N

N
N

HAL

open science

Towards Twin-Driven Engineering: Overview of the
State-of-the-Art and Research Directions

Massimo Tisi, Hugo Bruneliere, Juan de Lara, Davide Di Ruscio, Dimitris

Kolovos

» To cite this version:

Massimo Tisi, Hugo Bruneliere, Juan de Lara, Davide Di Ruscio, Dimitris Kolovos. Towards Twin-
Driven Engineering: Overview of the State-of-the-Art and Research Directions. IFIP Conference
on Advances in Production Management Systems (APMS 2021), Sep 2021, Nantes, France. pp.1-9,
10.1007/978-3-030-85874-2_ 37 . hal-03288132

HAL Id: hal-03288132
https://hal.science/hal-03288132
Submitted on 16 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03288132
https://hal.archives-ouvertes.fr

Towards Twin-Driven Engineering: Overview of the
State-of-the-Art and Research Directions

Massimo Tisit, Hugo Bruneliere!, Juan de Lara?, Davide Di Ruscio® and Dimitris
Kolovos*

LIMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France
{massimo.tisi,hugo.bruneliere}@imt-atlantique.fr
2 Universidad Auténoma de Madrid, Madrid, Spain
juan.delara@uam.es
8 University of L'Aquila, L’ Aquila, Italy
davide.diruscio@univag.it
4 University of York, York, United Kingdom
dimitris.kolovos@york.ac.uk

Abstract. Cyber-Physical Systems (CPS) are complex physical systems inter-
acting with a considerable number of distributed computing elements for moni-
toring, control and management. They are currently becoming larger as Cyber-
Physical Systems of Systems (CPSoS), since many industrial companies are
transitioning their complex systems of systems to software-intensive solutions
in different domains such as production or manufacturing. Following the devel-
opment and dissemination of DevOps approaches in the Software Engineering
world, we propose the Twin-Driven Engineering (TDE) paradigm as a way to
upgrade the role of Digital Twins (DT) to become a central point in all the en-
gineering activities on the CPSoS, from design to decommissioning. Since
CPSoS can be highly heterogeneous, we rather target the support for producing
and maintaining a single integrated virtual representation of the CPSoS (i.e. a
System of Twins) on which it is possible to perform global reasoning, analysis
and verification. However, such a new paradigm comes with several open re-
search challenges. We provide an overview of the state-of-the-art in key areas
related to TDE. We identify under-investigated problems in related work and
outline corresponding research directions.

Keywords: Twin-Driven Engineering, Cyber-Physical Systems, Systems of
Systems, State-of-the-Art, Research Directions.

1 Introduction and Motivation

Cyber-Physical Systems (CPS) are complex physical systems interacting with a large
number of distributed computing elements for monitoring, control and management.
Cyber-Physical Systems of Systems (CPSoS) further leverage connectivity to achieve
complex tasks by “an integration of a finite number of constituent systems which are
independent and operable, and which are networked together for a period of time to
achieve a certain higher goal” [15]. In this context, Digital Twins (DTs), i.e. virtual

real-time representations of physical systems, are particularly relevant for monitoring
and making diagnostics/prognostics on the constituent CPSs. For example, virtual
representation has been already used for virtual commissioning of manufacturing
systems [21]. However, the real-time connection of digital twins with the physical
system while it is in use enables further usages, like seamless tracking of the system
operation and more realistic evaluation of any system improvements. More generally,
in current practices and different domains, the development and maintenance of a
CPSoS is performed through the interaction of multidisciplinary actors with specific
competences and assigned to different phases. To capture, communicate and validate
their ideas with other stakeholders, engineers of each CPSoS constituent system build
models of their respective systems. However, the traditional paradigm “requirements
- model-based design - verification - deployment - operation - decommissioning” does
not provide sufficient guarantees to the dependability of a CPSoS. Indeed, miscom-
munication and delays in propagating changes are a primary cause of faults for
CPSoS. In Software Engineering, the DevOps approach is widely used to address
similar problems by providing practices, techniques and tools for integrating the soft-
ware development and operation phases. Interestingly, the application of DevOps
approaches has been recently studied in the context of CPSs [8] [26]. We advocate
that DevOps practices may have a strongly beneficial impact on the dependability of
CPSo0Ss.

