . . . , n) which produces the Jacobi theta function in the unitary part of Theorem 1.1.(i). We will prove that the contribution of all other elements of Û(N ) vanishes in the large N limit.

Proof of Theorem 1.1.(i) in the unitary case. Let us consider g ⩾ 2 and T > 0, and set q = e -T 2 . We split the partition function Z N (g, T ) into two parts

Z N (g, T ) = n∈Z q n 2 + λ∈ SU(N ) λ≠(0,...,0) n∈Z q c 2 (λ+n) d λ+n .
The first part corresponds to highest weights of the form (n, . . . , n), which have Casimir numbers n 2 and dimension 1, and is equal to θ(q). The second part is the contribution of all the other highest weights. To compute it, we observe that d λ+n = d λ and we use Lemma 2.6. We find

0 ⩽ Z N (g, T ) -θ(q) ⩽ λ∈ SU(N ) λ≠(0,...,0) n∈Z q (n+ λ N ) 2 q c ′ 2 (λ) d 2-2g λ .
The sum between the brackets is bounded independently of N , for example, in a very elementary way, by C = 1 + θ(q). Hence, the right-hand side is bounded by

C λ∈ SU(N ) λ≠(0,...,0) d 2-2g λ = C ζ su(N ) (2g -2) -1
which, thanks to Proposition 2.2, converges to 0.

The torus

Our proof of the convergence of the partition function when g ⩾ 2 was based on our study of the dimensions of the irreducible representations of SU(N ), expressed in Proposition 2.2. A glance at [START_REF] Bröcker | Representations of compact Lie groups[END_REF] shows that when g = 1, these dimensions do not appear anymore in the partition function, and to treat this case we need to use completely different estimates. In this section, we will prove that Z N (1, T ) still admits a finite limit for T > 0, but this limit turns out to be different: it will involve the classical generating function of integer partitions. Recall that if we denote, for each n ⩾ 0, by p(n) the number of partitions of the integer n, we have the equality of formal series in the variable q:

n⩾0 p(n)q n = ∞ m=1 1 1 -q m = φ(q) -1 . ( 12 
)
Before entering the technical details, let us explain the idea of the proof of Theorem 1.1.(ii), at least in the special unitary case. In the present situation where g = 1, the partition function is

Z ′ N (1, T ) = λ∈ SU(N ) e -c ′ 2 (λ) T 2 = λ∈ SU(N ) q c ′ 2 (λ) ,
using the notation q = e -T 2 . The problem is thus to identify which highest weights of SU(N ) keep, in the large N limit, a bounded quadratic Casimir number, and bring a nonzero contribution to the partition function. We claim, although this statement is not very precise at this stage, that these highest weights are those depicted in Fig. 1 (in the special unitary case, we need to look at the right part of this figure). They are the highest weights that are flat up to a small 4 perturbation at each end, represented by two partitions α and β of length ⩽ N 2. Let us call these highest weights almost flat. A similar description was proposed by Gross and Taylor in [START_REF] Gross | Two-dimensional QCD is a string theory[END_REF], but in the case where the perturbations remain finite, and their goal was rather to obtain a 1 N expansion of the partition function than to find its large N limit. The smaller the length of α and β, the flatter the highest weight: typically we will consider α and β of length ≪ √ N . Using the notation λ(α, β) introduced in Fig. 1, and the notation α (resp. β ) for sum of the components of α (resp. β), the main estimate will be a refinement of the equality

c ′ 2 (λ(α, β)) = α + β + O(N -1 )
with an explicit expression of the error in terms of α and β. The outline of the proof is then the following:

Z ′ N (1, T ) ≃ λ∈ SU(N ) λ almost flat q c ′ 2 (λ) ≃ α,β of length ≪ √ N q c ′ 2 (λ(α,β)) ≃ α,β of length ≪ √ N q α + β
and the last sum tends to the square of the generating function of integer partitions when N → ∞.

