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Wasserstein Distances, Geodesics and Barycenters of Merge Trees

Mathieu Pont, Jules Vidal, Julie Delon and Julien Tierny

Fig. 1. The merge trees of three members (a-c) of the Isabel ensemble (wind velocity) concisely and visually encode the number and
salience of the features of interest found in the data (eyewall and region of high speed wind, blue and cyan). They also describe how
these features are globally connected in the data. In these trees, branches with a low persistence (less than 20% of the function range)
are shown with small white arcs. The pointwise mean for the three members (d) exhibits 5 salient maxima (due to distinct eyewall
locations, blue, cyan and black) and its merge tree is not representative of the input trees (containing at most 3 large features). In
contrast, the Wasserstein barycenter (e) is representative of the input trees, with a number and persistence of large branches that
better match the input trees (a-c). Our framework for distances, geodesics and barycenters enables a variety of merge tree based
applications, including (f) feature tracking, (g) temporal reduction – key frames are automatically identified (white insets) and deleted
merge trees (blue insets) are accurately reconstructed with geodesics – and (h) ensemble clustering and summarization – the clusters
and centroids automatically computed by our approach provide a visual summary of the main trends of features found in the ensemble.

Abstract— This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of
merge trees. We extend recent work on the edit distance [106] and introduce a new metric, called the Wasserstein distance between
merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance
is strictly equivalent to the L2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution
space, namely, the space of rooted partial isomorphisms between branch decomposition trees. This enables a simple extension of
existing optimization frameworks [112] for geodesics and barycenters from persistence diagrams to merge trees. We introduce a
task-based algorithm which can be generically applied to distance, geodesic, barycenter or cluster computation. The task-based nature
of our approach enables further accelerations with shared-memory parallelism. Extensive experiments on public ensembles and SciVis
contest benchmarks demonstrate the efficiency of our approach – with barycenter computations in the orders of minutes for the largest
examples – as well as its qualitative ability to generate representative barycenter merge trees, visually summarizing the features of
interest found in the ensemble. We show the utility of our contributions with dedicated visualization applications: feature tracking,
temporal reduction and ensemble clustering. We provide a lightweight C++ implementation that can be used to reproduce our results.

Index Terms—Topological data analysis, merge trees, scalar data, ensemble data

1 INTRODUCTION

Modern datasets, acquired or simulated, are continuously gaining in
geometrical complexity, thanks to the ever-increasing accuracy of ac-
quisition devices or computing power of high performance systems.
This geometrical complexity makes interactive exploration and analysis
difficult, which challenges the interpretation of the data by the end users.
This motivates the definition of expressive data abstractions, capable
of capturing the main features of the data into concise representations,
which visually convey the most important information to the users.

In that context, Topological Data Analysis (TDA) [32] forms a fam-
ily of generic, robust, and efficient techniques whose utility has been
demonstrated in a number of visualization tasks [55] for revealing the
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implicit structural patterns present in complex datasets. Examples of
popular application fields include turbulent combustion [23, 51, 65],
material sciences [40, 53, 54], nuclear energy [71], fluid dynamics
[61], bioimaging [4, 20, 26], quantum chemistry [16, 47, 76] or astro-
physics [103,105]. Among the data abstractions developed in TDA (see
Sec. 1.1), the merge tree [25], which describes the global structure of the
connected components of the sub-level sets of scalar datasets (Fig. 2),
is a prominent example in the visualization literature [20, 23, 26].

In practice, in addition to the increasing geometrical complexity
of datasets, users are also confronted to the emergence of ensemble
datasets, where a given phenomenon is not described with only one
dataset, but with a collection of datasets, called ensemble members.
Regarding topological features, a topological data abstraction such as
the merge tree can be computed for each ensemble member (possibly in-
situ [9, 11]). Then, a major challenge for end users is the interpretation
of the resulting ensemble of merge trees. To address this, a statistical
analysis framework for merge trees is needed, requiring several key
building blocks, such as: distances (to compare merge trees), geodesics
(to visualize optimum transitions between them), and barycenters (to
visualize one merge tree representative of a set). These building blocks
have been well studied for persistence diagrams [64,112,113]. However,



Fig. 2. Critical points (spheres, white: minima, blue: maxima, other:
saddles), persistence diagram (bottom left), merge tree (bottom right)
and branch decomposition tree (top right) of a clean (a) and noisy (b) 2D
scalar field. In both cases, four main hills are clearly represented with
salient features in the persistence diagram and the merge tree. Branches
with low persistence (less than 10% of the function range) are shown
with small white arcs. They correspond to noisy features in the data (b).

persistence diagrams suffer from a lack of specificity (Fig. 3), which can
prevent the identification of distinct feature trends within the ensemble.

This paper addresses this problem by introducing a unified computa-
tional framework for the automatic computation of distances, geodesics,
barycenters and clusters of merge trees. In particular, we extend recent
work on the edit distance [106] and introduce a new metric, called the
Wasserstein distance between merge trees, which is purposely designed
to enable efficient computations of geodesics (i.e. length minimizing
morphings) and barycenters. In that regard, our work can be interpreted
as an extension of previous work on the edit distance [106], to adapt it
to the optimization strategy previously developed for the computation
of barycenters of persistence diagrams [112]. We present efficient, task-
based algorithms using shared-memory parallelism, resulting in the
computation of distances, geodesics and barycenters in practical times
for real-life datasets. We illustrate the utility of each of our contribu-
tions in dedicated visualization tasks. First, we show that our distance
computation algorithm can be used for a merge-tree based tracking
of features through time. Second, we show that our framework for
computing geodesics between merge trees can be used for the reliable
sub-sampling of temporal sequences of merge trees. Third, we illustrate
the utility of our barycenters for clustering ensemble members based
on their merge trees, while providing cluster centroids which visually
summarize the main features of interest present in each cluster.

1.1 Related work
The literature related to our work can be classified into three main
groups, reviewed in the following: (i) uncertainty visualization, (ii)
ensemble visualization, and (iii) topological methods for ensembles.
(i) Uncertainty visualization: Variability in data can be modeled and
encoded in several ways. In particular, uncertain datasets capture
variability by modeling each point of the domain as a random variable,
whose variability is explicitly modeled by an estimator of an a priori
probability density function (PDF). The analysis of uncertain data is a
notoriously challenging problem in visualization, described in several
surveys [1, 21, 59, 70, 80, 96]. Early techniques focused on estimating
the entropy of the random variables [94], their correlations [88] or their
gradient variations [86]. The positional uncertainty of level sets has
been studied for several interpolation schemes and PDF models [5–7,
87, 90–93, 100]. Similarly, the positional uncertainty of critical points
has been studied for Gaussian [66, 78, 79, 85] or uniform distributions
[17, 50, 107]. A general limitation of existing methods for uncertain
data is their dependence on the specific PDF model for which they have
been designed. This reduces their usability for ensemble data, where
the PDF estimated from the ensemble members can follow an arbitrary,
unknown model. Also, most existing techniques for uncertain data do
not consider multi-modal PDF models, which is however necessary
when several, distinct trends are present in the ensemble data.
(ii) Ensemble visualization: Another way to model and encode vari-
ability in data consists in considering ensemble datasets. In this setting,
the variability is directly encoded by an ensemble of empirical obser-
vations (i.e. the members of the ensemble). Current approaches to
ensemble visualization typically compute some geometrical objects
describing the features of interest (level sets, streamlines, etc), for each
member of the ensemble. Then, an aggregation phase estimates a repre-
sentative object for the resulting ensemble of geometrical objects. For

Fig. 3. The persistence diagram, D( fi), and the merge tree, T ( fi), both
visually summarize the number, data range and salience of the features of
interest present in the data. However, the persistence diagram represents
each individual feature independently, while the merge tree additionally
describes how they connect together. This results in a lack of specificity
for the persistence diagram which can yield identical data representations
for significantly distinct datasets (from left to right, the gaussians with
white and cyan spheres have been swapped). In contrast, the merge tree
captures this nuance and produces two distinct data representations.

instance, spaghetti plots [30] are a typical example for studying level-set
variability, especially for weather data [95, 99]. More specifically, box-
plots [115] describe the variability of contours and curves [72]. For flow
ensembles, Hummel et al. [58] introduce a Lagrangian framework for
classification purposes. Clustering techniques have been investigated,
to identify the main trends, and their variability, in ensembles of stream-
lines [42] and isocontours [43]. However, only few approaches have
applied this overall aggregation strategy to topological objects. Favelier
et al. [39] and Athawale et al. [8] introduced approaches for analyzing
the variability of critical points and gradient separatrices respectively.
Several techniques attempted to generate an aggregated contour tree
from an ensemble based on overlap-driven heuristics [63, 117]. Re-
cently, Lohfink et al. [68] introduced an approach for the consistent
layout of multiple contour trees, to support effective visual comparisons
between the contour trees of the distinct members of an ensemble. Al-
though the above techniques addressed the visualization of ensembles
of topological objects, they did not focus explicitly on the computation
of a representative of multiple topological objects, such as barycenters.
(iii) Topological methods: Concepts and algorithms from computa-
tional topology [32] have been investigated, adapted and extended by
the visualization community for more than twenty years [55,118]. Pop-
ular topological representations include the persistence diagram [32,36]
(Sec. 2.2), which represents the population of features of interest in
function of their salience, and which can be computed via matrix reduc-
tion [13, 32]. The Reeb graph [18], which describes the connectivity
evolution of level sets, has also been widely studied and several ef-
ficient algorithms have been documented [31, 81, 83, 111], including
parallel algorithms [49]. Efficient algorithms have also been docu-
mented for its variants, the merge and contour trees [25,108] (Sec. 2.3),
and parallel algorithms have also been described [2, 27, 48, 69]. The
Morse-Smale complex [22, 33, 34], which depicts the global behaviour
of integral lines, is another popular topological data abstraction in visu-
alization [29]. Robust and efficient algorithms have been introduced
for its computation [52, 97, 102] based on Discrete Morse Theory [44].

Distance metrics, which are necessary ingredients for the computa-
tion of barycenters, have been studied for most of the above objects.
Inspired by the literature in optimal transport [60, 73], the Wasserstein
distance between persistence diagrams [32] (Sec. 2.2) and its variant
the Bottleneck distance [36] have been extensively studied. They are
based on a bipartite assignment problem, for which exact [75] and
approximate [15,62] implementations are publicly available [110]. Sev-
eral similarity measures have been introduced for Reeb graphs [57]
and their variants [98]. However, since these measures are not distance
metrics (the preservation of the triangle inequality is not specifically en-
forced), they do not seem conducive to barycenter computation. Stable
distance metrics between Reeb graphs [12] and merge trees [74] have
been studied from a theoretical point of view but their computation,
following an exponential time complexity, is not tractable for practical
datasets in general, except if reliable correspondence labels between
the nodes of the trees are provided on the input [46], which is not
practical either for large ensembles. Distances with polynomial time
computation algorithms have also been investigated. Similarly to our
overall strategy, Beketayev et al. [14] focus on a dual representation,



Fig. 4. In this example with two datasets fi and f j (a), the optimal match-
ings (gray) with regard to the edit distance DE [106] (b) map a maximum
to a saddle (red spheres). The resulting linear interpolation Tα ( fi→ f j)
(b) does not describe a shortest path between the input trees (c, top):
DE
(
T ( fi),Tα ( fi → f j)

)
+ DE

(
Tα ( fi → f j),T ( f j)

)
> DE

(
T ( fi),T ( f j)

)
.

In contrast, our new metric WT
2 enables linear interpolations (d) which

exactly coincide with shortest paths (c, bottom). The numbers included in
(c) are the actual values for DE (top) and WT

2 (bottom) for this example.

the branch decomposition tree (BDT, Sec. 2.3), but in contrast to our
approach, they estimate their distances by iteratively reducing a target
mismatch term, in particular, over a search space significantly larger
than ours. Sridharamurthy et al. [106] specialize efficient algorithms
for computing constrained edit distances between trees [121] to the
special case of merge trees (see Appendix 1), resulting in a distance
which is computable for real-life datasets and with acceptable practical
stability. However, it is not conducive to simple barycenter computa-
tions. Indeed, the linear interpolation of the optimal node assignments
induced by this metric (Fig. 4) does not result in a shortest path, and
hence generates inaccurate midpoints (i.e. inaccurate barycenters given
two trees). This further implies that there is no clear or simple strategy
for the general computation of barycenters according to that metric.

Regarding the estimation of a representative object from a set of
topological representations, several approaches emerged recently. A
recent line of work [46, 120] introduced a framework for computing
a 1-center of a set of merge trees (i.e. minimizing its maximum dis-
tance to the set), according to an interleaving distance. However, as
documented by its authors, this approach requires pre-existing, reliable
correspondence labels between the nodes of all the input trees, which
is not practical with real-life datasets (heuristics need to be considered).
Also, since they minimize their maximum distance to a set, 1-centers are
typically sensitive to outliers, which prevents their usage for estimating
trends or supporting clustering tasks (which typically focus on densities
rather than maximum distances). This is further evaluated in Sec. 7.2.
In contrast, our approach focuses on the estimation of barycenters
(instead of 1-centers) and computes a tree which minimizes its average
distance to an ensemble of merge trees (instead of its maximum dis-
tance), which is less sensitive to outliers, which better captures trends
and which supports clustering tasks. Moreover, the node correspon-
dences between the barycenter and the input trees are automatically
estimated by our approach via an assignment optimization present at
the core of our distance estimation. Thus our method does not require
input correspondences, which makes it readily applicable to real-life
ensembles. Several methods [64,112,113] have been introduced for the
automatic estimation of barycenters (Sec. 2.2) of persistence diagrams
(or vectorized variants [3, 24]). However, the persistence diagram can
lack specificity in its data characterization (Fig. 3). This limitation is
addressed by our work which focuses instead on merge trees.

1.2 Contributions
This paper makes the following new contributions:

1. A practical distance metric between merge trees: We extend re-
cent work on the edit distance [106] and introduce a new distance
between merge trees, which, in contrast to previous work, is pur-
posely designed to enable efficient computations of geodesics and
barycenters. It can be computed efficiently, it has acceptable prac-
tical stability and it has a strong connection to established metrics,
which eases its interpretation. Specifically, it can be interpreted as
a variant of the L2-Wasserstein distance for persistence diagrams,
for which we constrain the underlying search space to account for
the additional structural information provided by the merge tree.

