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Abstract

Urban river pollution causes serious problems to the environment, human health, and

water  scarcity.  Developing  tools  to  identify  and  assess  the  health  of  aquatic  river

systems is essential for monitoring the quality of rivers and implementing actions. This

study  assesses  the  elemental  and  molecular  characteristics  of  organic  matter  (OM)

extracted from river sediments and associates them with river quality.  To assess the

quality of sediment cores, the most reactive and available OM from two urban rivers

(Tietê and Piracicaba Rivers, São Paulo, Brazil) was isolated with alkaline and water

solutions.  It  was  then  characterized  by  elemental  composition,  ultraviolet-visible

spectroscopy, and fluorescence excitation-emission matrix with parallel factor analysis.

The average yield of alkaline extraction was 40.71% ± 5.52% of OM present in the bulk

sediments. Extracted organic matter from sediments (EOMSed) from the Tietê River

presented the highest average concentrations of non-purgeable organic carbon (NPOC)

and total organic nitrogen (TON), and the lowest average NPOC/TON molar ratios and

specific  UV  absorbance  at  254  nm  (SUVA254).  Considering  the  high  degree  of

eutrophication in the Tietê River, these results suggest a greater input of simple OM

with  nitrogenous  structures.  The  humic-like  component  in  EOMSed  was  the  most

abundant in both rivers. The aromaticity of EOMSed from the Piracicaba River was

evidenced by the greater contribution of complex structures in the form of aromatic and

polyaromatic moieties and higher SUVA254. EOMSed from the Tietê River also featured

enhanced  biological  activity  due  to  the  greater  contribution  of  microbial-derived

products  and  the  presence  of  small  molecules  and  nitrogenous  structures.  As  this

combination  of  elemental  and  spectroscopic  techniques  successfully  identified  the
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characteristics  of  extracted  OM, it  can  be  used as  a  tool  to  assess  the  global  river

quality.

Keywords: River  sediments,  Extracted  organic  matter,  Fluorescence,  Parallel  factor

analysis.

1. Introduction

Sediments consist of particle accumulation with different physical and chemical

properties  that  are  composed  of  inorganic  and  organic  material.  The  particles  are

transported by water, air, erosion, and weathering processes and distributed along rivers

(Murdoch  and  MacKnight,  1991;  Schorer  and  Eisele,  1997).  The  sediments  are

biogeochemically active due to the presence of many microbes and the continuous input

of organic and inorganic substances (He et al., 2019; Kumwimba et al., 2017). 

Organic  matter  (OM)  in  the  sediments  can  originate  from  external  sources

(allochthonous) or from the aquatic ecosystem itself (autochthonous) (Brailsford et al.,

2019; Kindler et al., 2011). Moreover, rivers are responsible for transferring carbon (C)

between the terrestrial  biosphere and oceans,  where this  element  is transformed and

stored  (Cole  et  al.,  2007).  In  sediments,  bacteria  consume  or  decompose  organic

particles, thus reducing the mass of OM (Bloesch, 2009). The organic material resistant

to microbial action and any remaining products are deposited on the bottom of rivers,

along  with  terrestrial  sediments  (Burdige,  2007;  Henrichs,  1992).  OM  is  then

remineralized, altered, or preserved during early diagenesis, which records input history

(Engel and Macko, 2013). 

The  mobilization  and  quality  of  sediments  are  partially  affected  by

anthropogenic  actions  that  cause  extensive  changes  in  the  aquatic  environment

(Bloesch, 2009). The excessive load of nutrients leads to the eutrophication of rivers,
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which is a process of increasing the OM load in an aquatic ecosystem (Nixon, 1995). In

areas with a high population density, the main sources of nutrients are domestic sewage

discharge,  industrial  effluent,  and  water  drained  from agricultural  areas  (Kubo  and

Kanda, 2020; Smith et al., 2014). Sediments with high OM content promote oxygen

consumption  through  decomposition,  which  can  harm  aquatic  animals  and  plants

(Duarte, 1995). 

