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Abstract: A complex processing chain is applied from the moment a raw image is acquired until
the final image is obtained. This process transforms the originally Poisson-distributed noise into a
complex noise model. Noise inconsistency analysis is a rich source for forgery detection, as forged
regions have likely undergone a different processing pipeline or out-camera processing. We propose a
multi-scale approach, which is shown to be suitable for analyzing the highly correlated noise present
in JPEG-compressed images. We estimate a noise curve for each image block, in each color channel
and at each scale. We then compare each noise curve to its corresponding noise curve obtained from
the whole image by counting the percentage of bins of the local noise curve that are below the global
one. This procedure yields crucial detection cues since many forgeries create a local noise deficit.
Our method is shown to be competitive with the state of the art. It outperforms all other methods
when evaluated using the MCC score, or on forged regions large enough and for colorization attacks,
regardless of the evaluation metric.

Keywords: blind estimation; forged image detection; heatmap; JPEG; noise level function

1. Introduction

An escalating number of falsified images are being shared on the web and feeding
fake news. Indeed, the popularization of digital devices as well as the development of user-
friendly manipulation software have resulted in an increase in the traffic of manipulated
content. The credibility of images is under question, and therefore, methods relying on
scientific evidence are required to assess the authenticity of images.

Two different approaches have emerged to address this issue. On the one hand,
techniques such as digital image watermarking prevent image forgery by embedding data
at the moment of digitization. Such data can be detected or extracted later to authenticate
the image [1]. Although these methods provide reliable authentication, they are limited to
specifically equipped cameras.

On the other hand, passive methods that do not depend on prior knowledge have
also been developed. These methods rely on the fact that image forgery techniques leave
specific traces that can be detected as local inconsistencies in the image statistics [2,3].
Most classic methods aim to detect specific cues such as misalignment of the Bayer pat-
tern or perturbations in the demosaicing traces [4–6], differences in the camera response
function [7,8], or inconsistencies in the JPEG-compression grid or quality [9–12].

Recent deep-learning models have been developed to tackle the task of forgery de-
tection [13]. These methods can be trained to detect specific falsification techniques
such as splicing [14,15], copy-move [16,17] and inpainting [18,19], or to detect general
attacks [20–22]. The main challenge shared by these methods is the construction of ade-
quate training datasets ensuring good results on new real-world examples.

As first suggested by [3], noise residuals can provide substantial cues for detecting
forgeries. Indeed, the initial Poisson noise [23] is transformed by multiple operations
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specific to each image formation process [24], leading to the final JPEG image. Hence,
detecting noise inconsistencies is a rich source of forgery evidence. The use of noise
residuals has evolved over time. Early methods [25,26] directly search inconsistencies
in this residual whereas more recent algorithms use it as an input for further feature
extraction [27,28]. Accurately estimating the residual noise traces after the complex set
of transformations of the camera’s processing chain is the main challenge of this class
of algorithms.

With these considerations in mind, we propose a noise-based method built on non-
parametric multi-scale noise estimation [29]. The multi-scale approach has been shown to
effectively deal with the correlations introduced by the demosaicing and JPEG-compression
processes [30] and stands out as a suitable framework for noise inconsistency analysis.

The rest of the article is organized as follows. Section 2 reviews the image forgery
detection techniques based on noise inspection. The proposed method is described in
Section 3. Section 4 presents experimental results in addition to a comparison with other
state-of-the-art techniques. The main conclusions are summarized in Section 5, where
future work directions are also highlighted.

2. Related Work

The residual noise observable in images depends on the in-camera processing pipeline.
It can therefore reveal the presence of tampered regions by detecting local inconsistencies
in the noise statistics that are incompatible with a unique camera processing chain. Such
inconsistencies can be produced by the forgery or its post-processing.

The most outstanding source of non-uniform noise is the photo-response non-uniformity
(PRNU) which is caused by small differences in the way sensors react to the light source.
PRNU-based forensics methods, such as [31–33], are mostly used for source camera identi-
fication. However, since PRNU varies across the image itself, it can also provide evidence
of a local manipulation. The main limitation is that PRNU-based detection methods re-
quire access to a certain number of (untampered) images taken with the same camera,
to accurately estimate the PRNU pattern.

