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Benôıt Bonnet*1, Cristina Cipriani�2, Massimo Fornasier� 3 and Hui Huang§4

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France.
2,3Technical University Munich, Department of Mathematics, Munich, Germany

2,3Munich Data Science Institute, Munich, Germany
4University of Calgary, Department of Mathematics and Statistics, Calgary, Canada

Abstract

In this paper we consider a measure-theoretical formulation of the training of NeurODEs

in the form of a mean-field optimal control with L2-regularization of the control. We de-

rive first order optimality conditions for the NeurODE training problem in the form of a

mean-field maximum principle, and show that it admits a unique control solution, which

is Lipschitz continuous in time. As a consequence of this uniqueness property, the mean-

field maximum principle also provides a strong quantitative generalization error for finite

sample approximations, yielding a rigorous justification of a phenomenon that we call cou-

pled descent, indicating the simultaneous decrease of generalization and training errors. We

consider two approaches to the derivation of the mean-field maximum principle, including

one that is based on a generalized Lagrange multiplier theorem on convex sets of spaces of

measures, which is arguably much simpler than those currently available in the literature

for mean-field optimal control problems. The latter is also new, and can be considered as a

result of independent interest.

Keywords: NeurODEs, Mean-Field Optimal Control, Mean-Field Maximum Principle, Lagrange

Multiplier Theorem
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1 Introduction

1.1 Deep learning

Deep learning is an established computational approach that performs state-of-the-art on var-

ious relevant real-life applications such as speech [46] and image [47, 50] recognition, language

translation [71], and which also serves as a basis for novel scientific computing methods [10,34].

In unsupervised machine learning, deep neural networks have shown great success as well, for

instance in image and speech generation [60,61], and in reinforcement learning for solving con-

trol problems, such as mastering Atari games [59] or beating human champions at playing Go

[68]. Deep learning is about realizing complex tasks as the ones mentioned above, by means of

highly parametrized functions, called deep artificial neural networks N : Rd0 → RdL . A classical

architecture is the one of feed-forward artificial neural networks of the type

N (x) = ρ
(
W⊤

L ρ
(
W⊤

L−1 . . . ρ
(
W⊤

1 x+ τ1
)
. . .
)
+ τL

)
, (1.1)

where the matrices Wℓ ∈ Rdℓ−1×dℓ represent collections of weights, the vectors τ ℓ ∈ Rdℓ are

shifts/biases for each layer ℓ = 1, . . . , L and ρ is a scalar activation function acting component-

wisely on vectors. Below, we shall denote by F(X) := ρ(W⊤X + τ) a generic layer of the
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network. In practical applications, the number L ≥ 1 of layers – determining the depth of the

network and the dimensions dℓ−1 × dℓ of the weight matrices Wℓ – is typically determined by

means of heuristic considerations, whereas the weight matrices and the shifts are free parameters

which are tuned in various possible ways by using a given training dataset.

Practical evidences towards certified benchmarks confirm that deep-learning algorithms are

able to outperform many of the previously existing methods. Also, recent mathematical in-

vestigations [10, 27, 29, 31, 34, 43, 57, 58, 62, 66] have proven that deep artificial networks can

approximate high dimensional functions without incurring in the curse of dimensionality, i.e.

without needing a number of parameters (here the weights and shifts of the network) that is

exponential with respect to the input dimension in order to approximate high-dimensional func-

tions. While the approximation properties – also called the expressivity – of neural networks

are becoming more and more understood and transparent [44], the training phase itself, based

on suitable optimization processes, remains a (black-)box with some levels of opacity. In fact,

the latter procedure features a surprising and yet mostly unexplained phenomenon, which is in

stark contrast with conventional statistics wisdom: in addition to providing a finer empirical

data fitting, increasing the number of modelling parameters beyond that of training examples

also tends to improve the generalization error, namely the prediction error on unseen data. We

call the simultaneous decrease of both empirical and generalization errors the coupled descent

phenomenon. Instead, from classical statistical learning theory [67], one would expect that

overfitting should lead to a blow-up of the generalization error, owing to the wealth of com-

plextiy of the underlying model [76]. Hence the prediction of the generalization error from data

remains at large a fundamental open problem in deep learning. As one of the main results of

this paper, we show that for certain classes of neural networks based on dynamical systems,

whose training is reformulated as a convex optimal control problem, the newly defined coupled

descent phenomenon can be rigorously explained.

1.2 Training of deep nets and residual blocks

In order to understand the context of our results, let us mention how the neural networks con-

sidered in this paper arise. We start by recalling how training of neural networks is performed

and how it is facilitated by appropriate network architectures. The method that is most fre-

quently used to train deep neural networks is the so-called backpropagation of error [53,65,73],

which is justified by its tremendous empirical success. Inherently, all the practical advances

recalled above are due to the efficacy of this method. The term backpropagation usually refers

to the use of stochastic gradient descent1 or some of its variants [69] to minimize a given loss

function (e.g. mean-squared distances, Kullback-Leibler divergences, or Wasserstein distances)

over the parameters of the network (the weights and biases), usually measuring the misfit of

input-output information over a finite number of labeled training samples. On the one hand,

the practical efficiency of deep learning is currently ensured in the so-called overparametrized

regime by fitting a large amount of data with a larger amount of parameters. On the other

1In fact, “backpropagation” refers more precisely to a recursive way of applying the chain rule needed to

compute the gradient of the loss with respect to weights, but it is often used also to describe any algorithmic

optimization procedure resorting to such gradients. In many cases, these latter are computed using symbolic

calculus.
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Figure 1: The layer update reads: Xn+1 = Xn + F(Xn), see [47].

hand, solving learning problems with very large numbers of layers gets increasingly harder with

the total depth of the network, as the resulting non-convex optimization problems become in

turn very high-dimensional.

In their groundbreaking work [47], He et al. showed that the training error of the 56-layer

CNN network remains worse than that of a 20-layer network for the same problem, highlighting

an issue which could be blamed either on the optimization function, on initialization of the

network, or on the vanishing/exploding gradient phenomenon. The problem of training very

deep networks has been alleviated with the introduction of a new neural network layer called the

“Residual Block”, see Figure 1. According to the analysis conveyed in [48], the use of identity

mappings as skip connections and after-addition activations of the form

Xn+1 = Xn + F(Xn) (1.2)

turns out to be beneficial to promote the smoothness of the information propagation. Therein,

the authors present several 1000-layer deep networks that can be easily trained and achieve

improved accuracy. Note that the use of such skip connections with identity mappings presup-

poses a rectangular shape of the network for which the depths dℓ+1 = dℓ of the layers are all

identical.

1.3 NeurODEs and stochastic optimal control

While originally the arguments in [48] that support the use of residual blocks are based on

empirical considerations, a recent line of research has been devoted to a more mathematical

and rigorous formulation of deep neural networks with residual blocks in terms of dynamical

systems. In this context, the training of the network can be interpreted as a large optimal control

problem, an insight that was proposed independently by E Weinan [32] and Haber-Ruthotto

[45]. Later on, this dynamical approach has been greatly popularized in the machine learning

community under the name of NeurODE by Chen et al. [26], see also [56]. The formulation

starts by reinterpreting the iteration (1.2) as a step of the discrete-time Euler approximation

[7] of the following dynamical system

Ẋt = F(t,Xt, θt) , (1.3)

with initial condition X0 ∈ Rd. Here, the map F : R+ × Rd × Rm → Rd represents the feed-

forwarding dynamics, the parameter θt ∈ Rm is a general control variable, which encodes the

weights and shifts of the network, i.e. θt := (Wt, τt). A prototypical example is given by

F(t,Xt, θt) = ρ(WtXt + τt), (1.4)
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for instance with an activation function ρ := tanh acting componentwisely on its entries. In

[32, 33], the authors proposed a stochastic control formulation of the training of this nonlin-

ear process, with a detailed analysis of the related optimality conditions. Therein, both the

the Hamilton-Jacobi-Bellman equations [23] – based on the well-known dynamic programming

principle – and the Pontryagin Maximum Principle [64] were studied in great generality. From

another perspective, several recent works [1, 2, 70] in geometric control theory have aimed at

explaining the efficiency of NeurODEs in approximating large classes of mappings in terms of

controllability properties of such systems in the group of diffeomorphisms.

In this paper, we focus on a particular measure theoretical reformulation of the general

approach developed by E Weinan et al. [33], which allows us to derive more specific properties

of the control problem, such as the existence, uniqueness, and smoothness of solutions to the

Pontryagin Maximum Principle, and a strong form of generalization error estimates. Most

importantly, our approach encompasses the prototypical model (1.4) as a possible application.

Consider two random variables X0 and Y0 which are jointly distributed according to a law

µ0 ∈ P(R2d), and let us fix the depth T > 0 of the time-continuous neural network (1.3).

Training this network then amounts to learning the control signals θ ∈ L2([0, T ];Rm) in such a

way that the terminal output XT of (1.3) is close to Y0, with respect to some distortion measure

ℓ(·, ·) ∈ C2. A typical choice is ℓ(x, y) =: |x− y|2, which is often called the squared loss function

in the machine learning literature. The stochastic optimal control problem can hence be posed

as

inf
θ∈L2([0,T ];Rm)

J(θ) =


inf

θ∈L2([0,T ];Rm)
Eµ0

[
ℓ(XT , Y0)

]
+ λ

∫ T

0
|θt|2 dt,

s.t.

{
Ẋt = F(t,Xt, θt),

(Xt, Y0)|t=0 ∼ µ0.

(1.5)

The use of a regularization term of the type λ
∫ T
0 |θt|2 dt is very standard in machine learning,

see e.g. [41, Chapter 7] or [51, Section 6]. In the absence of regularization, the resulting

trained networks may have huge Lipschitz constants, rendering them extremely unstable and

susceptible to adversarial attacks [42]. Additionally, the regularization may significantly help

the usual training processes, by making the loss J increasingly more convex. As we shall see

more in details below, such a standard regularization will allow us to establish the existence

and uniqueness of solutions for (1.5), as well as their continuity with respect to the data, which

provides a rigorous explaination to the stability of trained networks and what we name as

coupled descent phenomenon. Conversely, we shall also demonstrate numerically in Section 5.2

that the lack of a sufficient regularization causes significant instabilities in the numerical solution

of the optimal control problem (1.5), see Figure 7, rendering the latter absolutely essential from

a practical standpoint. Other and more general regularizations are of course possible [51], but

for the sake of simplicity and clarity in the exposition, we shall restrict our attention to this

specific one.

1.4 Measure-theoretical approach to mean-field optimal control

In this paper, we develop a new point of view that is equivalent to that of [33], but which

is not based on stochastic control considerations. We start by providing a measure-theoretic
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reformulation of (1.5), which can be interpreted as a generalized optimal transport problem or

mean-field optimal control problem. To the best of our knowledge, the present paper is the first

in the literature to make such a connection. To this end, let us define a new stochastic process

Zt := (Xt, Yt) satisfying

Ẋt = F(t,Xt, θt) and Ẏt = 0, (1.6)

with initial data (X0, Y0) distributed according to µ0, and denote the law of (Xt, Yt) by µt(x, y).

It is well-known that µt satisfies the following partial differential equation

∂tµt +∇x · (F(t, x, θt)µt) = 0, µt|t=0 = µ0 , (1.7)

understood in the sense of distributions as in Definition 2.2 below. With this transport equation

at hand, we can recast the stochastic optimal control problem (1.5) as

inf
θ∈L2([0,T ];Rm)

J(θ) =


inf

θ∈L2([0,T ];Rm)

∫
R2d

ℓ(x, y)dµT (x, y) + λ

∫ T

0
|θt|2 dt ,

s.t.

{
∂tµt +∇x · (F(t, x, θt)µt) = 0 ,

µt|t=0 = µ0 .

(1.8)

Therein, the goal is again is to find the control signal θ for which J(θ) is minimal when µ

satisfies the PDE constraint (1.7). Observe that when the initial measure µ0 is empirical, i.e.

µ0 := µN0 =
1

N

N∑
i=1

δ(Xi
0,Y

i
0 )

then the optimal control problem (1.8) reduces to a classical finite particle optimal control

problem with ODE constraints.

Optimal control problems over spaces of probability measures of the form (1.8) have been

recently explored, mostly in the absence of final-point constraints and in the context of multi-

agent interactions. The first contributions on this topic [36,37] were concerned with the rigorous

convergence of classical finite particle optimal controls towards their mean-field counterparts,

see also the more recent work [12, 25, 35]. The derivation of first order optimality conditions,

i.e., the so-called Pontryagin Maximum Principle (PMP), has been proposed for the first time in

[11] based on the leader-follower model studied in [36]. In this work, the mean-field Pontryagin

Maximum Principle is derived as limit of its classical finite-particle counterpart. The first

general derivation of the PMP for mean-field optimal control problems was obtained in [18],

and is based on a careful adaptation of the strategy of needle-variations to the abstract geometric

structure of Wasserstein spaces. These results were further extended in [13] to problems with

general final-point and running state constraints. In the latter contribution, the proof strategy

combines a finite-dimensional non-smooth multipliers rule and outer-approximations of optimal

trajectories by countable families of curves generated using needle-variations. Very recently, a

simpler approach has been proposed in [15], by adapting to the notion of multivalued dynamics in

Wasserstein space introduced in [14] a methodology originally developed in [39], which relies on

suitable linearisations of set-valued maps that produce admissible inner-perturbed trajectories.

From a different standpoint, we also mention [21] in which a KKT approach is developed in
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Wasserstein spaces for rather general mean-field optimal control problems with H1-controls.

Therein, both the first order optimality conditions and their relationships with finite particle

approximations are derived, along with the corresponding rates of convergence. We finally point

out that a completely different approach to the mean-field PMP was formulated for stochastic

optimal control problems in [24] inspired by the theory of mean-field games [52] (see also [3,9]).

Similar methods, based on needle-variations in the space of measures are also leveraged in [33]

and [49] for the derivation of the PMP for stochastic control problems of the form (1.5).

1.5 Contributions and organization of the paper

The contributions of this paper can be summarized as follows. From a global standpoint, we

start by establishing existence and stability results for (1.8), based on compactness and Γ-

convergence arguments. We then proceed by deriving general first-order optimality conditions

for the measure-theoretic formulation of the optimal control of NeurODEs. Our modeling

assumptions include the typical forward mappings (1.4) that appear throughout the literature

related to neural networks, with for instance ρ := tanh. As a matter of fact, most of the results

available in the literature do not fully encompass this simple model, as they often require global

Lipschitz bounds on the transport velocity field.

Let us now describe with more details the fundamental results of the paper. In Section

3, we start by showing that the mean-field optimal control problem (1.8) has solution when

the regularization parameter λ > 0 is sufficiently large, and that the latter is in fact unique.

By leveraging compactness arguments akin to that classically appearing in the theory of Γ-

convergence, we also establish non-quantitative stability results for the training problem with

respect to finite-samples, both at the level of the cost and of the controls. We then proceed

by investigating first-order optimality conditions in Section 4. We initiate the discussion by

providing in Section 4.1 a heuristic derivation of the following mean-field Pontryagin Maximum

Principle (“PMP” in the sequel)
∂tµt +∇x · (F(t, x, θt)µt) = 0, µt|t=0 = µ0 ,

∂tψ +∇xψ · F(t, x, θt) = 0, ψt|t=T = ℓ ,

θ⊤t = − 1

2λ

∫
R2d

∇xψ · ∇θF(t, x, θt)dµt(x, y) ,

(1.9)

which characterizes optimal trajectory-control pairs (µ, θ) for (1.8). In Section 4.2, we show that

the above optimality system is well-posed, and prove in Theorem 4.1 that it admits a unique

control solution θ∗ ∈ Lip([0, T ];Rm). Consequently, we are able to show that the function

µ0 → θ∗ which maps initial data distributions to the optimal parameters is single-valued,

and to prove that it is also Lipschitz continuous with respect to the Wasserstein distance.

Such a precise description of how data are encoded in the parameters of the network is a

quite remarkable feature of our results. In particular, it allows us to establish a quantitative

generalization error for finite samples in Corollary 4.4, which writes∣∣∣∣ ∫
R2d

ℓ(x, y) dµT (x, y)−
1

N

N∑
i=1

ℓ(Xi
T , Y

i
T )

∣∣∣∣ ≤ CW1(µ
N
0 , µ0). (1.10)
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In particular, (1.10) provides a rate of convergence that depends exclusively on the approxima-

bility of µ0 by empirical measures µN0 . We should stress at this point the relevance of (1.10) as

it is one of the few results in the literature that rigorously explains the coupled descent of both

empirical and generalization error in the training of deep neural networks. In Section 5.2 we

present numerical experiments fully confirming this phenomenon which is theoretically expected

from (1.10), see Figure 5.

Remark 1.1 (Comparison with the existing literature on generalization errors). We point out

that while the generalization errors established in [49] are sharper than those of the present pa-

per (in the sense that they express a rate of convergence in N which is dimension-independent),

this improved stability comes at the price of considering relaxed controls – i.e. probability mea-

sures over Rm –, that are forced to be non-deterministic by means of entropic regularization

terms (see also [25]). On the contrary, the generalization errors that we obtain here relate to

deterministic optimal controls with values in Rm. A similar bound, yielding (1.10), also appears

in a completely different context in [21, Theorem 5.1], under the constraint that the control is

in a ball of H1((0, T ),Rm), which is a quite restrictive a priori assumption.

After establishing the general form of the optimality system along with some of its interesting

properties and applications, we move on to the rigorous derivation of the mean-field PMP in

Section 4.3. At this stage, let it be noted that while part of our results may be derived by

due adaptations from other approaches developed, e.g., in [21, 33] or [13, 15, 18], we are able

to obtain a few stronger properties on the solutions of the optimal control problem than those

generally presented in the literature. Whereas in [13,15,18] the first order optimality conditions

are established in greater generality – but also with significant technical effort –, we propose in

this paper a new and alternative derivation (very much inspired by the previous work [3] of the

third author), which is significantly simpler and hopefully more accessible to non-specialists.

The latter can be heuristically explained as follows: under the technical assumption that the

optimal control is continuous in time – which is motivated by the well-posedness of (1.9) in

Lip([0, T ];Rm) discussed in Theorem 4.1 –, we prove in Theorem 4.6 that the mean-field PMP

(1.9) can be obtained by means of a generalized Lagrange Multiplier Theorem on the convex

subset of Radon measures with unit mass. To this end, we use a new form of calculus recently

introduced in [4], which is simpler than the calculus in Wasserstein spaces used in [21]. In

contrast to this latter work, our approach is applied in a slightly simpler setting, as the forward

and backward equations in (1.9) are linear and decoupled, while therein the authors consider

models for which they are non-linear and coupled. This novel interpretation of the mean-field

PMP as result of a Lagrange Multiplier Theorem in spaces of measures is in our view quite

powerful, because it can be applied in other mean-field optimal control problems and be more

easily understood by a broader community in optimization.

The main theoretical results of the paper can then be summarized as follows.

Theorem 1.1 (Main contributions of the article). Let T > 0 be given, consider a map F
satisfying Assumptions 1 and 2 of Section 3, fix an initial data distribution µ0 ∈ Pc(R2d), and

suppose that the regularization parameter λ > 0 is sufficiently large.

Then, the mean-field optimal control problem (1.8) admits solutions, and an admissible con-

trol θ∗ ∈ L2([0, T ],Rm) fulfills the mean-field PMP (1.9) if and only if it is optimal. In addition,
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the optimal control θ∗ is uniquely determined, Lipschitz continuous in time, and depends con-

tinuously on the initial data distribution µ0.

We then close the article by presenting numerical experiments to test the novel mean-

field Pontryagin maximum principle that we propose, in which we show the training of simple

classification models in R2. The reason for working on simple two-dimensional examples is to

provide full understanding of the properties of the resulting algorithm and a relatively easy

reading and visualization of the results.

The paper is organized as follows. In Section 2 we introduce notations and recall a series of

preliminary results. In Section 3, we derive a general semiconvexity estimate for the reduced

cost functional, and provide sufficient conditions ensuring the existence and stability of its min-

imizers. In Section 4 we investigate the mean-field maximum principle by first studying its

well-posedness and deriving the generalization error estimate (1.10), and then showing rigor-

ously how it can be derived either by using a Lagrange multiplier theorem, or via a reduction

of the Hamiltonian form. We finally present instructive numerical experiments in Section 5,

where solutions of the mean-field maximum principle are computed by means of a shooting

method. The Appendix contains proofs of auxiliary results, including the proof of a general-

ized Lagrange multiplier theorem, Theorem 4.5, for constrained problems defined over convex

subsets of Banach spaces.

2 Preliminaries and notations

In this section we list some preliminary notations and results from [4, Section 2.1 and Appendix

A.1], which will be useful throughout the paper.

2.1 Analysis in measure spaces and optimal transport

We denote by M(Rd) the space of signed Borel measures in Rd with finite total variation. Note

that the space M(Rd) endowed with the total variation norm

∥µ ∥TV := sup

{∫
Rd

φdµ
∣∣ φ ∈ C0(Rd), ∥φ ∥∞ ≤ 1

}
, (2.1)

is a Banach space, where C0(Rd) represents the set of continuous functions on Rd which vanish

at infinity. By the Riesz-Markov theorem, it is known that M(Rd) ≃ (C0(Rd))′ can be identified

with the topological dual of C0(Rd) [5, Theorem 1.54]. We further denote M+(Rd) the space

of positive measures and by P(Rd) ⊂ M+(Rd) the subset of probability measures. Further-

more, Pc(Rd) ⊂ P(Rd) represents the set of probability measures with compact support, while

PN
c (Rd) ⊂ Pc(Rd) denotes the subset of empirical or atomic probability measures. We will also

use the following representation formulas for the subset of measures with zero mass

M0(Rd) :=

{
µ ∈ (C0(Rd))′

∣∣ µ(Rd) =

∫
Rd

1dµ = 0

}
=: (C0(Rd))′0 , (2.2)

and the subset of measures with unit mass

M1(Rd) :=

{
µ ∈ (C0(Rd))′

∣∣ µ(Rd) =

∫
Rd

1dµ = 1

}
=: (C0(Rd))′1 . (2.3)
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Moreover, we shall denote by M0,c(Rd),M1,c(Rd) the corresponding subsets of measures whose

supports are compact. One can also note that given µ ∈ M(Rd), the Jordan decomposition

theorem tells us that µ = µ+ − µ− and ∥µ∥TV = µ+(Rd) + µ−(Rd), where µ+, µ− ∈ M+(Rd).