In this paper we propose to go further and to create a new engineering para-
digm, Twin-Driven Engineering (TDE), with the aim of upgrading the role of DTs as
a central point of all the engineering activities on the CPSoS. Since CPSoS heteroge-
neity is inevitable, our proposition is to help in producing and maintaining a single
integrated virtual representation of the CPSoS on which it is possible to perform glob-
al reasoning, analysis and verification. Such representation of the CPSoS will orches-
trate the DTs of the constituent systems: We call it a System of Twins (SoT). Such an
approach can radically change the way CPSoS are produced and maintained. A SoT
can precede the design of a constituent system and drive its actual development, or act
as a specification and automated oracle for continuous engineering. The industrial
deployment of this approach depends on the cost effectiveness of the SoT production
and maintenance.

While inexpensive and easily interfaced sensors are available today, engineering a
DT is still an expensive activity whose costs are impacted by their dependability re-
quirements that span from certifying the conformance of the DT with the CPS, to
robustness and runtime problems. Moreover, the required competences in Machine
Learning (ML), e.g. for inferring DT non-measurable properties, are not generally
available in the ecosystem. Finally, providing a global view (even abstract) of the full
CPSo0S may introduce new scalability requirements on the underlying infrastructure.
Hence, there is the need for research methods, techniques and tools to minimize the
cost of the DT production at all levels of a multi-layered CPSoS. In this paper, we
define TDE and provide an overview of the state-of-the-art in key related areas. We
also introduce corresponding research directions we believe to be worth investigating.

Paper organization. Section 2 introduces the TDE paradigm. Section 3 presents
the current state-of-the-art related to key challenges associated with the realization of
TDE. Finally, Section 4 concludes the paper.

2 Twin-Driven Engineering

TDE can be defined as the software & system engineering paradigm that consists in
creating, maintaining and leveraging a dependable twin of a given complex system
and its environment, in order to better support and manage this system throughout its
whole life cycle. As a consequence, in order to build the twin of a CPSoS, a corre-
sponding SoT actually has to be specified and handled.

In this context, TDE first requires the users to describe the CPSoS including i) the
structure of the system of systems, ii) the interaction of the constituent systems and
iii) the structure and behavior of the environment. Information on each constituent
system is also needed, without delving into full implementation details at that level.
We refer to this general information as Abstract Models, i.e. single sources of truth on
their constituent systems as shown in Figure 1. To be able to specify these Abstract
Models, the user needs a modeling language. Each domain in CPSs has its own set of
commonly used description languages and models, referring to different physical,
engineering and technological backgrounds. Models may have different fidelity, dif-
ferent types of parameterization, or different philosophical approaches. Some academ-
ic literature and related work have tried to propose very general languages for describ-
ing any CPS (cf. Section 3). However, the technical and organizational heterogeneity
of CPSoS strongly reduces the realistic chances of acceptance of such efforts.

System of Twins - SoT

.) Digital

Digital
Twin

Digital
Twin

Abstract
model

model

Abstract

. Composition

Cyber-Physicist

Synchronization
Synchronization
Synchronization

Synchronization

Fig. 1. An overview of the Twin-Driven Engineering paradigm, showing the central role of the
Digital Twins (DTs) that compose the System of Twins (SoT) to be synchronized with the
underlying System of Systems (SoS).

As a solution, we propose to consider a specific DT for each constituent system.
The composition of all these DTs will result in the target SoT that can then be used as
the main interface between the underlying CPSoS and the involved engineers. To
make TDE possible, the SoT has to be kept constantly synchronized with the related

CPSo0S. Thus, each DT has to be individually synchronized with its underlying sys-
tem. At this stage, we envision the use of ML techniques to ensure such a regular
synchronization. Moreover, each DT is also in charge of keeping its corresponding
Abstract Model up to date. Solutions already exist to simplify the creation of DTs (cf.
Section 3). However, they generally rely on stakeholders committing to a single tech-
nology, e.g. a specific language, development tool, runtime infrastructure, or depend-
ability definition. This is unrealistic if we consider the growing organizational and
technical complexity of CPSoS. Thus, the key idea coming along with TDE is to pro-
pose a corresponding meta-environment for building specific DTs tailored for each
CPSoS. By using such a platform, engineers operating at different levels of the
CPSoS hierarchy can create solutions to produce an integrated view of their compo-
nent systems for global reasoning. As mentioned before, TDE does not aim at replac-
ing existing tools and techniques for modeling individual components of CPSoS. The
objective is rather to build on top of them, e.g. by using them as targets of code gen-
eration and directly integrating their executable artifacts.