Blind noise-based detection methods usually estimate noise variance locally to detect
suspicious regions and then apply a classification criterion to locate forgeries. In [25],
the noise variance is estimated in blocks using a median absolute deviation (MAD) estima-
tor in the wavelet domain. Classification is performed using homogeneous noise standard
deviation criteria. In turn, Ke et al. [34] proposes noise level estimation using principal
component analysis (PCA) [35]. K-means is then applied to group image blocks into two
clusters. A similar approach can be found in [36]. A different method was introduced
in [37], where block-wise noise estimation is based on the observation that the kurtosis
values across different band-passed filter channels are constant [38]. The method concludes
by segmenting the image into regions with significantly different noise variances by k-
means. In [39], the image is segmented using the simple linear iterative clustering (SLIC)
algorithm. Then, for each region, five filters are used to extract noise. The computed noise
features are then used for classification, which is performed by energy-based graph cut.

The aforementioned methods estimate a single and constant noise level, namely an
additive white Gaussian noise (AWGN) model. However, this hypothesis does not hold
in realistic scenarios since noise levels depend on the image intensity [40]. More recent
methods consider this fact and estimate a noise level function (NLF) rather than a single
noise level. In [41], the authors proposed to jointly estimate the NLF and the camera
response function (CRF) by segmenting the image into edge and non-edge regions. Noise
level functions are then compared and an empirical threshold is fixed in order to detect
salient curves. The methods introduced in [42,43] instead analyze a histogram based on
the noise density function at the local level in order to reveal suspicious areas. The method
proposed in [44] computes an NLF-based on Wiener filtering. Local noise levels in regions
with a certain brightness are assumed to follow a Poisson distribution, according to which,
the larger the distance to the NLF, the higher the probability of forgery. On the other hand,
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the approach developed in [45] consists of estimating a noise level function that depends
on the local sharpness rather than on the intensity.

Recently, forgery detection methods based on deep learning and feature modeling
have been developed. The method reported in [27] proposes using noise residuals to
extract local features and compute their co-occurrence histograms, which are then classified
in two classes using the expectation–maximization algorithm. More recently, the same
authors presented a novel CNN-based method for noise residual extraction [28]. A similar
approach can be found in [46]. On the other hand, Zhou et al. [47] proposed a two-stream
CNN, one for the detection of tampering artifacts and the other to leverage noise features.
Deep learning-based methods are more general than previously described ones. A major
limitation of these methods is that they require large training datasets, which are not always
available. Furthermore, their performance generally remains dataset dependent.

3. The Proposed Method

We propose a new method for JPEG-compressed image forgery detection based on
multi-scale noise estimation. The method addresses the fact that, after going through the
complete camera processing pipeline, noise is not only signal-dependent but also frequency-
dependent. In particular, after demosaicing, noise becomes spatially correlated, and
furthermore, the quantization of the DCT coefficients during JPEG-compression differently
affects the noise at each frequency. In this context, multi-scale noise estimation is the most
suitable approach since it enables capturing noise at medium and low frequencies.

Let I be an image with C color channels. We first split the image into W ×W blocks
with 1/2 overlap, extending the image in the borders by mirroring if necessary. We will
refer to these blocks as macroblocks.

For each color channel, we estimate the global image noise curve as well as the local
noise curves for each macroblock using an adaptation of the technique [29], described in
Appendix A. For each channel, we compare the global noise curve with the ones locally
obtained by computing the number of bins of the local noise curve that are below the global
noise curve. By doing so, we obtained a heatmap for each channel that shows, for each
macroblock, the percentage of bins in its noise curve whose count is below the global
estimation. The information contained in the C obtained heatmaps is then combined by
taking their geometric mean. As a result, we obtain a single heatmap.

For non-forged images, we expect the macroblocks to show similar noise levels func-
tions as the one computed for the whole image. However, noise estimation is highly
affected by image content. Indeed, noise overestimation is expected to happen in textured
regions [48]. As a consequence, local noise curves computed over textured areas may be
above the global one, even if no tampering has been performed. To prevent this kind of
macroblock being perceived as suspicious, we only consider the number of bins below
the global noise curve. Indeed, the global noise curve provides a lower bound for local
noise curves since the noise estimation algorithm [29] has more samples from which to
choose the adequate ones to estimate noise. Therefore, local noise curves that are below the
global one are suspected to correspond to a different source. Figure 1 depicts the previously
described situation. Indeed, we can observe that the non-forged macroblock shows higher
noise levels than the global image, even though it is not tampered. On the other hand,
the manipulated macroblock exhibits lower noise levels.