Almost flat highest weights

From two integer partitions α = (α 1 ⩾ ⋯ ⩾ α r > 0) and β = (β 1 ⩾ ⋯ ⩾ β s > 0) of respective lengths r and s, and an integer n ∈ Z, we can form, for all N ⩾ r + s + 1, the highest weight λ N (α, β, n) = (α 1 + n, . . . , α r + n, n, . . . , n N -r-s , nβ s , . . . , nβ 1 ) ∈ Û(N ), which we also denote by λ(α, β, n) when there is no doubt on the value of N . We extend this definition in the obvious way to the cases where one or both of the partitions α and β are the empty partition.

We can also form the highest weight

λ N (α, β) = λ N (α, β, β 1 ) ∈ SU(N ),
with the convention that λ N (α, ∅) = λ N (α, ∅, 0) = (α 1 , . . . , α r , 0). These constructions are illustrated in Fig. 1 below. The reader may have noticed that the definition of λ N (α, β, n) still makes sense when N = r + s and wonder why we exclude this case. The reason is that under the stronger assumption N ⩾ r + s + 1, it is possible to recover α and β unambiguously from the data of λ N (α, β, n), r and s. A counterexample with r = s = 1 and N = 2 is given in Fig. 2. Without the data of r and s, there are usually multiple ways of writing a highest weight in the form λ N (α, β, n), see also Fig. 2. Finally, it should be emphasized that every highest weight of U(N ) or SU(N ) can be written as λ N (α, β, n) or λ N (α, β). The Casimir number of a highest weight can be expressed conveniently through this decomposition, as we will show below. First, let us recall the definition of the content of a box of a diagram, which is mentioned in particular in [START_REF] Stanley | Enumerative combinatorics[END_REF][START_REF] Anatoli | A new approach to representation theory of symmetric groups[END_REF]. Definition 2.7. Let α = (α 1 ⩾ ⋯ ⩾ α r ⩾ 0) be a non-increasing sequence of integers, seen as a Young diagram. For any box (i, j) of this diagram, that is, any (i, j) such that j ⩽ α i , we call content of the box (i, j) the quantity c(i, j) = j -i. We also define the total content K(α) of α as the sum of the contents of the boxes of α.

An example is given on Fig. 3.

0 1 2 -1 0 1 -2 -1 -3
Figure 3: Filling of the boxes of (3, 3, 2, 1) with their respective contents. The Young diagram is represented here in the so-called Russian way, where the content of a box is its abscissa.

The main result of this section is the following. Proposition 2.8. Let α and β be two partitions of respective lengths r and s. Let n be an integer. Then, provided N ⩾ r + s, we have

c 2 (λ(α, β, n)) = α + β + n 2 + 2 N K(α) + K(β) + n( α -β ) (13)
in the unitary case, and

c ′ 2 (λ(α, β)) = α + β + 2 N (K(α) + K(β)) + 1 N 2 ( α -β ) 2 (14)
in the special unitary case.

Proof. Let us start with the unitary case. Using the definition of Casimir number and the definition of λ(α, β, n), we obtain

N c 2 (λ(α, β, n)) = r i=1 α 2 i + 1⩽i<j⩽r (α i -α j ) + 2n α + s i=1 β 2 i + 1⩽i<j⩽s (β i -β j ) -2n β + α (N -r -s) + β (N -r -s) + 1⩽i⩽r 1⩽j⩽s (α i + β j ) + N c 2 =N ( α + β + n 2 ) + 2n( α -β ) + r i=1 α 2 i + 1⩽i<j⩽r (α i -α j ) -r α + s i=1 β 2 i + 1⩽i<j⩽s (β i -β j ) -s β .
On the other hand,

K(α) = r i=1 α i (α i + 1) 2 -iα i = 1 2 ⎛ ⎝ r i=1 α 2 i + 1⩽i<j⩽r (α i -α j ) -r α ⎞ ⎠
and we find (13) as announced.