For the convenience of the reader, we briefly recall the definition of the Wasserstein metrics

of optimal transport in the following definition, and refer to [6, Chapter 7] for more details.

Definition 2.1. Let 1 ≤ p < ∞ and Pp(Rd) be the space of Borel probability measures on Rd

with finite p-moment. In the sequel, we endow the latter with the p-Wasserstein metric

W p
p (µ, ν) := inf

{∫
R2d

|z − ẑ|p dπ(z, ẑ)
∣∣ π ∈ Π(µ, ν)

}
(2.4)

where Π(µ, ν) denotes the set of transport plan between µ and ν, that is the collection of all

Borel probability measures on Rd×Rd with marginals µ and ν in the first and second component

respectively. The Wasserstein distance can also be expressed as

W p
p (µ, ν) = inf

{
E
[
|Z − Ẑ|p

]}
(2.5)

where the infimum is taken over all possible joint distributions of random variables (Z, Ẑ) whose

laws are given by µ and ν respectively.

It is a well-known result in optimal transport theory that when p = 1 and µ, ν ∈ Pc(Rd),

the following alternative representation holds for the Wasserstein distance

W1(µ, ν) = sup

{∫
Rd

φ(x)d(µ− ν)(x)
∣∣ φ ∈ Lip(Rd), Lip(φ) ≤ 1

}
, (2.6)

by Kantorovich’s duality [6, Chapter 6]. Here, Lip(Rd) stands for the space of real-valued

Lipschitz continuous functions on Rd, and Lip(φ) is the Lipschitz constant of a mapping φ. In

the sequel, we shall also use the signed generalized Wasserstein distance W1,1
1 introduced in [63],

which coincides with the bounded Lipschitz distance. Given µ, ν ∈ M(Rd), we set

W1,1
1 (µ, ν) = sup

{∫
Rd

φ(x)d(µ− ν)(x)
∣∣ φ ∈ Lipb(Rd), ∥φ ∥Lipb

≤ 1

}
, (2.7)

where

∥φ ∥Lipb
:= sup

x∈Rd

|φ(x)|+ Lip(φ) . (2.8)

In this context, we also define the bounded Lipschitz norm of a signed measure as

∥µ∥BL := W1,1
1 (µ, 0) . (2.9)

2.2 Continuity equations in the space of measures

In what follows, we recollect some basic facts about continuity equations in the space of mea-

sures, following [6, Section 8.1].

Definition 2.2. For any given T > 0 and θ ∈ L2([0, T ];Rm), we say that µ ∈ C([0, T ];Pc(R2d))

is a weak solution of (1.7) on the time interval [0, T ] if∫ T

0

∫
R2d

(
∂tψ(t, x, y) +∇xψ(t, x, y) · F(t, x, θt)

)
dµt(x, y) dt = 0, (2.10)

for every ψ ∈ C1
c ((0, T )× R2d).
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Remark 2.1. First, note that (2.10) is equivalent to∫
R2d

ψ(x, y)dµt2(x, y)−
∫
R2d

ψ(x, y)dµt1(x, y) =

∫ t2

t1

∫
R2d

∇xψ(x, y) · F(s, x, θs)dµs(x, y) ds

(2.11)

for all ψ ∈ C1
b (R2d) and every t1, t2 ∈ [0, T ]. This follows from the fact that the linear span of

functions of the form ψ(t, x, y) := η(t)ξ(x, y) with η ∈ C1
c ((0, T )) and ξ ∈ C1

c (R2d) is dense in

C1
c ((0, T )×R2d) (see e.g. [6, Remark 8.1.1]). Also, observe that since µ is a curve of compactly

supported probability measures, we can use the simpler testing space C1
b (R2d) instead of C1

c (R2d)

or C1
0(R2d) in (2.11).

Classical well-posedness results for (1.7) for arbitrary initial measures are usually estab-

lished under the following type of standard Cauchy-Lipschitz assumptions (or minimal variations

thereof).

Assumption 1. For any given T > 0, the vector field F satisfies the following.

(i) For any fixed θ ∈ Rm, the map (t, x) 7→ F(t, x, θ) ∈ Rd is continuous.

(ii) There exists a constant CF > 0 that may depend on d,m such that for every θ ∈ Rm, it

holds

|F(t, x, θ)| ≤ CF (1 + |x|), for a.e. t ∈ [0, T ] and every x ∈ Rd .

(iii) There exists a constant LF > 0 independent of d,m such that for every θ ∈ Rm, it holds

|F(t, x1, θ)−F(t, x2, θ)| ≤ LF (1+|θ|)|x1−x2|, for a.e. t ∈ [0, T ] and every x1, x2 ∈ Rd ,

and we denote LF ,T,∥θ∥1 := LF
∫ T
0 (1 + |θt|)dt

(iv) For all (t, x) ∈ [0, T ] × Rd, the map θ 7→ F(t, x, θ) is twice differentiable. Moreover for

each R > 0, there exists a constant C(d,m,R) > 0 such that

∥∇θF∥C([0,T ]×B(R)×Rm;Rd×m) + ∥∇2
θF∥C([0,T ]×B(R)×Rm;Rd×m×m) ≤ C(d,m,R) .

Under the set of assumptions listed above, we can prove the well-posedness of (1.7) as stated

in the following theorem. The proof of the latter is standard and deferred to Appendix A.

Theorem 2.3 (Classical well-posedness for continuity equation). Consider a measure µ0 ∈
Pc(R2d) with supp(µ0) ⊂ B(R) for some R > 0, and suppose that F satisfies Assumption 1.

Then for any given T > 0 and θ ∈ L2([0, T ];Rm), there exists a unique solution µ ∈
C([0, T ];Pc(R2d)) to (1.7) in the sense of Definition 2.2. Moreover, there exists a radius RT > 0

depending only on R and CF such that

supp(µt) ⊂ B(RT ), (2.12)

for all times t ∈ [0, T ], and additionally it holds for any s, t ∈ [0, T ] that

W1(µt, µs) ≤ C(R, T,CF )|t− s| . (2.13)

Denoting by µi for i = 1, 2 two solutions of (1.7) with initial data µi0 satisfying the above

assumptions, the following stability estimate

W1(µ
1
t , µ

2
t ) ≤ eLF,T,∥θ∥1W1(µ

1
0, µ

2
0), (2.14)

holds for all times t ∈ [0, T ], where CF and LF ,T,∥θ∥1 are defined as in Assumption 1.
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2.3 Differential calculus over convex subsets of Banach spaces

We end this series of preliminaries by introducing a notion of multi-valued Fréchet differential

for functions defined on convex sets. To this end, given a convex subset E of a normed vector

space X, we define

XE := R(E − E) =
{
x ∈ X

∣∣ x = α(e1 − e2) with α ∈ R and e1, e2 ∈ E
}
,

and given e ∈ E, we denote by Xe := R+(E − e) the convex cone of directions at e.

Definition 2.4. Let X, Y be normed vector spaces, E ⊂ X be a convex set and f : E → Y .

Then, f is F -differentiable at e ∈ E if there exists L ∈ L(XE , Y ) such that

lim
e′→e
e′∈E

∥f(e′)− f(e)− L(e′ − e) ∥Y
∥e′ − e ∥X

= 0 , (2.15)

where L(XE , Y ) denotes the space of bounded linear operators from XE into Y .

Following the previous definition, we define the F -differential of f at e ∈ E by

Df(e) :=
{
L ∈ L(XE , Y )

∣∣ L satisfies (2.15)
}
. (2.16)

It can be checked that if Xe is not dense in XE , then the mapping D is set-valued (similarly to

classical convex subdifferentials). However if v ∈ Xe, then the evaluation Df(e)(v) is uniquely

determined, namely it does not depend on the choice of L in Df(e), and in this case we will

slightly abuse the notation and write Df(e)(v) to mean L(v) for any L ∈ Df(e). By a density

argument, each L ∈ Df(e) can be uniquely extended to an operator L in L(XE , Y ). We will

then say that f ∈ C1(E;Y ) if f is F -differentiable at each e ∈ E, and there exists a selection

e ∈ E 7→ Le ∈ Df(e) such that

e 7→ Le is continuous from E into L(XE , Y ) , (2.17)

where L(XE , Y ) is endowed with the distance induced by the standard operator norm.

Definition 2.5. Let X, Y be normed vector spaces, E ⊂ X be a convex set, and f : E → Y .

Then, f is G-differentiable at e ∈ E if the directional right derivatives

df(e, v) := lim
h→0+

f(e+ hv)− f(e)

h
, (2.18)

exist in Y for all v ∈ Xe.

Remark 2.2. Obviously if f is F -differentiable at some e ∈ E, then it is G-differentiable as

well with df(e, v) = Df(e)(v) for all v ∈ Xe.

We shall also use the following lemma as a criterion for C1 regularity, see [4, Lemma A.4].

Lemma 2.1. Let f : E → F be a continuous map and suppose that there exists a continuous

application

e ∈ E 7→ Le ∈ L(XE , Y ), (2.19)

such that df(e, v) = Lev for all e ∈ E and any v ∈ Xe. Then f ∈ C1(E;Y ) and e 7→ Le ∈ Df(e)

is an admissible selection.
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3 Existence of minimizers and stability of solutions

In this section, we investigate sufficient conditions ensuring the existence of optimal solutions to

the mean-field optimal control problem (1.8), as well as stability properties for the minimizers

and costs stemming from large finite-sample training. Throughout the remainder of this article,

we will use Assumption 1 and the following additional hypotheses to establish most of our

results.

Assumption 2. For any given T > 0 and R > 0, the vector field F satisfies the following.

(i) The map x ∈ Rd 7→ F(t, x, θ) is of class C2 all times t ∈ [0, T ] and any θ ∈ Rm, and for

each x ∈ B(R), it holds

|∇x · ∇θF(t, x, θ)|+ |∇xF(t, x, θ)|+ |∇2
xF(t, x, θ)| ≤ C(d,m,R, |θ|) . (3.1)

(ii) For any θ1, θ2 ∈ Rm, every s, t ∈ [0, T ] and all x ∈ B(R), it holds

|F(t, x, θ1)−F(s, x, θ2)| ≤ C(d,m,R)
(
|t− s|+ |θ1 − θ2|

)
. (3.2)

(iii) For all fixed θ and t ∈ [0, T ], it holds

|∇θF(t, x, θ)−∇θF(t, y, θ)| ≤ C(d,m,R, |θ|)|x− y|, (3.3)

for every x, y ∈ B(R).

Before moving on to the discussion pertaining to the existence and stability properties for

solutions of (1.8), we highlight the adequacy of our working hypotheses in connection with

classical machine learning models.

Remark 3.1 (Adequacy for smooth sigmoidal activations). Assumptions 1 and 2 require smooth

activation functions that exhibit also some boundedness properties with respect to the parameter

θ, e.g. as in Assumption 1-(ii). These latter are needed both to express the PMP and to establish

its well-posedness, as will become apparent in Section 4. Hence, some popular network models

which use for instance ReLu activations are not covered by our results. However, we check

here that the sets of hypotheses listed in Assumptions 1 and 2 include the popular subclass of

feed-forwarding dynamics (1.4) involving sigmoidal-type activation functions, such as

F(t, x, θ) = F(x, θ) := tanh(θx) ∈ Rd ,

where θ ∈ Rm = Rd×d and x ∈ Rd. In that case, Assumption 1-(i) obviously holds, and since

Fk(x, θ) = tanh
( d∑
l=1

θk,lxl

)
for each k ∈ {1, . . . , d} and | tanh(r)| ≤ 1 for all r ∈ R, we have that |F(x, θ)| ≤

√
d for all

(x, θ) ∈ Rd×Rd×d, and Assumption 1-(ii) also holds. This uniform boundedness property of the

driving field implies in particular that the radius RT > 0 given by Theorem 2.3 controlling the

13



support sizes of the solutions of (1.7) will scale polynomially and not exponentially on d ≥ 1,

along with all the relevant constants depending polynomially thereon. Moreover, observe that

∂xiFk(x, θ) = tanh′
( d∑
l=1

θk,l xl

)
θk,i

for each i, k ∈ {1, . . . , d}, which implies in particular that |∇xF(x, θ)| ≤ |θ| for all (x, θ) ∈
Rd × Rd×d by using the fact that | tanh′(r)| = |1 − tanh(r)2| ≤ 1 for each r ∈ R. By the

mean-value theorem, this latter fact directly implies that

|F(t, x1, θ)−F(t, x2, θ)| ≤ |θ||x1 − x2|

for all θ ∈ Rd×d and x1, x2 ∈ Rd, which verifies Assumption 1-(iii). Concerning Assumption

1-(iv), one has that

∂θijFk(x, θ) = δk,i tanh
′
( d∑
l=1

θk,lxl

)
xj

for each i, j, k ∈ {, 1 . . . , d}, where δk,i refers here to the Kronecker symbol, which implies that

|∇θF(x, θ)| ≤
√
d|x| for all θ ∈ Rm and x ∈ Rd. Furthermore, one can easily see that

∂2θi,j ,θm,n
Fk(x, θ) = δk,mδk,i tanh

′′
( d∑
l=1

θk,lxl

)
xjxn

for each i, j, k,m, n ∈ {1, . . . , d}, which then yields |∇2
θF(x, θ)| ≤ 4

√
d |x|2 for all (x, θ) ∈

Rd × Rd×d since | tanh′′(r)| = |2 tanh(r) (tanh(r)− 1) | ≤ 4 for every r ∈ Rd. Thence, it holds

max
(x,θ)∈B(R)×Rm

|∇θF(x, θ)| ≤
√
dR and max

(x,θ)∈B(R)×Rm
|∇2

θF(x, θ)| ≤ 4
√
dR2, (3.4)

which completes the verification of Assumption 1.

We now shift our attention to the verification of Assumption 2. First of all, one has that

∂2xi,xj
Fk(x, θ) = tanh′′

(∑d
l=1θk,lxl

)
θk,iθk,j

for each i, j, k ∈ {1, . . . , d}, which yields the estimate |∇2
xF(x, θ)| ≤ 4|θ|2 for all (x, θ) ∈ Rd ×

Rd×d. Moreover, one can check that

∂xn∂θi,jFk(x, θ) = δk,i tanh
′′
( d∑
l=1

θk,lxl

)
xjθk,n + δk,iδj,n tanh

′
( d∑
l=1

θk,lxl

)
for each i, j, k, n ∈ {1, . . . , d}. Thus, we obtain the estimates

|∇x · ∇θF(x, θ)| ≤
√
d|∇x∇θF(x, θ)| ≤

√
2
√
d
(
4|x||θ|+ d

)
for all (x, θ) ∈ Rd × Rd×d, which leads to Assumption 2-(i) being fulfilled. Moreover, we can

also deduce from the previous estimate that Assumption 2-(iii) holds, since

|∇θF(t, x, θ)−∇θF(t, y, θ)| ≤
√
2(4R|θ|+ d)|x− y|

for all θ ∈ Rd×d and x, y ∈ B(R). Lastly, it follows from (3.4) that

|F(t, x, θ1)−F(s, x, θ2)| ≤
√
dR|θ1 − θ2|

for all θ1, θ2 ∈ Rd×d and x ∈ Rd, which equivalently means that Assumption 2-(ii) is satisfied

and completes the verification of Assumption 2.
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3.1 Convexity of the reduced cost functional and existence of minimizers

As already recalled in the introduction, L2-regularization of network parameters is a standard

practice in machine learning which helps stabilizing the training procedure, while promoting the

generalization capacities of networks [41, 51]. In this section, we show that for regularization

parameters λ > 0 that are sufficiently large, the reduced cost of the problem is actually strictly

convex, which in particular implies the existence and uniqueness of an optimal control θ∗ ∈
L2([0, T ];Rm) for the mean-field optimal control problem (1.8). Given the smoothness of the

forward map F , the convexity of J is perhaps not surprising, but it has never been noticed

before in the literature in connection to mean-field optimal control problems, and appears to

have far-reaching practical implications that we shall explore in the remainder of the paper.

For any fixed θ ∈ L2([0, T ],Rm), we denote by (Φθ
(τ,t)(·))τ,t∈[0,T ] the characteristic flow

generated by the controlled velocity field (t, x) ∈ [0, T ]× Rd 7→ F(t, x, θt) ∈ Rd, defined by∂tΦ
θ
(τ,t)(x) = F

(
t,Φθ

(τ,t)(x), θt
)
,

Φθ
(τ,τ)(x) = x,

(3.5)

for every x ∈ Rd. It is a well-known result in the theory of non-linear dynamical systems (see e.g.

[19, Theorem 2.3.2]) that under Assumption 1, the flow maps Φθ
(τ,t) : R

d → Rd are continuously

differentiable for every τ, t ∈ [0, T ], and the application t ∈ [0, T ] 7→ ∇xΦ
θ
(τ,t)(x) ∈ Rd×d is the

unique solution of the forward linearized Cauchy problem∂tw(t, x) = ∇xF
(
t,Φθ

(τ,t)(x), θt
)
w(t, x)

w(τ, x) = Id.
(3.6)

This allows us to establish the following semiconvexity result for the reduced cost of (1.8).

Proposition 3.1 (Semiconvexity of the reduced cost functional). Let T,R > 0 and µ0 ∈ Pc(Rd)

be such that supp(µ0) ⊂ B(R), and suppose that Assumptions 1 and 2 hold. Then, for every ball

Γ ⊂ L2([0, T ];Rm), there exists a constant L(T,R,Γ) > 0 such that the reduced cost functional

J : θ ∈ L2([0, T ];Rm) 7→



∫
R2d

ℓ(x, y)dµθT (x, y) + λ

∫ T

0
|θt|2dt,

s.t.

{
∂tµ

θ
t +∇x

(
F(t, x, θt)µ

θ
t

)
= 0,

µθ0 = µ0,

(3.7)

satisfies the semiconvexity estimate

J
(
(1− ζ)θ1 + ζθ2

)
≤ (1− ζ)J(θ1) + ζJ(θ2)− (2λ− L(T,R,Γ)) ζ(1−ζ)

2 ∥θ1 − θ2∥22 (3.8)

for any θ1, θ2 ∈ Γ and all ζ ∈ [0, 1]. In particular if λ > 1
2L(T,R,Γ), the reduced cost functional

is then strictly convex over Γ.

The proof of this convexity estimate is almost entirely contained in the following regularity

result, which itself relies on a series of technical properties for characteristic flows which are

exposed in Appendix B.
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Lemma 3.1 (Regularity of the reduced final cost). Let T,R > 0 and µ0 ∈ Pc(R2d) be such that

supp(µ0) ⊂ B(R), and suppose that Assumptions 1 and 2 hold. Then, the reduced final cost

Jℓ : θ ∈ L2([0, T ];Rm) 7→



∫
R2d

ℓ(x, y)dµθT (x, y),

s.t.

{
∂tµ

θ
t +∇x

(
F(t, x, θt)µ

θ
t

)
= 0,

µθ0 = µ0,

(3.9)

is Fréchet-differentiable. Moreover, denoting its gradient by ∇θJℓ(θ) ∈ L2([0, T ];Rm) and choos-

ing θ1, θ2 ∈ L2([0, T ];Rm), there exists a constant L(T,R, ∥θ1∥1, ∥θ2∥1) > 0 such that∥∥∇θJℓ(θ
1)−∇θJℓ(θ

2)
∥∥
2
≤ L(T,R, ∥θ1∥1, ∥θ2∥1)

∥∥θ1 − θ2
∥∥
2
.

Proof. We start by fixing a control signal θ ∈ L2([0, T ];Rm). Following the discussion in Ap-

pendix A below, the unique solution µθ ∈ C([0, T ];Pc(R2d)) of the controlled continuity equation

can be expressed as µθt = Φθ
(0,t)♯µ0, where

Φθ
(0,t)(x, y) =

(
Φθ
(0,t)(x), y

)
for all (x, y) ∈ R2d, with (Φθ

(0,t)(·))t∈[0,T ] being the characteristic flow defined in (3.5). In

particular, this allows us to rewrite the reduced final cost as

Jℓ(θ) =

∫
R2d

ℓ
(
Φθ
(0,T )(x), y

)
dµ0(x, y).

Given another control signal ϑ ∈ L2([0, T ];Rm) and some ε > 0, we know by Proposition B.2

that the following Taylor expansion

Φθ+εϑ
(0,T )(x) = Φθ

(0,T )(x) + ε

∫ T

0
Rθ

(t,T )(x)∇θF
(
t,Φθ

(0,t)(x), θt
)
ϑtdt+ oθ(ε) (3.10)

holds for all (t, x) ∈ [0, T ]×B(R), where (Rθ
(τ,t)(·))t∈[0,T ] ⊂ C1(Rd;Rd×d) are the resolvent maps

of the linearized Cauchy problem defined as in (B.2). Since the small-o in (3.10) is uniform in

x ∈ B(R), it holds by Lebesgue’s dominated convergence and Fubini’s theorems that∫
R2d

ℓ
(
Φθ+εϑ
(0,T )(x), y

)
dµ0(x, y)

=

∫
R2d

ℓ
(
Φθ
(0,T )(x), y

)
dµ0(x, y)

+ ε

∫ T

0

〈∫
R2d

(
Rθ

(t,T )(x)∇θF
(
t,Φθ

(0,t)(x), θt
))⊤

∇xℓ
(
Φθ
(0,T )(x), y

)
dµ0(x, y), ϑt

〉
dt+ oθ(ε),

(3.11)

for every ε > 0 small enough. From the regularity estimates of Assumption 1, Proposition B.1

and Proposition B.2, we may infer that the Gateaux derivative expressed in (3.11) is continuous

with respect to θ ∈ L2([0, T ];Rm), so that the reduced final cost is Fréchet-differentiable, with

∇θJℓ(θ) : t ∈ [0, T ] 7→
∫
R2d

(
Rθ

(t,T )(x)∇θF
(
t,Φθ

(0,t)(x), θt
))⊤

∇xℓ
(
Φθ
(0,T )(x), y

)
dµ0(x, y). (3.12)

At this stage, by resorting again to Assumptions 1 and 2, Proposition B.1 and Proposition

B.2, one can check that the previous expression is a (formal) product of quantities which are
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bounded and Lipschitz with respect to θ on bounded subsets of L1([0, T ];Rm). Whence, for

every pair θ1, θ2 ∈ L2([0, T ];Rm), there exists a constant L(T,R, ∥θ1∥1, ∥θ2∥1) such that∥∥∇θJℓ(θ
1)−∇θJℓ(θ

2)
∥∥
2
≤ L(T,R, ∥θ1∥1, ∥θ2∥1)

∥∥θ1 − θ2
∥∥
2
,

which ends the proof of our claim.

