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Abstract
We consider in this paper the problem of opti-
mal experiment design where a decision maker
can choose which points to sample to obtain an
estimate β̂ of the hidden parameter β? of an un-
derlying linear model. The key challenge of this
work lies in the heteroscedasticity assumption that
we make, meaning that each covariate has a dif-
ferent and unknown variance. The goal of the
decision maker is then to figure out on the fly
the optimal way to allocate the total budget of T
samples between covariates, as sampling several
times a specific one will reduce the variance of
the estimated model around it (but at the cost of
a possible higher variance elsewhere). By trying
to minimize the `2-loss E[‖β̂ − β?‖2] the deci-
sion maker is actually minimizing the trace of the
covariance matrix of the problem, which corre-
sponds then to online A-optimal design. Combin-
ing techniques from bandit and convex optimiza-
tion we propose a new active sampling algorithm
and we compare it with existing ones. We provide
theoretical guarantees of this algorithm in differ-
ent settings, including a O(T−2) regret bound in
the case where the covariates form a basis of the
feature space, generalizing and improving exist-
ing results. Numerical experiments validate our
theoretical findings.

1. Introduction and related work
A classical problem in statistics consists in estimating an
unknown quantity, for example the mean of a random vari-
able, parameters of a model, poll results or the efficiency of
a medical treatment. In order to do that, statisticians usually
build estimators which are random variables based on the
data, supposed to approximate the quantity to estimate. A
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way to construct an estimator is to make experiments and
to gather data on the estimand. In the polling context an
experiment consists for example in interviewing people in
order to know their voting intentions. However if one wants
to obtain a “good” estimator, typically an unbiased estima-
tor with low variance, the choice of which experiment to
run has to be done carefully. Interviewing similar people
might indeed lead to a poor prediction. In this work we are
interested in the problem of optimal design of experiments,
which consists in choosing adequately the experiments to
run in order to obtain an estimator with small variance. We
focus here on the case of heteroscedastic linear models with
the goal of actively constructing the design matrix. Linear
models, though possibly sometimes too simple, have been
indeed widely studied and used in practice due to their in-
terpretability and can be a first good approximation model
for a complex problem.

The original motivation of this problem comes from use
cases where obtaining the label of a sample is costly, hence
choosing carefully which points to sample in a regression
task is crucial. Consider for example the problem of control-
ling the wear of manufacturing machines in a factory (Antos
et al., 2010), which requires a long and manual process. The
wear can be modeled as a linear function of some features of
the machine (age, number of times it has been used, average
temperature, ...) so that two machines with the same param-
eters will have similar wears. Since the inspection process
is manual and complicated, results are noisy and this noise
depends on the machine: a new machine, slightly worn, will
often be in a good state, while the state of heavily worn ma-
chines can vary a lot. Thus evaluating the linear model for
the wear requires additional examinations of some machines
and less inspection of others. Another motivating example
comes from econometrics, typically in income forecasting.
It is usually assumed that the annual income is influenced
by the individual’s education level, age, gender, occupation,
etc. through a linear model. Polling is also an issue in this
context: what kind of individual to poll to gain as much
information as possible about an explanatory variable?

The field of optimal experiment design (Pukelsheim, 2006)
aims precisely at choosing which experiment to perform in
order to minimize an objective function within a budget con-
straint. In experiment design, the distance of the produced
hypothesis to the true one is measured by the covariance
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matrix of the error (Boyd & Vandenberghe, 2004). There
are several criteria that can be used to minimize a covari-
ance matrix, the most popular being A, D and E-optimality.
In this paper we focus on A-optimal design whose goal
is to minimize the trace of the covariance matrix. Con-
trary to several existing works which solve the A-optimal
design problem in an offline manner in the homoscedastic
setting (Sagnol, 2010; Yang et al., 2013; Gao et al., 2014) we
are interested here in proposing an algorithm which solves
this problem sequentially, with the additional challenge that
each experiment has an unknown and different variance.

Our problem is therefore close to “active learning” which is
more and more popular nowadays because of the exponen-
tial growth of datasets and the cost of labeling data. Indeed,
the latter may be tedious and require expert knowledge, as
in the domain of medical imaging. It is therefore essential
to choose wisely which data to collect and to label, based on
the information gathered so far. Usually, machine learning
agents are assumed to be passive in the sense that the data
is seen as a fixed and given input that cannot be modified
or optimized. However, in many cases, the agent can be
able to appropriately select the data (Goos & Jones, 2011).
Active learning specifically studies the optimal ways to per-
form data selection (Cohn et al., 1996) and this is crucial as
one of the current limiting factors of machine learning al-
gorithms are computing costs, that can be reduced since all
examples in a dataset do not have equal importance (Freund
et al., 1997). This approach has many practical applications:
in online marketing where one wants to estimate the po-
tential impact of new products on customers, or in online
polling where the different options do not have the same
variance (Atkeson & Alvarez, 2018).

In this paper we consider therefore a decision maker who
has a limited experimental budget and aims at learning some
latent linear model. The goal is to build a predictor β̂ that
estimates the unknown parameter of the linear model β?,
and that minimizes E[‖β̂ − β?‖2]. The key point here is
that the design matrix is constructed sequentially and ac-
tively by the agent: at each time step, the decision maker
chooses a “covariate” Xk ∈ Rd and receives a noisy out-
put X>k β

? + ε. The quality of the predictor is measured
through its variance. The agent will repeatedly query the
different available covariates in order to obtain more precise
estimates of their values. Instinctively a covariate with small
variance should not be sampled too often since its value is
already quite precise. On the other hand, a noisy covariate
will be sampled more often. The major issue lies in the
heteroscedastic assumption: the unknown variances must
be learned to wisely sample the points.

Antos et al. (2010) introduced a specific variant of our set-
ting where the environment providing the data is assumed
to be stochastic and i.i.d. across rounds. More precisely,

they studied this problem using the framework of stochastic
multi-armed bandits (MAB) by considering a set of K prob-
ability distributions (or arms), associated with K variances.
Their objective is to define an allocation strategy over the
arms to estimate their expected values uniformly well. Later,
the analysis and results have been improved by Carpentier
et al. (2011). However, this line of work is actually focusing
on the case where the covariates are only vectors of the
canonical basis of Rd, which gives a simpler closed form
linear regression problem.

There have been some recent works on MAB with het-
eroscedastic noise (Cowan et al., 2015; Kirschner & Krause,
2018) with natural connections to this paper. Indeed, covari-
ates could somehow be interpreted as contexts in contextual
bandits. The most related setting might be the one of Soare
(2015). However, they are mostly concerned about best-arm
identification while recovering the latent parameter β? of
the linear model is a more challenging task (as each decision
has an impact on the loss). In that sense we improve the
results of Soare (2015) by proving a bound on the regret of
our algorithm. Other works as (Chen & Price, 2019) pro-
pose active learning algorithms aiming at finding a constant
factor approximation of the classification loss while we are
focusing on the statistical problem of recovering β?. Yet
another similar setting has been introduced in (Riquelme
et al., 2017a). In this setting the agent has to estimate several
linear models in parallel and for each covariate (that appears
randomly), the agent has to decide which model to estimate.
Other works studied the problem of active linear regression,
and for example Sugiyama & Rubens (2008) proposed an
algorithm conducting active learning and model selection si-
multaneously but without any theoretical guarantees. More
recently Riquelme et al. (2017b) have studied the setting of
active linear regression with thresholding techniques in the
homoscedastic case. An active line of research has also been
conducted in the domain of random design linear regres-
sion (Hsu et al., 2011; Sabato & Munos, 2014; Dereziński
et al., 2019). In these works the authors aim at controlling
the mean-squared regression error E[(X>β − Y )2] with a
minimum number of random samples Xk. Except from the
loss function that they considered, these works differ from
ours in several points: they generally do not consider the
heteroscedastic case and their goal is to minimize the num-
ber of samples to use to reach an ε-estimator while in our
setting the total number of covariates K is fixed. Allen-Zhu
et al. (2020) provide a similar analysis but under the scope
of optimal experiment design. Another setting similar to
ours is introduced in (Hazan & Karnin, 2014), where active
linear regression with a hard-margin criterion is studied.
However, the minimization of the classical `2-norm of the
difference between the true parameter of the linear model
and its estimator seems to be a more natural criterion, which
justifies our investigations.
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In this work we adopt a different point of view from the
aforementioned existing works. We consider A-optimal
design under the heteroscedasticity assumption and we gen-
eralize MAB results to the non-coordinate basis setting with
two different algorithms taking inspiration from the con-
vex optimization and bandit literature. We prove optimal
Õ(T−2) regret bounds for d covariates and provide a weaker
guarantee for more than d covariates. Our work emphasizes
the connection between MAB and optimal design, closing
open questions in A-optimal design. Finally we corroborate
our theoretical findings with numerical experiments.

