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Abstract:

The potential for biological colonisation of Antarctic shores is an 
increasingly important topic in the context of anthropogenic warming. 
Until now, successful Antarctic invasions have been recorded exclusively 
from terrestrial habitats. While exotic marine species such as crabs, 
mussels and tunicates have already been reported from Antarctic coasts, 
none have as yet established there. Among the potential marine invaders 
of Antarctic shallow waters is Halicarcinus planatus (Fabricius, 1775), a 
crab with a circum-Subantarctic distribution and substantial larval 
dispersal capacity. In 2010, an ovigerous female of this species was 
found in shallow waters of Deception Island, South Shetland islands. In 
the present study, a combination of physiological experiments and 
ecological modelling was used to assess the potential niche of H. 
planatus and estimate its future southward boundaries under IPCC 
predictions. We show that H. planatus has a minimum thermal limit of 
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1°C, and that its current distribution (assessed by sampling and niche 
modelling) is physiologically restricted to the Subantarctic region. While 
this species is thus presently unable to survive in Antarctica, future 
warming under both best-case and worst-case IPCC scenarios will favour 
its niche expansion to the Western Antarctic Peninsula by 2100. Future 
human activity also has potential to increase the probability of 
anthropogenic translocation of this species into Antarctic ecosystems.
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52

53

54 Abstract 

55 The potential for biological colonisation of Antarctic shores is an increasingly important topic in the context of 

56 anthropogenic warming. Successful Antarctic invasions until now have been recorded exclusively from 

57 terrestrial habitats. While exotic marine species such as crabs, mussels and tunicates have already been 

58 reported from Antarctic coasts, none have as yet established there. Among the potential marine invaders of 

59 Antarctic shallow waters is Halicarcinus planatus (Fabricius, 1775), a crab with a circum-Subantarctic 

60 distribution and substantial larval dispersal capacity. An ovigerous female of this species was found in shallow 

61 waters of Deception Island, South Shetland Islands in 2010. A combination of physiological experiments and 

62 ecological modelling was used to assess the potential niche of H. planatus and estimate its future southward 

63 boundaries under IPCC predictions. We show that H. planatus has a minimum thermal limit of 1° C, and that 

64 its current distribution (assessed by sampling and niche modelling) is physiologically restricted to the 

65 Subantarctic region. While this species is thus presently unable to survive in Antarctica, future warming under 

66 both best case and worst case IPCC scenarios will favour its niche expansion to the Western Antarctic 

67 Peninsula (WAP) by 2100. Future human activity also has potential to increase the probability of 

68 anthropogenic translocation of this species into Antarctic ecosystem.

69

70 Keywords (6-10): Niche modelling, Southern Ocean, climate change, thermotolerance, survival, 

71 establishment, reptant crab, non-native species.

72
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73 Introduction

74 Biological invasions are an important component of global change, and one of the most critical global threats 

75 to native biodiversity (Sax et al., 2005). According to Richardson et al. (2000), an alien species becomes an 

76 invasive species when a set of individuals is able to traverse natural barriers (whether geographical, 

77 environmental, or ecological) and subsequently establish in new habitats. While numerous anthropogenic 

78 activities can promote invasions, climate change may represent a particularly potent threat to natural 

79 ecosystems (Malcolm et al., 2006). Both the rate and dimension of biological invasions are likely to be 

80 influenced by global warming (Walther et al., 2009). Understanding the mechanisms and routes of such range 

81 shifts may help facilitate the design of strategies for controlling or preventing invasion (Estoup & Guillemaud, 

82 2010).

83

84 Notwithstanding the wide expanse of Southern Ocean waters isolating the South American continent from 

85 other land masses, several exotic species have been reported in the Antarctic over recent decades (Smith & 

86 Richardson, 2011). These examples include the invasive grass Poa annua (Chwedorzewska et al., 2015; 

87 Molina-Montenegro et al., 2012), seeds of the toad rush Juncus bufonius (Cuba-Díaz et al., 2013), the invasive 

88 mosquito Trichocera maculipennis (Potocka & Krzemińska, 2018), and several South American invertebrates 

89 (e.g. insects, worms, freshwater crustaceans; Hughes & Worland, 2010)., Alien species have also been 

90 reported in marine habitats and in the shallow subtidal zone, in particular in the South Shetland Islands (e.g. 

91 decapods and bivalves) and East Antarctica (i.e. bryozoans, hydrozoans, and tunicates) (Avila et al., 2020; 

92 Cárdenas et al., 2020; McCarthy et al., 2019). However, there is as yet no evidence for any exotic marine 

93 species having established in Antarctica.

94

95 Reaching Antarctic coasts requires dispersal across vast and deep biogeographic barriers that have isolated the 

96 continent for millions of years, including traversal of the westward flowing Antarctic Circumpolar Current 

97 (ACC) that apparently impedes latitudinal dispersal (Clarke et al., 2005; Rintoul, 2009). The extreme cold 

98 temperatures of Antarctic waters (<+2 °C) also imply a strong ecophysiological constraint to the survival and 
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99 development of exotic marine species that have not adapted to near-zero and subzero temperatures (Fraser et 

100 al., 2007; Marsh et al., 2001; Peck, 2016) that can reach down to -1.85 °C in winter. Consequently, Antarctic 

101 marine communities have been considered among the most isolated and endemic on Earth and invasion by 

102 exotic species unlikely (Clarke et al., 2005; Griffiths et al., 2009).

103

104 Human activities such as fisheries, tourism and scientific operations rely on direct maritime traffic between 

105 Antarctica and lower latitude coasts, including potential transport of alien organisms through ship hull fouling 

106 and larval propagules via ballast water (Lewis et al., 2003; Lewis et al., 2005). With more than 50,000 tourists 

107 visiting the same west Antarctic spots each southern summer (McCarthy et al., 2019), and 4,000 scientists 

108 working in Antarctica during the summer and 1,000 in winter (Hughes & Convey, 2014), tourism and science 

109 represent the main vector of Subantarctic propagule pressure on Antarctic communities (Avila et al., 2020; 

110 Diez & Lovrich, 2010; Galera et al., 2018; Hellmann et al., 2008; Lee & Chown, 2007; Meredith & King, 

111 2005; Tavares & De Melo, 2004). Consequently, records of exotic species in Antarctica are increasing in 

112 number, with potential for establishment now primarily constrained by ecological and physiological 

113 limitations. As the climate continues to warm, the potential for successful marine invasions into Antarctica is 

114 predicted to increase substantially (Galera et al., 2018; Hellmann et al., 2008; Richardson et al., 2000).