We are now ready to move on to the proof of Proposition 3.1.

Proof of Proposition 3.1. First, observe that the reduced cost of the problem can be written as

J(θ) = Jℓ(θ) + λ∥θ∥22

for all θ ∈ L2([0, T ];Rm), where Jℓ(θ) stands for the reduced final cost defined in (3.9). Whence,

it can be easily checked as a consequence of Lemma 3.1 that the reduced cost is Fréchet-

differentiable, with

∇θJ(θ) = ∇θJℓ(θ) + 2λθ. (3.13)

Let Γ ⊂ L2([0, T ];Rm) be a closed ball and θ1, θ2 ∈ Γ. By performing routine computations

based on the integral version of Taylor’s theorem (see e.g. [12, Lemma 6] for a detailed proof

in the finite-dimensional case), one can show that

Jℓ
(
(1− ζ)θ1 + ζθ2

)
≤ (1− ζ)Jℓ(θ

1) + ζJℓ(θ
2) + Lip(∇θJℓ ; Γ)

ζ(1−ζ)
2

∥∥θ1 − θ2
∥∥2
2

≤ (1− ζ)Jℓ(θ
1) + ζJℓ(θ

2) + L(T,R,Γ) ζ(1−ζ)
2

∥∥θ1 − θ2
∥∥2
2
,

for all ζ ∈ [0, 1], where the constant L(T,R,Γ) := L(T,R, ∥θ1∥1, ∥θ2∥1) is given as in Lemma

3.1. This, together with the standard fact of convex analysis in Hilbert spaces stating that∥∥(1− ζ)θ1 + ζθ2
∥∥2
2
≤ (1− ζ)∥θ1∥22 + ζ∥θ2∥22 −

ζ(1−ζ)
2

∥∥θ1 − θ2
∥∥2
2

allows us to conclude that the reduced cost functional satisfies the semiconvexity estimate (3.8)

over Γ.

By leveraging the semiconvexity result of Proposition 3.1, we are able to derive sufficient

conditions for the existence of mean-field optimal controls.

Theorem 3.2 (Existence of minimizers). Let T,R > 0, µ0 ∈ Pc(R2d) be such that supp(µ0) ⊂
B(R), and Γ ⊂ L2([0, T ];Rm) be the closed ball of radius C

1/2
Γ := ∥ℓ∥C(B(R)) + 1. If the regular-

ization parameter is such that λ > 1
2L(T,R,Γ) where the latter constant is given as in Lemma

3.1, then there exists a unique optimal control θ∗ ∈ Γ for (1.8).

Proof. The result follows from a standard application of the direct method of the calculus of

variations. Given a minimizing sequence (θn) ⊂ L2([0, T ];Rm) for which

J(θn) −→
n→+∞

inf
θ∈L2([0,T ];Rm)

J(θ), (3.14)

it necessarily holds for n ≥ 1 sufficiently large that

J(θn) ≤ J(0) + 1 ≤ ∥ℓ∥C(B(R)) + 1.
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Recalling the expression (3.7) of the reduced cost, this implies in particular that ∥θn∥2 ≤ C
1/2
Γ

for each n ≥ 1, or equivalently (θn) ⊂ Γ. Remark now that Γ ⊂ L2([0, T ];Rm) is weakly

compact since it is a closed ball in a Hilbert space (see e.g. [20, Theorem 3.17]), so that there

exists an element θ∗ ∈ Γ for which

θnk ⇀
k→+∞

θ∗ in L2([0, T ];Rm),

along an adequate subsequence. Moreover, it easily follows from Lemma 3.1 that θ 7→ J(θ) ∈ R
is continuous in the strong L2-topology, as well as convex since we assumed that λ > 1

2L(T,R,Γ).
As such, it is weakly lower-semicontinuous (see e.g. [20, Corollary 3.9]), which together with

(3.14) implies that

J(θ∗) ≤ lim inf
n→+∞

J(θn) = inf
θ∈L2([0,T ];Rm)

J(θ).

Hence, we have shown that θ∗ ∈ Γ is a solution of the mean-field optimal control problem (1.8),

and its uniqueness follows straightforwardly from the strict convexity of the reduced cost.

3.2 Stability of finitely-sampled costs and controls

In this section, we establish a general stability property for solutions of the mean-field optimal

control problem (1.8) with respect to finite-samples. More precisely, assume that we are given

a sample {(Xi
0, Y

i
0 )}Ni=1 of size N ≥ 1 independently and identically distributed according to

µ0 ∈ Pc(R2d), and let us consider the empirical loss minimization problem

inf
θ∈L2([0,T ];Rm)

JN (θ) :=


inf

θ∈L2([0,T ];Rm)

1

N

N∑
i=1

ℓ(Xi
T , Y

i
T ) + λ

∫ T

0
|θt|2dt

s.t.

{
Ẋi

t = F(t,Xi
t , θt), Ẏ i

t = 0,

(Xi
t , Y

i
t )|t=0 = (Xi

0, Y
i
0 ), i ∈ {1, . . . , N}.

(3.15)

By introducing the empirical measure µN0 ∈ PN
c (R2d), defined by

µN0 :=
1

N

N∑
i=1

δ(Xi
0,Y

i
0 )
, (3.16)

the latter can be rewritten as the mean-field optimal control problem (1.8) with initial datum

µN0 . In the following theorem, we show that when the regularization parameter λ > 0 is

sufficiently large and the empirical samples satisfy

W1(µ
N
0 , µ0) −→

N→+∞
0, (3.17)

then the minimizers and optimal values of the problems (3.15) converge in a suitable sense

towards those of (1.8). Even though we do not resort explicitly to this terminology in the

sequel, this stability result amounts to showing that the sequence (JN ) is Γ-converging towards

J for the weak topology of L2([0, T ];Rm) in the sense e.g. of [28]. Although it bears some interest

and provides insights on the finite data consistency of the problem, the result that follows is

non-quantitative and purely based on compactness arguments. In order to obtain a quantitative

version of this stability property, it is necessary to establish a smooth relation between optimal

controls the θ∗ and the data distributions µ0. Such a connection will be realized through the

fundamental formula (4.8) below, by leveraging the mean-field PMP studied in Section 4.
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Theorem 3.3 (Stability of finitely sampled costs and controls). Let T,R > 0 be given, µ0 ∈
Pc(R2d) be such that supp(µ0) ⊂ B(R), and assume that Assumptions 1 and 2 hold. Moreover,

suppose that λ > 0 is sufficiently large in the sense of Theorem 3.2.

Then for every empirical approximating sequence (µN0 ) satisfying (3.16)-(3.17), the corre-

sponding sequence of optimal controls (θN ) ⊂ L2([0, T ];Rm) is such that

θN ⇀
N→+∞

θ∗ in L2([0, T ];Rm), (3.18)

where θ∗ ∈ L2([0, T ];Rm) is the unique solution of (1.8). Moreover, the optimal values converge

as well, in the sense that

JN (θN ) −→
N→+∞

J(θ∗) = min
θ∈L2([0,T ];Rm)

J(θ). (3.19)

Before proving Theorem 3.3, we state a useful auxiliary lemma exhibiting the dependence

of the reduced empirical cost with respect to the sample size N ≥ 1.

Lemma 3.2 (Dependence of the reduced cost with respect to N). For every θ ∈ L2([0, T ];Rm),

there exists a constant C(T,R, ∥θ∥1) > 0 such that∣∣J(θ)− JN (θ)
∣∣ ≤ C(T,R, ∥θ∥1)W1(µ

N
0 , µ0) (3.20)

and ∥∥∇J(θ)−∇JN (θ)
∥∥
2
≤ C(T,R, ∥θ∥1)W1(µ

N
0 , µ0) (3.21)

for each N ≥ 1.

Proof. Let us denote by µ, µN ∈ C([0, T ];Pc(R2d)) the solutions of (1.7) with control θ and

initial data µN0 , µ0 ∈ Pc(R2d) respectively. Under Assumptions 1, it follows from Theorem 2.3

that

sup
t∈[0,T ]

W1(µ
N
t , µt) ≤ eLF,T,∥θ∥1W1(µ

N
0 , µ0)

for some LF ,T,∥θ∥1 > 0. This combined with Kantorovich’s duality formula (2.6) implies that

∣∣J(θ)− JN (θ)
∣∣ = ∣∣∣∣ ∫

R2d

ℓ(x, y)d
(
µT − µNT

)
(x, y)

∣∣∣∣ ≤ Lip(ℓ ;B(R)) eLF,T,∥θ∥1W1(µ
N
0 , µ0),

for each N ≥ 1. Analogously by leveraging the analytical expression (3.12) of the gradient of

the reduced final cost, one also has that∥∥∇J(θ)−∇JN (θ)
∥∥2
2

≤
∫ T

0

∣∣∣∣ ∫
R2d

(
Rθ

(t,T )(x)∇θF
(
t,Φθ

(0,t)(x), θt
))⊤

∇xℓ
(
Φθ
(0,T )(x), y

)
d
(
µ0 − µN0

)
(x, y)

∣∣∣∣2dt.
(3.22)

At this stage, one can check that as a consequence of Assumptions 1 and 2 along with the

definition (B.2) of the resolvent maps that there exists a constant C ′(T,R, ∥θ∥1) > 0 such that∫ T

0

∥∥∥(Rθ
(t,T )(·)∇θF

(
t,Φθ

(0,t)(·), θt
))⊤

∇xℓ
(
Φθ
(0,T )(·), ·

)∥∥∥2
C1(B(R))

dt ≤ C ′(T,R, ∥θ∥1)2. (3.23)

19



By combining (3.22) and (3.23) with an application of Kantorovich’s duality formula (2.6), we

finally obtain that ∥∥∇J(θ)−∇JN (θ)
∥∥
2
≤ C ′(T,R, ∥θ∥1)W1(µ

N
0 , µ0)

for each N ≥ 1, which concludes the proof of Lemma 3.2 by simply setting C(T,R, ∥θ∥1) :=

max
{
Lip(ℓ ;B(R)) eLF,T,∥θ∥1 , C ′(T,R, ∥θ∥1)

}
.

Building on these a priori estimates, we can move on to the proof of Theorem 3.3.

Proof of Theorem 3.3. Observe first that and because supp(µN0 ) ⊂ B(R) for each N ≥ 1 and we

assumed λ > 0 to be sufficiently large, there exists a unique optimal control θN ∈ L2([0, T ];Rm)

solution of (3.15) as a consequence of Theorem 3.2. Noticing again that

JN (θN ) ≤ JN (0) ≤ ∥ℓ∥C1(B(R)) + 1

for each N ≥ 1, the sequence (θN ) is uniformly contained in the closed ball Γ ⊂ L2([0, T ];Rm)

whose radius is defined in Theorem 3.2, and as such it admits a subsequence (that we do not

relabel) which converges weakly to some θ∗ ∈ L2([0, T ];Rm).

Our goal is to show that θ∗ is the unique minimizer of J and that the optimal values

(JN (θN )) converge towards J(θ∗). To this end observe first that by Mazur’s lemma (see e.g.

[20, Corollary 3.8]), there exists a sequence (θ̃N ) made of convex combinations of the elements

of (θN ) such that

θ̃N −→
N→+∞

θ∗ in L2([0, T ];Rm).

Recalling that θN are minimizers of JN and that these latter are uniformly equi-Lipschitz over

Γ as a consequence of Lemma 3.1, it further holds that

JN (θN ) ≤ JN (θ̃N )

≤ JN (θ∗) +
(
L(T,R,Γ) + 2λ

)∥∥θ∗ − θ̃N
∥∥
2
,

for each N ≥ 1. Using the stability estimate (3.20) of Lemma 3.2, we can pass to the limit in

the previous expression and obtain that

lim sup
N→+∞

JN (θN ) ≤ J(θ∗). (3.24)

In order to recover a similar inequality for the liminf, notice that the reduced costs JN are

convex by Proposition 3.1, which implies that

JN (θN ) ≥ JN (θ∗) +
〈
∇JN (θ∗), θN − θ∗

〉
L2([0,T ];Rm)

≥ JN (θ∗) +
〈
∇J(θ∗), θN − θ∗

〉
L2([0,T ];Rm)

+
〈
∇J(θ∗)−∇JN (θ∗), θN − θ∗

〉
L2([0,T ];Rm)

(3.25)

for each N ≥ 1. Observe now that by (3.21) in Lemma 3.2, one has that∥∥∇J(θ∗)−∇JN (θ∗)
∥∥
2

−→
N→+∞

0,

which together with the fact that (θN ) ⊂ Γ is converging weakly towards θ∗ then yields〈
∇J(θ∗)−∇JN (θ∗), θ∗ − θN

〉
L2([0,T ];Rm)

−→
N→+∞

0,
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by standard results on weak-strong convergence (see e.g. [20, Proposition 3.5]). Thus, by

passing to the limit as N → +∞ in (3.25) while using (3.20) of Lemma 3.2, we recover

J(θ∗) ≤ lim inf
N→+∞

JN (θN ), (3.26)

which together with (3.24) finally implies that

JN (θN ) −→
N→+∞

J(θ∗). (3.27)

In order to conclude that θ∗ is a minimizer of J , it is sufficient to consider a minimizing sequence

(θn) ⊂ Γ for (1.8) and to observe that by Lemma 3.2 and (3.27), it holds that

J(θn) = lim
N→+∞

JN (θn) ≥ lim
N→+∞

JN (θN ) = J(θ∗)

and to let n → +∞. The strict convexity of J in turn provides the uniqueness of θ∗, from

whence we can deduce that it is the weak limit of the whole sequence (θN ).

4 Mean-Field Maximum Principle

In this section, we investigate first-order optimality conditions for the mean-field optimal control

problem (1.8), which take the form of a mean-field Pontryagin Maximum Principle (“PMP” for

short). Their derivation – which is based on a Lagrange multiplier rule for the convex calculus

introduced in Section 2 – is heuristically presented in Section 4.1. After studying the well-

posedness of the optimality system in Section 4.2, we proceed to rigorously establish the PMP

throughout Section 4.3.

4.1 Formal derivation of the Lagrangian maximum principle

We start this section by providing a formal derivation of the mean-field PMP. To this end, we

first introduce the Lagrangian of the mean-field optimal control problem (1.8), defined by

L(µ, θ, ψ) =
∫
R2d

ℓ(x, y)dµT (x, y) + λ

∫ T

0
|θt|2 dt

+

∫
R2d

ψ(0, x, y)dµ0(x, y)−
∫
R2d

ψ(T, x, y)dµT (x, y)

+

∫ T

0

∫
R2d

(
∂tψ(t, x, y) +∇xψ(t, x, y) · F(t, x, θt)

)
dµt(x, y) dt . (4.1)

Next, we compute its functional derivatives with respect to the curves µ and θ, namely

δL
δµt

=


0, for t = 0 (the initial condition is fixed)

∂tψ +∇xψ · F , for t ∈ (0, T ),

ℓ− ψT , for t = T ,

and
δL
δθt

= 2λθ⊤t +

∫
R2d

∇xψ · ∇θF(t, x, θt)dµt(x, y) ,
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for almost every t ∈ [0, T ]. Then, given an optimal trajectory-control pair (µ∗, θ∗) for the

problem (1.8), we will show that there exists a Lagrange multiplier ψ∗ such that

δL
δµ

(µ∗, θ∗, ψ∗) = 0 and
δL
δθ

(µ∗, θ∗, ψ∗) = 0 . (4.2)

These latter will in turn provide us with the following backward adjoint dynamics

∂tψ
∗ +∇xψ

∗ · F(t, x, θ∗t ) = 0, (4.3)

subject to the terminal condition ψ∗
T = ℓ, along with the fixed-point equation

2λθ∗⊤t +

∫
R2d

∇xψ
∗ · ∇θF(t, x, θ∗t )dµ

∗
t (x, y) = 0, (4.4)

characterizing the optimal controls, where the curve µ∗ satisfies the native forward dynamics

∂tµ
∗
t +∇x · (F(t, x, θ∗t )µ

∗
t ) = 0, µ∗t |t=0 = µ0 . (4.5)

We will see below that (4.3) is understood in the sense of (4.71), and that (4.4) is understood

in the sense of (4.72).

4.2 Well-posedness of the maximum principle

This section is devoted to discussing the existence and uniqueness of a solution (µ∗, θ∗, ψ∗) ∈
C([0, T ];Pc(R2d))× Lip([0, T ];Rm)× C1([0, T ]; C2

c (R2d)) to the first-order optimality system


∂tµ

∗
t +∇x · (F(t, x, θ∗t )µ

∗
t ) = 0, µ∗t |t=0 = µ0,

∂tψ
∗ +∇xψ

∗ · F(t, x, θ∗t ) = 0, ψ∗
t |t=T = ℓ,

θ∗⊤t = − 1

2λ

∫
R2d

∇xψ
∗ · ∇θF(t, x, θ∗t )dµ

∗
t (x, y).

(4.6)

(4.7)

(4.8)

To do so, we consider a compact and convex subset ΓM,C of the subspace Lip([0, T ];Rm) ⊂
C([0, T ];Rm), defined by

ΓM,C :=
{
θ ∈ C([0, T ];Rm)

∣∣ |θt − θs| ≤M |t− s|, ∥θ∥∞ ≤ CΓ

}
. (4.9)

for some constants M,CΓ > 0. We will also make use of the following ball in L2([0, T ];Rm)

ΓC :=
{
θ ∈ L2([0, T ];Rm) | ∥θ∥2 ≤ CΓT

1
2

}
. (4.10)

One can easily notice that ΓM,C ⊂ ΓC .

Theorem 4.1. For any given T > 0, take an initial data µ0 ∈ Pc(R2d) and a terminal condition

ψT satisfying (4.14), let F be a map satisfying Assumptions 1 and 2, and suppose that λ > 0 is

large enough.

Then, there exists a triple (µ∗, θ∗, ψ∗) ∈ C([0, T ];Pc(R2d))×Lip([0, T ];Rm)×C1([0, T ]; C2
c (R2d))

solution of (4.6)-(4.8). Moreover, the control solution θ∗ is unique in ΓC ⊂ L2([0, T ];Rm) de-

fined as in (4.10), and ψ∗ ∈ C1([0, T ]; C2
c (R2d)) is in characteristic form.
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Remark 4.1. If there exists an optimal control θ∗ ∈ L2([0, T ];Rm) satisfying the maximum

principle (4.6)-(4.8), then the uniqueness result in Theorem 4.1 ensures that θ∗ coincides with

a Lipschitz continuous function almost everywhere. This means that in such a case there exists

a smooth optimal control θ∗ ∈ Lip([0, T ];Rm).

Using arguments that are similar to those of Theorem 2.3, one can show the following result.

Proposition 4.2. Consider an initial data µ0 ∈ Pc(R2d) with supp(µ0) ⊂ B(R) for some

R > 0, and let F satisfy Assumption 1. Then for any T > 0 and θ ∈ ΓM,C , there exists a

unique solution µθ ∈ C([0, T ];Pc(R2d)) to (4.6) in the sense of Definition 2.2. Moreover, there

exists some RT > 0 depending only on R and CF , such that

supp(µθt ) ⊂ B(RT ) for all t ∈ [0, T ] . (4.11)

Additionally, for any s, t ∈ [0, T ], it holds

W1(µ
θ
t , µ

θ
s) ≤ C(R,CF )|t− s| . (4.12)

If µθ,i, i = 1, 2 are two solutions with initial data µi0 satisfying the above assumptions, we have

W1(µ
θ,1
t , µθ,2t ) ≤ eLF,T,CΓW1(µ

1
0, µ

2
0) for all t ∈ [0, T ] . (4.13)

Here CF and LF ,T,CΓ
are defined as in Assumption 1 by replacing ∥θ∥1 by CΓT .

In what follows, we will only be interested in what is happening inside the supports of µθ

for θ ∈ ΓM,C . Therefore, we shall recast the terminal condition in (4.7) as ψT ∈ C2
c (R2d) with

supp(ψT ) = B(RT ) and ψT (x, y) = ℓ(x, y) for all x, y ∈ B(RT ) . (4.14)

In this context, we are able to derive the following norm estimate on ψθ.

Proposition 4.3. Suppose that F satisfies Assumption 1. Then for any T > 0 and θ ∈ ΓM,C ,

there exists a unique characteristic solution ψθ ∈ C1([0, T ]; C2
c (R2d)) to the equation (4.7) whose

terminal condition satisfies (4.14). Moreover, it holds that∥∥ψθ
t

∥∥
C2
c (R2d)

≤ C(R′, T, CΓ, CF , LF ,T,CΓ
) ∥ψT ∥C2(B(RT )) , (4.15)

for all times t ∈ [0, T ]. Here the supports of ψθ
t satisfies the inclusion supp(ψθ

t ) ⊂ B(R′
T ) where

R′ = R+ (R+ CFT )e
CFT .