2. Setting and description of the problem
2.1. Motivations and description of the setting

Let X1, . . . , XK ∈ Rd be K covariates available to some
agent who can successively sample each of them (several
times if needed). Observations Y are generated by a stan-
dard linear model, i.e.,

Y = X>β? + ε with β? ∈ Rd .

Each of these covariates correspond to an experiment that
can be run by the decision maker to gain information about
the unknown vector β?. The goal of optimal experiment
design is to choose the experiments to perform from a pool
of possible design points {X1, . . . , XK} in order to obtain
the best estimate β̂ of β? within a fixed budget of T ∈
N∗ samples. In classical experiment design problems the
variances of the different experiments are supposed to be
equal. Here we consider the more challenging setting where
each covariate has a specific and unknown variance σ2

k, i.e.,
we suppose that when Xk is queried for the i-th time the
decision maker observes

Y
(i)
k = X>k β

? + ε
(i)
k ,

where E[ε(i)
k ] = 0, Var[ε(i)

k ] = σ2
k > 0 and ε

(i)
k is κ2-

subgaussian. We assume also that the ε(i)
k are independent

from each other. This setting corresponds actually to online
optimal experiment design since the decision maker has
to design sequentially the sampling policy, in an adaptive
manner.

A naive sampling strategy is to equally sample each covari-
ate Xk. In our heteroscedastic setting, this will not produce
the most precise estimate of β? because of the different vari-
ances σ2

k. Intuitively a point Xk with a low variance will
provide very precise information on the value X>k β

? while
a point with a high variance will not give much information
(up to the converse effect of the norm ‖Xk‖). This indicates
that a point with high variance should be sampled more
often than a point with low variance. Since the variances
σ2
k are unknown, we need at the same time to estimate σ2

k

(which might require lots of samples of Xk to be precise)

and to minimize the estimation error (which might require
only a few examples of some covariate Xk). There is then
a tradeoff between gathering information on the values of
σ2
k and using it to optimize the loss; the fact that this loss

is global, and not cumulative, makes this tradeoff “explo-
ration vs. exploitation” much more intricate than in standard
multi-armed bandits.

Usual algorithms handling global losses are rather slow
(Agrawal & Devanur, 2014; Mannor et al., 2014) or ded-
icated to specific well-posed problems with closed form
losses (Antos et al., 2010; Carpentier et al., 2011). Our
setting can be seen as an extension of the two aforemen-
tioned works who aim at estimating the means of a set of K
distributions. Noting µ = (µ1, . . . , µK)> the vector of the
means of those distributions and Xi = ei the ith vector of
the canonical basis of RK , we see (since X>i µ = µi) that
their objective is actually to estimate the parameter µ of a
linear model. This setting is a particular case of ours since
the vectors Xi form the canonical basis of RK .

2.2. Definition of the loss function

As we mentioned it before, the decision maker can be led to
sample several times the same design point Xk in order to
obtain a more precise estimate of its response X>k β

?. We
denote therefore by Tk ≥ 0 the number of samples of Xk,
hence T =

∑K
k=1 Tk. For each k ∈ [K]1, the linear model

yields the following

T−1
k

Tk∑
i=1

Y
(i)
k = XT

k β
? + T−1

k

Tk∑
i=1

ε
(i)
k .

We define Ỹk =
∑Tk

i=1 Y
(i)
k /σk

√
Tk , X̃k =

√
TkXk/σk

and ε̃k =
∑Tk

i=1 ε
(i)
k /σk

√
Tk so that for all k ∈ [K], Ỹk =

X̃T
k β

? + ε̃k, where E[ε̃] = 0 and Var[ε̃k] = 1. We denote
by X = (X̃>1 , · · · , X̃>K)> ∈ RK×d the induced design
matrix of the policy. Under the assumption that X has full
rank, the above Ordinary Least Squares (OLS) problem has
an optimal unbiased estimator β̂ = (X>X)−1X>Ỹ . The
overarching objective is to upper-bound E‖β̂−β?‖2, which
can be easily rewritten as follows:

E
[
‖β̂ − β?‖2

]
= Tr((X>X)−1) = Tr

(
K∑
k=1

X̃kX̃
>
k

)−1

= 1
T

Tr

(
K∑
k=1

pkXkX
>
k /σ

2
k

)−1

,

where we have denoted for every k ∈ [K], pk = Tk/T
the proportion of times the covariate Xk has been sampled.
By definition, p = (p1, . . . , pK) ∈ ∆K , the simplex of

1[K] = {1, . . . ,K}.
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dimension K − 1. We emphasize here that minimizing
E‖β̂ − β?‖2 is equivalent to minimizing the trace of the
inverse of the covariance matrix X>X, which corresponds
actually to A-optimal design (Pukelsheim, 2006). Denote
now by Ω(p) the following weighted covariance matrix

Ω(p) =
K∑
k=1

pk
σ2
k

XkX
>
k = X>X .

The objective is to minimize over p ∈ ∆K the loss function
L(p) = Tr

(
Ω(p)−1) with L(p) = +∞ if (p 7→ Ω(p)) is

not invertible, such that

E
[
‖β̂ − β?‖2

]
= 1
T

Tr
(
Ω(p)−1) = 1

T
L(p) .

For the problem to be non-trivial, we require that the covari-
ates span Rd. If it is not the case then there exists a vector
along which one cannot get information about the parameter
β?. The best algorithm we can compare against can only
estimate the projection of β on the subspace spanned by the
covariates, and we can work in this subspace.

The rest of this work is devoted to design an algorithm min-
imizing Tr

(
Ω(p)−1) with the difficulty that the variances

σ2
k are unknown. In order to do that we will sequentially

and adaptively choose which point to sample to minimize
Tr
(
Ω(p)−1). This corresponds consequently to online A-

optimal design. As developed above, the norms of the co-
variates have a scaling role and those can be renormalized
to lie on the sphere at no cost, which is thus an assump-
tion from now on: ∀k ∈ [K], ‖Xk‖2 = 1. The following
proposition shows that the problem we are considering is
convex.
Proposition 1. L is strictly convex on ∆d and continuous
in its relative interior ∆̊d.

The proof is deferred to Appendix C. Proposition 1 implies
that L has a unique minimum p? in ∆̊d and we note

p? = arg min
p∈∆d

L(p) .

Finally, we evaluate the performance of a sampling policy
in term of “regret” i.e., the difference in loss between the
optimal sampling policy and the policy in question.
Definition 1. Let pT denote the sampling proportions after
T samples of a policy. Its regret is then

R(T ) = 1
T

(L(pT )− L(p?)) .

We will construct active sampling algorithms to minimize
R(T ). A key step is the following computations of the
gradient of L. Since∇kΩ(p) = XkX

T
k /σ

2
k, it follows

∂pk
L(p) = − 1

σ2
k

Tr
(
Ω(p)−2XkX

T
k

)
= − 1

σ2
k

∥∥Ω(p)−1Xk

∥∥2
2 .

As in several works (Hsu et al., 2011; Allen-Zhu et al.,
2020) we will have to study different cases depending on
the values of K and d. The first one corresponds to the
case K ≤ d. As we explained it above, if K < d, the
matrix Ω(p) is not invertible and it is impossible to obtain
a sublinear regret, which makes us work in the subspace
spanned by the covariates Xk. This corresponds to K = d.
We will treat this case in Sections 3 and 4. The case K > d
is considered in Section 5.