The next step consists of repeating the previously described process but replacing
the image I and the macroblocks by their down-scaled version. To this aim, let S be the
operator that tessellates the image into sets of 2× 2 pixels blocks, and replaces each block
by the average of the four pixels. We define Sn(I)as the n-th scale of an image I obtained by
applying n times the operator S to the image I. This procedure allows noise curves to show
the noise contained in lower frequencies and can provide further evidence of tampering
that could be hidden under strong JPEG-compression.
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Figure 1. Estimated noise curves for the global image and for two macroblocks—one of which is
contained in the manipulated region and the other is coming from the non-manipulated part of
the image.

By iterating the process at successive scales, we obtain one heatmap per scale which
shows the geometric mean of the percentages obtained at each channel. Each of these
heatmaps may provide useful information to detect tampering since they account for noise
contained at different frequencies. The sum of the heatmaps obtained at the different scales
is computed and then normalized in the [0, 255] interval. To obtain the final heatmap,
for each pixel we compute the average of the values of each macroblock containing it.

The residual noise present in images having undergone demosaicing and JPEG-
compression is correlated and therefore creates medium-sized noise spots. This may
cause the blocks of size 8× 8 used for noise estimation to fit inside these spots, thus causing
noise underestimation. Again, estimating noise in sub-sampled versions of the image en-
ables these spots to fit inside the scanning blocks and to accurately measure low-frequency
noise. We propose repeating the sub-scaling process until reaching S2(I), as suggested
in [30].

Further scales could be also considered. However, the most relevant information is
already retrieved at S2. Furthermore, the macroblock’s size would become critically small
and unfit to estimate noise curves: if the original macroblocks are sized W ×W in S0, in S1
they will be of size (W/2)× (W/2), and in S2 of size (W/4)× (W/4). Indeed, as shown in
Appendix B, the best performance for the proposed method is achieved when considering
macroblocks of size W = 256. In this context, the macroblocks are sized 128× 128 in S1
and 64× 64 in S2.

Figure 2 shows the pipeline of the proposed method, from the moment that the
algorithm is fed with the input image until the final heatmap is delivered. Additionally,
a summarized version of the proposed method is given below.

Given a suspect image and the parameters for the method (macroblock side, stride
and number of scales), the proposed algorithm goes as follows:

1. Open the suspect image.
2. Get a list of all macroblocks according to the given macroblock size and the consid-

ered stride.
3. For each scale and each color channel, estimate the global NLF of the image and

compare it to NLF computed at each macroblock. We are interested in the percentage
of histogram bins below the global curve.

4. To obtain the final result of the algorithm, the heatmaps obtained at each of the scales
are combined.

Please refer to Algorithm 1 for a detailed pseudo-code description. The actual source
code is available at (accessed on 31 May 2021) https://github.com/marigardella/PB_
Forgery_Detection, together with the instructions and requirements to run the method.
Further implementation details are given in Appendix C.

https://github.com/marigardella/PB_Forgery_Detection
https://github.com/marigardella/PB_Forgery_Detection
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Figure 2. Complete pipeline of the method: successive scales are extracted from the input image.
At each scale, one heatmap per color channel is computed and then combined according to their
geometric mean. Finally, the obtained heatmaps at each scale are summed and normalized to produce
the final output.

Algorithm 1 Pseudo-code for the proposed method
Input: image I of shape Nx × Ny with C color channels.
Parameters: W = 256 macroblock side, S = 0.5 stride, num_scales = 3 number of scales.

1: Mx = bNx/(W × S)c − 1. . horizontal number of macroblocks
2: My = bNy/(W × S)c − 1. . vertical number of macroblocks
3: macroblocks_list← list of all W ×W macroblocks with S stride.
4: for each scale s do
5: for each channel c do
6: Ic

s ← get image in scale s and channelc.
7: f Ic

s ← noise curve estimation for Ic
s using [29] as described in A.

8: Hc ← zeros(Mx ×My).
9: for each macroblock in macroblocks_list do

10: Mc
s ← get macroblock in scale s and channel c.