2. A simple approach for computing geodesics between merge trees:
Given our new metric, we present a simple approach for comput-
ing geodesics between merge trees. It uses a simple linear interpo-
lation of the assignments resulting from our new metric, enabling
the exact computation of geodesics in linear time. This follows
from previous work on persistence diagram geodesics [112] and it
is made possible thanks to a new, local normalization procedure,
guaranteeing the topological consistency of the interpolated trees.

3. An approach for computing barycenters between merge trees: Our
method for geodesics between merge trees enables a straightfor-
ward adaptation of previous optimization strategies for persistence
diagram barycenters [112], resulting, to our knowledge, in the
first approach for the computation of barycenters of merge trees.

4. Unified computational framework: We present a unified com-
putational framework for the estimation of distances, geodesics,
barycenters, and clusters of merge trees. In particular, we intro-
duce an efficient, task-based algorithm adapted from previous
work on edit distances [106, 121], which is generically applicable
to any of the above tasks. Our algorithm supports shared-memory
parallelism, allowing for further accelerations in practice.

5. Applications: We illustrate the utility of each of our contributions
with dedicated visualization tasks, including feature tracking,
temporal reduction and ensemble clustering and summarization.

6. Implementation: We provide a lightweight C++ implementation
of our algorithms that can be used for reproduction purposes.

2 PRELIMINARIES

This section presents the theoretical background of our work. It contains
definitions adapted from the Topology ToolKit [110]. We refer the
reader to textbooks [32] for an introduction to computational topology.

2.1 Input data
The input data is an ensemble of N piecewise linear (PL) scalar fields
fi : M → R, with i ∈ {1, . . . ,N}, defined on a PL d-manifold M , with
d ≤ 3 in our applications. The sub-level set of fi, noted fi−1

−∞(w) =
{p ∈M | fi(p) < w}, is defined as the pre-image of (−∞,w) by fi.
The super-level set of fi is defined symmetrically: fi−1

+∞(w) = {p ∈
M | fi(p)> w}. As w continuously increases, the topology of fi−1

−∞(w)
changes at specific vertices of M , called the critical points of fi [10]. In
practice, fi is enforced to contain only isolated, non-degenerate critical
points [35, 37]. Critical points are classified by their index Ii: 0 for
minima, 1 for 1-saddles, d−1 for (d−1)-saddles and d for maxima.

2.2 Persistence diagrams
The persistence diagram is a visual summary of the topological features
(i.e. connected components, independent cycles, voids) of fi−1

−∞(w).
Specifically, each topological feature of fi−1

−∞(w) can be associated with
a unique pair of critical points (c,c′), corresponding to its birth and
death. The Elder rule [32] states that critical points can be arranged
according to this observation in a set of pairs, such that each critical
point appears in only one pair (c,c′), with fi(c)< fi(c′) and Ii(c) =
Ii(c′)− 1. For instance, if two connected components of fi−1

−∞(w)
meet at a critical point c′, the younger component (created last, in c)
dies, in favor of the older one (created first). Then the persistence
diagram, noted D( fi), embeds each pair to a single point in 2D at
coordinates

(
fi(c), fi(c′)

)
. The persistence of a pair is given by its

height fi(c′)− fi(c). Then, the persistence diagram provides a visual
overview of the features of interest of a dataset (Fig. 2), where salient
features stand out from the diagonal while pairs corresponding to noise
are located in the vicinity of the diagonal. Note that, in addition to its
interest as a visual summary, the persistence diagram captures all the
information about the persistent homology groups of the data [32].

Given two diagrams D( fi) and D( f j), a pointwise distance, noted
dq (with q > 0), can be introduced in the 2D birth/death space between
two points pi = (xi,yi) ∈D( fi) and p j = (x j,y j) ∈D( f j):

dq(pi, p j) = (|x j− xi|q + |y j− yi|q)1/q = ‖pi− p j‖q. (1)



Fig. 5. Distance and geodesic computation between two persistence
diagrams D( fi) and D( f j), given the metric WD

2 . The sets Pi and Pj are
shown in transparent (a). The matching induced by the optimal partial
assignment φ is shown with dashed lines (c). For two diagrams, the
Wasserstein barycenter (b) is given, thanks to the d2 distance in the
birth/death space, by the arithmetic mean of the matched points. Then,
the linear interpolation of the matchings (c) describes a geodesic [112].

By convention, dq(pi, p j) is set to zero if both pi and p j exactly lie on
the diagonal (xi = yi and x j = y j). Let Pi be a subset of the off-diagonal
points of D( fi) and Pi its complement (i.e. the other off-diagonal points
of D( fi) not in Pi). Let (φ ,Pi,Pj) be a partial assignment between
D( fi) and D( f j), i.e. a bijective map between Pi and a subset of off-
diagonal points Pj of D( f j), with complement Pj (Fig. 5a). Then, the
Lq-Wasserstein distance, noted WD

q , can be introduced as:

WD
q
(
D( fi),D( f j)

)
= min

(φ ,Pi,Pj)∈Φ

(
∑

pi∈Pi

dq
(

pi,φ(pi)
)q (2)

+ ∑
pi∈Pi

dq
(

pi,∆(pi)
)q (3)

+ ∑
p j∈Pj

dq
(
∆(p j), p j

)q
)1/q

(4)

where Φ is the set of all possible partial assignments mapping each
point pi ∈ D( fi) to a point φ(pi) = p j ∈ D( f j) (line 2), or to its di-
agonal projection, ∆(pi) = ( xi+yi

2 , xi+yi
2 ), denoting the removal of the

corresponding feature from D( fi) or D( f j) (lines 3 and 4). Intuitively,
the Wasserstein metric optimizes a matching between the two diagrams,
and evaluates their distance given the resulting mismatch. In practice,
D( fi) and D( f j) are augmented into D ′( fi) and D ′( f j) [62], by inject-
ing the diagonal projections of one diagram into the other (Fig. 5a):

D ′( fi) = D( fi)∪{∆(p j) | p j ∈ Pj}
D ′( f j) = D( f j)∪{∆(pi) | pi ∈ Pi}.

This augmentation (Fig. 5a) preserves the distance, while making the
assignment problem balanced, and thus easily solvable with traditional
algorithms [15, 75] (with P′i = D ′( fi),P′j = D ′( f j) and P′i = P′j = /0).

Given a set SD = {D( f1), . . . ,D( fN)} of persistence diagrams, let
F(D ,α) be the Fréchet energy of the set, under the metric WD

2 , with the
coefficients α = {α1,α2, . . . ,αN}, such that αi ∈ [0,1] and ∑i αi = 1:

F(D ,α) = ∑
D( fi)∈SD

αiWD
2
(
D ,D( fi)

)2
. (5)

Then the diagram D∗ ∈ D (where D is the space of persistence
diagrams) which minimizes F(D ,α) is called the Wasserstein barycen-
ter of the set SD (or its Fréchet mean under the metric WD

2 ). In
practice, the coefficients αi are all set to the same value (αi = 1/N,
∀i ∈ {1, . . . ,N}). When N = 2 and α1 = α2 = 0.5 (Fig. 5b), D∗ be-
comes a midpoint between D( fi) and D( f j) and the set of possible
values for α1 and α2 (Fig. 5c) describes a geodesic in D (i.e. length
minimizing path) with regard to the L2-Wasserstein metric [112].

2.3 Merge trees
The join tree, noted T −( fi), is a visual summary of the connected
components of fi−1

−∞(w) [25]. It is a 1-dimensional simplicial complex
defined as the quotient space T −( fi) =M /∼ by the equivalence rela-
tion∼ which states that p1 and p2 are equivalent if fi(p1) = fi(p2) and
if p1 and p2 belong to the same connected component of fi−1

−∞

(
fi(p1)

)
.

The split tree (Fig. 2), noted T +( fi), is defined symmetrically and
describes the connected components of the super-level set fi−1

+∞(w).
Each of these two directed trees is called a merge tree, noted generi-
cally T ( fi) in the following. Intuitively, these trees track the creation
of connected components of the sub (or super) level sets at their leaves,
and merge events at their interior nodes. These trees are often visu-
alized according to a persistence-driven branch decomposition [82],
to make the persistence pairs captured by the tree stand out. In this
context, a persistent branch is a monotone path on the tree connecting
the nodes corresponding to the creation and destruction (according to
the Elder rule, Sec. 2.2) of a connected component of sub (or super)
level set. Then, the branch decomposition provides a planar layout of
the merge tree, where each persistent branch is represented as a vertical
segment. The branch decomposition tree (BDT), noted B( fi), is a
directed tree whose nodes are the persistent branches captured by the
branch decomposition and whose arcs denote adjacency relations be-
tween them in the merge tree. In Fig. 2, the BDTs (top right insets) can
be interpreted as the dual of the branch decompositions (bottom right
insets, with matching colors): each vertical segment in the branch de-
composition (bottom) corresponds to a node in the BDT (top) and each
horizontal segment (bottom, denoting an adjacency relation between
branches) corresponds to an arc in the BDT. Intuitively, the BDT, like
the persistence diagram, describes the population of (extremum-saddle)
persistence pairs present in the data. However, unlike the persistence
diagram, it additionally captures adjacency relations between them.

3 WASSERSTEIN DISTANCES BETWEEN MERGE TREES

This section introduces our new distance metric between merge trees,
which is specifically designed for the subsequent computation of
geodesics (Sec. 4) and barycenters (Sec. 5). For this, we bridge the
gap between the edit distance between merge trees [106] and exist-
ing work addressing the computation of geodesics and barycenters for
persistence diagrams according to the L2-Wasserstein distance [112].

3.1 Overview

The end goal of our work is the computation of barycenters of merge
trees. For this, we extend the edit distance DE [106] (formalized in
Appendix 1, additional material), to make it fit the optimization strategy
used for barycenters of persistence diagrams [112]. Our key idea con-
sists in transforming DE such that it becomes strictly equivalent to the
L2-Wasserstein distance of persistence diagrams, but given a restricted
space of possible assignments, constrained by the structure of the input
trees T ( fi) and T ( f j), hence its name Wasserstein distance between
merge trees. Then, thanks to this compatibility with the L2-Wasserstein
distance, the assignments resulting from our metric can be directly used
for interpolation-based geodesic and barycenter computations (Secs. 4
and 5). Overall, our strategy involves four major modifications to the
edit distance DE [106], detailed in the remainder of this section:

1. To consider assignments between persistence pairs instead of merge
tree nodes, we consider an edit distance between the BDTs B( fi)
and B( f j) (Sec. 2.3) instead of the input merges trees T ( fi) and
T ( f j) (as done with DE ). This is described in Sec. 3.2.

2. We constrain the assignment search space to the space of rooted
partial isomorphisms. Specifically, similarly to DE , we enforce
the assignment of disjoint subtrees of B( fi) to disjoint subtrees of
B( f j). Moreover, in contrast to DE , we additionally extend this
constraint by enforcing the destruction of entire subtrees upon the
destruction of their root. These two constraints together enforce
assignments describing isomorphisms between rooted subtrees of
B( fi) and B( f j). Such isomorphisms pave the way for interpolation-
based geodesics. This is described in Secs. 3.2, 3.3 and 4.1.

3. We introduce a cost model based on the Euclidean distance d2 to en-
able geodesic computation by linear interpolation of the assignments
in the 2D birth/death space. This is described in Secs. 3.2 and 4.1.

4. We finally extend our metric with a local normalization term, which
enforces nested birth-death values, along the interpolation of the
assignments, for nested branches. This is described in Sec. 4.2.



3.2 Definition and properties
Given two input merge trees, T ( fi) and T ( f j), we first consider their
BDTs B( fi) and B( f j) (Sec. 2.3). Let Bi be a subset of the nodes of
B( fi) and Bi its complement. Note that each node in Bi corresponds
to a persistence pair of D( fi). Let (φ ′,Bi,B j) be a partial assignment
between Bi and a subset B j of the nodes of B( f j) (with complement
B j). Then we introduce the L2-Wasserstein distance WT

2 between the
BDTs B( fi) and B( f j) of the merge trees T ( fi) and T ( f j) as:

WT
2
(
B( fi),B( f j)

)
= min

(φ ′,Bi,B j)∈Φ′

(
∑

bi∈Bi

γ
(
bi→ φ

′(bi)
)2 (6)

+ ∑
bi∈Bi

γ(bi→ /0)2 (7)

+ ∑
b j∈B j

γ( /0→ b j)
2
)1/2

(8)

where Φ′ is the space of constrained partial assignments mapping
disjoints subtrees of B( fi) to disjoint subtrees of B( f j), and mapping
entire subtrees to the empty tree /0 if their root is itself mapped to /0.
Then, given the kth direct child of bi, noted bk

i , it follows that bk
i either

maps through φ ′ to a direct child of φ ′(bi) ∈B( f j) (then bi,bk
i ∈ Bi)

or to the empty tree /0 (then the subtree rooted in bk
i , noted B( fi,bk

i ),
belongs to Bi). This further implies that the rooted subtrees Bi ⊆B( fi)
and B j = φ ′(Bi) ⊆ B( f j) are isomorphic and we call (φ ′,Bi,B j) a
rooted partial isomorphism. Unlike DE (see Appendix 1) but similarly
to WD

2 (Eq. 2), the cost of each operation (mapping, line 18, destruction,
line 18, and creation, line 19) is squared, and the square root of the sum
of the squared costs is considered as the overall distance.

Next, we define the edit costs as follows (we recall that each branch
bi ∈B( fi) exactly coincides with a persistence pair pi ∈D( fi)):

γ
(
bi→ φ

′(bi)
)

= d2
(
bi,φ

′(bi)
)

γ(bi→ /0) = d2
(
bi,∆(bi)

)
(9)

γ( /0→ b j) = d2
(
∆(b j),b j

)
.