Concerning the special unitary case, we simply need to subtract from c 2 (λ) the quantity

1 N 2 (∑ λ i ) 2 , which leads to c ′ 2 (λ(α, β)) =c 2 (λ(α, β, β 1 )) - 1 N 2 ( α -β + N β 1 ) 2
from which ( 14) follows easily.

The special unitary case

In our treatment of the special unitary case, we want to adopt a systematic way of writing a highest weight of SU(N ) under the form λ N (α, β). We do this in a way that depends on the parity of N , but that in any case rests on the observation that for all M 1 , M 2 ⩾ 0, the map

SU(M 1 + 1) × SU(M 2 + 1) ∼ → SU(M 1 + M 2 + 1) (α, β) → λ M 1 +M 2 +1 (α, β) is a bijection.
In the case where N is odd, equal to 2M + 1, we take M 1 = M 2 = M . When N = 2M is even, and positive, we choose M 1 = M -1 and M 2 = M . In this section, we will always write highest weights of SU(N ) as λ(α, β), and this will always refer to the decomposition just described.

The proof of Theorem 1.1.(ii) will rely on two estimates of the Casimir number: one that helps proving the convergence of the sum of q c ′ 2 (λ) over almost flat highest weights λ to the expected limit, and one that helps controlling the sum over remaining highest weights.

Lemma 2.9. Let λ = λ(α, β) ∈ SU(N ). Set k = α + β . Then the following inequalities hold:

k - k 2 N ⩽ c ′ 2 (λ(α, β)) ⩽ k + k 2 N + k 2 N 2 , ( 15 
)
k 2 ⩽ c ′ 2 (λ(α, β)). ( 16 
)
Proof. We start from the expression of c ′ 2 (λ(α, β)) given by ( 14). The point is to bound K(α) and K(β).

The list of the contents of the boxes of α taken row after row and from left to right in each row (as on the left of Fig. 4) is a sequence x 1 , . . . , x α such that

x i ⩽ i -1 for each i ∈ {1, . . . , α }. It follows that -α ( α -1) ⩽ 2K(α) ⩽ α ( α -1). This implies immediately 2 K(α) + K(β) ⩽ k 2 , and (15) 
, after observing that 0 Let us turn to the proof of ( 16). We will establish a different lower bound on K(α) and K(β). For this, let us list the contents of the boxes of α, now taken column after column and from top to bottom in each column (as on the right of Fig. 4). It is now a sequence x 1 , . . . , x α of integers that along each column of α decreases by 1 at each step, and at each change of column jumps to a positive integer. The crucial point is that the height of the columns of α is bounded by the integer that we called M 1 at the beginning of this section, and that is in any case not greater than N 2 . The contribution of each column is thus bounded below by -N 4 times the number of boxes in this column. It follows that

⩽ ( α -β ) 2 ⩽ ( α + β ) 2 = k 2 . 0 1 2 -1 0 1 -2 -1 -3 0 1 2 -1 0 1 -2 -1 -3
K(α) ⩾ - N 4 α ,
and a similar argument holds for β. The result follows again from [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF].

Proof of theorem 1.1.(ii) in the special unitary case. Let us fix a real γ ∈ (0, 1 2 ). Let us split the set of highest weights of SU(N ) in four disjoint subsets:

Λ N,1 = {λ(α, β) ∶ α ⩽ N γ , β ⩽ N γ }, Λ N,2 = {λ(α, β) ∶ α > N γ , β ⩽ N γ }, Λ N,3 = {λ(α, β) ∶ α ⩽ N γ , β > N γ }, Λ N,4 = {λ(α, β) ∶ α > N γ , β > N γ }.
For each i ∈ {1, 2, 3, 4}, we define

S ′ N,i = λ∈Λ N,i q c ′ 2 (λ) , so that Z ′ N (1, T ) = S ′ N,1 + S ′ N,2 + S ′ N,3 + S ′ N,4
. The set Λ N,1 is the set of highest weights that we think of as being almost flat, and we will now prove, in a first step, that they bring the only non-zero contribution in the limit where N tends to infinity.