11: fMc
s ← noise curve estimation for Mc

s using [29] as described in A.
12: Hc[Mc

s ]← percentage of bins of fMc
s below f Ic

s .
13: end for
14: end for
15: Hs ← geometric mean of the heatmaps Hc.
16: end for
17: Haux ← sum and normalization of heatmaps Hs.
18: H ← compute for each pixel the average of Haux for each macroblock containing it.
19: return H.

4. Experimental Results

We conducted two experiments. First, we evaluated the relevance of the multi-scale
approach by comparing the results obtained using a single scale (S0(I)), two sub-scales
(S0(I) and S1(I)) and three sub-scales (S0(I), S1(I) and S2(I)). Second, we compared our
method with state-of-the-art forgery-detection algorithms based on noise analysis.

Datasets

All experiments were conducted on the CG-1050 database [49] which contains four
datasets, each one corresponding to a different forgery technique: colorization, copy-move,
splicing and retouching. The total number of forged images is 1050. This database is
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varied in nature, including images captured in 10 different places. The size of the images is
3456× 4608 or 4608× 3456 pixels. The database includes both RGB and grayscale images,
all of which are JPEG-compressed. The estimated JPEG-quality [50] for each dataset is
shown in Table 1.

Table 1. Average JPEG-quality and range for each of the datasets.

Retouching Colorization Splicing Copy-Move

Average JPEG-quality 86.9 86.8 87.3 86.8
JPEG-quality range [71,88] [71,88] [71,88] [71,88]

Forgery masks were constructed by computing the absolute difference between the
original image and the forged one in each channel. To avoid pixels whose values had
changed due to global manipulations rather than tampering, the difference from one image
to another was thresholded. Only pixels whose value varied more than this threshold for at
least one channel were kept. Masks were then further refined in order to prevent isolated
pixels from being regarded as forged. The thresholds used were 15 for the copy-move,
colorization and splicing datasets and 10 for the retouching one.

The distribution of the mask’s size on each of the four datasets is shown in Figure 3.

200 400 600 800 1000 1200
Mask size

0.0000

0.0005

0.0010

0.0015

0.0020

Retouching

0 500 1000 1500 2000 2500
Mask size

0.0000

0.0002
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0.0012

0.0014

Colorization
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0 200 400 600 800 1000 1200 1400 1600
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0.0010

0.0015

0.0020

Copy-move

Figure 3. Distribution of the forgery size in each of the datasets considered. The forgery size is shown
as the square root of the mask size, which represents the side of its equivalent square.

Evaluation Measures

Forgery localization is a particular case of binary classification. Indeed, there are two
possible classes for each pixel: forged (positive) or non-forged (negative). Performance
measures are usually based on the confusion matrix [51], which has four values, each one
corresponding to the four possible combinations of predicted and actual classes, as shown
in Figure 4.
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True positivePositive

Positive

False negative

Negative

False positiveNegative True negative

Actual class

Predicted class

Figure 4. Confusion matrix: rows represent the actual classes while columns represent the prediction.
The matrix has four possible values, corresponding to the four possible combinations of predicted
and actual classes.

Three metrics based on these four quantities are proposed in order to compare the
results obtained in both experiments. Namely, we evaluated the results using the IoU,
the F1 and the MCC scores, defined as

MCC =
TP× TN− FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
,

IoU =
TP

TP +FN + FP
,

F1 =
2TP

2TP +FN +FP
.

where TP stands for true positive, TN for true negative, FN for false negative and FP for
false positive.

These metrics are designed to evaluate binary-estimated masks. However, all of the
methods analyzed in this paper propose continuous heatmaps rather than binary masks.
To adapt the metrics to the continuous setting, we used their weighted version. In this
approach, the value of a heatmap H at each pixel x is regarded as the probability of forgery
of the pixel. Therefore, we define the weighted true positives, weighted true negatives,
weighted false negatives and weighted false positives as:

TPw = ∑
x

H(x)×M(x),

TNw = ∑
x
(1− H(x))× (1−M(x)),

FNw = ∑
x

H(x)× (1−M(x)),

FPw = ∑
x
(1− H(x))×M(x),

respectively, where H is the output heatmap normalized between 0 and 1, and M is the
ground-truth binary mask where pixels with a value of 1 are forged. Then, the weighted
version of the IoU, F1 and MCC scores are obtained replacing TP, TN, FN and FP with their
weighted versions. It is important to point out that for some of the methods, the output
is a two-sided heatmap (meaning that suspicious regions can appear in lighter or darker
colors). Taking this into consideration, both the output heatmap and the inverted one are
evaluated and only the highest score is kept.