Note that the expression of the L2-Wasserstein distance WT
2 between

merge trees (Eq. 6) is therefore identical to the expression of the Wasser-
stein distance between persistence diagrams (Eq. 2) for q = 2, at the
notable exception of the search space of the partial assignments Φ′ ⊂Φ,
which is constrained to rooted partial isomorphisms. WT

2 is indeed a
distance metric (the proof is included in Appendix 2, supplemental ma-
terial): it is non-negative and symmetric, it preserves the identity of in-
discernibles as well as the triangle inequality. Moreover, since Φ′ ⊂Φ,
it follows that WT

2
(
B( fi),B( f j)

)
≥WD

2
(
D( fi),D( f j)

)
, which was

one of the main motivations of our work (i.e. to exploit the merge
tree to define a more discriminative metric, Fig. 3). Similarly to Srid-
haramurthy et al. [106], we mitigate saddle swap instabilities in a
preprocessing step, by merging adjacent saddles in the input trees if
their difference in scalar value is smaller than a threshold ε1 ∈ [0,1] (rel-
ative to the largest difference between adjacent saddles). Then, when
ε1 = 1, it follows that WT

2
(
B( fi),B( f j)

)
=WD

2
(
D( fi),D( f j)

)
. This

simple merging strategy significantly improves the practical stability of
WT

2 , as empirically studied in Sec. 7.2 (Fig. 14).

3.3 Computation
This section describes our algorithm for the recursive exploration of
the search space Φ′ (Eq. 6). It is based on the same recursive traversal
as Zhang’s algorithm [121], which we simplify as our search space is
significantly more constrained. Specifically, as detailed in Appendix
3, our distance evaluation between subtrees (Eq. 11) involves fewer
solutions and it is restricted to subtrees rooted at identical depth only.

Given the subtree B( fi,b) of B( fi) (rooted in b) and bk the kth

direct child of b in B( fi,b), the distance between the subtree B( fi,b)
and the empty tree /0 is then obtained recursively by:

WT
2
(
B( fi,b), /0

)
=
(

γ(b→ /0)2 +∑
k

WT
2
(
B( fi,bk), /0

)2
)1/2

. (10)

Fig. 6. The exploration of the space Φ′ (a candidate is highlighted in red,
right) relies on the evaluation of the sparse matrix T of subtree distances
(left). Our task-based algorithm optimizes the parallel computation of
independent terms. Spheres of equal radius in T denote independent
terms and arrows between the lines of T indicate task dependence
(equivalently illustrated with arrows in the input BDTs, right).

The first step of our algorithm consists in evaluating WT
2
(
B( fi,b), /0

)
with Eq. 10 for all branches b ∈B( fi) (and similarly for B( f j)).

Next, let F ( fi,b) be the forest of b in B( fi): F ( fi,b) is the set
of all the subtrees rooted at the k direct children of b: F ( fi,b) =
{B( fi,b1),B( fi,b2), . . . ,B( fi,bk)}. Then the distance between two
subtrees B( fi,bi) and B( f j,b j) is set to +∞ when bi and b j have
distinct depths (gray crosshatching lines in Fig. 6, left). Otherwise
(spheres in Fig. 6, left), it is obtained recursively by:

WT
2
(
B( fi,bi),B( f j,b j)

)
=

(
γ(bi→ b j)

2 (11)

+ WT
2
(
F ( fi,bi),F ( f j,b j)

)2
)1/2

.

Let Fi be a subset of the forest F ( fi,bi) and Fi its complement. The
distance between two forests is then given recursively by:

WT
2
(
F ( fi,bi),F ( f j,b j)

)
= min

(φ ′′,Fi,Fj)∈Φ′′

(
∑

fi∈Fi

WT
2
(

fi,φ ′′( fi)
)2

+ ∑
fi∈Fi

WT
2
(

fi, /0
)2

+ ∑
f j∈Fj

WT
2
(

f j, /0
)2
)1/2

where (φ ′′,Fi,Fj) becomes the solution of a local, partial assignment
problem between forests, mapping Fi to a subset Fj ∈F ( f j,b j) (with
complement Fj) or to the empty tree /0, and which can be solved with
traditional assignment algorithms [15, 75] (see Sec. 2.2). Then, the
overall distance WT

2 between the two input merge trees is obtained
by estimating Eq. 11 at the roots of B( fi) and B( f j), and solving
recursively the local assignment problems between forests (the recur-
sion returns are illustrated with arrows in Fig. 6). Note that if ε1 = 1
(Sec. 3.2), all the branches of B( fi) and B( f j) get attached to the roots
and the recursive local assignment problems between forests (above)
become only one, large, assignment problem between all branches.
Thus, when ε1 = 1, this algorithm indeed becomes strictly equivalent
to the resolution of the assignment problem involved in WD

2 (Sec. 2.2).

3.4 Parallelism
Similarly to Zhang [121], Eqs. 10 and 11 can be estimated recursively.
To avoid redundant computations, the distances between the forests
F ( fi,bi) and F ( f j,b j) are stored at the entry (bi,b j) of a matrix F
(of size |B( fi)|× |B( f j)|), while the distances between the subtrees
B( fi,bi) and B( f j,b j) (used within the assignment problems between
higher forests) are stored in a matrix T (of the same size, see Fig. 6).

In our work, we additionally express this computation in terms of
tasks, to leverage task-based shared memory parallelism. In particular,
we initiate a task for each independent term of Eqs. 10 and 11, which
is ready for computation (see Fig. 6), as further detailed in Appendix 4.
Then, the number of parallel tasks is initially bounded by the number
of leaves in the input BDTs (which is typically much larger than the
number of cores) and progressively decreases during the computation.



Fig. 7. Our geodesic computation extends interpolation-based geodesics
from persistence diagrams (a) to merge trees (b). The interpolated BDT
Bα ( fi→ f j) is obtained by linear interpolation (with local normalization)
of the partial isomorphism φ ′ in the birth/death space. In the data, the
feature matching (dashed lines) induced by φ ′ with WT

2 (b) better pre-
serves the global structure of the data than φ with WD

2 (a, red crossing).

4 WASSERSTEIN GEODESICS BETWEEN MERGE TREES

This section introduces our approach for the efficient computation of
geodesics between merge trees, according to the metric WT

2 (Sec. 2).
For this, we leverage the rooted partial isomorphism resulting from the
distance computation, as well as linear interpolations of the matchings,
as introduced for persistence diagrams [112].

4.1 Definition and properties

Given two input merge trees T ( fi) and T ( f j), our approach to
geodesic computation (Fig. 7) simply consists in linearly interpolating
the rooted partial isomorphism (φ ′,Bi,B j) resulting from the optimiza-
tion involved in the computation of WT

2
(
B( fi),B( f j)

)
(Eq. 6). In

particular, given the two BDTs B( fi) and B( f j), the interpolated BDT,
noted Bα ( fi→ f j) with α ∈ [0,1] such that B0( fi→ f j) =B( fi) and
B1( fi→ f j) = B( f j), is obtained by considering the union of:

1. the linear interpolation Bα ⊆Bα ( fi → f j), between the nodes
Bi ⊆B( fi) and these of B j ⊆B( f j), given the isomorphism φ ′

(the trees Bi, B j and Bα are then isomorphic, Fig. 7):

b(α) = (1−α)b+αφ
′(b) ∀b ∈ Bi (12)

2. the linear interpolation of the destruction of the subtrees Bi, noted
Biα ⊆Bα ( fi→ f j) (Bi and Biα are also isomorphic):

b(α) = (1−α)b+α∆(b) ∀b ∈ Bi (13)

3. the linear interpolation of the creation of the subtrees B j, noted
B jα ⊆Bα ( fi→ f j) (B j and B jα are also isomorphic):

b(α) = (1−α)∆(b)+αb ∀b ∈ B j. (14)

Similarly to the distance WD
2 between persistence diagrams, since

the edit costs involved in the distance WT
2 are Euclidean distances in the

birth/death space (Eq. 9), the interpolated branches b(α) of Bα ( fi→
f j) can be efficiently computed with the simple linear interpolations
described above. As detailed in Appendix 5, the resulting interpolated
tree Bα ( fi→ f j) is indeed on a geodesic given WT

2 .

Fig. 8. Given two scalar fields fi (a) and f j (b), a simple interpolation
of the birth/death values of the branches of their BDTs may result in
inconsistencies upon branch destruction (red): the interpolated merge
tree (black) in (c) is disconnected, unlike the interpolated BDT (d). Our
local normalization (Sec. 4.2) addresses this issue by enforcing nested
birth/death values for nested branches. This results in a valid interpolated
merge tree (e) whose BDT is indeed equal to the interpolated BDT (e).

4.2 From branch decomposition trees to merge trees
The previous section described the computation of geodesics between
BDTs, given WT

2 . In this section, given an interpolated BDT Bα ( fi→
f j), we describe how to retrieve the corresponding merge tree Tα ( fi→
f j) (i.e. a merge tree whose BDT is indeed equal to Bα ( fi→ f j)).

A requirement for an arbitrary BDT B to be the valid BDT of a
merge tree T is that subtrees of B need to respect a nesting condition
on their birth/death (i.e. x,y) values (to respect the Elder rule, Sec. 2.2).
In particular, given a direct child bk

α of a branch bα ∈Bα ( fi → f j),
we need to guarantee that [xk

bα
,yk

bα
]⊆ [xbα

,ybα
]. While this is guaran-

teed by construction for the subset Bα ⊆Bα ( fi→ f j) (Bα is isomor-
phic to Bi and B j), this is not necessarily the case for the subsets of
Bα ( fi→ f j) involved in subtree creation or destruction (Biα and B jα ,
Sec. 4.1). In particular, since the branches involved in destructions map
independently to the diagonal (Eq. 13), it is possible that the above nest-
ing condition is not respected along their interpolation. This is shown in
Fig. 8c (red interpolation), where the resulting merge tree, Tα ( fi→ f j),
becomes disconnected and hence invalid (i.e. Bα ( fi→ f j), Fig. 8d, is
connected and not equal to the BDT of Tα ( fi→ f j) from Fig. 8c).

In the following, we introduce a pre-processing step for the trees
B( fi) and B( f j) (together with its inverse post-processing step), which
we call local normalization, which addresses this issue and guarantees
the above nesting condition, even in case of destruction/creation.

Given a direct child bi
k of a branch bi ∈B( fi), we consider the fol-

lowing local, birth/death normalization N (bi
k) =

(
Nx(bi

k),Ny(bi
k)
)
:

Nx(bi
k) = (xbi

k − xbi)/(ybi − xbi)

Ny(bi
k) = (ybi

k − xbi)/(ybi − xbi).

Once this pre-process is recursively completed, the Wasserstein dis-
tance WT

2 between the locally normalized BDTs, noted N
(
B( fi)

)
and

N
(
B( f j)

)
is computed as described in Sec. 3.3. Then, the interpola-

tion of the locally normalized BDTs, noted N
(
Bα ( fi→ f j)

)
, is evalu-

ated as described in Sec. 4.1. Next, the local normalization is recursively
reverted to turn N

(
Bα ( fi→ f j)

)
back into Bα ( fi→ f j), by explicitly

evaluating N −1(bN
α ) for each branch bN

α ∈N
(
Bα ( fi→ f j)

)
. Now,

even in case of branch destruction, by construction, the birth/death in-
terval of each interpolated branch N (bα ), noted [Nx(bα ),Ny(bα )], is
included in [0,1] (since ∆

(
N (bi)

)
⊆ [Nx(bi),Ny(bi)]⊆ [0,1]). There-

fore, after reverting the local normalization, we have the guarantee that
[xk

bα
,yk

bα
]⊆ [xbα

,ybα
] for all the branches bα of Bα ( fi→ f j).

At this stage, Bα ( fi→ f j) indeed respects the nesting condition on
the birth/death values of all its subtrees. Then, given the dual relation
between merge trees and BDTs, the merge tree Tα ( fi → f j) can be
simply obtained by creating a vertical branch for each node bα of
Bα ( fi→ f j) and connecting them according the arcs of Bα ( fi→ f j),
as illustrated in Fig. 8 (right). The distance WT

2 between N
(
B( fi)

)
and N

(
B( f j)

)
then still describes a metric between B( fi) and B( f j),

such that Bα ( fi→ f j) is indeed on a geodesic (see Appendix 6).
Note that the local normalization shrinks all the input branches to

the interval [0,1], irrespective of their original persistence. To mitigate
this effect, we introduce a pre-processing step on the input BDTs,

Fig. 9. Visual comparison between our barycenter (Sec. 5) and the 1-
center of Yan et al. [119,120]. Left: an ensemble is created with an outlier
member f j (red, 7 persistent branches) and 10 noisy versions of a field
fi (4 persistent branches). Right: planar view of the ensemble computed
by multi-dimensional scaling of WT

2 . The barycenter computed with our
approach (cyan) is more similar to the merge trees of fi (same number
and persistence of large branches) and hence better captures the overall
trend of the ensemble, despite the presence of the outlier f j (red sphere).



Fig. 10. Geodesic computation for the reduction (b) of temporal sequences of merge trees (a). Our algorithm greedily removes from the sequence
the trees that it can accurately estimate by geodesic computation (trees with blue background (b)). This reduction is also visualized with the three
curves in (c), plotting the distance WT

2 to the empty tree /0 over time (multiple colors: original sequence, cyan: reduction by WT
2 , red: reduction by

WD
2 ). This iterated removal of trees highlights key frames in the sequence (d-g) corresponding to key phases of an asteroid impact simulation [84]:

initial state (black, time steps 1-5), approach (light green, 6-10), impact (blue, 11-15), aftermath (light blue, 16-20). In contrast, a similar greedy
optimization based on the distance WD

2 between persistence diagrams (red curve) fails at capturing the impact phase (blue) of this sequence.

Fig. 11. Tracking features (the five most persistent maxima, spheres)
in time-varying 2D data (ion density during universe formation [109]):
optimal assignment φ (a) of WD

2 (Sec. 2.2), optimal isomorphism φ ′ (b)
of WT

2 (Sec. 3.2). Since WD
2 considers persistence pairs individually, it

can generate incorrect matchings resulting in a characteristic crossing (a,
red). Our distance improves this aspect (b) thanks to its more constrained
search space, which better preserves the global structure of the data.

which moves, up the trees, subtrees rooted at branches with a relative
persistence smaller than ε3, until their persistence relative to their parent
becomes smaller than a threshold ε2. This has the practical effect of
reducing the normalized persistence of small branches corresponding
to small features. Overall, ε1, ε2 and ε3 are the only parameters of
our approach and we use a unique, default set of values (ε1 = 0.05,
ε2 = 0.95 and ε3 = 0.9) in our experiments (Sec. 7). In the remainder,
we will consider that all the input BDTs are normalized this way.