Barra Bonita Reservoir in São Paulo State, Brazil, is formed by the damming of

the Tietê and Piracicaba Rivers, and it is the first of six reservoirs of the Middle Tietê

River Basin  (Rodrigues et al.,  2020). The Tietê and Piracicaba basins have different

water resource management strategies, with different types of land use and occupation

(Cruz et al., 2017). Both rivers receive a high degree of organic compounds, although

the Tietê River is more eutrophic than the Piracicaba River, because it receives a large

load of industrial  and domestic  waste  (dos Santos et  al.,  2006; Morais et  al.,  2021;

Rodrigues et  al.,  2020).  The Middle Tietê  River  had a biochemical  oxygen demand

(BOD) of 33,636 t day-1 in 2017  (CETESB, 2018). Before reaching the reservoir, the

Tietê  River passes through the metropolitan area of São Paulo (Upper Tietê  River),

which has a high population density  and presented a  BOD of 612,069 t  day-1.  This

represents 57% of BOD of the Tietê River. By comparison, the Piracicaba Basin had a

BOD  of  94,818  t  day-1 (CETESB,  2018).  According  to  the  State  of  São  Paulo

Environmental Company (CETESB), the courses of both aquatic bodies are situated in

industrial areas marked by a high demographic density and intense land use (CETESB,

2018). However, regarding the course of the Middle Tietê River, its non-compliance

with  water-quality  standards  stands  at  around  100%  due  to  the  untreated  sewage

discharge in this stretch of the Tietê River (CETESB, 2018).

4

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

7
8



In the current scenario of scarce freshwater resources in terms of both the quality

and quantity available for use, it is urgent to restore water bodies. One way to do so is to

focus on assessing OM quality in sediments. Furthermore, finding the tools to identify

and assess the health of aquatic  river systems is essential  for the implementation of

actions.  Molar  C to nitrogen (N) ratios  can  be useful  to  identify  the  origin of  OM

(Burone et al., 2003; Meyers, 1994), whereas determining the optical properties of OM

present in sediments is also a rapid and efficient  way to assess the quality of water

resources and obtain information about anthropogenic activities (Du et al., 2021). OM is

a small fraction of the sediment compared to the inorganic fraction. The extraction is

carried out to isolate part of the OM and obtain information about its origin and quality.

For this purpose, water or basic extractants have shown their potential for determining

the quality and origin of OM in sediments (Brym et al., 2014; Funkey et al., 2019). The

neutral  aqueous  medium  allows  for  the  extraction  of  polar  substances  of  small

molecular  weight,  which are free from the mineral  fraction in the sediments.  Water

alkaline  extraction  favors  the  extraction  of  more  polar  or  reactive  substances,  even

allowing for the extraction of substances linked to minerals (Olk et al., 2019). After the

extraction with neutral and basic water, there remains only an insoluble organic fraction

that is strongly linked to minerals. This can be considered a stable or less reactive OM,

which will hardly influence the chemical processes in the sediment (Guigue et al., 2014;

Muller et al., 2014; Olk et al., 2019). 

To assess the sediment quality, the most available and reactive OM was isolated

with neutral and alkaline water solutions. It was then fully characterized by elemental

composition,  ultraviolet-visible  spectroscopy  (UV-Vis),  and  fluorescence  excitation-

emission matrix (EEM) processed with parallel factor analysis (PARAFAC). This study

aimed  to  evaluate  the  elemental  and  molecular  features  of  the  extractable  OM  of
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sediments taken from the Piracicaba and Tietê  Rivers and associate this  information

with the global river quality.

2. Materials and methods

2.1. Study area description and sediment sampling

The study area covers the Tietê and Piracicaba Rivers upstream from the Barra

Bonita  Reservoir.  The  Barra  Bonita  Reservoir,  located  between  the  cities  of  Barra

Bonita and Igaraçu do Tietê, was created from the flooding and damming of these rivers

(Bernardo  et  al.,  2016).  The  Tietê  and  Piracicaba  Rivers  pass  through  large  urban

centers until their confluence. Both rivers receive a large load of organic and inorganic

pollutants, which are delivered to the reservoir, although a greater load of pollutants is

dumped into the Tietê River (Smith et al., 2014). The study area was chosen due to the

different  uses  and occupations  of  the  soil  in  this  region,  characterized  by pollution

issues and multiple  uses of water.  Furthermore,  this  region has suffered from many

anthropic actions, mainly due to deforestation and flooding for the construction of six

successive reservoirs, with the Barra Bonita Reservoir being the first (Rodrigues et al.,

2020). 