3 Advancing the State-of-the-Art of Twin-Driven Engineering

3.1 Definition of domain-specific Systems of Twins

Current metamodeling languages (e.g. MOF [25], Ecore [7]) were devised for static
data modeling. However, describing SoTs and coupling them with desigh models of
CPSs requires i) accounting for dynamic data and ii) the availability of CPS meta-
modeling primitives to describe quantity units, time models, probability and uncer-
tainty. Thus, using current metamodeling frameworks would require extra effort, be-
cause CPS-specific concepts need to be explicitly modeled. Instead, a native support
would reduce the effort needed to build domain-specific CPS languages tools. These
primitives need to be properly integrated with languages for model manipulation or
constraints (e.g. OCL). As a consequence, TDE requires pushing forward the state-of-
the-art on metamodeling technologies for engineering SoTs.

Uncertainty and quantity units have already been introduced in UML/OCL [23].
Later, some UML/OCL types were also extended with uncertainty [3]. While TDE
could leverage on those works, these are not realized in standard metamodeling
frameworks and so not available for building practical DSLs. Ecore has been recently
extended with temporal capabilities [12]: Updates of temporal elements in a model
are persisted and it is possible to issue temporal queries, or to retrieve elements in
previous model versions. These ideas can be used as a basis to extend with proper
time primitives like explicit clock-times or intervals. More sophisticated notions of
time have been added to OCL [17], enabling quantification of events and over time.
These works can be extended with stream types for modeling live data, to check the
runtime behavior of SoT.

Many works have been proposed on specification-based monitoring of CPS [2],
most of them based on variations of temporal logic. Hence, there is a frequent need to
tweak existing logic formalisms and create supporting tools, which is a very costly
activity. TDE aims at providing means to define DSLs for runtime monitoring, and
the support for the automated creation of monitors. TDE will also provide support for

linking design-time models (e.g. in Modelica), and TD models by means of bidirec-
tional (bx) domain-specific transformation languages [9]. Bx will enable iterative
design processes, while our vision is to provide a framework for engineering bx lan-
guages targeting specific CPS design platforms like Modelica. Many works exist on
bx transformation languages [14]. However, we are not aware of frameworks for en-
gineering domain-specific bx transformation languages. Additionally, the use of mod-
el view techniques could also be considered [5] as they have already demonstrated
their relevance and applicability in the context of the federation of large-scale design
time and runtime models [6].

Research directions. TDE takes a step beyond the state-of-the-art frameworks for
defining SoT by providing advanced metamodeling capabilities, and bidirectional
(BX) connection with design CPS models, for a holistic support of the CPS life cycle.
Standard metamodeling frameworks have to be extended with CPS notions (quanti-
ties, time, uncertainty) as well as types for dynamic and streaming data (enabling e.g.,
connection with predictive models). Standard constraint languages also have to be
extended to enable expressing time-aware constraints. Such constraints can natively
use CPS concepts and be used as a basis to develop monitoring languages for depend-
ability properties. Finally, domain-specific BX transformation languages have to be
specified to facilitate the creation of bridges between SoT and CPS design models.
Such languages also have to support the checking of CPS correctness properties, in-
volving the bx preservation of source and target integrity constraints.