3. A naive randomized algorithm
We begin by proposing an obvious baseline for the prob-
lem at hand. One naive algorithm would be to estimate
the variances of each of the covariates by sampling them a
fixed amount of time. Sampling each arm cT times (with
c < 1/K) would give an approximation σ̂k of σk of order
1/
√
T . Then we can use these values to construct Ω̂(p) an

approximation of Ω(p) and then derive the optimal propor-
tions p̂k to minimize Tr(Ω̂(p)−1). Finally the algorithm
would consist in using the remainder of the budget to sam-
ple the arms according to those proportions. However, such
a trivial algorithm would not provide good regret guaran-
tees. Indeed the constant fraction c of the samples used to
estimate the variances has to be chosen carefully; it will
lead to a 1/T regret if c is too big (if c > p?k for some k).
That is why we need to design an algorithm that will first
roughly estimate the p?k. In order to improve the algorithm
it will also be useful to refine at each iteration the estimates
p̂k. Following these ideas we propose Algorithm 1 which
uses a pre-sampling phase (see Lemma 3 for further details)
and which constructs at each iteration lower confidence esti-
mates of the variances, providing an optimistic estimate L̃
of the objective function L. Then the algorithm minimizes
this estimate (with an offline A-optimal design algorithm,
see e.g., (Gao et al., 2014)). Finally the covariate Xk is
sampled with probability p̂t,k. Then feedback is collected
and estimates are updated.

Proposition 2. For T ≥ 1 samples, running Algorithm 1
with Ni = poiT/2 (with po defined by (2)) for all i ∈ [K],
gives final sampling proportions pT such that

R(T ) = OΓ,σk

(√
log T
T 3/2

)
,

where Γ is the Gram matrix of X1, . . . , XK .

The proof is postponed to Appendix D. Notice that we avoid
the problem discussed by Erraqabi et al. (2017) (that is
due to infinite gradient on the simplex boundary) thanks to
presampling, allowing us to have positive empirical variance
estimates with high probability.
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Algorithm 1 Naive randomized algorithm

Require: d, T , δ confidence parameter
Require: N1, . . . , Nd of sum N

1: Sample Nk times each covariate Xk

2: pN ←− (N1/N, . . . , Nd/N)
3: Compute empirical variances σ̂2

1 , . . . , σ̂
2
d

4: for N + 1 ≤ t ≤ T do
5: Compute p̂t ∈ arg min L̃, where L̃ is the same func-

tion as L, but with variances replaced by lower confi-
dence estimates of the variances (from Theorem 1).

6: Draw π(t) randomly according to probabilities p̂t
and sample covariate Xπ(t)

7: Update pt+1 = pt + 1
t+1 (eπ(t+1) − pt) and σ̂2

π(t)
where (e1, . . . , ed) is the canonical basis of Rd.

8: end for

4. A faster first-order algorithm
We now improve the relatively “slow” dependency in T in
the rates of Algorithm 1 – due to its naive reduction to a
MAB problem, and because it does not use any estimates
of the gradient of L – with a different approach based on
convex optimization techniques, that we can leverage to
gain an order in the rates of convergence.

4.1. Description of the algorithm

The main algorithm is described in Algorithm 2 and is built
following the work of Berthet & Perchet (2017). The idea
is to sample the arm sampled which minimizes the norm of
a proxy of the gradient of L, corrected by a positive error
term, as in the UCB algorithm (Auer et al., 2002).

Algorithm 2 Bandit algorithm

Require: d, T
Require: N1, . . . , Nd of sum N

1: Sample Nk times each covariate Xk

2: pN ←− (N1/N, . . . , NK/N)
3: Compute empirical variances σ̂2

1 , . . . , σ̂
2
d

4: for N + 1 ≤ t ≤ T do
5: Compute∇L̂(pt), where L̂ is the same function as L,

but with variances replaced by empirical variances.
6: for k ∈ [d] do

7: ĝk ←− ∇kL̂(pt)− 2
√

3 log(t)
Tk

8: end for
9: π(t) ←− arg mink∈[d] ĝk and sample covariate

Xπ(t)
10: Update pt+1 = pt + 1

t+1 (eπ(t+1) − pt) and update
σ̂2
π(t)

11: end for

N1, . . . , Nd are the number of times each covariate is sam-
pled at the beginning of the algorithm. This stage is needed
to ensure that L is smooth. More details about that will be
given with Lemma 3.

4.2. Concentration of the gradient of the loss

The cornerstone of the algorithm is to guarantee that the es-
timates of the gradients concentrate around their true value.
To simplify notations, we denote by Gk = ∂pk

L(p) the true
kth derivative of L and by Ĝk its estimate. More precisely,
if we note Ω̂(p) =

∑K
k=1(pk/σ̂k )XkX

>
k , we have

Gk = −σ−2
k ‖Ω(p)−1Xk‖22, Ĝk

.= −σ̂−2
k ‖Ω̂(p)−1Xk‖22 .

Since Ĝk depends on the σ̂2
k, we need a concentration bound

on the empirical variances σ̂2
k. As traditional results on the

concentration of the variances (Maurer & Pontil, 2009; Car-
pentier et al., 2011) are generally obtained in the bounded
setting, we prove in Appendix A the following bound in the
case of subgaussian random variables.

Theorem 1. Let X be a centered and κ2-sub-gaussian ran-
dom variable sampled n ≥ 2 times. Let δ ∈ (0, 1). Let
c = (e − 1)(2e(2e − 1))−1 ≈ 0.07. With probability at
least 1− δ, the following concentration bound on its empir-
ical variance holds

∣∣σ̂2
n − σ2∣∣ ≤ 3κ2 ·max

(
log(4/δ)
cn

,

√
log(4/δ)
cn

)
.

Using Theorem 1 we claim the following concentration
argument, which is the main ingredient of the analysis of
Algorithm 2.

Proposition 3. For every k ∈ [K], after having gathered
Tk ≤ T samples of covariates Xk, there exists a constant
C > 0 (explicit and given in the proof) such that, with
probability at least 1− δ

|Gk − Ĝk| ≤ C
(
σ−1
k max

i∈[K]

σ2
i

pi

)3

·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

 .

For clarity reasons we postpone the proof to Appendix B.
Proving this proposition was one of the main technical chal-
lenges of our analysis. Now that we have it proven we can
turn to the analysis of Algorithm 2.

4.3. Analysis of the convergence of the algorithm

In convex optimization several classical assumptions can be
leveraged to derive fast convergence rates. Those assump-
tions are typically strong convexity, positive distance from
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the boundary of the constraint set, and smoothness of the
objective function, i.e., that it has Lipschitz gradient. We
prove in the following that the loss L satisfies them, up to
the smoothness because its gradient explodes on the bound-
ary of ∆d. However, L is smooth on the relative interior of
the simplex. Consequently we will circumvent this smooth-
ness issue by using a technique from (Fontaine et al., 2019)
consisting in pre-sampling every arm a linear number of
times in order to force p to be far from the boundaries of
∆d.

Using the following notations X0
.= (X>1 , · · · , X>d )> and

Γ .= X0X>0 = Gram(X1, . . . , Xd) we prove the following
lemma in Appendix E.1.

Lemma 1. The loss function L verifies for all p ∈ ∆d,

L(p) = 1
det(X>0 X0)

d∑
k=1

σ2
k

pk
Cof(X0X>0 )kk .

With this expression, the optimal proportion p? can be easily
computed using the KKT theorem, with the following closed
form:

p?k = σk
√

Cof(Γ)kk/
d∑
i=1

σi
√

Cof(Γ)ii . (1)

This yields that L is µ-strongly convex on ∆d, with µ =
2 det(Γ)−1 mini Cof(Γ)iiσ2

i . Moreover, this also implies
that p? is far away from the boundary of ∆d.

Lemma 2. Let η .= dist(p?, ∂∆d) be the distance from p?

to the boundary of the simplex. We have

η =
√

K

K − 1
mini σi

√
Cof(Γ)ii∑d

k=1 σk
√

Cof(Γ)kk
.

Proof. This is immediate with (1) since η =√
K

K − 1 mini p?i .

It remains to recover the smoothness of L. This is done
using a pre-sampling phase.

Lemma 3 (see (Fontaine et al., 2019)). If there exists α ∈
(0, 1/2) and po ∈ ∆d such that p? < αpo (component-wise)
then sampling arm i at most αpoiT times (for all i ∈ [d]) at
the beginning of the algorithm and running Algorithm 2 is
equivalent to running Algorithm 2 with budget (1− α)T on
the smooth function (p 7→ L(αpo + (1− α)p).