The sediment cores were collected at seven points: three on the Piracicaba River

(stations 1, 2, and 3), one at the confluence region (station 4), and three on the Tietê

River (stations 5, 6, and 7) (Figure 1) (Morais et al., 2021). The collection points were

georeferenced using a  GPS Trimble Navigation unit  as shown in the supplementary

material  (Table S1); the sampling took place on July 25, 2017 (austral  winter). The

sediment samples were collected using core sampling, which allowed us to maintain the

original deposition of sedimentary layers. The horizontal slicing was performed at the

same  time  as  the  sample  collection,  in  different  sizes  (Table  S2)  under  normal
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atmosphere  along  the  sediment  cores  without  removing  the  interstitial  water,  thus

totaling  69  sample  layers.  The  sediment  samples  were  immediately  packed  into

polypropylene flasks and kept in a thermal box during transport to the laboratory to

avoid the oxidation effect. 

Figure 1: Location  of  the Barra Bonita  Reservoir  (white  dot)  and sediment  sample

collection stations (red dots).

2.2. Elemental analysis

The sediment samples were frozen, freeze-dried (L101, Liotop), crushed using

an automatic mortar grinder (RM 200, Retsch), and sieved through a 100-mesh sieve.

Total  carbon  (TC)  content  of  the  sediment  samples  was  assessed  using  the  dry
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combustion  method.  For  this  purpose,  20  mg  of  the  homogenized  samples  were

accurately weighed directly in the tin capsules. The standard used in the analysis was

aspartic acid, and the method was validated using the soil certified reference material

(ThermoFisher  Soil  Reference  Material  NC PN338 40025).  All  measurements  were

performed in an elemental analyzer (Flash 2000, ThermoFisher Scientific). 

2.3. Extractable organic matter from sediment samples

2.3.1. Extraction

The alkaline extraction was performed with NaOH to isolate OM in the sediment

samples  taken  from  the  Piracicaba  and  Tietê  Rivers.  The  sediment  extracts  were

denominated EOMSed (extracted organic matter from sediments). Approximately 1.0 g

of each sample was placed in polypropylene flasks with 45.0 mL of 0.1 mol L-1 NaOH

(ThermoFisher  Scientific)  and  shaken  for  24  h  in  an  overhead  shaker  (Rex  20,

Heidolph) at 10 rpm. The samples were then centrifuged (Sigma 3-18K, Grosseron) at

10,000  rpm  for  10  min  and  filtered  over  0.45  μm  syringe  filters  (Minisart  NML,

Sartorius). Furthermore, another extraction method was conducted in the same way as

previously described with 45.0 mL ultrapure water (Ultrapure Water Cell, Starna Ltd) in

which  the  extracts  from  sediments  were  denominated  WEOMSed  (water-extracted

organic matter from sediments).

2.3.2. Non-purgeable organic carbon and total organic nitrogen determination

Non-purgeable organic carbon (NPOC) and total organic nitrogen (TON) from

EOMSed were quantified after dilution with ultrapure water to fit the standard NPOC

calibration curve (maximum 30 mg L-1 of C). The extracts were acidified and measured

using an elemental analyzer (TOC-V Shimadzu). The NPOC/TON molar ratios were
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calculated. The extraction yield was obtained by dividing the quantity of organic carbon

(OC) in the extracted solution in mg (NPOC multiplied by the extraction volume) by the

carbon content in the corresponding sediment in mg (TC multiplied by extracted mass

sample).

2.3.3. UV-Vis spectroscopy

Absorbance  measurements  were  performed  for  all  EOMSed  and  WEOMSed

samples using a double beam UV-Vis spectrophotometer (UV 1800, Shimadzu) with a

wavelength range from 200 to 700 nm in a 1 cm path length quartz cell and a scan speed

of 300 nm min-1. A reference cell of NaOH and deionized water was used to measure

EOMSed and  WEOMSed,  respectively.  From the  absorbance  measurements,  it  was

possible  to  define  the  dilution  factor  for  fluorescence.  Thus,  all  samples  had  the

absorbance adjusted to 0.1 at 254 nm, thus allowing their comparisons by avoiding the

inner filter effect for the fluorescence analysis  (Kothawala et al., 2013). Specific UV

absorbance  at  254  nm  (SUVA254)  was  calculated  by  dividing  the  UV  absorbance

measured at 254 nm by the NPOC concentration (mg of C L-1) and the optical path of

the cuvette (0.01 m) (Weishaar et al., 2003).