3.2 Domain-specific 3D interfaces for Systems of Twins

Arguably, a domain-specific language for SoTs is of little value if it is not supported
by robust and usable editors through which developers can create and edit models
conforming to the language. In the field of 2D graphical editor development, frame-
works such as MetaEdit+, GMF, Graphiti and Sirius have drastically reduced the
effort and expertise required to develop and maintain diagram-based editors for do-
main-specific languages [18]. Conversely, there is virtually no support for developing
domain-specific 3D editors, except for some early prototypes that are no longer main-
tained [28]. 2D graphical editors may be sufficient for some classes of domain-
specific SoTs languages. However, when physical objects are modelled, a 3D editor
can provide a more natural and intuitive representation that better communicates to
other engineers, and also to non-technical stakeholders. Developing such a 3D editor
for a SoT DSL involves a significant upfront investment and requires specialized
skills that would be prohibitive for most development teams. As discussed above, this
used to be the case for 2D editors as well until tools such as MetaEdit+ and GMF
provided reusable facilities that allowed engineers to concentrate only on the essential
complexity of the editor (e.g. define how abstract syntax concepts should be mapped
to shapes/connections).

Research Directions. TDE requires a set of notations for specifying the 3D graph-
ical syntax of SoT domain-specific languages at a high level of abstraction, and auto-
mated facilities for realizing fully-functional 3D editors for related models. It also
requires exploring virtual reality (VR) technologies through which users can be able
to navigate and interact with such 3D models, as well as protocols for capturing the
structural/behavioral properties of the language in a platform-independent way. A

main objective is to facilitate concrete implementations on different platforms, simi-
larly to Microsoft's Language Server Protocol (LSP) for textual languages and GLSP
for graphical languages.

3.3 Dependable connection and composition in Systems of Twins

Solutions to simplify the development of DTs like ADT, Eclipse Ditto, or Seebo de-
fine or generate an API for the DT on a specific platform (e.g. Azure loT), with a
specific software architectural style (e.g. REST on Swagger) and/or with an organiza-
tion that is agnostic of the CPSoS behavior. A mechanism is needed to generate, for
any given platform, protocol and style, an efficient interface for the DT.

An important dependability issue, which has not yet been addressed in production
systems such as ADT, is related to the way the CPSoS are connected to the DT [20].
CPSoS are not managed by actors such as Microsoft, they belong to third party play-
ers and are connected to the cloud platform through the internet backbone (generally
WAN links operated by another actor). Hence, it is critical to consider the CPSoS, the
DT and the infrastructure overall. Similarly, to the studies that have been conducted
for smart-grid applications, it is critical to identify the requirements of each DT and
the possible limitations of the infrastructure in order to ensure a DT can collect the
metrics it needs to maintain the DT up-to-date. Going further, strategies to cope with
network disconnections should be defined a priori.

Monitoring CPSoS requires fast and low-overhead model analysis and transfor-
mation techniques, to ensure that corrective decisions are timely and achieved with
acceptable use of resources (CPU, memory, bandwidth and energy). While such tech-
niques are not yet available for CPS, relevant advances have been made for software
systems through the development of incremental techniques for the efficient analysis
of functional requirements expressed in OCL [10] and of non-functional requirements
specified in probabilistic temporal logics [16]. However, because of the high through-
put of incoming data, a dependable continuous monitoring of DT models requires
techniques that exceed the typical domain of incremental computation, to enter the
area of streaming computation.

Research Directions. A DT solution should come with the right mecha-
nism/components [24] to deal with all infrastructure specifics (throughput, latency
and resilience of the network) so that we can formally validate whether the DT can be
correctly maintained in time. Those mechanisms can include compression, caching
and resynchronization mechanisms according to the CPSoS specifics, the DT expecta-
tions and the infrastructure. By leveraging previous works on software programming
models [11] and middleware for loT [27], TDE can rely on a DSL that enables
DevOps to express the infrastructure topology, its specific requirements in terms of
connectivity between each CPSoS and the SoT. A list of components in charge of
dealing with interconnectivity issues and network specifics (latency/throughput) can
be defined and then used to derive a DSL allowing to express those constraints. The
ultimate goal would be to automatically generate, configure and finally deploy those
components.

3.4 Twin-Driven Engineering for DevOps on CPSo0S

Managing CPS development is a complex task because different kinds of artifacts
(from physical to software systems) need to be homogeneously integrated. In this
context, DTs come to the rescue by playing the role of bridges between the physical
and digital worlds. They allow identifying problems even before they occur, or ena-
bling analysis and simulations to enhance system dependability. However, in CPSoSs,
a multitude of heterogeneous DTs must be managed and properly interconnected.
Moreover, the same physical object can have different DTs providing different ab-
stractions and only exposing the characteristics appropriate for the considered life
cycle phase. To enable TDE, two main ingredients are needed: 1) A dedicated reposi-
tory able to store and manage reusable DT models and 2) a DevOps infrastructure
supporting the SoT continuous engineering and integration.