115

116 The West Antarctic Peninsula (WAP) is the Antarctic region where the strongest climate warming has been 

117 recorded in the continent over the last 50 years (Convey et al., 2009; Gutt et al., 2015; Turner et al., 2014). 

118 Seawater and air temperatures have increased by +1 ºC and +7 °C, respectively, in the past half-century 

119 (Meredith & King, 2005; Schram et al., 2015), with particularly pronounced increases in winter air 

120 temperatures (King et al., 2003; Vaughan et al., 2003) and corresponding reductions in sea ice cover (Ducklow 

121 et al., 2013; Schofield et al., 2017; Stammerjohn et al., 2012; Turner et al., 2016). Global climate change may 

122 cause typically sub-zero Antarctic waters to warm up to (and beyond) zero, potentially providing suitable 

123 conditions for the survival of alien species along Antarctic coasts (Galera et al., 2018; Hellmann et al., 2008).

124
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125 In February, 2010 an ovigerous female of Halicarcinus planatus (Fabricius, 1775) (Brachyura, 

126 Hymenosomatidae) was found alive in shallow subtidal waters of Deception Island (WAP; Aronson et al., 

127 2015). H. planatus is the only hymenosomatid crab that inhabits shallow waters (Garth, 1958; Varisco et al., 

128 2016) of southern South America and the Subantarctic Falkland/Malvinas, Marion, Crozet, Kerguelen and 

129 Macquarie islands (Aronson et al., 2015; Boschi et al., 1969; Griffiths et al., 2013; Melrose, 1975; Richer De 

130 Forges, 1977). This small crab (carapace width up to 15 mm and 20 mm for female and male, respectively, in 

131 Punta Arenas; Fig. 1) is an opportunistic feeder (Boschi et al., 1969), commonly found sheltered under rocks 

132 in the intertidal and subtidal zones, in between holdfasts of the giant kelp Macrocystis pyrifera or sheltered in 

133 hydrozoans and mussel colonies (Chuang & Ng, 1994; Richer De Forges, 1977; Vinuesa & Ferrari, 2008).

134

135 The potential of marine taxa to invade Antarctic waters is likely heavily constrained by ecological and 

136 physiological adaptations. H. planatus has a strong dispersal potential mediated by an extended planktonic 

137 larval stage (Diez & Lovrich, 2010; Ferrari et al., 2011; Richer De Forges, 1977) lasting between 45 and 60 

138 days (at temperatures of 11-13 °C and 8 °C, respectively, in the laboratory) prior to benthic settlement (Boschi 

139 et al., 1969; Diez & Lovrich, 2010). This species has the physiological capacity to withstand low temperatures. 

140 Indeed, while most decapod taxa exposed to cold waters experience increased magnesium ion concentration in 

141 the hemolymph ([Mg2+]HL), reducing metabolic rate and aerobic activity, potentially leading to death (Aronson 

142 et al., 2007; Diez & Lovrich, 2010; Frederich et al., 2001; Thatje et al., 2005), H. planatus has the capacity to 

143 overcome these issues by reducing [Mg2+]HL (Frederich et al., 2001), providing capacity for survival in cold 

144 waters like the Kerguelen Islands, where winter seawater temperatures range between +1.1 and +3.0 °C (Féral 

145 et al., 2019). A broad analysis Diez & Lovrich (2010) considering its broad Subantarctic distribution, high 

146 dispersal potential and ability to live at low temperatures concluded that H. planatus is the most likely future 

147 decapod invader of Antarctic shallow waters.

148

149 Following the recent discovery of a living specimen of H. planatus in Deception Island, we evaluate in this 

150 study the capacity of the species to settle and invade the WAP and adjacent islands by combining experimental 
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151 design and a niche modelling approach. Correlative niche modelling approaches have long proved useful to 

152 predict the distribution range of species for conservation purposes under stable environmental conditions 

153 (Richardson & Whittaker, 2010). However, in the context of climate change, ecophysiological data are 

154 required to assess the capacity of organisms to survive under changing environmental conditions. In this study 

155 we assessed experimentally the physiological capacity of H. planatus to tolerate extreme cold conditions in 

156 laboratory, and we evaluated the probability of the species to expand its distribution range southward using a 

157 Species Distribution Model (SDM). The modelled distribution of H. planatus was first projected under current 

158 climatic conditions to evaluate its distribution range in Subantarctic and Antarctic regions. Then the species 

159 distribution was modelled under IPCC scenarios RCP 2.6 and RCP 8.5 for 2050 and 2100 to determine the 

160 probability that H. planatus will colonize Antarctic shallow water habitats in the future.

161

162 Material and methods

163 Experimental design

164 Ethical Protocol

165 All experiments were performed in compliance with bioethics guidelines established by the Comisión 

166 Nacional de Ciencia y Tecnología de Chile (CONICYT) and the CICUA of the Universidad de Chile (Comité 

167 Institucional de Cuidado y Uso de Animales).

168

169 Thermotolerance experiments

170 One hundred and twenty adult individuals of H. planatus were collected alive in the subtidal zone by SCUBA 

171 diving at Rinconada Bulnes (RB) (53°35'49.91"S, 70°56'5.19"W, south of Punta Arenas, Chile) on April 9, 

172 2018. Individuals were transported to the IDEAL-CENTER laboratory (Punta Arenas) and distributed into 6 

173 containers for the experiment. In each container (Appendix 1) 15 females and 5 males were isolated 

174 individually in 1 dm3 glass jars of seawater containing a 2 cm-long PVC tube (2.5 cm diameter). A plastic 

175 container of seawater was used for water replacement. Each jar and container were aerated and temperature 

176 was controlled by a cooler exchanger (Alpha RA12 and RA8, Lauda-Koenigshofen®, Germany). Individuals 
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177 were acclimated for 15 days with temperature, salinity and photoperiod adjusted to the sampling location (9 

178 °C, 30 PSU, 11hrs light/13hrs dark on April 9, 2018). Individuals were fed every 4 days with thawed and 