We have proved that p?k is bounded away from 0 and thus a
pre-sampling would be possible. However, this requires to
have some estimate of each σ2

k. The upside is that those esti-
mates must be accurate up to some multiplicative factor (and
not additive factor) so that a logarithmic number of samples

of each arm is enough to get valid lower/upper bounds (see
Corollary 1). Indeed, the estimate σ2

k obtained satisfies, for
each k ∈ [d], that σ2

k ∈ [σ2
k/2, 3σ2

k/2]. Consequently we
know that

∀k ∈ [d], p?k ≥
1√
3

σk
√

Cof(Γ)kk∑d
i=1 σi

√
Cof(Γ)ii

≥ 1
2p

o, (2)

where po =
σk
√

Cof(Γ)kk∑d
i=1 σi

√
Cof(Γ)ii

.

This will let us use Lemma 3 and with a presampling stage
as prescribed, p is forced to remain far away from the bound-
aries of the simplex in the sense that pt,i ≥ poi /2 at each
stage t subsequent to the pre-sampling, and for all i ∈ [d].
Consequently, this logarithmic phase of estimation plus the
linear phase of pre-sampling ensures that in the remaining
of the process, L is actually smooth.

Lemma 4. With the pre-sampling of Lemma 3, L is smooth
with constant CS where

CS ≤ 432
σ2

max

(∑d
k=1 σk

√
Cof(Γ)kk

)3

det(Γ)σ3
min
√

mink Cof(Γ)kk
.

The proof is deferred to Appendix E.2. We can now state
our main theorem that is proved in Appendix E.3.

Theorem 2. Applying Algorithm 2 with T ≥ 1 samples
after having pre-sampled each arm k ∈ [d] at most pokT/2
times gives the following bound2

R(T ) = OΓ,σk

(
log2(T )
T 2

)
.

This theorem provides a fast convergence rate for the regret
R and emphasizes the importance of using the gradient
information in Algorithm 2 compared to Algorithm 1.

5. Discussion and generalization to K > d

We discuss in this section the case where the number K of
covariate vectors is greater than d.

5.1. Discussion of the case K > d

In the case where K > d it may be possible that the optimal
p? lies on the boundary of the simplex ∆K , meaning that
some arms should not be sampled. This happens for instance
as soon as there exist two covariate points that are exactly
equal but with different variances. The point with the lowest
variance should be sampled while the point with the highest

2The notation OΓ,σk means that there is a hidden constant
depending on Γ and on the σk. The explicit dependency on these
parameters is given in the proof.
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one should not. All the difficulty of an algorithm for the case
where K > d is to be able to detect which covariate should
be sampled and which one should not. In order to adopt
another point of view on this problem it might be interesting
to go back to the field of optimal design of experiments.
Indeed by choosing vk = Xk/σk, our problem consists
exactly in the following constraint minimization problem
given v1 . . . , vK ∈ Rd:

min Tr

 K∑
j=1

pjvjv
>
j

−1

under contraints p ∈ ∆K . (P)

It is known (Pukelsheim (2006)) that the dual problem of
A-optimal design consists in finding the smallest ellipsoid,
in some sense, containing all the points vj :

max Tr(
√
W )2 (D)

u.c. W � 03 and v>j Wvj ≤ 1 for all 1 ≤ j ≤ K .

In our case the role of the ellipsoid can be easily seen with
the KKT conditions. We obtain the following proposition,
proved in Appendix G.1.

Proposition 4. The points Xk/σk lie within the ellipsoid
defined by the matrix Ω(p?)−2.

This geometric interpretation shows that a point Xk with
high variance is likely to be in the interior of the ellipsoid
(because Xk/σk is close to the origin), meaning that µk >
0 and therefore that p?k = 0 i.e., that Xk should not be
sampled. Nevertheless since the variances are unknown,
one is not easily able to find which point has to be sampled.
Figures illustrating the geometric interpretation can be found
in Appendix G.2.

5.2. A theoretical upper-bound and a lower bound

We derive now a bound for the convergence rate of Algo-
rithm 2 in the case where K > d.

Theorem 3. Applying Algorithm 2 with K > d covariate
points gives the following bound on the regret:

R(T ) = O
(

log(T )T−5/4
)
.

The proof is postponed to Appendix F.1.

One can ask whether this result is optimal, and if it is possi-
ble to reach the bound of Theorem 2. The following theorem
provides a lower bound showing that it is impossible in the
case where there are d covariates. However the upper and
lower bounds of Theorems 3 and 4 do not match. It is still
an open question whether we can obtain better rates than
T−5/4.

Theorem 4. In the case where K > d, for any algorithm
on our problem, there exists a set of parameters such that
R(T ) & T−3/2.

We prove Theorem 4 in Appendix F.2.

6. Numerical simulations
We now present numerical experiments to validate our re-
sults and claims. We compare several algorithms for active
matrix design: a very naive algorithm that samples equally
each covariate, Algorithm 1, Algorithm 2 and a Thompson
Sampling (TS) algorithm (Thompson, 1933). We run our
experiments on synthetic data with horizon time T between
104 and 106, averaging the results over 25 rounds. We con-
sider covariate vectors in RK of unit norm for values of K
ranging from 3 to 100. All the experiments ran in less than
15 minutes on a standard laptop.

4 4.5 5 5.5 6

−8

−6

−4

−2

log(T )

lo
g(
R

(T
)) naive – slope=−1.0
Alg. 2 – slope=−2.0

TS – slope=−2.0
Alg. 1 – slope=−1.9

Figure 1. Regret as a function of T in log–log scale in the case of
K = 3 covariates in R3.

4 4.5 5 5.5

−8

−6

−4

log(T )

lo
g(
R

(T
)) naive – slope=−1.0

Alg. 2 – slope=−1.9
TS – slope=−1.9

Figure 2. Regret as a function of T in log–log scale in the case of
K = 4 covariates in R3.

Let us quickly describe the Thompson Sampling algorithm.
We choose Normal Inverse Gamma distributions for priors
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for the mean and variance of each of the arms, as they are
the conjugate priors for gaussian likelihood with unknown
mean and variance. At each time step t, for each arm k ∈
[K], a value of σ̂k is sampled from the prior distribution.
An approximate value of∇kL(p) is computed with the σ̂k
values. The arm with the lowest gradient value is chosen and
sampled. The value of this arm updates the hyperparameters
of the prior distribution.

In our first experiment we consider only 3 covariate vectors.
We plot the results in log–log scale in order to see the conver-
gence speed which is given by the slope of the plot. Results
on Figure 1 show that both Algorithms 1 and 2, as well as
Thompson sampling have regret O(1/T 2) as expected.

4 4.5 5 5.5
−8

−6

−4

T

lo
g(
R

(T
))

Alg. 1 – slope=−1.0
Alg. 2 – slope=−1.36

Figure 3. Regret as a function of T in log–log scale in the case of
K = 4 covariates in R3 in a challenging setting.

3 3.2 3.4 3.6 3.8 4

−4

−2

0

2

log(T )

lo
g(
R

(T
))

K = 5 – slope=−1.98
K = 10 – slope=−2.11
K = 20 – slope=−2.23
K = 50 – slope=−2.15
K = 100 – slope=−2.06

Figure 4. Regret as a function of T for different values of K in
log–log scale.

We see that Thompson Sampling performs well on low-
dimensional data. However it is approximately 200 times
slower than Algorithm 2 – due to the sampling of complex

Normal Inverse Gamma distributions – and therefore inef-
ficient in practice. On the contrary, Algorithm 2 is very
practical. Indeed its computational complexity is linear
in time T and its main computational cost is due to the
computation of the gradient ∇L̂. This relies on inverting
Ω̂ ∈ Rd×d, whose complexity is O(d3) (or even O(d2.807)
with Strassen algorithm). Thus the overall complexity of
Algorithm 2 is O(T (d2.8 + K)) hence polynomial. This
computational complexity advocates that Algorithm 2 is
practical for moderate values of d, as in linear regression
problems.

Figure 1 shows that Algorithm 1 performs nearly as well as
Algorithm 2. However, the minimization step of L̂ is time-
consuming when K > d, since there is no close form for p?,
which leads to approximate results. Therefore Algorithm 1
is not adapted to K > d. We also have conducted similar
experiments in this case, with K = d + 1. The offline
solution of the problem indicates that one covariate should
not be sampled, i.e., p? ∈ ∂∆K . Results presented on
Figure 2 prove the performances of Algorithm 2.