5 WASSERSTEIN BARYCENTERS OF MERGE TREES

This section introduces our approach for the computation of barycenters
of merge trees, for the metric WT

2 (Sec. 2). The resulting barycenters
will serve as core tools for clustering ensembles of merge trees (Sec. 6).

5.1 Definition
Let SB = {B( f1),B( f2), . . . ,B( fN)} be a set of N BDTs. Similarly
to Eq. 5, The Fréchet energy, under the metric WT

2 , is given by:

F(B) = ∑
B( fi)∈SB

WT
2
(
B,B( fi)

)2
.

We call a Wasserstein barycenter of SB , a BDT B∗ ∈ B (where B
is the space of BDTs) which minimizes F(B). It is a centroid of the
set, i.e. a tree which minimizes the sum of its distances to the set.

5.2 Computation

Our distance WT
2 (Sec. 2) is identical to WD

2 , but with a smaller search
space, restricted to rooted partial isomorphisms. This enabled an ex-
tension of interpolation-based geodesics from persistence diagrams
to merge trees (Sec. 4). Given these two components, the strategy
presented by Turner et al. [112] for minimizing the Fréchet energy
over the space of persistence diagrams can be directly extended to our
framework. For this, we consider an algorithm that resembles a Lloyd
relaxation [67], and which alternates an (i) assignment and an (ii) up-
date procedure. First, the candidate B is initialized at an arbitrary tree

of SB . Then the assignment step (i) computes an optimal assignment
(φ ′i ,Bi,BB) between B and each tree B( fi) ∈SB . Next, the update
step (ii) updates the candidate B to a position in B which minimizes
F(B) under the current set of assignments (φ ′i ,Bi,BB)i=1,...,N . This is
achieved by moving each branch b ∈B (in the birth/death space) to the
arithmetic mean of the assignments (by generalizing the interpolation
defined in Eqs. 12, 13, and 14, to more than two trees):

b← 1
N ∑

i=1,...,N


φ ′i (b) if b ∈ Bi

∆(b) if b ∈ Bi

b if b ∈ BB .

This overall assignment/update sequence is then iterated (as dis-
cussed in Appendix 7, each iteration of this sequence decreases the
Fréchet energy constructively). In our implementation, the algorithm
stops and returns the barycenter estimation B∗ when the Fréchet energy
decreased by less than 1% between two consecutive iterations. Given
B∗, we obtain its dual merge tree T ∗ as described in Sec. 4.2. Fig. 9
illustrates a barycenter computed with this strategy for a toy example.

5.3 Parallelism
The N assignment problems (between the candidate B and the trees of
the set SB , Sec. 5.2) are independent and can be computed in parallel.
However, this naive strategy is subject to load imbalance, as the input
trees can have different sizes. Hence, each iteration would be bounded
by the sequential execution of the largest of the N assignment problems.

We address this issue by leveraging the task-based parallelization of
our distance computation algorithm (Sec. 3.4). In particular, we use a
single task pool for all of the N assignment problems. Then, the task en-
vironment picks up at runtime the tasks to compute irrespective of their
tree of origin, and place them on different threads. This fine scheduling
granularity has the beneficial effect of triggering the execution of the
tasks of a new assignment problem while a first problem is reaching
completion (and thus exploiting less threads, Sec. 3.4). This improves
thread load imbalance and thus increases the overall parallel efficiency.

6 APPLICATIONS

The section illustrates the utility of our contributions (distances,
geodesics, and barycenters) in concrete visualization tasks (Fig. 1).

6.1 Branch matching for feature tracking
Our distance (Sec. 3.3) relies on the optimization of a partial isomor-
phism between the input BDTs. Then, the resulting matchings can be
used to track features in time-varying data, as studied for persistence
diagrams [104]. Fig. 11 illustrates this on a temporal sequence (SciVis
contest 2008 [109]). Since WD

2 considers persistence pairs individually,
it can generate inconsistent matchings with a typical incorrect cross-
ing in the feature tracking (already visible on synthetic data, Fig. 7).
Our distance WT

2 improves this aspect by better preserving the global
structure of the data, thanks to our more constrained, merge-tree driven,



Fig. 12. Three members (a) of an acquired ensemble, corresponding
to distinct volcanic eruptions [41]. Our clustering approach correctly
assigns the members to each cluster (b, distinct colors in the planar view,
generated in a post-process by multi-dimensional scaling of WT

2 ). Our
centroids (larger spheres in the planar view) provide a visual summary
of the features of interest (matching colors) for each cluster.

assignment search space. Overall, our matchings provide visual hints
to the users, to help them relate features from distinct time steps.

6.2 Geodesics for temporal reduction
The topological analysis of time-varying data typically requires the
computation of a topological representation, for instance a merge tree,
for each time step. Although merge trees are usually orders of mag-
nitude smaller than the original data, the resulting sequence of merge
trees can still represent considerable amounts of data. To address this
issue, we exploit our geodesic computation (Sec. 4) for the reduction of
temporal sequences of merge trees. In particular, we greedily remove
from the sequence, one by one, the merge trees which can be accurately
reconstructed by simple geodesic computation, until the sequence only
contains a target number of merge trees (see the detailed algorithm in
Appendix 8). This enables the reliable visualization of time-varying se-
quences of merge trees at greatly reduced storage costs. The remaining
merge trees (white background, Fig. 10) correspond to key frames of
the sequence, i.e. time steps of particular significance in terms of the
features of interest. In contrast, a similar strategy based on persistence
diagram interpolation (red curve) fails at identifying a key frame in one
of the key phases of the sequence (impact, in blue). Also, note that the
reduced merge trees (reconstructed with geodesics, blue background)
are visually highly similar to the trees from the input sequence.

6.3 Barycenters for topological clustering
To understand the main trends within an ensemble, in terms of features
of interest, it may be desirable to cluster the ensemble by grouping
members with a similar topological profile. For this, we adapt the
k-means algorithm [28, 38] to the problem of clustering merge trees. In
particular, this can be easily achieved by using our merge tree barycenter
computation algorithm (Sec. 5) as the centroid estimation routine of
k-means, and by using WT

2 (Sec. 2) to measure the distance between
merge trees. Note that in practice, our entire computational framework
is implemented in this single clustering algorithm (with a unique task
pool), as the above clustering generalizes the barycenter problem (k= 1)
as well as the geodesic and distance problems (N = 2).

Figs 12 and 13 present clustering examples obtained with this strat-
egy on an acquired [41] and cosmology ensemble [56]. In both cases,
our approach correctly assigns the members to each cluster. Moreover,
the centroids computed by our algorithm provide a visual summary of
the features of interest found in each cluster, enabling global overviews
(Figs. 12, right, and 13, bottom) summarizing the topological profile of
each of the main trends found in the ensemble. In both figures, the tree
branches of the ensemble members are automatically colored with the
color of their matched centroid branch. This matching visualization en-
ables users to visually relate the centroid to concrete features in the data
(Fig. 12) and to compare matching features across multiple members
(i.e. which have been matched to the same centroid branch, Fig. 13).
Then, the centroid, in addition to being a visual summary, also acts as a
reference point for the visual comparison of ensemble members.

7 RESULTS

This section presents experimental results obtained on a computer
with two Xeon CPUs (3.2 GHz, 2x10 cores, 96GB of RAM). The
input merge trees were computed with FTM [48] and pre-processed
to discard noisy features (persistence simplification threshold: 0.25%

Fig. 13. Eight members (top) of a cosmology ensemble [56], and their
merge trees (persistent maxima are displayed with matching colors in
the data). Our clustering approach correctly assigns the members to
each cluster (distinct colors in the bottom planar view, generated in
post-process by multi-dimensional scaling of WT

2 ). Our centroids (large
spheres, bottom) provide a visual summary which is well representative of
the trees in the cluster (same number and persistence of large branches,
automatically color-coded based on their matching to their centroid).

of the data range). We implemented our approach in C++ (with the
OpenMP task runtime), as modules for TTK [19, 110].

Our experiments were performed on a variety of simulated and
acquired 2D and 3D ensembles used in previous work [39] (vortic-
ity and sea surface height) or extracted from past SciVis contests:
2004 (wind velocity magnitude [114]), 2006 (wavefront velocity mag-
nitude [77]), 2008 (ion concentration [109]), 2014 (sulfur dioxide
concentration [41]), 2015 (dark matter density [56]), 2016 (salt con-
centration [45]), 2017 (pressure [116] ), 2018 (matter density [84]). A
detailed specification of these ensembles is provided in Appendix 9.

7.1 Time performance
The time complexity of our algorithm for exploring the search space of
WT

2 (Sec. 3.3) is similar to that of the edit distance [106, 121]. It takes
O(|B|2) steps in practice, with |B| the number of nodes in the input
BDTs (in our implementation, each local forest assignment problem is
solved with the efficient Auction approximation [15] with default pa-
rameters). Once WT

2
(
B( fi),B( f j)

)
is computed, the computation of

a point on the geodesic (Sec. 4) between B( fi) and B( f j) is obtained
in O(|B|) steps. Regarding our barycenter computation algorithm
(Sec. 5), each of its iterations takes O(N|B|2) steps. Tab. 1 evaluates
the practical time performance of our computational framework for the
barycenter computation (which includes itself distance and geodesic
computations). In sequential mode, we observe that the running time is
indeed a function of the number of ensemble members (N) and the aver-
age size of the trees (B). It is slightly slower for WT

2 than for WD
2 , but

runtimes remain comparable overall. In parallel, speedups are the most
important for the largest examples. However, the iterative nature of
our barycenter optimization algorithm seems to limit parallel efficiency
globally (the end of each iteration still constitutes a strong synchro-
nization). For the smaller examples, the cost of the task runtime seems
to become non-negligible in comparison to the actual computation,
resulting in moderate speedups. Still, our parallelization significantly
reduces runtimes overall, with less than 3 minutes of computation on
average and at most 15 minutes for the largest examples.

7.2 Framework quality

WT
2 is indeed a distance metric (Appendix 2). It is more discriminative

than WD
2 (i.e. WT

2 ≥WD
2 , Sec. 2, Fig. 3). Fig. 14 evaluates empirically

its stability. For this, given a scalar field fi, a noisy version f j is created
such that ‖ fi− f j‖∞ ≤ ε , for increasing values of ε . Then, we observe
the evolution of WT

2
(
B( fi),B( f j)

)
, as a function of ε (Fig. 14, right),

to estimate how WT
2 varies under input perturbations. For ε1 = 1, we

have WT
2 =WD

2 (Sec. 2) and the curve evolves nearly linearly (WD
2 is

stable [112]). For other ε1 values, the curves indicate clear transition
points (colored dots) before which WT

2 evolves nearly linearly too.
This indicates that for reasonable noise levels (smaller than the ε value
of each transition point, vertical lines), WT

2 is also stable and that only
mild increases of ε1 result in fast shifts of these transition points (to
an accepted noise level of 64% at ε1 = 0.15). This illustrates overall



Table 1. Running times (in seconds, 10 run average) of our approach
for the barycenter computation, with respect to WD

2 (ε1 = 1, Sec. 3.3,
sequential) and to our new metric WT

2 (sequential, then with 20 cores).

Dataset N |B| WD
2 (1 c.) WT

2 (1 c.) WT
2 (20 c.) Speedup

Asteroid Impact [84] (3D) 7 1,295 514.71 450.91 93.11 4.84
Cloud processes [116] (2D) 12 1,209 54.90 124.99 35.14 3.55
Viscous fingering [45] (3D) 15 118 5.68 5.12 3.89 1.31
Dark matter [56] (3D) 40 2,592 3,172.37 3,083.24 471.45 6.53
Volcanic eruptions [41] (2D) 12 811 171.13 140.02 48.52 2.88
Ionization front [109] (2D) 16 135 10.40 12.10 8.20 1.47
Ionization front [109] (3D) 16 763 682.76 1,277.72 219.61 5.81
Earthquake [77] (3D) 12 1,203 191.54 509.59 117.31 4.34
Isabel [114] (3D) 12 1,338 330.88 284.19 62.70 4.53
Starting Vortex [39] (2D) 12 124 7.72 5.58 6.11 0.91
Sea Surface Height [39] (2D) 48 1,787 4,509.78 10,557.07 881.49 11.97
Vortex Street [39] (2D) 45 23 1.71 1.90 1.44 1.31

Fig. 14. Empirical stability evaluation. Given an input scalar field fi, a
noisy version f j is created by inserting a random noise of increasing
amplitude ε (left). The evolution of WT

2
(
B( fi),B( f j)

)
with ε (right), for

varying values of ε1 (Sec. 3.2), indicates clear transition points (colored
dots) before which WT

2 evolves nearly linearly. Before these transition
points (i.e. before these noise levels, vertical lines), WT

2 is stable.

that the stability of WT
2 can indeed be controlled with ε1 and that small

values already lead to stable results for reasonable noise levels. A
detailed empirical analysis of the other two parameters of our approach
(ε2, ε3, Sec. 4.2) is provided in Appendix 10 (supplemental material).

Next, we study the practical relevance of WT
2 by evaluating our

clustering performance. For this, each ensemble of Tab. 1 is associated
with a ground truth classification (distinct phases of a time-varying
phenomenon, distinct input parameters, etc), by following the com-
panion specifications [41, 45, 56, 77, 84, 109, 114, 116]. Clustering
performance is evaluated with accepted scores, namely the normalized
mutual information and adjusted rand index (NMI, ARI). When using
our barycenters (Sec. 5), our clustering approach (Sec. 6.3) achieves
a perfect classification for all ensembles (NMI = ARI = 1). These
scores decrease to NMI = 0.78 and ARI = 0.69 on average when using,
within k-means, a barycenter of persistence diagrams [112] (ε1 = 1),
and to NMI = 0.73 and ARI = 0.56 when using the 1-center of Yan
et al. [120] (obtained with the authors’ implementation [119], using
leaf labels generated by our distance computation, Sec. 2). This simply
confirms experimentally that 1-centers in general are not suited for clus-
tering tasks. A standard clustering approach (multi-dimensional scaling
to kD followed by k-means) using the distance DE [106] achieves lower
average scores than our approach, with NMI = 0.89 and ARI = 0.85
on average. Overall, this confirms that DE induces more discriminative
classifiers than WD

2 , and that our metric WT
2 further improves that.