179 chopped mussels and polychaetes. The next day, 30% of seawater was removed from each jar, sucking the 

180 bottom to eliminate faeces and food debris. Recipients were then refilled with clean seawater at the exact same 

181 temperature and salinity from the plastic seawater container. The latter was then refilled with new seawater, 

182 which had time to reach the specific temperature before the next refill. After acclimatization, temperature was 

183 reduced by 0.5 °C every day until it reached a threshold value set at 5°C (control; minimal seawater 

184 temperature in Punta Arenas), 2 °C, 1 °C, 0 °C, -1 °C or -1.8 °C, depending on the experiment, which was 

185 conducted for 90 days following (Vargas-Chacoff et al., 2009). The different temperature threshold values 

186 used in the experiment correspond to subtidal temperatures recorded in Fildes Bay (62°12'11.95''S 

187 58°56'37.00''W; King George Island, South Shetland Islands, WAP) which ranged between -1.9 ºC and 2.1 ºC; 

188 summer average 1.2 ºC (-0.2 ºC to 2.1 ºC) and winter average -1.6 ºC (-1.9 ºC to -1.1 ºC) in 2017 (data from 

189 IDEAL-CENTER, published by Cárdenas et al. (2020). The 90 days simulate the duration of winter. Survival 

190 was checked each morning, and dead specimens were removed and preserved in 96° ethanol.

191

192 Salinity and larval experiments

193 To assess survival at different salinities, adult individuals of H. planatus were collected at the same location 

194 (RB) on July 5, 2018, transported to the laboratory and separated in containers. Eighteen females and 4 males 

195 were isolated in recipients of 10 dm3 filled with seawater. After a 15-day acclimation period at the same 

196 temperature, salinity and photoperiod as the sampling location (5 °C, 30 PSU, 8:16 L:D), individuals were 

197 submitted to different salinities of 30 PSU (control 1), 23 PSU, 18 PSU, 11 PSU and 5 PSU for 39 days at 5 

198 ºC. In parallel, some individuals submitted to natural 18-PSU seawater collected in Skyring Sound 

199 (52°33'48.07"S, 71°34'15.54"W) were used as a second control. The previously detailed protocol for feeding 

200 and cleaning was followed. Survival was checked every morning and dead specimens were removed and 

201 preserved in 96° ethanol.
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202 During the salinity experiment, at 30 PSU some individuals released larvae which were subsequently collected 

203 and placed in 1 dm3 glass jars (200 larvae in each) filled with seawater at 5 ºC, 2 ºC and 1 ºC for 12 days. Crab 

204 larvae were fed daily with newly hatched nauplii. Their survival was checked on days 1, 3, 6, 8, 10 and 12 and 

205 on the cleaning day which consists in the complete seawater replacement. Dead individuals were removed and 

206 preserved in 96° ethanol.

207

208 Species distribution modelling 

209 Species Distribution Models (SDM) are used to predict the distribution of organisms based on the statistical 

210 analysis of spatial relationships between environmental conditions and species records (Elith et al., 2006; 

211 Peterson, 2003; Peterson et al., 2011). SDMs have been widely used in past decades in various applications, 

212 including assessing species potential distribution (Guillaumot et al., 2018; Nachtsheim et al., 2017; Reiss et 

213 al., 2011) and evaluating potential changes in predicted suitable areas under environmental shifts (Berry et al., 

214 2002; Engler et al., 2009; Meier et al., 2011; Pearson & Dawson, 2003; Thomas et al., 2004).

215

216 Occurrence dataset 

217 The study was limited in latitude and longitude to the minimum area where occurrence records have been 

218 reported (Longitude: 70.5°E, 75.5°W, Latitude: 36°S, 70.5°S). Presence and absence data were collected 

219 during different sampling expeditions carried out between 2015 and 2019 (PROTEKER 1, 4, 5 and 6, INACH 

220 ECA 53, 54 and 55), obtained from collaborators and retrieved from IOBIS and GBIF databases and from the 

221 scientific literature (Appendix 2). The georeferencing of each occurrence was verified and for this study 

222 repeated geographical points were removed; the identification of collected specimens was checked following 

223 current taxonomy (Boschi, 1964). Occurrences located north of 34°S in Chile were not considered, since these 

224 points were outside the distribution range of the species and could not be corroborated.

225

226 A DarwinCore-compliant dataset was built using presence and absence data of H. planatus occurring on 

227 Subantarctic islands and South America between 1948 and 2019. Four types of records were included: 
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228 individualized by specimen, by groups, records obtained from bibliographic reviews and absence records. The 

229 dataset is published in GBIF (GBIF, 2018; Lopez et al. 2020).

230

231 Distribution models were built using 314 presence records of both adults and larvae, and 57 absence records 

232 (Fig. 2, Appendix 2).

233

234 Environmental datasets

235 The distribution of H. planatus was modelled using 16 available environmental parameters as descriptors of 

236 the crab habitat (Table 1). Depth and its derivatives (slope and roughness) were taken from GEBCO (Table 1). 

237 Other descriptors were compiled from the Bio-Oracle Marine layers dataset and obtained from pre-processed 

238 global ocean re-analyses, combining satellite and in situ observations in regular two- and three-dimensional 

239 spatial grids (Assis et al., 2018). Minimal, maximal and mean values were used as descriptors and combined 

240 as suggested in the literature (Bucklin et al., 2015; Franklin, 2010). Environmental layers provide average 

241 monthly values for the present decade [2000-2014] at a spatial resolution of 5 arc-minutes (about 8 x 8 km) 

242 and describe monthly averages for the period 2000-2014.