One might argue that the positive results of Figure 2 are
due to the fact that it is “easy” for the algorithm to detect
that one covariate should not be sampled, in the sense that
this covariate clearly lies in the interior of the ellipsoids
mentioned in Section 5.1. In the very challenging case
where two covariates are equal but with variances separated
by only 1/

√
T , we obtain the results described on Figure 3.

The observed experimental convergence rate is of the order
of T−1.36 which is much slower than the rates of Figure 2,
and between the rates proved in Theorems 3 and Theorem 4.

Finally we run a last experiment with larger values ofK = d.
We plot the convergence rate of Algorithm 2 for values ofK
ranging from 5 to 100 in log− log scale on Figure 4. The
slope is again approximately of −2, which is coherent with
Theorem 2. We note furthermore that larger values of d do
not make Algorithm 2 impracticable, as inferred by its cubic
complexity.

7. Conclusion
We have proposed an algorithm mixing bandit and convex
optimization techniques to solve the problem of online A-
optimal design, which is related to active linear regression
with repeated queries. This algorithm has proven fast and
optimal rates Õ(T−2) in the case of d covariates that can
be sampled in Rd. One cannot obtain such fast rates in the
more general case of K > d covariates. We have therefore
provided weaker results in this very challenging setting and
conducted more experiments showing that the problem is
indeed more difficult.
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A. Concentration arguments
In this section we present results on the concentration of the variance for subgaussian random variables. Traditional results
on the concentration of the variances (Maurer & Pontil, 2009; Carpentier et al., 2011) are obtained in the bounded setting.
We propose results in a more general framework. Let us begin with some definitions.

Definition S1 (Sub-gaussian random variable). A random variable X is said to be κ2-sub-gaussian if

∀λ ≥ 0, exp(λ(X − EX)) ≤ exp(λ2κ2/2) .

And we define its ψ2-norm as
‖X‖ψ2

= inf
{
t > 0 |E[exp(X2/t2)] ≤ 2

}
.

We can bound the ψ2-norm of a subgaussian random variable as stated in the following lemma.

Lemma S1 (ψ2-norm). If X is a centered κ2-sub-gaussian random variable then

‖X‖ψ2
≤ 2
√

2√
3
κ .

Proof. A proposition from (Wainwright, 2019) shows that for all λ ∈ [0, 1), a sub-gaussian variable X verifies

E
(
λX2

2κ2

)
≤ 1√

1− λ
.

Taking λ = 3/4 and defining u = 2
√

2√
3 κ gives

E(X2/u2) ≤ 2 .

Consequently ‖X‖ψ2
≤ u.

A wider class of random variables is the class of sub-exponential random variables that are defined as follows.

Definition S2 (Sub-exponential random variable). A random variable X is said to be sub-exponential if there exists K > 0
such that

∀ 0 ≤ λ ≤ 1/K, E[exp(λ|X|)] ≤ exp(Kλ) .

And we define its ψ1-norm as
‖X‖ψ1

= inf {t > 0 |E[exp(|X|/t)] ≤ 2} .

A result from (Vershynin, 2018) gives the following lemma, that makes a connection between subgaussian and subexponential
random variables.

1Centre Borelli, ENS Paris-Saclay, Palaiseau, France 2Idemia, Courbevoie, France 3Google DeepMind, Paris, France 4CREST, ENSAE,
Palaiseau, France 5Criteo AI Lab, Paris, France. Correspondence to: Xavier Fontaine <xavier.fontaine@polytechnique.edu>.
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Lemma S2. A random variable X is sub-gaussian if and only if X2 is sub-exponential, and we have∥∥X2∥∥
ψ1

= ‖X‖2ψ2
.

We now want to obtain a concentration inequality on the empirical variance of a sub-gaussian random variable. We give use
the following notations to define the empirical variance.

Definition S3. We define the following quantities for n i.i.d repetitions of the random variable X .

µ = E[X] and µ̂n = 1
n

n∑
i=1

Xi ,

µ(2) = E[X2] and µ̂(2)
n = 1

n

n∑
i=1

X2
i .

The variance and empirical variance are defined as follows

σ2 = µ(2) − µ2 and σ̂2
n = µ̂(2)

n − µ̂2
n .

We are now able to prove Theorem 1 that we restate below for clarity.

Theorem S1. Let X be a centered and κ2-sub-gaussian random variable sampled n ≥ 2 times. Let δ ∈ (0, 1). Let
c = (e − 1)(2e(2e − 1))−1 ≈ 0.07. With probability at least 1 − δ, the following concentration bound on its empirical
variance hold

∣∣σ̂2
n − σ2∣∣ ≤ 8

3κ
2 ·max

(
log(4/δ)
cn

,

√
log(4/δ)
cn

)
+ 2κ2 log(4/δ)

n
.

Proof. We have ∣∣σ̂2
n − σ2∣∣ =

∣∣∣µ̂(2)
n − µ̂2

n − (µ(2) − µ2)
∣∣∣

≤
∣∣∣µ̂(2)
n − µ(2)

∣∣∣+
∣∣µ̂2
n − µ2∣∣

≤
∣∣∣µ̂(2)
n − µ(2)

∣∣∣+ |µ̂n − µ||µ̂n + µ|

≤
∣∣∣µ̂(2)
n − µ(2)

∣∣∣+ |µ̂n|2

since µ = 0.

We now apply Hoeffding’s inequality to the Xt variables that are κ2-subgaussian, to get

P

(
1
n

n∑
i=1

Xi − µ > t

)
≤ exp

(
− n

2t2

2nκ2

)
= exp

(
−nt

2

2κ2

)
.

And finally

P

(
|µ̂n − µ| > κ

√
2 log(2/δ)

n

)
≤ δ.

Consequently with probability at least 1− δ, |µ̂n|2 ≤ 2κ2 log(2/δ)
n

.

The variables X2
t are sub-exponential random variables. We can apply Bernstein’s inequality as stated in (Chafaï et al.,

2012) to get for all t > 0:

P

(∣∣∣∣∣ 1n
n∑
i=1

X2
i − µ(2)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−cnmin

(
t2

s2 ,
t

m

))
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≤ 2 exp
(
−cnmin

(
t2

m2 ,
t

m

))
.

with c = e−1
2e(2e−1) , s2 = 1

n

∑n
i=1
∥∥X2

i

∥∥
ψ1
≤ m2 and m = max1≤i≤n

∥∥X2
i

∥∥
ψ1

.

Inverting the inequality we obtain

P

(∣∣∣µ̂(2)
n − µ(2)

∣∣∣ > m ·max
(

log(2/δ)
cn

,

√
log(2/δ)
cn

))
≤ δ .

And finally, with probability at least 1− δ,

∣∣σ̂2
n − σ2∣∣ ≤ m ·max

(
log(4/δ)
cn

,

√
log(4/δ)
cn

)
+ 2κ2 log(4/δ)

n
.

Using Lemmas S2 and S1 we obtain that m ≤ 8κ2/3. Finally,

∣∣σ̂2
n − σ2∣∣ ≤ 8

3κ
2 ·max

(
log(4/δ)
cn

,

√
log(4/δ)
cn

)
+ 2cκ2 log(4/δ)

cn

≤ 3κ2 ·max
(

log(4/δ)
cn

,

√
log(4/δ)
cn

)
,

since 2c ≤ 1/3. This gives the expected result.

We now state a corollary of this result.

Corollary 1. Let T ≥ 2. LetX be a centered and κ2-sub-gaussian random variable. Let c = (e−1)(2e(2e−1))−1 ≈ 0.07.

For n =
⌈

72κ4

cσ4 log(2T )
⌉

, we have with probability at least 1− 1/T 2,

∣∣σ̂2
n − σ2∣∣ ≤ 1

2σ
2.

Proof. Let δ ∈ (0, 1). Let n =
⌈

log(4/δ)
c

(
6κ2

σ2

)2⌉
.

Then
log(4/δ)
cn

≤
(
σ2

6κ2

)2

< 1, since σ2 ≤ κ2, by property of subgaussian random variables.