2.3.4. Fluorescence spectroscopy

2.3.4.1. Sample preparation and analysis  

For the study of EEM, 1.0 mL of each sample diluted to absorbance at 254 nm

equal 0.1 (1 cm path length) was placed in quartz cells along with 1.0 mL of 0.3 mol L -1

HEPES (Acros Organics) for pH regulation at 7 and 1.5 mL of 0.1 mol L -1 NaClO4

(Sigma-Aldrich)  with  a  purity  of  99.99%  to  fix  ionic  strength.  The  samples  were

analyzed immediately after preparation.
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All  measured  spectra  were  obtained  with  a  fluorescence  spectrofluorometer

(F4500, Hitachi). The EEM spectra were acquired with an excitation range from 200 to

500 nm and an emission range from 250 to 700 nm at a scan speed of 2400 nm min -1.

The steps and slits of emission and excitation were fixed at  5 nm, and the detector

voltage was 700 V. Both emission and excitation detectors were corrected to prevent

wavelength sensitivity. The Raman spectrum of ultrapure water (Ultrapure Water Cell,

Starna Ltd) was measured on a daily basis with excitation at 350 nm, scan speed at

240 nm min-1, emission from 360 to 420 nm, and excitation and emission slit fixed at

5 nm  and  700 V  to  normalize  the  EEM  intensity  with  the  Raman  scattering  peak

(Lawaetz and Stedmon, 2009). 

2.3.4.2. Fluorescence data processing

PARAFAC was  conducted  on  the  EEM dataset  using  PROGMEEF software

(https://woms18.univ-tln.fr/progmeef/) in Matlab language. All the EEMs were cleaned

from the diffusion signals using Rayleigh scattering by cutting the diffusion band in 15

nm and using first- and second-order Raman scattering by applying the Zeep method

(Mounier et al., 2011; Zepp et al., 2004). The number of evaluated components varied

from 2 to 5 in a spectral range from 240 to 500 nm in excitation and from 250 to 700

nm in emission.  The number of components was defined using the core consistency

diagnostic (CORCONDIA). The optimal rank was the model giving the higher number

of components with a CORCONDIA over 60% (Mounier et al., 2011). The excitation

and emission of components obtained by PARAFAC were compared to the OpenFluor

database (Murphy et al., 2014). 

2.4. Statistical analysis
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Unpaired t-tests were used to determine any statistical differences between the

TC  in  bulk  sediments  from  the  Tietê  and  Piracicaba  Rivers  and  NPOC,  TON,

NPOC/TON molar ratios, and SUVA values obtained for EOMSed from the Tietê and

Piracicaba Rivers. The correlation coefficient between the NPOC/TON molar ratios and

the SUVA254 values was calculated.

3. Results and discussion

3.1. Total carbon characteristics in bulk sediments

The distributions of TC content in the bulk sediment cores in the Piracicaba and

Tietê Rivers were different (Figure 2). In the collection stations of the Piracicaba River

(stations 1, 2, and 3), the highest TC value was found in the upper layer of the sediment

cores, and a decrease in TC content was observed at the lower layers of the vertical

distribution. In station 1, TC varied from 1.96% to 2.60% with a coefficient of variation

(CV) of 0.10, and the lowest value at a depth of 41 cm. In station 2, TC varied from

2.12% to  3.32%  (CV  =  0.15),  and  despite  the  decrease  in  TC  when  entering  the

sediment, it was possible to observe an increase in TC content between the depths of 30

cm and 32 cm. In station 3, TC varied from 2.24% to 4.94% (CV = 0.30), although it

decreased exponentially from the surface to a depth of 27.5 cm, and from that depth, it

remained almost constant. In the confluence region, TC varied from 2.44% to 5.76%