4.1. Relevance of the Multi-Scale Approach

We first examined the pertinence of a multi-scale scheme. For this purpose, we
computed the results obtained when considering one single scale S0(I) (which would
correspond to the input image), using two scales S0(I) and S1(I), and using three scales
S0(I), S1(I) and S2(I). The scores obtained for each of these settings are shown in Table 2.
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Table 2. MCC, IoU and F1 scores for our method with one scale (PB1), two scales (PB2) and three
scales (PB3).

MCC

Retouching Colorization Splicing Copy-Move

PB1 0.0672 0.0958 0.0276 0.0380
PB2 0.0848 0.1066 0.0310 0.0377
PB3 0.0915 0.1108 0.0316 0.0362

IoU

Retouching Colorization Splicing Copy-Move

PB1 0.0242 0.0721 0.0112 0.0148
PB2 0.0284 0.0756 0.0122 0.0149
PB3 0.0300 0.0761 0.0123 0.0145

F1

Retouching Colorization Splicing Copy-Move

PB1 0.0454 0.1122 0.0216 0.0281
PB2 0.0529 0.1175 0.0234 0.0282
PB3 0.0557 0.1192 0.0236 0.0276

We can observe that using multiple scales leads to better results compared to a single
one. Indeed, in all four datasets, the scores obtained by PB2 and PB3 are better than those
obtained by PB1 for the three metrics. Regarding the number of scales yielding a better
performance, the use of three scales obtains the best scores for the retouching, colorization
and splicing datasets, whereas the use of two scales achieves a better performance in
the copy-move dataset. However, the results obtained for the copy-move dataset are
poor for the three variants of the method, and furthermore, they have very similar scores.
We conclude that the use of three scales, S0(I), S1(I) and S2(I), gives the best performance
among the evaluated alternatives. In fact, given that JPEG-compression is applied in 8× 8
blocks without overlap, it is at S2 that the most accurate noise estimation is achieved since
we are able to capture noise contained in lower frequencies, which is less affected by the
quantization of the DCT coefficients.

4.2. Comparison with State-of-the-Art Methods

In order to assess the performance of our method, we compared the results obtained on
the CG-1050 dataset with those delivered by state-of-the-art noise-based methods: Splice-
buster [27], Noiseprint [28], Mahdian [25], Pan [26], Zeng [36], Zhu [45] and Median [52].
For each algorithm, we used a publicly available implementation [53]. Table 3 lists all the
evaluated methods as well as their reference article and the link to the source code used for
the comparison.

Table 3. State-of-the-art methods used for the comparison as well as their reference and link to source code.

Method Ref. Source Code

Mahdian [25] https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021)
Pan [26] https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021)
Zeng [36] https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021)
Median [52] https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021)
Splicebuster [27] http://www.grip.unina.it/research/83-multimedia_forensics (accessed on 31 May 2021)
Noiseprint [28] http://www.grip.unina.it/research/83-multimedia_forensics (accessed on 31 May 2021)
Zhu [45] https://github.com/marigardella/Zhu_2018 (accessed on 31 May 2021)

https://github.com/MKLab-ITI/image-forensics
https://github.com/MKLab-ITI/image-forensics
https://github.com/MKLab-ITI/image-forensics
https://github.com/MKLab-ITI/image-forensics
http://www.grip.unina.it/research/83-multimedia_forensics
http://www.grip.unina.it/research/83-multimedia_forensics
https://github.com/marigardella/Zhu_2018
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The obtained results are given in Table 4. We observe that Splicebuster outperforms
the rest of the methods in the retouching and splicing datasets regardless of the metric.

Table 4. Results of the evaluated methods measured by the average weighted IoU, F1 and MCC
scores for each dataset that maximized the score.