With probability 1− δ, Theorem 1 gives

|σ̂2
n − σ2| ≤ 3κ2 σ

2

6κ2 ≤
1
2σ

2 .

Now, suppose that δ = 1/T 2. Then, with probability 1− 1/T 2, for n =
⌈

72κ4

cσ4 log(2T )
⌉

samples,

|σ̂2
n − σ2| ≤ 1

2σ
2 .

B. Proof of gradient concentration
In this section we prove Proposition 3.
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Proof. Let p ∈ ∆K and let i ∈ [K]. We compute

Gi − Ĝi =
∥∥∥∥Ω̂(p)−1Xi

σ̂i

∥∥∥∥2

2
−
∥∥∥∥Ω(p)−1Xi

σi

∥∥∥∥2

2

≤
∥∥∥∥Ω̂(p)−1Xi

σ̂i
− Ω(p)−1Xi

σi

∥∥∥∥
2

∥∥∥∥Ω̂(p)−1Xi

σ̂i
+ Ω(p)−1Xi

σi

∥∥∥∥
2
.

Let us now note A .= Ω̂(p)σ̂i and B .= Ω(p)σi. We have, using that ‖Xk‖2 = 1,∥∥∥∥Ω̂(p)−1Xk

σ̂k
− Ω(p)−1Xk

σk

∥∥∥∥
2

=
∥∥(A−1 −B−1)Xk

∥∥
2

≤
∥∥A−1 −B−1∥∥

2 ‖Xk‖2
≤
∥∥A−1(B −A)B−1∥∥

2

≤
∥∥A−1∥∥

2

∥∥B−1∥∥
2 ‖B −A‖2 .

One of the quantity to bound is
∥∥B−1

∥∥
2. We have

∥∥B−1∥∥
2 = ρ(B−1) = 1

min(Sp(B)) ,

where Sp(B) is the spectrum (set of eigenvalues) of B. We know that Sp(B) = σiSp(Ω(p)). Therefore we need to find the
smallest eigenvalue λ of Ω(p). Since the matrix is invertible we know λ > 0.

We will need the following lemma.

Lemma S3. Let X0 =
(
X>1 , · · · , X>k

)>
. We have

λmin(Ω(p)) ≥ min
k∈[K]

pk
σ2
k

λmin(X>0 X0).

Proof. We have for all p ∈ ∆K ,

min
i∈[K]

pi
σ2
i

K∑
k=1

XkX
>
k 4

K∑
k=1

pk
σ2
k

XkX
>
k .

Therefore
min
k∈[K]

pk
σ2
k

X>0 X0 4 Ω(p) .

And finally
min
k∈[K]

pk
σ2
k

λmin(X>0 X0) ≤ λmin(Ω(p)) .

Note now that the smallest eigenvalue of X>0 X0 is actually the smallest non-zero eigenvalue of X0X>0 , which is the Gram
matrix of (X1, . . . , Xd), that we note now Γ. This directly gives the following

Proposition S1. ∥∥B−1∥∥
2 ≤

1
σiλmin(Γ) max

k∈[K]

σ2
k

pk
.

We jump now to the bound of
∥∥A−1

∥∥
2. We could obtain a similar bound to the one of

∥∥B−1
∥∥

2 but it would contain σ̂k
values. Since we do not want a bound containing estimates of the variances, we prove the

Proposition S2. ∥∥A−1∥∥
2 ≤ 2

∥∥B−1∥∥
2 .
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Proof. We have, if we note H = A−B,∥∥A−1∥∥
2 =

∥∥(B +A−B)−1∥∥
2 ≤

∥∥B−1∥∥
2

∥∥(In +B−1H)−1∥∥
2 ≤ 2

∥∥B−1∥∥
2 ,

from a certain rank.

Let us now bound ‖B −A‖2. We have

‖B −A‖2 =

∥∥∥∥∥σi
K∑
k=1

pk
XkX

>
k

σ2
k

− σ̂i
K∑
k=1

pk
XkX

>
k

σ̂2
k

∥∥∥∥∥
2

=

∥∥∥∥∥
K∑
k=1

pkXkX
>
k

(
σi
σ2
k

− σ̂i
σ̂2
k

)∥∥∥∥∥
2

≤
K∑
k=1

pk

∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣ ‖Xk‖22

≤
K∑
k=1

pk

∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣.
The next step is now to use Theorem 1 in order to bound the difference

∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣.
Proposition S3. With the notations introduced above, we have

‖B −A‖2 ≤
113Kσmax

σ4
min

κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

 .

Proof. Corollary 1 gives that for all k ∈ [K], 1
2σ

2
k ≤ σ̂2

k ≤ 3
2σ

2
k.

A consequence of Theorem 1 is that for all k ∈ [K], if we note Tk the (random) number of samples of covariate k, we have,
with probability at least 1− δ,

∀k ∈ [K],
∣∣σ2
k − σ̂2

k

∣∣ ≤ 8
3κ

2
k ·max

 log(4TK/δ)
cTk

,

√
log(4TK/δ)

cTk

+ 2κ2
k

log(4TK/δ)
Tk

.

We note ∆k the r.h.s of the last equation. We begin by establishing a simple upper bound of ∆k. Using the fact that√
1/c ≤ 1/c and that 8/(3c) ≤ 38, we have

∆k ≤
8
3cκ

2
k ·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

+ 2κ2
k

log(4TK/δ)
Tk

≤ 38κ2
k ·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

+ 2κ2
k

log(4TK/δ)
Tk

≤ 40κ2
k ·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

 .

Let k ∈ [K]. We have ∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣ =
∣∣∣∣σiσ̂2

k − σ̂iσ2
k

σ2
kσ̂

2
k

∣∣∣∣ =
∣∣∣∣σiσ̂2

k − σiσ2
k + σiσ

2
k − σ̂iσ2

k

σ2
kσ̂

2
k

∣∣∣∣
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≤
∣∣∣∣σi(σ̂2

k − σ2
k)

σ2
kσ̂

2
k

∣∣∣∣+
∣∣∣∣σi − σ̂iσ̂2

k

∣∣∣∣
≤
∣∣∣∣σi(σ̂2

k − σ2
k)

σ2
kσ̂

2
k

∣∣∣∣+
∣∣∣∣ σ2

i − σ̂2
i

σ̂2
k(σi + σ̂i)

∣∣∣∣
≤
∣∣∣∣σi(σ̂2

k − σ2
k)

σ2
kσ̂

2
k

∣∣∣∣+
∣∣∣∣σ2
i − σ̂2

i

σ̂2
kσi

∣∣∣∣
≤
∣∣σ̂2
k − σ2

k

∣∣∣∣∣∣ σi
σ2
kσ̂

2
k

∣∣∣∣+
∣∣σ2
i − σ̂2

i

∣∣∣∣∣∣ 1
σ̂2
kσi

∣∣∣∣
≤ ∆k

2σmax

σ4
min

+ ∆i
2
√

2
σ3

min
.

Finally we have, using the fact that T ≥ Tk for all k ∈ [K]

‖B −A‖2 ≤
K∑
k=1

pk

∣∣∣∣ σiσ2
k

− σ̂i
σ̂2
k

∣∣∣∣
≤ 2σmax

σ4
min

(
K∑
k=1

pk∆k +
√

2
K∑
k=1

pk∆i

)

≤ 2σmax

σ4
min

 K∑
k=1

Tk
T

40κ2
k ·max

 log(4TK/δ)
Tk

,

√
log(4TK/δ)

Tk

+
√

2∆i


≤ 2σmax

σ4
min

(
K∑
k=1

40κ2
k ·max

(
log(4TK/δ)

T
,

√
Tk
T

√
log(4TK/δ)

T

)
+
√

2∆i

)

≤ 2σmax

σ4
min

(
K∑
k=1

40κ2
k ·max

(
log(4TK/δ)

T
,

√
log(4TK/δ)

T

)
+
√

2∆i

)

≤ 2σmax

σ4
min

K40κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

+
√

2∆i


≤ (K +

√
2)80σmax

σ4
min

κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

 .

The last quantity to bound to end the proof is
∥∥∥∥Ω̂(p)−1Xk

σ̂k
+ Ω(p)−1Xk

σk

∥∥∥∥
2
.