Fig. 15 shows the evolution of the Fréchet energy for our barycenter
algorithm (Sec. 5) for various ε1 values. In practice, the algorithm
stops when the Fréchet energy decreases by less than 1% between
consecutive iterations, which occurs early in the process.

Fig. 9 provides a visual comparison between our barycenter and the
1-center of Yan et al. [120] (obtained with the authors’ implementation
[119], using leaf labels generated by our distance computation, Sec. 2).
This figure confirms the general sensitivity in practice of 1-centers
to outliers, and the ability of barycenters to better capture the main
trends in the ensemble. From a qualitative perspective, our framework
enables the computation of faithful interpolations of merge trees: the
reconstructed trees, blue background (Fig. 10), are visually very similar
to the input trees. Moreover, our framework produces barycenters
(Figs. 1, 12, and 13) which capture well the main features of the input
ensemble: for each cluster, the resulting centroid is visually similar to
the input trees of the cluster (same number and persistence of large
branches). Then, our clustering framework, coupled with our centroids,
provides a faithful visual summary of the features of interest, for each
of the main trends (i.e. for each cluster) found in the ensemble.

Fig. 15. Evolution of the Fréchet energy for estimating the barycenter (b)
for an ensemble of 100 noisy variants of four fields (a). The energy (c) is
shown for several ε1 values (Sec. 3.2). In practice, we stop the algorithm
when the energy decreases by less than 1% (vertical lines).

7.3 Limitations
The search space associated with our metric WT

2 is constrained to
rooted partial isomorphisms. Then, if a matching exists between two
BDTs (i.e. if they are not both destructed when optimizing WT

2 ),
it has to match their roots together. In other words, WT

2 nearly al-
ways matches the most persistent branch of the two trees together,
which might be too restrictive (in particular for feature tracking ap-
plications). Note however, that WD

2 behaves equivalently: the most
persistent branch of B( fi) corresponds to the component of fi−1

−∞(w)
created in the global minimum of fi, which in principle has infinite
persistence and which is typically treated separately when evaluating
WD

2 . Similarly to Sridharamurthy et al. [106], saddle swap instabilities
are handled in our approach by a pre-processing step which merges
adjacent saddles (controlled by ε1). An alternative would consist in
exploring the space of all possible branch decompositions (not neces-
sarily persistence-driven), as studied by Beketayev et al. [14]. However,
the search space would then become significantly larger. Moreover,
the nesting of birth/death values within the BDTs would no longer
be guaranteed, which is however a key property which we exploit in
our framework (Sec. 4). When computing barycenters of persistence
diagrams, Vidal et al. [113] showed that the optimization could be dras-
tically accelerated by introducing persistence pairs progressively along
the iterations, while implicitly maintaining previous assignments at
each initialization. We leave the study of such a progressive strategy to
future work, although the fact that WT

2 handles many small assignment
problems (unlike WD

2 ) indicates that such a strategy may result in only
modest gains for merge trees. Fig. 14 provides an empirical evaluation
of the stability of WT

2 . Similarly to Sridharamurthy et al. [106], we
believe that the theoretical investigation of the stability of WT

2 goes
beyond the scope of this paper and we leave it for future work.

8 CONCLUSION

In this paper, we presented a computational framework for the esti-
mation of distances, geodesics and barycenters of merge trees, with
applications to feature tracking, temporal reduction and ensemble clus-
tering and summarization. Our approach filled the gap between the edit
distance [106] and existing optimization frameworks for persistence
diagrams [112]. Our work enables faithful interpolations of merge trees
(Fig. 10) and the generation of merge trees representative of a set (Figs.
1, 12, and 13). Moreover, our task-based algorithm enables automatic
barycenter computations within minutes for real-life ensembles.

A natural direction for future work is the extension of our framework
to other topological data representations, such as Reeb graphs or Morse-
Smale complexes. However, the question of defining relevant and
computable metrics for these objects is still an active research debate.
Moreover, as illustrated by this paper, extending existing metrics to
make them conducive to efficient geodesic computation further requires
additional efforts. We believe our work is an important practical step
towards the definition of a larger statistical framework on the space
of merge trees. In the future, based on our framework, we will study
the definition of more sophisticated statistical indexes (for instance by
investigating a notion of covariance matrix for merge trees), to support
even more advanced analyses of large-scale ensemble data.
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Fig. 16. The composition ψ ′ ◦φ ′ of two rooted isomorphisms φ ′ (blue)
and ψ ′ (green) is itself a rooted isomorphism (red). In this schematic
view, the involved subtrees are represented as squares.
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APPENDIX

1 THE EDIT DISTANCE BETWEEN MERGE TREES [106]
This section formalizes the edit distance introduced by Sridharamurthy et al. [106] (Sec. 1.1)
and discusses some of its technical aspects which make it not conducive to interpolation-
based geodesics (Sec. 1.2).

1.1 Definition
The edit distance between two merge trees T ( fi) and T ( f j), noted DE

(
T ( fi),T ( f j)

)
,

is defined as follows. Let Ni be a subset of the nodes of T ( fi) and Ni its complement.
Let φ ′′′ be a partial assignment between Ni and a subset N j of the nodes of T ( f j) (with
complement N j). Then DE

(
T ( fi),T ( f j)

)
is given by:

DE
(
T ( fi),T ( f j)

)
= min

(φ ′′′ ,Ni ,Nj )∈Φ′′′

(
∑

ni∈Ni

γ
(
ni→ φ

′′′(ni)
)

(15)

+ ∑
ni∈Ni

γ(ni→ /0) (16)

+ ∑
n j∈N j

γ( /0→ n j)
)

(17)

where Φ′′′ is the space of constrained partial assignments (i.e. φ ′′′ maps disjoint subtrees of
T ( fi) to disjoint subtrees of T ( f j)) and where γ refers to the cost for: (i) mapping a node
ni ∈T ( fi) to a node φ ′′(ni) = n j ∈T ( f j) (line 15), (ii) deleting a node ni ∈T ( fi) (line
16) and (iii) creating a node n j ∈T ( f j) (line 17), /0 being the empty tree.

Zhang [121] introduced a polynomial time algorithm for computing a constrained
sequence of edit operations with minimal edit distance (Eq. 15), and showed that the
resulting distance is indeed a metric if each cost γ for the above three edit operations is
itself a metric (non-negativity, identity, symmetry, triangle inequality). Sridharamurthy
et al. [106] exploited this property to introduce their metric, by defining the following
distance-based cost model, where pi and p j stand for the persistence pairs containing the
nodes ni ∈T ( fi) and n j ∈T ( f j):

γ(ni→ n j) = min
(
d∞(pi, p j),γ(ni→ /0)+ γ( /0→ n j)

)
γ(ni→ /0) = d∞

(
pi,∆(pi)

)
γ( /0→ n j) = d∞

(
∆(p j), p j

)
.

In our work, we introduce an alternative edit distance which further adheres to the L2-
Wasserstein distance between persistence diagrams.

1.2 Interpolation
As shown in the main manuscript (Fig. 4), the linear interpolation of DE ’s matchings does
not describe a shortest path (i.e. it generates inaccurate midpoints). A key technical reason
for this is that DE involves assignments between nodes (of the input merge trees) and not
persistence pairs. This has several consequences. First, given two input trees T ( fi) and
T ( f j), DE ’s matchings may assign a saddle node in T ( fi) to an extremum node in T ( f j),
resulting in inconsistent interpolations in the data (from a valley to a peak). Second, DE ’s
matchings can possibly assign two nodes in T ( fi) belonging to a single persistence pair of
fi to nodes in T ( f j) belonging to distinct persistence pairs in f j . This second phenomenon
further challenges interpolation-based geodesics.

2 WT
2 IS A METRIC

As further described in the main manuscript, given two merge trees T ( fi) and T ( f j)

and their branch decomposition trees (BDTs) B( fi) and B( f j), the dissimilarity measure
W T

2

(
B( fi),B( f j)

)
is given by:

W T
2
(
B( fi),B( f j)

)
= min

(φ ′ ,Bi ,B j )∈Φ′

(
∑

bi∈Bi

γ
(
bi→ φ

′(bi)
)2

+ ∑
bi∈Bi

γ(bi→ /0)2 (18)

+ ∑
b j∈B j

γ( /0→ b j)
2
)1/2

(19)

where φ ′ is an isomorphism between Bi ⊆B( fi) and B j ⊆B( f j).

In this section, we argue that W T
2 is a metric.

W T
2

(
B( fi),B( f j)

)
is always non-negative (the costs γ are squared).

W T
2

(
B( fi),B( f j)

)
is symmetric (destruction and creation costs are symmetric, lines

18 and 19).
W T

2

(
B( fi),B( f j)

)
= 0 if and only if all costs γ = 0, which only happens if B( fi) =

B( f j) (the identity is included in Φ′).
We now argue that W T

2 preserves the triangle inequality, given three trees B( fi),
B( f j) and B( fk). For this, we follow a classical approach which we detail here for
the sake of completeness. First, we argue that a composition of (optimal) partial rooted
isomorphisms (from B( fi) to B( f j), then from B( f j) to B( fk)) is itself a valid partial
rooted isomorphism (and hence belong to our solution space Φ′) and that its associated cost
consequently bounds by above W T

2

(
B( fi),B( fk)

)
(Eq. 20). Second, we argue that this

associated cost is itself bounded by above by W T
2

(
B( fi),B( f j)

)
+W T

2

(
B( f j),B( fk)

)
.

Let (φ ′,Bi,B j) be the optimal solution of the partial assignment problem between B( fi)

and B( f j). φ ′ is a rooted isomorphism (i.e. an isomorphism between rooted subtrees)
between a subtree Bi of B( fi) and a subtree B j of B( f j) (blue, Fig. 16). Equivalently, φ ′

can also be interpreted as a bijection between the arcs of Bi and those of B j .
Let (ψ ′,B j

′,Bk) be the optimal solution of the partial assignment problem between
B( f j) and B( fk). ψ ′ is a rooted isomorphism between a subtree B j

′ of B( f j) and a subtree
Bk of B( fk) (green, Fig. 16).

Let B j
′′ be the set of nodes of B( f j) involved in both φ ′ and ψ ′ (B j

′′ = B j ∩B j
′, in red

in Fig. 16, center). Let Bi
′′ be their pre-image by φ ′ (Bi

′′ = φ ′−1(B j
′′), in red in Fig. 16,

left) and Bk
′′ their image by ψ ′ (Bk

′′ = ψ ′(B j
′′), in red in Fig. 16, right).

Since both φ ′ and ψ ′ are rooted isomorphisms, their composition ψ ′ ◦ φ ′ is also a
(rooted) isomorphism between the subtrees Bi

′′ of B( fi) and Bk
′′ of B( fk) (equivalently, it

is a bijection between the arcs of Bi
′′ and the arcs of Bk

′′). Then (ψ ′ ◦φ ′,Bi
′′,B j

′′) is itself
a rooted partial isomorphism and belongs to Φ′.

Then, it follows that:

W T
2
(
B( fi),B( fk)

)
≤

(
∑

b∈Bi ′′
γ
(
b→ ψ

′ ◦φ
′(b)
)2 (20)

+ ∑
b∈Bi ′′

γ(b→ /0)2

+ ∑
b∈Bk

′′
γ( /0→ b)2

)1/2
.

Now, let U , V , W be scalar functions on the nodes of the set
Bik = Bi ∪Bi ∪ (Bk \B′′k )∪Bk (cyan subset, Fig. 16) such that:

U(b) =



γ
(
b→ ψ ′ ◦φ ′(b)

)
for b ∈ B′′i = φ ′−1(B′′j )

γ(b→ /0) for b ∈ Bi \B′′i
γ(b→ /0) for b ∈ Bi

γ( /0→ b) for b ∈ Bk

γ( /0→ b) for b ∈ Bk \B′′k = ψ ′(B j ∩B′j).

(21)

U describes all the possible individual costs involved in the composition ψ ′ ◦ φ ′. In
particular, we can re-write Eq. 20 as:

W T
2
(
B( fi),B( fk)

)
≤ ‖U‖2 =

(
∑

b∈Bik

U(b)2)1/2
. (22)

V (b) =



γ
(
b→ φ ′(b)

)
for b ∈ B′′i = φ ′−1(B′′j )

γ
(
b→ φ ′(b)

)
for b ∈ Bi \Bi

′′

γ(b→ /0) for b ∈ Bi

0 for b ∈ Bk

γ
(
ψ ′−1(b)→ /0

)
for b ∈ Bk \B′′k = ψ ′(B j ∩B′j)

(23)



V describes a subset of the individual costs involved in the optimal rooted partial
isomorphism φ ′. In particular, only the costs involving B j ∩B′j (orange square, Fig. 16,
middle) are excluded. Thus, we have:

W T
2
(
B( fi),B( f j)

)
≥ ‖V‖2 =

(
∑

b∈Bik

V (b)2)1/2
. (24)

W (b) =



γ
(
φ ′(b)→ ψ ′ ◦φ ′(b)

)
for b ∈ B′′i = φ ′−1(B j

′′)

γ
(
φ ′(b)→ /0

)
for b ∈ Bi \B′′i

0 for b ∈ Bi

γ(b→ /0) for b ∈ Bk

γ
(
ψ ′−1(b)→ b

)
for b ∈ Bk \B′′k = ψ ′(B j ∩B′j)

(25)

Similarly to V , W describes a subset of the individual costs involved in the optimal
rooted partial isomorphism ψ ′. In particular, only the costs involving B′′k (red square, Fig. 16,
right) are excluded. Thus:

W T
2
(
B( f j),B( fk)

)
≥ ‖W‖2 =

(
∑

b∈Bik

W (b)2)1/2
. (26)

Now, since γ is defined by the Euclidean distance (Equation 9 of the main manuscript),
we have for each node b ∈ Bik :

0≤U(b)≤V (b)+W (b).