243

244 Species distribution was also modelled according to IPCC (Intergovernmental Panel on Climate Change) RCP 

245 2.6 (low greenhouse gas concentration levels with a mid-century peak and reduction by 2100) and RCP 8.5 

246 (high greenhouse gas concentration levels with increasing emissions over time) scenarios for future decades 

247 2040-2050 and 2090-2100 (IPCC, 2013). The RCP 2.6 scenario (Appendix 3) predicts an increase of mean 

248 seafloor temperatures of  up to +0.7 °C along the Argentinian coast by 2100, +1.3 °C in the Weddell Sea 

249 region and +1.3°C on the northern Kerguelen Plateau. Salinity is predicted to be less than RCP 8.5, along with 

250 a decrease in ice thickness with maximal depletion values of -30 cm in the south of the WAP by 2100. The 

251 RCP 8.5 scenario (Appendix 3) for decade 2040-2050 predicts that seafloor waters will warm up by +1 °C 

252 along the southern South American coasts and in the Weddell Sea, and for decade 2090-2100 predicts an 

253 increase of seafloor mean temperatures of up to +4 °C along the Argentinian coasts, +0.5 to +1 °C in the 
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254 WAP, up to +3 °C on the northern Kerguelen Plateau and a predicted decrease of -0.5 to -1 °C in insular 

255 regions such as South Georgia and the South Orkney Islands. Salinity is predicted to decrease in the 

256 Subantarctic and Antarctic regions by -0.1 unit and sea ice thickness to thin up to 1.2 m in some points, 

257 resulting in an expansion of ice-free areas (Fig. S3.1) in the Weddell Sea region. 

258

259 Primary production and oceanographic current speed for decades 2040-2050 and 2090-2100 were considered 

260 unchanged and similar to present-day conditions as there were no predictions available for these parameters.

261

262 In order to spot and remove extrapolation errors, the Multivariate Similarity Environmental Estimate (MESS; 

263 Elith et al., 2010) was computed based on presence records (Guillaumot et al., 2019; Guillaumot et al., 2020). 

264 The MESS provides an estimate of the range of environmental conditions under which species occurrences 

265 were found and used to calibrate the model. It is then used to select areas where model projections will be 

266 calculated, dismissing areas where environmental conditions are not met, and where the model extrapolates. 

267

268 Model calibration 

269 Species distribution models were generated using the Boosted Regression Trees (BRT) algorithm with the 

270 following settings; learning rate 0.005; bag fraction 0.9 and tree complexity 4. These settings minimise the 

271 model predictive deviance according to the tests generated following Elith et al. (2008) (Appendix 4). The R 

272 package ‘gbm’ was used to run the model (Elith et al., 2008; Ridgeway, 2006). Models were calibrated using 

273 presence and absence data. Modelling performance was assessed using a spatial random cross-validation 

274 procedure adapted from Guillaumot et al. (2019) using absence records for model calibration (instead of 

275 background records). Also considering the limited number of occurrence records available and their patchy 

276 distribution at a broad spatial scale, the occurrence dataset was randomly split into 5 spatial parts, with 80% of 

277 the dataset used as a training subset and 20% used as a test subset (Elith et al., 2008). The procedure was 

278 repeated 20 times to generate a set of 100 model replicates. The proportion of presence and absence data 

279 falling into areas predicted as suitable and unsuitable for the species distribution was evaluated to assess model 
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280 performance. Model performance was also assessed using the Area Under the Curve (AUC; Fielding & Bell, 

281 1997), the True Skill Statistics (TSS; Allouche et al., 2006) and the Biserial Correlation metrics (COR; Elith et 

282 al., 2006). 

283

284 Model outputs 

285 Model predictions were projected on the entire study area (Longitude -76°E, 178°W, Latitude -35°S, -68°S) 

286 with a focus on areas where the species is mainly reported presently and where it may be expected in the 

287 future, in southern South America, the Scotia Arc and the WAP, the WAP alone and the Kerguelen Plateau.

288

289 Results 

290 Survival rate in the temperature experiment

291 The first specimen died on the next day after reaching the target temperature in the -1.8 °C temperature 

292 experiment. Survival rate at -1.8 °C reached 0% on day 11. Survival reached 0% on day 15 at -1.0 ºC. Survival 

293 rate at 0 ºC was 52% on day 27 and 0% on day 59. Survival rates were 60% at 1 °C, 75% at 2 °C and 95% at 5 

294 °C on day 90. (Fig. 3).

295

296 Survival rate of adults and larvae in the salinity experiment

297 Survival rate in the salinity experiment at 5 PSU was 0% on day 2. Survival rate at 11 PSU was 0% on day 14. 

298 Survival rate was 50% on day 36 and 36% on day 39 at 18 PSU. Interestingly, survival rate was over 50% 

299 (67%) for the experiment at 18 PSU performed with seawater from Skyring Sound. Survival rates were 95% 

300 on day 39 at 25 PSU and 30 PSU (Fig. 4).

301

302 Females collected on July 5 were ovigerous and released larvae at the end of August at 5 ºC, 30 PSU and 25 

303 PSU. The survival rate of larvae at 1 ºC was 62.5% on day 12. Survival rates at 2 ºC and 5 ºC were 85% and 

304 92.5%, respectively, on day 12 (Fig. 5).

305
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306 SDM predictions under current environmental conditions [2000-2014]

307 SDMs showed very high AUC scores of 0.947 ± 0.059, TSS of 0.795 ± 0.123 and biserial correlation COR of 

308 0.873 ± 0.070. Correctly classified test data also reached high scores (89.9 ± 0.3% for presence test records 

309 and 92.9 ± 2.2% for absence test records correctly classified). The proportion of areas where the model 

310 extrapolates is very high (86.3%, Fig. 7) highlighting again the relevance of using the MESS method as 

311 recommended by Guillaumot et al. (2019, 2020).

312 Mean sea ice thickness (40.1 ± 3.2%) and seafloor temperatures are the two main drivers of the species 

313 distribution (mean, maximal, and minimal seafloor temperatures with 37.8 ± 3.7, 7.6 ± 1.9 and 6.9 ± 2.4% 

314 contribution to the model, respectively, Table 2), with suitable areas corresponding to low sea ice cover 

315 (<0.1%) and minimum temperatures over +2 °C (Fig. 6). These environmental values match perfectly with the 

316 latitudinal partition in the distribution of H. planatus, with warmer temperatures (>+2 °C) and lower ice 

317 coverage (<0.1%) at the lower latitudes associated with most presence records and few absences, and in 

318 contrast, colder temperatures (<+2 °C) and thicker sea ice coverage (>0.1%) associated with the single 

319 presence reported in the WAP and most absence records. Interestingly, primary production is not a good 

320 predictor of the species’ distribution (<1%).

321 As occurrence records are mainly distributed in coastal shallow water areas, depth does not contribute much to 

322 the model as no contrast in bathymetry values are present in the dataset. Slope and roughness have probably 

323 more contrasting values in deep-sea habitats and consequently do not significantly contribute to the model 

324 (<0.2%).