(CV = 0.27), although the highest TC content is found in the surface layer, as in the

collection stations of the Piracicaba River. Its behavior is more similar to the collection

stations  located  on the  Tietê  River,  which  present  a  random TC distribution  in  the

deeper layers of the sediment cores. TC variation in the Tietê River ranged from 3.09%

to 6.59% (CV = 0.19), 1.44% to 3.66% (CV = 0.26), and 3.25% to 5.77% (CV = 0.19)

at stations 5, 6, and 7, respectively. 
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TC content is a fundamental parameter to describe the abundance of OM and

inorganic carbon (IC) in sediments (Veres, 2002). The random distribution of TC in the

Tietê River may be associated with an irregular input of OM and IC. A unpaired t-test

with a 95% confidence level showed that there were significant differences between the

average TC of the rivers. The average TC content in the Tietê River (3.96 ± 1.11) is

higher than in the Piracicaba River (2.57 ± 0.58). The highest TC content for the Tietê

River suggests that  this  river  is  more eutrophic  than the Piracicaba River,  since the

accumulation of nutrients, mainly P and N, in the aquatic bodies increases the synthesis

of OM (Castillo, 2020). This hypothesis is corroborated by a study that we previously

published on the quantification of total phosphorus (TP) in the same sediment samples

studied here  (Morais  et  al.,  2021).  As TP is  a  chemical  variable  used to  assess  the

nutrient load and the extent of eutrophication in water bodies, the higher average TP

content in the Tietê  River (4316.16 ± 1062 mg kg-1 P) than in the Piracicaba River

(1800.17  ±  696.82  mg  kg-1 P)  indicates  that  this  river  has  a  higher  degree  of

eutrophication (Morais et al., 2021).
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Figure 2. Total carbon distribution inside the sediment cores at the collection stations.
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3.2. Characteristics of extracted organic matter from sediments

Table 1 shows the average concentration of NPOC and TON, alkaline extraction

yield, NPOC/TON molar ratio, and SUVA254 of EOMSed at the different stations. These

values  for  each  sample  are  shown  in  the  supplementary  material  (Table  S3).  The

extraction method with alkaline solution extracted an average of 40.71% ± 5.52% of

OM present in the bulk sediments. The yield of OM extraction depends on the property

of the extractant and is generally low. Among the different extractants used for OM

extraction, NaOH seems to be the most effective (Kurek et al., 2020; Sire et al., 2009). 

Table 1. Average  concentration  of  non-purgeable  organic  carbon (NPOC) and total

organic nitrogen (TON), alkaline extraction yield, NPOC/TON molar ratio, and specific

UV absorbance at 254 nm (SUVA254) of the extracted organic matter from sediments at

the collection stations.

Station
NPOC

(mg C g-1)

TON

(mg N g-1)

Extraction

yield

(%)

NPOC/TON

ratio

SUVA254

(L mg-1 m-1)

1 9.02±0.84 1.14±0.11 40.63±5.17 6.80±0.20 6.36±0.53

2 10.65±1.71 1.25±0.24 41.03±3.58 7.37±1.00 5.99±0.69

3 12.59±1.98 1.75±0.38 45.23±6.56 6.22±0.49 6.11±1.08

4 13.54±4.82 2.40±0.76 37.17±5.61 4.78±0.30 4.54±0.73

5 19.60±5.74 3.01±0.74 40.11±5.17 5.53±0.50 3.92±0.61

6 11.90±3.54 2.00±0.52 40.50±3.96 5.05±0.37 3.70±0.51

7 16.24±2.31 2.51±0.45 41.05±6.36 5.59±0.32 4.44±0.83
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A unpaired  t-test  at  the  95% confidence  level  demonstrated  that  there  were

significant differences in the NPOC and TON averages of EOMSed in the Tietê and

Piracicaba Rivers. The average concentration of NPOC and TON of EOMSed in the

Tietê River (16.05 ± 5.10 mg C g-1 and 2.52 ± 0.70 mg N g-1, respectively) was higher

than that in the Piracicaba River (10.69 ± 2.11 mg C g-1 and 1.37 ± 0.37  mg N g-1,

respectively). The highest NPOC concentrations of EOMSed in the Tietê River may be

due to the fact that the river passes through the metropolitan area of São Paulo, where it

receives a large load of domestic sewage and industrial effluents, resulting in a larger

biological  oxygen demand than the Piracicaba River  (CETESB, 2018).  Furthermore,

taking into account  the  history of  the Tietê  River,  its  high degree of  contamination

(Rocha et al., 2011, 2010) and eutrophication  (Morais et al., 2021), the higher TON

concentration of EOMSed in the Tietê River when compared to the Piracicaba River

may be due to the sewage discharge containing labile and fresh OM.