This can be verified by comparing the ith line of Eq. 21 to the sum of the ith lines of Eq. 23
and Eq. 25. Then, we have:

‖U‖2 ≤ ‖V +W‖2. (27)

Now, since the L2 norm between vectors respects itself the triangle inequality, we have
the following inequality:

‖V +W‖2 ≤ ‖V‖2 +‖W‖2. (28)

Then, by combining equations 22, 27, 28, 24, and 26, it follows that:

W T
2
(
B( fi),B( fk)

)
≤ ‖U‖2 ≤ ‖V +W‖2 ≤ ‖V‖2 +‖W‖2

≤W T
2
(
B( fi),B( f j)

)
+W T

2
(
B( f j),B( fk)

)
which concludes the proof.

3 COMPARISON TO THE EDIT DISTANCE ALGORITHM [121]
In addition to considering squared costs in our edit distance (equations of the section 3.3 of
the main manuscript), our algorithm for the exploration of the search space indeed simplifies
the approach by Zhang [121] (used by Sridharamurthy et al. [106]), as our search space is
significantly more constrained.

First, since our solution space only considers partial isomorphisms between rooted
subtrees, this implies that the destruction of a node (a branch) b j ∈ B( f j) necessarily
implies the destruction of its subtrees, i.e. of its forest F ( f j ,b j). Thus, the admissible
solutions in [106, 121] consisting in deleting b j and mapping a subtree B( fi,bi) to one of
the subtrees of b j in the forest F ( f j ,b j) are no longer admissible given our overall solution
space Φ′. The removal of such solutions drastically simplifies the evaluation of the distance
between subtrees (being the minimum of three solutions in [106], Eq. 12) to the Equation
11 of our main manuscript (containing only one expression to evaluate).

Second, our solution space (rooted partial isomorphisms) also implies that the nodes of
B( fi) can only be assigned to nodes with the same depth in B( f j). This further implies
that the distance between subtrees (Equation 11 of the main manuscript) only needs to be
evaluated for subtrees rooted at nodes of identical depth (see Fig. 6 of the main manuscript).

Together, these two simplifications ((i) simpler subtree distance and (ii) distance eval-
uation restricted to subtrees of identical depth from the root) are the key adaptations of
Zhang’s algorithm [121] that are required for the exploration of our (more constrained)
solution space.

4 PARALLEL COMPUTATION OF WT
2

In our work, we express the computation of W T
2 in terms of tasks, to leverage task-based

shared memory parallelism. First, the Equation 10 of the main manuscript is evaluated. For
this, we initiate a task at each leaf of B( fi). If a task is the last one to compute among
all the direct children of a node b ∈B( fi), it is then authorized to continue and estimate
Equation 10 in b. Atomic counters in b are implemented (and atomically incremented by
the task of each child) to determine which child task is the last one to complete, which
enables an efficient lightweight synchronization (Fig. 6 of the main manuscript). Overall,
Equation 10 is completely estimated with this strategy in a bottom-up fashion. Second,
Equation 11 (main manuscript) is evaluated similarly, by initiating a task at each leaf bi

of B( fi). In particular, this task will evaluate Equation 11 given bi against all subtrees of
B( f j) of identical depth (again using independent tasks initiated at the leaves of B( f j),
see Fig. 6). Similarly to Equation 10, we employ the same lightweight synchronization
mechanism based on atomic counters to continue a task over to its parent only when it is the
last child task reaching it. Thus, in both cases (Eqs. 10 and 11), the number of parallel tasks
is initially bounded by the number of leaves in B( fi) and B( f j) (which is typically much
larger than the number of cores) and progressively decreases during the computation.

5 Bα ( fi→ f j) IS A GEODESIC FOR 0≤ α ≤ 1
We now argue that W T

2 defines a geodesic space. For this, for any two BDTs B( fi)

and B( f j), we describe the existence of a path between them whose length is equal to
W T

2

(
B( fi),B( f j)

)
(and thus minimal).

Let P =
(
Bt
)

t∈[0,1] be a path of BDTs parameterized by t.
We recall that the length L (P) of P is given by:

L (P) = sup
n;0=t0≤t1≤···≤tn=1

n−1

∑
k=0

W T
2
(
Btk ,Btk+1

)
.

Now, let Pα be the path corresponding to the interpolation between B( fi) and
B( f j), as defined in section 4.1 of the main manuscript. We now argue that L (Pα ) =

W T
2

(
B( fi),B( f j)

)
.

Let (φ ′,Bi,B j) be the optimal rooted partial isomorphism between B( fi) and B( f j).
Moreover, let Bs( fi→ f j) and Bt ( fi→ f j) be two interpolated trees obtained respectively
with α = s and α = t, given 0≤ s≤ t ≤ 1. We will note φ ′s the application on Bi ∪Bi ∪B j

defined by interpolation (section 4.1 of the main manuscript):

φ
′
s(b) =


(1− s)b+ sφ ′(b) for b ∈ Bi

(1− s)b+ s∆(b) for b ∈ Bi

sb+(1− s)∆(b) for b ∈ B j .

(29)

φ ′t is defined similarly for t. Then, as discussed in Sec. 2 of this appendix, since the
composition of partial rooted isomorphisms is itself a partial rooted isomorphism, the
composition φ ′t ◦ φ ′s

−1 (which goes from Bs( fi → f j) to B( fi) and then from B( fi) to
Bt ( fi → f j)) does define a valid partial rooted isomorphism between Bs( fi → f j) and
Bt ( fi→ f j) and we have:

W T
2
(
Bs( fi→ f j),Bt ( fi→ f j)

)
≤(
∑

b∈Bi∪Bi∪B j

γ
(
φ
′
s(b)→ φ

′
t (b)

)2
)1/2

and we also have by definition of φ ′s and φ ′t (Eq. 29):

(
∑

b∈Bi∪Bi∪B j

γ
(
φ
′
s(b)→ φ

′
t (b)

)2
)1/2

= (t− s)W T
2
(
B( fi),B( f j)

)
.

Now, given the triangle inequality on the path Pα , we have:

W T
2
(
B( fi),B( f j)

)
≤

W T
2
(
B0( fi→ f j),Bs( fi→ f j)

)
+ W T

2
(
Bs( fi→ f j),Bt ( fi→ f j)

)
+ W T

2
(
Bt ( fi→ f j),B1( fi→ f j)

)
≤
(
s+(t− s)+(1− t)

)
W T

2
(
B( fi),B( f j)

)
=W T

2
(
B( fi),B( f j)

)
.

If follows that the above inequalities are in fact equalities and we have:

W T
2
(
Bs( fi→ f j),Bt ( fi→ f j)

)
= (t− s)W T

2
(
B( fi),B( f j)

)
.

Then, for any subdivision 0 = t0 ≤ t1 ≤ ·· · ≤ tn = 1 of Pα , we have:

n−1

∑
k=0

W T
2
(
Btk ( fi→ f j),Btk+1( fi→ f j)

)
=

n−1

∑
k=0

(tk+1− tk)W T
2
(
B( fi),B( f j)

)
= (tn− t0)W T

2
(
B( fi),B( f j)

)
=W T

2
(
B( fi),B( f j)

)
.

Thus L (Pα ) =W T
2

(
B( fi),B( f j)

)
.

Hence the space of merge trees equipped with W T
2 is a geodesic space, and Bα ( fi→ f j)

constructs paths of minimal length on it.



6 WT
2 WITH NORMALIZED COSTS DEFINES A GEODESIC SPACE

Let W N
2

(
B( fi),B( f j)

)
be a similarity measure between B( fi) and B( f j), defined as:

W N
2
(

B( fi),B( f j)
)
=W T

2

(
N
(
B( fi)

)
,N

(
B( f j)

))
where N is the local normalization described in Section 4.2 of the main manuscript. Since
N is invertible, W N

2 inherits all the properties of W T
2 and is also a distance metric.

The normalized interpolation Bs( fi → f j), s ∈ [0,1] between B( fi) and B( f j) is
defined as the image by N −1 of the interpolation between the normalized trees N (B( fi))

and N (B( f j)). Then, given s and t such that 0≤ s≤ t ≤ 1, it follows that:

W N
2
(
Bs( fi→ f j),Bt ( fi→ f j)

)
= (t− s)W T

2

(
N
(
B( fi)

)
,N

(
B( f j)

))
= (t− s)W N

2
(
B( fi),B( f j)

)
which proves that the space of merge trees equipped with W N

2 is a geodesic space, and that
the above normalized interpolation constructs paths of minimal length on it.

7 MINIMIZING THE FRÉCHET ENERGY

The optimization algorithm described in Section 5.2 of the main manuscript constructively
decreases the Fréchet energy at each iteration. In particular, once a local minimizer of the
Fréchet energy is obtained for a fixed assignment with the update step (ii), the subsequent
assignment step (i) does further improve the assignments hence iteratively decreasing the
Fréchet energy constructively.

Let F ′ be a function of an arbitrary BDT B and of an arbitrary (i.e. not necessarily
optimal) set of N rooted partial isomorphisms (φ ′ i,Bi,BB)i=1,...,N between B and the N
BDTs of SB :

F ′
(
B,(φ ′ i,Bi,BB)i=1,...,N

)
:= ∑

B( fi)∈SB

(
∑bi∈Bi

γ
(
bi→ φ ′i (bi)

)2

+∑bi∈Bi
γ(bi→ /0)2

+∑bB∈BB
γ( /0→ bB)2

)1/2
.

Now, let Bk be the candidate barycenter at the iteration k of the algorithm and let
(φ ′i

k ,Bk
i ,B

k
B) be the optimal rooted partial isomorphism between Bk and B( fi), computed

by the assignment step of the iteration. Then, we have:

F ′
(
Bk ,(φ

′
i

k
,Bi

k ,BB
k)i=1,...,N

)
= ∑

B( fi)∈SB

W T
2
(
Bk ,B( fi)

)2
.

Next, the update step of the iteration k consists in moving Bk to Bk+1 by placing (in
the 2D birth/death space) each branch b ∈Bk at the arithmetic mean of the assignments.
Since the arithmetic mean generally minimizes sums of Euclidean distances, we have:

F ′(Bk+1,(φ
′
i

k
,Bi

k ,BB
k)i=1,...,N)≤ F ′(Bk ,(φ

′
i

k
,Bi

k ,BB
k)i=1,...,N).

Now, observe that since the previous rooted partial isomorphisms are not optimal
anymore for Bk+1, we also have:

∑
B( fi)∈SB

W T
2
(
Bk+1,B( fi)

)2 ≤ F ′(Bk+1,(φ
′
i

k
,Bi

k ,BB
k)i=1,...,N).

Once Bk+1 is fixed, all the rooted partial isomorphisms are then optimized again with
the assignment step of the iteration k+1 to attain:

F ′
(
Bk+1,(φ

′k+1
i ,Bi

k+1,BB
k+1)i=1,...,N

)
= ∑

B( fi)∈SB

W T
2
(
Bk+1,B( fi)

)2
.

The result of these two steps is that:

F ′
(
Bk+1,(φ

′k+1
i ,Bi

k+1,BB
k+1)i=1,...,N

)
≤ F ′(Bk ,(φ

′
i

k
,Bi

k ,BB
k)i=1,...,N)

∑
B( fi)∈SB

W T
2
(
Bk+1,B( fi)

)2 ≤ ∑
B( fi)∈SB

W T
2
(
Bk ,B( fi)

)2
.

Then, each iteration of our algorithm indeed decreases the Fréchet energy. Since there is
a finite number of combinations of rooted partial isomorphisms between the barycenter and
the N input trees B( fi), it follows that the algorithm converges, in a finite number of steps,
to a local minimum B∗ of the Fréchet energy (if multiple, equally valued, optimal sets of
assignments exist between B∗ and SB , each one needs to be explored with the update step
of our algorithm). In practice, as described in the manuscript, we stop our algorithm when
the Fréchet energy has decreased by less than 1% between consecutive iterations.

Fig. 17. Comparison between the key frames identified by our temporal
reduction algorithm, with regard to WT

2 (blue, top) and with regard to WD
2

(red, bottom). By construction, the reduction algorithm identifies as key
frames the first and last time steps, irrespective of the employed metric.

8 TEMPORAL REDUCTION ALGORITHM

Let S = {B( f1),B( f2), . . . ,B( fN)} be the input temporal sequence of BDTs (we
assume a regular temporal sampling). Let K ⊆ S be a set of key frames. Let
S ′ = {B′( f1),B′( f2), . . . ,B′( fN)} be a reduced temporal sequence, where:

B′( fi) = (1−αi)B( f j)+αiB( fk) (30)

where B( f j) and B( fk) are two consecutive trees in K , such that j ≤ i ≤ k and αi =

(i− j)/(k− j). B′( fi) is then on a geodesic between B( f j) and B( fk). We introduce the
following distance between the temporal sequences S and S ′:

dS(S ,S ′) =
( N

∑
i=0

W T
2
(
B( fi),B

′( fi)
)2
)1/2

. (31)

dS is indeed a metric since it is a composition of metrics (being the L2 norm between vectors
of BDTs under the metric W T

2 ).
Our algorithm for temporal reduction consists in initializing K with the entire input

sequence (K ←S ) and then removing greedily, at each iteration, the tree B∗ from K

(K ←K −{B∗}) which minimizes dS(S ,S ′), and which, hence, better preserves the
input sequence, until K reaches a target size.