325

326 The extrapolation mask importantly reduces the area projected to shallow habitats (Fig. 7). Distribution 

327 probabilities predicted by the model were highest in southern South America, New Zealand and Australia and 

328 most Subantarctic islands (Kerguelen, Heard, Marion, Bouvet and South Sandwich Islands; Fig. 7A). 

329 Interestingly, the model predicts an intermediate probability of distribution in South Georgia, for which a 

330 single absence was reported (Fig. 2), and a high probability on Heard Island, where no occurrence data has 

331 been reported yet.

Page 14 of 50Global Change Biology



For Review Only

332 The WAP is predicted as unsuitable to the survival of H. planatus, as in the case of Deception Island (Fig. 7C).

333

334 SDM predictions under future environmental conditions

335 SDM future predictions under RCP 2.6 in decades 2040-2050 and 2090-2100 predict low and intermediate 

336 probability of H. planatus to settle in South Georgia, Elephant Island and the WAP, respectively (Fig. 8.I, 

337 8.II). 

338 The RCP 8.5 scenario showed an increase in probability for H. planatus to survive in the WAP (Fig. 8.III, 

339 8.IV). Models predict higher presence probabilities in South Georgia and the South Shetland Islands for both 

340 decades 2040-2050 and 2090-2100, with the highest values predicted in the northern tip of the South Shetland 

341 Islands. The South Orkneys are not predicted as suitable by 2040-2050, but some patches of suitable areas 

342 appear by 2090-2100.

343

344 Discussion

345

346 This study combines physiological and ecological modelling approaches to highlight the increased risk of 

347 marine incursions into Antarctic coastal ecosystem over the coming century. Specifically, we reveal that the 

348 widespread Subantarctic decapod H. planatus has significant potential to establish in Antarctic waters under 

349 realistic climate change scenarios in the coming decades. More broadly, this prospect of future marine 

350 invasions of Antarctic ecosystem potentially has crucial implications for the conservation of endemic Antarctic 

351 coastal assemblages. Indeed, over recent decades an increasing number of alien marine taxa have been 

352 reported from Antarctic ecosystem, including: Rochinia gracilipes in the South Shetland Islands (Griffiths et 

353 al., 2013); Bugula neritina (Bryozoa) off Dronning Maud Land (East Antarctica) in the 1960s (McCarthy et 

354 al., 2019); Hyas araneus (Decapoda) from Elephant Island in the 1980s (McCarthy et al., 2019); Ectopleura 

355 crocea (Hydrozoa) off Dronning Maud Land and off Queen Mary Land (East Antarctica); and Ciona 

356 intestinalis (Ascidiacea) off Dronning Maud Land (East Antarctica) in the 1990s (McCarthy et al., 2019). 

357 Newer records since 2000 include Emerita sp. and Pinnotheres sp. (larval stage) in King George Islands in the 
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358 2000s (Thatje & Fuentes, 2003); H. planatus from Deception Island (Aronson et al., 2015); Membranipora 

359 membranacea (Bryozoa) and Macrocystis pyrifera (Brown algae) from Deception Island (Avila et al., 2020); 

360 Durvillaea antarctica (Brown Algae) from King George Island (Fraser et al., 2018) and Livingston Island 

361 (Avila et al., 2020); and Mytilus cf. platensis (Bivalvia) in King George Island (Cárdenas et al., 2020) in the 

362 2010s.

363

364 There are potentially several different modes of dispersal for species shifting towards Antarctica. Fraser et al. 

365 (2018) and Avila et al. (2020) identified dispersal by rafting on buoyant kelps as a possible mechanism for the 

366 arrival of exotic species to Antarctica. The former study also included a Lagrangian analysis to show that 

367 particles released from South Georgia and the Kerguelen Islands were able to drift across the Polar Front and 

368 reach Antarctic coasts following strong storm events. According to this model, storm conditions may enable 

369 buoyant kelps to reach the WAP. Such conditions may not be rare, as remains of the kelp D. antarctica were 

370 observed onshore in the WAP in 2019 and 2020 (López-Farrán personal observation). Direct observations 

371 (from southern New Zealand) of Halicarcinus adult individuals associated with D. antarctica holdfasts, and 

372 also in detached, drifting D. antarctica at sea (Waters unpublished data) imply rafting as a direct mechanism 

373 for adults of this decapod taxon into Antarctic waters. Anthropogenic activities may also be potential dispersal 

374 vectors for this decapod (Avila et al., 2020; Cárdenas et al., 2020) (e.g. via ship hulls, ballast waters, outdoor 

375 and personal equipment of tourists or oceanographic equipment of scientists).

376

377 No established alien marine species have as yet been observed in Antarctica, suggesting that physiological 

378 barriers may be key in preventing such invasions (Richardson et al., 2000). In this study we combined two 

379 independent approaches to define the environmental and geographical boundaries of H. planatus distribution 

380 under present and future environmental conditions. SDM provides an estimate of a species’ ‘realised niche’ 

381 (Hutchinson, 1957; Soberón, 2005, 2010). The thermal limit of H. planatus corresponds to the coldest 

382 conditions of its Subantarctic distribution, located in the Kerguelen Islands, where subtidal temperature ranges 

383 between +1.1 and +3.0 °C during the Austral winter (Féral et al., 2019; Lucas, 1980; Richer De Forges, 1977). 
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384 This species can therefore potentially endure summer conditions in WAP (1 ºC and above) in a wide range of 

385 salinity (between 18 PSU and 30-33 PSU), but would not survive during the cold winter months. Our 

386 experimental results may indicate that Antarctic seawater temperatures may impede larval development even 

387 during the summer, suggesting that this species is not able to complete its development in Antarctica under 

388 present conditions.

389

390 Halicarcinus planatus has previously been highlighted as a potential invader of Antarctica (Diez & Lovrich, 

391 2010), because of its potential to live in cold waters, through regulation of [Mg2+]HL. However, the present 

392 results demonstrated that this physiological characteristic is not sufficient to survive the sub-zero temperatures 

393 that typify current Antarctic winters (Fig. 3). The finding that brachyuran crabs cannot currently establish in 

394 Antarctica may also help to explain their extinction from shallow Antarctic habitats from the mid-Miocene, 

395 ~14 million years ago, when ACC intensification led to cooling and the establishment of a perennial sea-ice 

396 cover in the region (Crampton et al., 2016; Hansen et al., 2013; Thatje et al., 2005; Zachos et al., 2008). 