MCC

Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0915 (2) 0.1108 (1) 0.0316 (2) 0.0362 (1) 1.5
Splicebuster 0.1176 (1) 0.0535 (4) 0.0502 (1) 0.0233 (4) 2.5
Mahdian 0.0434 (6) 0.0566 (3) 0.0247 (4) 0.0257(3) 4
Pan 0.0513 (4) 0.0681 (2) 0.0282 (3) 0.0306 (2) 2.75
Noiseprint 0.0558 (3) 0.0361 (6) 0.0182 (6) 0.0177 (6) 5.25
Median 0.0479 (5) 0.0469 (5) 0.0204 (5) 0.0195 (5) 5
Zeng 0.0180 (7) 0.0262 (7) 0.0119 (8) 0.0117 (8) 7.5
Zhu 0.0147 (8) 0.0201 (8) 0.0180 (7) 0.0123 (7) 7.5

IoU

Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0300 (3) 0.0761 (1) 0.0123 (2) 0.0145 (2) 2
Splicebuster 0.0600 (1) 0.0577 (2) 0.0242 (1) 0.0166 (1) 1.25
Mahdian 0.0168 (5) 0.0548 (4) 0.0102 (5) 0.0131(5) 4.75
Pan 0.0198 (4) 0.0576 (3) 0.0109 (4) 0.0138 (4) 3.75
Noiseprint 0.0312 (2) 0.0450 (7) 0.0114 (3) 0.0142 (2) 3.5
Median 0.0163 (6) 0.0513 (5) 0.0095 (7) 0.0123(6) 6
Zeng 0.0136 (7) 0.0441 (8) 0.0084 (8) 0.0114 (8) 7.75
Zhu 0.0129 (8) 0.0453 (6) 0.0102 (5) 0.0116(7) 6.5

F1

Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0557 (3) 0.1192 (1) 0.0236 (2) 0.0276 (2) 2
Splicebuster 0.1081 (1) 0.0965 (2) 0.0448 (1) 0.0314 (1) 1.25
Mahdian 0.0324 (5) 0.0902 (4) 0.0199 (6) 0.0250(5) 5
Pan 0.0380 (4) 0.0946 (3) 0.0211 (4) 0.0264 (4) 3.75
Noiseprint 0.0588 (2) 0.0778 (7) 0.0222 (3) 0.0271 (3) 3.75
Median 0.0315 (6) 0.0857 (5) 0.0185 (7) 0.0236 (6) 6
Zeng 0.0264 (7) 0.0765 (8) 0.0165 (8) 0.0220 (8) 7.75
Zhu 0.0250 (8) 0.0779 (6) 0.0200 (5) 0.0224(7) 6.5

Our method ranks first for colorization attacks for all the three metrics considered.
This forgery technique shows the relevance of considering noise curves instead of single
noise levels. Indeed, when changing the color in a region of the image, noise levels are
not necessarily perturbed. However, those noise levels will not be consistent with the
new intensity but with the original. Estimating noise curves as the proposed method
does enables detecting this kind of inconsistency which only appears when considering
intensity-dependent noise models.

Regarding the copy-move dataset, Splicebuster delivers the best results when consid-
ering the F1 and IoU scores. However, our approach obtains the best MCC score.

The average ranking shows that Splicebuster outperforms the rest of the methods
when considering both the F1 and IoU scores, followed by our method. Nevertheless, our
method achieves the best average ranking when considering the MCC score, followed
by Splicebuster.

Noiseprint stands out as the third best performing method for the IoU and F1 scores.
It even ranks second for retouching and copy-move attacks when considering these scores.
However, it shows a poor performance for the colorization dataset. This can be ex-
plained by the fact that the camera signature is left unchanged when performing this kind
of manipulation.
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The Pan and Mahdian methods are middle-ranked, showing better results when
considering the MCC score. Finally, Median, Zeng and Zhu show the worst performance
of all the considered methods regardless of the metric considered.

All of the evaluated methods have different resolutions which may affect their perfor-
mance when forgeries are too small. To analyze the effects of the size of the forgeries, we
computed the average score as a function of the forgery size. Figure 5 shows the average
score obtained by each method when setting different lower bounds for the forgery size
in each of the datasets considered.
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Figure 5. Average weighted MCC (left), IoU (middle) and F1 (right) scores obtained by each method
as a function of the lower bound for the forgery size, in each of the datasets considered. Forgery size
is shown as the square root of the mask size, which represents the side of its equivalent square.