Fig. 17 shows the temporal reduction performed by this algorithm on the Asteroid impact
sequence (see Section 9.1). This figure illustrates key frames, which correspond to time
steps for which B( fi) = B′( fi): these are the time steps which have not been removed
from the sequence through the reduction. In particular, this figure compares the usage of
two metrics in the reduction algorithm: W T

2 (blue, top) and W D
2 (red, bottom, obtained

with ε1 = 1). By construction, since our reduction algorithm is based on interpolation only,
the first and last BDTs in the sequence S are always kept in the reduced sequence S ′. In
other words, the first (leftmost, Fig. 17) and last (rightmost, Fig. 17) time steps are always
identified as key frames, irrespective of the employed metric. For this specific example, the
second key frame (second from left, Fig. 17) also happens to be identical for both metrics.
In contrast to the sequence extremities, the common identification of this time step as a
key frame by W T

2 and W D
2 is not obtained by construction: the reduction algorithm did

select this key frame in both configurations. Then, only the third key frame (third from left,
Fig. 17) is different in this example. In particular, when using W T

2 , the reduction algorithm
identifies one key frame per key phase of the simulation (see Section 9.1, each key phase is
represented in Fig. 17 with a frame of distinct color). In contrast, when using W D

2 , the third
key frame belongs to the same key phase as the last key frame (“Aftermath”, light blue
frame). Then the reduction driven by W D

2 fails at identifying a key frame for the third key
phase (“Impact”, dark blue frame). This is confirmed visually in Fig. 17, as the third key
frame identified with W T

2 (in blue) seems to represent an intermediate step in the simulation
between the second and fourth key frames. In contrast, the third key frame identified by
the reduction with W D

2 (in red) is more visually similar to the fourth key frame, and hence
possibly more redundant.

9 DATA SPECIFICATION

This section provides a complete specification of the ensemble datasets used in the paper.
In particular, we document the data provenance, its representation, its pre-processing when
applicable, and we specify the associated ground-truth classification.

All of these ensemble datasets were extracted from public repositories. We addi-
tionally provide a set of scripts which automatically download all of these datasets (at
the exception of Asteroid impact and Cloud processes, for which the dataset providers
need to be contacted personally), pre-process them with TTK and output them in
VTK file format, with the ground-truth classification attached to the files as meta-
data (i.e. “Field Data” in the VTK terminology). For convenience, we also pro-
vide an archive containing the entire curated ensemble datasets (in VTK file format).
All of this new material (scripts and curated data) is located at the following address:
https://github.com/MatPont/WassersteinMergeTreesData.

Moreover, we also provide in additional material all the ensembles of merge trees
computed from these datasets (in the code archive containing the implementation of our
method).

https://github.com/MatPont/WassersteinMergeTreesData


9.1 Asteroid impact
This ensemble is composed of 7 members, given as 3D regular grids (sampled at 300×
300× 300, implicitly triangulated by TTK). It has been made available in the context
of the SciVis contest 2018 [84]. Each member corresponds to the last time step of the
simulation of the impact of an asteroid with the sea at the surface of the Earth, for two
configurations of asteroid diameter. The considered scalar field is the matter density,
which is one of the variables of the simulation which discriminates well the asteroid from
the water and the ambient air. This ensemble corresponds to a parameter study (in this
case, studying the effect of the asteroid’s diameter on the resulting wave), which is a
typical task in numerical simulation. In this application, salient maxima capture well the
asteroid and large water splashes. Thus, each member is represented by the split tree
(capturing maxima). The associated ground-truth classification assigns members computed
with similar asteroid diameters to the same class. Thus, the corresponding classification
task consists in identifying, for a given member, its correct asteroid diameter class. The
ground-truth classification is as follows:

• Class 1 (3 members): yA11, yB11, yC11.

• Class 2 (4 members): yA31, yA32, yB31, yC31

Another selection of the original data has been used for the evaluation of our temporal
reduction framework (Fig. 10 of the main manuscript). For this experiment, we used the
asteroid diameter configuration “yA31” and considered the following time steps, organized
in 4 phases (according to the SciVis contest companion documentation [84]):

• Phase 1, initial state (5 time steps): 01141, 03429, 05700, 07920, 09782

• Phase 2, approach (5 time steps): 13306, 16317, 18124, 19599, 21255

• Phase 3, impact (5 time steps): 28649, 31737, 34654, 37273, 39476

• Phase 4, aftermath (5 time steps): 44229, 45793, 47190, 48557, 49978

9.2 Cloud processes
This ensemble is composed of 12 members, given as 2D regular grids (sampled at 1430×
1557, implicitly triangulated by TTK). Each member corresponds to a time step of the
simulation of cloud formations [116]. For this application, large clouds are well captured
by the maxima of the pressure variable (pre-processed with 10 iterations of smoothing).
Thus, split trees (capturing maxima) are considered for this ensemble. The associated
ground-truth classification assigns each time step to one of the three key phases of the
simulation. The corresponding classification task therefore consists in identifying, for each
time step, to which phase it belongs. The ground-truth classification is as follows:

• Class 1 (4 members): 0, 5, 10, 15

• Class 2 (4 members): 500, 505, 510, 515

• Class 3 (4 members): 1000, 1005, 1010, 1015

9.3 Viscous fingering
This ensemble is composed of 15 members, given as 3-dimensional point clouds (rep-
resenting a particle-based flow simulation). Each point cloud is turned into a Eulerian
representation of the variables by using the “Gaussian Resampling” filter of ParaView,
effectively transforming, via interpolation [101], each ensemble member into a 3D regular
grid (sampled at 50×50×50, implicitly triangulated by TTK). The original data has been
made available in the context of the SciVis contest 2016 [45]. Each member corresponds
to the last time step of the simulation of a viscous fingering phenomenon, occurring when
dissolving salt in water. The considered scalar field is the salt concentration, whose salient
maxima capture well the most prominent fingers. Thus, each member is represented by
the split tree (capturing maxima). Given the studied physical phenomenon, the simulation
approach is not deterministic, resulting in distinct outputs for identical initial configurations.
In this application, three distinct solver resolutions have been considered, corresponding
to three distinct numbers of particles (resolution code 20: 194k particles, resolution code
30: 544k particles, resolution code 44: 1.7M particles). Thus, this ensemble corresponds
to a parameter study (in this case, studying the effect of the input resolution on the output
fingering), which is a typical task in numerical simulation. The associated ground-truth
classification assigns members with the same input resolution to the same class. Thus, the
corresponding classification task consists in identifying, for a given ensemble member, its
corresponding particle count. The ground-truth classification is as follows:

• Class 1, resolution 20 (5 members): 20run1, 20run3, 20run4, 20run5, 20run6.

• Class 2, resolution 30 (5 members): 30run1, 30run2, 30run3, 30run4, 30run5

• Class 3, resolution 44 (5 members): 30run1, 30run2, 30run3, 30run4, 30run5

9.4 Dark matter
This ensemble is composed of 40 members, given as 3-dimensional point clouds (represent-
ing a particle-based simulation). Each point cloud is turned into a Eulerian representation
of the variables by using the “Gaussian Resampling” filter of ParaView, effectively trans-
forming, via interpolation [101], each ensemble member into a 3D regular grid (sampled
at 100× 100× 100, implicitly triangulated by TTK). The original data has been made
available in the context of the SciVis contest 2015 [56]. Each member corresponds to a
time step of a simulation of the universe formation, where regions of high concentration
of dark matter form a filament structure known as the cosmic web. The considered scalar
field is therefore dark matter density, whose salient maxima capture well large clusters
of galaxies. Thus, each member is represented by the split tree (capturing maxima). The
associated ground-truth classification assigns each time step to one of the four key phases
of the simulation. The corresponding classification task therefore consists in identifying,
for each time step, to which phase it belongs. The ground-truth classification is as follows:

• Class 1 (10 members): 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700, 0.0800,
0.0900, 0.1000, 0.1100

• Class 2 (10 members): 0.2700, 0.2800, 0.2900, 0.3000, 0.3100, 0.3200, 0.3300,
0.3400, 0.3500, 0.3600

• Class 3 (10 members): 0.5900, 0.6000, 0.6100, 0.6200, 0.6300, 0.6400, 0.6500,
0.6600, 0.6700, 0.6800

• Class 4 (10 members): 0.9100, 0.9200, 0.9300, 0.9400, 0.9500, 0.9600, 0.9700,
0.9800, 0.9900, 1.0000

9.5 Volcanic eruptions
This ensemble is composed of 12 members, given as 2D regular grids (sampled at 500×500,
implicitly triangulated by TTK). Each member corresponds to an observation of a volcanic
eruption, obtained by satellite imaging (as this data exhibits a bit of noise, it has been
pre-simplified by removing all saddle-maxima pairs with a persistence lower than 0.5%
of the data range). The original data has been made available in the context of the SciVis
contest 2014 [41]. The considered scalar field is the sulfur dioxide concentration, for which
salient maxima correspond to volcanic eruptions. Thus, each observation is represented
by the split tree (capturing maxima). Each member corresponds to a specific acquisition
period, itself corresponding to the eruption of one particular volcano at the surface of the
Earth. The associated ground-truth classification assigns observations acquired in the same
period of time to the same class. The corresponding classification task therefore consists
in identifying, for each observation (taken at a specified date), the erupting volcano it
corresponds to. The ground-truth classification is as follows:

• Class 1 (4 members): 150 am, 150 pm, 151 am, 151 pm

• Class 2 (4 members): 156 am, 156 pm, 157 am, 157 pm

• Class 3 (4 members): 164 am, 164 pm, 165 am, 165 pm

9.6 Ionization front (3D)
This ensemble is composed of 16 members, given as 3D regular grids (sampled at 300×
124×124, implicitly triangulated by TTK). Each member corresponds to a time step of a
simulation of ionization front propagation [109]. For this application, large ionization flares
are well captured by salient maxima of the ion concentration. Thus, split trees (capturing
maxima) are considered for this ensemble. The associated ground-truth classification
assigns each time step to one of the four key phases of the simulation. The corresponding
classification task therefore consists in identifying, for each time step, to which phase it
belongs. The ground-truth classification is as follows:

• Class 1 (4 members): 0025, 0026, 0027, 0028

• Class 2 (4 members): 0075, 0076, 0077, 0078,

• Class 3 (4 members): 0125, 0126, 0127, 0128

• Class 4 (4 members): 0175, 0176, 0177, 0178,

9.7 Ionization front (2D)
This ensemble is a 2D version of the above ensemble, where the dataset providers have
selected a 2D slice in the center of the volume (sampled at 600× 248). The associated
classification task is therefore identical.

9.8 Earthquake
This ensemble is composed of 12 members, given as 3D regular grids (sampled at 375×
188×50, implicitly triangulated by TTK). Each member corresponds to a time step of the
simulation of an earthquake at the San Andreas fault [77]. For this application, the shock
wave can be tracked with the local maxima of the wave front velocity magnitude (this scalar
field is pre-processed to pre-simplify all saddle-maxima pairs with a persistence smaller
than 0.05% of the data range). Thus, split trees (capturing maxima) are considered for this
ensemble. The associated ground-truth classification assigns each time step to one of the
three key phases of the simulation. The corresponding classification task therefore consists
in identifying, for each time step, to which phase it belongs. The ground-truth classification
is as follows:



• Class 1 (4 members): 002700, 002900, 003100, 003300

• Class 2 (4 members): 007700, 007900, 008100, 008300

• Class 3 (4 members): 011700, 011900, 012100, 012300

9.9 Isabel
This ensemble is composed of 12 members, given as 3D regular grids (sampled at 250×
250×50, implicitly triangulated by TTK). Each member corresponds to a time step of the
simulation of the Isabel hurricane [114]. This ensemble has been used in previous work
[39, 113] and the corresponding VTK files are available at the following address: https:
//github.com/julesvidal/wasserstein-pd-barycenter. In this application, the
eyewall of the hurricane is typically characterized by high wind velocities, well captured by
the the maxima of the flow velocity. Thus, split trees (capturing maxima) are considered
for this ensemble. The associated ground-truth classification assigns each time step to
one of the three key phases (formation, drift, landfall) of the hurricane simulation. The
corresponding classification task therefore consists in identifying, for each member, to
which key phase it belongs. The ground-truth classification is as follows:

• Class 1 (4 members): 2, 3, 4, 5

• Class 2 (4 members): 30, 31, 32, 33

• Class 3 (4 members): 45, 46, 47, 48

9.10 Starting vortex
This ensemble is composed of 12 members, given as 2D regular grids (sampled at 1500×
1000, implicitly triangulated by TTK). It has been generated with the Gerris flow solver [89]
and was provided in previous work [39,113]. It is available at the following address: https:
//github.com/julesvidal/wasserstein-pd-barycenter. The data models flow
turbulence behind a wing, for two ranges of wing inclination angles. The considered
scalar field is the orthogonal component of the curl of the flow velocity. This ensemble
corresponds to a parameter study (in this case, studying the effect of the wing configuration
on turbulence), which is a typical task in numerical simulation. In this application, salient
extrema are typically considered as reliable estimations of the center of vortices. Thus, each
run is represented by two merge trees (the join tree – capturing minima, and the split tree,
capturing maxima), which are processed independently by our algorithms. The associated
ground-truth classification assigns members computed with similar inclination angles to
the same class. The corresponding classification task therefore consists in identifying,
for a given ensemble member, its correct wing configuration class. The ground-truth
classification is as follows:

• Class 1 (6 members): Angle=2, Angle=3, Angle=4, Angle=5, Angle=6, Angle=8

• Class 2 (6 members): Angle=38, Angle=39, Angle=40, Angle=41, Angle=42,
Angle=43

9.11 Sea surface height
This ensemble is composed of 48 members, given as 2D regular grids (sampled at 1440×
720, implicitly triangulated by TTK). Each member corresponds to an observation of the
sea surface height at the surface of the Earth, taken in January, April, July and October
2012. The original data can be found at the following address: https://ecco.jpl.nasa.
gov/products/all/. This ensemble has been used in previous work [39, 113] and the
corresponding VTK files are available at the following address: https://github.com/
julesvidal/wasserstein-pd-barycenter. In this application, the features of interest
are the center of eddies, which can be reliably estimated with height extrema. Thus, each
observation is represented by two merge trees (the join tree – capturing minima, and the
split tree, capturing maxima), which are processed independently by our algorithms. The
associated ground-truth classification assigns observations acquired in the same month to
the same class. The corresponding classification task therefore consists in identifying, for
each observation (taken at a specified date), the season in which it has been acquired. The
ground-truth classification is as follows:

• Class 1 (12 members): 20120111, 20120115, 20120116, 20120117, 20120118,
20120119, 20120120, 20120121, 20120123, 20120128, 20120129