397 Numerous marine lineages including brachyurans, lobsters and sharks disappeared from Antarctic waters, 

398 along with most teleosteans except for cold-adapted nototheniids and liparids (Aronson & Blake, 2001; 

399 Aronson et al., 2007; Clarke et al., 2004). The simultaneous extinction of these diverse taxa was presumably 

400 driven by their lack of physiological tolerance to cold conditions (Aronson et al., 2007; Clarke et al., 2004; 

401 Frederich et al., 2001). Together, these data may highlight the crucial role of thermal barriers in preserving the 

402 integrity of Antarctic coastal ecosystem.

403

404 Under future warming scenarios with increased seawater temperatures and shortened sea-ice seasons, 

405 physiological barriers to Antarctic incursions are projected to weaken. For example, near Palmer Station the 

406 ice season decreased by 92 days from 1979/80 to 2012/13 (Ducklow et al., 2013; Meredith & King, 2005). 

407 According to IPCC RCP scenarios the WAP will continue to warm (Appendix 3), facilitating the 

408 establishment of alien species already arriving. H. planatus is not able to establish in the WAP under present 

409 conditions because it is not a suitable environment (Table 2, Fig. 6, 7), however this may change in the future. 
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410 In the South Shetland Islands, the worst scenario RCP 8.5 predicts a decrease in ice thickness, the expansion 

411 of ice-free areas (Appendix 3) and a 1 to 2 °C increase of seafloor temperature in 2100, leading to suitable 

412 conditions for H. planatus establishment. SDM predictions indicate the highest suitability for H. planatus 

413 presence in South Georgia and some places of the WAP (Fig. 8 IV B and C). The most optimistic climate 

414 change scenario RCP 2.6 predicts in 2100 a rise of seafloor water temperature of 0.4 ºC in the South Shetland 

415 Islands, resulting in intermediate SDM predictions in the WAP and South Georgia (Fig. 8.II B and C). Thus 

416 according to these future scenarios, it is just a matter of time before the WAP would reach suitable 

417 environmental conditions for H. planatus.

418

419 Survival is not the only requirement for the establishment of a species in a new area. A successful invasion 

420 also implies developing, reproducing and then dispersing to new places (Richardson, 2000 modified), and 

421 active behaviour to escape, feed and mate (Frederich et al., 2001). According to SDM predictions and the 

422 thermotolerance experiment, a successful invasion would be possible in an environment at +2 ºC. Deception 

423 Island is the most active volcanic island of the South Shetland Islands, where many subtidal hydrothermal 

424 points and geothermal activity offer various temperatures that could favour the establishment of exotic species 

425 (Agusto et al., 2004), converting Port Foster into a key location for alien species colonisation (Aronson et al., 

426 2015; Avila et al., 2020). During 3 scuba diving campaigns between 2017 and 2019 we searched for H. 

427 planatus in several places in the WAP, including where it was collected in 2010 - shallow waters off Baily 

428 Head outside the caldera of Deception Island (Aronson et al., 2015), (Aronson et al., 2015)- and other sites, 

429 active or not, within the caldera of Deception, Penguins, Paulet, Doumer, King George, Roberts islands, 

430 Coppermine Peninsula, Chile Bay in Greenwich Island, among other places, and none were found. This 

431 absence agrees with our results, but contradicts the presence of the ovigerous female in Deception Island 

432 (Aronson et al., 2015), which would need at least two years to reach pubertal molt, the time required in the 

433 Kerguelen Islands (Richer De Forges, 1977). This female certainly would not have grown up in situ; this place 

434 being on the outer coast under full Antarctic conditions (without geothermal activity or hydrothermal influence 

435 typical of the interior of Deception Island). Our results suggest its arrival at the mature stage or maybe the 
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436 ovigerous stage, implying that its development was completed elsewhere. An arrival through rafting is also 

437 unlikely. Early stages of H. planatus have been observed in floating kelps (Macrocystis pyrifera) in the 

438 Internal Sea of Chiloé (Hinojosa et al., 2010), and kelps have been reported in Deception Island (Avila et al., 

439 2020). However, the journey from the Subantarctic area to the WAP implies two years across the SO riding 

440 kelps, which is highly improbable. This female was more probably brought through the Drake by ship during 

441 the southern 2009-2010 summer.

442

443 The establishment of exotic marine species in Antarctica is an issue that is becoming more and more real. The 

444 composition of the community may change dramatically according to which species establishes. Antarctica is 

445 characterized by the absence of durophagous predators (bony and cartilaginous fishes and brachyurans) and 

446 short food webs. Therefore, according to Aronson et al. (2007), the arrival of a reptant crab may affect 

447 Antarctic ecology and the biodiversity of the shallow Antarctic. With the arrival of the invasive red king crab 

448 Paralithodes camtschaticus in the Barents Sea, reductions of diversity and benthic biomass were observed as a 

449 result of the predation pressure (Falk-Petersen et al., 2011), as well as shifts in interspecific competition 

450 (Britton et al., 2018; David et al., 2017) and infection of native species by parasites associated with invaders 

451 (Bevins, 2019). Although the effects of invasive species are impossible to measure, the return of durophagous 

452 predators such as decapods, chondrichthyans and teleosteans in Antarctic shallow waters is widely feared, 

453 because they can cause shifts in benthic communities, modifying trophic relationships and homogenizing the 

454 Antarctic ecosystem (Aronson et al., 2015, 2007). However, H. planatus, with its small size, opportunistic 

455 feeding behaviour and soft exoskeleton, is definitely not a top predator (Boschi et al., 1969). It feeds on 

456 phytoplankton remains accumulated at the bottom, such as carrion, detritus, mucopolysaccharides from algae 

457 and small soft individuals, even of its own species (López-Farrán, personal lab observation). They are prey for 

458 fishes (as Harpagifer bispinis, Patagonotothen tessellata and Austrolycus depressiceps; Diez et al., 2011), 

459 birds, crabs and sea stars, among others, and look for refuge among rocks and kelp holdfasts to survive 

460 (Chuang & Ng, 1994; Richer De Forges, 1977; Vinuesa & Ferrari, 2008). H. planatus is part of the 