The results suggest that our method outperforms the state-of-the-art approaches
when considering large forgeries in all the datasets regardless of the considered score.
The fact that it does not perform that well when considering small manipulations is a
direct consequence of the size of the macroblocks. Indeed, for our method to provide
reliable detection, the tampered region should be at least of the size of one of the tested
macroblocks. In contrast, the performance of Splicebuster decreases as we consider larger
forgeries. This is partially expected since the Gaussian-uniform model used in this method
is better suited for small forgeries, as suggested by their authors in the original paper [27].

For further evaluation, we used the visual inspection of the results obtained by the
proposed method and state-of-the-art approaches. Figure 6 shows examples of the outputs
obtained by these methods for the colorization and retouching attacks, respectively, as well
as for the corresponding original untampered images.
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Figure 6. Results obtained for examples where colorization (first column) and retouching (third
column) were performed, as well as for their corresponding original images (second and fourth
columns). On the successive rows, the results obtained by each of the approaches for these images.

For the colorization attack shown in Figure 6, we can observe that, for all of the
approaches except ours, the heatmap obtained when applying the method to the forged
and original images are very similar. None of these methods is able to distinguish the
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tampered region by detecting the traces of the forgery. Instead, the proposed method
provides a significant difference between the forged and pristine image; we observe that
the forgery clearly stands out while for the pristine image, the values of the heatmap in
that area are moderated.

In the case of retouching, we observe that all of the methods point out the forged
region or at least part of it as suspicious. However, several interpretation problems arise.
When analyzing the results provided by Splicebuster, we can notice that the heatmap
corresponding to the tampered image precisely points to the border of part of the forgery.
However, when considering the pristine image, there are several areas of the heatmap
showing the same values, even if they are not tampered. The Noiseprint results better
localize the forgery even though false alarms are present in the pristine image. Mahdian,
Pan, Median, Zeng and Zhu methods show a further drawback: in the heatmap corre-
sponding to the manipulated image, the forged regions stand out at the same level as other
non-tampered parts of the image. The interpretation of the heatmaps is left to the user who
has to decide whether the regions detected as suspicious should be considered forged or
discarded. On the other hand, our method is able to localize the forgery when applied to
the tampered image while showing no extreme values for the pristine one, making it easier
for users to interpret.

5. Conclusions, Limitations and Future Research

In the fight against disinformation, the use of objective methods able to detect manip-
ulated multimedia content becomes crucial. Providing such tools is the aim of the digital
forensics research community, and in particular, of the present work. We believe that image
forgery detection is a key resource to fight fake news.

JPEG images are broadly used and clearly stand out as one of the most popular
image formats. From the acquired raw image to the final JPEG format delivered by the
camera, a complex processing chain is applied. Along this process, the originally Poisson-
distributed noise undergoes several transformations, resulting in a complex noise structure
in the JPEG image whose model does not match the AWGN hypothesis. Noise inconsistency
analysis is a rich resource for forgery detection given that forged regions are likely to have
undergone a different processing pipeline or an out-of-camera manipulation. However,
noise-based methods require accurately dealing with the changes induced by the successive
steps of the camera processing chain.

In the present paper, we proposed a method that can correctly deal with the complex
noise residuals observable in the JPEG image. The proposed method implements a multi-
scale approach which has shown to be suitable for analyzing the highly correlated noise
present in JPEG-compressed images.

Our comparative results show that our method outperforms state-of-the-art ap-
proaches when evaluating the results with the MCC score. For colorization attacks, our
method performs best, regardless of the metric. In addition, when the size of the forgeries
is large enough, our method shows the best performance in all the datasets, for all three
considered metrics.

Nevertheless, the proposed method has its own limitations, mainly related to too-small
and too-large forgeries. Indeed, if the forgery is too small with respect to the macroblock’s
size, the method is likely to miss it. On the other hand, if the forgery is comparatively too
large, the global noise curve may be distorted by the tampered region. The method is also
by construction unable to detect a pure internal copy-move. Indeed, such a manipulation
leaves the noise model unaltered. As a final negative note, the method cannot detect
splicing when the forged region has more noise than the background image.