The results of Proposition 4.3 are classical, and we postpone their proof to Appendix A.

Remark 4.2. Here, the fact that ψθ is a characteristic solution means that it is obtained via

the characteristic method, and is of the form ψθ(t, x, y) = ψT (Φ
θ
(T,t)(x, y)). Therein, we denoted

by (Φθ
(τ,t))τ,t∈[0,T ] the flow maps defined as in (A.3) with F(t, x) := F(t, x, θt). Characteristic

solutions to (4.8) are unique because of the way they depends on the terminal condition (4.15).

Note here that we do not claim to have general uniqueness in C1([0, T ]; C2
c (R2d)) for (4.8), i.e.

there may exist C1([0, T ]; C2
c (R2d)) solutions that are not in the characteristic form. In what

follows however, we will only consider characteristic solutions.
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Proof of Theorem 4.1. The existence of optimal controls θ∗ in ΓM,C is based on the Schauder

fixed point theorem [40, Theorem 11.1]. Then, the uniqueness will be obtained by additionally

showing that the underlying fixed-point map is a contraction in ΓC .

• (Existence in ΓM,C) For any θ ∈ ΓM,C , denote by µθ ∈ C([0, T ];Pc(R2d)) the corresponding

solution of (4.6) and by ψθ ∈ C1([0, T ]; C2
c (R2d)) the unique characteristic solution of (4.7). In

this context, we introduce the continuous mapping Λ : ΓM,C → C([0, T ];Rm), defined by

Λ(θ)(t)⊤ = − 1

2λ

∫
R2d

∇xψ
θ
t · ∇θF(t, x, θt)dµ

θ
t (x, y), (4.16)

for every θ ∈ ΓM,C and all times t ∈ [0, T ]. We start by checking that Λ(ΓM,C) ⊂ ΓM,C for λ

large enough. On the one hand, it follows Assumption 1-(iii) and (4.15) that

|Λ(θ)(t)| ≤ 1

2λ

∫
B(RT )

∣∣∇xψ
θ
t · ∇θF(t, x, θt)

∣∣dµθt (x, y)
≤ 1

2λ
C(RT , T ) sup

t∈[0,T ]

∥∥ψθ
t

∥∥
C1(B(R′

T ))

≤ 1

2λ
C(RT , T )C(R

′
T , T, CΓ, CF , LF ,T,CΓ

) ∥ψT ∥C1(B(RT )) ,

for all t ∈ [0, T ], with the explicit constant R′
T := R + (R + CFT )e

CFT . Hence, upon choosing

a parameter λ > 0 that is large enough, it holds

∥Λ(θ) ∥L∞([0,T ];Rm) ≤ CΓ. (4.17)

On the other hand, one has for any s, t ∈ [0, T ] that

|Λ(θ)(t)− Λ(θ)(s)| ≤ 1

2λ

∣∣∣∣∣
∫
B(RT )

(
∇xψ

θ
t −∇xψ

θ
s

)
· ∇θF(t, x, θt)dµ

θ
t (x, y)

∣∣∣∣∣
+

1

2λ

∣∣∣∣∣
∫
B(RT )

∇xψ
θ
s · (∇θF(t, x, θt)−∇θF(s, x, θs))dµ

θ
t (x, y)

∣∣∣∣∣
+

1

2λ

∣∣∣∣∣
∫
B(RT )

∇xψ
θ
s · ∇θF(s, x, θs)(dµ

θ
t − dµθs)(x, y)

∣∣∣∣∣
=: I1 + I2 + I3.

Using the fact that ψθ ∈ C1([0, T ]; C2
c (R2d)) along with Assumption 1-(iii), one can see that

I1 ≤
1

2λ
C(RT , T )|t− s| , (4.18)

for all s, t ∈ [0, T ]. Furthermore, it follows from assumption (3.2) and the estimate (4.15) that

I2 ≤
1

2λ
C(RT ) sup

t∈[0,T ]

∥∥ψθ
t

∥∥
C1(B(R′

T ))

(
|t− s|+ |θt − θs|

)
≤ 1

2λ
C(RT )C(R

′
T , T, CΓ, CF , LF ,T,CΓ

) ∥ψT ∥C1(B(RT ))M |t− s|, (4.19)

with R′
T := R+ (R+ CFT )e

CFT . Lastly by Kantorovich’s duality formula (2.6), one has

I3 ≤
1

2λ
Lip
(
∇xψ

θ
s · ∇θF(s, ·, θs) ;B(RT )

)
W1(µt, µs), (4.20)
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and can further notice that

Lip
(
∇xψ

θ
s · ∇θF(s, ·, θs) ;B(RT )

)
≤ C(R′

T , T, CΓ, CF , LF ,T,CΓ
) ∥ψT ∥C2(B(RT ))

×
(
∥∇θF(s, ·, θs)∥L∞(B(RT )) + Lip(∇θF(s, ·, θs) ;B(RT ))

)
≤ C(R′

T , T, CΓ, CF , LF ,T,CΓ
, RT ) ∥ψT ∥C2(B(RT )) ,

where we have used (4.15) and Assumption 2-(iii). This combined with (4.12) thus yields

I3 ≤
1

2λ
C(R′

T , T, CΓ, CF , LF ,T,CΓ
, RT ) ∥ψT ∥C2(B(RT )) |t− s|. (4.21)

Collecting estimates (4.18), (4.19) and (4.21), we deduce that for λ > 0 large enough, it holds

|Λ(θ)(t)− Λ(θ)(s)| ≤M |t− s|. (4.22)

Thus, we have proven that Λ(ΓM,C) ⊂ ΓM,C when λ > 0 is taken to be sufficiently large. Hence

by Schauder’s fixed point theorem, the mapping Λ has at least a fixed point θ∗, namely

θ∗⊤ = − 1

2λ

∫
R2d

∇xψ
θ∗
t · ∇θF(t, x, θ∗t )dµ

θ∗
t (x, y). (4.23)

This concludes the existence part of the proof.

• (Uniqueness in ΓC) Our goal now is to prove that Λ is a contraction over ΓM,C with respect to

the L2-norm, so that that the fixed point θ∗ ∈ ΓM,C is actually unique in ΓC . Indeed assuming

that Λ had two distinct fixed points θ1 and θ2, it would hold

∥θ1 − θ2∥2 = ∥Λ(θ1)− Λ(θ2)∥2 ≤ κ∥θ1 − θ2∥2,

which leads to a contradiction for contraction constants satisfying 0 ≤ κ < 1. In order to prove

the contractivity of Λ, we start by fixing t ∈ [0, T ] and denote by µθ
1
, µθ

2
two solutions of (4.6)

driven by θ1, θ2 respectively, with the same initial condition µ0. Similarly, denote by ψθ1 , ψθ2

the solutions of (4.7) generated by θ1, θ2 with the same terminal condition ψT . Then

|Λ(θ1)(t)− Λ(θ2)(t)|

=
1

2λ

∣∣∣∣∫
R2d

∇xψ
θ1

t · ∇θF(t, x, θ1t )dµ
θ1

t (x, y)−
∫
R2d

∇xψ
θ2

t · ∇θF(t, x, θ2t )dµ
θ2

t (x, y)

∣∣∣∣
which can in turn be estimated by inserting suitable crossed terms as

|Λ(θ1)(t)− Λ(θ2)(t)| ≤ 1

2λ

∣∣∣∣∫
R2d

∇xψ
θ1

t · ∇θF(t, x, θ1t )(dµ
θ1

t − dµθ
2

t )(x, y)

∣∣∣∣
+

1

2λ

∣∣∣∣∫
R2d

(
∇xψ

θ1

t · ∇θF(t, x, θ1t )−∇xψ
θ2

t · ∇θF(t, x, θ2t )
)
dµθ

2

t (x, y)

∣∣∣∣
=:

1

2λ
(|I1|+ |I2|).
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We start by further simplifying the integral term I2, which can be recast as

|I2| =
∣∣∣∣ ∫

R2d

(
∇xψ

θ1

t · ∇θF(t, x, θ1t )−∇xψ
θ2

t · ∇θF(t, x, θ1t )

+∇xψ
θ2

t · ∇θF(t, x, θ1t )−∇xψ
θ2

t · ∇θF(t, x, θ2t )
)
dµθ

2

t (x, y)

∣∣∣∣
≤
∣∣∣∣∫

R2d

(∇xψ
θ1

t −∇xψ
θ2

t ) · ∇θF(t, x, θ1t )dµ
θ2

t (x, y)

∣∣∣∣
+

∣∣∣∣∫
R2d

∇xψ
θ2

t · (∇θF(t, x, θ1t )−∇θF(t, x, θ2t ))dµ
θ2

t (x, y)

∣∣∣∣
=: |I3|+ |I4|.

Hence, the estimate in (4.2) is equivalent to

|Λ(θ1)(t)− Λ(θ2)(t)| ≤ 1

2λ
(|I1|+ |I3|+ |I4|) . (4.24)

Let us focus on each term separately, starting with the integral I1. Henceforth, we only consider

the integrals over B(RT ), in which the curves µθ
i
are supported for i = 1, 2. By using the same

reasoning as in (4.21), we have that

|I1| =

∣∣∣∣∣
∫
B(RT )

∇xψ
θ1

t · ∇θF(t, x, θ1t )(dµ
θ1

t − dµθ
2

t )(x, y)

∣∣∣∣∣
≤ Lip

(
∇xψ

θ1

t · ∇θF(t, x, θ1t ) ;B(RT )
)
W1(µ

θ1

t , µ
θ2

t )

≤ C(R′
T , T, CΓ, CF , LF ,T,CΓ

, RT ) ∥ψT ∥C2(B(R′
T ))W1(µ

θ1

t , µ
θ2

t ). (4.25)

Observe now that following Appendix A, the curves µθ
1

t and µθ
2

t are characteristic solutions of

(4.6), in the sense that

µθ
i

t = Φθi

(0,t)♯µ0 (4.26)

for all times t ∈ [0, T ], where Φθi

(0,t)(·) are the flow maps of the underlying ODEs

dXi
t

dt
= F(t,Xi

t , θ
i
t),

dY i
t

dt
= 0, (Xi

0, Y
i
0 ) = (x0, y0)

for i = 1, 2. Then, it follows from Assumption 1 that

∣∣(X1
t , Y

1
t )− (X2

t , Y
2
t )
∣∣ = ∣∣∣∣(x0 − x0 +

∫ t

0
(F(s,X1

s , θ
1
s)−F(s,X2

s , θ
2
s))ds, y0 − y0

)∣∣∣∣
≤
∫ t

0

∣∣(F(s,X1
s , θ

1
s)−F(s,X2

s , θ
2
s)
∣∣ ds

≤
∫ t

0

∣∣F(t,X1
s , θ

1
s)−F(t,X2

s , θ
1
s)
∣∣ds+ ∫ t

0

∣∣F(t,X2
s , θ

1
s)−F(t,X2

s , θ
2
s)
∣∣ds

≤ LF ,T,CΓ

∫ t

0
|X1

s −X2
s |ds+ C(RT , T )

∫ t

0
|θ1s − θ2s |ds. (4.27)

Then by Gronwall’s lemma and the definition of the Wasserstein distance, we obtain

W1(µ
θ1

t , µ
θ2

t ) ≤W1

(
Φθ1

(0,t)♯µ0,Φ
θ2

(0,t)♯µ0

)
≤ C(RT , T )e

LF,T,CΓ
T ∥θ1 − θ2∥2, (4.28)
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and by using (4.28) in (4.25), it further holds that

|I1| ≤ C(R′
T , T, CΓ, CF , LF ,T,CΓ

, RT ) ∥ψT ∥C2(B(RT )) ∥θ
1 − θ2∥2. (4.29)

We now shift our focus to the integral I3. By Assumption 2-(i), we have that

|I3| =

∣∣∣∣∣
∫
B(RT )

(ψθ1

t − ψθ2

t )∇x · ∇θF(t, x, θ1t )dµ
θ2

t (x, y)

∣∣∣∣∣
≤ C(RT , T, CΓ) sup

t∈[0,T ]

∥∥ψθ1

t − ψθ2

t

∥∥
C(B(R′

T ))
. (4.30)

Recalling that ψθ1 , ψθ2 are characteristic solutions of (4.7) while using (A.16), one further has∥∥∥ψθ1

t − ψθ2

t

∥∥∥
C(B(R′

T ))
=
∥∥∥ψT

(
Φθ1

(t,T )

)
− ψT

(
Φθ2

(t,T )

) ∥∥∥
C(B(R′

T ))

≤ ∥ψT ∥C1(B(RT ))

∥∥∥Φθ1

(t,T ) −Φθ2

(t,T )

∥∥∥
C(B(RT ))

. (4.31)

Besides, it simply follows from Proposition B.1 that

sup
t∈[0,T ]

∥∥Φθ1

(t,T ) −Φθ2

(t,T )

∥∥
C(B(RT ))

≤ C(RT , T )e
LF,T,CΓ

T ∥θ1 − θ2∥2, (4.32)

for some given constant C(RT , T )e
LF,T,CΓ

T > 0. Therefore, the term I3 can be estimated as

|I3| ≤ C(T,RT , CΓ, CF ) ∥ψT ∥C1((B(RT )) ∥θ
1 − θ2∥2 . (4.33)

Lastly, we focus on the integral quantity I4. Using Assumption (1)-(iv), we can write

|I4| ≤
∫
R2d

|∇xψ
θ2

T |
∣∣∇θ(F(t, x, θ1t )−F(t, x, θ2t ))

∣∣dµθ2t (x, y)

≤
∫
R2d

|∇xψ
θ2

T |
∣∣∇2

θF(t, x, θ)
∣∣ ∣∣θ1t − θ2t

∣∣ dµθ2t (x, y)

≤ C(RT , T )|θ1t − θ2t | sup
t∈[0,T ]

∥∥∥ψθ2

t

∥∥∥
C1(B(R′

T ))

≤ C(RT , T,R
′
T , CΓ, CF , LF ,T,CΓ

)
∥∥ψT

∥∥
C1(B(RT ))

|θ1t − θ2t | . (4.34)

Collecting the estimates from (4.29), (4.33) and (4.34), we can conclude

∥Λ(θ1)− Λ(θ2)∥2 ≤
1

2λ
C(R′

T , RT , T, CF , CΓ, LF ,T,CΓ
) ∥ψT ∥C2(B(RT )) ∥θ

1 − θ2∥2

= κλ∥θ1 − θ2∥2 .

Hence by choosing the parameter λ > 0 to be large enough, we obtain that κλ < 1, which

means that the mapping Λ : ΓM,C → ΓM,C is a contraction and thus that its fixed point θ∗

is unique in ΓC . Thus we have obtained a solution (µ∗, θ∗, ψ∗) ∈ C([0, T ];Pc(R2d)) × ΓM,C ×
C1([0, T ]; C2

c (R2d)) to equations (4.6)-(4.8), and it is unique in ΓC .

Remark 4.3. As it was shown in the proof above, the size condition imposed on λ depends

on some constant C(|R′
T |, RT , T, CF , CΓ, LF ,T,CΓ

) and ∥ψT ∥C2(RT ). Especially for the case

F(t, x, θ) := tanh(θx), we can simplify the constant as C(RT , T, CΓ), which shows that λ de-

pends on the size of the support of µ0, on the final time T > 0 and on the constant CΓ.
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In addition to its usefulness in characterizing and computing optimal controls, the mean-

field maximum principle allows us to derive a quantitative norm rate of convergence of the latter

with respect to the Lp-norms and a quantitative generalization error.

Corollary 4.4. For any T,> 0, let µ0 ∈ Pc(R2d) be such that supp(µ0) ⊂ B(R) and and ψT

be a terminal condition satisfying (4.14), and suppose Assumptions 1 and 2 hold. Moreover,

assume that for each N ≥ 1 we are given an approximating empirical measure of the form

µN0 :=
1

N

N∑
i=1

δ(Xi
0,Y

i
0 )

∈ PN
c (R2d),

such that

lim
N→∞

W1(µ
N
0 , µ0) = 0.

Let λ > 0 be sufficiently large so that (µ∗, θ∗, ψ∗) ∈ C([0, T ];Pc(R2d)) × Lip([0, T ];Rm) ×
C1([0, T ]; C2

c (R2d)) and (µN , θN , ψN ) ∈ C([0, T ];PN
c (R2d))× Lip([0, T ];Rm)×C1([0, T ]; C2

c (R2d))

are the unique solutions of (4.6)-(4.8) with initial conditions µ0 and µN0 respectively. Then

max

{
∥θN − θ∗∥p , sup

t∈[0,T ]
W1(µ

N
t , µ

∗
t ) , ∥ψN − ψ∗∥C([0,T ]×B(RT ))

}
≤ CW1(µ

N
0 , µ0), (4.35)

for a constant C > 0 which only depends on the parameters of the model and p ∈ [1,+∞], and

where RT > 0 is defined as in Proposition 4.2 above. In particular, we obtain the following

quantitative generalization error estimate∣∣∣∣ ∫
R2d

ℓ(x, y) dµ∗T (x, y)−
1

N

N∑
i=1

ℓ
(
Xi

T , Y
i
T

)∣∣∣∣ ≤ CW1(µ
N
0 , µ0). (4.36)

Proof. By using similar arguments as in the proof of Theorem 4.1, see in particular (4.13) and

(4.27)-(4.28), we can prove the stability estimate

sup
t∈[0,T ]

W1(µ
N
t , µ

∗
t ) ≤ sup

t∈[0,T ]
W1(µ

N
t , µ

θN

t ) + sup
t∈[0,T ]

W1(µ
θN

t , µ∗t )

≤ C

(
W1(µ

N
0 , µ0) +

∫ T

0
|θNt − θ∗t | dt

)
(4.37)

≤ C
(
W1(µ

N
0 , µ0) + ∥θN − θ∗∥p

)
, (4.38)

where µθ
N

t is the unique solution of (4.5) driven by θN with initial datum µ0, and C > 0 is an

overloaded constant depending on the data of the problem. Similarly, from (4.27), (4.31) and

(4.32), we have that

∥ψN − ψ∗∥C([0,T ]×B(RT )) ≤ C

∫ T

0
|θNt − θ∗t |dt ≤ C∥θN − θ∗∥p, (4.39)

for any p ∈ [1,+∞]. Finally, by using the fixed point equations

θN = Λ(θN ) and θ∗ = Λ(θ∗),
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and following the estimates in the proof of Theorem 4.1, see in particular (4.24), (4.25), (4.30)

and (4.34), we obtain

∥θN − θ∗∥p = ∥Λ(θN )− Λ(θ∗)∥p

≤ C

λ

(
∥θN − θ∗∥p + sup

t∈[0,T ]
W1(µ

N
t , µ

∗
t ) + ∥ψN − ψ∗∥C([0,T ]×B(RT ))

)
≤ C

λ

(
W1(µ

N
0 , µ0) + ∥θN − θ∗∥p

)
,

where we applied (4.37) and (4.39) in the last inequality. Hence for λ > 0 large enough, it holds

∥θN − θ∗∥p ≤ CW1(µ
N
0 , µ0). (4.40)

Combining now (4.37), (4.39) and (4.40) finally yields (4.35). The generalization error displayed

in (4.36) follows from (4.37) and (4.40), since∣∣∣∣∫
R2d

ℓ(x, y) d(µ∗T (x, y)− µNT (x, y))

∣∣∣∣ ≤ Lip(ℓ ;B(RT )) sup
t∈[0,T ]

W1(µ
N
t , µ

∗
t )

≤ C
(
W1(µ

N
0 , µ0) + ∥θN − θ∗∥p

)
≤ CW1(µ

N
0 , µ0).

This completes the proof of Corollary 4.4.

Remark 4.4 (Data bounds, regularization parameters and error estimates). The estimate

(4.36) is in the worst case affected by the curse of dimension, although it will not be the case in

practice e.g. for networks driven by sigmoid activation functions. The constant C in (4.36) is

encoding the complexity of the NeurODE and is derived as a consequence of (4.40) as

C = C1(1− C0/λ) > 0.

Therein, the constant C0 > 0 may depend exponentially on the constants CF and LF appearing

in Assumptions 1 – and in particular on the dimension d ≥ 1 of the state space –, and poly-

nomially on those of Assumptions 2, owing to the pessimistic nature of deterministic Grönwall

estimates. Thus, as long as the worst-case Grönwall estimates do indeed reflect the actual sta-

bility of the PMP, the constant C0 > 0 may be extremely large. Nevertheless, in the case of

sigmoidal-type activation functions such as ρ := tanh, we detailed in Remark 3.1 how the uni-

form boundedness of the velocity field F implied a polynomial dependence of all the relevant

constants of the problem with respect to the state space dimension. Therefore, in that particular

yet relevant case, the quantity C0 will in fact scale polynomially and not exponentially with d.

For arbitrary initial measures µ0, it is known that empirical measures µN supported on finite

samples satisfy the estimate

E
[
W1(µ

N
0 , µ0)

]
≤ CN−1/d,

see for instance [30, 38], which scales quite badly with the dimension d ≥ 1 of the state space.

However, if µ0 is concentrated around manifolds of lower dimension, then the factor C > 0

depends favorably on that intrinsic lower dimension [72]. In practice, it is expected that data

distributions do concentrate around such lower-dimensional structures.
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4.3 Rigorous derivation of the mean-field maximum principle

The previous section, we proved the well-posedness of the mean-field PMP (4.6)-(4.8) in the

class of control that are Lipschitz continuous with respect to time. Under this assumption,

we rigorously derive in what follows the optimality conditions by using a generalized Lagrange

multiplier theorem over convex sets. The method we present is to a certain extent a standard

calculus of variations approach, and allows to bypass the more technical ones based either on

the abstract differential calculus of Wasserstein as in [13,15,18], or on the fine structural results

for continuity equations leveraged in [21].