461 Subantarctic ecosystem, playing a fairly important role in food webs (Diez et al., 2011; Richer De Forges, 
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462 1977) and may not be devastating for the Antarctic ecological community. Under warmer conditions (2 °C), 

463 the increase of seawater temperature would affect the WAP ecosystem more intensively than the arrival of a 

464 small soft-shelled detritivorous Brachyura such as H. planatus (Ashton et al., 2017; Clark et al., 2019; 

465 Griffiths et al., 2017; Turner et al., 2014). An example of a bioengineer species that would change the 

466 intertidal and shallow subtidal in the WAP is Mytilus cf. platensis, an exotic species record in 2019 (Cárdenas 

467 et al., 2020). Mussels have the capacity to provide dense three-dimensional matrices (Alvarado & Castilla, 

468 1996) that persist for long periods, constituting a micro-habitat which reduces desiccation during low tides, 

469 offering a stress-free space for small fish, invertebrate and alga species (Prado & Castilla, 2006). Therefore, 

470 those species that have an engineering role in marine ecosystems would change the habitat of the shallow 

471 waters of the WAP as we know them today. If this happens, shallow waters of Antarctic ecosystem would 

472 begin to be similar to Subantarctic areas. However, even if this crab is not a top predator or a bioengineer that 

473 could generate changes in the environment or the food web, H. planatus could compete with endemic species 

474 in Antarctica for space, food, niche, among others, and thus affect the populations of local species.

475

476 Antarctic water temperature keeps on rising and stirs up the debate on the potential establishment of incoming 

477 species through transport on ship hulls, in ballast waters or on floating kelp (Aronson et al., 2015; Avila et al., 

478 2020). Maritime traffic and tourism have increased (Kruczek et al., 2018; Lewis et al., 2005), raising the 

479 pressure of propagules in marine Antarctica, and probably this will continue to increase in next years (Kruczek 

480 et al., 2018; Lewis et al., 2005). However, the involuntary introduction of non-native species to the Antarctic 

481 Region and the movement of species and/or individuals within Antarctica from one zone to any other are 

482 among the highest priority issues considered for the Committee for Environmental Protection (CEP) and the 

483 Scientific Committee for Antarctic Research (SCAR). Therefore, a strong effort has been invested to improve 

484 the ballast water management of ships in Antarctica and to develop a strategy for biofouling (MEPC, 2011).

485

486 Regardless of whether H. planatus individuals are able to reach the WAP by themselves or not, the SDM 

487 projected under conditions of IPCC RCP 2.6 or 8.5 climate scenarios indicate that individuals could survive 
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488 and settle, either sooner (Fig. 8.I and 8.II) or later (Fig. 8.III and 8.IV) in the future depending on the warming 

489 rapidity. H. planatus is highly abundant around Punta Arenas and Ushuaia, two mandatory harbours for the 

490 ships with WAP destination (Cárdenas et al., 2020). Therefore, if the vectors of H. planatus, ship or rafting, 

491 persist (Aronson et al., 2015; Avila et al., 2020; Hinojosa et al., 2010), some stage (larval, juvenile or adult) 

492 will reach the WAP, survive and settle.

493

494 Our results rely on models, which are simplifications of complex facts (Mateo et al., 2011). SDMs are tuned to 

495 generate a simple spatial representation of the occurrence of a species based on environmental variables 

496 (Guisan & Zimmermann, 2000; Mateo et al., 2011). Although niche models do not include eco-evolutionary 

497 parameters such as adaptation, gene flow or dispersal capacity, they are widely used to provide an insight into 

498 present and future species distribution (Thuiller et al., 2004; Titeux et al., 2017). Combining such results with 

499 information on biological interactions, physiology, anthropic influence on individual introductions or a 

500 complete evaluation of the dispersal capacities of H. planatus using a spatial and dynamic approach would fill 

501 knowledge gaps about their real invasive capacities in future environmental conditions.

502

503 In conclusion, our results suggest that H. planatus cannot presently establish in WAP waters, but this situation 

504 has a very strong probability to change under standard IPCC warming projections. While the full 

505 consequences of Antarctic warming are yet to be realised, some changes in the distribution and composition of 

506 communities have already been observed (Ashton et al., 2017; Clark et al., 2019; Griffiths et al., 2017; Turner 

507 et al., 2014). The key for future studies will be to track species distribution and demographic shifts directly as 

508 warming continues, to help understand and mitigate marine biological impacts on Antarctic coastal ecosystem.

509
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864 Figure 1. Male (a) and female (b) specimens of Halicarcinus planatus (Fabricius, 1775) collected in the 

865 Magellan Strait. Scale: 1 cm. Photo credit to C. Ceroni and K.Gérard.

866 Figure 2. Presence (red dots) and absence (yellow dots) records of Halicarcinus planatus in the Southern 

867 Ocean used in the present study.

868 Figure 3. Survival rates of adults of H. planatus at different temperatures over 90 days.

869 Figure 4. Survival rates of adults of H. planatus at different salinities over 39 days.

870 Figure 5. Survival rates of larvae of H. planatus for 12 days at different temperatures.

871 Figure 6. Partial dependence plots for the four environmental descriptors that contribute the most to the 

872 model. Scaled density distribution of the marginal effect of the descriptors of the model, data points (grey) 

873 fitted with a generalized additive model (GAM, blue line).

874 Figure 7. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected 

875 under current environmental conditions [2000-2014] for the entire Southern Ocean (A), and with a focus on 

876 southern South America, the Scotia Arc and the West Antarctic Peninsula (WAP) (B), the WAP alone (C) and 

877 the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which predictions are not 

878 reliable and were removed from projections (according to the Multivariate Environmental Similarity Surface 

879 index, MESS).

880 Figure 8: SDM predictions of presence probability (between 0 and 1) for H. planatus, projected under 

881 environmental conditions for the entire Southern Ocean (A), with focus on southern South America, the Scotia 

882 Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau (D). 

883 Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed from 

884 projection (according to the Multivariate Environmental Similarity Surface index, MESS). IPCC RCP 2.6 

885 climate scenario for 2050 (Fig. 8.I), IPCC RCP 2.6 climate scenario for 2100 (Fig. 8.II), IPCC RCP 8.5 

886 climate scenario for 2050 (Fig. 8.III) and IPCC RCP 8.5 climate scenario for 2100 (Fig. 8.IV).