The average NPOC/TON molar ratios of EOMSed in the Tietê and Piracicaba

Rivers  were  statistically  different  (95% confidence  level,  unpaired  t-test)  and  were

higher for the Piracicaba River (6.80 ± 0.79) compared to the Tietê River (5.39 ± 0.46).

Considering  the  historical  course  of  the  Tietê  River  and  its  high  degree  of

eutrophication  (Morais et al., 2021), the lower ratios found in the river may suggest a

larger  input  of  simple  OM with nitrogenous structures,  which may indicate  effluent

input. In the confluence region, the NPOC/TON molar ratio of EOMSed was the lowest:

4.78 ± 0.30. The lower value of the NPOC/TON molar ratio shows an increase in OM

deposition  with  nitrogenous  structures,  suggesting  that  the  confluence  region  is

predominantly  influenced  by  the  Tietê  River,  which  showed  the  highest  nitrogen
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concentrations (range of 2.00−3.01 mg N g-1). Despite the difference in the NPOC/TON

molar ratios of EOMSed between the Tietê and Piracicaba Rivers, the studied EOMSed

showed  a  NPOC/TON  molar  ratio  that  varied  from  4.1  to  9.2  (Figure  3).  The

NPOC/TON molar ratios between 4 and 10 categorize the sources of C and N of algae

and aquatic plants (Kaushal and Binford, 1999; Meyers, 1994).

SUVA254 is  associated  with the aromaticity  of OM due to the carbon double

bond (C=C) of aromatic moieties or polycondensated aromatic rings that absorb light at

254 nm  (Edzwald and Tobiason, 2011). Therefore,  high SUVA254 values indicate  an

OM formed by more structures that absorb light at 254 nm per unit concentration of OC

(Edzwald  and  Tobiason,  2011).  The  average  SUVA254 values  of  EOMSed  in  the

Piracicaba and Tietê Rivers were statistically different (95% confidence level, unpaired

t-test) and were higher for the Piracicaba River (6.16 ± 0.78) than the Tietê River (4.02

± 0.71). The confluence region showed SUVA254 values of EOMSed closer to the Tietê

River  (average  SUVA254 values  was  4.54  ±  0.71  L  mg-1 m-1).  SUVA254  showed

differences  in  the composition  of EOMSed between the two rivers,  with the higher

average  SUVA254 values  for  the  Piracicaba  River  indicating  that  EOMSed  has  a

relatively high aromatic content compared to the Tietê River. 

The NPOC/TON molar ratios of EOMSed were correlated with the SUVA254

values  (Figure  3).  Regression  analysis  found  a  positive  relationship  between  the

NPOC/TON molar ratio and SUVA254 (r = 0.67; p < 0.001). By analogy to soil OM,

these results could be associated with the functional complexity of EOMSed (Dungait et

al.,  2012;  Lehmann  et  al.,  2020).  During  the  degradation  of  OM,  the  more  polar

structures  are  more  accessible  to  microorganisms  and  are  thus  consumed  faster,

resulting  in  an  accumulation  of  OM  that  is  thermodynamically  unfavorable  to

microorganisms (hydrophobic and aromatic moieties). The relatively lower presence of
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N suggests that these structures have already been totally or partly assimilated, resulting

in the selective  preservation  and accumulation  of  more chemically  stable  structures,

which led to greater aromaticity in the Piracicaba River. Conversely, the lower SUVA254

and NPOC/TON molar ratio in the Tietê River suggest the addition of fresh OM. This

evidence is supported by the high BOD value of the Tietê River.
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Figure 3. Relationship between specific UV absorbance at 254 nm (SUVA254) and non-

purgeable organic carbon (NPOC) and total  organic nitrogen (TON) molar  ratios  of

extracted organic matter from sediments.