Let λ(α, β) be an element of Λ N,1 . Then thanks to (15), we have

α + β -4N 2γ-1 ⩽ c ′ 2 (λ(α, β)) ⩽ α + β + 4N 2γ-1 + 4N 2γ-2 . (17) 
For N large enough, any partition of an integer not greater than N γ has less than N 2 positive parts. Thus, if α and β are any two such partitions, the highest weight λ N (α, β) is well defined, and belongs to Λ N,1 . Thus, for N large enough,

S ′ N,1 = α , β ⩽N γ q c ′ 2 (λ(α,β)) .
From [START_REF] Lévy | On the Douglas-Kazakov phase transition. Weighted potential theory under constraint for probabilists[END_REF], we deduce that

q 4N 2γ-1 +4N 2γ-2 α , β ⩽N γ q α + β ⩽ S ′ N,1 ⩽ q -4N 2γ-1 α , β ⩽N γ q α + β .
Since 2γ -1 is negative, the powers of q in front of the sums on either side tend to 1 as N tends to infinity. On the other hand, the sum over α and β tends, as N tends to infinity, to the square of the generating function of partitions. Hence, lim

N →∞ S ′ N,1 = lim N →∞ α , β ⩽N γ q α + β = α q α 2 = ∞ m=1 (1 -q m ) -2 .
In a second step, we prove that the three other contributions to Z ′ N (1, T ) vanish as N tends to infinity. For this, we use [START_REF] Lévy | The master field on the plane[END_REF]. Let us treat the case of S ′ N,2 , the case of S ′ N,3

being perfectly similar, and the case of S ′ N,4 even simpler. We have

0 ⩽ S ′ N,2 ⩽ α ⩽N γ , β >N γ q 1 2 ( α + β ) ⩽ α q 1 2 α β >N γ q 1 2 β = α q 1 2 α k>N γ p(k)q k 2 .
The first sum is finite, and the second, as a remainder of a convergent series, tends to 0 as N tends to infinity. This concludes the proof.

The unitary case

The proof of Theorem 1.1.(ii) in the unitary case will rely on the same tools as the special unitary case, that is, the use of almost flat highest weights, combined with the bijection Φ ∶ (λ, n) ↦ λ + n introduced in Section 2.1. In particular, Lemma 2.6 will be of great help in order to control the convergence of Z N (1, T ) using the convergence of Z ′ N (1, T ).

Proof of Theorem 1.1.(ii) in the unitary case. Let λ(α, β) be an element of SU(N ). Using Lemma 2.6 and Proposition 2.8, it appears that, for all n ∈ Z,

c 2 (λ(α, β) + n) = c ′ 2 (λ(α, β)) + n + λ(α, β) N 2 = c ′ 2 (λ(α, β)) + n + α -β N + β 1 2
, so that we can write, up to a change of index n ← nβ 1 ,

Z N (1, T ) = λ(α,β)∈ SU(N ) n∈Z q n+ α -β N 2 q c ′ 2 (λ(α,β)) . (18) 
The main difference with the case of SU(N ) is the sum over n between the brackets, and we will need to control it in order to get the convergence.

Let γ ∈ (0, 1 2 ), and the subsets (Λ N,i ) 1⩽i⩽4 of SU(N ) as in the special unitary case. We define, for 1 ⩽ i ⩽ 4,

S N,i = λ∈Λ N,i n∈Z q n+ α -β N 2 q c ′ 2 (λ) ,
and we obtain the following decomposition:

Z N (1, T ) = S N,1 + S N,2 + S N,3 + S N,4 .
Let λ(α, β) be an element of Λ N,1 . From the fact that αβ ⩽ α + β ⩽ 2N γ we get

n 2 -4nN γ-1 ⩽ n + α -β N 2 ⩽ n 2 + 4nN γ-1 + 4N 2γ-2 . ( 19 
)
For the same reason as in the special unitary case, for N large enough we have