Concerning (1) we outline research challenges for achieving a comprehensive solu-
tion to the problem of properly managing the persistence of models and the discovery
of any kind of modeling artefact and tool for enabling their reuse and refinement.
CDO is a pure Java model repository (relying on common database backends) for
models that can also serve as a persistence and distribution framework for model-
based applications. EMFStore [19] is a model version control system implementing
the typical operations proposed by SVN/CVS/Git for text-based artefacts. GME -
Generic Modeling Environment [22] is a set of tools supporting the creation of do-
main specific modeling languages and code generation environments, based on MS
repository technologies to store the developed models. ModelBus [13] consists of a
central bus-like communication infrastructure, a number of core services (versioning,
check-out, merging) and a set of additional management tools. MDEForge [1] is an
extensible Web-based modeling platform fostering community-based modeling repos-
itories and proposing remote model management tools as software-as-a-service.

Concerning (2) several tools support the continuous integration and deployment of
software systems (e.g., Jenkins, Travis, and GitLab CI/CD). “Continuous Integration”
was first used by Grady Booch [4] to describe an effective, iterative way of building
software. Essentially, every commit immediately triggers automated tests and build-
ing tasks to quickly detect errors and constantly have a stable build of the system
being developed. In complex CPSoS, the existence of large numbers of decentralized
sub-systems represents an additional element of complexity. Finally, CPSoS are also
characterized by human-in-the-loop aspects related to the collaboration of humans
with the software and hardware systems being employed.

Research Directions. TDE requires to develop software components, available as
software-as-a-service, to support the persistence and the reuse of DT models: Tools
from different vendors (e.g., Matlab Simulink, LabVIEW, Modelica) could store and
retrieve models from a common repository. Moreover, a dedicated support has to be
implemented to manage the relationships between heterogeneous artefacts, including
advanced query mechanisms. TDE also comes with novel methods and tools for sup-
porting SoT development and operations. Dependability models and processes have to
be investigated to guarantee reliability during the complete life cycle of CPSoS, from
requirements capture to design, test, operation and decommissioning. It can be ex-
plored how existing DevOps infrastructures can be extended to support the continuous
engineering and continuous integration of SoTs.

4

Conclusion

In this paper, we proposed a first definition of the TDE paradigm for CPSo0S. We gave
an overview of the state-of-the-art in key related areas, and proposed corresponding
research directions we think to be worth investigating. We believe cost-effective TDE
to be a major milestone for dependable software engineering for production systems.
Thus, this paper also aims at fostering discussion and collaboration around this topic
between the software engineering and production systems communities.

References

1.

10.

11.

12.

13.

14.

F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. lovino, et A. Pierantonio,
MDEForge: an extensible Web-based modeling platform, CloudMDE Workshop at MoD-
ELS 2014, Valencia, Spain (2014).

. E. Bartocci et al. Specification-Based Monitoring of Cyber-Physical Systems: A Survey on

Theory, Tools and Applications, Lectures on Runtime Verification - Introductory and Ad-
vanced Topics, vol. 10457, Springer, p. 135-175 (2018).

. M. F. Bertoa, N. Moreno, G. Barquero, L. Burguefio, J. Troya, A. Vallecillo. Expressing

Measurement Uncertainty in OCL/UML Datatypes, ECMFA 2018, vol. 10890, p. 46-62
(2018).

G. Booch. Object-Oriented Design with Applications, The Benjamin/Cummings Publish-
ing Company, Inc., (1991).

H. Bruneliere, E. Burger, J. Cabot and M. Wimmer. A Feature-based Survey of Model
View Approaches. Software & Systems Modeling, 18(3), pp.1931-1952 (2019).

. H. Bruneliere, F. Marchand de Kerchove, G. Daniel, S. Madani, D. Kolovos and J. Cabot.