Let it be stressed that the requirement of continuity of the control is purely technical, and

stems from our use of [63, Theorem 1] concerning the well-posedness of transport equations with

sources. Were such results available in the case where the source terms are merely measurable in

time – which seems true but is not written anywhere yet –, we could then remove the continuity

assumption and prove the mean-field PMP in its full generality using the Lagrangian approach.

4.3.1 A Lagrange Multiplier Theorem over convex sets

Let X and Y be Banach spaces, E ⊂ X be a convex set, J : E → R be a continuous functional

and G : E → Y be a linear mapping, both continuously F -differentiable on E in the sense of

(2.17). For x∗ ∈ E, we introduce the notation

DG(x∗) :=
{
L ∈ L(XE , Y )

∣∣ L satisfies (2.15)
}
. (4.41)

It is known that every L ∈ L(XE , Y ) can be uniquely extended to a operator L ∈ L(XE , Y )

over the Banach space XE . In what follows, we will slightly abuse the notation DG(x∗) to

denote the set of operators obtained after extending the convex subgradients to XE .

In the following theorem, we extend the Lagrange multiplier theorem for the Banach space

[75, Section 4.14] to the setting of the calculus for convex subsets introduced in Section 2. To

ease the readability of the paper, the proof of this result is reported in Appendix C.

Theorem 4.5. Let x∗ ∈ E be a solution of the constrained optimization problem inf
x∈E

J(x),

s.t. G(x) = 0.
(4.42)

Suppose moreover that the inclusion x∗ +XE ⊂ E holds, and that there exists some G′(x∗) ∈
DG(x∗) that is a surjective operator from XE into Y . Then for any J ′(x∗) ∈ DJ(x∗), there

exists a non-zero covector p∗ ∈ Y ′ which satisfies

⟨J ′(x∗), z⟩+ ⟨G′(x∗)z, p∗⟩ = 0 (4.43)

for all z ∈ XE.

4.3.2 Preparation and verification of assumptions

Recall that in Theorem 2.3, we have shown that for every θ ∈ L2([0, T ];Rm), there exists a

unique solution µ ∈ C([0, T ];Pc(R2d)) to the continuity equation 1.7. In the sequel, we assume
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that θ ∈ C([0, T ];Rm) so that the map t 7→ F(t, x, θt) is continuous on [0, T ], and that F satisfies

Assumption 1.

Under these working assumption we can further prove that the solution µ is such that

∂tµ ∈ C([0, T ]; (C1
b (R2d))′). Indeed for any φ ∈ C1

b (R2d), one has

∥∂tµt ∥(C1
b (R2d))′ = sup

∥φ ∥C1
b
≤1

|⟨∂tµt, φ⟩| (4.44)

= sup
∥φ ∥C1

b
≤1

|⟨F(t, ·, θt)µt,∇xφ⟩|

≤ ∥F ∥L∞(supp(µt))
≤ CF (1 + |RT |). (4.45)

Additionally, it holds for any s, t ∈ [0, T ] that

∥∂tµt − ∂sµs ∥(C1
b (R2d))′ = sup

∥φ ∥C1
b
≤1

|⟨∂tµt − ∂sµs, φ⟩| (4.46)

= sup
∥φ ∥C1

b
≤1

|⟨F(t, ·, θt)µt −F(s, ·, θs)µs,∇xφ⟩|

≤ sup
∥φ ∥C1

b
≤1

∣∣∣〈(F(t, ·, θt)−F(s, ·, θs))µt,∇xφ
〉∣∣∣ (4.47)

+ sup
∥φ ∥C1

b
≤1

|⟨F(s, ·, θs)(µt − µs),∇xφ⟩| (4.48)

≤ C|t− s|+ sup
∥φ ∥C1

b
≤1

|⟨F(s, ·, θs)(µt − µs),∇xφ⟩|, (4.49)

Observe that by standard density results, there exists for every φ ∈ C1
b (R2d) a sequence (φn) ⊂

C2
b (R2d) such that ∥φn − φ ∥C1

b (R2d) → 0 as n→ +∞. Thus, one has that

sup
∥φ ∥C1

b
≤1

|⟨F(s, ·, θs)(µt − µs),∇xφ⟩|

≤ sup
∥φ ∥C1

b
≤1

∣∣〈F(s, ·, θs)(µt − µs), (∇xφ−∇xφ
n)
〉∣∣+ sup

∥φ ∥C1
b
≤1

|⟨F(s, ·, θs)(µt − µs),∇xφ
n⟩|

≤ C ∥φn − φ ∥C1
b (R2d) + Lip

(
F(t, ·, θt) · ∇xφ

n
)
W1(µt, µs) (4.50)

≤ C ∥φn − φ ∥C1
b (R2d) + Cn|t− s|, (4.51)

where we have used the Kantorovitch duality (2.6) and (A.7), which further yields that

lim
s→t

sup
∥φ ∥C1

b
≤1

|⟨F(s, ·, θs)(µt − µs),∇xφ⟩| ≤ ∥φn − φ ∥C1
b (R2d) , (4.52)

for every n ∈ N. Therefore letting n→ +∞ in (4.52), we can conclude

sup
∥φ ∥C1

b
≤1

|⟨F(s, ·, θs)(µt − µs),∇xφ⟩| −→
s→t

0. (4.53)

This combined with (4.46) and the fact that t 7→ F(t, x, θt) ∈ Rd is continuous implies that

∂tµ ∈ C([0, T ]; (C1
b (R2d))′). In the sequel, we shall consider trajectory-control pairs (µ∗, θ∗) ∈

C1([0, T ]; (C1
b (R2d))′) × C([0, T ];Rm) solution of the optimal control problem (1.8), where we

have used the notation µ ∈ C1([0, T ]; (C1
b (R2d))′) to represent that µ ∈ C([0, T ]; (C1

b (R2d))′) and

∂tµ ∈ C([0, T ]; (C1
b (R2d))′).
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◦ The setup of spaces and sets. Let us start by defining the spaces

V := C̃([0, T ];M1,c(R2d)) ∩ C1([0, T ]; (C1
b (R2d))′) and Q := C([0, T ];Rm), (4.54)

where

C̃([0, T ];M1,c(R2d)) :=

{
µ ∈ C([0, T ];M1,c(R2d))

∣∣ supp(µt) ⊂ Sµ for all t ∈ [0, T ]

where Sµ ⊂ Rd is a compact set

}
,

(4.55)

and fix

E := V ×Q = C̃([0, T ];M1,c(R2d)) ∩ C1([0, T ]; (C1
b (R2d))′)× C([0, T ];Rm). (4.56)

Clearly, (µ∗, θ∗) ∈ E since Pc(R2d) ⊂ M1,c(R2d). We also observe that E is a convex subset of

the Banach space

X := U ×Q = C1([0, T ]; (C1
b (R2d))′)× C([0, T ];Rm). (4.57)

Due to this embedding, we shall from now on endow M1,c(R2d) with the weak−∗ topology of

(C1
b (R2d))′. In what follows, we use the notation UV := R(V − V ) as well as the identity

UV := C̃([0, T ];M0,c(R2d)) ∩ C1([0, T ]; (C1
b (R2d))′). (4.58)

For ν ∈ V , we shall define Uν as the convex cone of directions

Uν := R+(V − ν) ⊂ UV , (4.59)

in keeping with the concepts introduced in Section 2. In fact, one can easily check that Uν = UV ,

since for any µ ∈ UV , one has µ = µ+ ν − ν with µ+ ν ∈ V . Next we introduce

XE := UV ×Q = C̃([0, T ];M0,c(R2d)) ∩ C1([0, T ]; (C1
b (R2d))′)× C([0, T ];Rm). (4.60)

that is seen as a convex subset of X. It follows from the definitions of E and XE that (µ∗, θ∗)+

XE ⊂ E, which is compatible with the assumptions of Theorem 4.5.

◦ The setup of maps. For any (µ, θ) ∈ E, we denote the full cost functional of (1.8) by

J(µ, θ) :=

∫
R2d

ℓ(x, y)dµT (x, y) + λ

∫ T

0
|θt|2 dt, (4.61)

and observe that it is a map from E into R+. We also introduce the notation

G(µ, θ) := −∂tµ−∇x · (F(t, x, θ)µ) . (4.62)

Seeing G(µ, θ) as time-dependent quantity, it is easy to check that G(µ, θ) ∈ C([0, T ]; (C1
b (R2d))′)

for (µ, θ) ∈ E, and that ⟨G(µ, θ)t, 1⟩ = 0 for all t ∈ [0, T ]. Indeed for any φ ∈ C1
b (R2d), it holds

∥G(µ, θ)t −G(µ, θ)s ∥(C1
b )

′ = sup
∥φ∥C1

b
≤1

|⟨G(µ, θ)t −G(µ, θ)s, φ⟩|

= ∥∂tµt − ∂sµs ∥(C1
b )

′ + sup
∥φ∥C1

b
≤1

∣∣〈(F(t, ·, θt)−F(s, ·, θs))µt,∇φ
〉∣∣

+ sup
∥φ∥C1

b
≤1

∣∣〈F(s, ·, θs)(µt − µs),∇φ
〉∣∣. .
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By performing density arguments similar to those of (4.50)-(4.53), one has that

sup
∥φ∥C1

b
≤1

|⟨F(s, x, θs)(µt − µs),∇φ⟩| ≤ C∥µt − µs∥(C1)′ . (4.63)

This with together with the fact that µ ∈ C1([0, T ]; (C1
b (R2d))′) and that t ∈ [0, T ] 7→ F(t, ·, θt)

is continuous in time yields G(µ, θ) ∈ C([0, T ]; (C1
b (R2d))′). Observe now that for any µ ∈

C̃([0, T ];M1,c(R2d)), there exists some compact set Sµ ⊂ Rd such that

supp(µt) ⊂ Sµ for all t ∈ [0, T ] . (4.64)

This implies that G(µ, θ) is uniformly compactly supported in the sense of distribution, namely

G : E → Y0 with

Y0 : = C̃([0, T ]; (C1
b (R2d))′0,c)

=

{
g ∈ C([0, T ]; (C1

b (R2d))′)
∣∣ ⟨gt, 1⟩ = 0 and supp(gt) ⊂ Sg ⋐ R2d, ∀t ∈ [0, T ]

}
.

This allows us to define the Banach space

Y := Y 0 = C̃([0, T ]; (C1
b (R2d))′0,c), (4.65)

which is a closed subspace of the Banach space C([0, T ]; (C1
b (R2d))′).

Now let us verify that G ∈ C1(E;Y ) and J ∈ C1(E;R). For any t ∈ [0, T ], it holds that∥∥G(µ1, θ1)t −G(µ2, θ2)t
∥∥
(C1

b (R2d))′
= sup

∥φ∥C1
b
≤1

∣∣⟨G(µ1, θ1)t −G(µ2, θ2)t, φ⟩
∣∣

=
∥∥∂tµ1t − ∂tµ

2
t

∥∥
(C1

b )
′ + sup

∥φ∥C1
b
≤1

∣∣⟨F(t, x, θ1t )(µ
1
t − µ2t ),∇φ⟩

∣∣
+ sup

∥φ∥C1
b
≤1

∣∣⟨(F(t, x, θ1t )−F(t, x, θ2t ))µ
2
t ,∇φ⟩

∣∣
≤
∥∥∂tµ1t − ∂tµ

2
t

∥∥
(C1

b )
′ + C

∥∥µ1t − µ2t
∥∥
(C1

b )
′ + C(RT , T )|θ1t − θ2t |

where we have again used density arguments similar to that of (4.50)-(4.53). Thus, we have

proven that∥∥G(µ1, θ1)−G(µ2, θ2)
∥∥
C([0,T ];(C1

b (R2d))′)
≤ C

∥∥µ1 − µ2
∥∥
C1([0,T ];C1

b (R2d))

+ C(RT , T ) ∥θ1 − θ2 ∥C([0,T ]) , (4.66)

which implies that G ∈ C(E;Y ). Similarly we have

|J(µ1, θ1)− J(µ2, θ2)|

≤
∣∣∣∣∫

R2d

ℓ(x, y)d(µ1T − µ2T )(x, y) +

∫ T

0
(|θ1t |2 − |θ2t |2) dt

∣∣∣∣
≤ C

∥∥µ1T − µ2T
∥∥
(C1

b )
′ + C

(
T, ∥θ1 ∥C([0,T ]) , ∥θ2 ∥C([0,T ])

)
∥θ1 − θ2 ∥C([0,T ]) ,

where we used the fact that µ1T and µ2T are compactly supported. This in turn implies that

J ∈ C(E;R).
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Next, we use Lemma 2.1 to prove that both mappings are in fact C1-smooth. It follows from

the definition (2.18) of G-derivative that for all µ ∈ V , ν ∈ Uµ = UV and φ ∈ C1
b (R2d), one has

⟨dµG(µ, θ)(ν), φ⟩ =
〈

lim
ε→0+

G(µ+ εν, θ)−G(µ, θ)

ε
, φ

〉
(4.67)

= lim
ε→0+

⟨G(µ+ εν, θ), φ⟩ − ⟨G(µ, θ), φ⟩
ε

= ⟨−∂tν −∇x · (F(t, x, θ)ν), φ⟩ < +∞. (4.68)

Thus we have found a continuous operator µ ∈ V 7→ Lθ(µ) ∈ L(UV , Y ) such that Lθ(µ)(ν) :=

−∂tν −∇x · (F(t, x, θ)ν) = dµG(µ, θ)(ν) for all µ ∈ V and ν ∈ Uµ. Applying Lemma 2.1 allows

us to conclude that Lθ(µ) ∈ DµG(µ, θ) and G(·, θ) ∈ C1(V ;Y ). Additionally, remark that the

standard Fréchet differential G′
θ(µ, θ) : Q→ Y with respect to the control curve satisfies

⟨G′
θ(µ, θ)(α), φ⟩ = lim

ε→0+

⟨G(µ, θ + εα), φ⟩ − ⟨G(µ, θ), φ⟩
ε

= ⟨−∇x · (∇θF(t, x, θ)αµ), φ⟩ < +∞ .

(4.69)

for all α ∈ Q. The continuity of θ ∈ Rm 7→ ∇θF(t, x, θ) ∈ Rd implies that G(µ, ·) ∈ C1(Q;Y )

for every µ ∈ V , and thus G ∈ C1(E;Y ). Similarly, we have

J ′
µ(µ, θ)(ν) =

∫
R2d

ℓ(x, y)dνT and J ′
θ(µ, θ)(α) =

∫ T

0
2λθt · αt dt , (4.70)

for all ν ∈ Uµ = UV and α ∈ Q. It is then easy to check that J ∈ C1(E;R).

4.3.3 The mean-field PMP for continuous controls: a Lagrangian approach

We are now ready to present the derivation of the first order optimality condition (4.6)-(4.8) in

the class of continuous controls, by means of a Lagrange multiplier rule tailored to the calculus

for convex functions introduced in Section 2.3.

Theorem 4.6 (Abstract Lagrange multiplier theorem). Let (µ∗, θ∗) ∈ E ⊂ X = U × Q be a

solution to the optimal control problem (1.8). Then there exists p∗ ∈ Y ′ such that

{
⟨G′

µ(µ
∗, θ∗)(ν), p∗⟩+ J ′

µ(µ
∗, θ∗)(ν) = 0, for all ν ∈ UV ,

⟨G′
θ(µ

∗, θ∗)(α), p∗⟩+ J ′
θ(µ

∗, θ∗)(α) = 0, for all α ∈ Q .

(4.71)

(4.72)

Remark 4.5. The solution ψ∗ = p∗ ∈ C1([0, T ]; C2
c (R2d)) constructed in Proposition 4.3 is in

Y ′. This comes from the fact that, for any η ∈ Y ⊂ C([0, T ]; (C1
b (R2d))′), one has ⟨p∗, η⟩ < +∞.

Proof. In order to prove our set of optimality conditions, we will use Theorem 4.5 whose applica-

tion has already been prepared above. Indeed we have shown that both the cost and constraint

functionals are continuously F -differentiable, and it follows directly from the definitions (4.56)

and (4.60) that (µ∗, θ∗) + XE ⊂ E. Thus, there remains to prove that the linear operator

G′(µ∗, θ∗) : XE = UV × Q → Y is surjective. We split the proof of the surjectivity into two

steps below.
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• Surjectivity of the partial derivative G′
µ(µ

∗, θ∗) : UV → Y . We first want to show that

for any given element

η ∈ Y := C̃([0, T ]; (C1
b (R2d))′0,c),

there exists a ν ∈ UV such that

G′
µ(µ

∗, θ∗)(ν) = η , (4.73)

which is understood in the sense of

⟨G′
µ(µ

∗
t , θ

∗
t )(νt), φ⟩ = ⟨ηt, φ⟩ for all φ ∈ C1

b (R2d) . (4.74)

To this end, it suffices to show that for a given (µ∗, θ∗, η) ∈ V ×Q×Y , there exists some ν ∈ UV

solution of the following transport equation

∂tνt +∇x · (F(t, x, θ∗t )νt) = −ηt , (4.75)

with source term (−η) and initial condition ν0 ∈ Uµ0 . Notice that (Cb(R2d))′0,c is dense in

(C1
b (R2d))′0,c, namely for any η ∈ Y = C̃([0, T ]; (C1

b (R2d))′0,c), there exists a sequence (ηn)n∈N ⊂
C̃([0, T ]; (Cb(R2d))′0,c) such that for all φ ∈ C1

b (R2d), it holds

sup
t∈[0,T ]

|⟨ηnt − ηt, φ⟩| −→
n→+∞

0. (4.76)

In particular, observe that sup
t∈[0,T ],n∈N

∥ηnt ∥(C1
b )

′ < +∞ is uniformly bounded.

Since ηnt ∈ (Cb(R2d))′0,c ⊂ (C0(R2d))′0,c = M0,c(R2d), it then follows from [63, Theorem 1]

that there exists a unique measure solution µ1,n ∈ V to the following transport equation

∂tµ
1,n
t +∇x · (F(t, x, θ∗t )µ

1,n
t ) = −ηnt , µ1,nt |t=0 = µ10 ∈ Pc(R2d) , (4.77)

understood analogously to (2.11) in the sense of distribution, namely∫
R2d

φ(x, y)dµ1,nt2
(x, y)−

∫
R2d

φ(x, y)dµ1,nt1
(x, y)

=

∫ t2

t1

∫
R2d

∇xφ(x, y) · F(s, x, θ∗s) dµ
1,n
s (x, y) ds−

∫ t2

t1

∫
R2d

φ(x, y) dηns (x, y) ds

for all φ ∈ C1
b (R2d) and every t1, t2 ∈ [0, T ]. Indeed, we can build a solution to above as a limit

of a sequence of approximated solutions satisfying the following Euler-explicit-type splitting

scheme. Fix k ∈ N, and define ∆t = T
2k

and set µ
1,n,(k)
0 = µ0. Given µ

1,n,(k)
i∆t

for i ∈ {0, 1, · · · , 2k−
1}, we denote by Fi∆t = F(i∆t, x, θ∗i∆t) and set

µ
1,n,(k)
t = ΓFi∆t

t−i∆t♯µ
1,n,(k)
i∆t − (t− i∆t)ηni∆t, t ∈ [i∆t, (i+ 1)∆t] , (4.78)

where ΓFi∆t
t−i∆t♯µ

1,n,(k)
i∆t is the unique solution of the linear transport equation ∂tft +∇ · (Fi∆tft) = 0, t ∈ (i∆t, (i+ 1)∆t],

fi∆t = µ
1,n,(k)
i∆t ,

(4.79)

which is is explicitly written as a pushforward through a characteristic flow. From (4.78), we

know the sequence (µ
1,n,(k)
t )k∈N has uniformly bounded support, since

supp(µ
1,n,(k)
t ) ⊂ B(RT ) ∪ Sηn (4.80)
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where supp(ηnt ) ⊂ Sηn ⋐ R2d for all t ∈ [0, T ] and we denoted by B(RT ) the support of solutions

to the linear transport equation obtained in (2.12). Intuitively, the support of µ
1,n,(k)
t is the

union of the support of the solution to the linear transport equation (4.79) and the support of

the source term. Similarly, it holds for t ∈ [i∆t, (i+ 1)∆t]

∥µ1,n,(k)t ∥(C1
b )

′ ≤ ∥ΓFi∆t
t−i∆t♯µ

1,n,(k)
i∆t ∥(C1

b )
′ +∆t∥ηni∆t∥(C1

b )
′ ≤ ∥µ1,n,(k)i∆t ∥(C1

b )
′ +∆t∥ηni∆t∥(C1

b )
′ . (4.81)

This provides us with the following upper-bound

sup
t∈[0,T ]

∥µ1,n,(k)t ∥(C1
b )

′ ≤ ∥µ10∥(C1
b )

′ + T sup
t∈[0,T ]

∥ηnt ∥(C1
b )

′ < +∞ , (4.82)

which is uniform with respect to n, k ∈ N. By letting k → +∞, we recover the existence of a

solution µ1,n to (4.77) such that

sup
t∈[0,T ]

W1,1
1 (µ1,n, µ

1,n,(k)
t ) −→

k→+∞
0. (4.83)

Recall that the generalized Wasserstein metric introduced in [63] is equivalent to the bounded-

Lipschitz norm ∥ · ∥BL, so that the limit curves (µ1,n)n∈N satisfy

supp(µ1,nt ) ⊂ B(RT ) ∪ Sηn and ∥µ1,nt ∥(C1
b )

′ < +∞ (4.84)

for all t ∈ [0, T ]. This in turn implies that the sequence (µ1,nt )n∈N is uniformly equi-bounded in

C([0, T ]; (C1
b (R2d))′). According to [63, Theorem 1], it follows that each curve t ∈ [0, T ] 7→ µ1,n is

Lipschitz continuous with respect to the ∥ · ∥BL-norm, and thus it is uniformly equi-continuous

with respect to the (C1
b )

′-norm. By a direct application of the Arzelà-Ascoli theorem, there

exists a subsequence of (µ1,n)n∈N that converges uniformly in C([0, T ]; (C1
b (R2d))′) to some curve

µ1, which then satisfies∫
R2d

φ(x, y)dµ1t2(x, y)−
∫
R2d

φ(x, y)dµ1t1(x, y) (4.85)

=

∫ t2

t1

∫
R2d

∇xφ(x, y) · F(s, x, θ∗s)dµ
1
s(x, y) ds−

∫ t2

t1

∫
R2d

φ(x, y)dηs(x, y) ds . (4.86)

However, recall now that the optimal curve µ∗ ∈ V satisfies

∂tµ
∗
t +∇x · (F(t, x, θ∗t )µ

∗
t ) = 0, µ∗t |t=0 = µ0 ∈ Pc(R2d) , (4.87)

Then, defining the curves (µ1,n − µ∗)n∈N ⊂ UV and letting n→ +∞, we can find a solution

ν := µ1 − µ∗ = lim
n→∞

(µ1,n − µ∗) ∈ UV ,

to the transport equation with source term (4.75), with the initial datum ν0 = µ10 − µ0 ∈ Uµ0 .