S N,1 = α , β ⩽N γ n∈Z q n+ α -β N 2 q c ′ 2 (λ(α,β)) ;
Then, Equations ( 17) and ( 19) yield

q 4N 2γ-1 +4N 2γ-2 +4N 2γ-2 n∈Z q n 2 +4nN γ-1 α , β ⩽N γ q α + β ⩽ S N,1 (20) 
and

S N,1 ⩽ q -4N 2γ-1 n∈Z q n 2 -4nN γ-1 α , β ⩽N γ q α + β . (21) 
The sums ∑ n∈Z q n 2 ±4nN γ-1 in both cases tend to ∑ n∈Z q n 2 by dominated convergence, because γ -1 < 0. The remaining terms in both inequalities [START_REF] Sengupta | The Yang-Mills measure for S 2[END_REF] and [START_REF] Sengupta | Yang-Mills on surfaces with boundary: quantum theory and symplectic limit[END_REF] behave in the same way as in the proof of Theorem 1.1.(ii) in the special unitary case. This proves that lim

N →∞ S N,1 = n∈Z q n 2 ∞ m=1 1 (1 -q m ) 2 .
Now let us treat the cases of Λ N,2 , Λ N,3 and Λ N,4 . The arguments are the same for the three of them, so we only choose to detail the case of Λ N,2 . We have, using Equation ( 16),

0 ⩽ S N,2 ⩽ α ⩽N γ , β >N γ n∈Z q n+ α -β N 2 q 1 2 ( α + β ) ,
and the sum between brackets can be bounded independantly from N, α and β by C = 1 + ϑ(0; iT 2π), thus

0 ⩽ S N,2 ⩽C α q 1 2 α β >N γ q 1 2 γ =C α q 1 2 α k>N γ p(k)q k 2 → 0, as N → ∞.
This concludes the proof in the same way as in the special unitary case.

Non-orientable surfaces

We now turn to the study of non-orientable surfaces. Let us recall that any such surface can be constructed as the connected sum of g projective planes. In order to estimate the large N asymptotics of its associated partition function, we need to compute the Frobenius-Schur indicator associated to any highest weight.

Frobenius-Schur indicator of a highest weight of U(N ) or SU(N )

Let (ρ, V ) a complex finite-dimensional representation of a compact group G of character χ V . The Frobenius-Schur indicator

ι χ V = G χ V (g 2 )dg
appears in particular in the study of symmetric and alternating parts of the tensor product representation

V ⊗ V = Sym 2 V ⊕ ⋀ 2 V.
Indeed, straightforward computations involving the canonical bases of V ⊗ V , Sym 2 V and

⋀ 2 V yield χ V (g 2 ) = χ V (g) 2 -2χ ⋀ 2 V (g) (22) 
and

χ V (g 2 ) = 2χ Sym 2 V (g) -χ V (g) 2 . ( 23 
)
Furthermore, ρ is said to be:

(i) Real if it exists a symmetric G-invariant nondegenerate bilinear form;

(ii) Quaternionic if it exists a skew-symmetric G-invariant nondegenerate bilinear form;

(iii) Complex if there is no G-invariant nondegenerate bilinear form.

The value of ι χ V is actually based on this classification, as stated by the following Proposition.

Proposition 3.1. Let (ρ, V ) be a complex finite-dimensional representation of a compact group G, with character χ. Its Frobenius-Schur indicator satisfies the following equation:

ι χ V = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 if ⟨χ triv , χ Sym 2 V ⟩ = 1, i.e. ρ is real; -1 if ⟨χ triv , χ ⋀ 2 V ⟩ = 1, i.e. ρ is quaternionic; 0 otherwise, i.e. ρ is complex. (24) 
Proof. If we sum up Equations ( 22) and ( 23), we have

2ι χ V = G 2χ Sym 2 V (g)dg -2 G χ ⋀ 2 V (g)dg = 2 ⟨χ triv , χ Sym 2 V ⟩ -⟨χ triv , χ ⋀ 2 V ⟩ .
Then, as Sym 2 V and ⋀ 2 V are in direct sum, it appears that there are 3 cases: ⟨χ triv , χ Sym 2 V ⟩ = 1 and ⟨χ triv , χ ⋀ 2 V ⟩ = 0, which gives ι χ = 1; ⟨χ triv , χ Sym 2 V ⟩ = 0 and ⟨χ triv , χ ⋀ 2 V ⟩ = 1, which gives ι χ = -1; ⟨χ triv , χ Sym 2 V ⟩ = 0 and ⟨χ triv , χ ⋀ 2 V ⟩ = 0, which gives ι χ = 0.