Proposition S4. We have ∥∥∥∥Ω̂(p)−1Xk

σ̂k
+ Ω(p)−1Xk

σk

∥∥∥∥
2
≤ 3

∥∥B−1∥∥
2 .

Proof. We have ∥∥∥∥Ω̂(p)−1Xk

σ̂k
+ Ω(p)−1Xk

σk

∥∥∥∥
2

=
∥∥(A−1 +B−1)Xk

∥∥
2

≤
∥∥A−1 +B−1∥∥

2 ‖Xk‖2
≤
∥∥(A−1 −B−1) + 2B−1∥∥

2

≤
∥∥A−1 −B−1∥∥

2 + 2
∥∥B−1∥∥

2 .

For T sufficiently large we have
∥∥∥∥Ω̂(p)−1Xk

σ̂k
+ Ω(p)−1Xk

σk

∥∥∥∥
2
≤ 3

∥∥B−1
∥∥

2.
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Combining Propositions S1, S2, S3 and S4 we obtain that Gi − Ĝi ≤ 6
∥∥B−1

∥∥3
2 ‖B −A‖2 and

Gi − Ĝi ≤ 678Kσmax

σ4
min

(
1

σiλmin(Γ) max
k∈[K]

σ2
k

pk

)3

· κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

 ,

which proves Proposition 3.

C. Proofs of preliminary and easy results
In all the following we will denote by 4 the Loewner ordering: if A and B are two symmetric matrices, A 4 B iff B −A is
positive semi-definite.

C.1. Proof of Proposition 1

Proof. Let p, q ∈ ∆̊d, so that Ω(p) and Ω(q) are invertible, and λ ∈ [0, 1]. We have L(p) = Tr(Ω(p)−1) and L(λp+ (1−
λ)q) = Tr(Ω(λp+ (1− λ)q)−1), where

Ω(λp+ (1− λq)) =
d∑
k=1

λpk + (1− λ)qk
σ2
k

XkX
>
k

= λΩ(p) + (1− λ)Ω(q).

It is well-known (Whittle, 1958) that the inversion is strictly convex on the set of positive definite matrices. Consequently,

Ω(λp+ (1− λq))−1 = (λΩ(p) + (1− λ)Ω(q))−1 ≺ λΩ(p)−1 + (1− λ)Ω(q)−1.

Taking the trace this gives
L(λp+ (1− λ)q) < λL(p) + (1− λ)L(q).

Hence L is convex.

C.2. Proof of Lemma S4

Lemma S4. Let S be a symmetric positive definite matrix and D a diagonal matrix with strictly positive entries d1, . . . , dn.
Then

λmin(DSD) ≥ min
i

(di)2λmin(S).

Proof. We have λmin(S)Id 4 S and consequently, multiplying by D (positive definite) to the right and left we obtain
λmin(S)D2 4 DSD, hence

min
i

(di)2λmin(S) ≤ λmin(DSD).

D. Proofs of the slow rates
D.1. Proof of Proposition 2

Proof. We now conduct the analysis of Algorithm 1. Our strategy will be to convert the error L(pT )− L(p?) into a sum
over t ∈ [T ] of small errors. Notice first that the quantity∥∥Ω(p)−1Xk

∥∥2
2

can be upper bounded by
1

σiλmin(G) maxk∈[K]
σ2
k

0.5po , for p = pT . For p = p̂t, we can also bound this quantity by

4
σiλmin(G) maxk∈[K]

σ2
k

0.5po , using Lemma 3 to express p̂t with respect to lower estimates of the variances — and thus with

respect to real variance thanks to Corollary 1. Then, from the convexity of L, we have
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L(pT )− L(p?) = L(pT )− L
(

1/T
T∑
t=1

p̂t

)
+ L

(
1
T

T∑
t=1

p̂t

)
− L(p?)

≤
∑
k

−
∥∥∥∥Ω(pT )−1Xk

σk

∥∥∥∥2

2

(
pk,T −

1
T

T∑
t=1

p̂k,t

)
+ 1
T

T∑
t=1

(L(p̂t)− L(p?))

Using Hoeffding inequality,
(
pk,T − 1

T

∑T
t=1 p̂k,t

)
= 1

T

∑T
t=1 (I{k is sampled at t} − p̂k,t) is bounded by

√
log(2/δ)

T

with probability 1 − δ. It thus remains to bound the second term 1
T

∑T
t=1 (L(p̂t)− L(p?)). First, notice that L(p) is an

increasing function of σi for any i. If we define L̂ be replacing each σ2
i by lower confidence estimates of the variances σ̃2

i

(see Theorem 1), then

L(p̂t)− L(p?) ≤ L(p̂t)− L̂(p?) = L(p̂t)− L̂(p̂t) + L̂(p̂t)− L̂(p∗) ≤ L(p̂t)− L̂(p̂t).

Since the gradient of L with respect to σ2 is
(

2pi

σ3
i

∥∥Ω(p)−1Xi

∥∥2
2

)
i
, we can bound L(p̂t)− L̂(p̂t) by

1/σ3
min sup

k

∥∥Ω(p̂t)−1Xk

∥∥2
2

∑
i

2p̂i,t|σ2
i − σ̃2

i |.

Since p̂i,t is the probability of having a feedback from covariate i, we can use the probabilistically triggered arm setting of

Wang & Chen (2017) to prove that
1
T

∑T
t=1
∑
i 2p̂i|σ2

i − σ̃2
i | = O

(√
log(T )
T

)
. Taking δ of order T−1 gives the desired

result.

E. Analysis of the bandit algorithm
E.1. Proof of Lemma 1

We begin by a lemma giving the coefficients of Ω(p)−1.

Lemma S5. The diagonal coefficients of Ω(p)−1 can be computed as follows:

∀i ∈ [d], Ω(p)−1
ii =

d∑
j=1

σ2
j Cof(X>0 )2

ij

det(XT0 X0)
1
pj

.

Proof. We suppose that ∀i ∈ [d], pi 6= 0 so that Ω(p) is invertible.

We know that Ω(p)−1 = Com(Ω(p))>

det(Ω(p)) . We compute now det(Ω(p)).

det(Ω(p)) = det
(

d∑
k=1

pkXkX
>
k

σ2
k

)
= det((

√
T−1X)>

√
T−1X) = T−d det(X>)2

= T−d

∣∣∣∣∣∣∣∣∣
...

X̃1
... X̃d

...

∣∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣

...√
p1

σ1
X1

...
√
pd

σd
Xd

...

∣∣∣∣∣∣∣∣∣∣

2

= det(X0)2 p1

σ2
1
· · · pd

σ2
d

.
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We now compute Com(Ω(p))ii.

Com(Ω(p)) = Com(T−1/2X>T−1/2X) = Com(T−1/2X>) Com(T−1/2X>)> .

Let us note M .= T−1/2X =


· · ·

√
p1

σ1
X>1 · · ·

...

· · ·
√
pK

σK
X>K · · ·

. Therefore

Com(Ω(p))ii =
d∑
j=1

Com(M>)2
ij =

d∑
j=1

∏
k 6=j

pk
σ2
k

Cof(X>0 )2
ij .

Finally,

Ω(p)−1
ii =

d∑
j=1

σ2
j Cof(X>0 )2

ij

det(X>0 X0)
1
pj

.

This allows us to derive the exact expression of the loss function L and we restate Lemma 1.
Lemma S6. We have, for all p ∈ ∆d,

L(p) = 1
det(X>0 X0)

d∑
k=1

σ2
k

pk
Cof(X0X>0 )kk .

Proof. Using Lemma S5 we obtain

L(p) = Tr(Ω(p)−1) =
d∑
k=1

Ω(p)−1
kk

= 1
det(X>X)

d∑
k=1

σ2
k

pk

d∑
i=1

Cof(X>0 )2
ik = 1

det(X>0 X0)

d∑
k=1

σ2
k

pk
Com(X0X>0 )kk .

E.2. Proof of Lemma 4

Proof. We use the fact that for all i ∈ [d], pi ≥ poi /2. We have that for all i ∈ [d],

∇2
iiL(p) = Cof(Γ)iiσ2

i

det(Γ)
2
p3
i

≤ 2 Cof(Γ)iiσ2
i

det(Γ)(poi /2)3 .