This completes the proof of the surjectivity of G′
µ(µ

∗, θ∗).

• Surjectivity of the full derivative G′(µ∗, θ∗) : XE = UV ×Q→ Y . Assume that ν ∈ UV

is a curve obtained as above. Then for any η ∈ Y , there exists (ν, 0) ∈ UV ×Q such that

G′(µ∗, θ∗)(ν, 0) = G′
µ(µ

∗, θ∗)(ν) +G′
θ(µ

∗, θ∗)(0) = η . (4.88)

Thus, we have proven that G′(µ∗, θ∗) is surjective.
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4.3.4 The mean-field PMP for measurable controls: an Hamiltonian approach

The goal of this subsection is to show that solutions (µ∗, θ∗) ∈ C([0, T ];Pc(Rd))×L2([0, T ];Rm)

with a priori discontinuous controls satisfy the optimality condition (4.6)-(4.8) by using the

Pontryagin Maximum Principle in Wasserstein spaces studied in [13,15,18].

In the sequel, we suppose that the optimal control problem (1.8) admits an optimal trajectory-

control pair (µ∗, θ∗) ∈ Lip([0, T ];Pc(R2d) × L2([0, T ];Rm). The Hamiltonian function H :

[0, T ] × Pc(R4d)) × L2([0, T ];Rm) → R associated with the optimal control problem is defined

by

H(t, ν, θ) :=

∫
R4d

⟨r,F(t, x, θ)⟩dν(x, y, r, s)− λ|θ|2, (4.89)

for almost every t ∈ [0, T ] and all (ν, θ) ∈ Pc(R4d)× Rm, and we denote by

J4d :=

(
0 Id

− Id 0

)
,

the standard symplectic matrix of R4d. In this context, the PMP of [15] was adapted to

unbounded control sets in [16], and can be written in context as follows.

Theorem 4.7 (Pontryagin Maximum Principle). There exists a radius R′
T > 0 and a uniquely

determined state-costate curve ν∗ ∈ Lip([0, T ],Pc(R4d)) with supp(ν∗t ) ⊂ B(R′
T ) × B(R′

T ) for

all times t ∈ [0, T ], such that the following holds.

(i) The curve ν∗ solves the forward-backward Hamiltonian continuity equation
∂tν

∗
t +∇(x,y,r,s) ·

(
J4d∇νH(t, ν∗t , θ

∗
t )ν

∗
t

)
= 0,

π1#ν
∗
t = µ∗t for all times t ∈ [0, T ],

ν∗T = (Id,−∇xℓ)♯µ
∗
T ,

(4.90)

where the Wasserstein gradient of the Hamiltonian is given explicitly by

∇νH(t, ν∗t , θ
∗
t )(x, y, r, s) =


∇xF(t, x, θ∗t )

⊤r

0

F(t, x, θ∗t )

0

 ,

for almost every t ∈ [0, T ] and all (x, y, r, s) ∈ B(R′
T )×B(R′

T ).

(ii) The maximization condition

H(t, ν∗t , θ
∗
t ) = max

θ∈Rm
H(t, ν∗t , θ), (4.91)

holds for almost every t ∈ [0, T ].

Below, we provide a representation formula for the state-costate curve ν∗, based on the

disintegration theorem (see e.g. [6, Theorem 5.3.1]). The sufficient implication of this state-

ment was used as early as [18] to build solutions to (4.90), while the necessary part has been
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established more recently in [17]. Following the notations of Section 3 and Appendix A, we de-

note by (Φ∗
(τ,t))τ,t∈[0,T ] the characteristic flows such that µ∗t = Φ∗

(0,t)♯µ0 for all times t ∈ [0, T ].

Observe that by construction, it holds

Φ∗
(τ,t)(x, y) = (Φ∗

(τ,t)(x), y),

for all times τ, t ∈ [0, T ] and every (x, y) ∈ B(R′
T ), where (Φ∗

(τ,t))τ,t∈[0,T ] is the characteristic

flow defined via (3.5) with θt := θ∗t being the optimal control.

Proposition 4.8 (Representation formula for state-costate curves). A state-costate curve ν∗ ∈
Lip([0, T ],Pc(R4d)) solves the forward-backward system (4.90) if and only if it can be represented

as ν∗t = (Φ∗
(T,t) ◦ π1, π2)♯νTt , where the curve t ∈ [0, T ] 7→ νTt ∈ Pc(R4d) is built via the

disintegration formula

νTt :=

∫
R2d

σ∗t,x,y(t)dµ
∗
T (x, y),

for all times t ∈ [0, T ]. Therein for µ∗T -almost every (x, y) ∈ R2d, the curve t ∈ [0, T ] 7→ σ∗t,x,y ∈
Pc(R2d) is chosen as the unique solution of the backward adjoint dynamics{

∂tσ
∗
x,y(t) +∇(r,s) · (Wx,y(t, r)σ

∗
x,y(t)) = 0,

σ∗x,y(T ) = δ(−∇xℓ(x,y)),

where

Wx,y(t, r, s) :=

(
−∇xF

(
t,Φ∗

(T,t)(x), θ
∗
t

)⊤
r

0

)
,

for almost every t ∈ [0, T ] and all (r, s) ∈ B(R′
T ).

It is easy to see that since the second marginal of µ∗ is fixed, the matching part of the

costate measure is also independent of time. In the following lemma, we provide a first-order

characterization of the maximization condition (4.91).

Lemma 4.1 (Fixed-point expression for the optimal control). Let (µ∗, θ∗) be an optimal pair

for the problem (1.8), and ν∗ be the corresponding state-costate curve given by Theorem 4.7.

Then for λ > 0 large enough, it holds that

θ∗t =
1

2λ

∫
R4d

∇θF(t, x, θ∗t )
⊤r dν∗t (x, y, r, s), (4.92)

for almost every t ∈ [0, T ].

Proof. As a consequence Assumptions 1-(iv), the map θ ∈ Rm 7→ H(t, ν∗t , θ) is twice differen-

tiable for almost every t ∈ [0, T ]. Moreover since supp(ν∗t ) ⊂ B(R′
T ) × B(R′

T ), there exists a

constant C(R′
T ) > 0 such that

sup
θ∈Rm

∣∣∣∣∇2
θ

∫
R4d

〈
r,F(t, x, θ)

〉
dν∗t (x, y, r, s)

∣∣∣∣ ≤ C(R′
T ).

Hence for λ > C(R′
T ), the Hamiltonian is a concave function of θ, and the optimal control θ∗

satisfies the pointwise maximization condition (4.91) if and only if

∇θH(t, ν∗t , θ
∗
t ) = 0 for a.e. t ∈ [0, T ], (4.93)

which is equivalent to the fixed-point equation (4.92).
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For all times t ∈ [0, T ], we shall denote by (x, y) ∈ B(R′
T ) 7→ σ∗(t, x, y) ∈ Rd the d first

components of the barycentric projection (see e.g. [6, Definition 5.4.2]) of the measures νTt onto

their first marginal π1#ν
T
t = µ∗T , namely

σ∗(t, x, y) :=

∫
R2d

r dσ∗x,y(t)(r, s).

Using this notation, one can easily check by linearity of the integral that the fixed-point equation

(4.92) can be rewritten as

θ∗t =
1

2λ

∫
R2d

∇θF(t, x, θ∗t )
⊤ σ∗

(
t,Φ∗

(t,T )(x), y
)
dµ∗t (x, y),

for µ∗T -almost every (x, y) ∈ R2d. Our goal now is to show that ∇xψ
∗(t,Φ∗

(T,t)(x), y) =

−σ∗(t, x, y) for all times t ∈ [0, T ] and µ∗T -almost every (x, y) ∈ R2d, so that the adjoint variable

ψ∗(·, ·) stemming from the Lagrangian method described throughout Section 4 satisfies

θ∗t = − 1

2λ

∫
R2d

∇θF(t, x, θ∗t )
⊤∇xψ

∗(t, x, y)dµ∗t (x, y)

which is exactly (4.4). This is the object of the following proposition, whose proof relies on the

explicit characterization of the adjoint of the differential of a flow that we recall in the following

lemma. While it is a folklore result in the theory of non-linear ODEs, its proof is provided in

very few references, and we include it in Appendix A for the sake of completeness.

Lemma 4.2. For every x ∈ Rd and θ ∈ L2([0, T ];Rm), the map t ∈ [0, T ] 7→ ∇xΦ
θ
(t,T )(Φ

θ
(T,t)(x))

⊤

is the unique solution of the backward adjoint Cauchy problem∂tw(t, x) = −∇xF
(
t,Φθ

(T,t)(x), θt
)⊤
w(t, x),

w(T, x) = Id .

Proposition 4.9 (Rigorous link between the Hamiltonian and Lagrangian adjoint states). Let

ψ∗ ∈ C1([0, T ]; C2
c (R2d)) be the unique characteristic solution of the formal adjoint equation (4.7)

associated with an optimal pair (µ∗, θ∗) ∈ C([0, T ];Pc(Rd))×L2([0, T ];Rm). Then, it holds that∫
R2d

∇θF(t, x, θ∗t )
⊤∇xψ

∗(t, x, y)dµ∗t (x, y) = −
∫
R2d

∇θF(t, x, θ∗t )
⊤σ∗

(
t,Φ∗

(t,T )(x), y
)
dµ∗t (x, y),

for L1-almost every t ∈ [0, T ]. In particular, the triple (µ∗, θ∗, ψ∗) ∈ C([0, T ];Pc(R2d)) ×
Lip([0, T ];Rm)× Y ′ satisfies the mean-field PMP (4.6)-(4.8).

In the following lemma, we prove that for µ∗T -almost every (x, y) ∈ R2d, the map t ∈ [0, T ] 7→
σ∗(t, x, y) ∈ Rd solves the backward linearized adjoint dynamics associated with the controlled

velocity field F : [0, T ]× Rd × Rm → Rd.

Lemma 4.3. For µ∗T -almost every (x, y) ∈ R2d, the map t ∈ [0, T ] 7→ σ∗(t, x, y) ∈ Rd is the

unique solution of the backward Cauchy problem∂tσ
∗(t, x, y) = −∇xF

(
t,Φ∗

(T,t)(x), θ
∗
t

)⊤
σ∗(t, x, y)

σ∗(T, x, y) = −∇xℓ(x, y).
(4.94)
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Proof. By definition of the barycentric projection, it is clear from the fact that σ∗x,y(T ) =

δ(−∇ℓ(x,y)) that σ
∗(T, x, y) = −∇xℓ(x, y) for µ∗T -almost every (x, y) ∈ R2d. Moreover following

the construction detailed in Proposition 4.8, it holds for any ξ ∈ C1
c (R2d) that

d

dt

∫
R2d

ξ(r, s)dσ∗t,x,y(r, s) =

∫
R2d

〈
∇rξ(r, s),−∇xF

(
t, θ∗t ,Φ

∗
(T,t)(x)

)⊤
r
〉
dσ∗t,x,y(r, s) (4.95)

for almost every t ∈ [0, T ]. We can in particular choose test functions of the form ξ(r, s) =

ζ(r)ϕ(s) for some ζ, ϕ ∈ C1
c (R2d). Then given an arbitrary h ∈ Rd, consider ζ, ϕ to be smooth

functions such that

ζ(r) =

{
⟨h, r⟩ if |r| ≤ R′

T ,

0 if |r| ≥ R′
T + 1,

and ϕ(s) =

{
1 if |s| ≤ R′

T ,

0 if |s| ≥ R′
T + 1,

for all (r, s) ∈ R2d. It then holds that ∇rξ(r, s) = ϕ(s)∇ζ(r) = h for every (r, s) ∈ B(R′
T ),

which upon recalling that supp(σ∗t,x,y) ⊂ B(R′
T ) for all times t ∈ [0, T ] yields together with

(4.95) that
d

dt
⟨h, σ∗(t, x, y)⟩ =

〈
h,−∇xF

(
t, θ∗t ,Φ

∗
(T,t)(x)

)⊤
σ∗(t, x, y)

〉
,

for almost every t ∈ [0, T ]. Since h ∈ Rd is arbitrary, we can indeed conclude that the map

t ∈ [0, T ] 7→ σ∗(t, x, y) ∈ Rd is a solution of the Cauchy problem (4.94). The uniqueness follows

from Assumption 1 together with classical Grönwall estimates.

Proof of Proposition 4.9. Following Proposition 4.3, we recall that the adjoint variable ψ∗ of

the Lagrangian approach is defined via the method of characteristics, namely

ψ∗(t, x, y) := ℓ
(
Φ∗

(t,T )(x, y)
)
= ℓ
(
Φ∗
(t,T )(x), y

)
,

for all (t, x, y) ∈ [0, T ]×R2d. Differentiating with respect to x ∈ Rd in the previous expression,

we further obtain that

∇xψ
∗(t, x, y) = ∇xΦ

∗
(t,T )(x)

⊤∇xℓ
(
Φ∗
(t,T )(x), y

)
.

Evaluating this expression at Φ∗
(T,t)(x) for some (x, y) ∈ supp(µ∗T ), the previous identity reads

∇xψ
∗(t,Φ∗

(T,t)(x), y
)
= ∇xΦ

∗
(t,T )

(
Φ∗
(T,t)(x)

)⊤∇xℓ(x, y),

for all times t ∈ [0, T ] and µ∗T -almost every (x, y) ∈ R2d. Observe now that by Lemma 4.2,

the mapping t ∈ [0, T ] 7→ ∇xΦ
∗
(t,T )

(
Φ∗
(T,t)(x)

)⊤∇xℓ(x, y) ∈ Rd is the unique solution of the

backward Cauchy problem∂tw(t, x, y) = −∇xF
(
t,Φ∗

(T,t)(x), θ
∗
t

)⊤
w(t, x, y),

w(T, x, y) = ∇xℓ(x, y).

By standard Cauchy-Lipschitz uniqueness, this allows us to conclude that∇xψ
∗(t,Φ∗

(T,t)(x), y
)
=

−σ∗(t, x, y) for all times t ∈ [0, T ] and µ∗T -almost every (x, y) ∈ R2d, which in particular yields

θ∗t =

∫
R2d

∇θF(t,Φ∗
(T,t)(x), θ

∗
t )

⊤σ∗(t, x, y)dµ∗T (x, y)

= −
∫
R2d

∇θF(t,Φ∗
(T,t)(x), θ

∗
t )

⊤∇xψ
∗(t,Φ∗

(T,t)(x), y
)
dµ∗T (x, y)

= −
∫
R2d

∇θF(t, x, θ∗t )
⊤∇xψ

∗(t, x, y)dµ∗t (x, y)
for almost every t ∈ [0, T ], and concludes the proof of our claim.
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We can now conclude this section with the following summarizing result, Theorem 1.1.

Theorem 4.10. For any given T > 0, let F satisfy the Assumption 1 and 2, the initial data

µ0 ∈ Pc(R2d), and the terminal condition ψT satisfy (4.14). Assume further that λ > 0 is large

enough. Then, an admissible control θ∗ ∈ L2([0, T ],Rm) fulfills the mean-field PMP (4.6)-(4.8)

if and only if it is optimal. In addition, such an optimal control θ∗ is uniquely determined and

Lipschitz continuous.

Proof. The result follows by combining Theorem 4.1, Theorems 4.6-4.7 and Proposition 4.9.

5 Numerical experiments

We conclude this paper with a few instructive numerical experiments, which highlight the

features of a shooting method for the mean-field maximum principle. Extensive discussions on

other numerical implementations and experiments are reported in [8,45,54,55]. In these works,

impressive results in high dimensions have been presented and discussed, while in the present

work we would like to focus more simply on understanding the mechanism of the algorithm and

the interplay of its different parameters. Hence, we look at insightful examples in 1D and 2D,

in order to give a simple and immediate explanation of how our method can be employed for a

classification task, which is a typical application of deep learning methods. While we focus on

moderate dimensions, we believe that our findings are general enough to explain the functioning

of the algorithm also for higher dimensional data, such as images, and we refer to the above

mentioned papers for more details.

5.1 General setting

Shooting techniques are often used to solve deterministic optimal control problems by reducing

them locally to finite dimensional equations, which are solved repeatedly for different initial

values that are iteratively updated. In our case, we start with an initial random guess of the

control parameter (θ0t )t∈[0,T ], we solve the optimality conditions (4.6),(4.7) and (4.8) in order to

update the control parameter to (θ1t )t∈[0,T ], and then use the latter as a datum for the second

iteration of the shooting method. This process, more formally written as the update policy

θn+1
t = Λ(θnt ),

is repeated iteratively, until the convergence of the method is achieved. The operator Λ has

been introduced in the proof of Theorem 4.1, where we showed that the optimal control is its

unique fixed point. In particular, we proved therein that such iterations are contractive as soon

as they remain bounded, and provided that the regularization parameter λ > 0 is large enough.

Therefore, by construction, the convergence of the shooting scheme is automatically guaranteed

in our setting for bounded iterations. Moreover, Corollary 4.4 also ensures the convergence of

the empirical solutions obtained for finite samples as N → ∞. Hence, the combination of the

results of Theorem 4.1 and Corollary 4.4 provides a theoretically guaranteed convergence for

the shooting method, which is summarized in Algorithm 1.
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Algorithm 1 Shooting Technique

1: Initialize the layers θ0 = (θ0t )t∈[0,T ]

2: for k = 0 . . . number of iterations do

3: Find a curve t ∈ [0, T ] 7→ µkt which solves the forward equation

∂tµ
k
t +∇x ·

(
F(t, x, θkt )µ

k
t

)
= 0, µkt |t=0 = µ0 . (5.1)

4: Find a curve t ∈ [0, T ] 7→ ψk
t which solves the backward equation

∂tψ
k
t +∇xψ

k
t · F(t, x, θkt ) = 0, ψk

t (x, y)|t=T = |x− y|2 . (5.2)

5: Find a new set of layers (θk+1
t )t∈[0,T ] by solving

θk+1
t +

1

2λ

∫
R2d

∇θF(t, x, θk+1
t )⊤∇xψ

k
t (x, y)dµ

k
t (x, y) = 0 . (5.3)

6: end for

Forward Equation. As already mentioned in the introduction, the dynamics (5.1) is a linear

transport equation that describes the forward pass of the initial data through the network.

We investigate various ways to solve such a forward equation: our first approach, very much

inspired by [55] and the deep learning task that we aim to solve, is a particle method. Given an

initial distribution µ0, we sample N particles and their corresponding labels and evolve them

in time for t ∈ (0, T ] according to their governing ODEs

dXi
t

dt
= F(t,Xi

t , θt),
dY i

t

dt
= 0 , (5.4)

where Xi
t ∈ Rd is the position of i-th sampled particle and Y i

t ∈ Rd is its label at time – or

equivalently on the layer – t ∈ [0, T ].

In order to demonstrate that the convergence and contractivity of the method is independent

of the number of particles/samples N and to highlight the power of our mean-field result, we

also employ a Monte Carlo method. The idea in this case is to “break up” the particles

trajectories by performing density estimations and resamplings at every time step. Namely, we

start by sampling N particles from the initial distribution µ0, let them evolve according to the

governing ODE (5.4) during a small time, and then perform a kernel density estimation in order

to compute the distribution of the evolved particles, i.e. µm1 . The apex m indicates that this

process sampling-moving-estimating is repeated for a certain number of repetitions M in order

to obtain a result that is independent of the initial sample of particles. Then, the distribution

µ1 is computed as the mean over all the repetitions µm1 with m = 0, ...,M . Clearly, this process

needs to be repeated for every layer t ∈ [0, T ]. More rigorously, the method is summarized in

Algorithm 2, for a generic iteration k of the shooting method.

By using the Monte Carlo method, we are not only highlighting the mean-field nature of

our algorithm (since we can sample as many particles as we want), but also distinguish our

method from the ODE-based algorithm in [55]. Indeed, the main difference with their approach
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Algorithm 2 Monte Carlo Method

1: for t ∈ [0, T ] do

2: for m = 0 . . .M do

3: Sample N particles from µt

4: Evolve the N particles according to the ODE (5.4)

5: Use kernel density estimation to compute µmt+1

6: end for

7: Define µt+1 =
1
M

M∑
m=1

µmt+1

8: end for

is that we are considering a mean-field version of the maximum principle, wherein the dynamics

is written in terms of PDEs rather than ODEs, and for which the Monte Carlo method is a

suitable solver.

In the spirit of the latter issue, we also solve the forward equation with a classical finite

volume method, which is a well-known numerical scheme to efficiently tackle generic conserva-

tion laws in any dimension. This approach is based on a mesh partition of the domain, and on

the integration of the PDE over each control volume, i.e. each element of the mesh, in order

to obtain a balance equation that is then discretized. One of the fundamental issues of this

context lies in the discretization of the fluxes, which have to be conservative and consistent in

order to produce an efficient method. In our case, since the flux depends on the function F ,

we discretize it by means of an upwind spacial scheme. The drawback of this method is that

it is highly dependent on the space and time discretization steps, which are very important

parameters whose role will be discussed at the end of this section.