As a consequence of this result, computing the Frobenius-Schur indicator of an irreducible representation of U(N ) or SU(N ) can be done by determining whether the representation is real, complex or quaternionic. The following theorem gives a classification depending on the highest weight. (iii) If N is large enough and λ ∈ Λ N,1 is an almost flat highest weight, then there is no quaternionic irreducible representation of SU(N ) with highest weight λ.

Note that when λ = λ(α, β) and α = β or α = β (depending on the parity of N ), the integer λ 1 = α 1 + β 1 = 2α 1 is always even, so that the condition n = λ 1 2 makes sense. The main point of this theorem is that highest weights that are not symmetric are complex and therefore do not contribute to the non-orientable partition function because their Frobenius-Schur indicator vanishes. We can also notice that quaternionic representations of SU(N ) with almost flat highest weight do not appear in the large N scale, and that the partition function becomes a sum of nonnegative terms.

The proof of Theorem 3.2 will rely on two propositions. Real if for all i m i = m N -i and one of the following cases is satisfied:

The unitary case

As for the special unitary case, the proof of the unitary case for non-orientable surfaces of genus g ⩾ 3 is similar to the one of orientable surfaces of genus g ⩾ 2. Indeed, the point is to show that only constant highest weights contribute to the large N limit.

Proof of Theorem 1.2.(i) in the unitary case. Let us consider g ⩾ 3 and T > 0. The only constant highest weight of U(N ) corresponding to a non-complex irreducible representation is (0, . . . , 0), and has Frobenius-Schur indicator equal to 1. We can then split the partition function Z - N (g, T ) into two parts:

Z - N (g, T ) = 1 +
λ∈ SU(N ) λ≠(0,...,0) n∈Z e -T 2 c 2 (λ+n) d 2-g λ+n ι g λ+n .

Now, given λ ∈ SU(N ) and n ∈ Z, we know that a necessary and sufficient condition for ι λ+n to be nonzero is that λ 1 = -2n, therefore we have

Z - N (g, T ) -1 =
λ∈ SU(N ) λ≠(0,...,0) λ 1 is even

q c 2 (λ-λ 1 2 ) d 2-g λ ⩽
λ∈ SU(N ) λ≠(0,...,0) d 2-g λ .

We are now in the same setting as in the special unitary case, and the convergence follows from the same arguments.

The Klein bottle

The Klein bottle is the non-orientable equivalent to the torus, as we will see, in the sense that the dimension of the irreducible representations do not appear in the formula of the partition function. Hence, the proof of Theorem 1.2.(ii) is using almost flat highest weights as well.

The special unitary case

Proof of Theorem 1.2.(ii) in the special unitary case. Let γ ∈ (0, 1 2 ), and the subsets (Λ N,i ) 1⩽i⩽4 of SU(N ) as in the case of the torus. We define, for 1 ⩽ i ⩽ 4,

S ′ N,i = λ∈Λ N,i ι 2 λ(α,β) q c ′ 2 (λ) = λ∈Λ N,i q c ′ 2 (λ) ,
and we obtain the following decomposition:

Z ′ - N (1, T ) = S ′ N,1 + S ′ N,2 + S ′ N,3 + S ′ N,4 .
Let λ(α, β) be an element of Λ N,1 . We will discuss the case when N is even and the case when it is odd, and show that the subsequences (Z ′ -2M ) and (Z ′ -2M +1 ) both converge to the same limit.