Future work includes refining the noise estimation step to use smaller macroblocks
and thus improving the localization capabilities of our method.
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Abbreviations
The following abbreviations are used in this manuscript:

JPEG Joint Photographic Experts Group
PRNU Photo-Response Non-Uniformity
MAD Median Absolute Deviation
PCA Principal Component Analysis
SLIC Simple Linear Iterative Clustering
AWGN Additive White Gaussian Noise
NLF Noise Level Function
CRF Camera Response Function
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DCT Discrete Cosine Transform
MCC Matthews’ Correlation Coefficient
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TP True Positive
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FP False Positive
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Appendix A. Adaptation of Ponomarenko’s Noise Estimation Method

The proposed method is an adaptation of Ponomarenko’s noise estimation method [29].
We set the default number of samples per bin to 10,000 instead of 40,000 as the original
article suggests. In this way, we obtain enough bins to build the NLF of macroblocks.
Additionally, the number of filtering iterations that are applied to filter the noise curve
is set to 0 for the macroblocks’ noise curves, while it is set to 5 for the global noise curve,
as suggested by the original article. Since the NLF filtering is intended to reduce the peaks
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caused by textures, by doing so, the macroblocks’ estimated noise curves can be regarded
as a conservative upper bound of the actual noise curve.

Appendix B. Optimal Macroblock Size

The main parameter of the proposed method is W, the size of the macroblocks where
local noise curves are computed. The larger this size, the more accurate the NLF esti-
mation. However, the size of the macroblocks directly affects the precision with which
forgeries are located. As shown in Figure 5, the performance of the method relies on the
macroblocks’ size.

In order to evaluate the capabilities of the method, we carried out an analysis of such
performance depending on the size of the macroblocks. We tested three possible values for
W: 512, 384 and 256. The results, presented in Table A1, suggest that the best performance
is achieved for W = 256. Indeed, for the retouching, colorization and copy-move datasets,
the best scores are obtained when considering macroblocks of size 256× 256. On the other
hand, when considering the splicing dataset, macroblocks of size 512× 512 yield a better
IoU score. However, the difference is very small and when considering other metrics,
W = 256 achieves higher scores.

Table A1. MCC, IoU and F1 and scores for our method with one scale (PB1), two scales (PB2) and
three scales (PB3) and considering different macroblock sizes: 512, 384 and 256.

MCC

Retouching Colorization Splicing Copy-Move

PB1_512 0.0585 0.0770 0.0246 0.0316
PB2_512 0.0729 0.0830 0.0268 0.0321
PB3_512 0.0804 0.0901 0.0291 0.0320

PB1_384 0.0625 0.0838 0.0242 0.0348
PB2_384 0.0789 0.0924 0.0284 0.0350
PB3_384 0.0869 0.1015 0.0289 0.0344

PB1_256 0.0672 0.0958 0.0276 0.0380
PB2_256 0.0848 0.1066 0.0310 0.0377
PB3_256 0.0915 0.1108 0.0316 0.0362

IoU

Retouching Colorization Splicing Copy-Move

PB1_512 0.0226 0.0650 0.0113 0.0141
PB2_512 0.0262 0.0673 0.0120 0.0144
PB3_512 0.0278 0.0691 0.0124 0.0142

PB1_384 0.0234 0.0679 0.0110 0.0145
PB2_384 0.0274 0.0708 0.0120 0.0146
PB3_384 0.0289 0.0730 0.0122 0.0144

PB1_256 0.0242 0.0721 0.0112 0.0148
PB2_256 0.0284 0.0756 0.0122 0.0149
PB3_256 0.0300 0.0761 0.0123 0.0145
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Table A1. Cont.

F1

Retouching Colorization Splicing Copy-Move

PB1_512 0.0428 0.1032 0.0215 0.0268
PB2_512 0.0492 0.1067 0.0229 0.0272
PB3_512 0.0520 0.1099 0.0235 0.0270

PB1_384 0.0441 0.1068 0.0211 0.0275
PB2_384 0.0512 0.1112 0.0229 0.0277
PB3_384 0.0540 0.1151 0.0232 0.0274

PB1_256 0.0454 0.1122 0.0216 0.0281
PB2_256 0.0529 0.1175 0.0234 0.0282
PB3_256 0.0557 0.1192 0.0236 0.0276

Appendix C. Implementation Details

The main code is written in Python. The implementation of [29] used in the algorithm
is written in C++. The source code for the proposed method was run in an AMD EPYC
7371 server with 16 cores (32 with hyperthreading), at 2.2 GHz clock rate and with 125 Gb
of RAM. The run-time employed by the method to analyze an image of size 4608× 3456 is
2 min and 22 s.
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