Backward Equation. The backward equation (5.2) is independent of the forward evolution

(5.1) and, as such, it can be solved simultaneously. Observe that (5.2) is also a transport

equation, but it is defined backward in time since a boundary condition is prescribed at the

final time t = T . As the terminal condition is a continuous function, we decide to use finite

differences in space and an explicit time-scheme to solve this latter. As it happened for the

resolution of (5.1) with finite volumes, the upwind method has been used to perform the space

discretization of the velocity of the backward equation. Not only is this method suitable for

transport equations, but it is also ideal in the case where the velocity F depends on both space

and time, i.e. when it can change at every point of the domain. Notice that we could solve (5.2)

using a finite volume method akin to that described for the forward equation, but this may prove

to be inefficient because of the oscillations of ψt for some choices of the algorithm parameters.

Hence, we chose to focus our attention on the finite difference method, which produces very

good results in the low dimensional test cases considered here.

Parameter Update. Finally, we solve (5.3) which allows to update the set of layers. Given

the primal-dual solutions (µt, ψt) of equations (5.1)-(5.2), we can solve (5.3) by computing the

root of the following non-linear function

f(θt) = θt +
1

2λ

∫
R2d

∇θF(t, x, θt)
⊤∇xψt(x, y)dµt(x, y). (5.5)
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for each t ∈ [0, T ]. Inspired by the particle method employed to solve (5.1), the integral with

respect to µt can be simply computed by means of a particle approximation as µt is an empirical

distribution in our context. Moreover, given the discrete values of ψt(x, y) that have been

computed as a by-product of the finite difference scheme used to solve the backward equation

(5.2), the function ψt and its gradient ∇xψt can be interpolated, e.g. using splines, in order to

be able to evaluate these latter in whatever position Xi
t the particles may be located at in the

domain. Ultimately, the fixed point equation (5.3) can be therefore be approximated by

f(θt) ≈ θt +
1

2λN

N∑
i=0

∇θF(t,Xi(t), θt)
⊤∇xψt(Xi(t), Yi(t)), (5.6)

and its roots can be computed using any classical non-linear equation solver such as Newton-

Raphson, Bisection, or Brent’s method, depending on the particular test case at and. Notice

that here, the only source of approximation is the interpolation error of ψt.

In the case where the forward equation has been solved with a Monte Carlo method, the

approximation of the integral needs to be performed many times (as for the forward equation)

in order to obtain a result which is independent of the initial particle sample, with same number

of repetitions M ≥ 1. Finally, if one chooses to solve the forward equation with a finite volume

method, the result µt for each t ∈ [0, T ] is not obtained through particle approximations, but

as a function on a spatially discretized domain and, as such, it is reasonable to approximate

the integral using classical numerical quadrature methods. Unfortunately, those high-accuracy

methods require a fine space discretization, which involves the introduction of a spline inter-

polation also for the forward function µt(x), as it was previously done for ψt and its gradient,

which adds a new source of error on top of that arising from the interpolations of ψt and µt. For

this reason, we also opted for particle and Monte Carlo methods to approximate the integrals,

rather than using its spatial values.

5.2 Results

In this section, we will show how the three optimality conditions, namely forward, backward,

and parameter update ((5.1), (5.2), (5.3) respectively) are used to solve a classification task: we

are given an initial distribution µ0 of data and labels, where any point with first coordinate of

positive sign is corresponding to a label vector in the corresponding orthant, while a negative

orthant label vector is assigned to all those points with first coordinate of negative sign (in

1D we have one coordinate only). Then, our goal is to find the control parameter θ that

moves the particles sampled from µ0 in a way such that, at the final time T , all the particles

with positive sign first coordinate are close to the positive orthant label and the particles with

negative sign first coordinate are close to the negative orthant one. This task is performed

through a neural network with L⌊ T
dt⌋ layers, where dt is the time discretization step used to

solve both the forward (5.1) and the backward (5.2) equations. We will consider the layer

forward map F(t, x, θt) = tanh(Wt x + τt) and θt = (Wt, τt), where Wt ∈ Rd×d and τt ∈ Rd.

However, in some of the experiments reported below, we used also a forward map without shifts

F(t, x, θt) = tanh(Wtx), so that simply θt =Wt, whereWt ∈ Rd×d. The test cases for the initial

distribution are the following:
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� Bimodal Gaussian in 1D and 2D: in the monodimensional case, the initial distribution µ0

is a bimodal Gaussian, the particles sampled from it are concentrated around the points

1 and −1 and are assigned to the label y = 2 if they have a positive sign, or to the label

y = −2 if they have a negative sign. Similarly, in the bidimensional case the particles are

initially concentrated around (−1,−1) and (+1,+1), but now their labels are assigned

according to the sign of their first coordinate, i.e. if Xi(0) = (X1
i (0), X

2
i (0)) is the initial

position of the i-th particle, then this will have label (−2,−2) if X1
i (0) < 0 and label

(+2,+2) if its coordinate X1
i (0) is positive.

� Unimodal Gaussian in 1D and 2D : since in the previous case the initial particles are al-

ready well-separated in the respective orthant, we also perform the classification of the

particles sampled from an initial unimodal Gaussian centered in the origin that have

corresponding positive label +1 and negative label −1 in the monodimensional case. Sim-

ilarly as before, in the bidimensional case, the particles with positive first coordinate are

assigned to a positive label (+1,+1) and to a negative label (−1,−1) when their first

coordinate is negative.

Figure 2: Left: Evolution in time of the particles from the monodimensional initial bimodal

distribution µ0 to µT ; Right: Plot of the initial bidimensional bimodal distribution µ0 and the

final distribution µT .

Figure 2 shows the results obtained in the case of the bimodal distribution in 1D (on the left)

and its corresponding bidimensional case (on the right). In both cases, T = 1 and dt = 0.05

which corresponds to a neural network with L = 20 layers, and both the layer forward maps

with or without biases are used. The initial guess of θ0 is θ0t = 0 for all t ∈ [0, T ] and the

parameter λ is set to 0.1. The forward equation (5.1) is solved using the particle method with

N = 200 points, and the backward equation (5.2) is solved in the same domain as the forward

equation, namely x ∈ RT ⊂ R where RT is defined as in (2.12). The y variable is taken in

a subset of R as large as RT and the same space discretization in the data dimension x and

labels dimension y is used, i.e. dx = dy = 0.1. The same holds for the bidimensional case,

where y ∈ R2 and hence the space discretization steps dx1 = dx2 = dy1 = dy2 = 0.1 are chosen.

Finally, the root of the function in equation (5.6) is found using Brent’s method and then the

shooting method is applied for a total of 15 (outer) iterations.

The results obtained in the case of an initial unimodal distribution in 1D and 2D are pre-
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sented in Figure 3, respectively, left and right plots. The same parameters (namely number of

layers, number of particles, space and time discretization, initial guess of θ0, and number of

iterations of the shooting method) can be used in the unimodal case. The only parameter that

changes is λ which is set to 10−3 in the monodimensional case, and to 10−4 in the bidimensional

one. The reason for this will be explained below when the role of λ will be discussed. The case

of unimodal Gaussian is more difficult than the bimodal one as the particles are really close to

the splitting point, i.e., the origin, and it might happen that during an iteration of the shooting

method some of the values of θt that are obtained move the particles to the other orthant, which

will consequently lead these particles to be attracted to the wrong label. We notice that this

behavior sometimes happens, but the particles generally learn to split nicely into two groups

and move to the proper labels, as depicted in Figure 3. In particular, some particles appear

to be a bit isolated from the others, even if they go in the direction of the labels: these are

precisely those “confused” particles that were first moved to the opposite orthant and then

attracted to the wrong label. This is more likely to happen when the “wrong value” for λ is

chosen and, since it is more difficult to tune it in the bidimensional case, it is possible to see

those incorrectly classified particles on the right of Figure 3.

Figure 3: Left: Evolution in time of the particles from the monodimensional initial unimodal

distribution µ0 to µT ; Right: Plot of the initial bidimensional unimodal distribution µ0 and the

final distribution µT .

Comparing the resolution methods for the forward equation. For the monodimen-

sional example, it is easy to check how the various resolution methods described above perform

relative to each other in solving the forward equation. As already explained, the particle and

Monte Carlo methods are more similar and based on a discrete-sampling description of the

dynamics. The Monte Carlo method is more sensitive than its particle counterpart, and needs

many repetitions to produce a result θt that is stable over shooting iterations. In the first

row of Figure 4, the evolution of the estimated distributions is plotted in the case of particle

method, on the left, and Monte Carlo method, on the right. It is natural to expect the Monte

Carlo scheme to be more diffusive, which stems from the high stochasticity of the algorithm.

However, in both cases the final distribution is the one that we expect, i.e. both distributions

are concentrated around the labels. The same happens in case of resolution with finite volume

method, presented on the bottom left of Figure 4 . In this case the solution is not subject to

the high stochasticity of the Monte Carlo method and hence it does not show as much diffusion,
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but it is not as smooth as the solution obtained with particle method. This is due to the fact

that the time and space discretizations are correlated and can’t be chosen freely, so a relatively

big space discretization needs to be chosen to compare experiments with the same number of

layers (i.e. time discretization). Moreover, as illustrated by the plot on the bottom right of

Figure 4, the optimal control solution θt does not vary significantly from an algorithm to the

other. The solutions indicated in this graphics are the empirical expected values over multiple

shooting iterations for every algorithm, and their standard deviation is also depicted around

the lines representing the means. Clearly, the algorithm that has more variations in terms of

shooting iterations is the Monte Carlo one, due to its stochasticity, while the particle method

and the finite volume method are inherently sharper.

Hence, in terms of computational speed and stability over iterations (especially in the more

difficult case of unimodal initial distribution µ0), the particle method is the one that performs

best, while being also the most suited one for a deep learning task, which in general implies

very high-dimensional data. That being said, the experiments conducted using the Monte Carlo

method and the finite volume method do allow us to confirm numerically that the shooting

method based on our mean-field optimality conditions converge on the space of probability

measures as expected by the theory, independently of the number of particles. Indeed, all

the modelling parameters, and in particular the regularization constant λ > 0, can be chosen

independently of N . Moreover, the iteration does not need any batching of the data, as it is

usually done in deep learning, that is, we can take a very large number of particles (as in the

Monte Carlo scheme) or a small one (as in particle method), and in both cases our algorithm

will return the optimal solution θt for every layer t ∈ [0, T ].

Let us now focus on the particle method and for that, analyze the statistical behavior of our

algorithm.

Statistical behavior. The power of our mean-field maximum principle relies on the results

presented in the previous paragraph regarding the independence of all parameters from the

number of particles, but also on its ability to provide a strong quantitative generalization error

(4.36). This means that, if we trained our network and obtained an optimal solution θ∗t , we have

the extra advantage of knowing through (4.36) how well the latter will be able to perform on

test data, i.e. when sampling new, unseen particles from µ0. Denoting by JN (θ∗) the empirical

error as in (3.15), the generalization error consists in computing the same quantity, but with an

empirical measure made by sampling new particles from µ0 that were not used for the training

phase and, possibly, a significantly larger number of them. Similarly, we can define the accuracy

as the empirical probability that the output of the network will be in a small ball around the

corresponding label vectors, again for all the new particles that can be resampled from µ0.

Figure 5 presents the expected coupled descent curve of the empirical and generalization error,

and the corresponding increase of the accuracy. Since both generalization error and accuracy

are measured on newly sampled test data, we perform various samplings and calculations of

these quantites and report in Figure 5 their mean values and their standard deviation in form

of a “cloud” of the same color. The numerical results nicely confirm the theoretically predicted

phenomenon which we call coupled descent.

Now that the resolution methods are clarified and the resulting algorithm is understood from
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Figure 4: Top Left: evolution of the estimated µt obtained with particle method; Top Right:

evolution of the estimated µt obtained with Monte Carlo method; Bottom Left: evolution of the

estimated µt obtained with finite volume method; Bottom Right: comparison of the optimal

control θt obtained with the three different resolution methods of the forward.

a numerical and statistical perspective, we shift our focus towards expounding the influence of

the parameters that are playing a role in our method, by first considering the number of outer

iterations and then the interesting role of the regularization parameter λ which acts as a learning

rate. Finally, the necessary number of layers (i.e. the time discretization) may be examined in

relation to the space discretization.

Contribution of the number of iterations of the shooting method. In what follows, we

test how many iterations of the shooting method are necessary to obtain a good result, starting

first from the initial guess θ0t ≡ 0, and then from the initial guess θ0 ≡ 1, which is closer to

the optimal solution. In the case of zero initial guesses, our experiments show that after only

one iteration of the shooting method, a reasonable result for θ is obtained, meaning that the

parameter is constant in t but manages to move the particles towards the location of the labels.

At the second iteration of the shooting method, the newly learned parameter θ decreases in time

and, after the third iteration, it remains stable to the values previously found, i.e. it converges to

a control parameter that correctly moves the particles to the exact location of the labels. While

in the case of initial guess close to the optimal solution, i.e., θ identically equal to one, already

at the first iteration, the θ that is obtained decreases in time and stabilises to the appropriate

values. Hence, for both cases, it is clear that it is not necessary to perform many iterations

of the shooting method, even while starting from an initial guess (θ0t )t∈[0,T ] that is far away

from the optimal solution. On the left of Figure 6, the L2 distance between shooting method
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Figure 5: Statistical behaviour of the algorithm resulting from the mean-field optimality con-

ditions.

solutions, denoted by ε(k) =
∥∥θk+1

t − θkt
∥∥
2
, is plotted for each k = 0, ...,number of iterations,

starting from different initial guesses θ0t . It appears that independently of the initial guess, the

distance between consecutive solutions goes to zero in a few iterations (which is also shown

on the right of Figure 6 where, after the second iteration, it becomes impossible to distinguish

between consecutive solutions), with different velocities depending on the initial guess.

Moreover, it is interesting to notice that θ decreasing in time means that the particles at the

beginning are moving faster in the direction of the labels and then when they are close enough,

they slow down to precisely stop at the position of the corresponding label. The dynamics of

the iterations is depicted in the plot on the right of Figure 6, in the one dimensional case where

an initial bimodal Gaussian is fed to a network with layer forward map F(t, x, θt) = tanh(θtx),

and where the initial guess is θ0 ≡ 1.

Figure 6: Left: L2 distance between successive solutions of the shooting method over the

number of iterations, and starting from different initial guess, namely θ0t = 1, θ0t = 0, and

θ0t = rt, rt ∼ U(0, 1) for all t; Right: values of θt over time, starting from initial guess θ0t = 1

for all t.

On the effect of the regularization parameter λ. A fundamental factor that has to be

taken into consideration is that of the impact of the regularization parameter λ, appearing in

the fixed-point equation (5.3) of the optimality conditions. The latter is a real positive number

decided a priori, which determines the competing influence of the regularization term in the loss

function (1.5), and hence controls how large the L2-norm of θ is allowed to be. In particular,
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since the layer forward map F depends on θ, its norm highly influences the velocity flow of the

particles in the forward equation. Hence, if the initial distribution µ0 of the particles is far away

from the labels, λ needs to be set to a small value – e.g. smaller than 0.1 in our examples –, to

allow ∥θ ∥2 to be large enough to reach the labels, otherwise the particles will not have enough

speed to get to the correct location at time T > 0. However, always choosing a small λ is not

a good choice either, because that would destroy the convexity of the problem and lead, as we

discuss below, to numerical instabilities in the learning process. Indeed, our experiments show

that small values of λ may cause the mapping f(θt) defined in (5.6) to have many steep picks,

which makes it impossible to use derivative-based methods such as Newton’s algorithm to find

its root. In case of exceedingly small λ, this can even lead to functions f(θt) with multiple

roots, which may cause the algorithm to lose stability and to oscillate between solutions, also

reflecting the loss of convexity. That being said, this issue can be overcome at the price of

increasing the total number of layers of the network, as evidenced by the discussion on the role

of discretization parameters detailed hereinbelow.

Figure 7: Top Left: unimodal initial distribution, case with λ = 0.1; Top Right: unimodal initial

distribution, case with λ = 0.0001 ; Bottom: Resulting empirical error for different values of

the learning rate λ.

Let us now look at an instructive example, in which a unimodal monodimensional Gaussian

centered at the origin is fed to a neural network that has layer forward map without biases.

In the left plot of Figure 3, λ is set to 0.01, leading to a correct solution. But in Figure 7, we

notice that if λ is set to be too large, then ∥θ ∥2 is not large enough to move the particles to

the location of the labels and thus we obtain the behavior on the left of Figure 7 where the

particles are moving in the correct direction but not fast enough to reach the label. On the

contrary, if λ is too small, the control θt obtained at every iteration of the shooting method
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leads to an unstable and oscillating behavior between the correct result and another solution,

which is shown on the right of Figure 7. In this case, the particles arrive too quickly to the

labels, i.e., for t < T , due to the fact that small values of λ allow for large control magnitudes

∥θ ∥2, which influences the velocity of the particles. At this point, the method should be able

to learn a θt+1 which stops the particles in order to remain at the position of the labels, but

again the small value of λ does not push easily θt+1 to be zero and allows the norm of θ to

remain large. As a result, the particles, instead of remaining in the location of the labels, start

simply moving in the opposite direction. This behavior is not surprising as it is in accordance

with Remark (4.3), for which λ needs to be set to a large value, but the precise quantity that

is needed depends on the initial distribution of µ0 and the domain CΓ in which the root can be

found. Indeed, in the simpler case of a bimodal Gaussian initial distribution λ does not have

to be too small (recall that it was set to 0.1 to produce the plot on the left of Figure 2), but in

the more challenging case of a unimodal Gaussian initial distribution, its value has to be small

enough to give the necessary velocity to the particles in order to let them split and reach the

labels, e.g. λ = 10−3 in the case on the left of Figure 3). Besides, these considerations still

hold in case of activation function with biases. Indeed in this case, the parameter can be split

into two λ = (λ0, λ1), set to different values in order to control separately the norm of W and

the one of τ , which is fundamental when the Gaussian is centered in zero and the optimal W

should be greater than 1, while the optimal τ should be zero.

Influence of the time and space discretization. A first remark in connection with the

role of λ regards the number of layers of the neural network, hence the time discretization dt

step. Figure 8 shows an experiments in dimension 2: starting from the bimodal distribution

and the same initial guess θ0, the shooting method is repeated 15 times with λ = 0.1 and

dx = 0.1. The difference between the plots in Figure 8 is that different numbers of layers are

employed, i.e., dt = 0.2 and dt = 0.05, respectively from left to right. Clearly, the case with

dt = 0.05 is the one that works best, because if dt is too large, the particles do not have enough

time to reach the labels (as in the case with dt = 0.2, i.e 5 layers) or they reach them, but

not completely (as in the case of 10 layers, not depicted here). These issues can clearly be

overcomed by using a smaller λ, but considering the difficulty in tuning λ, it is more convenient

to increase the number of layers instead. This is consistent with the common technique in the

deep learning community to increase the number of layers to obtain better results.

Moreover, we need to keep in mind that the time step dt has to be chosen in accordance

with the space step dx appearing in the backward equation as well, as the Courant number

needs to be kept below 1 in order for the CFL condition to be satisfied and to guarantee the

convergence and stability of the numerical scheme. It is interesting to notice that in the case

of unimodal distribution, increasing the space discretization to dx = dy = 0.2 is surprisingly

beneficial. This is because the Courant number that needs to be set to a value between 0 and

1, but not too close to either of them, depends on the function F(t, x, θt), and since all the

particles Xi
0 are initially close to zero, this number tends to be too small. Hence, a better

convergence rate is obtained when the space discretization is increased.

An implementation in Python of our algorithms, together with videos and code to reproduce

our results, can be found at the following repository https://github.com/CristinaCipriani/Mean-
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Figure 8: Left: bimodal initial distribution in 2D with dt=0.2; Right: bimodal initial distribu-

tion in 2D with dt=0.05.

fieldPMP-NeurODE-training.

Appendices

In the following series of appendices, we recollect some auxiliary results appearing earlier in the

paper, and detail the proofs of some intermediate steps in our previous arguments.

A Well-posedness continuity equations and properties of characteristic flows

Proof of Theorem 2.3. In what follows, we shall study qualitative properties of the ODEs

dXt

dt
= F(t,Xt, θt) and

dYt
dt

= 0. (A.1)

Since for any given θ ∈ L2([0, T ];Rm) the velocity field (t, x) 7→ F(t, x, θt) satisfies the regularity

and growth conditions of Assumption 1, it follows from standard results that for any initial

condition (x0, y0) ∈ B(R), the above system has a unique solution (Xt, Yt) ∈ Lip([0, T ];R2d) on

[0, T ]. Moreover following e.g. [37, Theorem A.2], it holds that

|Xt| ≤ (R+ CFT )e
CFT and Yt = y0 , (A.2)

for all t ∈ [0, T ]. We consider the underlying characteristic flow between times τ, t ∈ [0, T ],

defined by

Φθ
(τ,t) : (xτ , yτ ) ∈ R2d 7→ (Xxτ

t , Y yτ
t ) ∈ R2d, (A.3)

where t ∈ [0, T ] 7→ (Xx0
t , Y y0

t ) is the unique solution of (A.1) starting from (xτ , yτ ) ∈ R2d at

time τ ∈ [0, T ]. Given an initial datum µ0 ∈ Pa
c (R2d), we can use the characteristic flow to

define the following curve of measures

µt := Φθ
(0,t)♯µ0 , (A.4)

for all times t ∈ [0, T ], which equivalently means that∫
R2d

ψ(t, x, y)dµt(x, y) =

∫
R2d

ψ(t,Xx0
t , Y y0

t )dµ0(x0, y0) . (A.5)
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for all ψ ∈ C1
b ([0, T ]×R2d). It is well known that µt is a measure solution to the equation (1.7).