3.3. Fluorescence excitation-emission matrix spectra of organic matter extracted from

sediments with alkaline and neutral water solutions 

The  PARAFAC  model  adjusted  for  EEM  (N=  138)  from  EOMSed  and

WEOMSed diluted to the same optical density resulted in three fluorescent components

(Figure 4) with a CORCONDIA of 89.98%. The spectral  characteristics of the three
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components  were  compared  to  the  OpenFluor  database  (Murphy  et  al.,  2014),  and

similarity  was  measured  with  the  PARAFAC  models  from  different  aquatic

environments  using  the  EEM  similarity  score  of  0.95.  Components  1,  2,  and  3

respectively  corresponded to PARAFAC models  35,  5,  and 25 from the OpenFluor

database.

Component 1 (C1) had two excitation maxima: one in 260 nm stimulated by UV

excitation (peak A), and the other in 310 nm stimulated by visible excitation, with an

emission maximum in the visible range at 465 nm for both excitation peaks  (Coble,

1996). Component 2 (C2) was comprised of two excitation maxima at 285 nm and 465

nm, and an emission maximum at 520 nm (Osburn et al., 2011; Walker et al., 2013).

The fluorescence emission is useful to access the structural arrangement of OM due to

the fluorophore emission in short (blue-shift) or long wavelength (red-shift). C1 and C2

had similar characteristics to soil fulvic and humic acids, respectively.  C1 resembles

fulvic acids due to the shorter wavelength emission, and the blue-shifted component is

attributed  to  the  lower molecular  weight  and a  structural  arrangement  comprised  of

more alkyl moieties (Borisover et al., 2009; Kowalczuk et al., 2009; Osburn et al., 2016,

2011; Shutova et al., 2014; Yamashita et al., 2010b, 2010a). C2 resembles humic acids

from the soil due to the red-shifted component, which is attributed to a more complex

structural arrangement mainly composed of aromatic moieties  (Soares da Silva et al.,

2020).  Furthermore,  the  shift  in  the  wavelength  concerns  the  aggregation  of  humic

structures in solution; a red-shifted humic structure can show a molecular arrangement

with  higher  molecular  aggregation,  while  a  shorter  wavelength  suggests  smaller

molecules (Bento et al., 2020; Boguta and Sokołowska, 2020, 2016). Component 3 (C3)

demonstrated two excitation maxima at 250 nm and 315 nm, and an emission maximum

at 395 nm. C3 resembled microbial humic-like compounds from aquatic environments
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(Coble, 1996; Osburn et al., 2011). This component is probably a product of microbial

activity and thus of autochthonous origin (Yamashita et al., 2008).
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Figure 4. Excitation-emission matrix contour plots of the three parallel factor analysis

components (left) and their excitation and emission spectra (right).

The PARAFAC model was made for a dataset with all samples, thus allowing us

to  compare  the  component  contributions.  Figures  5  and  6  show  the  fluorescent

contributions  of  each  component  identified  by  PARAFAC  for  EOMSed  and

WEOMSed,  respectively,  along  with  the  sediment  cores  in  the  different  stations,

corrected  for  the  analytical  dilution  factor.  For  EOMSed  (Figure  5),  the  average

fluorescent contribution of C1 was higher in decreasing order for the Piracicaba River >

Tietê  River  >  confluence  region.  This  shows  that  small  molecules  make  a  greater

contribution  to  the  EOMSed  arrangement  of  the  Piracicaba  River.  The  average

fluorescent contribution of C2 had the same decreasing order as that of C1 (Piracicaba

River > Tietê River > confluence region), showing that complex structures in the form

of aromatic  and polyaromatic  moieties  make a  greater  contribution  to  the  EOMSed

arrangement of the Piracicaba River. The average fluorescent contribution of C3 was

higher in decreasing order for the Tietê River > Piracicaba River > confluence region,

showing that microbial-derived products make a greater contribution to the EOMSed

arrangement  of  the  Tietê  River.  Thus,  EOMSed from the  Piracicaba  River  contains

more aromatics, while EOMSed from the Tietê River contains more microbial-derived

products.  These  results  are  in  agreement  with  the SUVA254 values  and NPOC/TON

molar ratios, which showed less aromatic EOMSed with more nitrogenous structures for

the Tietê River compared to the Piracicaba River. The low NPOC/TON molar ratio may

be the main reason for the higher microbial  activity and the consequent presence of

microbial derivatives (C3).
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Figure  5. Fluorescent  intensity  of  components  (C1,  C2,  and  C3)  taken  from  the

extracted  organic  matter  from sediments  along with the sediment  core identified  by

parallel factor analysis.
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In WEOMSed (Figure 6), the average fluorescent contributions of C1, C2, and