• Class 2 (12 members): 20120419, 20120420, 20120421, 20120422, 20120423,
20120424, 20120425, 20120426, 20120427, 20120428, 20120429, 20120430

• Class 3 (12 members): 20120711, 20120712, 20120713, 20120714, 20120715,
20120716, 20120717, 20120718, 20120719, 20120720, 20120721, 20120722

• Class 4 (12 members): 20121008, 20121009, 20121010, 20121011, 20121012,
20121016, 20121017, 20121018, 20121019, 20121020, 20121022, 20121023

9.12 Vortex street
This ensemble is composed of 45 members, given as 2D regular grids (sampled at 300×100,
implicitly triangulated by TTK). It has been generated with the Gerris flow solver [89]
and was provided in previous work [39, 113]. It is available at the following address:
https://github.com/julesvidal/wasserstein-pd-barycenter. The data mod-
els flow turbulence behind an obstacle. The considered scalar field is the orthogonal
component of the curl of the flow velocity, for 5 fluids of different viscosity. This ensemble
corresponds to a parameter study (in this case, studying the effect of viscosity on turbu-
lence), which is a typical task in numerical simulation. In this application, salient extrema
are typically considered as reliable estimations of the center of vortices. Thus, each run
is represented by two merge trees (the join tree – capturing minima, and the split tree,
capturing maxima), which are processed independently by our algorithms. The associated
ground-truth classification assigns members computed with similar viscosities to the same
class. The corresponding classification task therefore consists in identifying, for a given
ensemble member, its correct viscosity class. The ground-truth classification is as follows:

• Class 1 (9 members): Viscosity=100.0, Viscosity=100.1, Viscosity=100.2, Viscos-
ity=100.3, Viscosity=100.4, Viscosity=100.5, Viscosity=100.6, Viscosity=100.7,
Viscosity=100.9

• Class 2 (9 members): Viscosity=160.0, Viscosity=160.1, Viscosity=160.2, Viscos-
ity=160.3, Viscosity=160.4, Viscosity=160.5, Viscosity=160.6, Viscosity=160.7,
Viscosity=160.8

• Class 3 (9 members): Viscosity=200.0, Viscosity=200.1, Viscosity=200.2, Viscos-
ity=200.3, Viscosity=200.4, Viscosity=200.5, Viscosity=200.6, Viscosity=200.7,
Viscosity=200.8

• Class 4 (9 members): Viscosity=50.0, Viscosity=50.1, Viscosity=50.2, Viscos-
ity=50.3, Viscosity=50.5, Viscosity=50.6, Viscosity=50.7, Viscosity=50.8, Viscos-
ity=50.9

• Class 5 (9 members): Viscosity=60.1, Viscosity=60.2, Viscosity=60.3, Viscos-
ity=60.4, Viscosity=60.5, Viscosity=60.6, Viscosity=60.7, Viscosity=60.8, Viscos-
ity=60.9

10 PARAMETER ANALYSIS

In this section, we study the practical effect of the parameters of our approach. In particular,
we extend the empirical stability evaluation of our metric with regard to all the parameters
of our approach and we illustrate their effect on geodesic computation.

10.1 Interpretation
The first parameter of our approach is ε1 ∈ [0,1]. It dictates the merge of saddles in the input
trees, to mitigate saddle swap instabilities, as previously documented by Sridharamurthy et
al. [106]. Adjacent saddles in the input trees are merged if their relative difference in scalar
value (relative to the largest function difference between adjacent saddles) is smaller than
ε1. For ε1 = 0, no saddle merge is performed whereas for ε1 = 1, all saddles are merged
and W T

2 becomes equivalent to the L2 Wasserstein distance between persistence diagrams,
noted W D

2 .
The local normalization step of our framework (Section 4.2 of the main manuscript)

guarantees the topological consistency of the interpolated merge trees (Fig. 8 of the main
manuscript). However, this normalization shrinks the birth/death values of all the input
branches to the interval [0,1], irrespective of their original persistence. To mitigate this
effect, the input BDTs are pre-processed, so that branches with small initial persistence
(i.e. small branches) are not given too much importance in the metric. In particular, small
branches are moved up the input BDT if their persistence relative to their parent is larger
than ε2 ∈ [0,1]. When ε2 = 0, all branches are moved up to the root of the BDT and
again, W T

2 becomes equivalent to W D
2 . When ε2 = 1, no branch is moved up the BDT and

ε2 has no effect on the outcome (i.e. the input BDT is left unchanged). In practice, we
recommend the default value ε2 = 0.95: if a branch b has a nearly identical persistence
to that of its parent b′, it is moved higher in the BDT, so that its normalized persistence
becomes nearly identical to that of its parent b′ (instead of being artificially larger due to
the local normalization).

The parameter ε3 ∈ [0,1] further restricts the application of the above BDT pre-
processing, by only considering (for displacement up the BDT) the branches with a rel-
ative persistence (with respect to the overall data range) smaller than ε3. When ε3 = 1,
all branches are subject to the above pre-processing and ε2 fully dictates the BDT pre-
processing. When ε3 = 0, no branch is moved up the BDT and the two parameters ε2 and
ε3 have no effect on the outcome. In practice, we recommend the default value ε3 = 0.9,
which prevents the most persistent branches from moving up the BDT.

Overall, when the parameters (ε1,ε2,ε3) are set to the values (0,1,1), the input trees are
not pre-processed by the above procedures (i.e. they are left unchanged) and their structure
has a strong impact on W T

2 . When ε1 = 1 or when ε2 = 0, W T
2 becomes equivalent to

W D
2 and the structure of the input trees has no impact anymore on the metric. In-between

values balance the importance of the structure of the trees on the metric. We recommend
the default values (0.05,0.95,0.9), which provides an acceptable stability with regard to
saddle swaps (mitigated by ε1) and which gives a reasonable importance to small branches
in the metric (controlled by ε2 and ε3, which are dependent parameters).

https://github.com/julesvidal/wasserstein-pd-barycenter
https://github.com/julesvidal/wasserstein-pd-barycenter
https://github.com/julesvidal/wasserstein-pd-barycenter
https://github.com/julesvidal/wasserstein-pd-barycenter
https://ecco.jpl.nasa.gov/products/all/
https://ecco.jpl.nasa.gov/products/all/
https://github.com/julesvidal/wasserstein-pd-barycenter
https://github.com/julesvidal/wasserstein-pd-barycenter
https://github.com/julesvidal/wasserstein-pd-barycenter


Fig. 18. Empirical stability evaluation with regard to ε2. Given an input
scalar field fi, a noisy version f j is created by inserting a random noise
of increasing amplitude ε (cf. Figure 14 of the main manuscript). The
evolution of WT

2
(
B( fi),B( f j)

)
with ε is reported for varying values of ε2.

Fig. 19. Empirical stability evaluation with regard to ε3. Given an input
scalar field fi, a noisy version f j is created by inserting a random noise
of increasing amplitude ε (cf. Figure 14 of the main manuscript). The
evolution of WT

2
(
B( fi),B( f j)

)
with ε is reported for varying values of ε3.

10.2 Metric stability
Figure 14 of the main manuscript provides an empirical stability evaluation of our new
metric W T

2 , as a function of an input perturbation, modeled by a random noise of amplitude
ε . In particular, this experiment is achieved for several values of ε1. The conclusion of this
experiment is that W T

2 is not stable when ε1 = 0 (sudden increase in W T
2 for small values

of ε) and that it is stable when ε1 = 1 (as anticipated [112]). For in-between values, W T
2 is

stable until a transition point (colored dots in Fig. 14 of the main manuscript), located at
increasing noise levels (ε) for increasing values of ε1. In particular, for the recommended
default value ε1 = 0.05, W T

2 is stable up to a perturbation noise of amplitude 16% (of the
overall data range).

In the following, we perform the same study for the other parameters of our approach,
ε2 and ε3. Fig. 18 studies the practical stability of W T

2 , for several values of ε2. For this
experiment, ε3 has been set to 1 (then, only ε2 has an impact on the BDT pre-processing
described in the previous section). Moreover, ε1 has been set to its recommended value, 0.05.
Several curves are reported, one per ε2 values. For ε2 = 0, all branches are moved up the
BDT (irrespective of ε1) and W T

2 becomes equivalent to W D
2 and the corresponding curve

(red) exactly coincides with the light blue curve of the Figure 14 of the main manuscript
(ε1 = 1). For ε2 = 1, the input BDT is not pre-processed at all and the corresponding curve
(pink) exactly coincides with the cyan curve of Figure 14 of the main manuscript (obtained
for the default value ε1 = 0.05). In-between values of ε2 result in continuous transitions
between these two extreme cases (blue, green and cyan curves).

Fig. 19 studies the practical stability of W T
2 , for several values of ε3. For this experiment,

we set ε1 = 0 and ε2 = 0, to better isolate the effect of ε3. When ε3 = 1, all the branches
of the input BDTs are subject to the BDT pre-processing. Since ε2 = 0, all branches are
moved up to the root and W T

2 becomes equivalent to W D
2 and the corresponding curve (red)

exactly coincides with the light blue curve of the Figure 14 of the main manuscript (ε1 = 1).
When ε3 = 0, no branch is moved up in the input BDTs and the corresponding curve (pink)
exactly coincides with the grey curve of the Figure 14 of the main manuscript (ε1 = 0).
In-between values of ε3 result in transitions between these two extreme cases (blue, green
and cyan curves), with transition points (similar to the Figure 14 of the main manuscript),
before which W T

2 is stable. Note however, that since it is dependent on ε2 (default value:
0.95), ε3 has only a very mild practical impact on the metric.

10.3 Geodesic analysis
Figures 20, 21 and 22 respectively illustrate the effect of the parameters ε1, ε2 and ε3 on the
geodesics between merge trees. In particular, each figure shows, on the left, the geodesic
obtained with a disabling value of the parameter (no effect on the computation). In contrast,
the right side of each figure shows the geodesic obtained with the recommended default
value of the parameter, to clearly visualize its impact.

Overall, as discussed in the detailed captions, these three parameters have the effect
of moving branches up the input BDTs, hence reducing the structural impact of the trees
on the metric, but also improving its stability (as discussed in Section 10.2). In the data,
moving a branch up the BDT corresponds to only slight modifications, which consist in
reconnecting maxima to distinct saddles. For each parameter, the resulting pre-processing
addresses cases where nearby saddles have very close function values, which impacts the
stability of the metric. Similarly to Sridharamurthy et al. [106], we mitigate this effect with
ε1, but we also introduce ε2 and ε3 to specifically limit the importance in the metric of
branches with persistence close to that of their parent.



Fig. 20. Impact of the parameter ε1 on geodesic computation (left: ε1 = 0, right: ε1 = 0.05). In this example (left), the white branch in T ( fi) is not
matched to the white branch in T ( f j) as they have distinct depths in the corresponding BDTs (2 versus 1). However, these features are visually
similar in the data (Gaussians with the white maximum in fi and f j, bottom left corner of the domain). With ε1 = 0.05 (right), the saddle of the white
branch in T ( fi) gets merged with its ancestor saddle (whose fi value was less than ε1 away). Consequently, the white branch gets moved up the
BDT (the white branch is attached to the main light blue branch in T ( fi), right). Since they now have identical depths in the corresponding BDTs, the
white branches of T ( fi) and T ( f j) can now be matched together (right), which results in an overall matching (and geodesic) between these two
trees which better conveys the resemblance between the two scalar fields fi and f j. Equivalently, one can interpret this procedure of saddle merge in
the input trees as a modification of the input scalar field, turning fi into f j. In particular, this field modification disconnects the Gaussian with the
white maximum from the Gaussian with the dark blue maximum ( fi) and reconnects it to the Gaussian with the light blue maximum ( f j).

Fig. 21. Impact of the parameter ε2 on geodesic computation (left: ε2 = 1, right: ε2 = 0.95). In this example (left), the white branch in T ( fi) is not
matched to the white branch in T ( f j) as they have distinct depths in the corresponding BDTs (2 versus 1). Moreover, given the function difference
between the white branch’s saddle and its ancestor, that branch cannot be moved up the BDT under the effect of the ε1 procedure (above). The
white branch in T ( fi) has a persistence nearly identical to its parent (cyan). Thus, after local normalization (necessary to guarantee the topological
consistency of the interpolated trees), its normalized persistence would become artificially high, which can have an undesirable effect on the
metric. The BDT pre-processing addresses this issue and moves up the BDT branches with a relative persistence to their parent larger than ε2
(recommended default value: 0.95). In this example (right), the white branch in T ( fi) moves up the BDT and becomes adjacent to the main light blue
branch in T ( fi). Since they now have identical depths in the corresponding BDTs, the white branches of T ( fi) and T ( f j) can now be matched
together (right), which better conveys the resemblance between the two scalar fields fi and f j. Equivalently, one can interpret this procedure of BDT
pre-processing as a modification of the input scalar field, turning fi into f j. In particular, this field modification disconnects the Gaussian with the
white maximum from the Gaussian with the cyan maximum ( fi) and reconnects it to the Gaussian with the light blue maximum ( f j).

Fig. 22. Effect of the parameter ε3 on geodesic computation (left: ε3 = 0, right: ε3 = 0.9). In this example (left), the white branch in T ( fi) is not
matched to the white branch in T ( f j) as they have distinct depths in the corresponding BDTs (3 versus 1). Applying the above BDT pre-processing
(ε2) to all branches would move the cyan branch in T ( fi) up the BDT, which would prevent it to match to the cyan branch in T ( f j). The parameter ε3
restricts the application of the above BDT pre-processing and prevents the movement of the most persistent branches (relative persistence larger
than ε3, default: 0.9). In this example (right), the white branch in T ( fi) moves up the BDT and becomes adjacent to the main light blue branch in
T ( fi). Since they now have identical depths in the corresponding BDTs, the white branches of T ( fi) and T ( f j) can now be matched together
(right), which results in an overall matching (and geodesic) between these two trees which better conveys the resemblance between the two scalar
fields fi and f j. Equivalently, one can interpret this procedure on the BDTs as a modification of the input scalar field, turning fi into f j. In particular,
this field modification disconnects the Gaussian with the white maximum from the Gaussian with the dark green maximum ( fi) and reconnects it to
the Gaussian with the light blue maximum ( f j).
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