887
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888 Table 1. Environmental descriptors used for modelling and sources. Spatial resolution set at 5 arc minutes 

889 (around 8 km).

890

Descriptors Present Future Source 

Depth - - GEBCO1

Roughness - - Modified from Depth layer, 

raster R package function 

terrain

Slope - - Modified from Depth layer, 

raster R package function 

terrain

Seafloor mean 

temperature

2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2

Seafloor min 

temperature 

2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2

Seafloor max 

temperature

2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2

Seafloor mean salinity 2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2

Seafloor min salinity 2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2
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Seafloor max salinity 2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2

Seafloor mean primary 

productivity 

2000-2014 Same as present 

conditions 

BioOracle2

Seafloor min primary 

productivity 

2000-2014 Same as present 

conditions 

BioOracle2

Seafloor max primary 

productivity 

2000-2014 Same as present 

conditions 

BioOracle2

Ice mean thickness 2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2

Ice min thickness 2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2

Ice max thickness 2000-2014 RCP 2.6 and 8.5 

for 2050 and 2100

BioOracle2

Seafloor mean current 2000-2014 Same as present 

conditions 

BioOracle2

891 1. https://download.gebco.net/, accessed February 2020.

892 2. https://www.bio-oracle.org/index.php, accessed February 2020.

893
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894 Table 2. Average contribution values and standard deviation (SD) of the 16 environmental descriptors to 

895 model predictions.

Descriptor Mean ± SD (%) Descriptor Mean ± SD (%)

Mean ice thickness 40.1 ± 3.2 Mean seafloor primary production 0.8 ± 0.1

Mean seafloor 

temperature 

37.8 ± 3.7 Max seafloor primary production 0.5 ± 0.02

Max seafloor temperature 7.6 ± 1.9 Depth 0.5 ± 0.05

Min seafloor temperature 6.9 ± 2.4 Slope 0.2 ± 0.06

Min seafloor salinity 1.4 ± 0.2 Roughness 0.1 ± 0.03

Mean seafloor salinity 1.4 ± 0.1 Max seafloor salinity 0.1 ± 0.03

Mean seafloor current 

speed 

1.3 ± 0.2 Max seafloor primary production 0.001 ± 0.001

Max ice thickness 1.1 ± 0.1 Min ice thickness 0

896
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Figure 1. Male (a) and female (b) specimens of Halicarcinus planatus (Fabricius, 1775) collected in the 
Magellan Strait. Scale: 1 cm. Photo credit to C. Ceroni and K.Gérard. 

178x74mm (300 x 300 DPI) 

Page 41 of 50 Global Change Biology



For Review Only

 

Figure 2. Presence (red dots) and absence (yellow dots) records of Halicarcinus planatus in the Southern 
Ocean used in the present study. 

1833x1666mm (72 x 72 DPI) 

Page 42 of 50Global Change Biology



For Review Only

 

Figure 3. Survival rates of adults of H. planatus at different temperatures over 90 days. 
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Figure 4. Survival rates of adults of H. planatus at different salinities over 39 days. 
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Figure 5. Survival rates of larvae of H. planatus for 12 days at different temperatures. 
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Figure 6. Partial dependence plots for the four environmental descriptors that contribute the most to the 
model. Scaled density distribution of the marginal effect of the descriptors of the model, data points (grey) 

fitted with a generalized additive model (GAM, blue line). 
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Figure 7. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected 
under current environmental conditions [2000-2014] for the entire Southern Ocean (A), and with a focus on 
southern South America, the Scotia Arc and the West Antarctic Peninsula (WAP) (B), the WAP alone (C) and 

the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which predictions are not 
reliable and were removed from projections (according to the Multivariate Environmental Similarity Surface 

index, MESS). 
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Figure 8: SDM predictions of presence probability (between 0 and 1) for H. planatus, projected under 
environmental conditions for the entire Southern Ocean (A), with focus on southern South America, the 

Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau 
(D). Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed 
from projection (according to the Multivariate Environmental Similarity Surface index, MESS). IPCC RCP 2.6 
climate scenario for 2050 (Fig. 8.I), IPCC RCP 2.6 climate scenario for 2100 (Fig. 8.II), IPCC RCP 8.5 climate 

scenario for 2050 (Fig. 8.III) and IPCC RCP 8.5 climate scenario for 2100 (Fig. 8.IV). 
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Figure 8: SDM predictions of presence probability (between 0 and 1) for H. planatus, projected under 
environmental conditions for the entire Southern Ocean (A), with focus on southern South America, the 

Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau 
(D). Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed 
from projection (according to the Multivariate Environmental Similarity Surface index, MESS). IPCC RCP 2.6 
climate scenario for 2050 (Fig. 8.I), IPCC RCP 2.6 climate scenario for 2100 (Fig. 8.II), IPCC RCP 8.5 climate 

scenario for 2050 (Fig. 8.III) and IPCC RCP 8.5 climate scenario for 2100 (Fig. 8.IV). 
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Figure 8: SDM predictions of presence probability (between 0 and 1) for H. planatus, projected under 
environmental conditions for the entire Southern Ocean (A), with focus on southern South America, the 

Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau 
(D). Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed 
from projection (according to the Multivariate Environmental Similarity Surface index, MESS). IPCC RCP 2.6 
climate scenario for 2050 (Fig. 8.I), IPCC RCP 2.6 climate scenario for 2100 (Fig. 8.II), IPCC RCP 8.5 climate 

scenario for 2050 (Fig. 8.III) and IPCC RCP 8.5 climate scenario for 2100 (Fig. 8.IV). 
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Figure 8: SDM predictions of presence probability (between 0 and 1) for H. planatus, projected under 
environmental conditions for the entire Southern Ocean (A), with focus on southern South America, the 

Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau 
(D). Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed 
from projection (according to the Multivariate Environmental Similarity Surface index, MESS). IPCC RCP 2.6 
climate scenario for 2050 (Fig. 8.I), IPCC RCP 2.6 climate scenario for 2100 (Fig. 8.II), IPCC RCP 8.5 climate 

scenario for 2050 (Fig. 8.III) and IPCC RCP 8.5 climate scenario for 2100 (Fig. 8.IV). 
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