C3 were higher in decreasing order for the confluence region > Tietê River > Piracicaba

River. The extraction of microbial-derived products (C3) was greater for WEOMSed

than for EOMSed, and the C3 values were higher at the stations of the Tietê River than

the Piracicaba River, indicating its greater microbial activity. The low abundance of C2

can be ascribed to the component structure, because humic-like substances with high

aromaticity are more soluble in alkaline solution than in water, which may result in the

higher  relative  content  of  C2  in  alkaline  solution;  furthermore,  the  higher  C2

concentration in alkaline extracts obfuscates the C3 concentration. The alkaline medium

favored  the  greater  extraction  of  C1  and  C2  (humic-like  compounds)  due  to  the

hydrolysis caused in the functional groups of humic molecules bonded to the surface of

the mineral from sediment (Kleber and Lehmann, 2019; Olk et al., 2019). 

The optical properties of EOMSed proved to be more efficient for assessing the

quality  and  composition  of  sediments  than  those  of  WEOMSed  due  to  the  better

discrimination between the fluorescence components in the alkaline extracts. Although

water extraction has been used to assess OM sources and link contamination in polluted

urban rivers (Chen et al., 2019; Zhang et al., 2020), in our study, alkaline extracts were

better at describing the properties of OM.
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Figure 6.  Fluorescent  intensity  of components  (C1, C2, and C3) taken from water-

extracted organic matter from sediments along with sediment core identified by parallel

factor analysis.
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3.4. Features of extractable organic matter from sediments from the Piracicaba and

Tietê Rivers

The  neutral  water  solution  enabled  the  better  extraction  of  small  molecules

(blue-shifted),  which are free from the mineral  fraction in the sediments.  While  the

alkaline solution favors the extraction of more complex substances (red-shifted). The

results obtained with EEM-PARAFAC together with SUVA254 values and NPOC/TON

molar ratio allowed for the total assessment of EOMSed quality.

The  differences  between  the  EOMSed  compositions  in  sediments  were

highlighted by the SUVA254 values, NPOC/TON molar ratios, and EEM-PARAFAC.

Although the most abundant component in EOMSed from the two rivers is humic-like

with the lowest molecular weight (C1), the aromaticity of EOMSed from the Piracicaba

River was evidenced by the greater contribution of C2 and SUVA254 values. Conversely,

EOMSed  from  the  Tietê  River  had  greater  microbial  activity  due  to  the  greater

contribution of C3, the presence of small molecules (lower C2 contribution), and the

presence of nitrogenous structures. Based on the analyses performed, it was not possible

to further identify the compositional alteration of EOMSed and WEOMSed, which may

be related to their similar deposition.

The  origin  of  EOMSed  is  inferred  from  the  results  obtained  here.  The

NPOC/TON molar ratios calculated for EOMSed from the Piracicaba River indicate

that EOMSed can form in the aquatic body (autochthonous). The contributions of two

humic-like components in alkaline extracts indicate that EOMSed may also originate

from soil OM (allochthon). According to the NPOC/TON molar ratios calculated for

EOMSed from the Tietê River as well as the greater microbial activity in this aquatic

ecosystem,  it  can  be  inferred  that  the  origin  of  EOMSed  is  predominantly
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allochthonous, mainly due to the discharge of domestic sewage, which is indicated by

the higher content of TC present in the Tietê River sediments.

4. Conclusion

EOMSed from the Piracicaba and Tietê Rivers was mainly characterized by an

arrangement  of  low  molecular  weight  compounds.  However,  EOMSed  from  the

Piracicaba River  presented more aromatic  moieties  and fewer nitrogenous structures

compared to the Tietê River. The presence of nitrogenous structures and fluorophores

related to microbial activity can be an indicator of OM quality, which could be used as a

global indicator of the river state. Thus, the combination of elemental and spectroscopic

techniques allows for the successful deciphering of extracted OM characteristics. This

approach can therefore be used as a tool to assess the quality of aquatic bodies.
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