If N = 2M + 1, from Theorem 3.2 we know that ι 2 λ(α,β) = 1 if α = β, and 0 otherwise. If this is the case, we can simplify Equation ( 14) into

c ′ 2 (λ(α, α)) = 2 α + 4K(α) N , (25) 

Figure 1 :

 1 Figure 1: From two partitions α and β and an integer n ∈ Z, we can form the highest weights λ(α, β, n) ∈ Û(N ) (on the left) and λ(α, β) ∈ SU(N ) (on the right).

Figure 2 :

 2 Figure 2: On the left: the highest weight (4, 0) can be written in several ways as λ 2 (α, β) with α and β of length 1. On the right: the highest weight (4, 3, 3, 2, 1, 1, 0) is equal to λ 7 ((2, 1, 1), (2, 1, 1)) as well as to λ 7 ((3, 2, 2, 1), (1)).

Figure 4 :

 4 Figure 4: Two ways of listing the contents of the boxes of the diagram (3, 3, 2, 1).
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 32 Let λ ∈ SU(N ) be a highest weight and n ∈ Z be an integer.(i) If N = 2M +1 is odd and (α, β) ∈ SU(M +1) 2 such that λ = λ(α, β),then an irreducible representation of SU(N ) with highest weight λ is complex iff α ≠ β. Moreover, an irreducible representation of U(N ) with highest weight λ + n is real if α = β and n = -α 1 , otherwise it is complex. (ii) If N = 2M is even, (α, β) ∈ SU(M ) × SU(M + 1) such that λ = λ(α, β), then set β = (β 1 -β M , . . . , β M -1 -β M , 0) ∈ SU(M ), and an irreducible representation of SU(N )with highest weight λ is complex iff α ≠ β. Moreover, an irreducible representation of U(N ) with highest weight λ + n is real if α = β and n = -α 1 , otherwise it is complex.
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 33 [START_REF] Fulton | Representation theory[END_REF], Prop.26.24). Let λ = (λ 1 ⩾ ⋯ ⩾ λ N = 0) be a highest weight of SU(N ). Let m i = λ iλ i+1 ∈ N for every i ∈ {1, . . . , N -1}. An irreducible representation of SU(N ) with highest weight λ is:Complex if there exists i such that m i ≠ m N -i ;
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If g = 0 then by convention it is a sphere; otherwise it can also be seen as a torus with g handles.

Here, we take it as a definition; however, it follows from lattice gauge theory axioms and is derived for example in[START_REF] Forrester | Non-intersecting Brownian walkers and Yang-Mills theory on the sphere[END_REF][START_REF] Gross | Two-dimensional QCD is a string theory[END_REF][START_REF] Witten | On quantum gauge theories in two dimensions[END_REF].

See[START_REF] Witten | On quantum gauge theories in two dimensions[END_REF] for an explanation of the formula.

Small compared to N but not necessarily finite.
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-N is odd; -N = 4k for a given k ∈ N; -N = 4k + 2 for a given k ∈ N and m 2k+1 is even;

Quaternionic if for all i m i = m N -i , N = 4k + 2 for a given k ∈ N and m 2k+1 is odd.

Proposition 3.4 ([3], §5.2). Let (π, V ) be an irreducible representation of U(N ) of highest weight λ. If it is self-conjugate, that is, λ i = -λ N +1-i for all 1 ⩽ i ⩽ N , then it is real, otherwise it is complex.

Proof of Theorem 3.2. (i) and (ii) are direct consequences of Prop. 3.3 and 3.4. (iii) follows from the fact that for N = 4k + 2 with k large enough, if λ = λ(α, β) is almost flat, then there is no 'jump' between λ 2k+1 and λ 2k+2 , thus m 2k+1 = 0 is always even.

Non-orientable surfaces of genus g ⩾ 3

The special unitary case

The proof of Theorem 1.2.(i) will be based on the same reasoning as for orientable surfaces of genus g ⩾ 2, that is, using Proposition 2.2 to show that the contribution of all other highest weights than (0, . . . , 0) vanish in the large N limit. However, the case of non-orientable surfaces with g = 3 will need a finer control, as we will see later. In particular, for even values of N and g = 3 the following inequality is needed. Proposition 3.5. Let N = 2M be an integer, α ∈ SU(M ) and β ∈ SU(M +1) be two highest weights. We define λ(α, β) as in Section 2.2, and

Proof. Using Equation (1) and the fact that

Combining both inequalities gives the expected result.