Indeed, using the change of variables formula for the push-forward measure, the chain rule, and

once more the change of variables, one has

d

dt

∫
R2d

ψ(t, x, y)dµt(x, y) =

∫
R2d

d

dt
ψ(t,Xx0

t , Y y0
t )dµ0(x0, y0)

=

∫
R2d

(
∂tψ(t,X

x0
t , Y y0

t ) +∇xψ(t,X
x0
t , Y y0

t ) · F(t,Xx0
t , θt)

)
dµ0(x0, y0)

=

∫
R2d

(
∂tψ(t, x, y) +∇xψ(t, x, y) · F(t, x, θt)

)
dµt(x, y), (A.6)

and an integration with respect to the time variable leads to (2.10). Furthermore, it follows e.g.

from [22, Lemma 3.11] that for any s, t ∈ [0, T ], it holds

W1(µt, µs) =W1

(
Φθ

(0,t)♯µ0,Φ
θ
(0,s)♯µ0

)
≤
∥∥Φθ

(0,t) −Φθ
(0,s)

∥∥
L∞(supp(µ0))

≤ C|t− s| , (A.7)

due to the fact that

|Φθ
(0,t)(x0, y0)−Φθ

(0,s)(x0, y0)| = |(Xx0
t −Xx0

s , 0)| ≤ C|t− s|, (A.8)

for all (x0, y0) ∈ supp(µ0), where C depends only on R, T and CF . Thus, the curve µ is

Lipschitz continuous with respect to W1-metric, and it is such that supp(µt) ∈ B(RT ) for all

t ∈ [0, T ] as a consequence of (A.2), where RT > 0 depends only on R, T and CF .

Next we prove the stability estimate. For i = 1, 2, denote by µi be two measure solutions of

(1.7) with initial data µi0. Introducing the notation (Xi
t , Y

i
t ) := Φθ

(0,t)(x
i
0, y

i
0) for t ∈ [0, T ] and

(xi0, y
i
0) ∈ supp(µi0), it holds that∣∣(X1

t , Y
1
t )− (X2

t , Y
2
t )
∣∣ = ∣∣∣∣((x10 − x20) +

∫ t

0
F(s,X1

s , θs)−F(s,X2
s , θs) ds , y

1
0 − y20

)∣∣∣∣
≤ |(x10 − x20, y

1
0 − y20)|+

∫ t

0

∣∣F(s,X1
s , θs)−F(s,X2

s , θs)
∣∣ ds

≤ |(x10, y10)− (x20, y
2
0)|+

∫ t

0
LF (1 + |θs|)|X1

s −X2
s |ds,

which by applying Gronwall’s Lemma then leads to∣∣(X1
t , Y

1
t )−(X2

t , Y
2
t )
∣∣ ≤ ∣∣(x10, y10)−(x20, y

2
0)
∣∣e∫ t

0 LF (1+|θs|) ds = |(x10, y10)−(x20, y
2
0)|eLF,T,∥θ∥1 , (A.9)

for all times t ∈ [0, T ]. This provides us with the following Lipschitz estimate

|Φθ
(0,t)(x

1
0, y

1
0)−Φθ

(0,t)(x
2
0, y

2
0)| ≤ LT |(x10, y10)− (x20, y

2
0)|, (A.10)

for all times t ∈ [0, T ], where LT := eLF,T,∥θ∥1 . Given an optimal transport plan π0 between

µ10 and µ20, one can check that the measure π := (Φθ
(0,t) ×Φθ

(0,t))♯π has marginals Φθ
(0,t)♯µ

1
0 and

Φθ
(0,t)♯µ

2
0. Whence, it holds

W1

(
Φθ

(0,t)♯µ
1
0,Φ

θ
(0,t)♯µ

2
0

)
≤
∫
R2d×R2d

|x− y|dγ(x, y)

=

∫
R2d×R2d

∣∣Φθ
(0,t)(x

1
0, y

1
0)−Φθ

(0,t)(x
2
0, y

2
0)
∣∣dπ(x10, y10, x20, y20)

≤ LT

∫
R2d×R2d

∣∣(x10, y10)− (x20, y
2
0)
∣∣dπ(x10, y10, x20, y20)

= LT W1(µ
1
0, µ

2
0) ,
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which leads to

W1(µ
1
t , µ

2
t ) =W1(Φ

θ
(0,t)♯µ

1
0,Φ

θ
(0,t)♯µ

2
0) ≤ LTW1(µ

1
0, µ

2
0), (A.11)

for all times t ∈ [0, T ], and completes the proof of Theorem 3.2.

Proof of Proposition 4.3. We shall use the standard characteristic method with backward prop-

agation. For any terminal condition (XT , YT ) = (x, y) ∈ B(RT ), we know thanks to the classical

Cauchy-Lipschitz theory that the ODEs

dXt

dt
= F(t,Xt, θt) and

dYt
dt

= 0, (A.12)

admit a unique solution t ∈ [0, T ] 7→ (Xt, Yt) := Φθ
(T,t)(x, y) ∈ R2d which can be written

explicitly as

Φθ
(T,t)(x, y) =

(
x−

∫ T

t
F(s,Xs, θs) ds , y

)
. (A.13)

for all (x, y) ∈ B(RT ). Moreover, one has that∣∣Φθ
(T,t)(x, y)

∣∣ ≤ (RT + CFT )e
CFT +RT

by Gronwall’s inequality as in (A.2), which equivalently means that Φθ
(T,t)(B(RT )) ⊂ B(RT )

with R′
T := R + (R + CFT )e

CFT . Furthermore under Assumptions 1 and 2, the functions

Φθ
(T,t) : R2d → R2d are C2 diffeomorphisms for any t ∈ [0, T ], and the application (t, x, y) 7→

Φθ
(T,t)(x, y) ∈ R2d is locally Lipschitz.

Building on these insights, we can construct solutions of (4.7) via the standard characteristic

method, by setting

ψθ(t, x, y) := ψT

(
Φθ

(T,t)(x, y)
)
, (A.14)

for all (t, x, y) ∈ [0, T ]R2d, where ψT ∈ C2
c (R2d) satisfies (4.14). This implies that in particular

that

ψθ
(
t,Φθ

(T,t)(x, y)
)
= ψT (x, y),

for all times t ∈ [0, T ], from whence we can deduce

0 = d
dtψ

θ(t,Xt, Y t)

= ∂tψ
θ(t,Xt, Yt) +∇xψ

θ(t,Xt, Yt) · dXt
dt

=
(
∂tψ

θ +∇xψ
θ · F

)(
t,Φθ

(0,t)(x, y)
)
.

for any t ∈ [0, T ) and (x, y) ∈ R2d. Since supp(ψT ) = B(RT ), one has that

supp(ψθ(t)) = Φθ
(T,t)(B(RT )) ⊂ B(R′

T )

for all times t ∈ [0, T ]. Thus, we have constructed a function ψθ(t, x, y) = ψT

(
Φθ

(T,t)(x, y)
)
of

class C1([0, T ]; C2
c (R2d)) satisfying (4.7).

At this stage by considering the analytical expression (A.13), it follows from arguments

similar to those leading to (A.9) that∣∣∣Φθ
(T,t)(x1, y1)−Φθ

(T,t)(x2, y2)
∣∣∣ ≤ (|x1 − x2|+ |y1 − y2|)eLF,T,CΓ

T ,
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which combined Assumption 2-(i), according to [74, Lemma 2.3] further implies that∥∥Φθ
(T,t)

∥∥
C2(Φθ

(T,t)(B(RT )))
≤ C(R′

T , T, CΓ, CF , LF ,T,CΓ
) . (A.15)

Thus we have for all t ∈ [0, T ]∥∥ψθ
t

∥∥
C2
c (R2d)

=
∥∥ψθ

t

∥∥
C2(Φθ

(T,t)(B(RT )))
=
∥∥ψT (Φ

θ
(T,t))

∥∥
C2(Φθ

(T,t)(B(RT )))

≤ C

(∥∥Φθ
(T,t)

∥∥
C2(Φθ

(T,t)(B(RT )))

)
∥ψT ∥C2(B(RT )),

(A.16)

which concludes the proof of (4.15).

We now end this first appendix section by detailing the proof of Lemma 4.2.

Proof of Lemma 4.2. By construction of the semigroups (Φθ
(τ,t))τ,t∈[0,T ], it holds for all (t, x) ∈

[0, T ]× Rd that

Φθ
(t,T ) ◦ Φ

θ
(T,t)(x) = x, (A.17)

where “◦” stands for the standard composition operation between functions. Thus by differen-

tiating with respect to x ∈ Rd in (A.17), we obtain

∇xΦ
θ
(t,T )(Φ

θ
(T,t)(x))∇xΦ

θ
(T,t)(x) = Id,

for every y ∈ Rd. Thus, recalling that ∇xΦ
θ
(T,t)(x) is invertible by construction, one further has

∇xΦ
θ
(t,T )(Φ

θ
(T,t)(x)) = ∇xΦ

θ
(T,t)(x)

−1, (A.18)

for every (t, x) ∈ [0, T ]× Rd. Differentiating with respect to t ∈ [0, T ] in (A.18) while recalling

the ODE characterization derived in (3.6) for t ∈ [0, T ] 7→ ∇xΦ
θ
(T,t)(x) then yields

∂t

(
∇xΦ

θ
(t,T )(Φ

θ
(T,t)(x))

)
= −∇xΦ

θ
(T,t)(x)

−1∂t

(
∇xΦ

θ
(T,t)(x)

)
∇xΦ

θ
(T,t)(x)

−1

= −∇xΦ
θ
(T,t)(x)

−1∇xF
(
t,Φθ

(T,t)(x), θt
)

= −∇xΦ
θ
(t,T )(Φ

θ
(T,t)(x))∇xF

(
t,Φθ

(T,t)(x), θt
)
,

where we used the classical characterization of the differential of the inverse mapping over

matrices. Taking the transpose in the previous expression while using the fact that the process

of adjoining a matrix is linear, we can conclude that∂t
(
∇xΦ

θ
(t,T )(Φ

θ
(T,t)(x))

⊤
)
= −∇xF

(
t,Φθ

(T,t)(x), θt
)⊤∇xΦ

θ
(t,T )(Φ

θ
(T,t)(x))

⊤,

∇xΦ
θ
(T,T )(Φ

θ
(T,T )(x))

⊤ = Id,

which ends the proof of our claim.

B Regularity of ODE flows with respect to the control variables

In this second Appendix section, we recollect somewhat elementary results concerning the reg-

ularity of the flows of diffeomorphisms (Φθ
(0,t))t∈[0,T ] ⊂ C(Rd,Rd) defined in (3.5) with respect

to the control variable θ ∈ L2([0, T ],Rm).

55



Proposition B.1 (Lipschitz and supremum bound for controlled flows). For any given T > 0,

suppose that F satisfies Assumptions 1 and 2. Then for every R > 0 and any pair of control

signals θ1, θ2 ∈ L2([0, T ],Rm), there exists a constant C(T,R, ∥θ1∥) > 0 such that

sup
t∈[0,T ]

∥∥Φθ1

(0,t)

∥∥
C(B(R))

≤ C(T,R, ∥θ1∥1)

and

sup
t∈[0,T ]

∥∥Φθ1

(0,t) − Φθ2

(0,t)

∥∥
C(B(R))

≤ C(T,R, ∥θ1∥1)∥θ1 − θ2∥2.

Proof. These estimates follows from our quantitative regularity assumptions together with a

standard application of Grönwall’s lemma.

Proposition B.2 (Regularity of the flow with respect to the control variable). For any given

T > 0, suppose that F satisfies Assumptions 1 and 2. Then for every θ, ϑ ∈ L2([0, T ],Rm), the

following Taylor expansion

Φθ+εϑ
(0,t) (x) = Φθ

(0,t)(x) + ε

∫ t

0
Rθ

(s,t)(x)∇θF
(
t,Φθ

(0,s)(x), θs
)
ϑsds+ oθ(ε), (B.1)

holds in C([0, T ] × B(R),R2d), where for each (τ, x) ∈ [0, T ]× ∈ Rd the resolvent map t ∈
[0, T ] 7→ Rθ

(τ,t)(·) ∈ C1(Rd;Rd×d) is the unique solution of the linearized Cauchy problem∂tR
θ
(τ,t)(x) = ∇xF

(
t,Φθ

(0,t)(x), θt
)
Rθ

(τ,t)(x),

Rθ
(τ,τ)(x) = Id .

(B.2)

Moreover, for any θ1, θ2 ∈ L2([0, T ],Rm), there exists a constant C ′(T,R, ∥θ1∥1) > 0 such that

sup
t∈[0,T ]

∥∥Rθ1

(0,t)

∥∥
C(B(R),Rd×d)

≤ C ′(T,R, ∥θ1∥1) (B.3)

and

sup
t∈[0,T ]

∥∥Rθ1

(0,t) −Rθ2

(0,t)

∥∥
C(B(R),Rd×d)

≤ C ′(T,R, ∥θ1∥1)∥θ1 − θ2∥2. (B.4)

In particular, the map θ ∈ L2([0, T ],Rm) 7→ Φθ ∈ C0([0, T ]×B(R),R2d) is Fréchet-differentiable.

Proof. By reproducing the parametrised fixed-point argument detailed in [19, Theorem 2.3.1],

one can prove that the following Taylor expansion

Φθ+εϑ
(0,t) (x) = Φθ

(0,t)(x) + εΨθ,ϑ
(0,t)(x) + oθ(ε) (B.5)

holds for all (t, x) ∈ [0, T ]×B(R) and each ε > 0, where the map t ∈ [0, T ] 7→ Ψθ,ϑ
(0,t)(x) ∈ Rd is

the unique solution of the linearized Cauchy problem∂tΨ
θ,ϑ
(0,t)(x) = ∇xF

(
t,Φθ

(0,t)(x), θt
)
Ψθ,ϑ

(0,t)(x) +∇θF
(
t,Φθ

(0,t)(x), θt
)
ϑt,

Ψθ,ϑ
(0,0)(x) = 0.

(B.6)

By a simple application of the constant variation formula (see e.g. [19, Theorem 2.2.3]), it can

be shown that it can in fact be expressed as

Ψθ,ϑ
(0,t)(x) =

∫ t

0
Rθ

(s,t)(x)∇θF
(
s,Φθ

(0,s)(x), θs
)
ϑsds,

for all times t ∈ [0, T ], where the resolvent map t ∈ [0, T ] 7→ Rθ
(τ,t)(x) ∈ Rd×d is defined as in

(B.2). The regularity bounds displayed in (B.3)-(B.4) easily follow by combining the regularity

hypotheses of Assumption 1 and 2 with the arguments detailed in [19, Theorem 2.2.4].
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C Proof of Theorem 4.5

In this third appendix section, we provide a proof of the abstract Lagrange multiplier rule stated

in Theorem 4.5.

• Step 1. We first want to show that

G′(x∗)h = 0 implies DJ(x∗)h = 0 , (C.1)

for all h ∈ XE . To this end, let h ∈ XE be given such that G′(x∗)h = 0. Here DJ(x∗) is the

multivalued F -differential of J at x∗ as in Definition 2.4. Consider the operator

Ψ(ε, u) := G(x∗ + εh+ u) , (C.2)

where (ε, u) is in some neighborhood of (0, 0) in R×XE , and G is the unique extension of G to E.

Indeed, for any h, u ∈ XE , there exists sequences (h
n)n∈N, (u

n)n∈N ⊂ XE such that hn → h and

un → u. According to the assumption it necessarily holds that (x∗+ εhn+un) ∈ x∗+XE ⊂ E,

so one can uniquely define

Ψ(ε, u) = G(x∗ + εh+ u) := lim
n→∞

G(x∗ + εhn + un) . (C.3)

In the sequel we will not differentiate G from G.

Note that if x∗ solves (4.42), one has

Ψ(0, 0) = G(x∗) = 0 . (C.4)

By the definition of F -derivatives, we note that

lim
y→0

∥Ψ(0, y)−Ψ(0, 0)−G′(x∗)y ∥Y
∥y ∥X

= lim
y→0

∥G(x∗ + y)−G(x∗)−G′(x∗)y ∥Y
∥y ∥X

= 0. (C.5)

This means that G′(x∗) ∈ DΨu(0, 0). Thus there exists some Ψ′
u(0, 0) ∈ DΨu(0, 0) such that

Ψ′
u(0, 0) = G′(x∗), (C.6)

Moreover Ψ′
u(0, 0) is surjective on XE → Y , since G′(x∗) is surjective on XE → Y .

◦ Step 1.1. From above, we know that Ψ′
u(0, 0) is surjective on XE → Y . Thus, there exists a

number κ > 0 such that, for each y ∈ Y , there is a point ω(y) ∈ XE ⊂ X satisfying

Ψ′
u(0, 0)ω(y) = y and ∥ω(y)∥X ≤ κ∥y∥Y , (C.7)

where the second inequality follows from Banach’s continuous inverse theorem. We define

f(ε, u) := Ψ′
u(0, 0)u−Ψ(ε, u) . (C.8)

Let ε ≤ ρ and ∥u∥X , ∥v∥X ≤ r, and observe that for some f ′u(ε, u) ∈ Dfu(ε, u), it holds

f ′u(ε, u) = Ψ′
u(0, 0)−Ψ′

u(ε, u) . (C.9)

Since f ′u(ε, u) is continuous at (0, 0) and f
′
u(0, 0) = 0, Taylor’s theorem implies that

∥f(ε, u)− f(ε, v)∥ ≤ sup
0≤τ≤1

∥f ′u(ε, u+ τ(v − u))∥∥u− v∥X = o(1)∥∥u− v∥X , (C.10)
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as ρ, r → 0. In addition since f(0, 0) = 0 and f is continuous at (0, 0), we also get

∥f(ε, u)∥Y ≤ ∥f(ε, u)− f(ε, 0)∥Y + ∥f(ε, 0)∥Y ≤ o(1)∥u∥X + ∥f(ε, 0)∥Y , (C.11)

as ρ, r → 0. For a given ε ∈ R+ with ε < ρ, we consider following iterative method

Ψ′
u(0, 0)um+1 = f(ε, um), m = 0, 1, 2, · · · , (C.12)

where u0 = 0 and um+1 = ω(f(ε, um)). Since ∥um+1∥X ≤ κ∥f(ε, um)∥Y , it follows from (C.10)

and (C.11) that for sufficiently small ρ and r, one has

∥um∥X ≤ o(1)r+o(1), ρ→ 0 and ∥um+2−um+1∥X ≤ 1

2
∥um+1−um∥X for all m = 0, 1, · · · ,

(C.13)

which means that {um}m≥0 is a Cauchy sequence in the Banach space XE , and hence there

exists some u ∈ XE such that

um → u as m→ ∞ . (C.14)

Moreover we have that ∥u∥X ≤ r and Ψ′
u(0, 0)u = f(ε, u) because of (C.12), and thus Ψ(ε, u) =

0. Lastly, we let m→ ∞ in

∥um+2∥X ≤ κ∥f(ε, um+1)∥Y = κ
∥∥Ψ′

u(0, 0)um+1 −Ψ(ε, um+1)
∥∥
Y
, (C.15)

then it follows that ∥u∥X ≤ κ∥Ψ′
u(0, 0)u∥Y .

◦ Step 1.2. It follows from Step 1.1 above that there exists numbers ρ > 0 and r > 0 such that

for any ε ∈ R+ and ε ≤ ρ, there exists u(ε) ∈ XE with ∥u(ε) ∥X ≤ r such that

Ψ(ε, u(ε)) = G(x∗ + εh+ u(ε)) = 0 (C.16)

and

∥u(ε) ∥X ≤ κ
∥∥Ψ′

u(0, 0)u(ε)
∥∥
Y
= κ

∥∥G′(x∗)u(ε)
∥∥
Y

(C.17)

along with ∥u(ε) ∥X → 0 as ε→ 0.

By the definition of F - derivative, one has

G(x∗ + k)−G(x∗)−G′(x∗)k = o(∥k ∥X), k → 0 . (C.18)

Let k = εh+ u(ε), we have

G(x∗ + εh+ u(ε))−G(x∗)− εG′(x∗)h−G′(x∗)u(ε) = o(∥εh+ u(ε) ∥X), ε→ 0 . (C.19)

Therefore

G′(x∗)u(ε) = o(1) ∥εh+ u(ε) ∥X , ε→ 0 . (C.20)

By (C.17), we obtain ∥u(ε) ∥X ≤ o(1) ∥εh+ u(ε) ∥X , which is

∥u(ε) ∥ = o(ε), ε→ 0 . (C.21)

Since x∗ is the minimizer of J , one has

J(x∗ + εh+ u(ε)) ≥ J(x∗) , (C.22)
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which yields

DJ(x∗)(εh+ u(ε)) + o(∥εh+ u(ε) ∥X) ≥ 0, ε→ 0 . (C.23)

Dividing by ε and letting ε→ ±0, one has DJ(x∗)h ≥ 0 and DJ(x∗)h ≤ 0. In other words

DJ(x∗)h = 0 . (C.24)

• Step 2. In Step 1 we have proven that if G′(x∗)h = 0 for some h ∈ XE , then DJ(x
∗)h = 0.

This can be written in the more compact operator form

DJ(x∗) ⊂ [N (G′(x∗))]⊥ =
{
x′ ∈ X

′
E | ⟨x′, h⟩ = 0 for all h ∈ N (G′(x∗)) ⊂ XE

}
. (C.25)

Then, it follows from the closed range theorem in Banach spaces that

[N (G′(x∗))]⊥ = R(G′(x∗)⊤) . (C.26)

which implies that

DJ(x∗) ⊂ N (G′(x∗))⊥ = R(G′(x∗)⊤) .

Therefore, there exists a covector p∗ ∈ Y ′ such that J ′(x∗) = G′(x∗)⊤p∗ for any J ′(x∗) ∈ DJ(x∗).

In other words

⟨J ′(x∗), z⟩ = ⟨G′(x∗)⊤p∗, z⟩ = ⟨p∗, G′(x∗)z⟩ for all z ∈ XE , (C.27)

which completes the proof of Theorem 4.5.
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