We have pok =
σk
√

Cof(Γ)kk∑d
i=1 σi

√
Cof(Γ)ii

which gives

∇2
iiL(p) ≤ 16

σ2
max

(∑d
k=1 σk

√
Cof(Γ)kk

)3

det(Γ)σ3
min
√

mink Cof(Γ)kk
.= CS .

And consequently L is CS-Lipschitz smooth.

We can obtain an upper bound on CS using Corollary 1, which tells that σk/2 ≤ σk ≤ 3σk/2:

CS ≤ 432
σ2

max

(∑d
k=1 σk

√
Cof(Γ)kk

)3

det(Γ)σ3
min
√

mink Cof(Γ)kk
.
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E.3. Proof of Theorem 2

Proof. Proposition 3 gives that

|Gi − Ĝi| ≤ 678Kσmax

σ4
min

(
1

σiλmin(Gram) max
k∈[K]

σ2
k

pk

)3

· κ2
max ·max

 log(4TK/δ)
Ti

,

√
log(4TK/δ)

Ti

 .

Since each arm has been sampled at least a linear number of times we guarantee that log(4TK/δ)/Ti ≤ 1 such that

|Gi − Ĝi| ≤ 678K
(
σmax

σmin

)7 1
λmin(Γ)3

κ2
max
p3

min

√
log(4TK/δ)

Ti
.

Thanks to the presampling phase of Lemma 3, we know that pmin ≥ po/2. For the sake of clarity we note C .=

678K
(
σmax

σmin

)7 8
po3λmin(Γ)3κ

2
max such that |Gi − Ĝi| ≤ C

√
log(4TK/δ)

Ti
.

We have seen that L is µ-strongly convex, CL-smooth and that dist(p?, ∂∆d) ≥ η. Consequently, since Lemma 3 shows
that the pre-sampling stage does not affect the convergence result, we can apply (Berthet & Perchet, 2017, Theorem 7) (with
the choice δT = 1/T 2, which gives that

E[L(pT )]− L(p?) ≤ c1
log2(T )
T

+ c2
log(T )
T

+ c3
1
T
,

with c1 = 96C2K

µη2 , c2 = 24C2

µη3 + S and c3 = 30722K

µ2η4 ‖L‖∞ + µη2

2 + CS . With the presampling stage and Lemma 1,

we can bound ‖L‖∞ by

‖L‖∞ ≤
∑
j σ

2
j Cof(Γ)jj

σmin
√

Cof(Γ)min

∑
j

σj

√
Cof(Γ)jj

 .

We conclude the proof using the fact that R(T ) = 1
T

(L(pT )− L(p?)).

F. Analysis of the case K > d

F.1. Proof of Theorem 3

Proof. In order to ensure that L is smooth we pre-sample each covariate n times. We note α = n/T ∈ (0, 1). This forces

pi to be greater than α for all i. Therefore L is CS-smooth with CS ≤
2 maxk Cof(Γ)kkσ2

max
α3 det(Γ)

.= C

α3 .

We use a similar analysis to the one of (Berthet & Perchet, 2017). Let us note ρt
.= L(pt) − L(p?) and εt+1

.=
(eπ(t+1) − e?t+1)>∇L(pt) with e?t+1 = arg maxp∈∆K p>∇L(pt). (Berthet & Perchet, 2017, Lemma 12) gives for
t ≥ nK,

(t+ 1)ρt+1 ≤ tρt + εt+1 + CS
t+ 1 .

Summing for t ≥ nK gives

TρT ≤ nKρnK + CS log(eT ) +
T∑

t=nK
εt

L(pT )− L(p?) ≤ Kα(L(pnK)− L(p?)) + C

α3
log(eT )
T

+ 1
T

T∑
t=nK

εt .

We bound
∑T
t=nK εt/T as in Theorem 3 of (Berthet & Perchet, 2017) by 4

√
3K log(T )

T
+(

π2

6 +K

)
2 ‖∇L‖∞ + ‖L‖∞

T
= O

(√
log(T )
T

)
.
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We are now interested in bounding α(L(pnK)− L(p?)).

By convexity of L we have

L(pnK)− L(p?) ≤ 〈∇L(pnK), pnK − p?〉 ≤ ‖∇L(pnK)‖2 ‖pnK − p
?‖2 ≤ 2 ‖∇L(pnK)‖2 .

We have also
∂L

∂pk
(pnK) = −

∥∥∥∥Ω(pnK)−1Xk

σk

∥∥∥∥2

2
.

Proposition S1 shows that ∥∥Ω(p)−1∥∥
2 ≤

1
λmin(Γ)

σ2
max

mink pk
.

In our case, mink pnK = 1/K. Therefore ∥∥Ω(pnK)−1∥∥
2 ≤

Kσ2
max

λmin(Γ) .

And finally we have

‖∇L(pnK)‖2 ≤
K√

λmin(Γ)
σmax

σmin
.

We note C1
.= 2K2√

λmin(Γ)
σmax

σmin
. This gives

L(pT )− L(p?) ≤ αC1 + C

α3
log(T )
T

+O
(√

log(T )
T

)
.

The choice of α = T−1/4 finally gives

L(pT )− L(p?) = O
(

log(T )
T 1/4

)
.

F.2. Proof of Theorem 4

Proof. For simplicity we consider the case where d = 1 and K = 2. Let us suppose that there are two points X1 and X2
that can be sampled, with variances σ2

1 = 1 and σ2
2 = 1 + ∆ > 1, where ∆ ≤ 1. We suppose also that X1 = X2 = 1 such

that both points are identical.

The loss function associated to this setting is

L(p) =
(
p1

σ2
1

+ p2

σ2
2

)−1
= 1 + ∆
p2 + p1(1 + ∆) = 1 + ∆

1 + ∆p1
.

The optimal p has all the weight on the first covariate (of lower variance): p? = (1, 0) and L(p?) = 1.

Therefore
L(p)− L(p?) = 1 + ∆

1 + ∆p1
− 1 = p2∆

1 + ∆p1
≥ ∆

2 p2 .

We see that we are now facing a classical 2-arm bandit problem: we have to choose between arm 1 giving expected reward 0
and arm 2 giving expected reward ∆/2. Lower bounds on multi-armed bandits problems show that

EL(pT )− L(p?) & 1√
T
.

Thus we obtain
R(T ) & 1

T 3/2 .
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G. Geometric Interpretation
G.1. Proof of Proposition 4

Proof. We want to minimize L on the simplex ∆K . Let us introduce the Lagrangian function

L : (p1, . . . , pK , λ, µ1, . . . , µK) ∈ RK × R× RK+ 7→ L(p) + λ

(
K∑
k=1

pk − 1
)
− 〈µ, p〉

Applying Karush-Kuhn-Tucker theorem gives that p? verifies

∀k ∈ [d], ∂L
∂pk

(p?) = 0.

Consequently

∀k ∈ [d],
∥∥∥∥Ω(p?)−1Xk

σk

∥∥∥∥2

2
= λ− µk ≤ λ.

This shows that the points Xk/σk lie within the ellipsoid defined by the equation x>Ω(p?)−2x ≤ λ.

G.2. Geometric illustrations

In this section we present figures detailing the geometric interpretation discussed in Section 5.

Geometrically the dual problem (D) is equivalent to finding an ellipsoid containing all data points Xk/σk such that the sum
of the inverse of the semi-axis is maximized. The points that lie on the boundary of the ellipsoid are the one that have to be
sampled. We see here that we have to sample the points that are far from the origin (after being rescaled by their standard
deviation) because they cause less uncertainty.

We see that several cases can occur as shown on Figure 1. If one covariate is in the interior of the ellipsoid it is not sampled
because of the KKT equations (see Proposition 4). However if all the points are on the ellipsoids some of them may not be
sampled. It is the case on Figure 1(b) where X1 is not sampled. This is due to the fact that a little perturbation of another
point, for example X3 can change the ellipsoid such that X1 ends up inside the ellipsoid as shown on Figure 1(d). This case
can consequently be seen as a limit case.
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(a) p1 = 0.21 p2 = 0.37 p3 = 0.42 (b) p1 = 0 p2 = 0.5 p3 = 0.5

(c) p1 = 0.5 p2 = 0 p3 = 0.5 (d) p1 = 0 p2 = 0.5 p3 = 0.5

Figure 1. Different minimal ellipsoids