Proof of Theorem 1.2.(i). The highest weight (0, . . . , 0) is associated to the trivial representation, which is real by Proposition 3.1 and has dimension 1 and Casimir number 0. We can then rewrite

and the remaining sum can be bounded as follows:

λ∈ SU(N ) λ≠(0,...,0)

If g ⩾ 4, then the right-hand side has been proved to converge to 0 as N → ∞ in the proof of Theorem 1.1, hence the result follows. Now, if g = 3, we need to refine the analysis in order to get the convergence. From Theorem 3.2, it appears that λ ∈ SU(N ) contributes to the partition function iff it is symmetric. The case N = 2M + 1 is easier to prove, so we start with it. As ι λ = 0 if λ is associated with a complex representation, we have

Then, letting M tend to infinity and using Proposition 2.2, we have indeed lim

). Theorem 3.2 states that λ(α, β) contributes to the partition function iff α = β. It implies:

We can then apply Proposition 3.5 to get

The first sum is bounded because 1 + n M -M ⩽ e -n for any n, M , and the second one converges, following the same argument as in the case N = 2M + 1. We finally get lim

for any α of length r and N ⩾ 2r. Let us recall the estimation 2K(α) ⩽ α ( α -1), which leads for λ(α, α) ∈ Λ N,1 to

We then get the estimate

and both bounds converge to the expected quantity

as in the g ⩾ 3 case. We know from Theorem 3.2 that ι λ(α,β) = 1 if α = β and 0 otherwise, so we have

The condition α , β ⩽ N γ is then equivalent to

.

Furthermore, Equation ( 17) becomes

We obtain that

The sums over n are bounded between 1 and ∑ n∈N q M n which is bounded because q M < 1 and converges to 1 as N tends to infinity (by dominated convergence). It finally appears that both bounds of ( 27) and ( 28) converge to ∏ ∞ m=1 1 1-q 2m . By similar arguments as the ones used in the case of the torus, we can prove that S ′ N,2 , S ′ N,3 and S ′ N,4 all converge to 0 as the remainders of convergent series. This concludes the proof.

The unitary case

Proof of Theorem 1.2.(ii) in the unitary case. Let us start from the definition of Z - N (2, T ). We have

We know from Corollary 3.2 that ι λ(α,β)+n = 1 if λ(α, β) is symmetric and n = -λ 2 = -α 1 , and 0 otherwise. We can then simplify the formula into

As in the special unitary case, we will distinguish between the odd and even values of N , and prove that lim

which implies the convergence of (Z - N ). If N = 2M + 1, the symmetry condition is equivalent to α = β, and in particular λ(α, β)β 1 = λ(α, β, 0). Its Casimir number is given in Equation ( 13):

Comparing with [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] we remark that c 2 (λ(α, β, 0)) = c ′ 2 (λ(α, β)). Then,

and we can conclude from the special unitary case.

as in the g ⩾ 3 case, then the symmetry condition is equivalent to the fact that α = β and we have

Let γ ∈ (0, 1 2 ), and the subsets (Λ N,i ) 1⩽i⩽4 of SU(N ) as usual. We define, for 1 ⩽ i ⩽ 4, S N,i = λ(α,β)∈Λ N,i α= β q c 2 (λ(α,β,0)) , and we obtain the following decomposition:

Z - N (1, T ) = S N,1 + S N,2 + S N,3 + S N,4 .

The condition α , β ⩽ N γ is then equivalent to

.

From ( 13) and ( 14) we have

We can combine all these estimations with (17) to obtain

Recall that for λ(α, β) ∈ Λ N,1 we have β M ⩽ 2 N γα N ⩽ 2N γ-1 , which yields