Scalable Model Views Over Heterogeneous Modeling Technologies and Resources. Soft-
ware and Systems Modeling, 19(4), pp.827-851 (2020).

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, et T. J. Grose. Eclipse Modeling
Framework. Addison Wesley (2003).

B. Combemale et M. Wimmer. Towards a Model-based DevOps for Cyber-Physical Sys-
tems. In International Workshop on Software Engineering Aspects of Continuous Devel-
opment and New Paradigms of Software Production and Deployment (pp. 84-94). Spring-
er, Cham, (2020).

J. S. Cuadrado, E. Guerra, et J. de Lara. Towards the Systematic Construction of Domain-
Specific Transformation Languages, ECMFA 2014, vol. 8569, p. 196-212 (2014).

A. Demuth, R. E. Lopez-Herrejon, et A. Egyed. Automatic and Incremental Product Opti-
mization for Software Product Lines, ICST 2014, p. 31-40 (2014).

I. Gerostathopoulos et al. Self-adaptation in Software-intensive Cyber—Physical Systems:
From System Goals to Architecture Configurations, Journal of Systems and Software, vol.
122, p. 378-397 (2016).

A. Gémez, J. Cabot, et M. Wimmer, TemporalEMF: A Temporal Metamodeling Frame-
work, ER 2018, vol. 11157, p. 365-381 (2018).

C. Hein, T. Ritter, et M. Wagner. Model-driven Tool Integration with ModelBus, Work-
shop on Future Trends of Model-Driven Development (2009).

S. Hidaka, M. Tisi, J. Cabot, et Z. Hu. Feature-based Classification of Bidirectional Trans-
formation Approaches, Software and Systems Modeling, vol. 15, no 3, p. 907-928 (2016).

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

M. Jamshidi, Systems of Systems Engineering: Principles and Applications. CRC press,
(2008).

K. Johnson, R. Calinescu, et S. Kikuchi. An Incremental Verification Framework for
Component-based Software Systems, CBSE 2013, p. 33-42 (2013).

B. Kanso et S. Taha. Specification of Temporal Properties with OCL, Science of Computer
Programming, vol. 96, p. 527-551 (2014).

D. S. Kolovos, A. Garcia-Dominguez, L. M. Rose, et R. F. Paige. Eugenia: Towards Dis-
ciplined and Automated Development of GMF-based Graphical Model Editors, Software
and Systems Modeling, p. 1-27 (2015).

M. Koegel et J. Helming. EMFStore: A Model Repository for EMF Models, ICSE 2010,
vol. 2, p. 307-308 (2010).

E. A. Lee. Cyber Physical Systems: Design Challenges, ISORC 2008, p. 363-369 (2008).
C.G. Lee et S.C. Park. Survey on the Virtual Commissioning of Manufacturing Systems.
Journal of Computational Design and Engineering, 1(3), pp.213-222 (2014).

A. Ledeczi et al. The Generic Modeling Environment, Workshop on Intelligent Signal
Processing (2001).

T. Mayerhofer, M. Wimmer, et A. Vallecillo. Adding Uncertainty and Units to Quantity
Types in Software Models », MODELS 2016, p. 118-131 (2016).

M. Mikic-Rakic et N. Medvidovic. A Classification of Disconnected Operation Tech-
niques, EUROMICRO 2006, p. 144-151 (2006).

The Object Management Group, OMG’s Meta-Object Facility (MOF),
https://www.omg.org/mof/, last accessed 2021/06/18.

M.U. Querejeta, , L. Etxeberria et G. Sagardui. Towards a DevOps Approach in Cyber
Physical Production Systems Using Digital Twins. International Conference on Computer
Safety, Reliability, and Security, pp. 205-216. Springer, Cham, (2020).

M. A. Razzaque, M. Milojevic-Jevric, A. Palade, et S. Clarke, Middleware for Internet of
Things: A Survey, IEEE Internet of Things Journal, vol. 3, no 1, p. 70-95, (2016).

J. Wolter et U. Kastens. Generating 3D Visual Language Editors: Encapsulating Interac-
tion Techniques in Visual Patterns, International Journal of Software Engineering and
Knowledge Engineering, vol. 25, no 2, p. 333-360, (2015).

https://www.omg.org/mof/

